

Edinburgh Research Explorer

Virtual Network Mapping in Cloud Computing: A Graph Pattern
Matching Approach

Citation for published version:
Cao, Y, Fan, W & Ma, S 2017, 'Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching
Approach' The Computer Journal, vol. 60, no. 3, pp. 287-307. DOI: 10.1093/comjnl/bxw063

Digital Object Identifier (DOI):
10.1093/comjnl/bxw063

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Computer Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/195266637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1093/comjnl/bxw063
https://www.research.ed.ac.uk/portal/en/publications/virtual-network-mapping-in-cloud-computing-a-graph-pattern-matching-approach(60965bb6-3d48-412f-a883-cee37befff3c).html

Virtual Network Mapping in Cloud
Computing: A Graph Pattern

Matching Approach
Yang Cao 1,2 Wenfei Fan 1,2 Shuai Ma 2

1University of Edinburgh 2RCBD & SKLSDE Lab, Beihang University

Email: {yang.cao@, wenfei@inf.}ed.ac.uk mashuai@buaa.edu.cn

Virtual network mapping (VNM) is to build a network on demand by deploying
virtual machines in a substrate network, subject to constraints on capacity,
bandwidth and latency. It is critical to data centers for coping with dynamic
cloud workloads. This paper shows that VNM can be approached by graph
pattern matching, a well-studied database topic. (1) We propose to model a
virtual network request as a graph pattern carrying various constraints, and
treat a substrate network as a graph in which nodes and edges bear attributes
specifying their capacity. (2) We show that a variety of mapping requirements
can be expressed in this model, such as virtual machine placement, network
embedding and priority mapping. (3) In this model, we formulate VNM and its
optimization problem with a mapping cost function. We establish complexity
bounds of these problems for various mapping constraints, ranging from PTIME to
NP-complete. For intractable problems, we show that their optimization problems
are approximation-hard, i.e., NPO-complete in general and APX-hard even for
special cases. (4) We also develop heuristic algorithms for priority mapping, an
intractable problem. (5) We experimentally verify that our algorithms are efficient

and are able to find high-quality mappings, using real-life and synthetic data.

Keywords: Graph Pattern Matching; Cloud Computing; Virtual Network Mapping

1. INTRODUCTION

Virtual network mapping (VNM) is also known as vir-
tual network embedding or assignment. It takes as
input (1) a substrate network (SN, a physical network),
and (2) a virtual network (VN) specified in terms of a
set of virtual nodes (machines or routers, denoted as
VMs) and their virtual links, along with constraints
imposed on the capacities of the nodes (e.g., cpu and
storage) and on the links (e.g., bandwidth and latency).
VNM is to deploy the VN in the SN such that virtual
nodes are hosted on substrate nodes, virtual links are
instantiated with physical paths in the SN, and the
constraints on the virtual nodes and links are satisfied.

VNM is critical to managing big data. Big data
is often distributed to data centers [1, 2]. However,
data center networks often become the bottleneck for
dynamic cloud workloads of querying and managing
the data. In traditional networking platforms, network
resources are manually configured with static policies,
and new workload provisioning often takes days or
weeks [3]. This highlights the need for VNM, to
automatically deploy virtual networks in a data center
network in response to real-time requests. Indeed, VNM
is increasingly employed in industry, e.g., Amazon’s

EC2 [4], VMware Data Center [5] and Big Switch
Networks [3]. It has proven effective in increasing
server utilization, and in reducing server provisioning
time (from days or weeks to minutes), server capital
expenditures and operating expenses [3]. There has also
been a host of work on virtualization techniques for big
data [1, 2] and database systems [6–10].

Several models have been proposed to specify VNM in
various settings (see notations summarized in Table 1):

(1) Virtual machine placement (VMP): it is to find a
mapping f from virtual machines in a VN to substrate
nodes in an SN such that for each VM v, its capacity is
no greater than that of f(v), i.e., f(v) is able to conduct
the computation of the VM v that it hosts [11].

(2) Single-path VN embedding (VNESP): it is to find

(a) an injective mapping fv that maps nodes in VN to
nodes in SN, subject to node capacity constraints;
and

(b) a function that maps a virtual link (v, v′) in VN to
a path from fv(v) to fv(v

′) in SN that satisfies a
bandwidth constraint, i.e., the bandwidth of each
link in the SN is no smaller than the sum of the
bandwidth requirements of all those virtual links
that are mapped to a path containing it [12–14].

The Computer Journal, Vol. ??, No. ??, ????

2 Y. Cao W. Fan S. Ma

(a) VN Request (b) SN

FIGURE 1. VN requests found in practice

(3) Multi-path VN embedding (VNEMP): it is to find a
node mapping fv as in VNESP and a function that maps
each virtual link (v, v′) to a set of paths from fv(v) to
fv(v

′) in SN, subject to bandwidth constraints [15,16].

However, there are a number of VN requests that are
commonly found in practice, but cannot be expressed
in any of these models, as illustrated by the following.

Example 1. Consider a VN request and an SN,
depicted in Figures 1(a) and 1(b), respectively. The
VN has three virtual nodes VM1, VM2 and VM3, each
specifying a capacity constraint, along with a constraint
on each virtual link. In the SN, each substrate node
bears a resource capacity and each connection (edge)
has an attribute, indicating either bandwidth or latency.
Consider the following cases.

(1) Mapping with latency constraints (VNML). Assume
that the numbers attached to the virtual nodes and links
in Fig. 1(a) denote requirements on cpus and latencies
for SN, respectively. Then the VNM problem, denoted
by VNML, aims to map each virtual node to a substrate
node with sufficient computational power, and to map
each virtual link (v, v′) in the VN to a path in the SN
such that its latency, i.e., the sum of the latencies of
the edges on the path, does not exceed the latency
specified for (v, v′). The need for studying VNML arises
from latency sensitive applications such as multimedia
transmitting networks [17], where constraints on virtual
links concern latency rather than bandwidth.

(2) Priority mapping (VNMP). Assume that the
constraints on the nodes in Fig. 1(a) indicate cpu
capacities, and constraints imposed on the edges denote
bandwidth capacities. Then the VNM problem, denoted
by VNMP, is to map each virtual node to a node in
SN with sufficient cpu capacity, and each virtual link
(v, v′) in the VN to a path in SN such that the minimum
bandwidth of all edges on the path is no less than the
bandwidth specified for (v, v′). The need for this is
evident in many applications [18, 19], when we want to
give different priorities at run time to virtual links that
share some physical links, and require the mapping only
to provide bandwidth guarantee for the connection with
the highest priority.

(3) Mapping with node sharing (VNESP(NS)). Assume
that the numbers attached to the virtual nodes and
links in Fig. 1(a) denote requirements on cpus and

TABLE 1. Notations and various VNM cases

Notation Description

VNM virtual network mapping

VN virtual network

SN substrate network

VMs virtual nodes (machines or routers)

VMP (VMP(NS)) VM Placement (node sharing (NS))

VNMP (VNMP(NS)) priority mapping (with NS)

VNESP (VNESP(NS)) single-path embedding (with NS)

VNEMP (VNEMP(NS)) multi-path embedding (with NS)

VNML (VNML(NS)) latency constrained mapping (NS)

bandwidths for SN, respectively. Then VNESP(NS) is
an extension of the single-path VN embedding (VNESP)
by supporting node sharing, i.e., by allowing multiple
virtual nodes to be mapped to the same substrate node,
as needed by, e.g., X-Bone [20].

Similarly, there is also practical need for extending
other mappings with node sharing, such as virtual
machine placement (VMP), latency mapping (VNML),
priority mapping VNMP and multi-path VN embedding
(VNEMP). We denote such an extension by adding a
subscript NS (see Table 1). �

Observe the following. (a) VNM varies from
practical requirements, e.g., when latency, high-priority
connections and node sharing are concerned. (b)
Existing models are not capable of expressing such
requirements; indeed, none of them is able to specify
VNML, VNMP or VNESP(NS). (c) It would be an overkill
to develop a model for each of the large variety of
requirements, and to study it individually.

As suggested by the example, we need a generic
model to express virtual network mappings in various
practical settings, including both those already studied
(e.g., VMP, VNESP and VNEMP) and those that have
been overlooked (e.g., VNML, VNMP and VNESP(NS)).
The uniform model allows us to characterize and
compare VNM in different settings, and better still, to
study generic properties that pertain to all the variants.
Among these are the complexity and approximation
analyses of VNM, which are obviously important but
have not yet been systematically studied by and large.

Contributions & Roadmap. This work takes a
step toward providing a uniform model to characterize
VNM. We show that VNM, an important problem for
managing big data, can actually be tackled by graph
pattern matching techniques, a database topic that
has been well studied. We also provide complexity
and approximation bounds for VNM. Moreover, for
intractable VNM cases, we develop effective heuristic
methods to find high-quality mappings.

(1) We propose a generic model to express VNM in
terms of graph pattern matching [21] (Section 2). In
this model a VN request is specified as a graph pattern,
bearing various constraints on nodes and links defined

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 3

with aggregation functions, and an SN is simply treated
as a graph with attributes associated with its nodes
and edges. The decision and optimization problems for
VNM are then simply graph pattern matching problems.
We show that the model is able to express VNM
commonly found in practice, including all the mappings
we have seen so far (all the cases in Table 1).

(2) We establish complexity and approximation bounds
for VNM (Section 3). We give a uniform upper bound
for the VNM problems expressed in this model, by
showing that all these problems are in NP. We also show
that VNM is polynomial time (PTIME) solvable if only
node constraints are present (VMP), but it becomes
NP-complete when either node sharing is allowed or
constraints on edges are imposed (all the other cases
in Table 1). Moreover, we propose a VNM cost function
and study optimization problems for VNM based on
the metric. We show that the optimization problems
are intractable in most cases and worse still, are NPO-
complete in general and APX-hard [22] for special cases.
To the best of our knowledge, these are among the first
complexity and approximation results on VNM.

(3) These results tell us that it is beyond reach in
practice to find PTIME algorithms for VNM with edge
constraints such as VNMP and VNESP, or to find efficient
approximation algorithms with decent performance
guarantees. In light of these, we develop heuristic
algorithms for priority mapping VNMP, with node
sharing or not (Section 4). We focus on VNMP since it is
needed in, e.g., internet-based virtualized infrastructure
computing platform (iVIC [18]) and prioritized polling
for virtual network interfaces [19]. Our algorithm
reduces unnecessary computation by minimizing VNs
requests and utilizing auxiliary graphs of SNs. While
several algorithms are available for VN embedding
(e.g., [12–14]), no previous work has studied algorithms
for VNMP.

(4) Finally, we experimentally verify the effectiveness
and efficiency of our algorithm by providing a
simulation study (Section 5). We evaluate our
algorithm for priority mapping and VN embedding
(with node sharing or not). We find that our algorithm
is able to find high-quality mappings and is efficient
on large VNs and SNs. In particular, it is able to find
high-quality mappings, and has higher acceptance ratio
than the previous mapping model (VNESP), typically
from 11% to 39%. Furthermore, it took 420 seconds
for SNs with 106 nodes, and substantially outperforms
previous algorithms for VNESP (SubIso [13], ViNE [16],
RW-SP [23]) that took at least 912 seconds.

We contend that these results are useful for
developing virtualized cloud data centers for querying
and managing big data, among other things. By
modeling VNM as graph pattern matching, we are
able to characterize various VN requests with different
classes of graph patterns, and study the expressive

power and complexity of these graph pattern languages.
Furthermore, techniques developed for graph pattern
matching can be leveraged to study VNM. Indeed, the
proofs of some of the results in this work capitalize
on graph pattern techniques. On the other hand, the
results of this work are also of interest to the study of
graph pattern matching [21].

Related Work. This paper is an extension of
our earlier work [24] by adding (a) the proofs for
the complexity and approximation analyses of VNM
(Section 3), (b) a heuristic algorithm for computing
the minimum cost priority mapping (VNMP), with
node sharing or not (Section 4), and (c) an extensive
experimental study of the algorithm for computing
VNMP using real-life and synthetic data (Section 5).

Virtualization techniques have been investigated for
big data processing [1, 2] and database applications,
such as database appliance deployment and virtualized
resources management for database systems [6–10, 25].
However, none of these has provided a systematic study
of VNM, by modeling VNM as graph pattern matching.
The only exception is [13], which adopted subgraph
isomorphism for VNM, a special case of the generic
model proposed in this work. Moreover, complexity and
approximation analyses associated with VNM have not
been studied in database applications.

Several models have been developed for VNM. (a)
The VM placement problem (VMP) was studied in
[11], which is similar to the bin packing problem
and aims to map a set of VMs onto an SN in
the presence of constraints on node capacities. (b)
Single-path VN embedding (VNESP) was investigated
in [14, 26, 27], which is to map a VN to an SN by
a node-to-node injective function and an edge-to-path
function, subject to constraints on the cpu capacities
of nodes and constraints on the bandwidths of physical
connections. (c) Different from VNESP, multi-path
embedding (VNEMP) was studied in [15, 16], which
allows an edge of a VN to be mapped to multiple
parallel paths of an SN such that the sum of the
bandwidth capacities of those paths is no smaller than
the bandwidth of that edge. (d) Graph layout problems,
while they are similar to VN mapping, do not have
bandwidth constraints on edges but instead, impose
certain topological constraints (see [28] for a survey).

In contrast to this work, the prior models are studied
for specific domains. No previous work has studied
generic models to support various VN requests that
commonly arise in practice. Moreover, no prior work
has considered newly emerging settings such as priority
mapping, mappings with only latency constraints on
links, and mappings with node sharing, which are
tackled in this paper.

Very few complexity results are known for VNM.
The only work we are aware of is [29], which claimed
that the testbed mapping problem is NP-hard in the
presence of node types and some links with infinite

The Computer Journal, Vol. ??, No. ??, ????

4 Y. Cao W. Fan S. Ma

capacity. Several complexity and approximation results
are established for graph pattern matching (see [21,30]
for surveys). However, those results are for edge-to-
edge mappings, whereas VNM typically needs to map
virtual links to physical paths. There have been recent
extensions to support edge-to-path mappings for graph
pattern matching [31–34], with several intractability
and approximation bounds established there. Those
differ from this work in that either no constraints on
links are considered [31, 33], or graph simulation is
adopted [32, 34], which does not work for VNM. The
complexity and approximation bounds developed in
this work are among the first results that have been
developed for VNM in cloud computing.

A number of algorithms have been developed for
VNM. There are greedy algorithms for the VM
placement problem [11]. When considering bandwidth
constraints on links, [27] provided a heuristic algorithm
to find mappings with load balance with infinite SN
resources. A special case of mapping to SNs of
a backbone-star shape was studied in [14], allowing
constraints on both nodes and links. A path-splitting
assumption was proposed in [15], to rectify limitations
of mapping an edge to a single path. Based on
this assumption, [16] developed an MIP model and
corresponding algorithms for finding such mappings.
However, none of these algorithms works for the priority
mappings studied in this paper.

2. A GENERIC MODEL BASED ON GRAPH
PATTERN MATCHING

In this section we first represent virtual networks (VNs)
and substrate networks (SNs) as weighted directed
graphs. We then introduce a generic model to express
virtual network mapping (VNM) in terms of graph
pattern matching [21,30].

2.1. Substrate and Virtual Networks

An SN consists of a set of substrate nodes connected
with physical links, in which the nodes and links are
associated with resources of a certain capacity, e.g., cpu
and storage capacity for nodes, and bandwidth and
latency for links. A VN is specified in terms of a
set of virtual nodes and a set of virtual links, along
with requirements on the capacities of the nodes and
the capacities of the links. Both VNs and SNs can be
naturally modeled as weighted directed graphs.

Weighted directed graphs. A weighted directed
graph is defined as G = (V,E, fV , fE), where (1) V
is a finite set of nodes; (2) E ⊆ V × V is a set of edges,
in which (v, v′) denotes an edge from v to v′; (3) fV is
a function defined on V such that for each node v ∈ V ,
fV (v) is a positive rational number; and similarly, (4)
fE is a function defined on E.

Substrate networks. A substrate network (SN) is
a weighted directed graph GS = (VS , ES , fVS

, fES
),

where (1) VS and ES denote sets of substrate nodes and
(directly connected) physical links, respectively; and (2)
the functions fVS

and fES
denote resource capacities on

the nodes (e.g., cpu) and links (e.g., bandwidth and
latency), respectively.

Virtual networks. A virtual network (VN) is specified
as a weighted directed graph GP = (VP , EP , fVP

, fEP
),

where (1) VP and EP denote virtual nodes and links,
and (2) fVP

and fEP
are functions defined on VP and EP

in the same way as in substrate networks, respectively.

Example 2. The SN depicted in Fig. 1(b) is a
weighted graph GS , in which (1) the node set is
{a, b, ..., f}; (2) the edges include the directed edges
in the graph; (3) the weights associated with nodes
indicate cpu capacities; and (4) the weights of edges
denote bandwidth or latency capacities.

Figure 1(a) shows a VN, where (1) the node
set is {VM1, VM2, VM3}; (2) the edge set
is {(VMi,VMj) | i, j = 1, 2, 3}; (3) fVP

(VM1) = 66,
fVP

(VM2) = 20, fVP
(VM3) = 30; and (4) the function

fEP
is defined on the edge labels. As will be seen when

we define the notion of VN requests, the labels indicate
requirements on deploying the VN in an SN. �

Paths. A path ρ from node u0 to un in an SN GS is
denoted as (u0, u1, . . . , un), where (a) ui ∈ VS for each
i ∈ [0, n], (b) there exists an edge ei = (ui−1, ui) in ES
for each i ∈ [1, n], and moreover, (c) for all i, j ∈ [0, n],
if i 6= j, then ui 6= uj . We write e ∈ ρ if e is an edge
on ρ. When it is clear from the context, we also use ρ to
denote the set of edges on the path, i.e., {ei | i ∈ [1, n]}.

2.2. Virtual Network Mapping

Virtual network mapping (VNM) from a VN GP to an
SN GS is specified in terms of a node mapping, an edge
mapping and a VN request. The VN request imposes
constraints on the node mapping and edge mapping,
defining their semantics. We next define these notions.

A node mapping from GP to GS is a pair (gV ,rV) of
functions, where gV maps the set VP of virtual nodes
in GP to the set VS of substrate nodes in GS , and for
each v in VP , if gV (v) = u, rV (v, u) is a positive number.
Intuitively, function rV specifies the amount of resource
of the substrate node u that is allocated to the node v.

For each edge (v, v′) in GP , we use P (v, v′) to denote
the set of paths from gV (v) to gV (v′) in GS . An
edge mapping from GP to GS is a pair (gE , rE) of
functions such that (i) for each edge (v, v′) ∈ EP ,
gE(v, v′) is a subset of paths in P (v, v′) such that for any
ρ ∈ gE(v, v′), there exists an edge e ∈ ρ that does not
occur in any other path in gE(v, v′), and (ii) rE assigns
a positive number to each pair (e, ρ) for e ∈ EP and
ρ ∈ gE(e). Intuitively, rE(e, ρ) is the amount of resource
of the physical path ρ allocated to virtual link e.

VN requests. A VN request to an SN GS is a pair
(GP , C), where GP is a VN, and C is a set of constraints

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 5

TABLE 2. Various VN requests

Constraints C1 C2 C3 C4 C5 C6 C7

VMP (VMP(NS)) X X × × × X (×) ×
VNMP (VNMP(NS)) X X op:‘≤’; agg:‘max’ X op:‘≤’; agg:‘min’ X (×) X
VNESP (VNESP(NS)) X X op:‘≤’; agg:‘sum’ X op:‘≤’; agg:‘min’ X (×) X
VNEMP (VNEMP(NS)) X X op:‘≤’; agg:‘sum’ X op:‘≤’; agg:‘min’ X (×) ×
VNML (VNML(NS)) X X op:‘≥’; agg:‘sum’ × op:‘≥’; agg:‘sum’ X (×) X

such that for a pair ((gV , rV), (gE , rE)) of node and edge
mappings from GP to GS , each constraint in C has one
of the following forms:

(1) for each v ∈ VP , fVP
(v) ≤ rV (v, gV (v));

(2) for all nodes u ∈ VS , fVS
(u) ≥ sum(N(u)), where

N(u) is {|rV (v, u) | v ∈ VP , gV (v) = u|}, a bag (an
unordered collection of elements with repetitions)
determined by virtual nodes in GP hosted by u;

(3) for all edges e ∈ EP , fEP
(e) op agg(Q(e)), where

Q(e) is {|rE(e, ρ) | ρ ∈ gE(e)|}, a bag collecting
physical paths ρ that instantiate e; here op is
comparison operator ≤ or ≥, and agg() is one of
the aggregation functions min, max and sum;

(4) for all edges e′ ∈ES , fES
(e′)≥ sum(M(e′)), where

M(e′) is {|rE(e, ρ) | e ∈ EP , ρ ∈ gE(e), e′ ∈
ρ|}, a bag collecting those virtual links that are
instantiated by a physical link ρ containing e′; and

(5) for all e∈EP and ρ∈gE(e), rE(e, ρ) op agg(U(ρ))
where U(ρ) is {|fES

(e′) | e′ ∈ ρ|}), a bag of all edges
on a physical path that instantiate e.

(6) for all nodes u ∈ VS , |N(u)| ≤ 1, i.e., node sharing
is not allowed.

(7) for all e ∈ EP , |Q(e)| ≤ 1, i.e., an virtual link is
allowed to be mapped to one physical path in SN.

Constraints in a VN request are classified as follows.

Node constraints: Constraints of form (1), (2) or (6).
Intuitively, a constraint of form (1) assures that when
a virtual node v is hosted by a substrate node u, u
must provide adequate resource. A constraint of form
(2) asserts that when a substrate node u hosts (possibly
multiple) virtual nodes, u must have sufficient capacity
to accommodate all those virtual nodes. Constraint (6)
specifies whether a substrate node u can host more than
one virtual node, i.e., if node sharing is not allowed,
then constraint (6) is included in C.
Edge constraints: Constraints of form (3), (4), (5) or
(7). A constraint of form (3) assures that when a
virtual link e is mapped to a set of physical paths in
the SN, those physical paths taken together satisfy the
requirements (on bandwidths or latencies) of e. We
denote by |Q(e)| the number of physical paths to which
e is mapped. Those of form (4) assert that for each
physical link e′, it must have sufficient bandwidth to
accommodate those of all the virtual links that are
mapped to some physical path containing e′. Those
of form (5) assure that when a virtual link e is mapped
to a set of paths, for each ρ in the set, the resource of
ρ allocated to e may not exceed the capacities of the

physical links on ρ. Those of form (7) specify whether
each virtual link is mapped to a set of paths or a single
path in the SN.

VNM. We say that a VN request (GP , C) can be
mapped to an SN GS , denoted by GP BC GS , if there
exists a pair ((gV , rV), (gE , rE)) of node and edge
mappings from GP to GS such that all the constraints
of C are satisfied, i.e., the functions gV and gE satisfy
all the inequalities in C.

The VNM problem is to determine, given a VN request
(GP , C) and an SN GS , whether GP BC GS .

2.3. Case Study

As examples, below we examine VNM in various settings
that we have seen in Section 1 (Table 1). All those VNM
requirements can be expressed in this model, by treating
VN request as a graph pattern and SN as a graph.
These are summarized in Table 2 (Xand × indicate
whether the corresponding constraints are needed or
not, respectively). Below we illustrate a few cases.

Case 1: Virtual machine placement. VMP can be
expressed as a VN request in which only node
constraints are present. It is to find an injective
mapping (gV , rV) from virtual nodes to substrate nodes
(hence |N | ≤ 1) that satisfies the node constraints,
while imposing no constraints on edge mapping.

Case 2: Priority mapping. VNMP can be captured as a
VN request specified as (GP , C), where C consists of (a)
node constraints of forms (1), (2) and (6), and (b) edge
constraints of form (3) when op is ≤ and agg is max,
form (5) when op is ≤ and agg is min, and form (6).
It is to find an injective node mapping (gV , rV) and an
edge mapping (gE , rE) such that for each virtual link e,
gE(e) is a single path (hence |Q(e)| = 1). Moreover, it
requires that the capacity of each virtual node v does
not exceed the capacity of the substrate node that hosts
v. When a virtual link e is mapped to a physical path
ρ, the bandwidth of each edge on ρ is no less than that
of e, i.e., ρ suffices to serve any connection individually,
including the one with the highest priority when ρ is
allocated to the connection.

Example 3. Consider the VN given in Fig. 1(a) and
the SN of Fig. 1(b). Constraints for priority mapping
can be defined as described above, using the node and
edge labels (on bandwidths) in Fig. 1(a). There exists
a priority mapping from the VN to the SN. Indeed, one
can map VM1,VM2 and VM3 to b, a and d, respectively,

The Computer Journal, Vol. ??, No. ??, ????

6 Y. Cao W. Fan S. Ma

60

50 60

35
25

20
20

30
20

VM1

VM2 VM3

(a) VN Request

60 50 60

120 50

30 30

15

30

30

20

20

20 20

35 40

15

a b c

de

(b) SN

FIGURE 2. VN request and SN for case study

and map the virtual links to the shortest physical
paths uniquely determined by the node mapping, e.g.,
(VM1,VM2) is mapped to (b, a). �

Case 3: Single-path VN embedding. A VNESP request
can be specified as (GP , C), where C consists of (a)
node constraints of forms (1), (2) and (6), and (b) edge
constraints of form (3) when op is ≤ and agg is sum,
edge constraints of forms (4) and (5) when op is ≤ and
agg is min, and constraints of form (7). It differs from
VNMP in that for each physical link e′, it requires the
bandwidth of e′ to be no less than the sum of bandwidths
of all those virtual links that are instantiated via e′. In
contrast to VNMP that aims to serve the connection
with the highest priority at a time, VNESP requires
that each physical link has enough capacity to serve all
connections sharing the physical link at the same time.

Similarly, multi-path VN embedding (denoted by
VNEMP) can be expressed as a VN request. It is the
same as VNESP except that no constraints of form (7)
are allowed, i.e., a virtual link e can be mapped to a
set gE(e) of physical paths, which, when taken together,
provide sufficient bandwidth required by e.

When node constraints of form (6) are absent, i.e.,
node sharing is allowed in VNESP, i.e., for single-
path embedding with node sharing (VNESP(NS)), a VN
request is specified similarly. Here a substrate node u
can host multiple virtual nodes (hence |N(u)| ≥ 0) such
that the sum of the capacities of all the virtual nodes
does not exceed the capacity of u. Along the same
lines, one can also specify multi-path VN embedding
with node sharing (VNEMP(NS)).

Example 4. Consider the VN of Fig. 2(a), and
the SN of Fig. 2(b). There exists a VNESP from
the VN to the SN, by mapping VM1,VM2,VM3 to
a, b, e, respectively, and mapping the VN edges to
the shortest paths in the SN determined by the node
mapping. There is also a multi-path embedding VNEMP

from the VN to the SN, by mapping VM1,VM2 and
VM3 to a, c and e, respectively. For the virtual
links, (VM1,VM2) can be mapped to the physical
path (a, b, c), (VM1,VM3) to (a, e), and (VM3,VM2)
to two paths ρ1 = (e, b, c) and ρ2 = (e, d, c) with
rE((VM3,VM2), ρ1) = 5 and rE((VM3,VM2), ρ2) = 15;
similarly for the other virtual links.

One can verify that the VN of Fig. 2(a) allows no
more than one virtual node to be mapped to the same

substrate node in Fig. 2(b). However, if we change
the bandwidths of the edges connecting a and e in SN
from 30 to fVS

(a, e) = 40 and fVS
(e, a) = 50, then there

exists a mapping from the VN to the SN that supports
node sharing. Indeed, in this setting, one can map
both VM1,VM2 to e and map VM3 to a; and map the
virtual edges to the shortest physical paths determined
by the node mapping; for instance, both (VM1,VM3)
and (VM2,VM3) can be mapped to (e, a). �

Case 4: Latency constrained mapping. A VNML request
is expressed as (GP , C), where C consists of (a) node
constraints of forms (1), (2) and (6), and (b) edge
constraints of form (3) when op is ≥ and agg is min,
of form (5) when op is ≥ and agg is sum, and of form
(7). It is similar to VNESP except that when a virtual
link e is mapped to a physical path ρ, it requires ρ to
satisfy the latency requirement of e, i.e., the sum of the
latencies of the edges on ρ does not exceed that of e.

Example 5. One can verify that there is no latency
mapping of the VN in Fig. 1(a) to the SN in Fig. 1(b).

However, if we change the constraints on the
virtual links of the VN request to (VM1,VM2) = 50,
(VM2,VM1) = 55, (VM1,VM3) = (VM3,VM1) = 120
and (VM2,VM3) = (VM3,VM2) = 60, then there is
a mapping from the VN to the SN. We can map
VM1,VM2,VM3 to c, b, a, respectively, and map the
edges to the shortest physical paths decided by the node
mapping, e.g., from (VM1,VM3) to (c, b, a). �

3. COMPLEXITY AND APPROXIMATION

In this section we study fundamental issues associated
with virtual network mapping. We first establish
the complexity bounds of the VNM problem in
various settings, from PTIME to NP-complete. We
then introduce a cost metric for virtual network
mapping, formulate optimization problems based on the
function, and finally, give the complexity bounds and
approximation hardness of the optimization problems.

3.1. The Complexity of VNM

We provide an upper bound for the VNM problem in
the general setting, by showing it is in NP. We also
show that the problem is in PTIME when only node
constraints are present. However, when node sharing
or edge constraints are imposed, it becomes NP-hard,
even when both virtual and substrate networks are
directed acyclic graphs (dags). That is, node sharing
and edge constraints make our lives harder.

Theorem 3.1. The VNM problem is

(1) in NP regardless of what constraints are present;

(2) in PTIME when only node constraints are present,
without node sharing, i.e., VMP is in PTIME; however,

(3) it becomes NP-complete when node sharing is re-
quested, i.e., VMP(NS),VNMP(NS),VNML(NS),VNESP(NS)

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 7

and VNEMP(NS) are all NP-complete; and

(4) it is NP-complete in the presence of edge constraints;
i.e., VNMP,VNML,VNESP and VNEMP are intractable.

All the results hold when both VNs and SNs are dags.

Proof: (1) To show the upper bound, we give an NP

algorithm for VNM in general case. Given a VN request
(GP , C) and an SN GS , the algorithm returns “Yes” if
and only if GP BC GS .

(i) Guess a node mapping function gV and an edge
mapping function gE of VN on the SN.

(ii) Check whether there exist rV and rE such that (gV ,
rV) and (gE , rE) make node and edge mappings
that satisfy the constraints in C. If so, return
“Yes”.

The checking in step (ii) can be done in PTIME.
Indeed, observe the following. (a) Both gV and gE
are of size polynomial in |GP | and |GS |. (b) The
existence of rV satisfying C can be checked in O(|VP |)
time. (c) The existence of rE satisfying C can be
checked by formulating it as a linear (rational number)
programming problem, where rE(e, ρ)’s are variables for
all paths ρ determined by gE . For example, constraints
of form (3) in the VN request in Section 2 with op as =
or ≤ and agg as min can be expressed as fEP

(e) ≤
rE(e, ρ), for all e ∈ EP and all ρ ∈ gE(e)). As
linear programming is in PTIME [35], so is the existence
checking of rE .

(2) We next propose a PTIME algorithm to check
whether there exists a VMP from a VN request (GP , C)
to an SN GS with node constraints only and without
node sharing, by reduction to the Maximum Bipartite
Matching problem, which is in PTIME [36].

Given GP = (VP , EP , fVP
, fEP

) and GS = (VS , ES ,
fVS

, fES
), the algorithm constructs a bipartite graph

GB(VL, VR, EB) as follows.

(i) Let VL consist of |VP | nodes encoding VP , and VR
consist of |VS | nodes encoding VS .

(ii) For each pair of nodes u ∈ VP and v ∈ VS , let uL
and vR in VL and VR be the two nodes encoding u
and v, respectively. We include (uL, vR) in EB if
fVP

(u) ≤ fVS
(v).

One can easily verify that GB has a maximum
bipartite match covering all nodes in VL if and only
if there exists a VMP from GP to GS . As the former
can be checked in O(|EB |(|VL|+ |VR|)) time [36], VMP
is in PTIME as well.

(3) To prove that all cases with node sharing are NP-
complete, it suffices to show that VMP(NS) is NP-hard,
for it is a special case of the other cases such as
VNMP(NS), VNML(NS), VNESP(NS) and VNEMP(NS). We
prove this by reduction from the Subset-Sum problem
(SUBSUM). Given a set C of numbers x1, . . . , xk and

a target number t, SUBSUM is to decide whether there
exists a subset C ′ ⊆ C such that

∑
x∈C′ x = t. It is

known that SUBSUM is NP-complete (cf. [37]).
Given an instance of SUBSUM, i.e., C = {x1, . . . , xk}

and t, we construct a VN request GP (VP , EP , fVP
, fEP

)
and an SN GS(VS , ES , fVS

, fES
), such that there is

a VMP(NS) from GP to GS if and only if there exists
C ′ ⊆ C with

∑
x∈C′ x = t. We give the reduction as

follows.

(i) Let VP of GP be {v1, . . . , vk} and EP be empty;
moreover, for each i ∈ [1, k], let fVP

(vi) = xi.
Intuitively, vi of GP is to encode xi of C.

(ii) Let VS of GS consist of two nodes u and u′ and ES
be empty; moreover, let fVS

(u) = t and fVS
(u′) =

(
∑
x∈C x)− t. Intuitively, u is to encode t.

It is obvious that there exists a VMP(NS) from GP to
GS if and only if there exists C ′ ⊆ C with

∑
x∈C′ x = t.

(4) In light of (1) above, we only need to show
that VNMSP, VNMMP, VNML and VNMP are NP-hard.
First observe that VNML is NP-hard since it subsumes
the Subgraph Isomorphism problem, which is NP-
complete (cf. [37]), as a special case where the latency
requirements on virtual links and latency on physical
links are all the same, e.g., 1.

Below we first show that VNMSP and VNMMP are NP-
hard by reduction from the SUBSUM problem. We then
show that VNMP is NP-hard by reduction from the X3C
problem, which is NP-complete [37].

(a) We first show that both VNMSP and VNMMP

are NP-hard by reduction from SUBSUM (recall the
statement of SUBSUM from the proof of (3)). Given
an instance C and t of SUBSUM, we construct a VN
GP (VP , EP , fVP

, fEP
) and an SN GS(VS , ES , fVS

, fES
)

such that there exists a VNMSP (resp. VNMMP) from
GP to GS if and only if there exists C ′ ⊆ C with∑
x∈C′ x = t. We give the reduction as follows.

(i) Let VP of GP be {v1, . . . , vk, vo} and EP be
{(vo, v1), . . . , (vo, vk)}; fVP

(vi) = 2 for each i ∈ [1,
k] and fVP

(vo) = 3; moreover, let fEP
(vo, vi) = xi

for each i ∈ [1, k]. Intuitively, GP is to encode C.
(ii) Let VS of GS be {ul1, ur1, . . . , ulk, urk, uo, ul,

ur} and ES be {(uo, ul), (uo, ur), (ul, u
l
1), . . . ,

(ul, u
l
k), (ur, u

r
1), . . . , (ur, u

r
k)}; let fVS

(uo) = 3,
fVS

(ul) = fVS
(ur) = 1, fVS

(uli) = fVS
(uri) = 2

for all i ∈ [1, k]; in addition, let fES
(uo, ul) = t,

fES
(uo, ur) =

∑
x∈C x−t, fES

(ul, u
l
i) = fES

(ur, u
r
i)

=
∑
x∈C x. Here edge (uo, ul) is to encode t, and

(uo, ur) is to encode (
∑
x∈C x)−t, and fVS

and fVP

together ensure that vo of GP must be mapped to
uo of GS , and vi of GP must be mapped to ulj
or urj of GS for some j ∈ [1,m]. These ensure
|gV (vo, vi)| = 1 for all i ∈ [1,m]. As a result,
VNMSP and VNMMP coincide for GP and GS .

Observe that both GP and GS are dags. We next
show that there exists a subset C ′ ⊆ C such that

The Computer Journal, Vol. ??, No. ??, ????

8 Y. Cao W. Fan S. Ma

∑
x∈C′ x = t if and only if there exists a VNMSP (and

thus VNMMP) from GP to GS .

(i) Assume first that there exists a subset C ′ ⊆ C with∑
x∈C′ x = t. We show that there exists a VNMSP

from GP to GS . For each node vi (i ∈ [1, k]) in
GP , gV maps vi to uli if xi is in C ′, and to uri
otherwise; moreover, gV (vo) = uo. For each edge
(vo, vi) in GP , gE maps it to the unique path that
connects uo and gV (vi) in GS . Let rV (vo, uo) = 3,
rV (vi, gV (vi)) = 2, and rE((vo, vi), gE(vo, vi)) = xi.
One can verify that (gV , rV) and (gE , rE) indeed
form a VNMSP (VNMMP) from GP to GS .

(ii) Conversely, assume that there exists a VNMSP (and
thus VNMMP) from GP to GS . We show that there
exists a subset C ′ ⊆ C with

∑
x∈C′ x = t. Note

that the node mapping gV is fixed as discussed
above, by the definition of fEP

and fES
. In light

of this, one can verify that C ′ = {xi | gV (vi) =
ulj , j ∈ [1, k]} is a subset of C and moreover,∑
x∈C′ x = fES

(uo, ul) = t.

(b) We next show that VNMP is NP-hard by reduction
from the X3C problem. Given a finite set S = {x1, x2,
. . . , x3q}, and a collection C = {C1, C2, . . . , Cn} of 3-
element subsets of S, in which Ci = {xi1j1 , xi2j2 , xi3j3}
(i1, i2, i3 ∈ [1, q], j1, j2, j3 ∈ [1, 3]), X3C is to determine
whether C contains an exact cover for S, i.e., whether
there exists a subset C ′ ⊆ C such that every element xi
of S occurs in exactly one member of C ′. It is known
that X3C is NP-complete (cf. [37]).

Given S and C of X3C, we construct a VN GP (VP ,
EP , fVP

, fEP
) and an SN GS(VS , ES , fVS

, fES
) such

that C contains an exact cover for S if and only if
there exists a VNMP from GP to GS . Below we give
the reduction.

(i) Let VP consist of 4q nodes {v11, v12, v13, . . . , vq1,
vq2, vq3, vC1 , . . . , vCq }, and for any i ∈ [1, q], j ∈
[1, 3], let fVP

(vij) = 3i+(j−1) and fVP
(vCi) = 0.5.

Intuitively, nodes {v11, v12, v13, . . . , vq1, vq2, vq3}
and nodes {vC1 , . . . , vCq } are to encode S and to
encode an exact cover of S, respectively.
We define EP such that it consists of 3q edges,
and for each i ∈ [1, q], (vCi , vi1), (vCi , vi2) and
(vCi , vi3) are in EP ; in addition, for any e ∈ EP , let
fEP

(e) = 1.
(ii) Let VS consist of |S| + |C| = 3q + n nodes {u11,

u12, u13, . . . , uq1, uq2, uq3, uC1 , . . . , uCn }, and for
each i ∈ [1, q], j ∈ [1, 3], let fVS

(uij) = 3i+ (j − 1)
and fVS

(uCi) = 0.5. Intuitively, nodes u11, . . . , uq3
are to encode S, while uC1 , . . . , uCn are to encode
C, respectively.
We define ES such that it consists of 3n edges, and
for each Ci = {xi1j1 , xi2j2 , xi3j3} (i ∈ [1, n]), edges
(uCi , ui1j1), (uCi , ui2j2) and (uCi , ui3j3) are included
in ES . In addition, for each i ∈ [1, q], j ∈ [1, 3], let
fVS

(uij) = 3i + (j − 1), and fVS
(vCi) = 0.5. For

each e ∈ ES , let fES
(e) = 0.5.

Observe that both GP and GS are dags such that
each vCi in VP can be only mapped to one of uC1 , . . . ,
uCn in GS , and each vik in VP can only be mapped to
uik in VS (i ∈ [1, q] and k ∈ {1, 2, 3}), by the definition
of fVP

and fVS
. Indeed, GP encodes an exact cover in

C since S and GS encodes S and C, respectively.
We next show that there exists a priority mapping

(gV , rV , gE , rE) if and only if there exists an exact
cover in C for S.

(i) Assume first that there is a priority mapping
(gV ,rV , gE , rE) from GP to GS . Then there exists
an exact cover C ′ ⊆ C for S. More specifically, C ′

consists of the following: for each vCi in GP with
gV (vCi) = uCj , Cj is included in C ′. Then C ′ ⊆ C is
an exact cover of S. Indeed, suppose that C ′ is not
an exact cover. Since each node vik in VP can only
be mapped to uik in VS , we have that |{gV (vik) |
i ∈ {1, 2, · · · , q}, k ∈ {1, 2, 3}}| < |{uik | ∀i ∈
{1, 2, · · · , q}, k ∈ {1, 2, 3}}|, a contradiction to the
definition of the injection gV .

(ii) Conversely, assume that there exists an exact cover
C ′ ⊆ C for S. Let C ′ = {Cj1 , Cj2 , . . . , Cjq},
j1, . . . , jq ∈ [1, n]. Consider the following mapping
(gV , rV , gE , rE) from GP to GS . For each Cji ∈ C ′,
gV (vCji) = uCji , gV (vji1), gv(vji2) and gV (vji3) are

the three nodes in GS that are connected to uCji ; gE
is uniquely determined by gV ; rV (vik, gV (vik)) = 1,
rV (vCi , gV (vCi)) = 2, for i ∈ [1, q] and k ∈ [1, 3];
moreover, rE(e, ρ) = 1 for ρ = gE(e). By the
definition, (gV , rV , gE , rE) is a VNMP mapping
from GP to GS .

This completes the proof of Theorem 3.1. Note that
GP and GS construed in the reductions of (3) and (4)
above are all dags. As a consequence, all the results
hold even when both VNs and SNs are dags. �

3.2. Approximation of Optimization Problems

In practice, we often want to find a VNM mapping
with “the lowest cost”. This highlights the need
for introducing a function to measure the cost
of a mapping and for studying its corresponding
optimization problems.

A Cost Function. Consider an SN GS = (VS , ES ,
fVS

, fES
), and a VN request (GP , C), where GP = (VP ,

EP , fVP
, fEP

). Assume a positive number associated
with all nodes v and links e in GS , denoted by w(v)
and w(e), respectively, that indicates the price of the
resources in the SN. Given a pair ((gV , rV), (gE , rE)) of
node and edge mappings from (GP , C) to GS , its cost
c((gV , rV), (gE , rE)) is defined as

c((gV , rV), (gE , rE)) =
∑
v∈VP

hV (gV , rV , v) · w(gV (v))
+
∑
e′∈ES

hE(gE , rE , e
′) · w(e′),

where (1) hV (gV , rV , v) = rV (v, gV (v))/fVS
(gV (v)),

(2) hE(gE , rV , e′) =
∑

e∈EP ,ρ∈gE(e),e′∈ρ
rE(e, ρ)/fES

(e′)

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 9

when the resource of physical links is bandwidth, and
(3) when latency is concerned, hE(gE ,rV ,e′) is 1 if there
exists e ∈ EP such that e′ ∈ gE(e), and 0 otherwise.

Intuitively, hV indicates that the more cpu resource
is allocated, the higher the cost it incurs; similarly for
hE when bandwidth is concerned. When latency is
considered, the cost of the edge mapping is determined
only by gE , whereas the resource allocation function rE
is irrelevant.

The cost function is motivated by economic models
of network virtualization [38]. It is justified by Web
hosting and cloud storage [39], which mainly sell cpu
power or storage services of nodes. It is also motivated
by virtual network mapping, which sells bandwidth of
links [16]. In addition, it is to serve cloud provision in
virtualized data center networks [40], for which dynamic
routing strategy (latency) is critical while routing
congestion (bandwidth allocation) is often considered
secondary.

Minimum Cost Mapping. We now introduce
optimization problems for virtual network mapping.

The minimum cost mapping problem is to find, given
a VN request and an SN, a mapping ((gV , rV), (gE , rE))
from the VN to the SN such that its cost based on the
function above is minimum among all such mappings.

The decision problem for minimum cost mapping is
to decide, given a number (bound) K, a VN request and
an SN, whether there is a mapping ((gV , rV), (gE , rE))
from the VN to the SN such that its cost is no larger
than K.

We shall refer to the minimum cost mapping problem
and its decision problem interchangeably in the sequel.

Example 6. Consider the SN GS = (VS , ES , fVS
,

fES
) shown in Fig. 2(b), and the VN depicted in

Fig. 2(a). Assume that the cost function c() is set to be
the same as fVS

for the nodes and as fES
for the links

in the SN, i.e., the cost of a substrate node is the same
as its cpu capacity, and the cost of a physical link is
the same as its bandwidth capacity or latency.

Consider the multi-path embedding from the VN to
the SN described in Example 4. Then the cost of the
node mapping is 60

60 × 60 + 50
60 × 60 + 60

120 × 120 = 170,
while the cost of its edge mapping is (25

30 × 30)×2 +
(35
40 ×40 + 35

35 ×35) + (20
30 ×30 + 30

30 ×30) + ((5
20 ×20 +

5
30 × 30) + (5

40 × 40 + 5
20 × 20)) + ((15

20 × 20 + 15
15 × 15)

+ (15
15 × 15 + 15

20 × 20)) = 250. Putting these together,
the total cost is 420.

Consider the latency mapping given in Example 5.
We can compute its cost along the same lines as above,
except that the cost of each edge (hE) is either 1 or 0.
One can easily verify that the cost of this mapping is
(66 + 20 + 30) + (40 + 45 + 50 + 50) = 301. �

Complexity and Approximation. We next study
the minimum cost mapping problem for all the cases
given in Table 1.

Having seen Theorem 3.1, it is not surprising that
the optimization problem is intractable in most cases.
This motivates us to study efficient approximation al-
gorithms with performance guarantees. Unfortunately,
the problem is hard to approximate in most cases. The
results below tell us that when node sharing is requested
or edge constraints are present, minimum cost mapping
is beyond reach in practice for approximation.

Theorem 3.2. The minimum cost mapping problem
is

(1) in PTIME for VMP without node sharing; however,
when node sharing is requested, i.e., for VMP(NS),
it becomes NP-complete and is APX-hard even there
always exists a VMP(NS) mapping;

(2) NP-complete and NPO-complete with edge con-
straints, i.e., VNMP , VNESP, VNEMP, VNMP(NS),
VNML, VNESP(NS), VNEMP(NS), VNML(NS) are all NPO-
complete; and

(3) APX-hard when there exists a unique node mapping
in the presence of edge constraints. In particular,
VNMP does not admit c ln(|VP |)-approximation for
some constant c > 0, unless P = NP.

All the lower bounds hold when both VNs and SNs are
dags.

Here NPO is the class of all NP optimization
problems and APX is the class of problems that
allow PTIME approximation algorithms with a constant
approximation ratio (cf. [22]). (cf. [22]). An NPO-
complete problem is NP-hard to optimize, and is among
the hardest optimization problems.

Proof: (1) We first prove that VMP without node
sharing is in PTIME by giving an cubic-time algorithm.
Given a VN GP and an SN GS , the algorithm finds
minimum VMP from GP to GS without node sharing
by reducing the problem to the Minimum Linear
Assignment problem (MLA). MLA is to find a bijective
assignment function from m objects x1, . . . , xm to
another m objects y1, . . . , ym while minimizing the
total assignment cost

∑
i,j c(xi, yj). It can be solved

in O(m3) time (cf. [41]).
Given GP and GS , the algorithm works as follows.

(i) Construct a set X of |VS | nodes such that for
each node v ∈ VP , there is an object xv in X,
and another |VS | − |VP | dummy objects x′1, . . . ,
x′|VS |−|VP |.

(ii) Construct a set Y of |VS | nodes such that for each
node u ∈ VS , there is an object yu in Y .

(iii) For each v ∈ VP and u ∈ VS , if fVP
(v) ≤ fVS

(u),

then the assignment cost c(xv, yu) =
fVP

(v)

fVS
(u)w(u),

and for any other pairs (x, y) ∈ X×Y , c(x, y) = M ,
where M =

∑
u∈VS

(w(u)).
(iv) Assign objects in X to objects in Y by invoking an

algorithm for MLA. If the total assignment cost is
no less than M(|VS |−|VP |+1), then it returns “No”

The Computer Journal, Vol. ??, No. ??, ????

10 Y. Cao W. Fan S. Ma

since there is no VMP from GP to GS ; otherwise it
returns (gV , rV) as follows: for each v ∈ VP , gV (v)
is u if xv is assigned to yu, and rV (v, u) = fVP

(v).

Observe that MLA is a generalization of the VMP
problem. This ensures the correctness of the algorithm.

We next show that the problem becomes NP-complete
and APX-hard to approximate when node sharing is
requested, even for VMP(NS) that always has valid
mappings. This follows from the fact that the
Generalized Minimum Bin Packing problem is a
special case of VMP(NS), and that the former is APX-
hard and always has a feasible solution (cf. [42]).

(2) The NP-completeness follows from Theorem 3.1(4).
We show that it is NPO-complete, i.e., it is NPO-hard
to approximate, by an AP-reduction from the Minimum
Weighted 3SAT problem (MW3SAT). It is known
that MW3SAT is NP-hard to approximate (cf. [22]). An
instance of MW3SAT is a CNF formula φ = C1∧· · ·∧Cm
defined over variables x1, . . . , xn with non-negative
weights w(x1), . . . , w(xn), where each clause Cj(j ∈
[1,m]) is a Boolean formula of form `j1∨`

j
2∨`

j
3, in which

each literal `ji (i ∈ [1, 3]) is either xk or x̄k for k ∈ [1, n].
Given φ, MW3SAT is to find the minimum weight of
truth assignment µ to the variables that satisfies φ,
where the weight of a truth assignment µ is defined as∑n
i=1 w(xi) · µ(xi), and the Boolean values True and

False of µ(xi) are treated as 1 and 0, respectively.
We next present an AP-reduction from MW3SAT

to VNM with edge constraints (a VN GP and an SN
GS). We use IP and SOLP (x) to denote instances and
feasible solutions to an instance x of an optimization
problem P , respectively, and use RP (x, s) to denote the
relative approximation factor of solution s to instance
x of P . An AP-reduction consists of two functions Γ
and Λ, and a positive constant α ≥ 1 that satisfy the
following constraints [22].

(i) For any instance x ∈ IMW3SAT and any rational
r > 1, Γ(x, r) ∈ IVNM.

(ii) For any instance x ∈ IMW3SAT and any rational r >
1, if SOLMW3SAT(x) 6= ∅, then SOLVNM(Γ(x, r)) 6=
∅.

(iii) For any instance x ∈ IMW3SAT, any rational r
> 1 and any y ∈ SOLVNM(Γ(x, r)), Λ(x, y, r) ∈
SOLMW3SAT(x).

(iv) For any fixed rational r, functions Γ and Λ are
computable in polynomial time.

(v) For any instance x ∈ IMW3SAT, any rational r > 1
and any y ∈ SOLVMP(Γ(x, r)), if RVMP(Γ(x, r), y)
≤ r, then RMW3SAT(x,Λ(x, y, r)) ≤ 1 + α(r − 1).

We give the detailed reduction as follows.

Function Γ. Given an instance of MW3SAT described

above, function Γ constructs GP (VP , EP , fVP
, fEP

) and
GS(VS , ES , fVS

, fES
) as follows.

(a) Construction of GP . We define GP such that

(i) the node set VP of GP consists of 2m + 2n nodes
XP

1 , . . . , XP
n , CP1 , . . . , CPm, SP1 , . . . , SPn , TP1 , . . . ,

TPm ; intuitively, XP
i (i ∈ [1, n]) is to encode variable

xi, and CPj (j ∈ [1,m]) is to encode clause Cj ;
(ii) for each variable xi, if xi or xi occurs in clause Cj

of φ, then edge (XP
i , C

P
j) is included in EP ; for

each i ∈ [1, n], (SPi , X
P
i) is in EP ; moreover, for

each j ∈ [1,m], (CPj , T
P
j) is in EP ;

(iii) let fVP
(XP

i) = 1 and fVP
(SPi) = i + 2 (i ∈ [1, n]);

fVP
(CPj) = 2 and fVP

(TPj) = j+2+n (j ∈ [1,m]);
and

(iv) for each e ∈ EP , let fEP
(e) = 1.

(b) Construction of GS . We define GS such that

(i) the node set VS of GS contains 3n + 8m nodes:
for each variable xi(i ∈ [1, n]), we include three
nodes XS

Ti, X
S
Fi and SSi in VS ; for each clause

Cj(j ∈ [1,m]) of φ, we add 8 nodes 0j , . . . , 7j ,
and TSj to VS . Intuitively, nodes XS

Ti and XS
Fi

are to encode truth values of variable xi; nodes 0j ,
. . . , 7j encode all possible truth assignments (three
bits 0/1 digits, e.g., 2j encodes (false, true, false))
to variables in Cj .

(ii) For each clause Cj = `j1 ∨ `
j
2 ∨ `

j
3 in φ, if a truth

assignment to variables in `j1, `j2 and `j3 makes Cj
true (suppose that node pj(p ∈ [0, 7]) in VS encodes
this truth assignment), then we add edges from the
three corresponding nodes in VS (encoding truth
values of variables) to pj in ES .
For example, consider Cj = x1 ∨ x2 ∨ x3, since
(true, false, false) is an truth assignment to (x1,
x2, x3), edges (XS

T1, 4j), (XS
F2, 4j), (XS

F3, 4j) are
included in ES .

In addition, for each i ∈ [1, n], two edges (SSi , X
S
Ti)

and (SSi , X
S
Fi) are included in ES . Furthermore, let

fVS
(XS

Ti) = fVS
(XS

Fi) = 1, and fVS
(SSi) = i+ 2.

For each j ∈ [1,m], p ∈ [0, 7], (0j , T
S
j), . . . , (7j , T

S
j)

are also included in ES . Moreover, let fVS
(pj) = 2

and fVS
(TSj) = j + 2 + n.

For each e ∈ ES , let fES
(e) = 1.

By the definition of fVS
(TSj), fVP

(TPj), fVS
(SSi)

and fVP
(SPi), we know that there exists a unique

node mapping from TP1 , . . . , TPm and SP1 , . . . ,
SPm in GP to TS1 , . . . , TSm and SS1 , . . . , SSm that
satisfies node constraints, i.e., mapping TPj and

SPi to TSj and SSi , respectively, for each i ∈ [1, n]
and j ∈ [1,m].

(iii) For each u ∈ VS , let w(v) = 0.
(iv) For each (XS

Ti, pj)(i ∈ [1, n], j ∈ [1,m], p ∈ [0, 7])
in ES , we let the weight w(XS

Ti, pj) = w(xi). For
any other e ∈ EP , let w(e) = 0.

Observe the following. (i) By the definition of
fVS

(SSi), fVS
(TSj), fVP

(SPi) and fVP
(TPj), for each

i ∈ [1, n], SPi in GP has to be mapped to SSi ; and
for each j ∈ [1,m], TPj in GP has to be mapped to TSj ,

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 11

no matter whether node sharing is allowed or not. (ii)
Because of (i), each node CPj in GP has to be mapped

to one of 0j , . . . , 7j , and similarly, each node XP
i has

to be mapped to either XS
Ti or XS

Fi, but not both. (iii)
Because of (i) and (ii), VNMP, VNESP, VNEMP, VNML,
VNMP(NS), VNESP(NS), VNEMP(NS) and VNML(NS) from
GP to GS coincide. Hence below we only discuss VNMP.

Function Λ. We next present function Λ that converts

VNM mappings from GP to GS constructed above
back to a truth assignment µ to φ. Given a VNM
mapping (gV , rV , gE , rE), function Λ produces a truth
assignment µ for φ such that for each XP

i (for i ∈
[1, n]), µ(xi) = true if gV (XP

i) = XS
Ti, and µ(xi) =

false otherwise.

Constant α. We simply let α = 1. This completes the

construction.

Below we verify that (Γ,Λ, α) is an AP-reduction from
WM3SAT to the minimum VNM problem with edge
constraints (e.g., VNMP). Observe the following.

(i) It is obvious that the functions Γ and Λ are both
computable in polynomial time.

(ii) For any instance φ of MW3SAT, Γ(φ) is an instance
of the minimum cost mapping problem for VNMP.

(iii) Formula φ has a truth assignment µ if and only if
there exists a VNMP from GP to GS .
More specifically, suppose first that φ has a truth
assignment µ such that µ(φ) = true. Then µ(Cj) =
true for each j ∈ [1,m]. Thus there exists gV such
that gV (XP

1), . . . , gV (XP
n) together ensure that,

for each j ∈ [1,m], at least one of 0j , . . . , 7j
is mapped by CPj . That is, there exists a node
mapping gV and an edge mapping that form a
VNMP from GP to GS . Conversely, suppose that
there exists a VNMP from GP to GS . By the
construction above, the node mapping encodes a
truth assignment µ to variables in φ. Moreover,
since each CPj has to be mapped to one of 0j , . . . ,
7j , clause Cj is assured to be satisfied by the truth
assignment. Therefore, µ(φ) = true.

(iv) Similar to (iii), it is easy to see that Λ transfers
node mappings of the VNMP from GP to GS into
a truth assignment to variables of φ, as node
mapping gV always maps XP

i to either XS
Ti or XS

Fi,
but not both.

(v) By the construction above, one can verify that
for any instance φ of MW3SAT, if µ is the
optimum solution for φ (i.e., minimum weight
truth assignment), then

∑
i∈[1,n] xiw(xi) equals the

minimum weight of VNMP from GP to GS . In
addition, for any VNMP mapping from GP to GS ,
its cost is equal to

∑
i∈[1,n] xiw(xi).

That is, for any instance φ of MW3SAT, for any feasible
mapping s of f(φ), RVNM(f(φ), s) = RMW3SAT(φ, g(s)).
Thus (Γ, Λ, α) is an AP-reduction from MW3SAT to the
minimum cost mapping problem for VNMP, and hence

TABLE 3. Summary of complexity results

Problems Complexity Approximation

VMP PTIME – –

VMP(NS) NP-complete APX-hard

VNMP, VNMP(NS) NP-complete NPO-complete

VNML, VNML(NS) NP-complete NPO-complete

VNESP, VNESP(NS) NP-complete NPO-complete

VNEMP, VNEMP(NS) NP-complete NPO-complete

for all the other VNM cases with edge constraints.
Observe that the GP and GS construed in the

reductions above are dags. Hence, all results hold even
when both VNs and SNs are dags.

(3) We only need to show that VNMP does not have
a PTIME ln(|VP |)-approximation algorithm even when
there exists a unique node mapping. Indeed, VNMP

contains the Directed Steiner Tree problem (DST)
as a special case, where the nodes in VN correspond
to terminals of DST. Given a directed weighted graph
G(V,E), a specified root r ∈ V , and a set of terminals
T ⊆ V , DST is to find the minimum cost arborescence
that is rooted at r and spans all the nodes in T .
Since DST is not approximable within c ln |T | for some
c > 0 even when G is a dag (cf. [22]), VNMP is not
approximable within O(c ln |VP |). This verifies that
minimum VNM is APX-hard even when there exists
fixed node mapping, in the presence of edge constraints.

This completes the proof of Theorem 3.2. The lower
bounds remain intact when VNs and SNs are dags, since
all our reductions given above use dags only. �

We summarize the complexity results in Table 3.

4. COMPUTING MINIMUM COST VNM

Theorem 3.2 tells us that any efficient algorithms
for computing minimum cost VNM are necessarily
heuristic. We next develop a greedy algorithm to find
minimum cost priority mappings (VNMP), with node
sharing or not. Given a VN request (GP , C), an SN
GS , and a cost function c(), the algorithm finds a
mapping ((gV , rV), (gE , rE)) from GP to GS such that
it satisfies the node and edge constraints in C and
moreover, the cost c((gV , rV), (gE , rE)) is minimized,
if such a mapping exists. To the best of our knowledge,
this is the first algorithm for computing VNMP.

Previous algorithms for computing VNM (e.g., [15])
typically consists of two stages. It first finds a candidate
node mapping (gV , rV), and then checks whether it
is valid, i.e., whether it admits a corresponding edge
mapping (gE , rE); if so, it computes (gE , rE) by
traversing the entire SN. If the (gV , rV) is not valid,
the entire process has to start all over again. Hence a
mapping is often found only after repeated trials and
failures. This hinders the scalability of the algorithms.

In contrast, we unify the processes of computing

The Computer Journal, Vol. ??, No. ??, ????

12 Y. Cao W. Fan S. Ma

node mappings and edge mappings. During the process
of building a node mapping, we check whether the
(partial) mapping found so far is valid, i.e., we do
not wait for a node mapping to be completed before
starting the validation process. To efficiently validate
a partial node mapping and build its corresponding
edge mapping, we use an auxiliary graph structure for
SN GS . In addition, we minimize the VN pattern
GP . Obviously, the smaller GP is, the less costly the
mapping process is.

In this section, we first present an auxiliary structure
for SN (Section 4.1) and then develop an algorithm
for minimizing VN patterns (Section 4.2). Finally,
leveraging the auxiliary structure and minimization,
we present our algorithm for minimum cost VNMP

(Section 4.3).

4.1. Auxiliary Graphs: Unifying Mappings

Given a weighted directed graph G(V , E, fV , fE),
its auxiliary graph Gaux(Va, Ea, fVa , fEa , PEa) is a
weighted directed graph such that (1) Va = V , fVa =
fV , (2) edge (u, v) ∈ Ea if and only if there exists a path
from u to v in G, (3) fEa

(u, v) = max{min{ρ} | ρ is a
path from u to v in G}, where min{ρ} = min{fE(e) | e
is an edge on ρ} in G, and (4) PEa(u, v) is a path ρ in
G with min{ρ} = fEa(u, v).

One can verify the following for priority mappings,
which justifies the need for auxiliary graphs.

Proposition 4.1. Consider a VN GP (VP , EP ,
fVP

, fEP
) and an SN GS(VS , ES , fVS

, fES
). For any

node mapping (gV , rV), with the auxiliary graph of GS,
it takes O(|EP |) time to determine whether (gV , rV) is
valid and to compute a corresponding edge mapping.

Proof: Observe the following. (1) The auxiliary graph
Gaux records the maximum bandwidth between any two
nodes in SN. (2) For any node mapping (gV , rV), we
can determine whether it admits an edge mapping by
querying the maximum bandwidth between matched
nodes from Gaux. This takes O(|EP |) time as there
are at most |EP | node pairs that require edge mapping
checks. From these the proposition follows. �

Algorithm. We next present an algorithm, referred to
as compAuxGraph, for building auxiliary graphs. Given
a weighted directed graph G, the algorithm returns the
auxiliary graph Gaux of G, as shown in Fig. 3.

The algorithm starts from an empty Gaux (line 1)
and iteratively adds nodes to Gaux by calling procedure
updateAuxGraph (lines 2-3). As will be seen shortly, it
may add an edge (u, u′) to Gaux; when fEa(u, u′) = 0,
there exists no path from u to u′ in G. Such edges are
removed form Gaux (line 4), and, finally, the auxiliary
graph is returned (line 5).

Given a node v in G and the auxiliary graph Gaux(Va,
Ea, fVa , fEa , PEa) of the subgraph of G such that
v 6∈ Va, procedure updateAuxGraph returns the auxiliary

Input: A weighted directed graph G(V,E, fV , fE).
Output: An auxiliary graph Gaux.

1. Gaux(Va, Ea, fVa , fEa , PEa) := (∅, ∅, ∅, ∅, ∅);
2. for each node v in G do
3. Gaux := updateAuxGraph(Gaux, G, v);
4. Remove edges (u, u′) from Gaux having fEa(u, u′) = 0;
5. return Gaux.

Procedure updateAuxGraph (Gaux, G, v)

Input: Auxiliary graph Gaux, graph G, and node v.
Output: Updated Gaux by incorporating v.

1. for each node u in Va do
2. Ea := Ea ∪ {(u, v), (v, u)};
3. Assign(v, u,Gaux); Assign(u, v,Gaux);

4. for each edge (u, u′) in Gaux having u, u′ ∈ Va do
5. h := min{fEa(u, v), fEa(v, u′)};
6. if fEa(u, u′) < h then
7. fEa(u, u′) := h;
8. PEa(u, u′) := PEa(u, v) + PEa(v, u′);

9. Va := Va ∪ {v}; fVa(v) := fV (v);
10. return Gaux;

FIGURE 3. Algorithm compAuxGraph

graph of the subgraph ofG with nodes Va∪{v}. It works
as follows. For each node u in Gaux, updateAuxGraph
adds two new edges (v, u) and (u, v) to Ea, and assigns
their weights fEa

(u, v), fEa
(v, u) and paths PEa

(u, v)
and PEa

(v, u) by calling procedure assign (omitted; lines
1-3). For each new edge (v, u), weight fEa(v, u) is
either fE(v, u) (if there exists an edge (v, u) in G), or
max{min{fEa

(v, u′), fE(u′, u)}} for all nodes u′ in Va
such that (v, u′) is an edge in G. Moreover, PEa

(v, u) is
either edge (v, u), or a path consisting of (v, u′) followed
by PEa(u′, u); similarly for the new edge (u, v).

After these, the weights and paths of existing
edges are updated (lines 4-8). For each edge (u, u′),
the triangle with edges (u, u′), (u, v) and (v, u′) is
considered to find weight h. If h > fEa

(u, u′), fEa
(u, u′)

is changed to h (line 7), and PEa
(u, u′) is changed

to the concatenation of PEa(u, v) and PEa(v, u′) (line
8). Finally, node v is added to Gaux (line 9), and the
updated auxiliary graph is returned (line 10).

Example 7. For the SN shown in Fig. 2(b), the
auxiliary graph constructed by compAuxGraph is shown
in Fig. 4(a). Note that the bandwidths on edges
between b and e, c and d are larger than their
counterparts in the SN of Fig. 2(b), since they are
updated by procedure updateAuxGraph (lines 5–7).
Moreover, there are new edges with positive bandwidth
directly connecting a and d, a and c, b and d, c and e.

For each edge (u, v), the auxiliary graph also records
the path with the maximum bandwidth among all paths
connecting u and v in SN. Taking edges (b, e) and
(c, d) as examples, P (b, e) = (b, a, e), P (e, b) = (e, a, b),
P (c, d) = (c, b, e, d) and P (d, c) = (d, e, a, b, c). Note
that paths (c, b, a, e, d) and (d, e, b, c) also carry the

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 13

60

50 60

120

50

30

20

20

20

30

40

20

a

b c

d

e

30

30

30
35

20

20
30

35
30

30

(a) Auxiliary graph

35
25 30

20

VM1

VM2 VM3

60

50 60

(b) Minimized VN

FIGURE 4. Auxiliary graphs and minimizing VNs

maximum bandwidth in the SN for edges (c, d) and
(d, c), respectively, but compAuxGraph only records one
of them since it already suffices to assure the existence
of an edge mapping. �

Correctness & complexity. One can verify the
following property about updateAuxGraph: (1) for any
new edge (u, v), its weight and path are not affected by
updating existing edges; and (2) for any existing edge
(u, u′), it suffices to consider the triangle with edges
(u, u′), (u, v) and (v, u′) for updating its weight and
path. This shows that updateAuxGraph always produces
an auxiliary graph Gaux(Va, Ea, fVa

, fEa
, PEa

) for the
subgraph of G with nodes Va only. From this the
correctness of algorithm compAuxGraph follows.

Algorithm compAuxGraph is in O(|V |3) time since
procedure updateAuxGraph takes O(|Va|2) time, and it
is called |V | times in total. Note that |Va| ≤ |V |.

4.2. Minimizing Virtual Network Patterns

We next show how to minimize VNs.

Equivalence. Given two VNs GP1
(VP , EP1

, fVP
, fEP1

)
and GP2

(VP , EP2
, fVP

, fEP2
), we say that GP1

is
equivalent to GP2

, denoted by GP1
≡ GP2

, if for any
SN GS and cost function c(), there exists a VNM from
GP1 to GS if and only if there exists another VNM from
GP2 to GS with the same cost.

We can minimize a VN GP in cubic-time:

Theorem 4.1. There exists a cubic-time algorithm
that, given any VN GP , finds an equivalent VN GmP of
Gp such that for any G′P ≡ GP , GmP has no more edges
than G′P .

We next present such an algorithm for minimizing
VNs, denoted by minVN and shown in Fig. 5. Given a
VN GP , it returns a minimized equivalent VN GmP .

Given GP , algorithm minVN first computes the
auxiliary graph G′P of GP (line 1), with an empty
path set since the path information is not needed here.
Starting from an empty VN GmP (line 2), the algorithm
iteratively adds nodes to GmP , one at a time by calling
procedure updateVN (lines 3-4). Finally, the minimized
VN GmP is returned (line 5).

We next present procedure updateVN. Given a node
v in G′P and the minimized VN GmP (V mP , EmP , fVm

P
, fEm

P
)

of the subgraph of G with nodes V mP , where v 6∈ G′P , it
returns the minimized VNGmP of the subgraph of G with
nodes V mP ∪{v}. More specifically, procedure updateVN

Input: A virtual network GP (VP , EP , fVP , fEP).
Output: A minimized equivalent VN Gm

P .

1. G′
P (VP , E

′
P , fVP , fE′

P
, ∅) := compAuxGraph(GP);

2. Gm
P (V m

P , Em
P , fV m

P
, fEm

P
) := (∅, ∅, ∅, ∅);

3. for each node v in G′
P do

4. Gm
P := UpdateVN (Gm

P , v, G′
P);

5. return Gm
P .

Procedure UpdateVN (Gm
P , v,G′

P).

Input: VN Gm
P , node v, and auxiliary graph G′

P .
Output: Updated Gm

P by incorporating v.

1. V m
P := V m

P ∪ {v}; fV m
P

(v) := fVP (v);

2. for each node u 6= v in V m
P do

3. if (v, u) ∈ E′
P and there is no u′ ∈ V m

P such that
(u′, u) ∈ E′

P and (v, u′) ∈ Em
P

4. then Em
P := Em

P ∪ {(v, u)}; fEm
P

(v, u) := fE′
P

(v, u);

5. if (u, v) ∈ E′
P and there is no u′ ∈ V m

P such that
(u, u′) ∈ E′

P and (u′, v) ∈ Em
P

6. then Em
P := Em

P ∪ {(u, v)}; fEm
P

(u, v) := fE′
P

(u, v);

7. return Gm
P ;

FIGURE 5. Algorithm minVN for minimizing VNs

first adds node v to GmP (line 1). It then adds edges to
GmP that connect node v with other nodes in GmP (lines
2-6). An edge (v, u) is added to EmP only if there exists
no node u′ such that there is a path from u′ to u in
GmP ((u′, u) ∈ E′P) and (v, u′) is an edge in GmP (lines
3-4); similarly for edge (u, v) (lines 5-6). Finally, the
updated GmP is returned (line 7).

Example 8. Consider the VN in Fig. 2(a) for priority
mapping. Given the VN, procedure minVN derives from
it an equivalent yet simpler VN, as shown in Fig. 4(b).
Observe the following. (1) There exist no edges (VM2,
VM3) and (VM3, VM2) in Fig. 4(b), as opposed to
Fig. 2(a). This is because (VM2, VM3) (resp. (VM3,
VM2)) is entailed by edges (VM2, VM1) and (VM1, VM3)
(resp. edges (VM3, VM1) and (VM1, VM3)), and hence,
can be left out. (2) The edge constraints in Fig. 4(b)
differ from their counterparts in Fig. 2(a). �

Correctness & complexity. To show the correctness,
one can first verify the following.

Lemma 4.1. For any VN GP , procedure updateVN
returns an VN GmP such that there exists a unique path
from node u to v in GmP if and only if there exists a path
from node u to v in the VN GP .

Proof: (1) Assume first that there exists a path from
nodes u to v in VN GP . We then show that there must
exist a unique path from nodes u to v in GmP , which is
returned by UpdateVN.

From the definition of auxiliary graph, we know that
there must be an edge (u, v) in G′P . From lines 3 and 5
of UpdateVN, one can see that if (u, v) is in G′P , then
there must be a path that carries the same bandwidth
in GmP . This path is either the edge (u, v) in GmP , or a

The Computer Journal, Vol. ??, No. ??, ????

14 Y. Cao W. Fan S. Ma

path via an intermediate node u′, as stated in lines 4
and 6. This verifies the existence of a path from u to v
to GmP . Such a path is unique. Indeed, once the path
connecting u to v is added to GmP at some point of the
for loop in UpdateVN, no new paths from u to v will
be added since UpdateVN finds that there exists u′ such
that (u, u′) is in G′P and (u′, v) is in GmP (lines 3 and 5).

(2) Conversely, assume that there exists a path from u
to v in GmP . Then it must be introduced by the for
loop in UpdateVN invoked by u. Since there exists a
path that connects u to v found by UpdateVN, edge
(u, v) must be included in G′P ; hence there is a path
that connects u to v in VN GP (by the definition of the
auxiliary graph for VN). �

By Lemma 4.1, we can show that procedure updateVN
produces a minimized VN GmP (V mP , EmP , fVm

P
, fEm

P
) for

the subgraph of GP with nodes V mP only. From this the
correctness of algorithm minVN immediately follows.

Observe the following. (1) Algorithm compAuxGraph
runs in O(|VP |3) time. (2) Procedure updateVN takes
O(|V mP |2) time, and it is called |VP | times in total.
Hence, algorithm minVN runs in O(|VP |3) time.

4.3. Finding Minimum Cost Priority Mappings

We are now ready to present our algorithm for
computing priority mappings, denoted by compVNM
and shown in Fig. 6. Given a VN request (Gp, C), an SN
GS , and a cost function c(), the algorithm finds a low
cost VNM ((gV , rV), (gE , rE)) from GP to GS if there
exists one. As will be seen shortly, it uses a predefined
non-negative integer k to control the level of backtracks,
which is typically small, e.g., 2 or 3.

As remarked earlier, the algorithm employs two
optimization strategies to reduce search space. (1)
It removes redundant edge constraints from VN GP ,
via algorithm minVN (line 2). (2) It constructs the
auxiliary graph Gaux of SN GS by using algorithm
compAuxGraph, to validate a node mapping without
traversing the entire GS (line 3). The algorithm builds
a low cost node mapping by inspecting nodes one by
one, via procedure backTrackMap (lines 4-6). It uni-
fies the processes of building node mappings and edge
mappings: it checks whether the partial node mapping
found so far is valid ((gV , rV , S) 6= null, line 6). If so, it
finds the corresponding edge mapping by calling proce-
dure identifyEdgeMap (omitted; line 7). With Gaux, the
edge mapping can be found in O(|EmP |) time (Proposi-
tion 4.1). A VNM is returned if there exists one (line 8).

We next present procedure backTrackMap. Given a
new node v, a node set S for which mappings are already
identified, a node set backS, and non-negative integers
i and k, it expands the mapping for S by including v. If
v cannot be mapped to a substrate node, it backtracks
and searches other nodes, along the same lines as [13].
The backtrack depth is bounded by k. It uses i to
keep track of the current backtrack depth, and backS

Input: An SN GS , a VN request (GP , C), a cost function c(),
and a positive integer k.

Output: A low cost mapping from GP to GS .

1. (gV , rV) := (∅, ∅); S := ∅;
2. Gm

P (V m
P , Em

P , fV m
P
, fEm

P
) := minVN(GP);

3. Gaux(Va, Ea, fVa , fEa) := compAuxGraph(GS);
4. for each v in VPm do
5. (gV , rV , S) := backTrackMap(v, S, ∅, 0, k);
6. if (gV , rV , S) = null then return null;
7. (gE , rE) := identifyEdgeMap(gV , rV , Gaux);
8. return ((gV , rV), (gE , rE)).

Procedure backTrackMap(v, S, backS, i, k)

Input: Node v, node sets S and backS, non-negative integers i
and k.

Output: Updated node mapping (gV , rV).

1. if i > k then return null;
2. if there exists u in Gaux with Valid(v, u, S) = true then
3. gV (v) := u; rV (v) := fV m

P
(v); S := S ∪ {v};

4. return (gV , rV , S);
5. for each v′ ∈ S \ backS do
6. if Valid(v, gV (v′), S \ {v′}) then
7. gV (v) := gV (v′); rV (v) := fV m

P
(v); S := S ∪ {v} \ {v′};

8. if backTrackMap(v′, S, backS ∪ {v}, i + 1, k) then
9. return (gV , rV , S);
10. S := S \ {v} ∪ {v′}; gV (v′) := gV (v);
11. return null;

FIGURE 6. Algorithm compVNM for priority mappings

to record the set of nodes backtracked. In contrast
to [13] that has to traverse the entire Gs, we reduce
the search space by inspecting only virtual nodes in the
minimized VN GmP , and by checking edge constraints
using auxiliary graph Gaux.

More specifically, if the current backtrack depth i >
k, then the procedure returns null (line 1). Otherwise,
it checks whether there is a node u to which node v
can be mapped (lines 3-4). It uses procedure Valid
(omitted), which checks whether the (partial) node
mapping admits an edge mapping by inspecting the
edge constraints in Gaux. If not, node v may be
mapped to a node gV (v′) to which node v′ is already
mapped (line 6), and procedure backTrackMap is called
recursively to find a mapping node for node v′ (line
8). Such nodes v′ are checked (lines 5-9), with their
information backed up (line 7) and restored later (line
10). If a valid node mapping cannot be found, null is
returned (line 11).

Example 9. Consider the VN request and SN of
Fig. 2. Assume a cost function c() for the SN such that
(1) for nodes a, b and c, their costs are the same as
their node capacities; (2) for d and e, their costs are
ten times of their node capacities; and (3) the cost of
each physical link in the SN is its edge capacity.

We show below how compVNM finds a priority map-
ping from the VN to the SN. Algorithm compVNM
first computes the minimized VN and the auxiliary

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 15

graph Gaux of the SN, as shown in Fig. 4. It then finds
mappings for nodes VM1, VM2 and VM3 in the mini-
mized VN by calling procedure backTrackMap and by
leveraging Gaux. It starts with VM1 and maps it to SN
node a via backTrackMap such that (VM1, a) is a valid
node mapping for the subgraph of V mP with node VM1

only. It then invokes backTrackMap and maps VM2

to SN node c such that (VM1, a) and (VM3, c) make a
valid node mapping for the the subgraph of V mP with
nodes VM1 and VM3. Similarly, a candidate mapping
node b is found for VM2. No backtrack is needed in
backTrackMap for all these nodes. Then compVNM
identifies edge mappings by using the auxiliary graph
Gaux. It maps virtual edges to those paths recorded in
Gaux, e.g., (VM1,VM2) is mapped to P (a, b) (see Exam-
ple 7). Finally the mapping is found and returned. �

Complexity. Algorithm compVNM is in O(|VS |3 +
|VP |(k+1) |EP |(|VP | + |VS |) + |VP |3) time, where |VS |,
|VP |, |EP | are the number of nodes in GS , the number
of nodes in GP and the number of edges in GP ,
respectively. Indeed, procedures compAuxGraph, minVN
and backTrackMap take O(|VS |3) time, O(|VP |3) time
and O(|VP |k|EP |(|VP |+ |VS |)) time, respectively. Here
k is a predefined constant. We found that a small k
(usually no more than 3) typically suffices, as will be
verified in the experimental study (Section 5).

Remark. One can extend algorithm compVNM for
priority mappings with node sharing, denoted by
compVNMNS, by simply allowing multiple virtual nodes
in GP to be mapped to the same node in GS in Valid.

5. EXPERIMENTAL STUDY

In this section we present an experimental study
of our techniques for computing virtual network
priority mappings (VNMP). We conducted two sets
of experiments to evaluate (1) the effectiveness of
VNMP versus conventional virtual network embedding
(VNMSP) and (2) the efficiency of our algorithms.

Experimental setting. Following the tradition of
virtual network topology research (e.g., [12–14]), we
used the following datasets that simulate real-life
virtual networks.

Substrate networks (SNs). We used three types of
substrate networks, as found in real life. (a) Directed-
tree networks, in which for any two nodes u and v,
there exists an edge (u, v) if and only if there exists
an edge (v, u), and the network becomes a tree if the
two edges between any two nodes are merged into one.
(b) Full-mesh networks, in which for any two nodes
u and v, there exist two edge (u, v) and (v, u). (c)
Random networks, in which for any pair of nodes u
and v, there exists an edge (u, v) with probability p.
Directed-tree networks and full-mesh networks were
constructed by adopting real-life network topologies
(http://en.wikipedia.org/wiki/Network topology).

TABLE 4. Summary of testing parameters

VN Requests SNs

Number of nodes nP nS

Edge probability pP pS
Node capacity wVP wVS

Edge capacity wEp wES

We developed a graph generator to produce these
networks, controlled by the following parameters: (a)
the number nS of nodes, (b) the node capacity wVS

, (c)
the edge capacity wES

, and (d) the probability pS (for
random networks only).

VN requests. VN requests arrive in a Poisson process
with an average of λ requests per time unit, as com-
monly adopted by network community [13, 15, 16].
Each one has a lifespan with an average of l time
units. The VNs were randomly produced by the same
graph generator for substrate networks, controlled by
four parameters: (a) the number nP of nodes, (b) the
virtual node capacity wVP

, (c) the edge capacity wEP
,

and (d) the probability pP .

Algorithms. We have implemented the following
algorithms, all in C++. (a) Algorithms compVNM and
compVNMNS for computing VNMP (Section 4), without
node sharing and with node sharing, respectively. (b)
Algorithms SubIso [13], ViNE [16] and RW-SP [23]
for computing VNESP (single-path embedding without
node sharing; see Sections 1 and 2). (c) Algorithm
ViNENS that extends ViNE for computing VNESP with
node sharing. We compared algorithms compVNM and
compVNMNS with those for VNESP because there are no
previous algorithms for VNMP, and VNESP is the VN
model closest to VNMP, with or without node sharing.

The experiments were run on a machine with Intel
Core i7 860 CPU and 16GB of memory. All the
experiments were repeated over 5 times and the average
is reported here.

Experimental results. We next report our findings.
In all the experiments, for VN requests, we fixed
λ = 0.02 and l = 1000, which were decided based
on the substrate networks considered, and had little
impact on the quality and efficiency tests. We also
fixed the backtrack depth k = 3 for compVNM and
compVNMNS. We adopted algorithm ViNE for VNESP

when comparing the mapping quality of VNMP with
VNESP. We summarize the tested factors in Table 4.

Exp-1: Mapping quality. In the first set of
experiments, we evaluated (1) the mapping quality of
VNMP vs. VNESP, (2) the impact of node sharing, and
(3) the resource utilization on nodes and edges.

We used the average acceptance ratio (AR), a
quality measure commonly adopted by the network
community [13,15,16], to evaluate the mapping quality.
Given a time stamp t, AR is defined as:

AR(t) = #validVNs(t) / #arrivedVNs(t),

The Computer Journal, Vol. ??, No. ??, ????

16 Y. Cao W. Fan S. Ma

0.2

0.4

0.6

0.8

1.0

0 12000 24000 36000 48000 60000

A
ve

ra
g

e
a
cc

ep
ta

n
ce

 r
a

ti
o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(a) Vary t from 0 to 60000 seconds

0.2

0.4

0.6

0.8

1.0

100 1000 2000 3000 4000 5000

A
ve

ra
g

e
a
cc

ep
ta

n
ce

 r
a

ti
o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(b) Vary nS from 100 to 5000

0.2

0.4

0.6

0.8

1.0

2 10 20 30 40 50

A
ve

ra
g

e
a
cc

ep
ta

n
ce

 r
a

ti
o VNM

P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(c) Vary nP from 2 to 50

0.5

0.6

0.7

0.8

0.9

1.0

0 12000 24000 36000 48000 60000

A
ve

ra
g

e
a

cc
ep

ta
n

ce
 r

a
ti

o

VNMP(NS)(Full Mesh)
VNMP(NS)(Random Network)

VNMP(Full Mesh)
VNMP(Random Network)
VNMP(NS)(Directed Tree)

VNMP(Directed Tree)

(d) Vary t from 0 to 60000 seconds

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v
e
ra

g
e
 a

c
c
e
p

ta
n

c
e
 r

a
ti

o

VNM
P

VNE
SP

(e) Vary pS from 0.1 to 1.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
g

e
a

cc
ep

ta
n

ce
 r

a
ti

o VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(f) Vary pP from 0.1 to 1.0

0.2

0.4

0.6

0.8

1.0

0 12000 24000 36000 48000 60000

N
o

d
e
 u

ti
li

za
ti

o
n

VNM
P
(DTree)

VNM
P
(Random Network)
VNM

P
(Full Mesh)

VNE
SP

(DTree)
VNE

SP
(Random Network)
VNE

SP
(Full Mesh)

(g) Vary t from 0 to 60000 seconds

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
g

e
a

cc
ep

ta
n

ce
 r

a
ti

o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(h) Vary wVS from 50 to 100

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24 27 30

A
ve

ra
g

e
a

cc
ep

ta
n

ce
 r

a
ti

o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(i) Vary wVP from 3 to 30

0.2

0.4

0.6

0.8

1.0

0 12000 24000 36000 48000 60000

E
d

g
e

u
ti

li
za

ti
o
n

VNM
P
(DTree)

VNM
P
(Random Network)
VNM

P
(Full Mesh)

VNE
SP

(DTree)
VNE

SP
(Random Network)
VNE

SP
(Full Mesh)

(j) Vary t from 0 to 60000 seconds

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95 100

A
ve

ra
g
e

a
cc

ep
ta

n
ce

 r
a

ti
o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(k) Vary wES from 50 to 100

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21 24 27 30

A
ve

ra
g
e

a
cc

ep
ta

n
ce

 r
a

ti
o

VNM
P
(Full Mesh)

VNM
P
(Random Network)

VNM
P
(Directed Tree)

VNE
SP

(Full Mesh)
VNE

SP
(Random Network)

VNE
SP

(Directed Tree)

(l) Vary wEP from 3 to 30

FIGURE 7. Mapping quality

where #validVNs(t) denotes the number of VN requests
that are fulfilled until time t, and #arrivedVNs(t)
denotes the total number of VN requests arrived until
time t, respectively. Intuitively, AR(t) is the ratio of
VNs successfully mapped during time interval [0, t].

(1) We first evaluated the impact of time t on AR. For
VN requests, we fixed pP = 0.5, nP in [2, 50], and
wVP

and wEP
in [3, 30]. For SNs, we fixed nS = 5000,

and wVS
and wES

in [50, 100]. Since medium-size ISPs
have about 500 nodes only [13], nS = 5000 suffices. We
varied t from 0 to 60, 000 seconds.

Figure 7(a) shows the AR of VNMP and VNESP over
directed-tree, full-mesh and random networks. We
found the following. (i) In all the cases, the AR
decreases w.r.t. t, and becomes stable when t is about
42, 000s. This is because initially there exists no
workload in the SNs; the SNs are fully loaded when

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 17

t reaches 42, 000 seconds, since only a certain amount
of work can be handled by the SNs. (ii) The AR of
VNMP is consistently higher than that of VNESP (in the
range of [11%, 39%]) in all the cases. (iii) The impact of
network topologies on the AR of VNMP is much smaller
than that of VNESP. Indeed, the stable AR for VNMP is
in the range of [76%, 82%], while for VNESP, it is around
37% and 71% on directed-tree and full-mesh networks,
respectively. This is because VNMP has weaker capacity
constraints on edges of SN compared to VNESP.

Figure 7(d) shows the AR of VNMP with node
sharing versus its counterpart without node sharing,
over directed-tree, full-mesh and random networks. The
results show the following. (i) Node sharing consistently
improves the AR for priority mappings (in the range of
[8%, 11%]). Indeed, the AR on full-mesh networks is
over 93% with node sharing, as opposed to 82% without
node sharing. (ii) Node sharing also improves the AR
for VNESP (not shown). This verifies that the idea of
node sharing is generic, and can be employed by other
virtual network mapping models.

Note that the AR of all algorithms had a significant
drop around t = 40000s in both Figures 7(a) and 7(d).
This is because at that time, all the resource of the SNs
were almost already allocated to the VN requests that
were posed on the SNs and were still in their life span.

(2) To evaluate the impact of SNs on AR, we fixed
t = 60, 000s, and VN with nP = 50, pP = 0.5 and wVP

= wEP
= 30. We varied one of the four factors of SNs:

nS from 100 to 5, 000, pS from 0.1 to 1.0, and wVS
and

wES
from 50 to 100, while fixing the other three factors

of SNs with default values nS = 5,000, pS = 0.5, wVs

= wEs
= 100. The test of pS can be conducted on SNs

of random networks only since edges in full-mesh and
directed-tree networks cannot be randomly generated,
e.g., p is always 1 for full-mesh SNs.

The results are reported in Figures 7(b), 7(e), 7(h)
and 7(k), which tell us the following. (i) The AR
increases w.r.t. nS , pS , wVS

and wES
. This is because

of the following. (a) The larger nS is, there are more
nodes in the SNs, and the larger pS is, there are more
links in the SNs. (b) The lager wVP

and wEP
are,

there are larger capacities in the nodes and links of
the SNs, respectively. Hence, the SNs can handle more
requests when any of these four factors is increased, and
therefore, their AR gets larger. (ii) The AR of VNMP

is consistently higher than the AR of VNESP in all the
cases, up to 37%. (iii) The AR of VNMP is less sensitive
to network topologies than the AR of VNESP, which is
consistent with the results reported in Figure 7(a).

(3) To evaluate the impact of VN requests on AR, we
fixed t = 60, 000s, and SNs with nS = 5000, pS = 0.5
and wVS

= wES
= 100. We varied the four factors of

VNs: nP from 2 to 50, pP from 0.1 to 1.0, and wVS
,

wES
from 3 to 30, while fixing the other three factors of

VNs with default values nP = 50, pp = 0.5, wVP
= wEP

= 30. Again the test of pP is conducted on the VNs of

random networks only.
As shown in Figures 7(c), 7(f), 7(i) and 7(l), the

results tell us the following. (i) The AR decreases w.r.t.
nP , pP , wVP

and wEP
. Indeed, (a) the larger nP is, the

more machines are requested by the VNs; (b) the larger
pP is, the more links are demanded; and (c) the lager
wVP

and wEP
are, the more capacities are required. As

a result, AR decreases with the increase of any of these
four factors, which makes the VN requests harder to
fulfill. (ii) The AR of VNMP is consistently higher than
the AR of VNESP in all the cases, up to 33%. (iii) The
AR of VNMP is less sensitive to network topologies than
that of VNESP, as we have seen earlier.

(4) We also evaluated the impact of time t on the
resource utilization of nodes and edges, in the same
settings as (1).

(i) The average resource utilization of substrate nodes
is shown in Fig. 7(g). It shows the following. (a) Node
utilization of SNs becomes stable after t = 24000s. This
is because after 24000s, the total number of hosted VNs
becomes stable as there is no more resource for new
requests, unless existing VN requests expire. (b) Node
utilization of full-mesh networks is higher than that of
random networks, followed by directed trees, for both
VNMP mappings and VNESP mappings. Intuitively, the
denser an SN is, the fewer VN requests will be denied
by the SN due to edge capacity constraints. Therefore,
they can host more VNs with the same node capacities
than sparser SNs. (c) For each type of the three
SN topologies, the node utilization of VNMP is higher
than that of VNESP, which demonstrates the benefit of
priority mappings.

(ii) Figure 7(j) shows the average edge utilization. It
tells us the followings. (a) After t = 12000s, the
average edge utilization becomes stable, no matter what
topological structures SNs have. This is analogous to
node utilization. (b) Priority mapping over directed
trees gains the highest edge mapping, but gets the
lowest over full-mesh networks. This is because VNMP

requires more on node capacities due to its weak edge
capacity constraints. Therefore, on full-mesh networks,
the bottleneck is the node mapping, which leads to
lower edge utilization. (c) Generally, the impact of
network topologies on the edge utilization for VNMP

is larger than that for VNESP. This is consistent with
node utilization.

Exp-2: Mapping efficiency. In this set of
experiments, we evaluated the efficiency of our
algorithm compVNM for VNMP versus algorithms
SubIso [13], ViNE [16] and RW-SP [23] for VNESP. We
used large random networks in the experiments. We do
not report the impact of node and edge capacities wVP

and wEP
on VNs, and wVS

and wES
on SNs, since these

factors have little impact on the efficiency, as shown by
the corresponding complexity analysis (see Section 4).

(1) To evaluate the impact of SNs, we fixed VN requests

The Computer Journal, Vol. ??, No. ??, ????

18 Y. Cao W. Fan S. Ma

0

200

400

600

800

1000

10
2

10
3

10
4

10
5

10
6

E
la

p
se

d
 t

im
e
 (

s)

SubIso
ViNE

RW-SP
compVNM

(a) Vary nS from 102 to 106

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
la

p
se

d
 t

im
e
 (

s)

SubIso
ViNE

RW-SP
compVNM

(b) Vary pS from 0.1 to 1.0

0

200

400

600

800

1000

2 8 14 20 26 32 38 44 50

E
la

p
se

d
 t

im
e
 (

s)

SubIso
ViNE

RW-SP
compVNM

(c) Vary nP from 2 to 50

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
la

p
se

d
 t

im
e
 (

s)

SubIso
ViNE

RW-SP
compVNM

(d) Vary pP from 0.1 to 1.0

FIGURE 8. Mapping efficiency and scalability

with nV = 25, pP = 0.5, wVP
= wEP

= 30, we varied nS
from 102 to 106 (while fixing pS = 0.5, wVS

= wES
=

100) and pS from 0.1 to 1.0 (while fixing nS = 106),
respectively. The results are shown in Figures 8(a)
and 8(b), respectively.

(2) To evaluate the impact of VNs, we fixed SNs with
nS = 500, 000, pS = 0.5, wVS

= wES
= 100, we varied

nV from 2 to 50 (while fixing pV = 0.5, wVP
= wEP

=
30) and pV from 0.1 to 1.0 (while fixing nV = 50, wVP

= wEP
= 30), respectively. The results are reported in

Figures 8(c) and 8(d), respectively.
These results tell us the following. (i) As expected,

the running time of all these algorithms increases with
the increase of nS , pS , nP and pP . (ii) Algorithm
compVNM is efficient: it took only around 420s for SNs
with 1 million nodes. (ii) It outperforms the other
three algorithms for VNESP in almost all the cases.
Indeed, compVNM is about twice faster than the other
algorithms. While it took compVNM less than 600s
for nS = 106, pS = 1.0, nP = 50 or pP = 1.0
in Figures 8(a), 8(b), 8(c) and 8(d), respectively, the
other algorithms took at least 912s, or could not run to
completion.

Summary. From these experimental results we find
the following. (1) Priority mapping (VNMP) proposed
in this work is able to find high-quality mappings, and
has higher acceptance ratio than the previous mapping
model (VNESP), typically from 11% to 39%. (2) Priority
mapping is less sensitive to network topologies. (3)
Node sharing improves the mapping quality, typically
from 8% to 11%. (4) The average node and edge
utilization of VNMP is much higher than VNESP.
(5) Our algorithm for computing priority mapping
is efficient, e.g., it took 420 seconds for SNs with
106 nodes, and it substantially outperforms previous
algorithms for VNESP that took more than 912 seconds.

6. CONCLUSION

We have proposed a generic model to express various
VN requests found in practice, based on graph
pattern matching. We have also established several
intractability and approximation hardness results in
various practical VNM settings. These are among the
first efforts to settle fundamental problems for virtual

network mapping. For intractable VNM cases, we have
developed algorithms for priority mapping, a VNM
problem identified in this work that is important in
emerging applications. We have experimentally verified
that the algorithms are effective and efficient, using
real-life and synthetic data. These results not only
provide foundation for developing virtualized cloud data
centers, but are also useful to the study of graph pattern
matching in the presence of constraints.

Several extensions are targeted for future work.
First, we are currently evaluating the techniques with
large SNs, and developing optimization techniques for
VNM. Second, to simplify the discussion we have only
presented constraints on cpu, storage, bandwidth and
latency in this work. It is possible to extend our model
to incorporate factors such as storage locality, data
placements requirements and security policies. Third,
incremental VNM methods need to be explored to adapt
to peak and off-peak cloud workloads. Fourth, we
are also studying other practical quality functions for
VNM beyond mapping costs. Finally, we are exploring
techniques for processing VN requests in the uniform
model for different applications, as well as their use in
graph pattern matching in real-life applications.

ACKNOWLEDGEMENTS

Fan and Cao are supported in part by 973 Program
2014CB340302 and 2012CB316200, NSFC 61133002,
the Foundation for Innovative Research Groups of
NSFC, Shenzhen Peacock Program 1105100030834361,
Guangdong Innovative Research Team Program
2011D005, EPSRC EP/J015377/1 and EP/M025268/1,
ERC-2014-AdG 652976, NSF III 1302212, and a Google
Faculty Research Award. Ma is supported in part
by 973 Program 2014CB340304, NSFC 61322207 and
the Fundamental Research Funds for the Central
Universities.

REFERENCES

[1] Trelles, O., Prins, P., Snir, M., and Jansen, R. C. (2011)
Big data, but are we ready? Nature reviews Genetics,
12.

[2] Agrawal, D., Das, S., and El Abbadi, A. (2011) Big
data and cloud computing: current state and future
opportunities. EDBT.

The Computer Journal, Vol. ??, No. ??, ????

Virtual Network Mapping in Cloud Computing: A Graph Pattern Matching Approach 19

[3] http://www.bigswitch.com/.

[4] http://aws.amazon.com/ec2/.

[5] http://www.vmware.com/solutions/datacenter/.

[6] Xiong, P., Chi, Y., Zhu, S., Moon, H. J., Pu, C.,
and Hacigümüs, H. (2011) Intelligent management of
virtualized resources for database systems in cloud
environment. ICDE.

[7] Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem,
K., Kokosielis, P., and Kamath, S. (2010) Automatic
virtual machine configuration for database workloads.
TODS, 35.

[8] Aboulnaga, A., Salem, K., Soror, A., Minhas, U.,
Kokosielis, P., and Kamath, S. (2009) Deploying
database appliances in the cloud. IEEE Data Eng.
Bull, 32, 13–20.

[9] Aboulnaga, A., Amza, C., and Salem, K. (2008)
Virtualization and databases: state of the art and
research challenges. EDBT.

[10] Shivam, P., Demberel, A., Gunda, P., Irwin, D. E.,
Grit, L. E., Yumerefendi, A. R., Babu, S., and Chase,
J. S. (2007) Automated and on-demand provisioning of
virtual machines for database applications. SIGMOD.

[11] Bobroff, N., Kochut, A., and Beaty, K. (2007)
Dynamic placement of virtual machines for managing
sla violations. IM.

[12] Houidi, I., Louati, W., and Zeghlache, D. (2008) A
distributed virtual network mapping algorithm. ICC.

[13] Lischka, J. and Karl, H. (2009) A virtual network
mapping algorithm based on subgraph isomorphism
detection. SIGCOMM workshop VISA.

[14] Lu, J. and Turner, J. (2006) Efficient mapping of
virtual networks onto a shared substrate. Washington
University, TR WUCSE-2006, 35.

[15] Yu, M., Yi, Y., Rexford, J., and Chiang, M. (2008)
Rethinking virtual network embedding: Substrate
support for path splitting and migration. SIGCOMM
CCR, 38, 17–29.

[16] Chowdhury, N., Rahman, M., and Boutaba, R. (2009)
Virtual network embedding with coordinated node and
link mapping. INFOCOM.

[17] Reinhardt, W. (1994) Advance reservation of network
resources for multimedia applications. IWACA.

[18] http://frenzy.ivic.org.cn/.

[19] Schlansker, M. S., Collard, J.-f., and Kumar, R. (2013).
Prioritized polling for virtual network interfaces. US
Patent 8,364,874.

[20] http://www.isi.edu/xbone/.

[21] Gallagher, B. (2006) Matching structure and semantics:
A survey on graph-based pattern matching. AAAI FS,
6, 45–53.

[22] Ausiello, G. (1999) Complexity and approximation:
Combinatorial optimization problems and their approx-
imability properties. Springer Verlag.

[23] Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo,
Y., and Wang, J. (2011) Virtual network embedding

through topology-aware node ranking. SIGCOMM
CCR, 41, 38–47.

[24] Cao, Y., Fan, W., and Ma, S. (2015) Virtual
network mapping: A graph pattern matching approach.
BICOD.

[25] Hsu, W. and Shieh, Y. (2013) Virtual network mapping
algorithm in the cloud infrastructure. J. NCA, 36,
1724–1734.

[26] Ricci, R., Alfeld, C., and Lepreau, J. (2003) A solver
for the network testbed mapping problem. SIGCOMM
CCR, 33, 81.

[27] Zhu, Y. and Ammar, M. (2006) Algorithms for
assigning substrate network resources to virtual
network components. INFOCOM.

[28] Dı́az, J., Petit, J., and Serna, M. (2002) A survey of
graph layout problems. CSUR, 34, 313–356.

[29] Andersen, D. G. (2002). Theoretical approaches to
node assignment.

[30] Fan, W. (2012) Graph pattern matching revised for
social network analysis. ICDT, pp. 8–21.

[31] Fan, W., Li, J., Ma, S., Wang, H., and Wu, Y. (2010)
Graph homomorphism revisited for graph matching.
VLDB, 3, 1161–1172.

[32] Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., and Wu, Y.
(2010) Graph pattern matching: From intractable to
polynomial time. VLDB.

[33] Fan, W. and Bohannon, P. (2008) Information
preserving XML schema embedding. TODS, 33.

[34] Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. (2011)
Adding regular expressions to graph reachability and
pattern queries. ICDE.

[35] Megiddo, N. (1987) On the complexity of linear
programming. Advances in Economic Theory: Fifth
World Congress.

[36] Cormen, T. (2001) Introduction to algorithms. The MIT
press.

[37] Sipser, M. (2012) Introduction to the Theory of
Computation. Cengage Learning.

[38] Chowdhury, N. M. K. and Boutaba, R. (2010) A survey
of network virtualization. Computer Networks, 54,
862–876.

[39] Bavier, A. C., Feamster, N., Huang, M., Peterson, L. L.,
and Rexford, J. (2006) In VINI veritas: realistic and
controlled network experimentation. SIGCOMM.

[40] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y.,
Tian, C., Zhang, Y., and Lu, S. (2009) Bcube: A
high performance, server-centric network architecture
for modular data centers. SIGCOMM.

[41] Munkres, J. (1957) Algorithms for the assignment and
transportation problems. SIAM, 5, 32–38.

[42] Anily, S., Bramel, J., and Simchi-Levi, D. (1994) Worst-
case analysis of heuristics for the bin packing problem
with general cost structures. Operations research, 42,
287–298.

The Computer Journal, Vol. ??, No. ??, ????

