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Abstract 

 

Hydrodynamic aquifers with horizontal variations in overpressure and brine flow have been reported 

from sedimentary basins worldwide. In a hydrodynamic aquifer pore-waters flow in the direction of 

overpressure reduction, whereas trapped hydrocarbons remain static. The main effect of this pressure 

disequilibrium in the aquifer is a tilt of the free water levels (FWL) in the direction of lower 

overpressure.  

Although the impact of hydrodynamics on the petroleum system is established in the oil industry and 

provides important information for exploration and field development, the interaction of CO2 storage 

and hydrodynamic flow has hardly been investigated. Supercritical CO2 has a density comparable 

with oil densities in known hydrodynamic systems in the North Sea. Hence, a tilted CO2-water FWL 

is expected and has to be taken into account during the planning of CO2 storage. Hydrodynamic spill 

points will replace structural spill points as a parameter in CO2 storage capacity calculations. 

Storage security is dependent on CO2 dissolution rates, among other factors. The more effectively 

CO2 dissolves into brine the more CO2 will be permanently stored in the subsurface. Numerical 

simulations show that CO2 storage in hydrodynamic aquifers enhances the dissolution of CO2 

compared with a static regime. When CO2 dissolves into brine, the brine density increases and the 

CO2-saturated brine sinks to the bottom of the reservoir and is replaced by under-saturated brine. In a 

hydrodynamic system the brine saturated with CO2 will be removed more effectively from the CO2-

brine interface. Hence, CO2 comes in contact with more under-saturated brine and dissolves at a 

greater rate. 

The presence of hydrodynamic flow in a reservoir requires a high degree of understanding but 

research on oil reservoirs has proven that it is an uncertainty that can be adequately characterized. For 

long term CO2 storage operations hydrodynamic flow can even be an opportunity for more secure 

CO2 storage.    
 

1. Introduction 

 

The capture of CO2 from large scale emitters such as combustion power stations and the subsequent 

storage in the subsurface is considered as a significant contribution to mitigate rising CO2 

concentrations in the atmosphere (Lovell, 2011; IPCC, 2014). The most promising storage targets are 

depleted hydrocarbon reservoirs, where CO2 will be injected into structural traps and displace the in-

situ pore fluid and saline aquifers. The storage targets should ideally be connected to an open pressure 

system so that injection induced overpressure can dissipate and does not compromise the sealing 

formations (Zhou et al., 2008).  
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This study investigates the injection of CO2 into aquifers which are open and have a constant flow of 

brine due to horizontal variations in overpressure. It focusses on two aspects: Firstly, will the 

horizontal variation in overpressure tilt the CO2-water free water level (FWL) in a similar way it tilts 

the oil-water FWL in oil fields with hydrodynamic aquifers? And secondly, will the hydrodynamic 

flow increase storage security by enhancing the dissolution rate of CO2 into brines? The examples and 

data used in this study are from the North Sea but the conclusions are relevant for potential CO2 

storage operations in hydrodynamic aquifers worldwide.       

 

2. Hydrodynamic flow in the North Sea 

 

In this study, hydrodynamic flow in a permeable formation is defined as fluid flow as a consequence 

of horizontal variations in overpressure, i.e. a change in overpressure across a horizontal distance 

independent of depth. Overpressure is defined to be any pressure higher than the hydrostatic pressure 

as defined by a hydrostatic gradient. In a hydrostatic or uniformly over-pressured aquifer, no 

horizontal variations in overpressure exist and the pore fluid remains static. By contrast, the horizontal 

variation in overpressure in a hydrodynamic aquifer is gradual. Natural reasons for the generation of 

overpressure have been discussed in various papers (e.g. Bjoerlykke, 1997; Swarbrick and Osborne, 

1997) and in the North Sea are thought to relate to processes such as burial compaction 

disequilibrium, thermal cracking of gas and associated volume change disequilibrium and thermal 

expansion of water leading to a volume change disequilibrium. Overpressure in permeable formations 

can lead to the flow of brine in response to horizontal variations in overpressure. If a less dense 

second phase such as oil is trapped within a hydrodynamic aquifer the free water level (FWL), the 

point of zero capillary pressure between oil and water, will tilt. Tilted FWLs of oil and water due to 

horizontal variations in overpressure were first described by Hubbert (1953, 1967). Often the terms 

FWLs and oil-water contacts (OWC) are used synonymously because they are usually close to one 

another in high permeability reservoirs. However, the principle of hydrodynamic tilting applies 

strictly to FWLs and only by extension to OWCs (Dennis et al., 2000). In this study, we will use the 

term FWL because it covers all ‘contacts’ between brine and a second phase (oil, gas and supercritical 

CO2). 

 

Both varying FWLs and lateral pressure changes within aquifers can be interpreted in different ways. 

Horizontal variations in overpressure in reservoirs are often interpreted to be a result of fault 

compartmentalization or other low permeability barriers which disconnect an otherwise open flow 

system (Dennis et al., 2005). However, the unique characteristics of a hydrodynamic system are 

horizontal variations in overpressure in the brine in combination with no overpressure gradient in the 

hydrocarbon leg (Dennis et al., 2000).  

 

The tilt of the FWL in a hydrodynamic system is a response of the less dense phase to the pressure 

disequilibrium of the brine and is not caused by friction associated with the water movement. Hence 

the tilt per km can be expressed with the horizontal variation in overpressure and the phase density 

contrast (Dennis et al., 2000): 

𝑑𝑧
𝑑𝑥⁄ =

𝑑𝑝
𝑑𝑥
⁄

𝑑𝑝
𝑑ℎ(𝑤−ℎ)
⁄
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where dz/dx is the dip of the FWL per unit length, dp/dx is the horizontal variation in overpressure 

expressed as pressure per unit length, and dp/dh(w-h) is the difference in vertical pressure gradients 

between the two phases expressed as pressure per unit column height. 

 

 

Hydrodynamic flow and tilted FWLs have been reported from various parts of the world, for example 

from Cretaceous aquifers of Southwestern Saskatchewan (Melnik and Rostron, 2011); the South 

Caspian Sea (Tozer and Borthwick, 2010); Western Alberta Sedimentary Basin (Bachu & 

Underschultz, 1993), the Gulf of Mexico (Dias et al., 2010; Green et al., 2014) and from the North 

Sea.  

 

In the Norwegian North Sea, varying FWLs in the Jurassic Ula field were interpreted by O’Connor et 

al. (2011) to be a result of hydrodynamic flow towards a nearby salt diaper which acts as a pressure 

valve. They calculated a horizontal variation in overpressure across the field of 47 psi/km (324 

kPa/km) and a tilt of the FWL of 93 m/km for the oil field. Megson (1992) and Thomasen & Jacobsen 

(1994) described tilted fluid contacts in the Kraka and the Dan fields, two oil fields in the Cretaceous 

chalk of the Danish Central Graben. Additionally, Dennis (2000) described varying oil-water FWL in 

the Valhall and the Hod field, two Cretaceous chalk fields located in the Central North Sea. 

According to his interpretation, the accumulations are in pressure communication and a horizontal 

variation in overpressure of approximately 7 psi/km (48 kPa/km) across the field leads to a tilt of 15 

m/km. The most prominent example of tilted FWLs in the North Sea is probably the Pierce field, a 

Paleocene sandstone reservoir located in the Central North Sea (Dennis et al., 2000; Birch & Haynes, 

2003). Pressure data from well tests show a horizontal variation in overpressure of 45 psi/km (310 

kPa/km) across the field and wireline data identified a FWL of more than 300 m vertical relief (90 

m/km) towards WNW.  

 

The Pierce field is interpreted to be a part of a regional scale hydrodynamic system in the Paleocene 

Forties Sandstone Member of the Central North Sea (Cayley 1987; Dennis 2000). Robertson et al. 

(2013) plotted 74 pressure measurements taken in the Forties Sandstone which show that overpressure 

increases towards the southeast, in the direction of increasing distance from the sediment source and 

decreasing gross reservoir thickness. In the northwestern part of the study area, where the sands are 

shallowest and pressures are close to hydrostatic, it is inferred that fluids drain laterally into the shelf 

sandstones belonging to the Dornoch Formation (Robertson et al., 2013).  

 

3. Tilted FWLs in a CO2-water system 

 

Hydrodynamics has been accepted in the oil industry as a theory that can provide important 

information to improve exploration success and the field development process. There are two ways to 

determine the tilt of a FWL. Firstly, by comparing OWC interpreted from wireline data drilling 

reports (assuming that changes of the OWCs and the FWLs are similar), and secondly, by calculation 

of the tilt using pressure data and fluid densities from multiple wells. If the tilt of the FWL is known, 

structural spill points, locations which control the maximum extent of a hydrocarbon accumulation, 

must be replaced by ‘hydrodynamic spill points’ (Green et al., 2014). Depending on the degree of tilt 

and on the field architecture, the updated spill points can change the maximum volume of a 

hydrocarbon accumulation significantly. 
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So far previous research has focused on the impact of hydrodynamic flow on oil fields because oil 

densities are generally closer than natural gas to subsurface brine densities and the tilt of the FWL will 

be more prominent. There has been little interest in tilted FWL in gas fields. Natural gas in reservoir 

rocks, of which the majority is methane, has a relatively low density of less than 0.2 g/cm3 under 

normal reservoir conditions (Setzmann & Wagner, 1991). Due to the large density difference between 

methane and brine under subsurface conditions, no significant tilts are expected in gas reservoirs even 

if a strong horizontal variation in overpressure is present. However, CO2 does not behave like 

methane in the subsurface. At temperature and pressure conditions higher than 31.1°C and 7.39 MPa, 

respectively, a phase change takes place and CO2 will be present as a supercritical fluid with a liquid 

like density (IPPC, 2005). The rapid increase in density provides the potential for efficient 

underground storage but it decreases the density contrast between brine and stored CO2. Since a 

reduced density contrast between two phases increases the tilt of the FWL, CO2 in the subsurface is 

much more affected by hydrodynamic flow than e.g. methane. This effect was modelled by Lindeberg 

et al. (2000) for the potential hydrodynamic flow in the Utsira CO2 storage site (Norway). They found 

a hydrodynamic flow rate of 3 m/year will tilt the CO2 brine contact and displace the CO2 plume.  

 

 
Figure 1: (left) The graph shows the density change with depth for a selection of reservoir fluids for, if not 

stated otherwise, a vertical temperature gradient of 30°C per km. Oil density is taken from the North Sea Ula 

Field (O’Connor et al., 2011) and plotted for the depth range investigated in O’Connor et al., 2011. Methane 

and brine densities are calculated using Setzmann and Wagner (1991) and Batzle and Wang (1992), 

respectively. CO2 Density calculated for three different temperature gradients (red – 35°C/km; green – 

30°C/km; blue - 25°C/km) are also shown. The graph shows that at reservoir depth the density of supercritical 

CO2 is within the range of the density of the oil. (right) The graph shows the tilt of FWLs with depth of the same 

reservoir fluids in the presence of brine (0.15 kg/l). The horizontal variation in overpressure across the field is 

assumed to be 310 kPa/km, similar to the horizontal variation in overpressure identified in the Pierce and the Ula 

Field. Methane has a low density and the gas-water FWL shows a tilt of ~30 m/km. The tilt of the oil-water FWL 

using oil densities from the Ula Field is approximately 80 m/km. Also shown is the potential tilt of a CO2-water 

FWL calculated for the three temperature gradients. When CO2 is present as a gas phase, the tilt is similar to 

the tilt of a methane-brine system. Once it is in supercritical state, potential tilts are comparable with the tilts in 

known hydrodynamic oil fields. Hence, if tilted oil-water FWL are present, CO2-water FWL will tilt too.     

Figure 1 shows the density changes of brine (0.15 kg/l) calculated using Batzle and Wang (1992) and 

methane densities calculated using Setzmann and Wagner (1991). The oil density example was taken 

from O’Connor et al. (2011) and represents the density of oil in the Ula field. Also shown are CO2 

densities for three temperature gradients (25/30/35°C/km) and similar pressure conditions, calculated 

using the Span & Wagner equation of state (Span and Wagner, 2006). The hydrostatic pressure 
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conditions used to calculate the density for methane and CO2 were determined by combining the 

atmospheric pressure and the weight of the overlying water column based on brine density calculated 

using Batzle and Wang (1992) and a temperature gradient of 30°C/km and a surface temperature of 

5°C.  

 

Figure 1 shows that within realistic temperature conditions, supercritical CO2 in the subsurface has a 

fluid density similar to the oil in the Ula field. Since the FWL in the Ula field is significantly tilted, a 

potential CO2-brine FWL will also be tilted under the same conditions. Figure 1 also shows the tilt of 

the FWL for CO2, methane and oil with a horizontal variation in overpressure of 310 kPa/km, which 

is comparable with hydrodynamic conditions at the Ula and the Pierce field (O’Connor et al., 2011; 

Dennis et al., 2000). The assumed salinity of the brine is 0.15 kg/l. As it can be seen, the CO2-water 

FWL will be tilted by comparable degrees as the present oil-water FWL. Lower temperatures increase 

CO2 and brine densities at different rates, therefore there is a net decrease in the density difference 

between the injected CO2 and the brine and therefore tilting is enhanced. The density of brine is barely 

affected by temperature and pressure but a decrease in salinity reduces the brine density and also 

decreases the density difference. Hence, all other things being equal, lower salinities enhance the 

tilting too. 

 

 
Figure 2: Schematic figure to demonstrate how a horizontal variation in overpressure may increase or decrease 

CO2 storage capacity estimations based on hydrostatic conditions. If the FWL of a CO2-brine system is tilted 

due to hydrodynamic flow (blue dotted line), it depends on the architecture of the trap if structural spill points 

still control the storage capacity (scenario A) or whether they have to be replaced by hydrodynamic spill points 

(scenario B) for capacity estimations. 

The data presented in Figure 1 show that if hydrodynamic flow is present, it will tilt the FWL in an 

engineered CO2 storage operation. Just as the volume of potential hydrocarbons in place can be highly 

dependent on the interaction of the reservoir architecture and the geometry of the FWL, so does the 

storage capacity of free phase CO2 (Figure 2). However, the tilting of the FWL does not happen 

instantly and the CO2 plume will find its final shape long after injection has ceased. The increase of 

CO2 storage capacity is therefore theoretical; injection might have to take place over a potentially 

infeasibly long time period to slowly use space provided by the tilting. It is also important to point out 

that the capacity will only be altered by hydrodynamic flow if the initial capacity estimation is based 

on structural trapping defined by structural spill points only, and not for example by a limiting 

increase in pore fluid pressure. Additionally, the placement of CO2 injection wells would have to be 

reconsidered to use the full storage potential of a depleted hydrocarbon field or a structural trap in a 

saline aquifer.  

 

4. Enhanced CO2 dissolution in hydrodynamic reservoirs 
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One of the first chemical processes occurring after CO2 injection has started is the dissolution of CO2 

into the pore water. The dissolution rate is an important parameter to determine storage security 

because the faster the CO2 dissolves, the quicker the volume of free CO2 decreases. This reduces the 

risk of CO2 migrating out of the storage site and also reduces the buoyancy pressure on the cap rock. 

The dissolution of CO2 into saline water leads to an increase in the density of the liquid phase. When 

CO2 dissolves at the CO2 water interface, the CO2-saturated aqueous phase sinks, and as it does so, 

under-saturated brine rises and comes into contact with the CO2 (Ennis-King and Paterson, 2005; 

Ghanbari et al., 2006).This convection process enhances dissolution and therefore enhances storage 

security. 

4.1. Methodology 

To investigate the impact of hydrodynamic flow on the dissolution rate, the injection of CO2 into a 

hydrodynamic system was simulated using the reservoir engineering software Eclipse100 

(Schlumberger; Figure 3). The modeled aquifer has a top depth of 2000 m TVD with an anticline in 

the center with a top depth of 1900 m TVD and a reservoir temperature of 60°C. The model extent is 

6400 m by 3200 m with a constant thickness of 150 m and the bottom seal mirrors the shape of the top 

seal. The horizontal width of the anticline is 2400 m. The computed pore volume of the anticline is 

0.021 km3. The number of grid cells is 64x32x10. A well injects CO2 into the top two cells 

(equivalent to a 30 m perforation) of an anticline in the center of the mesh. A set of 11 wells inject 

water over the entire thickness of the reservoir across one end of the model. Simultaneously, 11 

production wells at the other end of the model, controlled by a bottom hole pressure upper limit of 

21,000 kPa, produce water to maintain a constant water flow and a constant pressure gradient.  Due to 

the varying water injection rates, the average pressure of the simulations increases slightly between 

model runs with increasing horizontal variations in overpressure. The absolute average water pressure 

for the nearly hydrostatic model and the 144 kPa/km model at the end of the run time is 20,695 kPa 

and 21,179 kPa, respectively, a difference of 484 kPa.   

 

Figure 3: The figure shows the model setup and resulting CO2 saturations: 11 water injection wells and 11 

water production wells create a constant horizontal variation in overpressure across the model. CO2 is injected 

via a CO2 injection well into the upper two cells in the centre of the anticline.  

Representative Paleocene reservoir properties from the North Sea were used to populate the reservoir 

model. The horizontal and vertical permeability is 25 and 12.5 mD, respectively, and the porosity is 

20 % (Jones et al., 2003). The salinity is 0.1 kg/l. Relative permeability for the aqueous phase was 

calculated using the method introduced by van Genuchten (1980) with constants taken from Pruess et 
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al. (2003; Figure 4). The relative permeability for super-critical CO2 was calculated after Corey 

(1954). Irreducible water saturation and critical gas saturation were set to 0.139 and 0.05 respectively 

(Pruess et al., 2003). Capillary pressure was ignored following Dennis et al. (2000) who concluded 

that the effect of capillary pressures in a reservoir scale simulation was negligible when compared to 

the hydrodynamic effects.  

 

Figure 4: The relative permeability curves. 

CO2 density was calculated using the Redlich-Kwong EoS (Redlich & Kwong, 1949) with 

coefficients suggested by Spycher et al. (2003). Viscosity of CO2 was calculated using a linear 

regression introduced by Mathias et al. (2010). Brine density and viscosity were calculated using 

Batzle & Wang (1992). The mutual dissolution of brine and water was calculated using the solubility 

model introduced in Spycher et al. (2003, 2005). 
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Figure 5: The Z-slice through model layer 6 shows the overpressure of the aqueous phase relative to a 

hydrostatic gradient defined by the pressure sink in the model. The overpressure distribution is similar before 

CO2 injection starts (100 years) and when the simulation stops (1125 years). The calculated horizontal 

variation in overpressure of the shown model is 72 kPa/km throughout the model for most of the running time 

except in the vicinity of the brine injection wells. However, during the time of CO2 injection and shortly after, 

the horizontal variation in overpressure is higher. 

The simulation runs for 1125 years. The brine injection and production wells operate constantly to 

maintain a constant pressure field (Figure 5). After 100 years the overpressure distribution has 

reached a steady state, then CO2 injection starts at a rate of 0.13 Mt/yr and lasts for 25 years. After 

CO2 injection has ceased, the model runs for additional 1000 years with the brine injection and 

production wells continuing. Pressure is higher and hydrodynamic flow is temporally altered during 

the CO2 injection period and shortly after due to the addition of the CO2 volumes. However, this is 

expected and occurs in real CO2 injection operations.  

Several models were run: One base case which represents a nearly hydrostatic aquifer (a horizontal 

variation in overpressure of 0.6 kPa/km) and several hydrodynamic models with different brine 

injection rates. The nearly hydrostatic aquifer is not entirely hydrostatic (0 kPa/km) because it was 

necessary to keep both the brine injection and the production wells running to create results 

comparable with the hydrodynamic cases. A horizontal variation in overpressure of 0.6 kPa/km would 

be difficult to detect in a natural reservoir and is well within the range of uncertainty of the 

investigation of hydrodynamic systems. The different hydrodynamic models presented in this study 

are named according to their horizontal pressure gradients. In this study, the pressure gradient was 

calculated based on pressure data from one extent of the model to the other in the long direction. 

Horizontal variations in overpressure were found to be consistent throughout the model. Vertical 

pressure changes outside the expected hydrostatic pressure increase with depth were negligible.    

4.2. Results 
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The injection of CO2, the development of the CO2 plume and the dissolution of CO2 into brine has 

been investigated in many studies (e.g. Ghanbari et al., 2006; Heinemann et al., 2012; Peters et al., 

2015). Figure 6 shows that when injected into the hydrostatic model, the CO2 remains in the top of the 

anticline with a nearly horizontal FWL. When injected into the hydrodynamic model, the FWL tilts 

towards the water production wells. The stronger the pressure gradient, the greater the tilt. With a 

horizontal variation in overpressure of 180 kPa/km, the tilt is so strong that CO2 starts migrating out 

of the anticline. Here, the CO2 leaves the structural closure approximately 150 years after injection 

has ceased, at a time when CO2 accumulations in hydrostatic simulations are already reducing due to 

the dissolution of CO2 into brine. This may not be anticipated in a real CO2 storage operation and 

shows the importance of a hydrodynamic analysis to prevent undesired CO2 migration.     

 

 
Figure 6: Middle X-Z plane of the reservoir model showing the CO2 saturation after 1125 years. Brine flows 

from the left to the right. Whereas no horizontal variation in overpressure leads to a horizontal CO2-water 

contact, a horizontal variation in overpressure tilts the contact. With a horizontal variation in overpressure of 

180 kPa/km, the tilt triggers the CO2 to leave the anticline. Vertical exaggeration is 4. 

Figure 7 shows the dissolved CO2 in the brine after 1125 years. There is significant CO2 dissolution 

where free CO2 is present because the brine and the CO2 are in direct contact. Here, the mole fraction 

of the CO2 in the brine is higher than anywhere else in the aquifer (Figure 7). The brine below the gas 

cap is partially saturated with CO2 and has started sinking to the base of the aquifer. In the nearly 

hydrostatic model (0.6 kPa/km), a dissolution pattern showing sinking CO2-saturated brine has 

established which enhances dissolution in saline aquifers. However, the cell size is not sufficiently 

small to resolve potential natural convection of CO2-saturated brine. In the chosen scenario, such 
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convection would be expected to start after the post-injection time of 1000 years (using Riaz et al., 

2006). Hence, the observed convection and dissolution rates are mainly an effect of numerical 

dispersion (see e.g. Emami-Meybodi et al. (2015) for more information). In a hydrodynamic system, 

saturated brine sinks and is simultaneously diverted towards lower overpressure. The stronger the 

horizontal variation in overpressure, the further the partially saturated brine is diverted.  

 
Figure 7: Middle X-Z plane of the reservoir model showing the CO2 dissolved in the water phase after 1125 

years. Brine flows from the left to the right. When no hydrodynamic flow is present, CO2 and brine create a 

convective system allowing CO2-saturated brine to sink and unsaturated brine to rise to the CO2-water contact. 

With the added component of a horizontal variation in overpressure, CO2-saturated brine is transported away 

from the CO2-water contact allowing for more interaction between unsaturated brine and CO2 thus further 

enhancing CO2 dissolution. With a horizontal variation in overpressure of 180 kPa/km, the tilt triggers the CO2 

to leave the anticline and the CO2 dissolution is even higher. Vertical exaggeration is 4. 

Figure 8 shows the volume of dissolved CO2 in all cases modelled. The highest dissolution rates are 

achieved during the injection and shortly after the injection periods when CO2 is still mobile and 

distributed over many cells before it settles underneath the caprock. During this period, the results 

show that there is hardly any difference in dissolution rates between injection into a hydrostatic and a 

hydrodynamic aquifer. Here, the buoyancy forces of the CO2, which determine the ascent of the CO2 

to the caprock, are dominant and the lateral flow in the reservoirs modelled in this study has no 

significant effect on the emplacement of the CO2 underneath the caprock (~2 % increase in 

dissolution in the 180 kPa/km model compared to the hydrostatic model). With 3.25 Mt of injected 

CO2 after 25 years, approximately 8.5% of the CO2 has dissolved by the end of the injection period. 

During the post injection period the continued effectiveness of dissolution as a trapping mechanism is 

more significantly related to the strength of the horizontal variation in overpressure. 
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Figure 8: The amount of dissolved CO2 for the hydrostatic model (0.6 kPa/km) and several hydrodynamic 

scenarios. The dissolution rate is greatest during the injection phase when CO2 enters brine-saturated cells. The 

amount of dissolved CO2 is roughly similar for all models during the injection period. After the injection period, 

CO2 gradually dissolves into the pore water. The greater the horizontal variation in overpressure in the aquifer, 

the more CO2 dissolves. When CO2 migrates out of the anticline due to the tilt, the dissolution rate increases 

dramatically (180 kPa/km; solid blue line). 

 

4.3. Discussion 

 

The tilt of the FWL is only determined by the horizontal variation in overpressure and the density 

difference of the fluid phases. The increase of the CO2 dissolution due to hydrodynamic flow is 

mainly a function of the brine flow removing CO2-saturated brine away from the CO2-brine interface. 

Hence, the increase of the dissolution rate is a function of the lateral brine flow rate. The flow rate of 

brine and the horizontal variations in overpressure are connected linearly via Darcy’s law, providing 

density changes due to dissolution are not significant (Figure 9). The slightly higher average pressures 

in simulations with higher horizontal variations in overpressure can be neglected in terms of their 

impact on dissolution. Firstly, the average pressure differences are small (484 kPa difference between 

the 144 kPa/km and the nearly hydrostatic model), and secondly, the main pressure differences 

between the scenarios occur close to the water injection wells, hence in an area where no CO2 

dissolution takes place. 
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Figure 9: Linear relationship between the horizontal variation in overpressure and specific discharge in the 

simulations conducted for this study. The flow was measured near both ends of the model after 1125 years. 

However, the flow near and underneath the anticline is generally higher due to the presence of CO2. 

The absolute amount of dissolved CO2 with time is dependent on many parameters and will not be 

discussed here any further. Instead, the mass of dissolved CO2 in the nearly hydrostatic model was 

regarded as a baseline. The dissolved CO2 from hydrodynamic models were plotted against this 

baseline to quantify the effect of hydrodynamic flow on CO2 dissolution (Figure 10). The graph 

shows that the stronger the horizontal variation in overpressure, the higher the dissolution rate.  

 

Under the specific model setup and the chosen parameters and after a post injection period of 1000 

years, approximately 27 % more CO2 will dissolve in a hydrodynamic aquifer with a horizontal 

variation in overpressure of 144 kPa/km compared to a hydrostatic scenario. The increase of the 

dissolution rate in hydrodynamic aquifers increases with time. Hence the longer the CO2 remains in a 

hydrodynamic aquifer, the greater the dissolution relative to the hydrostatic case.     

 

 
Figure 10: The amount of dissolved CO2 relative to the hydrostatic base case (0.6 kPa/km); solid black line) 

after CO2 injection ceased. After a post injection period of 1000 years, more than 20 % more CO2 will dissolve 

in an aquifer with a horizontal variation in overpressure of 144 kPa/km. 

The model results indicate a distinctive increase in dissolution relative to the hydrostatic case during 

the first 200 years after CO2 injection has ceased. This is a result of a rapid increase in dissolved CO2 

in the aquifer (Figure 11). ‘The aquifer’ is here defined as brine-filled cells with no gaseous CO2 

compared to brine filled cells with a gas saturation greater than 0. The rapid increase in ‘dissolved 

CO2 in the aquifer’ in the hydrodynamic model relative to the nearly hydrostatic model (Figure 11) 
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during the first 200 years after injection has ceased falls within the time period of the main 

redistribution of the CO2 plume. While tilting, the supercritical CO2 enters new cells in the direction 

of flow which quickly become saturated. At the same time, the plume leaves behind CO2 saturated 

brine filled cells which count as ‘dissolved CO2 in the aquifer’ once the incoming fresh brine has 

dissolved the residual CO2. The nearly hydrostatic model has no tilting and hence does not show this 

effect.     

 

Generally, high rates of dissolution into the aquifer occur when CO2-saturated brine starts sinking and 

is replaced by fresh brine. The hydrodynamic flow enhances this process by introducing more 

unsaturated brine at the base of the CO2 accumulation. The dissolution enhancing effect of this 

process is dependent on the hydrodynamic flow rate and therefore dependent on the horizontal 

variation in overpressure.  

 

The ‘180 kPa/km’ model shows very high dissolution rates. As mentioned before, in this scenario CO2 

has migrated out of the anticline due to the strong tilt. As seen in Figure 6, supercritical CO2 migrates 

along the top of the aquifer towards the production wells. By doing this, the CO2 occupies new brine 

filled cells which leads to a very effective dissolution process. Additionally, saturated brine is being 

removed from the CO2-brine interface.      

 

 
Figure 11: The figures show the total amount of dissolved CO2, the amount of dissolved CO2 in the aquifer 

(blue) and the amount of dissolved CO2 in cells containing free phase CO2 (brown) for the hydrostatic case 

(left) and the hydrodynamic case with a horizontal variation in overpressure of 144 kPa/km (right). Solubility 

trapping is more effective when CO2 is injected into hydrodynamic aquifer. There is a rapid increase in CO2 

dissolved into the aquifer in hydrodynamic cases compare to the hydrostatic case during the first 300 years 

after injection has ceased.  

 

5. Conclusions 

 

Horizontal variations in overpressure in hydrodynamic aquifers will tilt CO2-water FWL to a similar 

degree as they tilt oil-water FWL because CO2 will be present as a supercritical phase with densities 

comparable to the density of oil. That means for a CO2 storage operation that possible hydrodynamic 

spill points have to be mapped out to avoid fluid migration out of the intended storage site due to the 

tilt. Depending on the reservoir architecture, the effect of hydrodynamic flow on CO2 storage can be 

negative (less storage capacity) and horizontal variations in overpressure have to be taken into 

account for a storage capacity calculation based on structural spill points. 

 

Hydrodynamic flow should be taken into account when a CO2 storage operation is planned and 

designed. Therefore, the possible presence of hydrodynamic flow has to be investigated prior to 
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injection to modify the storage capacity estimation. This is of particular importance when targeting 

dome structures in saline aquifers where no hydrocarbons and consequently no tilted pre-injection 

FWLs are present to indicate hydrodynamic flow.  

 

Once the CO2 has been injected into an aquifer, CO2 starts dissolving into the brine. When injected 

into a hydrodynamic aquifer, the dissolution rate is increased because brine saturated with CO2 will be 

removed more effectively from the CO2-brine interface and more unsaturated brine comes into contact 

with the CO2. This increase in dissolution is scenario-dependent but simulations conducted for this 

study suggest an increase of more than 20 % for a post-injection period of 1000 years in an aquifer 

with a horizontal variation in overpressure of 144 kPa/km. The simulation results suggest that the 

dissolution rate will continue to increase with time relative to a hydrostatic aquifer.  

Hydrodynamic flow in a reservoir which is targeted for CO2 storage requires a higher degree of 

understanding but research on oil reservoirs has proven that it is a parameter that can be understood 

and accounted for. The faster reduction of free CO2 reduces the risk of leakage and also reduces the 

pressure on the cap-rock. Hence by increasing the CO2 dissolution rate the presence of hydrodynamic 

flow increases storage security. 
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