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Filtering of particle-based simulation data can lead to reduced computational costs and 
enable more efficient information transfer in multi-scale modelling. This paper compares 
the effectiveness of various signal processing methods to reduce numerical noise and 
capture the structures of nano-flow systems. In addition, a novel combination of these 
algorithms is introduced, showing the potential of hybrid strategies to improve further the 
de-noising performance for time-dependent measurements. The methods were tested on 
velocity and density fields, obtained from simulations performed with molecular dynamics 
and dissipative particle dynamics. Comparisons between the algorithms are given in terms 
of performance, quality of the results and sensitivity to the choice of input parameters. The 
results provide useful insights on strategies for the analysis of particle-based data and the 
reduction of computational costs in obtaining ensemble solutions.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerical simulation is an essential tool for gaining a better understanding of many physical phenomena that can be 
difficult to describe with analytical methods or experimental studies. The statistical mechanics of complex systems is often 
analysed with molecular dynamics (MD) [1], Monte Carlo methods, e.g. direct simulation Monte Carlo (DSMC) [2] or dissi-
pative particle dynamics (DPD) [3]; a comprehensive summary of all the modelling strategies can be found in Karniadakis 
et al. [4]. These procedures can be used to resolve accurately the dynamics at atomistic, meso- and micro-scales and are 
widely used to simulate nano/micro flows confined in channels such as carbon nanotubes [5,6]. In addition, information ob-
tained from molecular simulations forms the basis of new and emerging hybrid multi-scale modelling methods for physical 
and biological applications (see [7] for a review). Examples demonstrating the ubiquity of multi-scale, multi-physics applica-
tions include the dynamics of complex fluid flows [8], the classical turbulence problem [9], meteorological predictions [10], 
chemical and biological reactions [11]. Moreover, there is significant potential to apply multi-scale techniques to sociological 
problems, such as crowd and traffic flow [12].
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The central problems with all particle-based and multi-scale modelling are the computational cost of the simulations
and the accurate measurement and transfer of information across disparate length and time scales; there currently exist 
many sources of uncertainty and noise disturbing this intra-scale transfer, with an associated loss of simulation fidelity. 
Circumventing this problem often requires large samples and long averaging periods, resulting in computationally expensive 
calculations.

The objective of this paper is to investigate the capabilities of a number of mathematical algorithms introduced in the 
literature to assist noise reduction in particle-based modelling. A number of benchmark fluid flow problems, performed 
with molecular dynamics and dissipative particle dynamics, are used to investigate the usefulness of the considered meth-
ods and provide guidelines on how the algorithms can be successfully applied. The main focus of this paper is on novel 
procedures that provide rapid, adaptive, noise-free coarse-graining of micro-scale phenomena, and can further be employed 
in molecular-continuum simulations.

In this paper, new algorithms are proposed that combine the strengths of proper orthogonal decomposition (POD) with 
other techniques, hereafter referred to as POD+ methods, in order to achieve better efficiency in processing time-dependent 
fields. This work directly tackles the important challenge of extracting information from the data without significant addi-
tional computational cost.

The paper is organised as follows: the basic theory for the methods is described in Sec. 2. A comparison of the per-
formance of each technique in de-noising particle-based simulations is presented in Sec. 3, followed by remarks and 
recommendations for the use of the methods under investigation.

2. Theoretical background

In the following section we briefly review the numerical methods employed. First, we discuss algorithms based on sin-
gular value decomposition (or eigenvalue decomposition) and QR decomposition. The second part of the review focuses on 
strategies using wavelet transforms, wavelet thresholding and the WienerChop filter [13]. We also discuss the application of 
empirical mode decomposition to noise reduction. Novel couplings of proper orthogonal decomposition to these algorithms 
are introduced at the end of the Section.

2.1. Noise filtering with singular value decomposition and QR factorisation

2.1.1. Proper orthogonal decomposition
Define an element A(τ s, x) of the real N × M matrix as a measurement from the x-th probe taken at the τ s-th time 

instant. Proper orthogonal decomposition can be done either by eigenvalue decomposition (EVD) of the symmetric matrix 
C = A A† (A† A if N > M),1 or by singular value decomposition of A:

A = U�V †, (1)

where, in the case of full SVD, U is an N × N orthogonal matrix, V is an M × M orthogonal matrix, and � is an N × M
diagonal matrix. Columns of U and V are left and right singular vectors, respectively. The diagonal entries of �, called 
singular values, are the square roots of eigenvalues, sn = √

λn for s1 ≥ s2 ≥ . . . ≥ sn ≥ 0, where λn is the n-th eigenvalue of 
the diagonal matrix.

If A is a collection of measurements corrupted by additive noise, it can be represented in the form A = At + B , where 
At is a matrix that contains the true signals, and B denotes the noise. Given the decomposition in Eq. (1), the rank-k
approximation of A can be written in vector form as

Ak(τ
s, x) =

k∑
n=1

snun v†
n, (2)

where 1 ≤ k ≤ min(N, M), un and vn are the orthonormal (temporal or spatial) POD modes corresponding to the n-th 
columns of the matrices U and V , respectively. The key property of POD is that Ak is optimal in the sense that 
min 

{‖At − Ak‖2
F

} = ∑min(N,M)

n=k+1 s2
n , where ‖.‖F is the Frobenius norm. In this paper, the rank k is referred to as the number 

of dominant modes. A practical implementation of POD based on time-windows (WPOD) described by Grinberg [14], can be 
used for particle-based simulations.

The main challenge in estimation of At is the choice of the truncation parameter. One possible approach for defining the 
rank k is to select a cumulative percentage of total variation which modes should contribute. Unfortunately, such cut-off is 
often insufficient, as important aspects of the observables can be present in the direction of low variance modes. Therefore, 
in addition to studying the energy content of eigenvalues, most of the reported data is analysed here with the log-eigenvalue 
diagram (LEV), log10(λn = s2

n), based on the assumption that if higher singular vectors represent uncorrelated noise, then the 
corresponding λn should decay exponentially with increasing n [15]. We also considered the smoothness of the temporal 

1 The superscript † indicates matrix transpose since A ∈R.
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modes [14] as the ordering of eigenvalues also corresponds to an ordering of the vectors un (for A(τ s, x)) from low to high 
frequency. In some cases, the choice of k is verified with a recently proposed singular value hard threshold (SVHT) [16]; the 
principal algorithm was evaluated based on the asymptotic mean square error for matrix sizes larger than the underlying 
rank.

2.1.2. Singular spectrum analysis (SSA)
While proper orthogonal decomposition can successfully extract the signal from its noise-contaminated measurements, 

when applied to data that is temporally (or spatially) steady, it appears to be no more efficient in separating unwanted 
components from the mean ensemble than statistical averaging. In such cases, the SSA of Broomhead and King [17,18] can 
be applied. The method has been widely used in the filtering and forecasting of climatic, meteorological, geophysical, and 
electrical data series.

The basic scheme of SSA is described in [19]. The algorithm consists of four main steps (two for the decomposition 
stage, and two for the reconstruction): embedding, SVD, eigentriple grouping, and diagonal averaging. Instead of the matrix 
A ∈ R

N×M we consider one of the vectors forming its column, X ∈ R
M . In the embedding stage, the series is broken into 

a sequence of lagged vectors of size L by sliding Xi = (xi, . . . , xi+L−1)
†, (1 ≤ i ≤ K ), where K = M − L + 1. As a result, a 

trajectory matrix Y ∈ R
L×K of series X is formed:

Y = [X1, . . . , XK ] = (xij)
L,K
i, j=1. (3)

In the second key step of the decomposition process, the trajectory matrix is subject to SVD forming a collection of ele-
mentary matrices, eigentriples, Y = s1u1 v†

1 + . . . + srur v†
r , where r is the rank of Y . In the following step, a low-dimensional 

approximation, Ỹ = ∑
n∈In

snun v†
n is formed, where In denotes grouped subsets, e.g. In = {2, . . . ,5,10}. For simplicity, in this 

work, SSA approximation is formed for In = {1, . . . ,k}, similar to POD analysis. The reconstructed matrix does not exhibit 
the same elements along its descending diagonals. The subsequent averaging over its anti-diagonals replaces these differing 
entries and yields a new series X̃ = (

x̃1, . . . , x̃M
)

with reduced noise.
The window length, L, is the only parameter to be determined prior to the SSA. Its choice can result in a weaker (or 

stronger) separability between information and noise, influencing the effectiveness of the signal reconstruction process. 
There is no universal rule regarding the optimal value of L, but several principles have been described by Golyandina and 
Zhigljavsky [19]. In general, smaller windows lengths are recommended for detailed trends, while relatively large values 
of L are preferred for simple profiles.2 In addition, the window should not be greater than half of the length of the anal-
ysed series, L ≤ M/2 [20]. If there is a known periodic component in the processed data, then L should be chosen to be 
proportional to that period. For long signals and large values of L, the method is computationally very intensive.

2.1.3. Random QR de-noising (u/rQRd)
Random sampling has received considerable attention as an alternative dimensionality reduction tool which is signifi-

cantly less expensive than SVD or EVD [21–23]. In the recent paper by Chiron et al. [24], a new method based on random 
sampling has been described which, similar to SSA, seeks a low-rank approximation of the trajectory matrix.

In random QR de-noising, a matrix Y� , containing most of the significant information of the trajectory matrix Y ∈R
L×K , 

is obtained by calculating the product of Y and a set of random vectors stored in a matrix � ∈ R
K×Z :

Y�(L×Z) = Y(L×K ) × �(K×Z). (4)

As the number of vectors Z ≤ L, and L ≤ K , the matrix Y� is smaller in size than the trajectory matrix. A factorisation 
Y� = Q R is performed in order to construct a projection of Y onto the reduced rank orthonormal basis Q , Ỹ = Q Q †Y , 
where Ỹ has a rank equal to Z . A de-noised time series X̃ is then obtained by diagonal averaging. An approximation error 
for such a procedure satisfies 

∥∥Y − Ỹ
∥∥

2 ≤
[

1 + 9
√

Z · √L
]

sk+1, with probability of at least (1 − 3ζ−ζ ), where ζ = Z − k is 
the oversampling parameter, sk+1 is the (k + 1) greatest singular value of Y [22], and ‖.‖2 denotes the L2 operator norm. 
The recommended action is to have a small ζ ; however, in real situations, the number of components k is unknown a priori. 
The solution given by random QR de-noising, rQRd, may be less optimal than the approximation constructed with SVD, but 
is obtained much faster, particularly for large data-sets [24]. An improved algorithm for very long signals, called uncoiled 
random QR de-noising (urQRd) [24], based on fast Fourier transforms (FFT) is also used in this article.

2.2. Signal processing with wavelet transforms

The orthogonal wavelet transform uses a shifted and scaled mother wavelet, ψ , to form a basis (children) of L2(R) defined 
as

2 By notion of simplicity we describe the trend that is concentrated in a narrow subdomain of low frequencies, or that X is well approximated by a series 
with finite and small rank k.
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ψ j,m(t) = 1√
2 j

ψ

(
t − m2 j

2 j

)
, (5)

where j, m ∈ Z represent resolution and translation, respectively, and ψ satisfies the admissibility condition, Cψ =∫ +∞
0

∣∣ψ̂(ω)
∣∣2

ω dω < +∞, where ψ̂(ω) = ∫ +∞
−∞ ψ(t)e−iωtdt [25,26]. To ensure that the integral is finite, ψ̂(0) = ∫ +∞

−∞ ψ(t)dt = 0. 
The wavelet is continuously differentiable, i.e. ψ has sufficient time decay, which implies smoothness,∫ +∞
−∞ (1 + |t|) |ψ(t)|dt < +∞. By enforcing the vanishing of higher order moments, 

∫ +∞
−∞ tbψ(t)dt = 0, polynomials up to 

degree b are reproduced. A complement in L2(R) of the linear space spanned by the wavelets is determined by the trans-

lations and dilations of a scaling function, φ j,m(t) = 1√
2 j

φ
(

t−m2 j

2 j

)
. Decomposition of a signal f (t) can be written as

f (t) =
∑
m∈Z

c j0,mφ j0,m(t) +
∑

j,m∈Z
d j,mψ j,m(t), (6)

where c j0,m = 〈
f , φ j0,m

〉
is a smoothed (coarse) approximation, d j,m = 〈

f ,ψ j,m
〉

are the fine scale details at different resolu-
tions − J ≤ j < 0 and 0 ≤ m < 2− j , where J is the maximum number of decompositions and j ≤ j0.

Through multiresolution theory, Mallat [27] and Meyer [28] established a link between an orthogonal wavelet basis and 
the conjugate mirror filters that describe the interaction between wavelet and scaling function. This allows for the fast 
implementation of a discrete wavelet transform (DWT), where the signal is convolved with the low-pass and high-pass 
filters, followed by a dyadic decimation, after which the procedure is recursively repeated on the decimated low-pass output.

To overcome the lack of translation-invariance of the DWT, the stationary wavelet transform (SWT) was introduced [29]. 
In this strategy, an undecimated transform is performed with upsampled filter coefficients at each level of the decom-
position. The scheme contains redundancy which is seen as advantageous in de-noising, but increases the computational 
complexity from O (2 J ) to O ( J 2 J ) operations. We note that the SWT is closely related to cycle-spinning [30].

2.2.1. Wavelet thresholding
Motivated by the idea that a wavelet transform provides a sparse representation of data, estimate functions are obtained 

by inverting thresholded coefficients whose magnitude exceed an estimated noise level. Donoho and Johnstone [31] have 
proposed simple procedures for recovering information from noisy data, namely hard and soft thresholding. A non-linear 
hard threshold estimator is defined by T H (d j,m) = d j,m1{|d j,m|>Tu} , while soft thresholding (wavelet shrinkage) is given as 
T S (d j,m) = sgn(d j,m)(|d j,m| − Tu)1{|d j,m|>Tu} , where 1 and sgn are the indicator and sign functions, respectively, and Tu
is a threshold value. In this paper, to avoid over-smoothing [25], the first approach is applied together with a universal 
threshold:

Tu = σn

√
2 log(M). (7)

The white noise level estimate is defined as σn = M AD/0.6745, with MAD being the median absolute deviation of the 
fine scale wavelet coefficients [32]. As most of the simulation results reported later are corrupted by correlated noise, a 
level-dependent variance estimation introduced by Johnstone and Silverman [33] is used in our paper.

2.2.2. WienerChop
Wiener [34] formulated an optimal estimation analysis of time series which has been used in a range of applications, 

such as signal detection and noise reduction [35]. However, the main practical problem in the implementation of a Wiener 
filter is that a desired signal needs to be known a priori. Ghael et al. [13] proposed a straightforward estimate of the 
signal and noise by using wavelet transforms. Wavelet-based empirical Wiener filtering (referred to as WienerShrink or 
WienerChop) performs two wavelet transforms in order to estimate the filter parameters and perform de-noising. In the 
wavelet domain, a noisy signal f (t) = ft(t) + fn(t) is defined as a set of coefficients f w = ftw + fnw , consisting of an 
underlying true structure, ftw = W T ( ft(t)), and noisy details, fnw = W T ( fn(t)), where W T denotes a wavelet transform. 
The goal is to estimate the true signal wavelet coefficients, ftw , from the noisy observation, f w . An approximation, f̃tw1

, of 
the signal’s coefficients is obtained in the wavelet space by thresholding the wavelet coefficients, T H ( f w1 ) = T H (W T1( f (t))). 
The noise level, σn , is calculated from the finest details [32], and an inverse transform is applied to the data, f̃t(t) =
I W T1( f̃tw1

). A second transform is then performed, and the estimation of the signal in W T2 with the noise variance is 
used to construct the wavelet-based Wiener filter:

WChop = f̃tw21

f̃tw21
+ σ 2

n

. (8)

In Eq. (8), the subscript w21 indicates that W T2 was applied to the signal estimate obtained from W T1, f̃tw21
= W T2( f̃t(t)). 

The W T2 of the original signal, f w2 = W T2( f (t)), allows to filter the coefficients with WienerChop. After de-noising, the 
inverse transform is applied to recover the final estimation, ˜̃ft(t). The rationale behind applying Wiener filtering to wavelet 
coefficients arises from the fact that the wavelet transform decorrelates data [36]. Assuming perfect decorrelation of noisy 
coefficients, the filter is optimal in the sense of minimising the mean squared error.
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2.3. Empirical mode decomposition

Huang et al. [37] pioneered a nonlinear technique, referred to as empirical mode decomposition, for adaptively decom-
posing an unsteady signal into a finite sum of zero-mean amplitude modulated and frequency modulated elements, called 
intrinsic mode functions (IMFs). The method is adaptive, with the basis of the decomposition purely data-driven. Empirical 
mode decomposition looks at the evolution of a signal, f (t), between two consecutive extrema, e.g. two minima occur-
ring at t1− and t2− , and defines a local high-frequency part (detail), h(t), and a low-frequency element (trend), r(t) [38,39], 
i.e. f (t) = r(t) + h(t) for t1− ≤ t ≤ t2− . The algorithm of EMD can be summarised in the following steps. Step 1: Identify 
all minima (t−) and maxima (t+) of f (t). Step 2: Obtain the envelopes, emin(t) and emax(t), by interpolating between t−
and t+ , respectively. Step 3: Compute the mean of the two envelopes, m1

1(t) = (emin(t) +emax(t))/2. Step 4: Extract the detail, 
h1

1(t) = f (t) − m1
1(t). Examine whether the residual, h1

1(t), satisfies the definition of IMF according to a stopping criterion. If 
not, repeat ns-times Step 2 → Step 5 until the conditions are met (sifting process). Then: The first IMF is found, IMF1 = hns

1 (t). 
Step 6: Iterate on the residual, f (t) − IMF1 = r1.

The necessary conditions for existence of intrinsic mode functions (in Step 5) are that the functions are symmetric with 
respect to the local zero mean, and have the same numbers (or differing at most by one) of zero crossings and extrema. 
Flandrin et al. [40] proposed that the average number of zero-crossings in a mode is a meaningful way of defining its mean 
frequency. The original signal can be recovered by f (t) = ∑I

i IMFi(t) + rI (t). Multi-dimensional versions of the empirical 
mode decomposition is still an active research area [41,42].

In this work, a wavelet-inspired thresholding of IMFs proposed by Kopsinis and McLaughlin [43] is used. In the procedure 
referred to as EMD interval thresholding (EMD-IT), the intervals between zero-crossings in each function are analysed to 
determine whether they are noise- or signal-dominant, based on the single extrema that corresponds to this interval. In the 
paper, multiples of the universal threshold are applied, i.e. Tmulti × Tu (see Eq. 7 in [43]) with the noise estimation obtained 
from the energy of the first IMF.

2.4. POD+

We propose an improvement in processing non-stationary fields by combining POD with all the algorithms described in 
this paper. Filtering procedures, e.g. wavelet thresholding, are applied within the domain of SVD to decrease the number of 
observations required for clean data recovery, while preserving dimensionality reduction. These hybrid strategies are called 
POD+ techniques, such as POD + SSA; POD + wavelet thresholding is referred to as WAVinPOD (or SWAVinPOD if based 
on SWT) and has been first introduced by Zimoń et al. [44]. In cases where N 
 M , the left singular vectors arising in the 
POD+ techniques are left unchanged to not weaken the orthogonality property of the shorter modes. However, for less thin
matrices, modifying both sets of vectors can add to the performance. For large data sizes, the results obtained with POD 
and POD+ methods converge and improved filtering can be obtained by processing temporal and spatial modes [44]; this 
is shown in Fig. 1, where error in L2 norm, δ2 = ‖At − Ak‖2 / ‖At‖2 of different approximations is plotted for synthetically 
generated signals.

The following steps summarise all POD+ procedures. Step 1: Perform SVD on the matrix of data A. Step 2: Define the 
number k and set sn = 0 for n > k. Step 3: Perform additional filtering with e.g. wavelet thresholding of the retained k
modes. Step 4: Reconstruct the de-noised data according to Eq. (1). The methods can be applied during simulations run by 
following the strategy described by Grinberg [14].

Fig. 1. Reconstruction error of POD and selected POD+ methods for increasing N = 1, . . . ,1000. Signals of length M = 1000 were corrupted with white noise; 
the original data-set was generated as At(τ

s, x) = v1(cos(2πτ s/N)) + v2(cos(0.5πτ s/N)), where v1 = cos(4πx/M), v2 = 0.25 cos(20πx/M), x = 1, . . . , M , 
and τ s = 1, . . . , N . Wavelet thresholding and WienerChop filtering (W T1) were performed with sym2 for and J = 6 levels of decomposition and, in POD 
+ Chop, additional sym4 and J = 6 + 1 were used in W T2. Parameters for rQRd were: Z = 20 random vectors and window length L = 100. Note that for 
larger N performing filtering on both singular vectors, in POD + Chop2 and WAV2inPOD, produced the best results.
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3. Simulation results

In this section, we report the results of applying the filtering methods to data from several typical particle-based flow 
problems. The aim is to investigate the benefits of using de-noising techniques for filtering simulation measurements. Per-
formance of POD+ is compared with POD for extracting information from molecular simulations [14] and, where applicable, 
with widely used statistical averaging. Unless specified, the following input parameters were used for the filtering meth-
ods; the oversampling coefficient for the rQRd procedure was kept constant, ζ = Z − k = 2, while the number of dominant 
modes, k, for the SSA and POD analysis was established based on the tests discussed in Sec. 2.1.1. De-noising with empirical 
mode decomposition was performed with ns = 7 sifting procedures and the hard thresholding approach. Following Donoho 
and Johnstone [31], wavelet de-noising was performed using the Symlets filter; for both wavelet transforms sym2 was em-
ployed. For all MD results, the wavelet-based algorithms used hard thresholding with level-dependent variance estimation 
[33] for coloured noise3 (as opposed to a single value established from the finest details); only in the case of DPD simula-
tions, due to coarse-graining and the use of local random thermostats, we assumed that the data was corrupted with white 
noise rather than correlated fluctuations. For estimating the coefficients of WienerChop, we performed a decimated wavelet 
transform with the same parameters. The second filter for W T2 in the WienerChop algorithm contained double the number 
of vanishing moments of the W T1, i.e. sym4, and the frequency resolution was one level higher to aid the filtering. For MD 
data containing correlated noise, we introduced our modification of WienerChop algorithm, by employing level-dependent 
thresholding.

The quality of the extracted information was verified with an averaged signal-to-noise ratio (SNR); for a de-noised matrix 
Ak ∈R

N,M and a set of true signals At ∈R
N,M , SNR is calculated as

SNR =
N∑

τ s=1

10 · log10

∑M
x=1

(
At(τ

s, x)
)2∑M

x=1 (At(τ s, x) − Ak(τ s, x))2
. (9)

In order to relate the results to an initial noise level, we introduce the overall dimensionless gain in signal-to-noise ratio:

Gain = SNRapprox − SNRnoisy

SNRnoisy
, (10)

where SNRnoisy and SNRapprox are the SNR values of the original corrupted signal and de-noised data, respectively. In addi-
tion, the processing time required to obtain a de-noised solution was assessed by recording the internal time at execution 
of each procedure. We note that this measure was biased as it depended on the implementation of the algorithms and 
the operational system used. For clarity, we report the most successful application of POD+ for each case (based on SNR 
values or visual quality) with recommendations for treating particle data resembling the analysed problems. In many cases, 
we limited the use of wavelet transform only to a decimated strategy, DWT, which is computationally the least expen-
sive.

3.1. Simulation description

The molecular dynamics simulations were carried out using the open-source mdFOAM solver, built in OpenFOAM 
[45–47]. Modelling with DPD was performed with DL_MESO [48]. As a first test case, we considered molecular dynam-
ics simulations of unsteady argon flow through a converging–diverging nanochannel, as shown in Fig. 2. The channel had 
a length Lx = 68 nm in the flow direction, a depth of Lz = 5.44 nm, and channel height varying between 3.4 nm and 3.04 
nm as shown in Fig. 2(a). More details on this case can be found in Borg et al. [47]. We applied three types of body force 
to the argon molecules with the same magnitude F = 0.487 pN to achieve various time-scale separated flow conditions 
(Fig. 2(b)–(d)), to which statistical averaging would be difficult:

1. Harmonically pulsating flow. An oscillation force with time period t = 108 ps was used.
2. A start-up flow problem. An instantaneous application of F .
3. Mixed period flow. An oscillating gravity force with gradually increasing period: 0.22 → 10.8 ns.

In addition to liquid argon, a water flow case was also considered:

4. Water flow through a carbon nanotube (CNT). Each water molecule inside the single-wall CNT (see Fig. 3) was subject 
to a harmonically oscillating force with an amplitude of F = 0.034 pN and period of t = 0.199 ns. We used the rigid 
TIP4P/2005 water model described by Abascal and Vega [49]. The Lennard–Jones parameters of the water–carbon inter-
actions for the CNT were taken from Werder et al. [50].

3 Coloured noise can be defined as a signal with a power spectral density per unit of bandwidth proportional to 1/ f α , where f is frequency and 
0 < α < 2; noise with α = 1 is referred to as pink.
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Fig. 2. (a) Molecular dynamics simulation of a converging–diverging channel, with flow generated by the application of (b) a step forcing, (c) an oscillating 
force with fixed period, or (d) with varying period.

Fig. 3. Simulation snapshot of water flowing through a CNT.

A DPD simulation was also performed to show versatility of the considered algorithms:

5. Phase separation phenomenon. A DPD simulation of a solvent mixture of oil, water and surfactant was undertaken. The 
system consisted of 192000 DPD beads, made up of three bead types: water, hydrophobic oil group and hydrophilic 
head group. The oil molecules were made of three bonded oil beads, the surfactant molecules were of three bonded 
beads, consisting of two oil beads followed by a head bead, and each water molecule was represented by a single 
non-bonded bead. For both oil and surfactant molecules the bonds consisted of harmonic potential on the bond length. 
A snapshot of the simulation system is presented in Fig. 4.

Fig. 4. Last time-step of phase separation phenomenon simulated with DPD.

In all the problems considered, the spatial distribution of the observables was calculated using the binning method [51].
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3.2. Results

3.2.1. Converging–diverging channel
The first three simulations produced sets of velocity profiles varying in both time and space. Such measurements impose 

restrictions on the length of time and the number of spatial micro-elements (bins) over which the atomistic data can 
be averaged. One way of enhancing the processing of non-stationary fields is to replicate the computational domain with 
identical flow conditions which is an inherently expensive solution. It is also possible to perform phase averaging, if the 
flow exhibits a limit cycle, and integrate over a large number of repeating periods of oscillation. However, constructing 
the results based on a number of realisations, Nr , improves the accuracy only by a factor of 

√
Nr [52]. To overcome this 

difficulty, Grinberg [14] introduced the window proper orthogonal decomposition which was also employed by Borg et al. 
[47] to extract smoother distributions (see Fig. 7 in [47]). Therefore, we compared the performance of POD+ with the results 
obtained by applying POD alone.

Harmonically pulsating flow. The velocity profiles generated with simulation no. 1 formed a data-set consisting of 200 
spatial measurements over 160000 time samples; this was equivalent to 864 ps of real time. Calculations were performed 
on the matrix A(x, τ s) with N = 200 signals of length M = 160000. Proper orthogonal decomposition over the entire set 
recovered mostly low frequency signals which described well the dynamics of the system. Fig. 5 shows how the POD 
approximation with k = 3 compared with the original noisy signal. The previously described tests were applied to recover 
the optimal rank of the matrix. As the velocity was changing over time and across the domain, statistical averaging could 
not be applied without loss of information. We assumed that the POD solution for N = 200 and M = 160000 was the 
targeted result and used it as At (Eq. (9)) for further analysis. To reduce the cost of modelling the flow in the channel, 
we examined if similar velocity profiles could have been obtained but with only N = 20 micro-elements spread across the 
domain (10 times fewer); we also analysed how POD and POD+ techniques performed with smaller time-windows over 
which the filtering was performed. The shorter the time after which an optimal approximation can be obtained, reduces the 
communication bottleneck in multi-scale modelling.

Fig. 5. Result of applying POD to the velocity field from the MD simulation of a periodically-pulsating flow; noisy signal SNR = 8.56 dB, N = 200 and k = 3.

Figs. 6(a) and 6(b) compare POD and WAVinPOD for N = 20, showing that the latter was more efficient in extracting 
information from a smaller noisy data-set with an average SNR = 9.24 dB. The reconstructed profile from the first bin 
obtained with WAVinPOD had SNR = 34.07 dB and Gain ≈ 3, almost twice as much as POD, for which SNR = 17.44 dB. It 

Fig. 6. Result of applying POD and WAVinPOD to the velocity field from the MD simulation of a periodically-pulsating flow with N = 20 bins and k = 3; 
sym2 and J = 10 levels of decomposition.
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took WAVinPOD t ≈ 0.48 s to produce comparable results to information extracted with POD from the 10× larger system 
in t ≈ 7.82 s. Having a well predicted velocity distribution from a smaller number of bins or micro-elements also results in 
a less expensive simulation. Applying wavelet thresholding alone takes double the time of WAVinPOD and provides only an 
average Gain = 1.5. Comparably good approximations to WAVinPOD were obtained with other POD+ methods. However, as 
expected POD+EMD-IT and POD+SSA were the most expensive. In addition, for the empirical mode decomposition a larger 
multiple of the universal threshold Tmulti had to be applied. As there is no general rule for determining an optimal value 
of Tmulti, the threshold was chosen based on experience. All the measures are summarised in the Fig. 7(a), where the 
overall Gain in SNR is plotted against the processing time. To show how much improvement is achieved by combining the 
algorithms with POD, we report the results of applying the methods alone in Fig. 7(b).

Fig. 7. Comparison of all the methods applied to noisy velocity data from the simulation of a periodically oscillating flow. Note that SSA is not listed as the 
processing time was too high.

Additional analysis examined how much improvement could be obtained by applying the WAVinPOD method in compar-
ison to POD for smaller moving time-windows during the simulation run (similar to WPOD [14]). Each method was applied 
to a velocity matrix formed from N = 20 spatial measurements and data length divided into M ∈ {50, 100, 200, 400} blocks, 
i.e. the shortest time-length consisted of M = 160000/400 = 400 instances. The window moved until the profiles of the full 
length were reconstructed. Fig. 8 compares the averaged gain in SNR recovered with WAVinPOD and POD for the same input 
parameters as used before4 and k = 2 (smaller number of modes was needed for decreased data size). The hybrid method 
outperformed POD allowing for a much higher gain in SNR with only t = 2 s of processing time for the biggest window 
size.

Fig. 8. Gains in SNR recovered with POD and WAVinPOD from noisy data-sets with SNR = 9.24 dB, N = 20 and M = 160000/i, where i = 50,100,200,400.

A start-up flow problem. Figs. 9(a) and 9(b) present the results for the stream-wise distribution of mass flow rate from the 
first micro-domain. Both POD and mean approximation were obtained from a matrix of size N = 200 and M = 180000 (du-
ration of t = 972 ps). The POD method picked up an acoustic response at the beginning of the flow. Statistical averaging over 
all the bins resulted in unwanted over-smoothing, losing the step-change present in the instantaneous data (see Fig. 9(b)). 
Small, abrupt changes in the time-dependent flow state can be much less energetic than the long-time trend and might not 
be represented by the first POD eigenmode (for non mean-centred data). The change in the mass flow rate in Fig. 9(a) had 

4 In this work, when the signal length is not a power of 2, the symmetric boundary value replication is applied.
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Fig. 9. POD analysis and standard averaging of the time-varying mass flow rate from an MD simulation of a start-up flow, N = 200 spatial bins.

only 0.06% of the energy, while the first eigenvalue representing the mean contained over 90%. Therefore, applying POD 
analysis can outperform averaging in terms of information extraction. In the case of unsteady simulations, further improve-
ment in filtering high frequencies is provided with POD+ methods. The techniques were applied to velocity measurements 
with amplitude varying along the channel. For the large system, all methods generated comparable outputs (only visually 
smoother). However, when less spatial sampling was available, POD clearly started recovering more noise, burying small 
scale dynamics. In order to extract the acoustic response from the velocity measurements, k = 10 modes were needed from 
a smaller ensemble with N = 20. Figs. 10(a) and 10(b) compare the velocity profiles from the first and 5th bin filtered with 
POD and WAVinPOD with the same input parameters as in the previous simulation. Clearly, the latter performed better 
producing an approximation with SNR = 37.93 dB (the whole data-set had Gain = 1.04), while POD obtained SNR = 24.43 
dB with the overall Gain = 0.29. This example showed that POD+ methods allow for retaining small changes in the flow, 
which can otherwise be lost in POD analysis or statistical averaging.

Fig. 10. POD and WAVinPOD approximations of the velocity from the start-up flow simulation; N = 20 bins and k = 10; sym2 and J = 10. In the plot (b), 
the velocity measurements were obtained from the first and 5th bin (corresponding to 41st bin in matrix N = 200); for clarity, the plot (a) shows only the 
result from the 5th bin.

Mixed period flow. The last simulation of the converging/diverging channel generated M = 920000 time samples equivalent 
to t = 4969 ps. No averaging was applied prior to POD. The de-noised profile, reconstructed with only k = 3 modes, is 
plotted with the original velocity distribution in Fig. 11(a). Again POD successfully separated unwanted fluctuations from 
the correlated flow of particles. It should be stressed that POD does not require any a priori information regarding the nature 
of oscillations. All the methods were tested on the original signal length but with only N = 20 bins. Apart from the window 
size for SSA and urQRd, L = M/2000 = 460, all the other input parameters were kept the same as in previous simulations. 
For calculation of SNRs, the POD approximation obtained from the full matrix was used as At . It should be noted that it was 
a biased estimation as POD+ algorithms, even for smaller systems, were returning smoother profiles than POD. Fig. 11(b) 
presents how well the dynamics of the system were recovered with WAVinPOD; the two velocity profiles show acceleration 
of the flow in the first half of the channel. Recovered SNR = 29.16 dB, translating to Gain ≈ 1.4, was higher than for POD, 
SNR = 21.64 dB (Gain = 0.75); processing time of WAVinPOD, although 1.5× slower than POD, was only t = 2.72 s. Again 
WAVinPOD obtained similar information for smaller data-set as POD with N = 200; processing the full size matrix took POD 
20× longer. The results are summarised in Fig. 12. In addition, Fig. 13 shows that 1.5× higher Gain was achieved with 
WAVinPOD than POD constructed from shorter signal portions.
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Fig. 11. Outcome of applying POD and WAVinPOD to the velocity field from the MD simulation of a pulsating flow with a varying period of oscillations; 
parameters used: filter sym2 with J = 10 levels of decomposition, k = 3 modes. For N = 20, the noisy data-set had SNR = 12.22 dB. In the plot (b), the 
measurements were obtained from the first and 12th bin.

Fig. 12. Filtering velocity data from the simulation of a periodically oscillating flow. Note that SSA is not shown due to high processing time, t = 188 s; POD 
+ SSA obtained Gain = 1.36 with k = 1 for all the modes.

Fig. 13. Gains in SNR recovered with POD and WAVinPOD from noisy data-sets with SNR = 12.22 dB, N = 20 and M = 920000/i, where i =
{50, 100, 200, 400}. Approximations were constructed with rank k = 2.

3.2.2. Water flow through a carbon nanotube
Molecular dynamics can be applied to many real-life problems, e.g. for studying water flow in nanostructured mem-

branes. However, such modelling is quite challenging; the system requires small time-steps and the simulations often 
contain substantial noise which is computationally demanding to reduce. In order to assess how de-noising techniques 
can improve the analysis of such data, we performed an additional study on velocity measurements from oscillating wa-
ter flow through a CNT. The initial matrix contained M = 4000 observations and N = 512 velocity measurements at each 
time-step. There were 4 complete oscillations in the ensemble, which were used to obtain the mean solution. Noisy velocity 
distribution from the 10th bin is shown in Fig. 14(a), while Fig. 14(b) and 14(c) compare the quality of POD and POD+ re-
sults. The latter clearly extracted smoother profiles. Calculating a cumulative mean (the average of 4 cycles, M = 4000) did 
not reduce the noise as well as POD from only M = 1000 velocity measurements (see Fig. 15(a)). Further improvement was 
achieved with POD+ techniques which removed the remaining fluctuations as shown in Fig. 15(c). To obtain a comparable 
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Fig. 14. Velocity approximations recovered with POD and POD+ from the MD simulation of an oscillating water flow through CNT; k = 7 modes were 
extracted for POD; POD + WienerChop: sym2 and J = 6 levels of decomposition for W T1; EMD-IT: Tmulti = 1; k = 1 and L = 50 for SSA.

Fig. 15. Comparison of approximations obtained from statistical averaging over 4 cycles, POD and POD+ applied to only 1 full oscillation, i.e. M = 1000
of velocity data from the CNT simulation; k = 7 modes were extracted for POD. POD + WienerChop: sym2 and J = 6 levels of decomposition for W T1; 
EMD-IT: Tmulti = 1; k = 1 and L = 50 for SSA.
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level of de-noising with statistical averaging, much more data would have to be collected, increasing the computational cost. 
In this case, k = 7 modes were used to extract the velocity field after performing previously introduced analysis.

3.2.3. Phase separation phenomenon
In the last simulation, as the system was evolving from a mixed state until visible separation was achieved, statistical 

averaging could not be used to analyse how the particle distribution was changing over time. At first, we applied POD to 
3 density fields of size 128 × 128 at instances τ s = {1, 50, 100} to extract density contour plots. Visible improvement in 
smoothness was achieved with POD+ methods; the contours of approximations obtained with SWAVinPOD are compared 
with POD in Fig. 16, and additional results generated with POD + SSA, POD + EMD-IT and POD + rQRd are shown in Fig. 17
for completeness. In this case, filtering was performed on both left and right singular vectors as no significant aliases were 
expected for N = M . Data size was small, therefore only J = 4 levels of decomposition were performed for SWAVinPOD. In 
the case of EMD-IT, the threshold multiplier was similar to the CNT simulation, Tmulti = 1. Dominant modes for POD and 
SSA were automatically established using previously described SVHT analysis as the noise present in DPD simulations was 
assumed to be less correlated than in MD modelling. Coarse-graining in DPD reduces the number of degrees of freedom 
for the particles, neglecting some of the atomistic details that are captured in MD simulations. Modelling a number of 
MD particles as one DPD bead results in fewer statistically dependent measurements, which should be easier to process 
for POD and POD+ methods. Moreover, in DPD the temperature is controlled locally (unlike commonly adopted Berendsen 

Fig. 16. Density contours of water from DPD simulation. De-noising was performed at 3 instances; sym2 with J = 4 was used for SWAVinPOD.

Fig. 17. Density contours of water at the last time-step, τ s = 100, obtained with POD + SSA, POD + rQRd and POD + EMD-IT. Optimal number of modes 
for SSA with L = 16 was established with SVHT, k = 2, and ζ = 2 for rQRd; Tmulti = 1 for EMD-IT.
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thermostat used in MD simulations) with the use of random and dissipative forces. The variable that defines the strength of 
the random force produces a Gaussian distribution. This stochastic local thermostat plays a role in relaxing the correlations 
in the data and enables a more efficient de-noising than in the case of a globally thermostatted system.

4. Conclusions and remarks

The main goal of this paper was to review, develop, and evaluate new methods for solving the problem of noise re-
duction in computational nanofluidics. The filtering tools were studied and applied to a wide range of numerical results. 
The fluid flows under consideration were modelled separately via particle-based simulations using MD and DPD. Novel pro-
cedures were also proposed that outperform the other techniques in extracting significant information from instantaneous 
measurements. This paper has shown that applying sophisticated de-noising tools to particle-based simulations can reduce 
the computational time and memory required to obtain acceptable ensemble solutions.

All the noise-reduction methods offer a balance between different properties. Rather than choosing a universal approach, 
this paper aimed to give a comparative overview and guidelines on how to benefit from each procedure. Furthermore, to 
improve certain common weaknesses (e.g. computational intensity) all of the algorithms have been combined with POD. In 
our proposed POD+ methods, additional de-noising is performed on the dominant modes of SVD to enable more efficient 
filtering of unwanted frequencies, which would not be possible with POD alone for the same number of observations. Each 
coupling provides different benefits; the common feature is that the POD+ approaches are fast, and more successful in 
recovering signals buried in noise than when the techniques are applied separately. The hybrid of POD and wavelet-based 
thresholding appeared to be the most flexible and efficient.
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[44] M.J. Zimoń, J.M. Reese, D.R. Emerson, A novel coupling of noise reduction algorithms for particle flow simulations, J. Comput. Phys. 321 (1) (2016) 

169–190, http://dx.doi.org/10.1016/j.jcp.2016.05.049.
[45] G.B. Macpherson, J.M. Reese, Molecular dynamics in arbitrary geometries: parallel evaluation of pair forces, Mol. Simul. 34 (1) (2008) 97–115.
[46] K. Ritos, N. Dongari, M.K. Borg, Y. Zhang, J.M. Reese, Dynamics of nanoscale droplets on moving surfaces, Langmuir 29 (23) (2013) 6936–6943.
[47] M.K. Borg, D.A. Lockerby, J.M. Reese, A hybrid molecular–continuum method for unsteady compressible multiscale flows, J. Fluid Mech. 768 (2015) 

388–414.
[48] M.A. Seaton, R.L. Anderson, S. Metz, W. Smith, DL MESO: highly scalable mesoscale simulations, Mol. Simul. 39 (10) (2013) 796–821.
[49] J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123 (23) (2005) 234505.
[50] T. Werder, J. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, On the water–carbon interaction for use in molecular dynamics simulations of graphite 

and carbon nanotubes, J. Phys. Chem. B 107 (6) (2003) 1345–1352.
[51] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989.
[52] N.G. Hadjiconstantinou, A.L. Garcia, M.Z. Bazant, G. He, Statistical error in particle simulations of hydrodynamic phenomena, J. Comput. Phys. 187 (1) 

(2003) 274–297.

http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6D616C6C617431393939776176656C6574s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib646175626563686965733139393274656Es1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6D616C6C6174313938397468656F7279s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6D6579657231393935776176656C657473s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6E61736F6E3139393573746174696F6E617279s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6E61736F6E3139393573746174696F6E617279s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib636F69666D616E313939357472616E736C6174696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib646F6E6F686F31393934696465616Cs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib646F6E6F686F313939356E6F6973696E67s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6A6F686E73746F6E6531393937776176656C6574s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7769656E6572313934396578747261706F6C6174696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7661736567686932303038616476616E636564s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib63686F6931393938616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib63686F6931393938616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6875616E6731393938656D7069726963616Cs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6875616E6731393938656D7069726963616Cs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7775323030347374756479s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7775323030347374756479s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib72696C6C696E67323030386F6E65s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib666C616E6472696E32303035656D64s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib666C616E6472696E32303035656D64s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7775323030396D756C7469s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6875616E673230313574696D65s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6875616E673230313574696D65s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6B6F7073696E697332303039646576656C6F706D656E74s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6B6F7073696E697332303039646576656C6F706D656E74s1
http://dx.doi.org/10.1016/j.jcp.2016.05.049
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6D616370686572736F6E323030386D6F6C6563756C6172s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib7269746F733230313364796E616D696373s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib626F726732303135687962726964s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib626F726732303135687962726964s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib736561746F6E32303133646C5F6D65736Fs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6162617363616C3230303567656E6572616Cs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib776572646572323030337761746572s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib776572646572323030337761746572s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib616C6C656E31393839636F6D7075746572s1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6861646A69636F6E7374616E74696E6F7532303033737461746973746963616Cs1
http://refhub.elsevier.com/S0021-9991(16)30370-9/bib6861646A69636F6E7374616E74696E6F7532303033737461746973746963616Cs1

	An evaluation of noise reduction algorithms for particle-based ﬂuid simulations in multi-scale applications
	1 Introduction
	2 Theoretical background
	2.1 Noise ﬁltering with singular value decomposition and QR factorisation
	2.1.1 Proper orthogonal decomposition
	2.1.2 Singular spectrum analysis (SSA)
	2.1.3 Random QR de-noising (u/rQRd)

	2.2 Signal processing with wavelet transforms
	2.2.1 Wavelet thresholding
	2.2.2 WienerChop

	2.3 Empirical mode decomposition
	2.4 POD+

	3 Simulation results
	3.1 Simulation description
	3.2 Results
	3.2.1 Converging-diverging channel
	3.2.2 Water ﬂow through a carbon nanotube
	3.2.3 Phase separation phenomenon


	4 Conclusions and remarks
	Acknowledgements
	References


