
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decadal variability in core surface flows deduced from
geomagnetic observatory monthly means

Citation for published version:
Whaler, K, Olsen, N & Finlay, CC 2016, 'Decadal variability in core surface flows deduced from
geomagnetic observatory monthly means' Geophysical Journal International, vol. 207, no. 1, pp. 228-243.
DOI: 10.1093/gji/ggw268

Digital Object Identifier (DOI):
10.1093/gji/ggw268

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geophysical Journal International

Publisher Rights Statement:
C The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1093/gji/ggw268
https://www.research.ed.ac.uk/portal/en/publications/decadal-variability-in-core-surface-flows-deduced-from-geomagnetic-observatory-monthly-means(5bf67614-3b16-4eec-9467-011ba74d81d7).html


Geophysical Journal International
Geophys. J. Int. (2016) 207, 228–243 doi: 10.1093/gji/ggw268
Advance Access publication 2016 July 20
GJI Geomagnetism, rock magnetism and palaeomagnetism

Decadal variability in core surface flows deduced from geomagnetic
observatory monthly means

K.A. Whaler,1 N. Olsen2 and C.C. Finlay2

1School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, United Kingdom.
E-mail: kathy.whaler@ed.ac.uk
2DTU Space, Technical University of Denmark, Diplomvej 371, DK-2800 Kgs. Lyngby, Denmark

Accepted 2016 July 18. Received 2016 July 17; in original form 2015 December 21

S U M M A R Y
Monthly means of the magnetic field measurements at ground observatories are a key data
source for studying temporal changes of the core magnetic field. However, when they are
calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin
may remain, which make them less favourable for studying the field generated by dynamo
action in the core. We remove external field predictions, including a new way of characterizing
the magnetospheric ring current, from the data and then calculate revised monthly means
using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual
differences of these monthly means, which also removes the static crustal field. SV time-series
based on revised monthly means are much less scattered than those calculated from ordinary
monthly means, and their variances and correlations between components are smaller. On the
annual to decadal timescale, the SV is generated primarily by advection in the fluid outer
core. We demonstrate the utility of the revised monthly means by calculating models of the
core surface advective flow between 1997 and 2013 directly from the SV data. One set of
models assumes flow that is constant over three months; such models exhibit large and rapid
temporal variations. For models of this type, less complex flows achieve the same fit to the SV
derived from revised monthly means than those from ordinary monthly means. However, those
obtained from ordinary monthly means are able to follow excursions in SV that are likely to
be external field contamination rather than core signals. Having established that we can find
models that fit the data adequately, we then assess how much temporal variability is required.
Previous studies have suggested that the flow is consistent with torsional oscillations (TO),
solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth’s
rotation axis. TO have been proposed to explain decadal timescale changes in the length-of-
day. We invert for flow models where the only temporal changes are consistent with TO, but
such models have an unacceptably large data misfit. However, if we relax the TO constraint
to allow a little more temporal variability, we can fit the data as well as with flows assumed
constant over three months, demonstrating that rapid SV changes can be reproduced by rather
small flow changes. Although the flow itself changes slowly, its time derivative can be locally
(temporally and spatially) large, in particular when and where core surface secular acceleration
peaks. Spherical harmonic expansion coefficients of the flows are not well resolved, and many
of them are strongly correlated. Averaging functions, a measure of our ability to determine
the flow at a given location from the data distribution available, are poor approximations to
the ideal, even when centred on points of the core surface below areas of high observatory
density. Both resolution and averaging functions are noticeably worse for the toroidal flow
component, which dominates the flow, than the poloidal flow component, except around the
magnetic equator where averaging functions for both components are poor.

Key words: Magnetic field; Rapid time variations; Core, outer core and inner core.
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Core surface flows from monthly means 229

1 I N T RO D U C T I O N

The geomagnetic field is generated by and evolves in response to
flow of electrically conducting liquid, predominantly iron, in the
Earth’s outer core. Therefore, temporal changes of the field can be
used to obtain some information on that flow. For example, over
the hemisphere centred on the Greenwich meridian, features of the
field tend to drift west at a rate of a fraction of a degree per year,
whereas the field over the other hemisphere changes more slowly.
These observations can be reproduced by models of flow at the
core–mantle boundary (CMB) with a band of westward motion
straddling the equator moving at of order 10 km yr−1 in the western
hemisphere, and much slower flow without obvious large-scale or-
ganization beneath the Pacific Ocean. However, inferring the flow
from geomagnetic field changes is not straightforward, and involves
making and testing a number of hypotheses as to its nature to re-
duce or eliminate the inherent non-uniqueness. CMB flow models,
particularly those obtained after making additional dynamical as-
sumptions about the force balance in the core (e.g. Le Mouël 1984),
have proved to be a useful tool to probe the dynamics of the dynamo
process responsible for maintaining the magnetic field.

The difficulties come in part from our incomplete knowledge
of the geomagnetic field so far from where it is observed. The
mantle is a weak electrical conductor, meaning that the field can
be approximated as the gradient of a scalar potential throughout.
This allows us to construct models of the field, and its temporal
evolution or secular variation (SV), at the base of the mantle from
observations at or near the Earth’s surface. However, geometrical
attenuation preferentially attenuates small-scale features, so they
are known with less certainty there. This is accounted for in most
modelling strategies by minimizing a measure of spatial roughness
of the field (regularizing the solution) in addition to a measure
of data misfit. The electrical conductivity jump from the assumed
insulating mantle into the conducting liquid iron core means that
only the radial component of the field and its SV is guaranteed to
be continuous. Therefore, although we can use all observations of
the field to construct the potential describing it at the CMB, we can
only use its radial component to infer core flow.

The relationship between the field, its SV and the flow is given
by the induction equation, a combination of Maxwell’s equations in
the appropriate limit:

Ḃ = ∇ × (v × B) + η∇2B, (1)

where B is the magnetic field, v the flow, and η = 1
μ0σ

is the mag-
netic diffusivity, where the core’s electrical conductivity is σ , and
its permeability is assumed to be that of free space, μ0. The first
term on the right-hand side represents advection of the field by the
flow, that is, the flow carries field lines along with it; the second rep-
resents diffusion, that is, the creation and destruction of field lines.
Below the CMB, we cannot estimate the field based on surface mea-
surements as it has sources and sinks, meaning it can no longer be
expressed as the gradient of a scalar potential; for the same reason,
we cannot estimate vertical gradients of the field, even at the CMB,
so the diffusive term of eq. (1) is unknown. Fortunately, it is possi-
ble to argue that SV arising from diffusion is negligible compared
to that from advection, at least on the timescale of decades and
shorter, and for large-scale magnetic fields, and so the second term
on the right-hand side of eq. (1) can be ignored. This is known as
the frozen-flux hypothesis, since, under this assumption, the field is
perfectly frozen into the flow (Roberts & Scott 1965). Taking the

radial component of eq. (1) at the CMB, neglecting the final term,
gives

Ḃr + ∇H .(vBr ) = 0, (2)

where ∇H denotes the horizontal parts of the nabla operator. The
term involving the (unknown) radial derivative of Br does not appear
in this equation because it multiplies vr, which vanishes at the core
surface since it is a material boundary. Hence, eq. (2) relates the
known radial components of the magnetic field and its horizontal
derivatives, and the radial component of the SV, to the unknown
velocity. Unfortunately, it is a single equation in two unknowns: the
horizontal components of the flow. This leaves an inherent ambi-
guity when we attempt to determine the flow, which was first rec-
ognized by Roberts & Scott (1965), and characterized by Backus
(1968). Subsequently, a number of assumptions have been put for-
ward that reduce or eliminate this ambiguity, many of which can be
tested for consistency with the magnetic field and SV data (as can
the frozen-flux hypothesis). Some of these put constraints on the
magnetic field and flow within the core, so are particularly useful
for interrogating the dynamical regime in which the geodynamo
operates.

Here we solve a linear inverse problem for the flow based on
eq. (2), assuming that it is large-scale (enforced through regulariza-
tion). A further complication arises at this point: the smaller-scale
components of the flow which we ignore can interact with small-
scale features of the field (which we are unable to resolve from ob-
servations at the Earth’s surface) to generate large-scale SV (Eymin
& Hulot 2005). Voorhies & Backus (1985) show that assuming the
flow is constant over a minimum of three epochs is sufficient to re-
solve its inherent non-uniqueness. The data are monthly estimates
of SV at geomagnetic observatories, so our flows are assumed con-
stant over a period of just three months - much shorter than the
advective timescale appropriate for large-scale flows (Roberts &
Scott 1965). We refer to these as snapshots of the flow.

Despite a wide range of inversion strategies—different data types,
assumptions made to reduce the inherent non-uniqueness, regular-
ization choices, whether the data misfit minimized is based on a
two- or one-norm measure—many features of the flow appear to be
robust. However, there has been little formal analysis of this aspect
of the models, or their uncertainties and resolution. A recent study
by Pais et al. (2015) used principal component analysis and sin-
gular value decomposition to determine the robust global features
of the flow. We instead concentrate on the resolution of individual
flow coefficients parametrizing our models, and calculate averaging
functions that indicate our ability to reconstruct the flow at specified
locations on the CMB; the averaging functions have a strong depen-
dence on the distribution of the surface geomagnetic observatories
providing the SV data. Working with SV data themselves, rather
than parametrized models of them, permits this analysis.

Previous studies have found that a large part of the modelled
SV can be explained by a steady flow on which is superimposed
a set of oscillations of solid body-like flow on cylinders concen-
tric with the rotation axis, known as torsional oscillations (TO;
Zatman & Bloxham 1997). Cylinders of different radii oscillate
at different rates, with periods thought to be typically of order a
decade. TO are expected on dynamical grounds and allow angu-
lar momentum to be exchanged between the core and mantle. The
CMB flow corresponding to TO is purely zonal, and symmetric
with respect to the equator, and so can be described by a small num-
ber of flow coefficients. We test whether a flow whose only time
variations are consistent with TO is an adequate fit to the SV data
by seeking a model covering the whole time span of our study,
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1997–2013, and minimizing changes in flow coefficients from epoch
to epoch, except those corresponding to TO. We also calculate the
minimum amount of change in the flow between epochs neces-
sary to fit the data by restricting temporal variability in all flow
coefficients.

In the next section we describe the model parametrization,
and set up the inverse problem for the flow. The data we use
in the inversion are described in Section 3, and the results, in-
cluding flow coefficient resolution and averaging functions, in
Section 4. We discuss the flows, particularly the implications of
their temporal variability, in Section 5 and then present brief
conclusions.

2 M E T H O D

Spherical harmonics are the natural basis functions for expressing
the global magnetic field, which we assume is of internal origin.
Away from sources, it is a potential field and can be written as the
gradient of a scalar potential, V:

B = −∇V (θ, φ, r ), (3)

where

V (θ, φ, r ) = a
N∑

n=1

n∑
m=0

(a

r

)n+1

× (
gm

n cos mφ + hm
n sin mφ

)
Pm

n (cos θ ) (4)

and Pm
n (cos θ ) are Schmidt quasi-normalized associated Legendre

functions of degree n and order m. θ , φ, r are spherical polar coor-
dinates, that is, colatitude, longitude and radius, and a is a reference
radius, here the Earth’s mean radius. We assume that terms beyond
the truncation level N can be neglected.

To explain changes of the field by advective flow, we decompose
the velocity into its toroidal and poloidal parts:

v = ∇ × (T r) + ∇ × ∇ × (Sr), (5)

where T and S are the toroidal and poloidal scalars, respectively.
As the CMB is a material surface across which there is no flow,
eq. (5) simplifies there to

vH = ∇ × (T r) + ∇H (rS) (6)

and both T and S average to zero over the CMB. Thus, they can
also be expressed in spherical harmonics:

T =
Nmax∑
n=1

n∑
m=0

(
tm
n

c cos mφ + tm
n

s sin mφ
)

Pm
n (cos θ )

S =
Nmax∑
n=1

n∑
m=0

(
sm

n
c cos mφ + sm

n
s sin mφ

)
Pm

n (cos θ ) (7)

Again, we truncate the spherical harmonic expansions (at degree
Nmax), by assuming the flow is large-scale.

Substituting spherical harmonic expansions for the CMB radial
field and its SV (obtained from eqs 3 and 4 and their time derivatives
with r set to be the core radius), and the flow, into eq. (2) and
manipulating as described in, for example, Whaler (1986), we obtain
a linear system of equations relating the SV coefficients to the flow
coefficients, assuming the field coefficients are known:

ġ = Et + Gs (8)

where ġ is a vector of SV coefficients (ġm
n , ḣm

n ), and t and s are
vectors of coefficients (tm

n
c, tm

n
s) and (sm

n
c, sm

n
s) respectively. E and

G are matrices whose values depend on the main field coefficients
and either Elsasser or Gaunt integrals, respectively (Whaler 1986).

Many previous studies have been based on inverting eq. (8) for
the flow coefficients, treating SV coefficients as data. However, then
it is very difficult to evaluate the error budget, as it is not clear how
much of the misfit arises from a failure of the SV coefficients to
fit the data from which they were derived. Hence following, for
example, Whaler (1986), Waddington et al. (1995) and Beggan
et al. (2009), we invert SV data directly for the flow. Our data
are the North, East and vertically downwards orthogonal SV com-
ponents Ẋ , Ẏ and Ż respectively (related to the spherical polar
components by Ẋ = −Ḃθ , Ẏ = Ḃφ and Ż = −Ḃr ) at the locations
of geomagnetic observatories used in this study; we organize them
into a vector ḋ. They are linearly related to the coefficients (ġm

n , ḣm
n )

through a matrix Y of appropriate spherical harmonic derivatives.
Hence they are also linearly related to the flow, giving a system of
equations

ḋ = Yġ = YEt + YGs ≡ Am (9)

where m is a vector of the unknown flow coefficients t and s.
Eq. (9) forms the basis of our inverse problem. As already noted,

a flow that is constant over three epochs (here, months) is formally
unique (Voorhies & Backus 1985), but we also assume it is large-
scale to overcome practical issues of ambiguity. Hence we regularize
the inversion, ensuring that the flow spherical harmonic series (7)
converge, with an appropriate value of the regularization parameter,
λv , which controls the relative importance of fitting the data and
forcing the flow to be large-scale. We thus calculate a series of
(nepochs − 2) flow snapshot models, where nepochs is the number of
months for which we have data, using

m̂ = (AT Ce
−1A + λvCm

−1)−1AT Ce
−1ḋ (10)

where now the data vector ḋ is composed of successive triples
of observatory orthogonal component first difference data at three
consecutive months, and m̂ is our estimate of m. Ce consists of
3 × 3 data covariance matrices for each vector data triple arranged
along the diagonal, with zeroes elsewhere. Cm is the a priori model
covariance matrix regularizing the flow, in this case defined by
the Bloxham (1988) ‘strong norm’. We investigated weaker reg-
ularizations, but the large damping parameters required to obtain
converged solutions significantly over-fitted the data, and the essen-
tial features of the models were similar to those obtained using the
‘strong norm’. Unconverged models fitting the data changed rapidly
between epochs, lacked any coherent, large-scale structure, and the
flows bore no resemblance to those obtained in other studies. We
assume the field at each epoch is known, specified by the CHAOS-
4 (Olsen et al. 2014) coefficients to degree and order 14. Various
studies have investigated the effect of uncertainty in the main field
on the resulting flow models. Whaler (1986) simply compared the
result with two different main field models. Rygaard-Hjalsted et al.
(2000) were the first to use a Monte Carlo Markov Chain approach,
but computational resources at that time limited the applicability of
the method; more recently, Baerenzung et al. (2014) and Baeren-
zung et al. (2016) used it to obtain a more reliable estimate of the
posterior probability distribution. Lesur et al. (2010) adopted an
iterative approach, first estimating a field model from the data, then
using it to determine a starting model for the flow in the traditional
fashion, and finally co-estimating the field and flow iteratively from
the starting field and flow models. These studies suggest that the ef-
fect of assumptions as to the nature of the flow have at least as large
an effect on the resulting flow model as any uncertainty in the main
field. The SV and flow are also expanded up to degree and order
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Core surface flows from monthly means 231

14 in eq. (8), meaning we solve for 448 flow coefficients per epoch,
but because we have regularized the inversion, the results are not
sensitive to this choice. We calculate the elements of A analytically
(e.g. Whaler 1986).

Bloxham et al. (2002) found that a constant flow with TO su-
perimposed provided a good fit to observatory SV; such a model
requires just a few parameters. However, this conclusion was not
based on an inversion of the observatory data themselves. Here,
we test flow models of this type directly against the data by per-
forming an inversion in which temporal changes in coefficients
between epochs are penalized, except for the odd degree, zero order
toroidal coefficients which represent TO. This involves inverting all
the data simultaneously for the full time-series of flow models, that
is, solving for 448 × (nepochs − 2) coefficients, a numerically chal-
lenging computation. Consider the monthly time-series of a single
flow coefficient, mj(i), i = 1, . . . , nepochs. We construct a first differ-
ence penalty matrix that restricts time changes in mj from month to
month:

D j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1 0 · · ·
...

...
...

...
...

0 · · · 0 1 −1

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

and apply it, to all except the TO coefficients (for which the entries
in D j are zero), as an additional side constraint. The parameter
λt controls how strongly the constraint is applied, resulting in an
additional term λt DT D in the inversion (eq. 10, extended to include
all data and epochs). We refer to flows obtained with this constraint
as TO-like flows.

The size of this inverse problem is not amenable to direct in-
version, but fortunately most elements of the enhanced normal
equations matrix vanish, so iterative sparse matrix techniques are
appropriate. We used the conjugate gradient algorithm with Jacobi
pre-conditioning, having validated on a smaller system (with Nmax

= 8) that the results of direct and iterative inversions agree satisfac-
torily.

In addition, we found the minimum amount of temporal vari-
ability required to fit monthly mean estimates of SV adequately by
applying the temporal constraint, eq. (11), to all coefficients. We
refer to these as minimum acceleration flows.

3 DATA

We used data from up to 128 observatories, shown in Fig. 1, between
January 1997 and July 2013. Monthly means of orthogonal vector

Figure 1. Observatories contributing data used in the analysis.

components were calculated in the traditional fashion, as the arith-
metic mean of hourly mean values from all days, to give ordinary
monthly means (omm) and using the method of Olsen et al. (2014),
to give revised monthly means (rmm). rmm are also calculated using
data from all days of a given month, but using a robust averaging
procedure, and after removal of ionospheric and magnetospheric
contributions. The magnetospheric ring current is characterized by
a new index, RC (Olsen et al. 2014), that does not suffer from
the baseline changes inherent in Dst. Ionospheric Sq was estimated
using the CM4 model of Sabaka et al. (2004). First differences
a year apart were taken to provide SV estimates, ascribed to the
mid-point of the interval, giving 187 monthly data sets covering the
period July 1997 to January 2013. The SV derived from the two
sets of means agreed in its major features, but the rmm SV was less
scattered than that from the omm (by a factor of typically 3), and
also had fewer short timescale (i.e. over periods of several months)
excursions. Since these excursions were only present in the omm,
we suspect that they reflect external field contamination that was
not removed when data were processed in the traditional manner.
SV data covariance matrices were formed from robust estimates of
the variances and cross-variances of generalized covariance func-
tion spline fits to the Ẋ , Ẏ and Ż time-series, for both omm and
rmm. Values of both diagonal and off-diagonal elements tended to
be larger for omm than rmm. Examples of omm and rmm SV at a
selection of observatories, with their standard deviations, are shown
in Figs 2 and 3. Oscillations with periods of 2–3 yr are seen in some
observatory mean first differences, both omm and rmm (e.g. Ẏ at
Hermanus observatory). rmm processing helps clean up the signals,
but there is still some contamination, especially at high latitudes.
Figs 2 and 3 show predictions of the CHAOS-4 model, which also
exhibits some oscillations with similar periodicities. Ionospheric
currents are internal to satellite data, so in principle their effects
could be mapped into the internal field, and periods of 2–3 yr are
easily representable with the 6-month spacing of CHAOS-4’s B-
spline basis. However, oscillations that are not consistent between
satellite and observatory data should be suppressed as far as possi-
ble by temporal regularization, though some contamination of the
internal field remains possible. Observatories suffer from the usual
problem of poor geographical distribution, in particular, concen-
tration over Europe and, to some extent, North America, and very
few over the oceans and southern hemisphere (Fig. 1). We will see
this reflected in the averaging functions for our core flow models in
Section 4.4.

4 R E S U LT S

4.1 Original versus revised monthly mean flows

We first describe and compare the results of inverting sets of three
consecutive months of SV data for flow snapshots, using eq. (10),
from both omm and rmm data. We tested a variety of damping
parameters λv to find a value for which flows converged but retained
enough structure to provide a reasonable fit to the data. This value,
10−4, was then fixed for all subsequent inversions, and was the
same for omm and rmm inversions. The overall root-mean-square
(rms) misfits for all 185 flows were 0.91 and 0.90 for omm and
rmm data respectively. These are lower than the expected value of
1 because there are a number of epochs for which only a relatively
small number of data are available, and these tend to be heavily
over-fitted. For a more typical flow (obtained from of order 1000
data), the rms misfit was around 1.3 for omm and 1.1 for rmm
inversions, and the rms flow speed was in the range 12–15 km yr−1.

 at U
niversity of E

dinburgh on A
ugust 30, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


232 K.A. Whaler, N. Olsen and C.C. Finlay

Figure 2. Time-series of omm SV data at Niemegk, M’Bour and Hermanus observatories (black dots) and their predictions by the flow (red, yellow and green
dots when the datum is the first, second or final month of the three contributing to the flow estimation). The blue line is the prediction of CHAOS-4. Standard
deviations in the top left of each panel are of a generalized covariance fit to the original data (black), from the flow predictions when it is the third month
contributing to the estimate (green) and from the CHAOS-4 fit (blue). Panels are arranged Ẋ , Ẏ and Ż from left to right.

We do not seek to achieve values as low as the expected misfit
value of 1 because we expect there to be some diffusion which is
not accounted for in these frozen-flux inversions, to allow for the
SV generated by the interaction of unresolved small-scale flow and
small-scale field (Eymin & Hulot 2005), and because we assume the
main field is perfectly known when in fact it is subject to uncertainty.
Reducing the damping parameter to bring the typical misfit down to
1 gave barely converged solutions with little coherency from epoch
to epoch, especially for the omm flows.

The fit to the data and non-normalized standard deviations are
shown in Figs 2 and 3, for a selection of observatories. The data
standard deviations are up to ∼10 nT yr−1 for omm, and typically
1–2 nT yr−1 for rmm. Except at the end points, each month’s SV
estimates were used in three inversions (when they were the first,
middle or final month of the three used); their predictions are virtu-
ally indistinguishable, especially for the rmm flows. The predictions
are smoothly varying yet follow the rapid SV changes, such as in
Ż at M’Bour observatory between 2006 and 2011. They repro-
duce features which are not fully captured by field models in which
the temporal variability is expressed using B-splines, such as the
CHAOS series (e.g. Olsen et al. 2006, 2014), including in Ẏ at
M’Bour observatory around 2004, and in Ż at Niemegk observa-
tory from 2006 onwards, and hence their standard deviations are
lower than for the CHAOS-4 model. The difference in goodness-

of-fit to the omm and rmm data is clearly visible, both from the
time-series and the standard deviations. The fit to each component
at each observatory is broadly commensurate with the overall nor-
malized misfits of the flow models (and so is poorer for the omm
compared to the rmm data) – there is no evidence for over-fitting
some components or observatories at the expense of the fit to others,
or for the fit being better at, say, times of slower SV. The omm flows
follow excursions in the data that are not seen in the rmm, such as
in Ż at Hermanus observatory between 2002 and 2004 and which
are likely to be the result of external field contamination. However,
the differences between the flows obtained from omm and rmm are
generally rather small, and are almost impossible to discern by eye.
Since the main differences between the omm and rmm SV are in
features that we suspect arise from greater external field contami-
nation in the omm, and because these differences do not give rise
to substantially different flow models, henceforth we describe only
the results obtained from rmm.

4.2 Temporal variability of flows

The sequence of flow snapshots undergoes some notable changes
over the 16 yr investigated, particularly in the anti-clockwise eddy
beneath the southern Indian Ocean, which disappears and reappears
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Figure 3. As for Fig. 2 but for revised monthly means, rmm.

twice, each time over the period of just a few months, in the first
decade of the 21st century (see the Supporting Information). The
eastern part of the eddy remains in place, but the western part, a
southward flow, gets stretched out to the west so that the eddy is
no longer closed. These changes in the flow geometry take place
at times of jumps in the inter-decadal length-of-day, thought to be
linked to the occurrences of geomagnetic jerks (Holme & de Viron
2013).

Decadal timescale length-of-day changes, �LOD, have been
shown to be consistent with exchange of angular momentum be-
tween the mantle and core through the excitation of TO (Jault et al.
1988; Gillet et al. 2015). The change in angular momentum, and
hence length-of-day, carried by these flows is dominated by zonal

toroidal coefficients of degrees 1 and 3. Can we reduce the temporal
variability of the flow, and match the observed �LOD, while retain-
ing an adequate fit to the data? Since the �LOD are often assumed
to arise through the excitation of TO-like flows, we seek flows that
are constant except for motion consistent with TO by applying the
penalty matrix constraint (eq. 11) to all but the TO flow coefficients,
that is, except to the t0

n with n odd that represent toroidal, zonal and
equatorially symmetric flows. For relatively small values of λt, the
misfit is similar to that of the sequence of flow snapshots (0.92
compared to 0.90; Table 1), but with much less temporal variability
in all flow coefficients, that is, including those whose temporal dif-
ferences are not directly penalized. Fig. 4 shows the coefficients up
to degree and order 4 as a function of time, for the flow snapshots

Table 1. Root-mean-square (rms) speed, v, of the total flow for a typical epoch, centred on October 2005, and the partitioning of its kinetic energy into the
toroidal (T), poloidal (P), equatorially symmetric (S), equatorially asymmetric (AS), tangentially geostropic (TG), tangentially ageostrophic (AG) and zonal
toroidal (ZT) components, expressed as a percentage. vrmm is the flow snapshot from rmm data, vTO (moderate) a TO-like flow with a temporal damping
parameter λt of 103, vTO (strong) a TO-like flow with temporal damping parameter 106, and vMA a minimum acceleration flow with temporal damping
parameter 104 applied to all flow coefficients. To make the results comparable, misfit refers to all epochs, that is, in the case of the flow snapshot in the first
line, is the rms misfit over all such models.

Flow v (km yr−1) T (per cent) P (per cent) S (per cent) AS (per cent) TG (per cent) AG (per cent) ZT (per cent) Misfit

vrmm 12.2 82.2 17.8 77.2 22.8 79.8 20.2 41.4 0.90
vTO (moderate) 11.3 87.0 13.0 80.7 19.3 81.6 18.4 48.8 0.92
vTO (strong) 10.8 86.5 13.5 79.1 20.9 80.1 19.9 48.1 1.77
vMA 11.5 88.3 11.7 81.1 18.9 82.2 17.8 55.3 0.92
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Figure 4. Temporal variability of flow coefficients (in km yr−1) up to degree and order 4. Degree (n) and order (m) and whether the coefficient multiplies
cos mφ (c) or sin mφ (s) is given above each panel. Solid lines are for toroidal coefficients, dashed lines for poloidal coefficients. Blue: flow snapshots; green:
moderately TO flows; red: strongly TO flows.

(blue curves) and for such a moderately TO-like flow (green curves).
There are significant differences between the two models for all co-
efficients, especially in the high frequencies, which are virtually
absent in the constrained coefficients, and significantly reduced in
those that are not directly penalized. As we increase λt, the misfit
increases dramatically, such that when the non-TO coefficients are
(essentially) steady (illustrated by the red curves in Fig. 4), it has
a value of 1.77. Thus we can conclude that a constant flow with
TO superimposed does not provide an adequate fit to the SV data.
Similar conclusions regarding the inadequacy of TO to explain the
SV have been reached by other means, for example in the studies by
Wardinski et al. (2008), Silva & Hulot (2012) and Chulliat & Maus
(2014). It is also noteworthy that TO are unable to produce changes
in the axial dipole field. Sample observatory fits and standard de-
viations are shown in Fig. 5, from which it can be seen that such a
model fails in some cases to reproduce the amplitude of the SV (e.g.
Ẋ at Hermanus around 2007, and Ẏ at M’Bour around 2010) and in
others does not predict the correct amount of variability (especially
in Ẋ e.g. from 2000 at Canberra). The standard deviations of the
moderately TO-like flow are very similar to those of the sequence
of flow snapshots, but in general are markedly higher for the steady
flow with TO superimposed.

Although we have demonstrated that flows that are steady except
for TO do not provide an adequate fit to the data, we have also
shown that flows need relatively little temporal variability to be able
to reproduce quite rapid SV in individual observatory components.
Thus the time changes found in the sequence of flow snapshots
is not required to fit the data. To establish the minimum amount
of temporal variability necessary to explain the data, we penalized
all flow coefficients using eq. (11), varying the temporal damp-
ing parameter λt until the misfit matched the value obtained for
the moderately TO-like flow (Table 1). For these minimum accel-
eration flows, it is difficult to discern any temporal flow changes
by eye (see the Supporting Information), but inspection of the
differences from the mean demonstrates that the largest changes
are in the equatorial and southern hemisphere regions in a band
around 90◦ wide centred on 180◦ longitude (see the Supporting
Information).

Restricting the temporal variability of the flows, either to pro-
duce TO-like or minimum acceleration flows, does not change
their basic geometry (see the Supporting Information), and they re-
main predominantly toroidal, equatorially symmetric, tangentially
geostrophic, and with a significant zonal toroidal component
(Table 1).
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Figure 5. Data (black dots) and their predictions by flow models at Niemegk, Kakioka, M’Bour, Canberra and Hermanus observatories. Blue: flow snapshots;
green: moderately TO flows; red: strongly TO flows. The grey line is the prediction of CHAOS-4. Standard deviations in the top left of each panel have the
same colour codings.

4.3 Resolution

Two ways to assess how well the flows are resolved are through
resolution matrices of the flow coefficients, and averaging functions
derived from them that indicate the extent of spatial averaging to
form a flow estimate at a given point on the CMB. The resolution
matrix is (e.g. Bloxham et al. 1989)

R = (AT Ce
−1A + λvCm

−1)−1AT Ce
−1A (12)

extended to include a term involving the second damping param-
eter λt if the temporal side constraint (eq. 11) is also imposed. R
relates the estimated parameters ˆ(m) to their true values (m), and
therefore the ideal resolution matrix is the identity matrix. Although
an un-regularized solution has perfect resolution (if there are more
data than model parameters, as is the case for most epochs of the
period we studied), other aspects of such models are undesirable,
such as the lack of convergence of the power spectra, meaning
that the values of many of the coefficients change substantially if
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Figure 6. Resolution matrix for the flow snapshot centred on October 2005. Toroidal flow coefficients are numbers 1 to 224, and poloidal coefficients from
225 to 448.

the spherical harmonic limit Nmax of the flow coefficients changes.
Non-zero off-diagonal elements of R indicate that flow coefficients
are correlated, and diagonal elements deviating from 1 show that
coefficient amplitudes are not correctly recovered. A typical reso-
lution matrix for a flow snapshot is shown in Fig. 6. The significant
off-diagonal elements show that estimates of individual coefficients
are severely contaminated, at all spherical harmonic degrees, and
not just by coefficients of the same given degree, nor just by either
other toroidal or other poloidal coefficients. These correlations are
more pronounced for toroidal coefficients and, in particular, esti-
mates of the low degree and order toroidal coefficients are severely
contaminated by poloidal coefficients. The diagonal elements cor-
responding to toroidal coefficients decrease rapidly with spherical
harmonic degree and only coefficients up to degree and order 3
or so can be regarded as resolved. For a given degree (except 1),
the tesseral harmonics are better resolved than the zonal ones. This
is similar to the situation Bloxham et al. (1989) found for their
historical magnetic field models which were dominated by decli-
nation data, although it is not clear why it applies to toroidal flow
coefficients derived from orthogonal component observatory SV
data. The decay along the diagonal is a lot more gentle for poloidal
coefficients, and those up to degree and order 8 can be regarded
as reasonably well resolved; similarly, the amplitude of the off-
diagonal elements associated with a given poloidal coefficient tends
to be smaller than for the corresponding toroidal coefficient. Pre-
vious studies also found better resolution of poloidal than toroidal
flow coefficients, when calculated from both observatory SV data
(Madden & Le Mouël 1982) and from spherical harmonic SV co-
efficients (Gire et al. 1986). A number of off-diagonal elements

exceed 1 in absolute value, indicating very high correlations/anti-
correlations between coefficients. Bloxham et al. (1989) found
the same phenomenon in the resolution matrix for their model
of the CMB radial field in epoch 1715, which was based on
directional (declination and inclination) data only. The trace of
the resolution matrix indicates the number of free parameters
of the solution; this is typically 100 for our flows, consistent
with resolution up to spherical harmonic degree approximately
6 if both toroidal and poloidal coefficients were equally well re-
solved. Given that most of the energy is in the toroidal flow
(Table 1), it is unfortunate that its resolution is considerably
poorer.

A diagonal block and its two adjacent blocks in the same row of
the 82 880 × 82 880 resolution matrix for the inversion spanning
all epochs with a moderately TO-like flow (i.e. with a misfit com-
parable to that of the individual flows), again calculated using the
Jacobi pre-conditioned conjugate gradient algorithm, are shown in
Fig. 7. Each block has dimension the number of flow coefficients for
a given epoch, so the image indicates correlations between them,
and their correlations with those from the previous and subsequent
month. The structure of the diagonal block is similar to that of
Fig. 6, but the diagonal elements have smaller values, that is, are
less well resolved. The off-diagonal blocks have prominent diag-
onal elements (except for those corresponding to the odd-degree,
zero order toroidal coefficients), indicating correlations between the
same coefficient at successive epochs introduced through the tem-
poral constraint, but their off-diagonal elements generally are very
small. The pattern repeats for blocks further away from the diagonal
but with the magnitudes of the elements decreasing. The trace of
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Figure 7. The diagonal block and two adjacent blocks (row-wise) of the resolution matrix for the moderately TO-like flow for October 2005. Note the different
colour scale from Fig. 6.

the full 82 880 × 82 880 matrix is 9622, that is, the model resolves
of order 52 coefficients, or up to degree and order 4, per epoch on
average. The loss of resolution compared to the snapshot solutions
is partly because of the correlations introduced by the temporal
constraint; however, the trace of each immediate off-diagonal block
shown in Fig. 7 is 10, which does not match the difference between
the trace of the diagonal block and the trace of the resolution matrix
of the snapshot solution.

In both snapshot and temporally constrained flow resolution ma-
trices, the rows corresponding to coefficients t0

n with n odd stand
out through having significant non-zero elements (Figs 6 and 7).
This presumably reflects the null space of the flow, which depends
on the geometry of the magnetic field. For example, the westward
drift term represented by t0

1 acting on an axial dipole magnetic field
generates no SV. Since the axial dipole is the dominant part of the
field, theoretically this flow coefficient is poorly resolved (Madden
& Le Mouël 1982).

4.4 Averaging functions

Averaging functions are continuous functions of position that indi-
cate how well a model estimate at a given point is localized. The
estimated model value m̂ is a spatial average of the true model, m,
weighted (in an integral sense) by the averaging function. Here, we
are interested in models defined on a spherical surface, specifically,
the CMB. Hence we write

m̂(θ0, φ0) =
∮

CMB
A(θ0, φ0, θ, φ)m(θ, φ)d�, (13)

where A is a function that we would like to be well-peaked at (θ0, φ0)
and small elsewhere, enclosing an area of 1 on the unit sphere. The
ideal averaging function would be δ(θ − θ0)δ(φ − φ0) where δ is the
Dirac delta-function, since in that case, the model estimate would
equal the true model. However, approximations to the ideal from
finite quantities of inaccurate data are less well-peaked, may not be
centred on the point of interest, and may have side lobes (‘ringing’
or Gibbs’ phenomenon). The 2-D width, or aperture, of an averaging
function indicates the area over which the point model estimate is an

average of the true model, and the height of its peak indicates how
reliable its amplitude is. Minimizing in a least-squares sense the
difference between the averaging function and δ(θ − θ0)δ(φ − φ0),
Whaler & Gubbins (1981) show that the best approximation to the
ideal averaging function (i.e. when the solution is not regularized,
and hence resolution is perfect) for the radial magnetic field at the
CMB, expressed as a finite spherical harmonic sum to degree and
order N is

1

4π

N∑
n=1

(2n + 1)Pn(μ) (14)

where μ is the cosine of the angle subtended at the Earth’s centre
between (θ0, φ0) and the point at which it is calculated. An example
for N = 14 is given in the top row of Fig. 8, indicating that the model
value at a given point is an estimate over an area subtended by an
angle at the Earth’s centre of at least 30◦. As N increases, the central
peak becomes taller and narrower, but there are always side lobes,
increasing in number but decreasing in amplitude, and a small peak
at the antipodal point. Hence an estimate of the CMB radial field at
a given point is significantly contaminated by its value elsewhere on
the core surface even in the ideal case; the contamination is worse
for a regularized inversion. The same development as Whaler &
Gubbins (1981) used for the CMB radial magnetic field applies
to any quantity that can be expressed as a linear combination of
spherical harmonics, and hence to the toroidal and poloidal scalars
of the flow, T and S, for which, following the notation of Bloxham
et al. (1989), the averaging function can be written

A(θ0, φ0, θ, φ) = cT(θ0, φ0)Rb(θ, φ) (15)

where c has elements of the form

rc Pm
n (cos θ0)

{
cos mφ0

sin mφ0

}

with rc the core radius, and b has elements of the form

2n + 1

4πrc
Pm

n (cos θ )

{
cos mφ

sin mφ

}
.
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Figure 8. Averaging functions for toroidal and poloidal flow scalars. Top: best approximation to the ideal averaging function for flows to degree and order
14; it is independent of location. Middle: actual averaging functions for the toroidal (left) and poloidal (right) scalars at (50◦N, 10◦E) for a typical spatially
regularized flow. Bottom: as for the middle panel, but at (50◦S, 170◦W). The green dot on the map projection marks the point at which the averaging function is
centred. Contour interval is 1 for the ideal and poloidal flow scalar averaging functions, 0.1 for the toroidal scalar averaging functions, with negative contours
dashed.
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Figure 9. Averaging function at the point at which it is centred as a fraction of the maximum possible value for a typical epoch, for the toroidal (left) and
poloidal (right) scalars. Continents shown for reference.

Using the addition theorem for spherical harmonics, eq. (14)
is recovered if resolution is perfect (R = I). In the Appendix,
we discuss efforts to form averaging functions for the flow
components themselves, which are combinations of derivatives
of the spherical harmonics, rather than of spherical harmonics
themselves.

The middle row of Fig. 8 shows the comparison at the same scale
for the averaging functions for the toroidal (left) and poloidal (right)
flow scalars centred on (50◦N, 10◦E) where the high concentration
of European observatories should provide good flow resolution,
for a typical flow snapshot. However, the averaging functions are
poorly peaked, broad and can reach amplitudes comparable to those
at the point at which they are centred elsewhere on the CMB. The
toroidal scalar averaging function is a much poorer approximation
to the ideal than that for the poloidal scalar, in agreement with the
evidence from the resolution matrix. The bottom row of Fig. 8 shows
the same averaging functions centred on (50◦S, 170◦W) where, as
expected, the low density of observatories provides even poorer
resolution. Here, the toroidal flow is essentially unresolved – the
averaging function has only a weak maximum at the point at which
it is centred. With central peak widths of at least 50◦ for the toroidal
part, flow features such as the anti-clockwise eddy beneath the
southern Indian Ocean are barely resolved.

To capture the global variability in the toroidal and poloidal
scalar averaging functions, Fig. 9 plots them at the point they are
centred as a fraction of the maximum possible value from a truncated
spherical harmonic sum (given by eq. 14 with μ = 1). Over large
parts of the CMB, the toroidal scalar averaging function is no more
than about 20 per cent of its maximum possible value, and never
exceeds 60 per cent of it. These low values are a combination of
generally poor resolution and the averaging function peaking in
the ‘wrong’ place, that is, not at the point at which it is centred.
The distribution of the poloidal scalar averaging function is more
variable. Over large areas of the northern hemisphere continental
land masses where there observatories are concentrated (Fig. 1) it
exceeds 60 per cent and approaches 90 per cent of the maximum
possible value. However, there is a pronounced band of very low
values around the magnetic equator, extending into the large areas of
reverse flux in the southern hemisphere beneath South America, the
Atlantic region and southern Africa. This is reminiscent of the areas
affected by the ‘Backus effect’ in main field modelling of scalar data.
We noted above that the resolution matrix contains features that
Bloxham et al. (1989) associated with ambiguity in magnetic field
modelling based on only directional data (e.g. off-diagonal elements

with magnitude greater than 1). Methods of analysing this ambiguity
(e.g. Gubbins & Proctor 1990; Hulot et al. 1997) cannot obviously
be applied to core flow modelling. We suggest that it reflects a null-
space of the poloidal flow component, one that is similar to, but
different from, the ambiguous regions for tangentially geostrophic
flows, which are connected to the geographic, rather than magnetic,
equator. There are patches of the CMB where the toroidal and
poloidal scalar averaging functions are negative at the point at which
they are centred, meaning that the estimate there, rather than being
dominated by the actual flow, has a negative contribution from it.
Regardless of location on the CMB, we find that the flow, especially
its toroidal component, is not well resolved by ground observatory
data.

The resolution matrix and averaging functions depend on the data
distribution and the value(s) of the damping parameter(s), which are
varied according to the quality and quantity of data available. As-
suming the flow is constant over a period longer than three months
might improve its spatial resolution (as measured by the averaging
function) because of the increased quantity of data, but this would
be at the expense of poorer temporal resolution. Similarly, an in-
creased data density, such as that provided by satellite data, should
improve the resolution and averaging functions; however, we can-
not predict by how much, nor whether a more even data distribution
would reduce the correlations between (in particular) toroidal flow
coefficients, partly because this will depend on the specific damping
applied.

5 D I S C U S S I O N

Our flows exhibit the main features of many previously published
models, such as having a strong band of westward flow in the equa-
torial region in the hemisphere centred on the Greenwich meridian,
slower flow beneath the Pacific, and an anti-clockwise eddy be-
neath the southern Indian Ocean at most epochs (see Holme 2015).
They are less equatorially symmetric than flows derived under the
quasi-geostrophic constraint (Pais & Jault 2008), and have weaker
sub-Pacific flow than most derived under the assumption that the
flow is tangentially geostrophic. However, they are predominantly
toroidal, equatorially symmetric and tangentially geostrophic, and
have a substantial zonal toroidal component (Table 1). An ex-
ample snapshot flow and its power spectra are shown in Fig. 10.
The time-average of the flow snapshots and the averages of those
which have been temporally constrained are indistinguishably dif-
ferent by eye, and closely resemble that shown in Fig. 10. Like the
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Figure 10. Left: CMB flow (at a typical epoch, centred on October 2005) from inverting three consecutive months of rmm first difference data. Continents
shown for reference. Right: flow power spectra, units (km yr−1)2. Solid and dotted lines are power in the toroidal and poloidal components, respectively, of the
flow in the left panel. Dashed and dot-dashed lines are the corresponding power spectra of the moderately TO-like flow.

individual epoch flows, they are predominantly toroidal, tangentially
geostrophic, equatorially symmetric and zonal toroidal. These time-
average flows, which account for much of the data variance, are large
scale and simple. Flows deduced from satellite data, or spherical
harmonic models derived from them, generally show more detail,
but we can see evidence in our flows for more diffuse expressions
of their features. For example, our flows have a northward compo-
nent beneath North America, westward flow beneath the northern-
post Pacific Ocean and a southward component beneath eastern
Asia which, if focussed, would form part of the eccentric plan-
etary gyre characteristic of quasi-geostrophic flows discussed by
Gillet et al. (2009), amongst others. This feature of our flow resem-
bles more closely that of Baerenzung et al. (2014) which, although
derived from satellite data, has a less spatially concentrated gyre.
Baerenzung et al. (2016) note that it is not necessary to make the
quasi-geostrophic assumption to obtain flows with an eccentric plan-
etary gyre. Similarly, in the southern hemisphere, northward flow
around 90◦E, westward flow beneath the Atlantic Ocean, then turn-
ing south, is seen in models derived from satellite data (e.g. Holme
& Olsen 2006; Silva & Hulot 2012; Lesur et al. 2015; Baerenzung
et al. 2016). The strong southward flow beneath the western Indian
Ocean visible in Fig. 10, completing the anti-clockwise eddy, is not,
or is only weakly, present in most satellite data-based flows. Sim-
ilarly, the small clockwise eddy beneath the south-western Pacific
Ocean is not generally a feature of models derived from satellite
data – in fact, the tangentially geostrophic flow of Holme & Olsen
(2006) has a weak clockwise eddy, but their toroidal flow has an
anti-clockwise eddy in the same location (and, as noted above, fea-
tures of this size are not well resolved by observatory data). Besides
generally decreasing power spectra for both toroidal and poloidal
flow components, and an approximately order-of-magnitude differ-
ence between the toroidal and poloidal power, the dominant feature
of the spectra is the loss of power at toroidal degree 3 (e.g. Holme
& Olsen 2006; Lesur et al. 2010, 2015; Baerenzung et al. 2014,
2016), regardless of whether or not the flow is assumed tangen-
tially geostrophic. All these features are present in our spectra, for
both snapshot and moderately TO-like flows (Fig. 10). The flow of
Baerenzung et al. (2016) with highest posterior probability density
is faster than ours but similar in morphology, though again with
more localized features; its toroidal power spectrum has a similar
shape to ours, but its poloidal spectrum is markedly different at low
harmonic degree, as it increases with increasing degree.

While the basic features of the time-average flow do not depend
on what type of flow is sought, the fluctuations around it are very
different, depending mainly on whether or not a temporal constraint

is applied. As noted previously, these fluctuations can be quite sub-
stantial for snapshot flows, including a change to the morphology
of the flow beneath the Indian Ocean, specifically, that it does not
remain as a closed eddy throughout. This region is unusual in that,
when temporal variability is restricted by seeking a moderately TO-
like flow, the fluctuations in its upwelling and downwelling remain.
The time-average flow has an upwelling beneath the eastern part
of the Indian Ocean, and a downwelling beneath the western part,
similar to the pattern seen in the flows Olsen & Mandea (2008) gen-
erated for 2003–2004 to fit rapid changes in the SV. From mid-2004,
these over-turning features of our temporally constrained flows start
to weaken. In contrast, the downwellings beneath northern South
America and the northern Pacific Ocean, and the upwelling be-
neath Hawaii, remain in place throughout the period of our study.
In general, the fluctuating part of the flow has a higher proportion
of its kinetic energy in the poloidal component than the average
flow (typically ∼35 per cent for epochs of the moderately TO-like
flow, higher for flow snapshots, compared to ≤20 per cent for the
time-average part). Beneath the equatorial western Pacific, the fluc-
tuations in the moderately TO-like flow model are dominated by
the toroidal component, changing steadily by an anti-clockwise
rotation superimposed on a strengthening westward zonal flow.
Fig. 2A of Finlay & Jackson (2003) shows that the historical field
evolution is consistent with waves propagating westward away from
this location. Beneath the western Atlantic and eastern Americas,
the fluctuations show an increasing southward component to the
flow (deviations from the mean are predominantly northward at the
beginning of the interval and finish predominantly southward, with
a weak anti-clockwise rotation).

Although the TO-like flow changes slowly throughout the interval
modelled, there are rapid changes and local variability in fluid accel-
eration which, in order to reduce noise, we have estimated by fitting
smoothing splines to the discrete monthly flow coefficients and then
differentiating the spline representation. For example, in the equato-
rial region beneath the western Atlantic and eastern Americas there
are peaks in a predominantly poloidal acceleration of opposite sign
in 2006 and 2009, the times at which Chulliat & Maus (2014) note
an anti-correlated pulse in CMB secular acceleration there. They
also found that a constant flow and TO (with an assumed 6 yr pe-
riod) did not provide an adequate fit to secular acceleration data.
Our fluid acceleration power has maxima in 2007 and 2009.5 (and
also in 2000, 2002 and 2003.5); the variability has an amplitude of
about 0.5 (km yr−2)2 around a mean of ∼3 (km yr−2)2.

Fig. 11 shows the temporal variability of the non-zonal part of
vφ at 85◦W; at the equator, it undergoes a sign change in around
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Figure 11. The non-zonal component of vφ of the moderately TO-like flow
at 85◦W as a function of latitude and time.

Figure 12. Change in LOD and its prediction by flows. The data (black
curve) have been corrected for atmospheric effects, the annual and semi-
annual signals removed and then a moving average over 31 d was taken. The
predictions of the flows use the same colour coding as Figs 4 and 5, that
is, blue: flow snapshots, green: moderately TO and red: strongly TO. The
curves have been offset for clarity.

2006 followed by a pulse of westward flow until 2009 when it weak-
ens again. Such temporal variability is another indicator that zonal
TO superimposed on a steady flow are insufficient to fit the data.
Over most of the core surface, non-zonal vφ is faster and more-or-
less steady; it is also much more equatorially symmetric at 85◦W
than at other longitudes. At the same location, the non-zonal vφ of
Gillet et al. (2015) undergoes a series of oscillations with a period
of about 7 yr (see their fig. 12). They also report a minimum in
amplitude at 10◦ latitude, but their flows are equatorially symmet-
ric under the quasi-geostrophic constraint; typically, non-zonal vφ

of our moderately TO-like flow is strongly asymmetric about the
equator. Beneath the Asian land mass the flow also shows strong
deviations from the mean, which is dominated by a southward jet
feeding into the band of equatorial westward flow.

None of our models that fit the data adequately provides a good
match to decadal �LOD (Fig. 12); in particular, the unconstrained
flows have much shorter timescale changes, and amplitudes are a
factor ∼10 too high. Wardinski (2004) and Gillet et al. (2015) note
that excess variability (both temporally and amplitude) can result

from ignoring data time covariances, as we have done here. �LOD
predictions by the moderately TO-like and minimum acceleration
flows appear to be an increasingly damped version of the uncon-
strained flow predictions, such that the moderately TO-like flow
predicts changes of the right amplitude and with a similar amount
of temporal variability, but not correlated with the �LOD data. In
contrast, our strongly TO-like flow model forces all the flow-time-
dependence into coefficients which participate in angular momen-
tum exchanges and predicts a much better match to the observed
�LOD, although it does not fit the SV data. We have not attempted
a joint inversion of SV and �LOD data to establish whether there is
a flow model that fits both data sets, although Holme (2015) showed
that small modifications to the flow can change angular momen-
tum predictions by a significant amount. Nor have we attempted
to establish whether the much smaller inter-annual changes occur-
ring at times of geomagnetic jerks (Holme & de Viron 2013) are
reproduced by any of our models, since the uncertainties in the pre-
dictions are expected to exceed the signal. However, we did note
that the substantial changes in geometry in the sequence of flow
snapshots occurred at times of geomagnetic impulses.

6 C O N C LU S I O N S

The traditional method of calculating observatory monthly means
provides estimates of SV that are more scattered than with the
revised method proposed by Olsen et al. (2014), and they almost
certainly retain some external field contamination. These features
can be modelled by CMB flows that will therefore contain artefacts.
We recommend that monthly means are calculated using the revised
method.

By inverting SV data directly for CMB flow snapshots (assuming
the main field is perfectly known), we have been able to find flows
fitting the data adequately. The fit is better than that achieved by the
CHAOS-4 model. These flows demonstrate rapid, but systematic,
changes in geometry. The eddy beneath the Indian Ocean undergoes
the most obvious change, to the extent that for part of the period
studied, it is no longer closed on its western side; its strength is also
rather variable. However, by restricting the month-to-month vari-
ability of the flow coefficients, we were able to provide an equally
good fit to the data with considerably smaller changes in the flow.
The temporally variable part of the flow must include more terms
than the odd order, zero degree toroidal flow coefficients that de-
scribe TO. The more rapid changes in these flows are at times when
and are located on patches of the CMB where pulses of secular
acceleration occurred.

The uneven and relatively sparse observatory distribution means
that the resolution of our flows is not good, as evidenced by both
the resolution matrix and averaging functions. The resolution of the
toroidal part of the flow, which contains about 90 per cent of the
flow energy, is considerably worse than that of the poloidal part.
As expected, the averaging functions are poorer approximations to
the ideal beneath areas of lower observatory density at the sur-
face, such as the Pacific Ocean. We have the prospect of improving
resolution and the averaging functions from the higher density of
coverage based on satellite data, such as from the current Swarm
satellite constellation mission. However, the problem of external
field contamination is more severe than for ground observatories,
and previous estimates of point SV values from ‘virtual observato-
ries’ from single satellites also appear to contain artefacts from the
orbit sampling of the volume containing each virtual observatory
(Beggan et al. 2009; Shore 2013).
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

supp1.avi: Time sequence of snapshot flows
supp2.avi: Time sequence of moderately TO-like flows
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supp3.avi: Time sequence of difference from the mean of moder-
ately TO-like flows
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw268/-/DC1)

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : F L OW AV E R A G I N G
F U N C T I O N S

We have presented averaging functions for the toroidal and poloidal
flow scalars, rather than for components of the flow itself. Since the
flow involves derivatives of spherical harmonics, the development
for the radial magnetic field component or scalar potentials does not
apply directly. We would like to write our estimate v̂c of a component
of the flow, vc, at a point (θ0, φ0) on the CMB as

v̂c(θ0, φ0) =
∮

CMB
A(θ0, φ0, θ, φ)vc(θ, φ)d�, (A1)

where A is a function that is well-peaked at (θ0, φ0) and small
elsewhere, enclosing an area of 1 on the unit sphere. Whaler &
Gubbins (1981) discuss several definitions of A applicable to models
defined on the surface of a sphere.

Before proceeding, we establish an orthogonality relationship for
the derivatives of spherical harmonics. Consider the integral∫ π

0

dPm
n

dθ

dPm′
n′

dθ
sin θdθ. (A2)

Integrating by parts, and noting that sin θ vanishes at the limits of
integration, we have∫ π

0

dPm
n

dθ

dPm′
n′

dθ
sin θdθ = −

∫ π

0
Pm

n

d

dθ

(
sin θ

dPm′
n′

dθ

)
dθ. (A3)

From Legendre’s equation

− d

dθ

(
sin θ

dPm
n

dθ

)
= sin θ

(
n(n + 1) − m2

sin2θ

)
Pm

n (A4)

and hence∫ π

0

dPm
n

dθ

dPm′
n′

dθ
sin θdθ

=
∫ π

0
Pm

n P ′m′
n

(
n′(n′ + 1) − m ′2

sin2θ

)
sin θdθ. (A5)

Thus,∫ 2π

0

∫ π

0

(
m ′ Pm′

n′ m Pm
n

sin2 θ

{ − sin mφ

cos mφ

}{ − sin m ′φ
cos m ′φ

}

+ dPm
n

dθ

dPm′
n′

dθ

{
cos mφ

sin mφ

} {
cos m ′φ
sin m ′φ

})
sin θdθdφ

=
∫ 2π

0

∫ π

0
n′(n′ + 1)Pm

n Pm′
n′

{
cos mφ

sin mφ

} {
cos m ′φ
sin m ′φ

}
sin θdφ.

(A6)

By orthogonality, the integral vanishes unless n = n′, m = m′ and
the φ dependence has both cos or both sin terms, in which case,
for Schmidt quasi-normalized spherical harmonics, it equals

4π
n(n + 1)

2n + 1
. (A7)

Winch et al. (2005) provide an alternative derivation of this result.
This orthogonality relation suggests that we can calculate an

averaging function for components of the flow itself by eq. (15),
with c having elements of the form

rc

(
−m Pm

n (cos θ0)

sin θ0
sin mφ0,

m Pm
n (cos θ0)

sin θ0
cos mφ0,

dPm
n (cos θ0)

dθ
cos mφ0,

dPm
n (cos θ0)

dθ
sin mφ0

)
(A8)

and b of the form

2n + 1

8πn(n + 1)rc

(−m Pm
n (cos θ )

sin θ
sin mφ,

−m Pm
n (cos θ )

sin θ
cos mφ,

dPm
n (cos θ )

dθ
cos mφ,

dPm
n (cos θ )

dθ
sin mφ

)
. (A9)

When resolution is perfect, this gives a well-peaked averaging func-
tion that has the same value as eq. (14) at the point (θ0, φ0) at which
it is centred; in fact, it is very similar to, but subtlety different from,
eq. (14) elsewhere on the CMB. Orthogonality holds so long as c
and b contain pairs of θ and φ derivatives of spherical harmonics,
so the same formulation provides averaging functions for either the
toroidal or the poloidal parts of the flow, or the θ - or φ-component of
the complete flow, by setting appropriate pairs of elements of c and
b to zero (and the factor 8 in the denominator of b to 4 to preserve
the amplitude). Hence, this formulation appears at first sight to pro-
vide a good candidate flow averaging function. However, it is not
well-behaved at the poles—the value depends on longitude, that is,
it is not single-valued. It might be possible to overcome the problem
by rotating the coordinate system (and the resolution matrix that
contains the data distribution information) so that the averaging
function is centred on a pole; we have not tried this approach.
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