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Abstract 

Carbon (δ13C) and nitrogen (δ15N) stable isotope analysis of bone collagen from 57 

human and 137 faunal samples was conducted with the aim of reconstructing human 

diet at the Late Chalcolithic (mid-4th millennium BC) site of Çamlıbel Tarlası, north-

central Anatolia. The analyses indicate that the diet of the inhabitants of Çamlıbel 

Tarlası was based largely on C3 resources. Comparison of human and faunal δ15N 

values suggest that animal proteins were likely to be of secondary importance to diet, 

with cultigens such as wheat and barley and potentially pulses taking the role of 

dietary staples. Age-related variation in stable isotope signals was identified. 

 

Keywords: Anatolia, stable isotopes, δ13C, δ15N, Chalcolithic, diet.  

 

Highlights:  

• Diet at Chalcolithic Çamlıbel Tarlası, north-central Anatolia, was constructed 

from human and animal C and N stable isotope data  

• Human δ13C and δ15N values point to a predominantly C3 terrestrial diet drawn 

principally from plant foods 

• Age-related differences in C and N isotope values were identified 

• Inter-individual variation in C and N isotope values may reflect dietary 

differences  
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Diet at Late Chalcolithic Çamlıbel Tarlası, North Central Anatolia: an isotopic 

perspective  

 

1. Introduction 

Chalcolithic settlements and societies on the Anatolian Plateau have received 

relatively little attention in comparison to earlier Neolithic and later Bronze Age sites 

and consequently the economy and society of prehistoric communities in this region 

are poorly understood (e.g. Parzinger, 1993; Steadman, 1995; Özdoğan, 1996; Düring, 

2008; Schoop, 2011a). Çamlıbel Tarlası (ÇBT) is one of only a small number of 

prehistoric sites to have been excavated in north-central Anatolia (Schoop et al., 2009; 

Schoop, 2010, 2011b). Stable carbon and nitrogen isotope analysis of human and 

associated animal remains from Çamlıbel Tarlası was conducted in order to 

reconstruct dietary intake of the small rural farming community and to assess the 

relative importance of plant vs animal foods in diet. 

 

2. Çamlıbel Tarlası – Archaeological Background 

Over three seasons (from 2007 to 2009) Çamlıbel Tarlası was excavated under the 

direction of one of the authors (U-DS) with the express aim of expanding knowledge 

of prehistoric settlement, chronology and economy in north-central Anatolia. 

Çamlıbel Tarlası was a small, short-lived settlement located on a small plateau (c. 

1040 m asl) in a narrow valley, approximately 3 km from the main Budaközü Plain, in 

the Turkish province of Çorum (see Figure 1; Schoop, 2010, 2011b, 2015). The main 

activities attested at the site are agriculture and extractive metallurgy. Palynological 

evidence indicates that the wider region was forested (Dörfler et al., 2000; Marsh, 

2010). Surrounding plateaus would have been ideally suited to small-scale agriculture 

(cultivation and livestock husbandry). An outcrop of copper ore is located ~2 km to 

the east of the site (Marsh, 2010).  
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Figure 1. Map of Anatolia indicating the location of Çamlıbel Tarlası. 

 

Seven phases of activity have been identified at Çamlıbel Tarlası (Table 1) and 

these have been dated to the Late Chalcolithic (Table 2). The earliest phase of activity 

(ÇBT I) is represented by numerous bowl furnaces, possible copper smelting 

installations cut into the ground surface and insulated with layers of potsherds, stones 

and clay. Following this initial phase of activity, there were three construction phases 

(ÇBT II, ÇBT III and ÇBT IV) interspersed with three non-architectural phases 

(phases of ephemeral use – FPEU, SPEU and TPEU) during which Çamlıbel Tarlası 

saw human activity probably on a seasonal basis. The whole sequence dates between 

3650 and 3375 cal BC (Table 2).  
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Phase Characteristic Features 

TPEU Fragmentary burials in plough zone 

ÇBT IV Habitations, large courtyard with evidence of slag processing, slag, crucibles 

SPEU Second phase of ephemeral use: seasonal presence, bowl furnaces, ore 

ÇBT III Large, free-standing buildings, crucibles, copper slag 

FPEU First phase of ephemeral use: seasonal presence, bowl furnaces, ore 

ÇBT II Dense architecture, room clusters, bowl furnaces, copper ore, many infant graves 

ÇBT I No habitation structures, water course, seasonal use?, bowl furnaces, copper ore 

Virgin Soil / Bedrock 

 

Table 1. Phases of activity at Çamlıbel Tarlası 

 

 

Lab. No Botanical ID Context ÇBT Phase 14C (BP) 
cal BC age 

range (2σ) 

      

OZK 882 Lolium seed floor ÇBT IV 4735±40 3640-3375 

OZK 883 Cereal grain floor ÇBT IV 4790±30 3610-3515 

OZK 886 Cereal grain floor ÇBT II 4725±35 3635-3525 

OZK 887 Cereal grain floor ÇBT II 4780±30 3640-3535 

      

 

Table 2. Çamlıbel Tarlası radiocarbon determinations. Data from Schoop et al. 

(2009). The calibrated age ranges are quoted with endpoints rounded outwards to 5 

years, following Mook (1986). The ranges have been calculated using the maximum 

intercept method (Stuiver and Reimer 1986), the IntCal13 calibration curve (Reimer 

et al. 2013) and the computer program OxCal v4.2.3 (Bronk Ramsey 2009).  

 

3. Çamlıbel Tarlası – Human Remains  

A large number of child burials were discovered within the settlement, either 

underneath the house floors or externally, in immediate juxtaposition to the house 

walls. Intramural burial appears to have been reserved for children; the few adults 

from Çamlıbel Tarlası appear to have been buried during the episodes without 

permanent settlement at the site. Nineteen individuals were excavated from 17 jar 

burials and primary inhumations at Çamlıbel Tarlası (Thomas, 2011; Irvine et al., 

2014). Two distinct burial practices were observed at Çamlıbel Tarlası: although both 

children and adults were inhumed in a contracted, ‘hocker’, position with the head 
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pointing to the south and facing towards the east, most of the very young children 

were interred in large pottery vessels (see Table 3; Schoop et al., 2009; 2011b).  In 

addition to these identifiable graves, more human bones were recovered as isolated 

finds. All of these 68 instances were individual bones or small assemblages of bones 

in secondary contexts. These finds suggest that burial at the site continued during the 

non-residential episodes which generated comparatively little in the way of 

archaeological deposits. Such graves were exposed to disturbance during the 

construction activities of the following habitation phase. Despite their relocation, all 

of these bones are well-preserved and do not appear to have been subject to deposition 

conditions much different to those of the undisturbed graves. 
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Grave GUSI Context ID Type Age (Sex) Phase 

  
 

        

G 1 3106 204-1103 Jar Burial 9–15 mo ÇBT II 

G 2* - 327-921 Jar Burial 0–3 mo ÇBT II 

G 3 3138 80-1086 Hocker 2–4 y pre-ÇBT III 

G 4 1579 406-3224 Hocker 8–10 y ÇBT III 

G 5 2282 464-4072 Hocker 6–8 y 
unclear, probably pre-

ÇBT IV 

G 6 3240 649-4295 Jar Burial 18–24 mo pre-ÇBT IV 

G 7 3099 817-4779 Jar Burial 3–5 y ÇBT III 

G 8 2281 851-5543 Hocker 20–30 y (F) probably TPEU 

G 9 3101 859-5529 
Hocker? 

(disturbed) 
18–24 mo ÇBT II 

G 10 3141 923-5423 Jar Burial foetus ÇBT III 

G 11 2278 970-6074 Hocker 7–9 y ÇBT II 

G 12 2279 884-5879 Hocker 30–40 y (M) ÇBT I 

G 13 2336 950-6118 Hocker 6–8 y ÇBT II 

G 14 3100 971-6144 Hocker 4–5 y ÇBT II 

G 15 3239 978-6140 Jar Burial foetus–3 mo ÇBT II 

G 16 3142 894-5878 Jar Burial 15–18 mo ÇBT II 

G 17 2337 1010-5876 Hocker 12–15 mo ÇBT II 

 

Table 3. Contextual information of Çamlıbel Tarlası burials sampled for carbon and 

nitrogen isotope measurements. * - indicates insufficient collagen was recovered from 

the specimen for mass spectrometric analysis. 

 

The human remains recovered from Çamlıbel Tarlası were recorded and age and 

sex determined according to the osteological standards set out in Van Beek (1983), 

Buikstra and Ubelaker (1994) and Bass (1995). Sex could be attributed in only three 

cases (Thomas, 2011).  
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Dental pathologies that may relate to diet were identified in ten individuals: 

signs of dental wear, which ranged from slight to extreme, were apparent in six 

children, two individuals >12 years and two adults (Irvine et al., 2014). Moderate to 

severe attrition was noted in four children aged between approximately 4 and 10 

years. Patterns of dental wear and cupping at Çamlıbel Tarlası are consistent with a 

diet high in processed grains (Irvine et al., 2014). One child, aged 2–3 years, and 

another aged 4–5 years, have enamel hypoplasia (Irvine et al., 2014), which may be 

an indicator of physiological stress (Goodman et al., 1980). 

 

4. Subsistence Indicators at Çamlibel Tarlasi 

Traditionally, the diets of past populations have been reconstructed at the population 

level from the remains of plants and animals, as well as subsistence-related artefacts 

and features, recovered from archaeological sites. 

The faunal assemblage from Çamlıbel Tarlası is dominated by the remains of 

domesticates: primarily cattle (Bos taurus) and pig (Sus scrofa) with the remains of 

caprines also common (Figure 2, see also Bartosiewicz and Gillis, 2011, table 10). 

Wild animal species constitute a tiny proportion of the assemblage (0.9% by NISP 

and 0.8% by weight) and may not have been taken for meat (Bartosiewicz and Gillis, 

2011). The species representation at Çamlıbel Tarlası suggested that there had been “a 

heavy reliance on animal keeping at the settlement” (2011: 77) and a “dominance of 

beef in the meat diet” (Bartosiewicz and Gillis, 2011: 78). Secondary produce may 

have been exploited; cattle may have been used for traction and sheep may have been 

kept primarily for wool, while pigs would have been kept for meat (Bartosiewicz and 

Gillis, 2011).  
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Figure 2. Animal taxa representation at Çamlıbel Tarlası by NISP (Total NISP = 

2752). 

 

Among the plant remains identified at Çamlıbel Tarlası, six crops are described 

as ‘reasonably abundant’: einkorn (Triticum monococcum), emmer (T. dicoccum) and 

‘new type’ wheat, barley (Hordeum vulgare), lentil (Lens culinaris) and bitter vetch 

(Vicia ervilia) (Papadopoulou and Bogaard, 2012). Also recovered were small 

quantities of chickpea (Cicer arietinum), grass pea (Lathyrus sativus/cicera), Spanish 

vetchling (L. ochrus), and flax (Linum sp.), grasses (Lolium sp. and Phalaris sp.) with 

free-threshing wheat (T. aestivum/durum) tentatively identified (Papadopoulou and 

Bogaard, 2012). All of the plants identified to species/genus level have a C3 

photosynthetic pathway. A possible grain store, comprised of four chambers with 

stone foundations was identified at ÇBT I (Schoop, 2010). A few similar elevated 

storage features were identified in later settlement phases, while storage pits appear 

largely absent from Çamlıbel Tarlası. The importance of plant foods is underscored 

by finds of flint blades with ‘sickle gloss’ (Milić, 2014).  

Numerous finds of fragments of pottery churns point to the importance of dairy 

produce at the site. This is further supported by the identification of animal fats, in 

one case likely milk fat or a derivative, on two churn fragments analysed by gas 

chromatography from nearby, probably contemporaneous Yarıkkaya (Sauter et al., 

2003, figs 1–3).  
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The initial impression gained from the analysis of animal and plant remains was 

that the inhabitants of Çamlıbel Tarlası subsisted largely on the meat of cattle and pig, 

dairy produce, and on wheat and barley. Stable carbon and nitrogen analysis of 

humans and associated faunal remains allows us to test this hypothesis and assess 

whether there are individual differences in dietary intake.  

 

5. Stable Isotope Analysis and Dietary Reconstruction 

Carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in bone collagen have been 

demonstrated to be reliable indicators of dietary protein intake at the level of the 

individual (e.g. Chisholm et al., 1983; Schoeninger, 2010). 12C/13C isotopes are 

incorporated into plant tissues during photosynthesis. Carbon isotope ratios (δ13C) 

vary between plants depending on the mechanism used to fix atmospheric carbon. 

Most plants fix carbon through one of two routes, either the C3 or C4 photosynthetic 

pathway. C3 plants comprise of cereals such as wheat and barley, and most fruits and 

vegetables, while C4 plants include some tropical grasses, and cereals such as millet, 

sorghum, and maize. C3 plants generally have δ13C values significantly more depleted 

in 13C than C4 plants: modern C3 plants have average δ13C values of c. -26.5‰, while 

those of C4 plants average c. -12.5‰ (Smith and Epstein 1971; Tieszen 1991). This 

variation in plant δ13C is passed on through the food chain to the tissues of animal and 

human consumers. Fractionation (13C-enrichment) occurs between plants and 

herbivores and again between herbivores and their human consumers.  This results in 

a human-diet δ13C offset of c. +5‰. Humans eating C3 plants or C3 plant consumers 

will have δ13C values in the range -22‰ to -18‰, while those consuming 

predominantly C4 plants or C4 plant consumers will have δ13C values in the range -

11‰ to -7‰ (Tykot 2004). The δ13C value of human bone collagen can therefore be 

used to determine the relative importance of C3 vs C4 plants and their consumers to 

diet (Vogel and van der Merwe, 1977; Tykot 2006).  

14N/15N isotopes may be incorporated into plants from soils and can also be 

drawn from atmospheric N2. Nitrogen isotope ratios (δ15N) exhibit a ‘trophic level’ 

effect, becoming more enriched in 15N or ‘heavier’ with each step in the food chain. 

Enrichment of c. 3–5‰ between predator and prey has been observed in 

archaeological specimens (Bocherens and Drucker, 2003) although analyses of 

modern human tissue samples suggest that the diet to bone collagen enrichment may 

be greater than this, in the order of 6‰ (O’Connell et al., 2012).  
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Within a single biome plants have lower δ15N values than herbivores, which in 

turn have lower values than carnivores (Katzenberg, 2000). δ15N values can therefore 

indicate the relative contribution of plant vs animal proteins to diet and may also 

indicate the type of animal protein in diet, i.e. herbivore, omnivore, carnivore (DeNiro 

and Epstein, 1981).  

δ13C and δ15N values can also be used to explore the consumption of terrestrial 

vs aquatic foods. Freshwater resources have similar δ13C values to terrestrial foods; 

however, δ13C values vary between terrestrial/freshwater and marine foodwebs owing 

to differences in environmental carbon sources, with marine resources normally being 

relatively enriched in 13C. Generally, high trophic level aquatic resources also have 

enriched δ15N values, as aquatic foodwebs tend to be more complex, comprising more 

trophic levels, and may also be enriched through bacterial activity (Chisholm et al., 

1982; Schoeninger and DeNiro, 1984; Schoeninger, 2010).  

Thus co-analysis of δ13C and δ15N of humans and associated faunal remains can 

distinguish between diets based on terrestrial C3 and C4 plant foodwebs, freshwater 

and marine resources, and may also identify the trophic level of the consumer (Tykot, 

2004). 

 

5.1 Materials and Methods 

Diet at Çamlıbel Tarlası was reconstructed from the δ13C and δ15N measurements of 

samples of human bone collagen and a comparative assemblage of faunal remains.   

All of the formal/primary burials were sampled for δ13C and δ15N analysis (see 

Tables 3 and 4 for the contextual and demographic information of the human remains; 

17 of 19 individuals had well preserved bone collagen). The other human remains (i.e. 

the secondary deposits), were selectively sampled to minimise the chance of sampling 

the same individual more than once. At most, only one element was sampled from 

each secondary deposit. Samples were further selected or discarded based on the age, 

sex and skeletal elements represented in the overall assemblage (i.e. where recovered 

skeletal elements likely belonged to an individual already sampled they were omitted 

from the analysis). Stratigraphic evidence was also taken into consideration when sub-

sampling the secondary deposits of human remains. With the exception of three 

samples, discussed below, it is likely that the samples selected from the secondary 

deposits are from different individuals. A total of 58 human specimens were sampled. 
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Specimens of both domestic (dog, pig, goat/sheep and cattle) and wild game 

animals (wild sheep, deer and brown hare) from Çamlıbel Tarlası were selected to 

provide an indication of local foodweb isotope values for the interpretation of human 

diet. The animal bone samples were mostly taken from well-defined contexts, 

preferably from internal or external floors and the deposits covering these features. 

Visibly weathered or burnt specimens were rejected for analysis. Generally speaking, 

the taphonomic context of the animal bone sample is similar to that of the isolated 

human bones. A total of 182 animal specimens were sampled – Table 5.  

 

Phase Sample Skeletal Context Age/Sex δ13C δ15N C/N  %N %C 

  (GUsi) element               

ÇBT I 2279 long bone Grave 12 30-40 y (M)  -19.1 8.5 3.2 13.7 37.7 

 

2904 cranium secondary juvenile -19.4 7.8 3.2 13.8 37.9 

 

2914 cranium secondary infant -19.4 10.5 3.2 15.6 42.6 

 

2915 humerus secondary juvenile -19.1 8.5 3.2 15.1 41.2 

 

2918 tibia  secondary 1 y -17.8 12.2 3.2 14.6 40.0 

 

2920 long bone secondary adult -18.9 8.9 3.2 11.0 29.9 

 

3087 rib secondary juvenile -19.8 7.0 3.5 4.1 12.2 

 

3104 cranium secondary juvenile -19.2 7.7 3.3 12.5 35.5 

          

ÇBT I/II  3010 scapula secondary juvenile -18.9 7.0 3.2 14.4 39.7 

          

ÇBT I/III 3007 fibula secondary adult -19.0 8.5 3.2 15.3 42.1 

          

ÇBT II 2278 femur Grave 11 7-9 y -19.2 8.0 3.2 14.9 41.1 

 

2336 rib Grave 13 6-8 y -19.0 6.6 3.2 12.7 35.1 

 

2337 fibula Grave 17 12-15 mo -19.0 7.8 3.2 13.7 37.5 

 

2902 cranium secondary adult -18.8 8.9 3.2 15.1 41.3 

 

2911 rib secondary 6-8 y? -18.9 7.0 3.2 14.0 38.4 

 

2921 femur secondary juvenile -19.1 7.8 3.2 15.0 40.7 

 

2922 calcaneus secondary adult -18.7 9.4 3.2 13.3 36.5 

 

2925 scapula secondary adult -18.9 8.1 3.2 14.2 38.4 

 

3009 scapula secondary adult -18.8 6.9 3.2 11.6 32.0 

 

3100 rib Grave 14 4-5 y -19.0 7.6 3.3 14.2 39.5 

 

3101 rib Grave 9 18-24 mo -18.3 11.0 3.2 11.0 30.5 

 

3106 rib Grave 1  9-15 mo -17.9 12.0 3.3 11.4 32.0 

 

3142 rib Grave 16 15-18 mo -18.1 11.7 3.2 14.4 40.0 

 

3239 rib Grave 15 foetus-3 mo -18.5 8.8 3.2 12.3 34.4 

          
ÇBT II/III 2910 tibia  secondary adult -19.1 7.9 3.2 15.1 41.3 

 
3102 cranium secondary adult -19.0 9.3 3.3 9.7 27.3 
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pre-ÇBT III 3138 rib Grave 3 2-4 y -18.8 9.6 3.2 8.9 24.6 

          
ÇBT III 1579 rib Grave 4 8-10 y -18.8 7.3 3.3 12.5 34.9 

 

2905 femur secondary adult -19.0 7.4 3.2 9.6 26.6 

 

2908 rib secondary adult -18.9 8.7 3.2 13.6 37.3 

 

2909 rib secondary adult -18.9 9.2 3.2 13.5 36.9 

 

2913 long bone secondary adult -18.8 8.1 3.2 14.5 39.6 

 

2916 cranium secondary adult -18.9 8.7 3.2 14.9 41.1 

 

2917 femur secondary adult -19.1 7.4 3.2 11.2 31.1 

 

2919 metacarpal secondary juvenile -19.1 8.1 3.1 12.1 32.3 

 

2923 cranium secondary adult -18.9 8.4 3.2 12.7 34.6 

 

2924 cranium secondary juvenile -19.2 8.4 3.2 11.1 30.6 

 

3005 humerus secondary adult -18.9 8.4 3.2 14.6 40.4 

 

3006 cranium secondary juvenile -19.0 8.4 3.2 15.0 41.6 

 

3008 ulna secondary juvenile -19.3 8.0 3.2 10.8 30.2 

 

3011 cranium secondary adult -18.9 8.7 3.2 12.8 35.1 

 

3012 tibia  secondary adult? -19.0 7.9 3.2 12.8 35.2 

 

3013 vertebra secondary adult -18.9 9.7 3.3 13.2 36.9 

 

3014 clavicle secondary juvenile -18.5 7.3 3.2 12.1 33.5 

 

3099 rib Grave 7 3-5 y -19.1 8.6 3.2 12.8 35.6 

 

3141 tibia  Grave 10 foetus -18.4 8.9 3.3 23.3 8.2 

          
ÇBT III/IV 2912 cranium secondary adult -19.3 7.8 3.3 12.7 35.4 

 
2907 rib secondary juvenile -18.5 8.7 3.2 12.8 35.2 

 2280 femur* secondary adult -19.1 7.5 3.2 13.1 36.2 

 3105 cranium* secondary adult -19.4 10.0 3.2 13.7 38.2 

 3103 humerus secondary perinate -18.9 10.9 3.4 9.1 26.4 

          

Pre-ÇBT 

IV 
3240 longbone Grave 6 18-24 mo -18.0 11.1 3.2 13.1 36.3 

          
Probably 

pre-ÇBT IV 
2282 long bone Grave 5 6-8 y -19.1 7.4 3.2 12.3 33.5 

          

ÇBT IV 2903 metacarpal secondary juvenile -19.0 7.6 3.2 14.3 39.2 

 

2906 cranium secondary ? -19.0 8.4 3.2 14.5 39.6 

 
         

TPEU 2277 femur 

disturbed 

grave in 

plough 

zone 

21+ y -18.6 7.7 3.2 14.5 39.9 

Probably 

TPEU 
2281 femur Grave 8 20-30 y (F) -19.3 7.3 3.4 5.7 16.5 
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Table 4. Contextual information and age and sex determination of Çamlıbel Tarlası 

humans measured for carbon and nitrogen isotope composition. * - indicates bones 

with cut marks. 
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Sample ID Species Phase δ13C δ15N C/N %N %C 

(GUsi)              

        

2202 Cattle (Bos) ÇBT III -19.4 5.9 3.1 13.8 37.1 

2205 Cattle (Bos) FPEU -19.6 6.0 3.2 14.6 39.9 

2207 Cattle (Bos) ÇBT III -19.4 8.0 3.2 13.3 35.9 

2270 Cattle (Bos) ÇBT III -18.1 6.2 3.2 13.6 37.7 

2271 Cattle (Bos) ÇBT IV -18.9 7.7 3.2 14.8 40.7 

2272 Cattle (Bos) ÇBT III -17.6 9.8 3.2 14.2 39.1 

2273 Cattle (Bos) ÇBT IV -19.0 8.1 3.2 14.3 39.8 

2274 Cattle (Bos) ÇBT II -19.4 9.7 3.2 13.3 36.7 

2275 Cattle (Bos) ÇBT I -16.8 7.0 3.2 12.1 33.6 

2276 Cattle (Bos) ÇBT I -18.3 6.1 3.2 13.7 37.5 

2326 Cattle (Bos) ÇBT II -19.4 6.7 3.2 13.3 36.9 

2327 Cattle (Bos) ÇBT I -18.2 6.8 3.3 15.6 43.9 

2328 Cattle (Bos) ÇBT III -20.1 7.0 3.2 13.6 37.4 

2329 Cattle (Bos) ÇBT I -19.9 6.1 3.2 15.8 43.9 

2330 Cattle (Bos) ÇBT II -19.5 8.6 3.3 14.1 39.5 

2331 Cattle (Bos) ÇBT I -18.7 6.5 3.3 15.6 43.4 

2332 Cattle (Bos) ÇBT I -18.3 6.7 3.3 15.4 43.4 

2333 Cattle (Bos) ÇBT IV -18.8 6.3 3.2 12.4 34.1 

2334 Cattle (Bos) ÇBT II -17.4 8.9 3.3 14.9 41.6 

2335 Cattle (Bos) ÇBT IV -18.2 9.1 3.2 14.7 40.8 

3096 Cattle (Bos) SPEU -19.6 6.4 3.3 11.4 31.8 

3114 Cattle (Bos) FPEU -18.5 5.5 3.2 11.3 31.4 

3115 Cattle (Bos) ÇBT I -17.0 7.5 3.2 11.8 32.6 

3116 Cattle (Bos) ÇBT IV -17.5 7.4 3.3 10.7 30.1 

3117 Cattle (Bos) ÇBT III/IV -20.1 7.4 3.3 13.0 36.7 

3118 Cattle (Bos) ÇBT III -17.6 7.4 3.2 14.2 39.4 

3119 Cattle (Bos) ÇBT I -17.6 6.5 3.3 13.8 38.9 

3120 Cattle (Bos) ÇBT II -19.7 7.3 3.3 13.7 38.6 

3135 Cattle (Bos) ÇBT I -18.8 6.8 3.3 12.7 36.3 

3136 Cattle (Bos) ÇBT III -19.3 6.2 3.3 13.1 37.0 

3137 Cattle (Bos) ÇBT III -18.4 6.5 3.3 10.3 29.2 

3143 Cattle (Bos) ÇBT I -18.2 6.9 3.2 13.6 37.5 

3144 Cattle (Bos) ÇBT IV -18.3 6.3 3.2 12.4 34.3 

3145 Cattle (Bos) SPEU -19.2 7.5 3.2 14.3 39.7 

3147 Cattle (Bos) FPEU -17.7 6.8 3.2 12.3 34.2 

3149 Cattle (Bos) SPEU -18.1 8.2 3.3 10.6 29.8 

3154 Cattle (Bos) SPEU -19.2 5.9 3.2 13.1 36.2 

3155 Cattle (Bos) SPEU -19.5 6.0 3.3 11.6 32.4 

3156 Cattle (Bos) FPEU -19.8 7.1 3.2 11.7 32.4 

3157 Cattle (Bos) ÇBT I -20.0 6.1 3.2 12.4 34.3 

2325 Caprine ÇBT III -19.2 6.5 3.2 14.8 41.3 

3017 Caprine ÇBT IV -18.6 7.9 3.2 12.7 35.2 

3022 Caprine ÇBT I -19.6 7.3 3.3 14.5 40.3 

3023 Caprine ÇBT II -19.4 6.6 3.3 12.4 34.6 

3092 Caprine ÇBT III -19.5 7.2 3.2 13.2 36.7 
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3254 Caprine ÇBT I -19.4 6.1 3.2 13.2 36.8 

3255 Caprine ÇBT II -19.9 5.5 3.3 5.0 14.2 

3256 Caprine ÇBT I -19.3 6.1 3.2 13.2 36.4 

3257 Caprine ÇBT II/III -19.4 7.2 3.2 13.1 36.2 

3258 Caprine ÇBT III/IV -19.6 7.2 3.3 7.2 24.1 

3259 Caprine ÇBT III -18.8 6.2 3.2 14.3 39.6 

3090 
Goat (Capra 

hircus) 
SPEU -20.2 4.9 3.3 15.3 43.1 

3161 
Goat (Capra 

hircus) 
ÇBT IV -18.0 6.0 3.2 13.4 37.2 

3164 
Goat (Capra 

hircus) 
ÇBT III -19.3 5.1 3.2 10.6 29.1 

3168 
Goat (Capra 

hircus) 
SPEU -19.6 6.5 3.2 8.9 24.8 

2204 
Sheep (Ovis 

aries) 
ÇBT I -18.8 5.7 3.2 12.0 32.5 

2268 
Sheep (Ovis 

aries) 
ÇBT III -19.4 7.8 3.3 13.7 38.2 

3018 
Sheep (Ovis 

aries) 
ÇBT IV -19.7 5.4 3.3 12.1 34.0 

3019 
Sheep (Ovis 

aries) 
ÇBT I -19.0 6.2 3.3 15.5 43.4 

3020 
Sheep (Ovis 

aries) 
FPEU -19.2 7.1 3.2 13.9 38.4 

3021 
Sheep (Ovis 

aries) 
ÇBT III -19.6 6.4 3.3 7.6 21.8 

3024 
Sheep (Ovis 

aries) 
ÇBT I -18.1 6.7 3.2 13.7 38.0 

3025 
Sheep (Ovis 

aries) 
ÇBT III -19.2 7.0 3.3 13.5 37.6 

3026 
Sheep (Ovis 

aries) 
ÇBT I -19.0 6.1 3.2 14.7 40.6 

3027 
Sheep (Ovis 

aries) 
ÇBT II -19.3 6.1 3.2 13.4 36.9 

3089 
Sheep (Ovis 

aries) 
ÇBT III -19.2 6.4 3.2 15.6 43.2 

3091 
Sheep (Ovis 

aries) 
SPEU -18.7 6.6 3.3 11.0 30.7 

3093 
Sheep (Ovis 

aries) 
ÇBT III -19.6 7.1 3.2 14.6 40.4 

3094 
Sheep (Ovis 

aries) 
ÇBT IV -19.0 6.2 3.2 13.1 36.3 

3095 
Sheep (Ovis 

aries) 
ÇBT IV -19.1 6.0 3.2 13.6 37.7 

3097 
Sheep (Ovis 

aries) 
SPEU -20.2 5.6 3.2 14.6 40.6 

3098 
Sheep (Ovis 

aries) 
FPEU -19.3 6.5 3.3 7.7 21.9 

3158 
Sheep (Ovis 

aries) 
ÇBT II -19.5 5.9 3.3 13.9 38.8 

3163 
Sheep (Ovis 

aries) 
FPEU -18.2 5.9 3.2 13.5 36.9 

3250 
Sheep (Ovis 

aries) 
ÇBT I -18.8 7.1 3.3 14.6 40.9 
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3252 
Sheep (Ovis 

aries) 
ÇBT III -19.3 6.5 3.2 14.2 39.6 

3251 
Sheep (Ovis 

aries) 
ÇBT II -18.5 5.7 3.2 13.0 35.8 

3253 
Sheep (Ovis 

aries) 
FPEU -19.6 6.0 3.2 13.9 38.5 

3140 
Wild sheep 

(Ovis)  
ÇBT II -18.7 6.3 3.3 9.1 25.6 

2203 Pig (Sus)* ÇBT III -19.0 7.3 3.2 13.1 35.8 

2651 Pig (Sus)* SPEU -20.1 5.5 3.2 9.8 27.4 

2652 Pig (Sus)* ÇBT III -19.5 7.1 3.2 13.7 37.8 

2653 Pig (Sus)* ÇBT I -19.9 5.6 3.4 4.5 12.9 

2655 Pig (Sus)* ÇBT II -18.7 4.7 3.3 8.5 24.0 

2657 Pig (Sus)* ÇBT II -19.2 7.3 3.2 11.8 32.9 

2658 Pig (Sus)* ÇBT IV -18.9 5.9 3.3 10.2 29.0 

2659 Pig (Sus)* ÇBT II -19.4 6.6 3.3 9.7 27.1 

2661 Pig (Sus)* FPEU -19.8 8.0 3.2 9.7 26.9 

2662 Pig (Sus)* ÇBT IV -19.8 6.7 3.3 10.9 30.9 

2663 Pig (Sus)* ÇBT III -20.2 5.7 3.4 7.3 21.2 

2664 Pig (Sus)* SPEU -20.0 6.5 3.3 8.9 25.3 

2666 Pig (Sus)* ÇBT IV -18.7 6.0 3.3 8.7 24.8 

2667 Pig (Sus)* ÇBT II -19.4 6.4 3.3 12.6 35.5 

2668 Pig (Sus)* FPEU -19.7 7.6 3.5 4.0 12.0 

2669 Pig (Sus)* ÇBT IV -20.3 6.7 3.3 10.4 29.2 

2926 Pig (Sus) ÇBT I -19.1 6.0 3.2 13.2 36.2 

2927 Pig (Sus) ÇBT IV -19.6 7.2 3.2 15.4 42.1 

2928 Pig (Sus) ÇBT I -19.4 6.3 3.2 13.5 37.1 

3015 Pig (Sus) ÇBT I -19.0 6.7 3.2 14.1 39.1 

3016 Pig (Sus) SPEU -19.4 7.1 3.2 13.4 37.1 

3088 Pig (Sus) ÇBT IV -19.5 6.9 3.2 9.4 26.1 

3122 Pig (Sus) ÇBT I -19.6 6.6 3.3 9.0 25.3 

3123 Pig (Sus) ÇBT III -19.4 6.9 3.3 9.6 27.4 

3124 Pig (Sus) ÇBT III -19.3 7.0 3.3 9.8 27.5 

3125 Pig (Sus) ÇBT III -20.3 6.7 3.3 13.5 38.0 

3126 Pig (Sus) ÇBT II -19.8 6.2 3.3 9.6 27.0 

3127 Pig (Sus) ÇBT I -19.6 7.7 3.2 12.9 35.6 

3128 Pig (Sus) ÇBT III -19.5 7.6 3.3 14.0 39.2 

3129 Pig (Sus) ÇBT II -19.4 6.5 3.2 12.1 33.7 

3130 Pig (Sus) SPEU -19.0 8.2 3.3 12.4 34.7 

3131 Pig (Sus) ÇBT I -19.3 6.1 3.3 9.8 27.4 

3132 Pig (Sus) FPEU -19.0 6.8 3.3 12.5 35.2 

3133 Pig (Sus) ÇBT III -19.2 7.8 3.4 5.6 16.4 

3134 Pig (Sus) ÇBT II -19.3 7.0 3.2 11.6 32.2 

3139 Pig (Sus) ÇBT III -20.3 6.4 3.3 10.5 29.6 

3148 Pig (Sus) SPEU -19.1 7.3 3.2 8.7 24.3 

3150 Pig (Sus) ÇBT III -19.0 6.0 3.2 11.8 32.8 

3151 Pig (Sus) ÇBT III -19.0 6.6 3.2 12.6 35.1 

3152 Pig (Sus) ÇBT III -19.0 7.1 3.2 13.0 36.1 

3153 Pig (Sus) ÇBT I -19.5 6.0 3.2 13.4 36.9 

3159 Pig (Sus) FPEU -18.3 5.4 3.2 8.8 24.4 
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3160 Pig (Sus) FPEU -19.5 7.6 3.2 12.0 32.8 

3162 Pig (Sus) ÇBT III -19.3 6.6 3.2 12.6 35.0 

3165 Pig (Sus) ÇBT III -19.0 7.3 3.3 10.0 28.0 

3166 Pig (Sus) ÇBT I -18.6 6.0 3.2 18.3 50.7 

3167 Pig (Sus) ÇBT I -18.8 6.4 3.2 13.0 35.9 

3242 Pig (Sus) ÇBT II -19.2 6.7 3.2 13.5 37.4 

3243 Pig (Sus) ÇBT II/III -19.4 7.3 3.3 13.8 38.6 

3245 Pig (Sus) FPEU -19.1 7.8 3.2 11.3 31.1 

3249 Pig (Sus) ÇBT III -19.4 7.1 3.2 10.0 27.8 

3246 Pig (Sus) ÇBT II -19.9 6.6 3.3 13.2 36.8 

3247 Pig (Sus) ÇBT III -19.9 7.0 3.2 12.0 33.3 

3248 Pig (Sus) FPEU -19.4 6.0 3.3 12.3 34.5 

2206 

Dog (Canis 

familiaris) 
ÇBT I -19.4 6.2 3.1 12.6 34.0 

3109 

Dog (Canis 

familiaris) 
ÇBT III -19.0 7.7 3.2 12.7 35.1 

3110 

Dog (Canis 

familiaris) 
ÇBT I -18.9 8.3 3.2 12.4 34.2 

3111 

Dog (Canis 

familiaris) 
ÇBT I -19.3 6.1 3.3 11.0 30.9 

3112 

Dog (Canis 

familiaris) 
ÇBT II -18.9 6.9 3.2 13.5 37.4 

3113 

Dog (Canis 

familiaris) 
FPEU -18.6 9.8 3.3 11.3 32.2 

3121 

Dog (Canis 

familiaris) 
ÇBT II -18.9 7.2 3.2 10.9 30.4 

3146 

Dog (Canis 

familiaris) 
ÇBT III -19.4 6.5 3.3 8.3 23.3 

3107 Hare (Lepus sp.)  ÇBT III/IV -20.3 5.1 3.4 7.0 20.6 

3108 Hare (Lepus sp.) 
ÇBT 

II/FPEU 
-21.6 2.5 3.3 10.9 30.6 

3260 Deer (Cervidae) SPEU -20.1 5.1 3.2 10.6 29.6 

3261 Deer (Cervidae) FPEU -19.5 6.7 3.3 4.6 13.0 

 

Table 5. Stable isotope data and collagen preservation indicators of Çamlıbel Tarlası 

animal remains.*- indicates previously published in Vaughan et al. (2013). 

 

5.2 Method 

A ~1 g sample of human bone was taken from the cortical bone of each individual. 

Collagen was extracted from the sample using a modified Longin (1971) method 

(Brown et al., 1988). Pre-treatment consisted of sample cleaning by removal of the 

outer 2 mm of the bone surface, ultra-sonication in milli-Q™ purified water (carbon 

content <3 ppb), demineralization in 1N HCl at 4°C for a minimum of 24 hours, and 

gelatinization in 0.03N HCl at 80°C for ~16 hours; the resulting solution was 

centrifuged and the supernatant lyophilized. Samples with good collagen yields, i.e. 
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those with %wt yield of >1.00% (van Klinken, 1999; Brock et al., 2010), were 

measured for δ13C and δ15N at the SUERC radiocarbon facility East Kilbride, UK, 

using a Thermo Scientific Delta V Advantage continuous-flow isotope ratio mass 

spectrometer (CF-IRMS) coupled via a Thermo Scientific ConfloIV to a Costech ECS 

4010 elemental analyzer (EA) fitted with a pneumatic auto sampler. In-house gelatine 

standards, which are calibrated to the International Atomic Energy Agency (IAEA) 

reference materials USGS40 (L-glutamic acid, δ13CV-PDB = -26.39‰), USGS41 (L-

glutamic acid, δ13CV-PDB = +37.63‰), IAEA-CH-6 (sucrose, δ13CV-PDB = -10.45‰), 

USGS25 (ammonium sulphate, δ15NAIR = -30.41‰), IAEA-N-1 (ammonium sulphate, 

δ15NAIR = +0.43‰) and IAEA-N-2 (ammonium sulphate, δ15NAIR = +20.41‰), are 

run in duplicate for every ten unknown samples. Results are corrected for linearity 

and instrumental drift, and are reported as per mil (‰) relative to the internationally 

accepted standards V-PDB and AIR, with 1σ precisions of ± 0.2‰ and ± 0.3‰ for 

δ13C and δ15N, respectively.  

Collagen integrity was assessed according to the following criteria: (i) C:N ratio 

in the range 2.9 to 3.6 (DeNiro, 1985); and (ii) minimum %C ≥ 13% and %N ≥ 5% 

(Ambrose, 1990).  

From a total of 58 human specimens sampled 57 produced well-preserved 

collagen that fulfilled the criteria listed above, while animal bones appeared to have 

less well preserved collagen with 137 of a total of 182 specimens sampled meeting the 

requisite criteria. These data are presented in Tables 4 and 5. Sample GUsi-2911 may 

have been associated with Grave 13 (GUsi-2336), sample GUsi-2920 with Grave 12 

(GUsi-2279) while samples GUsi-3087 and GUsi-3104 may derive from the same 

disturbed burial, therefore only one set of values from each of these pairs of 

specimens have been included from the statistical analyses and interpretation 

presented below.  

 

6. Results and Discussion 

Average human δ13C and δ15N for the sampled population at Çamlıbel Tarlası are -

18.9±0.4‰ and 8.5±1.3‰ respectively. Individual variation in both δ13C values (with 

a range from -19.8‰ to -17.8‰) and δ15N values (with a range of 6.6‰ to 12.2‰) 

are evident (Fig. 3).  
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Figure 3. Scatterplot of the Çamlıbel Tarlası human δ13C vs δ15N values by age 

category. 

 

6.1 Adult Isotope Values 

Average adult δ13C=-19.0±0.2‰ and δ15N=8.3±0.8‰ (n=23) values are consistent 

with diets based principally on C3 resources (e.g. Tykot 2004). The range of adult 

δ13C values may indicate that diet included a small proportion of C4 resources, either 

directly through the consumption of C4 cereals, although none were evident at 

Çamlıbel Tarlası, or indirectly through the consumption of meat or other products of 

animals that had fed on C4 grasses. The range of cattle δ13C values, from -20.1‰ up to 

-17.0‰ suggests the availability of C4 plants. While C3 vegetation was dominant in 

Turkey throughout the Holocene (Rao et al., 2012), C4 plants were present and have 

been recovered from Anatolian prehistoric sites and in some cases were evidently 

consumed by livestock (e.g. Richards et al., 2003; Cappers 2008). However, the 

consumption of C4 resources is suggested tentatively as non-dietary factors, such as 

nutritional stress or physiology may affect isotope values (Fuller et al. 2005; Olsen et 

al. 2014). 
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Fuller et al. (2012) utilized a δ13C threshold of -19.0‰ to determine C4 input to 

human diet at Roman-Early Byzantine Düzen Tepe/Sagalassos in southwestern 

Turkey. Using the Fuller et al. (2012) value to assess C4 intake by humans at Çamlıbel 

Tarlası indicates that adult diet included a small component of C4 resources. Using a 

simple linear mixing model, with dietary endpoints of -19.0‰ = 100% C3 resources 

and -7.0‰ = 100% C4 resources, the highest δ13C value of the Çamlıbel Tarlası adults 

corresponds to a 10.0-11.7% contribution of C4 resources to human diet (allowing for 

δ13C measurement error).  

Comparison of human δ15N values with those of associated faunal remains may 

indicate the proportion of animal vs plant foods in diet (Fig. 4). Average domesticate 

herbivore (i.e. cattle, goat and domestic sheep) δ15N at Çamlıbel Tarlası is 6.7±0.9‰, 

while average adult human δ15N is 8.3±0.8‰, i.e. there is a 1.6‰ difference in 

average values. These values suggest that plant foods were an important dietary 

staple. The range of adult δ15N values (from 6.9‰ to 10.0‰) implies variation in 

individual intake of animal and plant proteins. Individuals with relatively low δ15N 

values likely consumed a greater proportion of plant foods. However, uncertainty in 

δ15N human-diet offset (e.g. Bocherens and Drucker 2003; Hedges and Reynard 2007; 

O’Connell et al. 2012), makes detailing the relative proportions of the different C3 

resources in diet non-trivial. 
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Figure 4. Scatterplot of adult human and animal remains average δ13C vs δ15N values 

with standard deviations presented as error bars. Deer and hare δ13C vs δ15N values 

are presented as individual values rather than an average with standard deviation 

owing to the small sample size, n=2. 

 

Diet at Çamlıbel Tarlası has been modelled using FRUITS (Fernandes et al., 

2014) to provide an indication of the proportions of cereal, pulse and animal proteins 

in diet with different δ15N human-diet offset values (Table 6). The average nitrogen 

isotope values of modern and prehistoric cereals and pulses were used in the FRUITS 

model. Legumes can fix atmospheric N2, and generally have δ15N values of c. 0‰ 

(Szpak et al., 2014). Bogaard et al. (2015) presented lentil δ15N values from Neolithic 

sites in central and southeast Europe that have an average value of 1.8‰.  Average 

δ15N values of cereals at Neolithic sites in southeast Europe were 4.6‰ (Bogaard et 

al., 2015).  δ15N values of flesh are reported to range from being comparable to bone 

values to being 15N-enriched by +2‰ (Medaglia et al. 1990; Schulting 1998). The two 

extremes in offset values (i.e. 3‰ and 6‰) have very different implications for 

average human diet. The former suggests an important role for plants in diet, while 

the latter implies a dominant role.  
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δ15N human-

diet offset 

value (ppm) 

Pulse 

δ15N 

value 

Cereal 

δ15N 

value  

Animal 

δ15N 

value 

 

Animal 

protein (%) 

 

Cereal 

protein (%) 

 

Pulse 

protein (%) 

3 0.0 4.6 6.7 56 34 11 

3 1.8 4.6 6.7 52 33 15 

3 0.0 4.6 8.7 39 42 19 

3 1.8 4.6 8.7 33 42 25 

4 0.0 4.6 6.7 33 46 21 

4 1.8 4.6 6.7 26 44 30 

4 0.0 4.6 8.7 25 46 29 

4 1.8 4.6 8.7 18 45 37 

5 0.0 4.6 6.7 25 36 39 

5 1.8 4.6 6.7 16 27 57 

5 0.0 4.6 8.7 19 36 45 

5 1.8 4.6 8.7 11 27 61 

6 0.0 4.6 6.7 17 25 58 

6 1.8 4.6 6.7 6 10 84 

6 0.0 4.6 8.7 13 25 62 

6 1.8 4.6 8.7 4 10 86 

Table 6. Modelled values of dietary protein intake of the Çamlıbel Tarlası population 

using Food Reconstruction Using Isotopic Transferred Signals (FRUITS) version 1.0 

(Fernandes et al., 2014). No priors were assumed.  

 

 The average of the nitrogen stable isotope data suggests that cattle protein was 

likely not a major component of human diet. Average δ15N of adult humans is 

8.3±0.8‰, while that of cattle is 7.1±1.1‰. In comparison caprines and pigs exhibit 

slightly lower δ15N values (average δ15Ncaprine= 6.4±0.7‰ and δ15Npig = 6.7±0.7‰). 

This situation is mirrored in the Early Chalcolithic contexts at Aktopraklık, which is 

situated in the Marmara region of northwestern Anatolia. Stable isotope values also 

indicated that animal, and again specifically cattle meat and dairy products, were 

likely a minor component of diet (Lillie et al., 2012; Budd et al., 2013).  

Although it is possible that cattle were kept predominantly for traction at 

Çamlıbel Tarlası other lines of archaeological evidence, such as the abundance of 

churns, and the dominance of cattle remains in the faunal assemblage seem to imply 

the importance of meat and/or dairy products to the economy of the site’s inhabitants. 

This apparent contradiction between the zooarchaeological evidence and the stable 

isotope data may be the result of dietary factors, such as (although not limited to):  
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(i) Preferential consumption of processed milk products with reduced or 

little protein content (e.g. butter/ghee and cream/cream cheeses).  

(ii) Consumption of a large proportion of legumes. The δ15N values of 

legumes are generally depleted relative to other plants (DeNiro and 

Epstein, 1981).  The inclusion of δ15N-depleted pulses such as bitter 

vetch and lentil, attested at ÇBT and other prehistoric Anatolian sites, in 

human diet could potentially mask the total contribution of protein from 

animals consuming non-leguminous plants and grasses.  

It is also possible that some of the remains of potential foodstuffs identified at the site 

were not consumed, in whole or in part, by those individuals normally resident at 

Çamlıbel Tarlası (cf. Arbuckle 2012).  

 

It is often assumed that domestic dogs would have been fed on household 

waste, and therefore would have had similar diets to humans (e.g. Clutton-Brock and 

Noe Nygaard, 1990; Rick et al., 2011). At Çamlıbel Tarlası dogs (n=8) have average 

δ13C = -19.0±0.3‰ and δ15N = 7.3±1.2‰; these values are statistically 

indistinguishable from the human δ13C and δ15N values (Mann Whitney U-test, two 

tailed, p>0.05). Thus, the dogs may have been fed on household waste. However, 

given the range of δ13C and δ15N values evident in the wild species sampled it is 

equally possible that the diets of dogs was supplemented by hunting locally available 

prey. 

 

6.2 Juvenile Isotope Values 

The average diet of all the juvenile specimens sampled is similar to that of the 

adults at Çamlıbel Tarlası (average δ13C=-18.8±0.5‰ and δ15N=8.8±1.6‰, n=30) and 

reflects mainly C3 dietary intake (see Fig. 3). No statistically significant difference 

between all children and all adult average δ13C and δ15N values is evident (for both 

variables, two-tailed Mann Whitney U test, p>0.05).  

At Çamlıbel Tarlası the average infant/young child δ13C is -18.2±0.3‰ and 

δ15N is 11.1±0.8‰ (n=10). A wide spread of δ13C and δ15N values is evident with 

δ13C ranging from -17.8‰ to -19.4‰ and δ15N from 7.6‰ to 12.2‰.  

Carbon and, in particular, nitrogen stable isotope values of infants and children 

have been used as an indicator of prehistoric weaning practices. Exclusively breastfed 

infants are effectively feeding at one trophic level above their mother and are 
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anticipated to exhibit a c. 2-3‰ increase in δ15N value and up to a c. 1‰ increase in 

δ13C value (Fuller et al., 2006). Comparison of neonate and infant δ15N values with 

the female average has been used to quantify weaning age in prehistoric populations 

(e.g. Herring et al., 1998; Richards et al., 2003; Pearson et al., 2010; Budd et al., 

2013).   

Two infants from Çamlıbel Tarlası aged c. 12 months (i.e. GUsi-2918 and 

GUsi-3106), two children c. 18-24 months (GUsi-3101 and GUsi-3240) and a further 

child aged c. 2-4 years of age (GUsi-3138) exhibit relatively high δ15N values in 

comparison to the adult average value. While it is tempting to attribute these values to 

a nursing trophic level effect, there is only one individual securely identified as 

female at the site and this individual may not be representative of the population 

average value. Additionally, non-dietary mechanisms may cause 15N enrichment in 

neonates and infants. In utero physiological stresses, such as maternal protein 

insufficiency, as well as post-birth nutritional stress, growth and illness can influence 

δ15N values (Hatch, 2012; Beaumont et al., 2015).  

The isotope values of children aged ≥ 6 years at Çamlıbel Tarlası are δ13C = -

19.0±0.1‰ and δ15N = 7.2±0.5‰ (n=5): the average δ15N is slightly lower than the 

adult value (8.3±0.8‰); the difference is statistically significant (Mann Whitney U-

test, two tailed, p<0.01) – see Fig. 5. This trend has been observed among many 

prehistoric Holocene populations and is more pronounced in agricultural than hunter-

gatherer groups (Tsutaya and Yoneda, 2013). Tsutaya and Yoneda (2013) have linked 

this to the use of lower trophic level resources such as cereals as weaning foods in 

agricultural societies, which is supported by ethnographic evidence (e.g. Sellen and 

Smay, 2001). However, the slight reduction in δ15N values may be an artefact of 

increased protein requirements during periods of growth, which result in less protein 

excretion and hence less fractionation of 15N/14N between diet and consumer (Fuller et 

al. 2005; Waters-Rist and Katzenberg, 2010).   
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Figure 5. Scatterplot of average δ13C and δ15N values of Çamlıbel Tarlası human 

samples by age and by burial type with standard deviation indicated by error bars. 

Note: the average values of the adults and the secondary burials are the same, 

however the standard deviations are different (δ13C = -19.0±0.2‰, δ15N = 8.3±0.8‰ 

and δ13C = -19.0±0.3‰, δ15N = 8.3±1.1‰ respectively). 

 

7. Conclusions 

Stable carbon and nitrogen isotope analyses of humans and associated animal remains 

from Çamlıbel Tarlası have provided the first indication of individual dietary intake in 

Late Chalcolithic north-central Anatolia. The data indicate that adult diet was based 
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on C3 resources. Comparison of adult human and herbivore nitrogen isotope values 

suggests that plant foods, presumably the crop species identified at the site, were 

important sources of dietary protein. Variation in adult δ15N values indicates that 

animal protein was likely consumed in varying proportions with some individuals 

subsisting largely on plant foods. Relatively lower average δ15N in older children may 

indicate reduced access to meat and other animal proteins during and possibly after 

weaning. However, the total contribution of animal protein to diet may be somewhat 

masked by the inclusion of 15N depleted pulses in diet.  

One of the major research questions of the Çamlıbel Tarlası project has been to 

investigate the specific human adaptations to a mountainous environment with dense 

vegetation cover in antiquity. While evidence for extensive pig-keeping and an 

emphasis on milking and milk products seem to point to the significance of domestic 

livestock, the present study suggests the less important role of animal protein in the 

local diet. Thus, the results of this present research demonstrate that the economic 

situation must have been more complex than our initial, relatively straight-forward 

assumptions. More research is needed to find a satisfactory explanation for these 

seemingly conflicting results.  
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