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Abstract
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tion of cointegrated systems in continuous time based on a fully specified dynamic system
of equations, while the estimation of cointegrating vectors in a discrete time system has
been approached using a semiparametric frequency domain estimator. We extend the latter
approach to cover the continuous time case, establishing the asymptotic properties of the
frequency domain estimator and explore, in a simulation study, the effects of misspecifying
the continuous time dynamic model in discrete time compared to treating the dynamics
nonparametrically. An empirical illustration is also provided.
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1. Introduction

Time series models that embody cointegration have become a well established method

for modelling nonstationary (integrated) variables that are subject to stationary long run

relationships. A researcher’s main focus of interest is often on the cointegrating vectors

themselves which provide linear combinations of the variables that, in the most general

sense, are merely assumed to be stationary. Applications of cointegration can be found in

disciplines as diverse as economics, political science and climate science, and are typically

motivated by some underlying theory of interest relevant to that discipline.

In addition to the stationary long run relationships attention also needs to be given to

the dynamic evolution of the time series over the sample period, and there are two broad ap-

proaches to doing this. The first incorporates the long run cointegrating restrictions within

a fully specified parametric dynamic model, a leading example being the cointegrated vec-

tor autoregression associated with Johansen (1991). This approach has found widespread

application and is useful if modelling the dynamics alongside the cointegrating relationships

is important, such as for the purposes of forecasting and impulse response analysis. An

alternative, second, approach focuses solely on the cointegrating relationships and treats the

system dynamics nonparametrically, either in the time domain or the frequency domain. An

example of the former approach is the fully modified (FM) ordinary least squares estima-

tor of Phillips and Hansen (1990) while an example of the latter approach is the spectral

regression estimator of Phillips (1991a). A nonparametric treatment of the system dynam-

ics is useful when the focus is purely on the cointegrating vectors and/or the researcher is

unable or unwilling to specify a parametric model for the dynamics. The latter situation

is not uncommon in economics in which economic theory is often informative about long

run equilibrium relationships between variables but provides less (or no) guidance about the

dynamic evolution towards equilibrium.

This paper is concerned with the estimation of cointegrating vectors in models formu-

lated in continuous time and follows the second approach outlined above by treating the

stationary system dynamics nonparametrically in the frequency domain. The observed sam-

ple is allowed to be comprised of a mixture of stock and flow variables as well as another

feature often faced in empirical work, that of the presence of data observed at mixed fre-

quencies. In particular it is also assumed throughout that the stock variables are observed

at a smaller sampling interval (higher frequency), h, than the flow variables whose sampling

interval is normalised (without loss of generality) to unity. Hence 0 < h < 1 and we also

assume that k = h−1 is an integer so that there is a whole number of high frequency stock

variable observations for each low frequency observation on flows. We make this assumption

on the grounds that, in economics, high frequency financial variables are typically of the

stock variety (e.g. stock prices, interest rates, and exchange rates) while lower frequency

macroeconomic variables are often of the flow variety (e.g. consumption, income and in-

vestment). The methods and models developed below can also be extended to include high

frequency flows and low frequency stocks as required.

The present paper builds on the discrete time cointegration approach with mixed sample

and mixed frequency data in Chambers (2018) and also utilises the result of Chambers (2003)

which shows that simple averaging of high frequency stock data to the low frequency can

improve the asymptotic efficiency of cointegration estimators. The implications of more
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general aggregation schemes for the estimation of cointegration vectors are obtained by

Miller (2016). Alternative methods for estimating fully parametric cointegrated continuous

time models with mixed sample and mixed frequency data can be found in Chambers (2016)

and Thornton (2018); the present contribution can be considered as being complementary

to those approaches.

The paper is organised as follows. Section 2 defines the continuous time cointegrated

model which is driven by a stationary process that is required, for the subsequent purposes of

deriving the asymptotic properties of the proposed estimator, to satisfy certain moment and

mixing conditions. A key result (presented in Theorem 1) shows that the observed mixed

frequency data, with the high frequency stocks averaged following the result in Chambers

(2003), satisfy a triangular error correction model in discrete time at the low frequency. The

precise relationship between the discrete time disturbances that drive this system and the

underlying continuous time process is used to show that the former satisfy an invariance

principle, based on the assumed properties of the latter. Two spectral regression estima-

tors are defined in section 3, one involving a consistent first-step estimator that is used to

construct a spectral density estimator using the resulting residuals, the other avoiding this

first step by estimating an augmented regression involving the differences of the observed

right-hand-side variables. Under appropriate conditions the estimators are shown to have

familiar mixed normal limiting distributions and to belong to the class of optimal estimators

as defined by Phillips (1991c). Some simulation results are presented in section 4 in which

the spectral regression estimators are compared to the time domain FM estimator as well as

an estimator that uses a parametric vector autoregression (VAR) for the discrete time dis-

turbance process. Such a model is misspecified because it does not account for the temporal

aggregation aspects in moving from continuous to discrete time; in effect, it approximates

the true specification, which involves moving average (MA) components, with a pure VAR

process. This section also includes an empirical illustration using the updated monthly stock

price data and annual dividend data of Shiller (2000). The spectral regression and FM esti-

mators, which treat the dynamics nonparametrically, provide more precise estimates of the

cointegrating parameter than the estimates based on the parametric VAR approximation in

that their standard errors are much smaller. Section 5 concludes, and the Appendix contains

proofs of all lemmas and theorems as well as details of how the data are simulated in section

4.

The following notation is used throughout the paper. The operator D denotes the mean

square differential operator such that, if x(t) is mean square differentiable, then there exists

a process ξ(t) satisfying

lim
δ→0

E

(
x(t+ δ)− x(t)

δ
− ξ(t)

)2

= 0,

in which case Dx(t) = ξ(t). The lag operator will be denoted L such that Ljxt = xt−j for

some j, not necessarily integer-valued. The n× n identity matrix is denoted In while 0n×m
denotes a matrix of zeros of dimension n×m. For a square matrix A the matrix exponential

is defined by eA =
∑∞

j=0A
j/j!, tr (A) denotes the trace of A, |A| denotes the determinant

of A, and ‖A‖ = (tr (AA′))1/2 denotes the Euclidean norm of A where A′ is the transpose

of A. Finally, for a complex valued vector or matrix A, A∗ combines the operations of
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transposition (A′) and conjugation (Ā) so that A∗ = Ā′.

2. The model and mixed frequency data

We consider a model of cointegration for the n × 1 vector y(t) = (y1(t)′, y2(t)′)′ where

y1(t) and y2(t) are n1 × 1 and n2 × 1, respectively, and n1 + n2 = n. The cointegrating

relationships are normalised on the n1 × 1 vector y1(t) so that

y1(t) = Cy2(t) + u1(t), t > 0, (1)

Dy2(t) = u2(t), t > 0, (2)

where C is the n1 × n2 matrix of cointegrating vectors and u(t) = (u1(t)′, u2(t)′)′ is a

stationary disturbance vector. In this model the cointegrating relationships are captured

in (1) and the deviations from ‘equilibrium’, the elements of u1(t) = y1(t) − Cy2(t), are

stationary processes. Furthermore, the stochastic trends in the system, depicted in (2),

are also allowed to be driven by stationary processes which are the elements of u2(t). For

subsequent purposes it is assumed that u(t) satisfies:

Assumption 1. The n× 1 vector u(t) is a strong mixing continuous time random process

satisfying:

(a) Eu(t) = 0;

(b) E|ui(t)|β <∞ (i = 1, . . . , n) for some β > 2;

(c) the strong mixing coefficients satisfy α(s) = O(s−µ) for some µ > β/(β − 2), where,

for positive real s, α(s) = supt α(F t−∞,F∞t+s),

α(F t−∞,F∞t+s) = sup
G∈Ft

−∞,H∈F∞t+s

|Pr(G ∩H)− Pr(G) Pr(H)| ,

and Fba denotes the sigma-field generated by u(t) for a ≤ t ≤ b;

(d) the spectral density matrix fuu(λ) is Hermitian positive semi-definite and is continuous

and bounded for all −∞ < λ <∞ with fuu(0) positive definite.

Assumption 1 is stronger than is required for the derivation of the mixed frequency rep-

resentation for the discrete time observations but is used in the derivation of the asymptotic

properties of the spectral regression estimator in the next section. The moment and mixing

conditions in (b) and (c) are used to establish that the disturbances in the discrete time

mixed frequency representation satisfy a functional central limit theorem (FCLT). In partic-

ular the rate condition on α(s) in (c) ensures that the mixing coefficients are integrable, this

being the requirement for the continuous time process that is analogous to the summability

of these coefficients for discrete time processes. Assumption 1 ensures that the disturbances

in the discrete time model used for estimation are also covariance stationary.

As shown by Phillips (1991b, p.970) the vector y(t) satisfies the stochastic differential

equation system

Dy(t) = −JAy(t) + w(t), t > 0, (3)
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where

A = (In1 ,−C) , J =

(
In1

0n1×n2

)
, w(t) =

(
u1(t) +Du1(t) + Cu2(t)

u2(t)

)
;

note that w(t) is a stationary continuous time process. The representation in (3) is in the

form of a continuous time error correction model which is, perhaps, best seen by extracting

the equation for y1(t), which is

Dy1(t) = − [y1(t)− Cy2(t)] + w1(t)

and which depicts y1 responding to the disequilibrium error y1 − Cy2.

In discrete time, the vector y(t) satisfies the stochastic difference equation system

y(t) = e−JAy(t− 1) +

∫ t

t−1
e−JA(t−r)w(r)dr;

see Phillips (1991b) and Chambers (2003). By noting that AJ = In1 it can be shown that

e−JA = In − (1 − e−1)JA and so the discrete time representation has the error correction

form

∆y(t) = −JAy(t− 1) + v(t), (4)

where the disturbance vector is defined by

v(t) = e−1JAy(t− 1) +

∫ t

t−1
e−JA(t−r)w(r)dr

=

 u1(t) + C

∫ t

t−1
u2(r)dr∫ t

t−1
u2(r)dr

 ; (5)

the first expression for v(t) in (5) comes from equation (9) in Phillips (1991b) while the

second is established in equation (5) and Lemma A1 of Chambers (2003). The discrete time

representation in (4) can be adapted to any sampling frequency or any type of sampling

(stock and/or flow) and underlies the mixed frequency representation derived below.

The model (3) may appear to be overly restrictive but, as shown by Phillips (1991b), it

is also consistent with more general models which can include deterministic terms as well as

a matrix of speed-of-adjustment coefficients. In the former case let κ(t) =
∑p

j=0 κjt
j denote

a vector of deterministic terms so that (3) becomes

Dy(t) = κ(t)− JAy(t) + w(t), t > 0.

Assuming Cκj = 0 (j = 0, . . . , p), so that (1) remains valid and C annihilates both the

deterministic and stochastic trends, the corresponding discrete time representation becomes

∆y(t) = k(t)− JAy(t− 1) + v(t),
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where k(t) =
∑p

j=0 kjt
j and the kj are functions of the underlying κj .

1 Provided the

deterministic terms are removed from the data by prior regression the estimation methods

in the next section remain valid with the Brownian motions in the limit distributions replaced

by suitably detrended versions. When the model is formulated directly as an error correction

system in continuous time with a matrix of speed-of-adjustment coefficients (say Γ) we may

write the system as

Dy(t) = ΓAy(t) + e(t), t > 0.

where e(t) is a stationary continuous time process. It is straightforward to show that this

system is consistent with (3) in which the stationary disturbance vector becomes w(t) =

e(t) + (Γ +J)Ay(t). In this case, because our focus is on estimation of C alone, it is valid to

assign any such dynamic features to the stationary disturbance, w(t), that drives the system;

these dynamic features are treated nonparametrically in the spectral regression procedures

outlined in the next section.

In terms of the nature of the elements of y1(t) and y2(t) we assume that each vector is

comprised of both stock and flow variables, so that

y1(t) =

(
yS1 (t)

yF1 (t)

)
, y2(t) =

(
yS2 (t)

yF2 (t)

)
,

where ySj (t) is nSj ×1, yFj (t) is nFj ×1 and nSj +nFj = nj (j = 1, 2). The aim is to derive a model

that is satisfied by discrete time mixed frequency data generated by the system (1) and (2).

As stated in the Introduction, the stock variables are assumed to be observed at a higher

frequency (corresponding to a sampling interval 0 < h < 1) than the flow variables, whose

sampling interval is normalised to unity. We use t = 1, . . . , T to index the low frequency

flow variables, the observations for which are therefore

Y F
1t =

∫ t

t−1
yF1 (r)dr, Y F

2t =

∫ t

t−1
yF2 (r)dr, t = 1, . . . , T.

The high frequency stock variables are also observed at each integer t as well as the interme-

diate points, at intervals of length h, between t and t− 1 so that there are kT = T/h = N

high frequency observations given by

yS1τ = yS1 (τh), yS2τ = yS2 (τh), τ = 1, . . . , N.

High frequency observations are, therefore, available at the points t − (k − 1)h through to

t − h that lie between t − 1 and t, and it is these intermediate observations that can be

exploited in the pursuit of improved estimation and inference procedures.

There are a number of ways in which mixed frequency data have been used in the

literature. In a continuous time setting Chambers (2016) derived exact discrete models

corresponding to a system of first-order stochastic differential equations2 and incorporates

1See Phillips (1991b, p.978) for details.
2This approach has been extended by Thornton (2018) to a system of autoregressive moving average

equations in continuous time.
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the mixed frequency observations within the vectors

z1t =



yS1t

yS1,t−h
...

yS1,t−(k−1)h

Y F
1t


, z2t =



yS2t

yS2,t−h
...

yS2,t−(k−1)h

Y F
2t


, t = 1, . . . , T.

Both z1t and z2t contain observations dated t but contain, in addition, the high frequency

observations at the points t − (k − 1)h through to t − h. The exact discrete models in

Chambers (2016) are in the form of first-order stochastic difference equations in the vector

zt = (z′1t, z
′
2t)
′, which is of dimension (knS1 + nF1 + knS2 + nF2 ) × 1. Alternatively Ghysels

(2016) defines mixed frequency VARs directly in terms of zt, but such direct discrete time

VAR specifications tend to be considerably over-parameterised compared to the continuous

time approach in which the underlying model of interest is in terms of the n× 1 vector y(t)

and which contains fewer unknown parameters.

The above approach based on the vectors z1t and z2t is not appropriate, however, in the

spectral regression setting pursued here. As pointed out by Chambers (2018) the spectral

density matrices of these vectors are singular. For example, consider the spectral density

matrix of ỹSt = (yS1t, y
S
1,t−h)′; if fhy (λ) denotes the spectrum of yt (as a high frequency process)

then the spectrum of ỹSt is given by

fyS (λ) =

(
1

e−ihλ

)
fhy (λ)(1 eihλ) =

(
1 eihλ

e−ihλ 1

)
fhy (λ), −π

h
< λ ≤ π

h
,

which is clearly singular at all frequencies. To overcome this problem Chambers (2018)

exploits the suggestion in Chambers (2003) to aggregate the high frequency stock variables

by constructing period averages at the low frequency. This recommendation was based on

asymptotic efficiency considerations concerning estimators of cointegrating vectors but the

simulations reported in Chambers (2018) suggest this procedure works well in the mixed

frequency setting, resulting in better finite sample performance than estimates obtained

using only the low frequency observations. We adopt this aggregation approach in the

current setting of a continuous time model using the low frequency averages of the high

frequency stock variables. It is useful to define the operator

s(z) = 1 + z + . . .+ zk−1 =

k−1∑
l=0

zl

so that the aggregated/averaged variables are given by

Y S
jt =

1

k
s(Lh)ySjt =

1

k

k−1∑
l=0

ySj,t−lh, j = 1, 2, t = 1, . . . , T. (6)

The task is to relate Y S
1t and Y F

1t to Y S
2t and Y F

2t subject to them having been generated by

the system (1) and (2). A key result in facilitating this is contained in Lemma A1 in the

Appendix, the use of which enables discrete time averages of the unobservable high frequency
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flow process to be replaced by the observable low frequency flow variable with the stationary

difference3 assigned to the disturbance vector. For the presentation of the discrete time

representation it is also convenient to define the vectors

Y1t =

(
Y S

1t

Y F
1t

)
, Y2t =

(
Y S

2t

Y F
2t

)
, ξ1t =

(
ξS1t
ξF1t

)
, ξ2t =

(
ξS2t
ξF2t

)
;

the first two are observable, the last two are unobservable. The exact discrete time model

is given in the following Theorem.

Theorem 1. Let y1(t) and y2(t) be generated by (1) and (2). Then the observations satisfy,

for t = 1, . . . , T ,

Y1t = CY2,t−1 + ξ1t, (7)

∆Y2t = ξ2t, (8)

where ξ1t and ξ2t are stationary disturbance processes under Assumption 1.

The discrete time representation in Theorem 1 is useful from the point of view of es-

timation because, even with mixed frequency and mixed sample data, taking into account

the temporal aggregation issues still leads to the same type of linear (in C) system as in the

direct discrete time approach. All of the associated dynamics that stem from the process

u(t) in the continuous time system are assigned to the disturbance vector ξt, and this is a

major reason why spectral regression methods are particularly useful in this setting. The

following result plays an important role in deriving the properties of the spectral estimators.

Lemma 1. Under Assumption 1, as T →∞,

1√
T

[Tr]∑
t=1

ξt
d→ B(r), 0 < r ≤ 1, (9)

where B(r) is a Brownian motion process with covariance matrix Ω.

The key to establishing Lemma 1 lies in utilising the precise relationship between ξt and

u(t) (that arises in the proof of Theorem 1) and then demonstrating that the properties of

u(t) in Assumption 1 ensure that ξt satisfies the conditions for the FCLT to hold. In what

follows it is convenient to partition B(r) and Ω in accordance with ξ1 and ξ2 in the form

B(r) =

(
B1(r)

B2(r)

)
, Ω = (Ω1 Ω2) =

(
Ω11 Ω12

Ω21 Ω22

)
,

and to define Ω11.2 = Ω11 − Ω12Ω−1
22 Ω21.

3. Estimation in the frequency domain

The model of cointegration developed in the previous section is driven by a disturbance

vector, ξt, that is stationary under Assumption 1. As initially suggested by Phillips (1991b)

3This stationary difference is denoted δt in Lemma A1.
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a natural approach to estimating the matrix C of cointegrating vectors is, therefore, to

use spectral/frequency domain regression. It is convenient to write the system of interest,

defined in (7) and (8), in the form

Y0t = JCY2,t−1 + ξt, t = 1, . . . , T, (10)

where Y0t = (Y ′1t,∆Y
′

2,t)
′. As outlined in Chambers (2018) for the discrete time case the

spectral regression approach is based on taking discrete Fourier transforms (dFts) in (10),

yielding

w0(λs) = JCw2(λs) + wξ(λs), s = −T/2 + 1, . . . , T/2, (11)

where {λs = 2πs/T ; s = −T/2 + 1, . . . , T/2} denotes the set of Fourier frequencies, T is

assumed to be an even number for convenience,4 and

w0(λs) =
1√
2πT

T∑
t=1

Y0te
itλs , w2(λs) =

1√
2πT

T∑
t=1

Y2,t−1e
itλs , wξ(λs) =

1√
2πT

T∑
t=1

ξte
itλs ,

denote the dfTs of Y0t, Y2,t−1 and ξt, respectively, at the Fourier frequencies.

Although the spectral regression estimator of C can be constructed using a regression

across all T Fourier frequencies there are compelling reasons, in the case of cointegration, to

focus solely on frequencies close to zero. From a theoretical viewpoint cointegration is a long-

run phenomenon whose properties are defined in the frequency domain at the zero frequency,

while simulation evidence contained in Corbae, Ouliaris and Phillips (1994) and Chambers

(2018) suggest that such band-limited spectral methods work particularly well in practice.

We therefore consider the symmetric set of frequencies Λ0 = {λs = 2πs/T ; s = −m, . . . ,m}
which contains the 2m + 1 Fourier frequencies around the origin for some integer m. A

family of generalised least squares-type objective functions is then given by

S(C; Φ) =
1

2m+ 1

∑
λs∈Λ0

tr {Φ(λs)wξ(λs)wξ(λs)
∗} ,

where wξ(λs) = w0(λs) − JCw2(λs) and Φ(λs) is a positive definite Hermitian weighting

matrix. As shown by Phillips (1991a), the choice of the weighting matrix Φ(λ) is critical when

spectral regression is applied using I(1) time series. For reasons of efficiency we require Φ(λ)

to be proportional to fξξ(λ)−1, the inverse of the spectral density matrix of the unobservable

disturbance vector ξt.

Although ξt is unobserved a consistent estimator of fξξ(λ) can nevertheless be obtained

by using the residuals from a least squares regression of (10), denoted ξ̂t. The spectral

density matrix of interest can then be estimated in a variety of ways, and the method we

shall employ here is the smoothed periodogram estimator, defined by

f̂ξ̂ξ̂(0) =
1

2m+ 1

m∑
j=−m

Iξ̂ξ̂(λj), (12)

where Iξ̂ξ̂(λ) = wξ̂(λ)wξ̂(λ)∗ denotes the periodogram of ξ̂t and wξ̂(λ) is the dFt of ξ̂t.

The smoothed periodogram estimator is a straightforward symmetric average of 2m + 1

4If T is odd then we can take −[T/2] + 1 ≤ s ≤ [T/2].
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periodogram matrices around the frequency of interest, here being the zero frequency. More

sophisticated estimates could be used but the smoothed periodogram performed well in the

simulations reported in Chambers (2018). With this choice of weighting matrix the objective

function becomes

S
(
C; f̂ξ̂ξ̂(0)−1

)
=

1

2m+ 1

m∑
s=−m

tr
{
f̂ξ̂ξ̂(0)−1 (w0(λs)− JCw2(λs)) (w0(λs)− JCw2(λs))

∗
}
.

(13)

Minimisation of (13) with respect to C results in the estimator

Ĉ0 =
(
J ′f̂ξ̂ξ̂(0)−1J

)−1
J ′f̂ξ̂ξ̂(0)−1f̂02(0)f̂22(0)−1 (14)

where the spectral density estimators f̂02(0) and f̂22(0) are defined by

f̂02(0) =
1

2m+ 1

m∑
j=−m

I02(λj), I02(λj) = w0(λj)w2(λj)
∗,

f̂22(0) =
1

2m+ 1

m∑
j=−m

I22(λj), I22(λj) = w2(λj)w2(λj)
∗,

respectively.

Although Ĉ0 is a full system estimator, Phillips (1991a, 1991b, 1991c) showed that

equivalent asymptotic efficiency can be achieved using an augmented (frequency domain)

regression estimator based on only the first n1 equations of the system (10) or (11). The

augmented equation includes ∆Y2t (or its dFt) as an additional regressor vector, resulting

in the time domain regression equation

Y1t = CY2,t−1 + Ω12Ω−1
22 ∆Y2t + ξ1.2t, t = 1, . . . , T, (15)

where ξ1.2t = ξ1t − Ω12Ω−1
22 ξ2t. In the frequency domain the relevant equation is

w1(λs) = Cw2(λs) + Ω12Ω−1
22 w∆2(λs) + w1.2(λs), s = −T/2 + 1, . . . , T/2, (16)

where w1(λs), w∆2(λs) and w1.2(λs) are the dFts of Y1t, ∆Y2t and ξ1.2t, respectively. One

advantage of this approach is that it is not necessary to construct an estimator of the

disturbance spectral density matrix using an initial consistent estimator. The band-limited

estimator of C based on the augmented equation is obtained by minimising the least-squares

objective function

SA(C) =
1

2m+ 1

m∑
s=−m

tr {w1.2(λs)w1.2(λs)
∗} , (17)

where w1.2(λs) = w1(λs) − Cw2(λs) − Ω12Ω−1
22 w∆2(λs). The resulting estimator can be

written in the form

ĈA0 =
(
f̂12(0)− f̂1∆2(0)f̂∆2∆2(0)−1f̂∆21(0)

)(
f̂22(0)− f̂2∆2(0)f̂∆2∆2(0)−1f̂∆22(0)

)−1
, (18)

where the f̂.(0) are the smoothed periodogram estimators using the relevant variables.
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In deriving the asymptotic properties of Ĉ0 and ĈA0 an assumption concerning the num-

ber, m, of frequencies employed in the estimation of the relevant spectral density matrices

is also required, in addition to the FCLT presented in Lemma 1. For this purpose we make

the following assumption.

Assumption 2.
m

T
+

1

m
→ 0 as T →∞.

Hence m is required to grow with T but at a slower rate, which is a common assumption

in the literature on spectral density estimation; see, for example, Brockwell and Davis (1991,

p.351). A further assumption, which strengthens the moment and mixing conditions of

Assumption 1, is also employed.

Assumption 1′. The n×1 vector u(t) satisfies Assumption 1 but with (b) and (c) replaced

by, respectively:

(b′) E|ui(t)|β
′
<∞ (i = 1, . . . , n) for some β′ > 4;

(c′) the strong mixing coefficients satisfy α(s) = O(s−µ
′
) for some µ′ > 3β′/(β′ − 4).

Assumption 1′ is used to establish a consistency result concerning f̂ξ̂ξ̂(0) which is used

in the proof of Theorem 1(c) below. In particular it ensures the following result.

Lemma 2. Let Γξ,k = E(ξtξ
′
t−k) and let κabcd(0, j, k, l) (a, b, c, d = 1, . . . , n) denote the

fourth-order cumulant function of the elements of the vectors ξt, ξt+j, ξt+k, ξt+l. Then,

under Assumption 1′,
∞∑

k=−∞
‖Γξ,k‖ <∞

and
∞∑

j=−∞

∞∑
k=−∞

∞∑
l=−∞

|κabcd(0, j, k, l)| <∞, a, b, c, d = 1, . . . , n.

The absolute summability of the autocovariances ensures that the spectral density of ξt is

continuous and bounded while the condition on the fourth cumulants is used to establish a

result concerning the variance of a spectral density estimator. The use of Assumptions 1, 1′

and 2 enables the following result concerning the asymptotics of the smoothed periodogram

estimators of spectral density matrices to be established.

Theorem 2. Let y1(t) and y2(t) be generated by (1) and (2). Then, under Assumptions 1

and 2, as T →∞:

(a)
2m+ 1

T 2
f̂22(0)

d→ 1

π

∫ 1

0
B2B

′
2;

(b)
2m+ 1

T
f̂ξ2(0)

d→ 1

π

∫ 1

0
dBB′2 +

1

2π
Ω2, where Ω2 =

∞∑
j=−∞

E(ξt+jξ
′
2t).

If Assumptions 1′ and 2 are satisfied, then

(c) f̂ξ̂ξ̂(0) = fξξ(0) + op(1).
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The first two parts of Theorem 2 follow from the results in Chambers (2018). Part (c),

however, requires a slightly different method of proof owing to the different (moment and

mixing) assumptions used here. The asymptotic distributions of Ĉ0 and ĈA0 can now be

stated.

Theorem 3. Under Assumptions 1′ and 2, as T →∞,

T (Ĉ0 − C), T (ĈA0 − C)
d→
∫ 1

0
dB1.2B

′
2

(∫ 1

0
B2B

′
2

)−1

where B1.2(r) is a Brownian motion process with covariance matrix Ω11.2.

Both estimators therefore belong to the class of optimal estimators as defined by Phillips

(1991c). These are estimators having the form of limit distribution as given in Theorem 3

i.e. mixed normal. An advantage of such optimal estimators is that their mixed normal limit-

ing distributions enable traditional asymptotic chi-square hypothesis testing in appropriate

circumstances. Such hypothesis testing requires (consistent) estimators of the covariance

matrices of Ĉ0 and ĈA0 . Define γ̂0 = vec (Ĉ0) and γ̂A0 = vec (ĈA0 ), where the vec (·) operator

stackes the columns of a matrix vertically. A consistent estimator of the covariance matrix

of γ̂0 is given by

V̂0 =
1

T

[
f̂22(0)⊗ J ′f̂ξ̂ξ̂(0)−1J

]−1
,

while a consistent estimator of the covariance estimator of γ̂A0 is given by

V̂ A
0 =

1

T

[(
f̂22(0)− f̂2∆2(0)f̂∆2∆2(0)−1f̂∆22(0)

)
⊗ f̂11.2(0)−1

]−1
,

where f̂11.2(0) is a consistent estimator of f11.2(0) = Ω11.2/2π, such as the smoothed pe-

riodogram estimator based on the residuals from (15). Chambers (2018) establishes the

asymptotic chi-square distributions of Wald statistics based on Ĉ0 and ĈA0 ; the same argu-

ments apply here for Wald tests of hypotheses concerning the parameters of the continuous

time cointegrating vectors.

4. Simulation results and an empirical illustration

In this section we begin by exploring the finite sample properties of the spectral re-

gression estimators and compare them to some alternative estimators of the cointegrating

parameters. In particular we consider the FM estimator of Phillips and Hansen (1990), which

treats the dynamics nonparametrically in the time domain, as well as VAR approximations

to ξt. In the latter approach the discrete time model is misspecified because it is not derived

from the underlying continuous time system and ignores the effects of temporal aggregation.

As such, this approach attempts to approximate the dynamics parametrically compared to

the spectral regression and FM approaches which do so nonparametrically.

The simulations are based on a bivariate cointegrated system in continuous time of the

form given in (1) and (2) with cointegrating parameter C = 1. It is assumed that y1 is

observed as a high frequency stock variable and y2 as a low frequency flow variable which
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results in the sequences of observations of the form

{y1τ = y1(τh); τ = 1, . . . , N} ,
{
Y2t =

∫ t

t−1
y2(r)dr; t = 1, . . . , T

}
,

where T = Nh. The high frequency observations are aggregated as in section 2 to yield the

sequence {
Y1t =

1

k

k−1∑
l=0

y1,t−lh; t = 1, . . . , T

}
.

We set the span T = 100 and the high frequency sampling interval to be h = 1/12 (so

that k = 12) which implies that there are N = 1200 high frequency observations. This

sampling scheme would therefore correspond to 100 years of monthly data and is motivated

by the empirical example that follows which is based on monthly stock price data and yearly

dividend data. A total of 10,000 replications of each experiment are conducted.

The model specification is completed by a particular form of dynamic model for the

stationary bivariate continuous time vector u(t) = (u1(t), u2(t))′. The first specification

is that u(t) is white noise5 while the second is that u(t) satisfies the stationary stochastic

differential equation system

du(t) = Φu(t)dt+ ζ(dt), t > 0, (19)

subject to the initial condition u(0) = (0, 0)′, where the roots of the equation |zI2 − Φ| = 0

have negative real parts to ensure stationarity and ζ(dt) is a bivariate uncorrelated ran-

dom measure with covariance matrix Σdt; see Bergstrom (1984) for a definition of ran-

dom measures and their properties. We set Σ = I2 and Φ = φI2 with φ ∈ {−5,−10}
so that u1 and u2 are independent autoregressive (AR) processes each with AR coefficient

eφh ∈ {0.6592, 0.4346} at the high frequency. The data are generated at the high frequency

and then aggregated appropriately; details are given in the appendix. To summarise, ξt is a

bivariate MA(1) process when u(t) is white noise (owing to the temporal aggregation) and

a bivariate ARMA(1,1) process when u(t) is a continuous time autoregression.

The estimators we consider are the OLS estimator of C in (7); the spectral regression

estimators Ĉ0 and ĈA0 , denoted FD and FDA, respectively; the FM estimator of C; and

frequency domain estimators of C based on a VAR specification for ξt (which is misspecified).

The FD and FDA estimators are obtained using m = [T 0.7] = 25 periodogram ordinates in

estimating the spectral density matrices; other values were explored but this rule worked

well in accordance with the simulation results in Chambers (2018). The FM estimator uses

the Parzen kernel and the automatic bandwidth selection procedure of Andrews (1991) and

is denoted FM(Auto). The approximating VAR(p) models are of the form

G(L)ξt = et, t = 1, . . . , T,

where G(z) = I2−
∑p

j=1Gjz
j and et is white noise with variance matrix Σe. Three values of

p – 1, 2 and 4 – are considered, the resulting estimators being denoted VAR(1), VAR(2) and

VAR(4). Let Iξξ(λ) = wξ(λ)wξ(λ)∗ where wξ(λ) is defined in section 3 and is a function of

5In this case it is perhaps more natural to write the system in the form (y1(t) − Cy2(t))dt = ζ1(dt) and
dy2(t) = ζ2(dt), where ζ1(dt) and ζ2(dt) are uncorrelated random measures.
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C. Then, following Dunsmuir (1979), we use the following version of the frequency domain

(Whittle) Gaussian likelihood function:6

L1(C, θG,Σe) = log |Σe|+
1

T

∑
j∈Λ

tr
{
fξξ(λj)

−1Iξξ(λj)
}
,

where Λ = {λs = 2πs/T ; s = −T/2 + 1, . . . , T/2} denotes the set of Fourier frequencies, θG
denotes the vector of unknown parameters in G(z), and fξξ(λ) is the spectral density matrix

of ξt given by

fξξ(λ) =
1

2π
G(e−iλ)−1Σe

[
G(eiλ)′

]−1
, −π < λ ≤ π;

a similar form of objective function was used by Chambers and McCrorie (2007) in their fre-

quency domain approach to the estimation of fully parametric continuous time cointegrated

systems. Significant computational advantages can be gained by concentrating Σe out of the

likelihood function, resulting in (ignoring a constant)

L(C, θG) = L1(C, θG, Σ̂e) = log

∣∣∣∣∣∣2πT
∑
j∈Λ

G(e−iλj )Iξξ(λj)G(eiλ)′

∣∣∣∣∣∣ ,
where Σ̂e (as a function of C and ΘG) denotes the matrix that minimises L1(·) with respect

to Σe. The estimators of C and θG are those that minimise L(·). In the case of the VAR(1)

use of the concentrated function reduces the number of unknown parameters from eight to

five while in the cases of the VAR(2) and VAR(4) the reductions are from twelve to nine

and from twenty to seventeen, respectively.

The bias and root mean squared error (RMSE) of each of the estimators obtained in the

simulations are reported in Table I. All estimators provide substantial reductions over OLS

in terms of bias and RMSE when u(t) is white noise. When u(t) is a continuous time AR(1)

process the bias of the all estimators is larger (in absolute value) than that of OLS but they

all have lower RMSE compared with OLS. In all cases the spectral estimators produce the

smallest RMSE.7 For each estimator the bias and RMSE are both seen to increase as u(t)

moves from being white noise to a continuous time AR process with φ = −5 to a continuous

time AR process with φ = −10.

We conclude this section with an empirical illustration of the methods derived in this

paper. The illustration uses the extended data set on US stock prices and dividends based

on Shiller (2000).8 We treat the monthly stock price data as a stock variable9 and the yearly

dividends as a flow variable. The sample begins in January 1871 and ends in December 2016

which gives T = 146 yearly observations on dividends and N = 1752 monthly observations

on stock prices; the high frequency sampling interval is h = 1/12. Ghysels and Miller (2015)

have also examined this data set in the context of a mixed frequency cointegration model

and provide arguments as to why cointegration may not hold between these variables. We

nevertheless proceed assuming that cointegration holds and use demeaned data, as in Ghysels

6This function is actually an approximation to −2/T times the exact likelihood function.
7The results are reported to four decimal places so the actual differences in bias in some of the cases are

only apparent at the fifth decimal place.
8The data can be downloaded from http://aida.econ.yale.edu/˜ shiller/data.htm.
9Note, though, that the data represent the average daily closing price over the month.
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and Miller (2015). The model of interest, based on (1) and (2), is given by

logP (t) = C logR(t) + uP (t), t > 0,

D logR(t) = uR(t), t > 0,

where P (t) denotes the stock price at time t and R(t) denotes the rate of flow of dividends

at time t. The cointegrating parameter is C and u(t) = (uP (t), uR(t))′ is assumed to be a

stationary continuous time process. The monthly stock price data are averaged into yearly

equivalents as defined by (6) (with k = 12).

The estimation results are given in Table II. Estimates of C obtained by OLS, FD,

FDA, FM and VAR are provided. The spectral regression estimators are based on m = 4,

m = 12 and m = 32 averaged periodograms, these values corresponding to m = [T δ] for

δ ∈ {0.3, 0.5, 0.7}. The headings for these entries in the Table are of the form FD(m) and

FDA(m). The same values, as well as the automatic bandwidth value, were used for the

FM estimators, being denoted FM(m) and FM(Auto), respectively. The frequency domain

VAR(p)-based estimates of C are given for p ∈ {1, 2, 4}. The OLS, spectral regression and

FM estimates of C are all in the vicinity of 0.52 and show little variation as m is varied. The

standard errors of the spectral estimators are lower than for the OLS and FM estimators and

show a small increase as m increases. Estimates of C obtained using the VAR approximations

are slightly larger, ranging from 0.60 and 0.63, but have much larger standard errors than

the OLS, spectral and FM estimators. The estimates of all the other VAR coefficients (not

reported) have large standard errors relative to the estimates themselves, suggesting that

the parameters are insignificantly different from zero. However, interpreting the coefficients

in this case is problematical if the continuous time model is taken seriously in view of the

VARs being misspecified in this case. Nevertheless Table II also reports likelihood ratio test

statistics based on the function L(·) for testing the VAR orders 2 and 4 against p = 1. It can

be seen that the test results in the non-rejection of the null hypothesis that the additional

parameters in the VAR(2) and VAR(4) are zero when compared with the VAR(1), despite

all of the coefficients in the VAR(1) being individually insignificant.

5. Conclusion

This paper has been concerned with the estimation of continuous time cointegratng

vectors when the data are a mixture of stocks and flows observed at different frequencies. A

spectral regression estimator based on Chambers (2018), which treats the system dynamics

nonparametrically, was proposed and was found to perform well in a simulation study. An

illustration of the methods using the updated mixed frequency stock price and dividend data

of Shiller (2000) was also provided.

The methods in this paper are straightforward to implement and are particularly use-

ful in circumstances where the focus is on the cointegrating parameters themselves and the

researcher does not wish to specify a parametric model for the system dynamics. In cir-

cumstances where it is important to explicitly model such dynamics – for example, for the

purposes of forecasting or impulse response analysis – alternative techniques for handling

parametric cointegrated continuous time systems with mixed sample and mixed frequency

data are available and can be found in Chambers (2016) and Thornton (2018).
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Data availability statement

The data used in the application in section 4 are freely available for download at

http://aida.econ.yale.edu/˜ shiller/data.htm and are discussed in Shiller (2000).

Appendix

A key result in proving Theorem 1 is the following:

Lemma A1. Let y(t) be a continuous time process satisfying Dy(t) = u(t) where u(t) is a

stationary continuous time process satisfying Assumption 1. Then

δt =
1

k

k−1∑
l=0

y(t− lh)−
∫ t

t−1
y(r)dr =

k−1∑
l=0

∫ t−lh

t−lh−h

(
l + 1

k
− (t− s)

)
u(s)ds

is also a stationary process.

Proof of Lemma A1. We begin by noting that, for all t > 0,

y(t) = y(0) +

∫ t

0
u(s)ds,

which implies that∫ t

t−1
y(r)dr = y(0) +

∫ t

t−1

∫ r

0
u(s)dsdr

= y(0) +

∫ t−1

0
u(s)ds+

∫ t

t−1
(t− s)u(s)ds, (20)

the latter expression using the decomposition of double integrals into single integrals along

the lines of Bergstrom (1997) and McCrorie (2000). Furthermore,

1

k

k−1∑
l=0

y(t− lh) =
1

k

k−1∑
l=0

(
y(0) +

∫ t−lh

0
u(s)ds

)

= y(0) +
1

k

k−1∑
l=0

∫ t−lh

0
u(s)ds.

Now, for 0 ≤ l ≤ k − 1, ∫ t−lh

0
u(s)ds =

∫ t−1

0
u(s)ds+

∫ t−lh

t−1
u(s)ds

and so

1

k

k−1∑
l=0

y(t− lh) = y(0) +

∫ t−1

0
u(s)ds+

1

k

k−1∑
l=0

∫ t−lh

t−1
u(s)ds. (21)

15



From (20) and (21) it follows that

δt =
1

k

k−1∑
l=0

∫ t−lh

t−1
u(s)ds−

∫ t

t−1
(t− s)u(s)ds

and the expression for δt in the Lemma is a consequence of calculating the contribution of

each sub-integral of length h over the interval (t− 1, t]. 2

Proof of Theorem 1. It is convenient to partition C in the form

C =

(
CS
CF

)
=

(
CSS CSF
CFS CFF

)
,

where the first subscript of each sub-matrix corresponds to the appropriate sub-vector of y1

and the second to the appropriate sub-vector of y2; for example, CS is of dimension nS1 × n
and CFS is of dimension nF1 ×nS2 . We begin with the equation for Y S

1t . The first nS1 equations

of (4) give (noting that yS1t = yS1 (t))

yS1t = CSSy
S
2,t−1 + CSF y

F
2 (t− 1) + vS1 (t),

where

vS1 (t) = uS1 (t) + CS

∫ t

t−1
u2(r)dr.

Applying the operator k−1s(Lh) to this equation yields

Y S
1t = CSSY

S
2,t−1 + CSF

1

k

k−1∑
l=0

yF2 (t− 1− lh) +
1

k

k−1∑
l=0

vS1 (t− lh).

Replacing the unobservable component involving yF2 with the observable Y F
2,t−1 and using

Lemma A1 results in

Y S
1t = CSSY

S
2,t−1 + CSFY

F
2,t−1 + ξS1t,

where, noting the definition of vS1 (t),

ξS1t =
1

k

k−1∑
l=0

uS1 (t− lh) + CS
1

k

k−1∑
l=0

∫ t−lh

t−1−lh
u2(r)dr + CSF δ

F
2,t−1.

Taking equations nS1 + 1 to n1 of (4) we obtain

yF1 (t) = CFSy
S
2 (t− 1) + CFF y

F
2 (t− 1) + vF1 (t),

where

vF1 (t) = uF1 (t) + CF

∫ t

t−1
u2(r)dr.

Integrating over (t− 1, t] yields

Y F
1t = CFS

∫ t−1

t−2
yS2 (r)dr + CFFY

F
2,t−1 +

∫ t

t−1
vF1 (r)dr.
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Proceeding as before – replacing the unobservable component, this time involving yS2 , with

Y S
2,t−1 – and utilising Lemma A1 and the definition of vF1 (t), results in

Y F
1t = CFSY

S
2,t−1 + CFFY

F
2,t−1 + ξF1t,

where

ξF1t =

∫ t

t−1
uF1 (r)dr + CF

∫ t

t−1

∫ r

r−1
u2(s)dsdr − CFSδS2,t−1.

Turning to the components of y2, from (4), the equations relating to yS2 are simply

∆yS2 (t) =

∫ t

t−1
uS2 (r)dr,

and so applying the filter k−1s(Lh) results in

∆Y S
2t = ξS2t, ξS2t =

1

k

k−1∑
l=0

∫ t−lh

t−1−lh
uS2 (r)dr.

Also from (4) the equations relating to yF2 are

∆yF2 (t) =

∫ t

t−1
uF2 (r)dr,

which can be integrated over the interval (t− 1, t] to give

∆Y F
2t = ξF2t, ξF2t =

∫ t

t−1

∫ r

r−1
uF2 (s)dsdr.

The representation in the Theorem is obtained by combining the equations for Y S
1t and Y F

1t

to give (7) with ξ1t = (ξS′1t , ξ
F ′
1t )′, and (8) results by combining the equations for ∆Y S

2t and

∆Y F
2t with ξ2t = (ξS′2t , ξ

F ′
2t )′. 2

Proof of Lemma 1. We demonstrate the validity of the FCLT by verifying that the

conditions of Corollary 2.2 of Phillips and Durlauf (1986) are satisfied. The requirements

are: (i) E(ξt) = 0; (ii) E|ξit|β <∞ (i = 1, . . . , n) for some β > 2; and (iii) αs = O(s−µ) for

some µ > β/(β − 2), where αs denote the strong mixing coefficients of ξt. Condition (i) is

clearly satisfied. Turning to (ii) we have, from the definition of ξS1t in the proof of Theorem

1 and of δt in Lemma A1,

ξS1i,t =
1

k

k−1∑
l=0

uS1i(t− lh) +

n2∑
j=1

CS,ij

∫ t−lh

t−1−lh
u2j(r)dr

+

nF
2∑

j=1

CSF,ij

∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uF2j(r)dr

 , i = 1, . . . , nS1 ,
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and so application of Loève’s cr inequality (see, for example, Davidson, 1994, p.140) yields

E
∣∣ξS1i,t∣∣β ≤ 1

k

k−1∑
l=0

E

∣∣∣∣∣∣uS1i(t− lh) +

n2∑
j=1

CS,ij

∫ t−lh

t−1−lh
u2j(r)dr

+

nF
2∑

j=1

CSF,ij

∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uF2j(r)dr

∣∣∣∣∣∣
β

≤ 1

k

k−1∑
l=0

E
∣∣φSitl∣∣β ,

where φSitl is implicitly defined. A further application of the cr inequality to the summands

of interest yields

E
∣∣φSitl∣∣β ≤

(
1 + n2 + nF2

)β−1

E |u1i(t− lh)|β +

n2∑
j=1

E

∣∣∣∣CS,ij ∫ t−lh

t−1−lh
u2j(r)dr

∣∣∣∣β

+

nF
2∑

j=1

E

∣∣∣∣CSF,ij ∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uF2j(r)dr

∣∣∣∣β
 .

Now E
∣∣uS1i(t− lh)

∣∣β = E
∣∣uS1i(t)∣∣β < ∞ by Assumption 1(b) while, using Lemma A3 of

Chambers (2003),

E

∣∣∣∣CS,ij ∫ t−lh

t−1−lh
u2j(r)dr

∣∣∣∣β ≤ |CS,ij |E|u2j(t)|β <∞,

E

∣∣∣∣CSF,ij ∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uF2j(r)dr

∣∣∣∣β

≤ |CSF,ij |β
∣∣∣∣∫ t−1−lh

t−1−lh−h
(l + 1− k(t− 1− r))dr

∣∣∣∣β E|uF2j(t)|β
= |CSF,ij |β

∣∣∣∣h(l + 1)− k

2
(2l + 1)h2

∣∣∣∣β E|uF2j(t)|β <∞.
Hence E

∣∣φSitl∣∣β <∞ implying E
∣∣∣ξS1i,t∣∣∣β <∞ also.

Turning to ξF1t we have, from its definition in the proof of Theorem 1,

ξF1i,t =

∫ t

t−1
uF1i(r)dr +

n2∑
j=1

CF,ij

∫ t

t−1

∫ r

r−1
u2j(s)dsdr

−1

k

k−1∑
l=0

nS
2∑

j=1

CFS,ij

∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uS2j(r)dr, i = 1, . . . , nF1 .
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Applying the cr inequality yields

E|ξF1i,t|β ≤ (1 + n2 + nS2 )β−1

E ∣∣∣∣∫ t

t−1
uF1i(r)dr

∣∣∣∣β +

n2∑
j=1

E

∣∣∣∣CF,ij ∫ t

t−1

∫ r

r−1
u2j(s)dsdr

∣∣∣∣β

+

nS
2∑

j=1

E

∣∣∣∣∣CFS,ij 1

k

k−1∑
l=0

∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uS2j(r)dr

∣∣∣∣∣
β
 .

Use of Lemma A3 in Chambers (2003) yields, for the first two components,

E

∣∣∣∣∫ t

t−1
uF1i(r)dr

∣∣∣∣β ≤ E ∣∣uF1i(t)∣∣β <∞,
E

∣∣∣∣CF,ij ∫ t

t−1

∫ r

r−1
u2j(s)dsdr

∣∣∣∣β ≤ |CF,ij |βE|u2j(t)|β <∞,

while applying the cr inequality again to the third components gives

E

∣∣∣∣∣CFS,ij 1

k

k−1∑
l=0

∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uS2j(r)dr

∣∣∣∣∣
β

≤ |CSF,ij |β
1

k

k−1∑
l=0

E

∣∣∣∣∫ t−1−lh

t−1−h−lh
[l + 1− k(t− 1− r)]uS2j(r)dr

∣∣∣∣β

≤ 1

k
|CSF,ij |βE|uS2j(t)|β

k−1∑
l=0

∣∣∣∣h(l + 1)− k

2
(2l + 1)h2

∣∣∣∣β <∞.
Combining these results establishes that E|ξF1i,t|β < ∞ . Finally, from their definitions in

the proof of Theorem 1,

E|ξS2i,t|β ≤ 1

k

k−1∑
l=0

E

∣∣∣∣∫ t−lh

t−−lh
uS2i(r)dr

∣∣∣∣β ≤ E|uS2i(t)|β <∞, i = 1, . . . , nS2 ,

E|ξF2i,t|β ≤ E|uF2i(t)|β <∞, i = 1, . . . , nF2 ,

which make use of the cr inequality and Lemma A3 of Chambers (2003), respectively.

Finally it is necessary to show that ξt satisfies the appropriate mixing coefficient decay

rate. This follows because ξt is a measurable function of u(t) over a finite interval and so

inherits the same mixing properties; see, for example, Theorem 14.1 of Davidson (1994).

This completes the proof. 2

Proof of Lemma 2. The arguments used in the proof of Lemma 1 ensure that E|ξit|β
′
<

∞ and that ξt inherits the same mixing properties as u(t). The conditions of Lemma 1

of Andrews (1991) are then satisfied by ξt and the stated summability properties of the

autocovariance matrices and fourth-order cumulants follow from Andrews’ Lemma 1 and

Assumption A. 2

Proof of Theorem 2. Parts (a) and (b) follow from Chambers (2018). For part (c) we
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begin with the decomposition

f̂ξ̂ξ̂(0)− fξξ(0) =
(
f̂ξ̂ξ̂(0)− f̂ξξ(0)

)
+
(
f̂ξξ(0)− fξξ(0)

)
and then proceed to show that each of the two terms in parentheses is op(1). The first term

is Op(1/m) = op(1) under Assumption 2 using the arguments in Chambers (2018). For the

second term consider

Ef̂ξξ(0)− fξξ(0) =
1

2π

∑
|k|<T

(
1− |k|

T

)
wkΓξ,k −

1

2π

∞∑
−∞

Γξ,k

=
1

2π

∑
|k|<T

(
1− |k|

T

)
(wk − 1)Γξ,k −

1

2π

∑
|k|<T

|k|
T

Γξ,k −
1

2π

∑
|k|≥T

Γξ,k,

where wk = (2m+ 1)−1
∑m

s=−m e
−ikλs ; cf. Rosenblatt (1984, p.1171). Then∥∥∥Ef̂ξξ(0)− fξξ(0)

∥∥∥ ≤ 1

2π
max
|k|<T

|wk − 1|
∑
|k|<T

‖Γξ,k‖+
1

2π

∑
|k|<T

|k|
T
‖Γξ,k‖+

1

2π

∑
|k|≥T

‖Γξ,k‖.

The first term converges to zero by the absolute summability of the autocovariances and the

fact that wk → 1 for all k, while the second and third terms also converge to zero from the

absolute summability of the autocovariances and using Kronecker’s Lemma for the second.

Hence ∥∥∥Ef̂ξξ(0)− fξξ(0)
∥∥∥→ 0

as T →∞. Next consider an element of f̂ξξ(0), denoted f̂ξξ,ab(0) (a, b,= 1, . . . , n). Then

f̂ξξ,ab(0) =
1

2m+ 1

m∑
s=−m

Iξξ,ab(λs), a, b,= 1, . . . , n.

It follows that

var
(
f̂ξξ,ab(0)

)
=

1

(2m+ 1)2

m∑
s=−m

var (Iξξ,ab(λs))

+
1

(2m+ 1)2

∑
r 6=s

m∑
s=−m

cov
(
Iξξ,ab(λr), Iξξ,ab(λs)

)
.

Using Lemma 2 we can apply the results of Anderson (1971, chapter 8) to show that the

variances and covariances of elements of Iξξ(λ) are O(1/T ) and hence (using K1 and K2 as

generic constants)

var
(
f̂ξξ,ab(0)

)
≤ 1

(2m+ 1)2

(
K1(2m+ 1)

T
+
K22m(2m+ 1)

T

)

= O

(
1

mT

)
+O

(
1

T

)
= o(1)

under Assumption 2. Hence f̂ξξ(0)
p→ fξξ(0) and the proof of (c) is complete. 2
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Proof of Theorem 3. Given the validity of Theorem 2 the proof follows from Chambers

(2018). 2

Generation of discrete time data

The discrete time data are required to satisfy the underlying continuous time system

in (1) and (2). Stock (y1) and flow (y2) data are generated at the high frequency and then

aggregated to construct the low frequency variables. Denoting the high frequency time index

by τ = 1, . . . , N = T/h and the low frequency index by t = 1, . . . , T , we have

y1,τh = y1(τh) = Cy2(τh) + u1(τh), τ = 1, . . . , N,

where y2(τh) denotes the ‘unobserved’ value of y2. As for y2, integrating (2) once yields

∆hy2(τh) =

∫ τh

τh−h
u2(r)dr, τ = 1, . . . , N,

while a further integration results in

∆hy2,τh = ∆h

∫ τh

τh−h
y2(r)dr =

∫ τh

τh−h

∫ r

r−h
u2(s)dsdr, τ = 1, . . . , N.

The aggregated stock variable is obtained from the high frequency observations using

Y1t =
1

k

k−1∑
l=0

y1,t−lh, t = 1, . . . , T,

while the observed flow variables are obtained using

Y2t =
k−1∑
l=0

y2,t−lh =

∫ t

t−1
y2(r)dr, t = 1, . . . , T.

Given the assumed dynamic specification of u(t) it is therefore necessary to generate the

following quantities:

u(τh), uτh =

∫ τh

τh−h
u(r)dr, Uτh =

∫ τh

τh−h

∫ r

r−h
u(s)dsdr, τ = 1, . . . , N.

We consider the following two specifications for u(t):

(i) u(t) is white noise

In this case we assume that E(u(t)u(s)′) = Σ if t = s and = 0 otherwise. Clearly u(τh) is also

white noise with covariance matrix Σ. Furthermore integrals of u(t) over non-overlapping

intervals will also be uncorrelated so that uτh is also white noise with covariance matrix

Σu =

∫ τh

τh−h
Σ dr = hΣ.
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Turning to Uτh we can write

Uτh =

∫ τh

τh−h

(∫ τh

r
ds

)
u(r)dr +

∫ τh−h

τh−2h

(∫ r+h

τh−h
ds

)
u(r)dr

=

∫ τh

τh−h
(τh− r)u(r)dr −

∫ τh−h

τh−2h
(τh− 2h− r)u(r)dr.

The two integrals are uncorrelated so we find that

E(UτhU
′
τh) =

(∫ τh

τh−h
(τh− r)2 dr +

∫ τh−h

τh−2h
(τh− 2h− r)2 dr

)
Σ =

2

3
h3Σ

while the first-order autocovariance is given by

E(UτhU
′
τh−h) = −

∫ τh−h

τh−2h
(τh− 2h− r) (τh− h− r) drΣ =

1

6
h3Σ.

All other autocovariances are zero and so Uτh is a vector MA(1) process.

(ii) u(t) is continuous time AR(1)

We shall proceed assuming that u(t) = [u1(t), u2(t)]′ satisfies

du(t) = Φu(t)dt+ ζ(dt), t > 0, (22)

where the roots of the equation |zI−Φ| = 0 have negative real parts (to ensure stationarity)

and ζ(dt) is a vector random measure satisfying Eζ(dt) = 0, Eζ(dt)ζ(dt)′ = Σdt (where

Σ is a symmetric, positive definite matrix) and Eζ(S1)ζ(S2)′ = 0 for non-overlapping sub-

intervals, S1 and S2, of the real line; see Bergstrom (1984) for a detailed treatment of random

measures as applied to stochastic differential equations systems. The solution to (22), which

is unique in a mean square sense, is given by

u(τh) = eτhΦu(0) +

∫ τh

0
e(τh−r)Φζ(dr), τ > 0,

and can be used to show that u(τh) satisfies the stochastic difference equation

u(τh) = Fu(τh− h) + ετh, τ = 1, . . . , N, (23)

where, defining F (r) = erΦ, F = F (h) = ehΦ and

ετh =

∫ τh

τh−h
F (τh− r)ζ(dr)

is a vector white noise process with covariance matrix

E
(
ετhε

′
τh

)
= Ωεε =

∫ h

0
F (r)ΣF (r)′dr.

Discrete time data for u(τh) can be generated using (23) given an initial value u(0) and a

sequence of white noise innovation vectors, ετh, with covariance Ωεε.
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Turning to integrals of u it would be possible to integrate (23) over (τh−h, τh] to derive

an appropriate law of motion. Here we follow an alternative approach based on Zadrozny

(1988). Note that, for s ≥ 0,

u(τh− h+ s) = F (s)u(τh− h) +

∫ τh−h+s

τh−h
F (τh− h+ s− r)ζ(dr);

this representation follows from (23). It is convenient for what follows to use the change of

variable w = r − (τh− h) in the integral with respect to the random measure; this yields

u(τh− h+ s) = F (s)u(τh− h) +

∫ s

0
F (s− w)ζ(τh− h+ dw).

This equation can be used to link

uτh =

∫ τh

τh−h
u(r)dr =

∫ h

0
u(τh− h+ s)ds

to u(τh− h), as follows, by integrating:

uτh =

∫ h

0
F (s)dsu(τh− h) +

∫ h

0

∫ s

0
F (s− w)ζ(τh− h+ dw)ds.

Let Φ1(x) =
∫ x

0 F (s)ds. Then the above equation is of the form

uτh = Φ1u(τh− h) + ρτh, (24)

where Φ1 = Φ1(h) and

ρτh =

∫ h

0

∫ s

0
F (s− w)ζ(τh− h+ dw)ds.

The limits of integration in ρτh can be changed to give

ρτh =

∫ h

0

(∫ h

w
F (s− w)ds

)
ζ(τh− h+ dw);

see, for example, McCrorie (2000) for details. But
∫ h
w F (s − w)ds =

∫ h
w e

(s−w)Φds =∫ (h−w)
0 erΦdr = Φ1(h− w) and so

ρτh =

∫ h

0
Φ1(h− w)ζ(τh− h+ dw) =

∫ τh

τh−h
Φ1(τh− r)ζ(dr).

Note that ρτh is vector white noise with covariance matrix

E
(
ρτhρ

′
τh

)
= Ωρρ =

∫ h

0
Φ1(r)ΣΦ1(r)′dr.

Hence uτh can be generated from (24) given an intial value u(0) and a sequence ρτh with

appropriate covariance properties.
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We also need the law of motion for Uτh. Using (24) we have∫ s

s−h
u(r)dr = Φ1u(s− h) +

∫ s

s−h
Φ1(s− r)ζ(dr),

from which a further integration yields

Uτh = Φ1

∫ τh

τh−h
u(s− h)ds+

∫ τh

τh−h

∫ s

s−h
Φ1(s− r)ζ(dr)ds,

which is of the form

Uτh = Φ1uτh−h + φτh, (25)

where the disturbance vector is

φτh =

∫ τh

τh−h

∫ s

s−h
Φ1(s− r)ζ(dr)ds.

A change of limits of integration means that φτh can be written in the form

φτh =

∫ τh

τh−h

(∫ τh

r
Φ1(s− r)ds

)
ζ(dr) +

∫ τh−h

τh−2h

(∫ r+h

τh−h
Φ1(s− r)ds

)
ζ(dr).

Let Φ2(x) =
∫ x

0 Φ1(r)dr. Then we obtain∫ τh

r
Φ1(s− r)ds =

∫ τh−r

0
Φ1(v)dv = Φ2(τh− r),

∫ r+h

τh−h
Φ1(s− r)ds =

∫ h

τh−h−r
Φ1(v)dv = −

∫ τh−h−r

h
Φ1(v)dv = − (Φ2(τh− h− r)− Φ2(h))

which means that φτh can be written

φτh =

∫ τh

τh−h
Φ2(τh− r)ζ(dr)−

∫ τh−h

τh−2h
(Φ2(τh− h− r)− Φ2(h)) ζ(dr).

Note that φτh is an MA(1) process with E(φτhφ
′
τh) = Ωφφ and E(φτhφ

′
τh−h) = Ω1,φφ where

Ωφφ =

∫ h

0
Φ2(r)ΣΦ2(r)′dr +

∫ h

0
(Φ2(r)− Φ2(h)) Σ (Φ2(r)− Φ2(h))′ dr,

Ω1,φφ = −
∫ h

0
(Φ2(r)− Φ2(h)) ΣΦ2(r)′dr.

Discrete time data for u(τh), uτh and Uτh can, therefore, be generated using the stochas-

tic difference equations (23), (24) and (25), respectively. In effect, given initial values for

each of these series, what this requires is the generation of two vector white noise sequences,

ετh and ρτh, and a vector MA(1) sequence, φτh. Data are generated at the high frequency

and then aggregated appropriately. Let eh, . . . , eNh denote a sequence of N i.i.d. random

variables of dimension 2 × 1, each having mean zero and covariance matrix I2. Let Mεε

and Mρρ denote the 2 × 2 Cholesky factorisations of the covariance matrices Ωεε and Ωρρ,

respectively, so that Mεε and Mρρ are lower triangular matrices that satisfy MεεM
′
εε = Ωεε
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and MρρM
′
ρρ = Ωρρ. Then the sequences ετh = Mεεeτh and ρτh = Mρρeτh (τ = 1, . . . , N)

have the required covariance properties.

The generation of the vector MA(1) process φτh is also based on the same set of underly-

ing i.i.d. random vectors eτh. Let e = (e′h, . . . , e
′
Nh)′ denote the 2N×1 vector of i.i.d. random

variates having mean vector zero and covariance matrix I2N , and let

Vφφ =



Ωφφ Ω′1,φφ 0 0 . . . 0 0 0

Ω1,φφ Ωφφ Ω′1,φφ 0 . . . 0 0 0

0 Ω1,φφ Ωφφ Ω′1,φφ . . . 0 0 0
...

...

0 0 0 0 . . . Ωφφ Ω′1,φφ 0

0 0 0 0 . . . Ω1,φφ Ωφφ Ω′1,φφ
0 0 0 0 . . . 0 Ω1,φφ Ωφφ


denote the 2N ×2N covariance matrix that the required 2N ×1 vector φ = (φ′h, . . . , φ

′
Nh)′ is

required to satisfy. Furthermore, denote the 2N×2N lower triangular Cholesky factorisation

of Vφφ by Mφφ so that MφφM
′
φφ = Vφφ. Then φ = Mφφe satisfies the required MA(1)

autocovariance structure because

E(φφ′) = E
(
Mφφee

′M ′φφ
)

= MφφE(ee′)M ′φφ = MφφM
′
φφ = Vφφ.

In fact, the sparse nature of Vφφ is reflected in Mφφ as well, meaning that an efficient

recursive algorithm can be employed to compute the elements of φ. Moreover, the 2 × 2

non-zero sub-matrices of Mφφ converge rapidly to fixed matrices as one moves further into

the array, meaning that computational storage is also much reduced; see Bergstrom (1990,

chapter 7) for a proof of this result and for details of how the procedure operates in the case

of an MA(2) vector sequence.

In all cases the underlying continuous time process is assumed to be stationary with an

invertible autoregressive matrix Φ. As a result, closed form solutions are available for the

computation of the relevant (auto-)covariance matrices. In the case of Ωεε, recall that

Ωεε =

∫ h

0
erΦΣerΦ

′
dr.

As in Phillips (1973) it is possible to use integration by parts to derive the following formula:

vec(Ωεε) = [(In ⊗ Φ) + (Φ⊗ In)]−1
[(
ehΦ ⊗ ehΦ

)
− In2

]
vec(Σ),

where the vec(·) operator stacks the columns of an n×n matrix into an n2×1 column vector

and ⊗ denotes the Kronecker product operator. For Ωρρ recall that

Ωρρ =

∫ h

0
Φ1(r)ΣΦ1(r)′dr.

Under the invertibility of Φ we have

Φ1(r) =

∫ r

0
esΦds = Φ−1

(
erΦ − In

)
.
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Substituting this expression into Ωρρ it can be shown that

Ωρρ = Φ−1
(
Ωεε − ΣΦ′1 − Φ1Σ + hΣ

) (
Φ−1

)′
,

where Φ1 = Φ1(h) = Φ−1(ehΦ − In). Turning to Ωφφ we require evaluation of

Ωφφ = 2

∫ h

0
Φ2(r)ΣΦ2(r)′dr − Φ2(h)Σ

∫ h

0
Φ2(r)′dr −

∫ h

0
Φ2(r)drΣΦ2(h)′ + hΦ2(h)ΣΦ2(h)′.

Recall that

Φ2(r) =

∫ r

0
Φ1(s)ds =

∫ r

0
Φ−1

(
esΦ − In

)
ds = Φ−1 (Φ1(r)− rIn) = Φ−2

(
erΦ − In

)
− rΦ−1

which immediately gives Φ2(h) = Φ−1 (Φ1 − hIn). Using this expression we find that∫ h

0
Φ2(r)ΣΦ2(r)′dr = Φ−1

(∫ h

0
Φ1(r)ΣΦ1(r)′dr − Σ

∫ h

0
rΦ1(r)′dr

−
∫ h

0
rΦ1(r)drΣ +

h3

3
Σ

)(
Φ−1

)′
.

The first component in parentheses is simply Ωρρ. Now let

Φ5 =

∫ h

0
rΦ1(r)dr = Φ−1

∫ h

0
r
(
erΦ − In

)
dr = Φ−1

(
Φ4 −

h2

2
In

)
where

Φ4 =

∫ h

0
rerΦdr =

(
hΦ−1 − Φ−2

)
ehΦ + Φ−2 = Φ−1

(
hehΦ − Φ1

)
.

Hence

Φ6 =

∫ h

0
Φ2(r)ΣΦ2(r)′dr = Φ−1

(
Ωρρ − ΣΦ′5 − Φ5Σ +

h3

3
Σ

)(
Φ−1

)′
.

Next we consider

Φ7 =

∫ h

0
Φ2(r)dr =

∫ h

0

(
Φ−2

(
erΦ − In

)
− rΦ−1

)
dr = Φ−2 (Φ1 − hIn)− h2

2
Φ−1.

Combining these results we find that

Ωφφ = 2Φ6 − Φ2ΣΦ′7 − Φ7ΣΦ′2 + hΦ2ΣΦ′2,

where Φ2 = Φ2(h) = Φ−1 (Φ1 − hIn). Finally, the autocovariance matrix of φτh is

Ω1,φφ = −
∫ h

0
(Φ2(r)− Φ2(h)) ΣΦ2(r)′dr = Φ2ΣΦ′7 − Φ6.
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Table I Bias and RMSE of Estimators

Specification of u(t)

White Noise AR φ = −5 AR φ = −10

Estimator Bias RMSE Bias RMSE Bias RMSE

OLS −0.0083 0.0248 −0.0014 0.0320 0.0099 0.0344

FD −0.0001 0.0071 0.0052 0.0246 0.0177 0.0300

FDA −0.0001 0.0070 0.0052 0.0245 0.0177 0.0300

FM(Auto) 0.0001 0.0071 0.0054 0.0249 0.0179 0.0303

VAR(1) 0.0001 0.0100 0.0057 0.0251 0.0180 0.0304

VAR(2) 0.0001 0.0075 0.0055 0.0270 0.0180 0.0320

VAR(4) 0.0001 0.0072 0.0054 0.0288 0.0179 0.0335

Table II Estimates of C in Stock Price-Dividend Model

Estimator Estimate Std. Err. Estimator Estimate Std. Err.

OLS 0.5212 0.0070 FM(Auto) 0.5253 0.0161

FD(4) 0.5247 0.0054 FM(4) 0.5189 0.0110

FD(12) 0.5217 0.0058 FM(12) 0.5253 0.0152

FD(32) 0.5200 0.0067 FM(32) 0.5258 0.0171

FDA(4) 0.5251 0.0058 VAR(1) 0.6009 0.3653

FDA(12) 0.5217 0.0061 VAR(2) 0.6290 0.3648

FDA(32) 0.5200 0.0068 VAR(4) 0.6292 0.3480

VAR Likelihood Ratio Tests

Test Statistic p-value Test Statistic p-value

1 vs. 2 2.9377 0.5683 1 vs. 4 4.2928 0.9776
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