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Abstrat

We ontinue the study of permutations of a �nite regular semigroup

that map eah element to one of its inverses, providing a omplete de-

sription in the ase of semigroups whose idempotent generated sub-

semigroup is a union of groups. We show, in two ways, how to onstrut

an involution mathing on the semigroup of all transformations whih

either preserve or reverse orientation of a yle. Finally, as an appli-

ation, we use involution mathings to prove that when the base set

has at least four members, a �nite full transformation semigroup has

no over by inverse subsemigroups that is losed under intersetion.
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1 Introdution and General Results

1.1 Bakground

In [6℄ the author introdued the study of permutation mathings, whih are

permutations on a �nite regular semigroup S that map eah element to one

of its inverses. It follows from Hall's Marriage Lemma that S will possess

a permutation mathing if and only if S satis�es the ondition that |A| ≤
|V (A)| for all subsets A of S with set of inverses V (A). Although not all �nite
regular semigroups have a permutation mathing, there are positive results

for many important lasses. In [7℄ the author haraterised some lasses

of �nite regular semigroups by the nature of their permutation mathings

and determined, in terms of Green's relations on prinipal fators, when a

�nite orthodox semigroup S has a permutation mathing. In this ase a

permutation mathing implies the existene of an involution mathing. In

Setion 1.3 we show how this result may be extended to semigroups whose

idempotent-generated subsemigroup is a union of groups.

It is not known whether the semigroup On of all order-preserving map-

pings on a �nite n-hain has a permutation mathing of any kind. It was

shown in [6℄ however that OPn, the semigroup of all orientation-preserving

mappings on an n-yle, has a natural involution mathing. In Setion 2.1 we

summarise relevant properties of this semigroup and of Pn, the semigroup of

all orientation-preserving and orientation-reversing mappings on an n-yle.
This latter semigroup, whih was introdued in [1℄ and independently by

MAlister in [9℄, has an intriate struture, whih is manifested in the on-

text of the problem of this paper. In Setion 3 we onstrut a dual pair of

involution mathings of Pn.

There are no known examples of a �nite regular semigroup S that has a

permutation mathing but no involution mathing. It was proved in [6℄ by

graph theoreti tehniques that Tn, the full transformation semigroup on an

n-set, has a permutation mathing but it is not known if Tn has an involution
mathing. However in Setion 4 we show that Tn (n ≥ 4) has no involution

mathing through so-alled strong inverses, whih allows us to show that Tn
(n ≥ 4) has no over by inverse semigroups that is losed under intersetion.

Following the texts [8℄ and [5℄, we denote the set of idempotents of a semi-
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group S by E(S). We shall write (a, b) ∈ V (S) if a and b are mutual inverses
in S and denote this as b ∈ V (a) so that V (a) is the set of inverses of a ∈ S.
We extend the notation for inverses to sets A: V (A) =

⋃

a∈A V (a); note that
this assigns a seond meaning to V (S), but the orret interpretation will

be lear from ontext. Standard results on Green's relations, partiularly

those stemming from Green's Lemma, will be assumed (Chapter 2 of [5℄,

spei�ally Lemma 2.2.1) and fundamental fats and de�nitions onerning

semigroups that are taken for granted in what follows are all to be found in

[5℄. We shall sometimes write G to stand for either of the Green's relations

L or R.

We say that a semigroup S is ombinatorial (or aperiodi) if Green's H-

relation on S is trivial. A ompletely 0-simple ombinatorial semigroup is

known as a 0-retangular band. The full transformation semigroup on a base

set X is denoted by TX or by Tn when X = [n] = {0, 1, 2, · · · , n− 1}.

Let C = {Ai}i∈I be any �nite family of �nite sets (perhaps with repeti-

tion of sets). A set τ ⊆
⋃

Ai is a transversal of C if there exists a bijetion

φ : τ → C suh that t ∈ φ(t) for all t ∈ τ . We assume Hall's Marriage

Lemma in the form that C has a transversal if and only if Hall's Condition

is satis�ed, whih says that for all 1 ≤ k ≤ |I|, the union of any k sets from

C has at least k members.

1.2 Permutation mathings

De�nitions 1.2.1 Let S be any semigroup and let F = {f ∈ TS : f(a) ∈
V (a)∀a ∈ S}. We all F the set of inverse mathings of S. We all f ∈ F a

permutation mathing if f is a permutation of S; more partiularly f is an

involution mathing if f2 = ε, the identity mapping on S.

In the remainder of the paper we shall assume that S is regular and �nite

unless otherwise indiated. We shall often denote a mathing simply by

′
, so

that the image of a is a′. We use the shorthand a′′ as an abbreviation for (a′)′.
We shall work with the family of subsets of S given by V = {V (a)}a∈S . The
members of V may have repeated elements�for example S is a retangular

band if and only if V (a) = S for all a ∈ S. However, we onsider the members

of V to be marked by the letter a, so that V (a) is an unambiguous member

of V (stritly, we are using the pairs {a, V (a)}, (a ∈ S)). We summarise
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some results of [6℄.

Theorem 1.2.2 [6℄ For a �nite regular semigroup S the following are

equivalent:

(i) S has a permutation mathing;

(ii) S is a transversal of V = {V (a)}a∈A;

(iii) |A| ≤ |V (A)| for all A ⊆ S;

(iv) S has a permutation mathing that preserves the H-relation; (mean-

ing that aHb ⇒ a′Hb′);

(v) eah prinipal fator Da ∪ {0} (a ∈ S) has a permutation mathing;

(vi) eah 0-retangular band B = (Da∪{0})/H has a permutation math-

ing.

In [7, Remark 1.5℄ it was shown that we may replae `permutation math-

ing' by `involution mathing' in Theorem 1.2.2 as regards the impliations

((i) ⇔ (v)) ⇐ ((iv) ⇔ (vi)) although the missing forward impliation has

not been resolved.

1.3 Permutation mathings for an E-solid semigroup

De�nition 1.3.1 A regular semigroup S is de�ned to be E-solid if S satis�es

the ondition that for all idempotents e, f, g ∈ E(S)

eLfRg → ∃h ∈ E(S) : eRhLf.

An alternative haraterisation of an E-solid semigroup is that of a regular

semigroup S for whih the idempotent-generated subsemigroup 〈E(S)〉 is a
union of groups [3, Theorem 3℄.

We prove our result on E-solid semigroups via the orresponding result

for orthodox semigroups. The proof of this latter result involved reduing

the general problem to the ase of 0-retangular bands and then showing
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that the orresponding D-lass D may be diagonalised in that the R- and L-
lasses may be ordered so that all idempotents are ontained in retangular

bloks (whih then form the maximal retangular subbands of D); S then

has a permutation mathing if and only if, within eah D-lass of S, these
bloks are similar in the following sense.

De�nition 1.3.2 Let U1 and U2 be �nite retangular bands, let mi and

ni denote the respetive number of R-lasses and L-lasses of Ui (i = 1, 2).
We say that U1 and U2 are similar if

m1

n1
= m2

n2
.

Theorem 1.3.3 [7, Theorems 3.7 and 3.1℄ Let S be a �nite orthodox

semigroup. Then S has a permutation mathing if and only if for eah

0-retangular band B = (Da ∪ {0})/H (a ∈ S) the maximal retangular

subbands of B are pairwise similar. In that ase the permutation mathing

of S may be hosen to be an involution mathing.

Proposition 1.3.4 Eah 0-retangular band B = (Da ∪{0})/H (a ∈ S)
of a �nite E-solid semigroup S is orthodox.

For ompleteness, we reord a proof of the Proposition but note that the

lass of all (not neessarily �nite) E-solid semigroups is a so-alled e-variety,

meaning that the lass is losed under the taking of homomorphi images, of

diret produts, and regular subsemigroups [4℄. Also in [4℄ is shown that a

semigroup is orthodox if and only if the same is true of eah of its prinipal

fators: (also see [5, Ex. 1.4.13(iv)℄).

Proof From the de�nition of E-solidity we see that eah prinipal fator

Da ∪{0} of S is itself E-solid, and B ertainly is regular. Next we note that

B is E-solid through two observations: H ∈ E(B) if and only if H = He for

some e ∈ E(S), and HaGHb in B if and only if aGb in S. Hene if B ontain

three idempotents He,Hf , and Hg with e, f, g ∈ E(S), and they are suh

that HeLHfRHg in B, then eLfRg in S and by the E-solid ondition on

S we have eRhLg for some h ∈ E(S). We now have HeRHhLHf in B and

Hh ∈ E(B). Therefore B is E-solid.

To show that B is indeed orthodox, �rst note that by our seond observa-

tion, B is ombinatorial. Then for any two idempotents of B, whih we now

write as e, f , we have either that ef = 0 ∈ E(B), or otherwise eLgRf for

some g ∈ E(B) whene, sine B is E-solid, it follows that h = ef ∈ E(B).
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Therefore E2(B) = E(B), as required.

Theorem 1.3.5 Let S be a �nite E-solid semigroup. Then S has a

permutation mathing if and only if the maximal retangular subbands of

eah of the 0-retangular bands (Da∪{0})/H are pairwise similar. Moreover

if S has a permutation mathing then S has an involution mathing.

Proof By Theorem 1.2.2, S has a permutation mathing if and only if

the same an be said for all B = (Da ∪ {0})/H (a ∈ S). By Proposition

1.3.4, eah suh B is a �nite orthodox 0-retangular band. By Theorem 1.3.3,

eah suh B then has a permutation mathing if and only if the maximal

retangular subbands of B are pairwise similar, giving the �rst statement

of Theorem 1.3.5. In this ase, again by Theorem 1.3.3, eah permutation

mathing of eah B may be hosen to be an involution mathing of B. Then

by (vi) implies (i) in Theorem 1.2.2 as it applies to involutions, we onlude

that S itself has an involution mathing, thus ompleting the proof.

2 Mathings for OPn and Pn

2.1 The semigroups OPn and Pn

We reap some of the important properties of the semigroups OPn and Pn.

We also augment these results in order to build a type of alulus for these

semigroups. All semigroups under onsideration will be subsemigroups of Tn.
Basi properties of the representation of α ∈ Tn as a digraph G(α) an be

found in the text [5, Setion 1.5℄. Eah omponent C of G(α) is funtional,
meaning that eah vertex has out-degree 1 so in onsequene C onsists of a

unique yle Z(α) with a number of direted trees rooted around the verties

of Z(α). The set of yle points of G(α) are exatly the points in the stable

range of α, denoted by stran(α), whih are the points of [n] ontained in the

range of all powers of α. Pitures of these digraphs are helpful in seeing what
is going on and the reader is invited to draw them where relevant, espeially

in the examples of Setion 4 where they are a natural aid to understanding.

For α ∈ Tn we write R = R(α) for its range Xα, while t = |R(α)| will
stand for the rank of α. The kernel relation of α on X will be denoted as
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ker(α) with the orresponding partition of Xn written as Ker(α). The set of
�xed points of α will be denoted by F (α). Fats from the soure paper [1℄

are listed using the term Result.

De�nitions 2.1.1 (i) the yli interval [i, i + t] (0 ≤ t ≤ n− 1) is the
set {i, i + 1, · · · , i+ t} if i+ t ≤ n− 1 and otherwise is the set

{i, i + 1, · · · , n− 1, 0, 1, · · · , (i+ t) (modn)}.

(ii) A �nite sequene A = (a0, a1, · · · , at) from [n] is yli if there exists

no more than one subsript i suh that ai > ai+1 (taking t+1 = 0). We say

that A is anti-yli if the reverse sequene Ar = (at, at−1, · · · , a0) is yli.

Remarks 2.1.2 To say that A is yli as in (ii) is equivalent to saying

that for some subsript i, ai+1 ≤ · · · ≤ at ≤ a0 ≤ · · · ≤ ai and the subsript

i with this property is unique unless A is onstant. On the other hand A is

anti-yli means Ar
is yli so that A is anti-yli if and only if for some

subsript i we have ai+1 ≥ · · · ≥ at ≥ a0 ≥ · · · ≥ ai (and i is unique if A is

not onstant). The properties of yliity and anti-yliity are inherited by

subsequenes and by sequenes obtained by yli re-ordering.

De�nition 2.1.3 A mapping α ∈ Tn is orientation-preserving if its

list of images, (0α, 1α, · · · , (n − 1)α), is yli. The olletion of all suh

mappings is denoted by OPn. We say that α ∈ Tn is orientation-reversing

if (0α, 1α, · · · , (n − 1)α) is anti-yli and the olletion of all orientation-

reversing mappings is denoted by ORn.

Result 2.1.4 OPn is a regular submonoid of Tn. Eah kernel lass of

α ∈ OPn is a yli interval of [n] and the maximal yles of the omponents

of the digraph G(α) have the same number of verties, denoted by c(α).

De�nition 2.1.5 Let α ∈ OPn be of rank t ≥ 2. We index the members

of Ker(α) as Ki (0 ≤ i ≤ t− 1) in suh a way that the set of initial points ai
of the yli intervals Ki satisfy a0 < a1 < · · · < at−1, denoting this ordered

set by K(α). The list {K0,K1, · · · ,Kt−1} is alled the anonial listing of

the kernel lasses of α. For ri ∈ R(α) where r0 < r1 < · · · < rt−1 we denote

the yli interval [ri, ri + 1, · · · , ri+1 − 1] by Ri.

Result 2.1.6 ([1℄, Theorem 3.3) For t ≥ 2 there is a one-to-one orre-

spondene Φ0 between the set of triples (K,R, i) where K and R are or-
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dered t-sets of Xn (0 ≤ i ≤ t − 1) and {α ∈ OPn : |Xα| = t} whereby

(K,R, i) 7→ α, where eah aj ∈ K is an initial point of a kernel lass of α
and ajα = ri+j (0 ≤ i ≤ t − 1), subsripts alulated modulo t. Moreover

Hα = {Φ0(K,R, i) : i = 0, 1, · · · , t− 1}, and so |Hα| = t.

Result 2.1.7 (i) The olletion Pn = OPn∪ORn is a regular submonoid

of Tn; R- L- and D-lasses are determined by equality or kernels, of images,

and of ranks respetively (as in Tn and OPn).

(ii) the re�etion mapping γ : [n] → [n], whereby i 7→ n− i−1 (i ∈ [n]) is
orientation-reversing and Pn = 〈a, e, γ〉, where a is the n-yle (0 1 · · · n−1)
and e is any idempotent in OPn of rank n− 1; 〈a, e〉 = OPn.

(iii) OPn ∩ ORn = {α ∈ OPn : rank(α) ≤ 2}.

(iv) (ORn)
2 = OPn, OPn · ORn = ORn · OPn = ORn.

It is also proved in [1℄ and in [9℄ that the respetive maximal subgroups

of rank t of OPn and of Pn are yli groups of order t and dihedral groups

of order 2t. Also every non-onstant member α ∈ OPn fatorizes uniquely

as α = arφ where a is the n-yle as above and φ ∈ On. The onstant

mappings on [n] omprise D1, the lowest D-lass of Pn. Any permutation of

D1 is a permutation mathing of D1 and for that reason D1 will not need to

feature in our subsequent disussion.

De�nition 2.1.8 For α ∈ Pn we shall write ρ(α) = (K,R), where K and

R are the respetive sets K(α) of initial points of kernel lasses and R(α).

Note that for any α, β ∈ S = OPn or Pn, αHβ if and only if ρ(α) = ρ(β).
We now extend Result 2.1.6 to Pn.

Theorem 2.1.9 For t ≥ 2 there is a one-to-one orrespondene Φ be-

tween the set of quadruples (K,R, i, k) where K and R are ordered t-sets of
[n], 0 ≤ i ≤ t− 1, k = ±1 and {α ∈ Pn : |Xα| = t}. The orrespondene is
given by (K,R, i, k) 7→ α, where eah aj ∈ K is an initial point of a kernel

lass of α and ajα = ri+kj (0 ≤ j ≤ t− 1), subsripts alulated modulo t.

Proof The �rst statement of Result 2.1.6 implies that Φ|k=1 maps bije-

tively onto the set of non-onstant mappings in OPn. We show that Φ|k=−1
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maps bijetively onto the set of non-onstant mappings in ORn. The equa-

tion Kjα = ri−j ertainly spei�es a unique mapping α = Φ(K,R, i,−1) ∈
Tn, and distint quadruples yield distint mappings. We need to hek that

α ∈ ORn. We have however the following equality of two lists:

ai+1α = rt−1 > ai+2α = rt−2 > · · · > aiα = r0 (1)

It follows from (1) and Remarks 2.1.2 that the image of the yli list K
under α is anti-yli and so α = Φ(K,R, i,−1) ∈ ORn; hene Φ|k=−1 is a

one-to-one mapping into the set of mappings of ORn of rank at least 2.

Conversely, let α ∈ ORn be of rank t ≥ 2. Sine multipliation on the

right by γ de�nes a bijetion of OPn onto ORn, it follows that the kernel

lasses of α are yli intervals and so Hα is determined by a pair of ordered

t-sets (K,R). Take i suh that aiα = r0. Then sine ai+1, ai+2, · · · , ai
is yli and α ∈ ORn, it follows that ai+1α, ai+2α, · · · , aiα is anti-yli.

However, sine aiα = r0 = minR, it follows by Remarks 2.1.2 that (1) holds

for α and so α = Φ(K,R, i,−1). Therefore Φ||k=−1 is a bijetion onto the

set of non-onstant mappings of ORn. Finally note that for k = ±1, the
rank of α = Φ(K,R, i, k) is indeed t = |R| = |K|.

Corollary 2.1.10 For t ≥ 3, eah H-lass H of Pn ontained in D(t) is
a disjoint union H = (H ∩OPn)∪ (H ∩ORn) with eah set in the union of

ardinal t.

Proof Let H = {α ∈ Pn : ρ(α) = (K,R)}. Then by Theorem 2.1.9,

H ∩OPn = {Φ(K,R, i, 1) : 0 ≤ i ≤ t− 1} and H ∩ORn = {Φ(K,R, i,−1) :
0 ≤ i ≤ t−1}; these two sets eah have t members and are disjoint by Result

2.1.7(iii).

We shall refer to the oding of eah α ∈ Pn in the form (K,R, i, k) as
the KRik-oordinates of α, noting that (K,R, i, k) = Φ−1(α). We all i and
k respetively the shift and the parity of α.

Lemma 2.1.11 Let α ∈ Pn with ρ(α) = (K,R). Then

(i) ρ(αγ) = (K,n − 1−R); (ii) ρ(γα) = (n−K,R);

(iii) ρ(γαγ) = (n−K,n − 1−R).
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Proof (i) is immediate from de�nition as is the fat that R(γα) = R(α)
in (ii). Continuing in (ii), suppose that α = Φ(K,R, i, k). Then for ri+kj ∈ R
(0 ≤ j ≤ t− 1), we obtain:

ri+kj(γα)
−1 = ri+kjα

−1γ−1 = Kjγ

= (n−1)−{aj, aj+1, · · · , aj+1−1} = {n−aj+1, n−aj+1+1, · · · , n−aj−1},

where j + 1 is alulated modulo t. It follows that K(γα) = n − K(α),
thereby establishing (ii). Applying (i) and then (ii) now gives (iii) as follows:

ρ(γα · γ) = (K(γα), n − 1−R(γα)) = (n−K,n − 1−R)

Proposition 2.1.12 Let α = Φ(K,R, i, k) ∈ Pn. Then

(i) αγ = Φ(K,n − 1−R,−(i+ 1),−k);

(ii) if 0 66∈ K then γα = Φ(n−K,R, i − 2k,−k);

(iii) if 0 ∈ K then γα = Φ(n−K,R, i − k,−k);

(iv) if 0 6∈ K then γαγ = Φ(n−K,n− 1−R, 2k − (i+ 1), k);

(v) if 0 ∈ K then γαγ = Φ(n−K,n − 1−R, k − (i+ 1), k).

Proof (i) We are working throughout modulo t on subsripts. By Lemma

2.1.11(i) we have ρ(αγ) = (K,n − 1−R). Now

n− 1−R = {n− 1− rt−1 < n− 1− rt−2 < · · · < n− 1− r0}.

Let us denote n − 1− r−(j+1) by sj (0 ≤ j ≤ t− 1) so that R(αγ) = {s0 <
s1 < · · · < st−1}. Hene ajαγ = ri+kjγ = n− 1− ri+kj ; now

i+ kj = −(−i− kj), so that ajαγ = s−(i+1)−kj,

whih establishes equation (i).

(ii) By Lemma 2.1.11(ii) we have ρ(γα) = (n −K,R). Sine 1 ≤ a0

n−K = n− at−1 < n− at−2 < · · · < n− a0.
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Let us denote n− a−(j+1) by bj (0 ≤ j ≤ t− 1) so that K(γα) = {b0 < b1 <
· · · < bt−1}. Hene:

bjγα = (n−1−(n−a−(j+1)))α = (a−(j+1)−1)α = a−(j+2)α = ri−k(j+2) = r(i−2k)−kj,

whih establishes equation (ii).

(iii) Now sine a0 = 0 we have n− a0 = n ≡ 0 (mod n) and so:

n−K = n− a0 < n− at−1 < n− at−2 < · · · < n− a1.

Let us denote n − a−j by bj (0 ≤ j ≤ t − 1) so that K(γα) = {b0 < b1 <
· · · < bt−1}. Hene

bjγα = (n−1−(n−at−j))α = (a−j−1)α = a−(j+1)α = ri−k(j+1) = r(i−k)−kj,

whih establishes equation (iii).

(iv) By Lemma 2.1.11(iii) we have ρ(γαγ) = (n − K,n − 1 − R). Now

using (ii) we obtain

bjγαγ = r(i−2k)−kjγ = n− 1− r−(2k−i+kj) = s(2k−(i+1))+kj ,

whih establishes equation (iv).

(v) By Lemma 2.1.11(iii) we have ρ(γαγ) = (n − K,n − 1 − R). Now

using (iii) we obtain

bjγαγ = ri−k−kjγ = n− 1− r−(k−i+kj) = s(k−(i+1))+kj,

whih establishes equation (v).

Example 2.1.13 As an example we �nd γαγ for α ∈ OR10 given by:

α =

(

0 1 2 3 4 5 6 7 8 9
3 2 2 8 8 6 6 4 3 3

)

;

so that n = 10, t = 5, K = {1, 3, 5, 7, 8}, R = {2, 3, 4, 6, 8} and α =
Φ(K,R, 0,−1). Sine 0 6∈ K, aording to Proposition 2.12(iv), we should

�nd that γαγ = Φ(10−K, 9−R, 2,−1) as i(γαγ) = 2(−1)−(0+1) = −3 ≡ 2
(mod 5). Now n −K = {2, 3, 5, 7, 9}, and n − 1 − R = {1, 3, 5, 6, 7}. This

aords with the diret alulation of γαγ, whih orresponds to reversing

the image line of α (to get γα) and subtrating the images from n− 1 = 9.

γαγ =

(

0 1 2 3 4 5 6 7 8 9
6 6 5 3 3 1 1 7 7 6

)

.
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3 Permutation mathings for OPn and Pn

3.1 An approah via subset involutions

Lemma 3.1.1 Let A ⊆ S and let (·′) denote anH-lass-preserving involution

mathing on the set A. Then (·′) may be uniquely extended to an involution

mathing on AH = ∪a∈AHa. In partiular, if A meets every H-lass of S
then (·′) extends uniquely to an H-lass-preserving involution of S, whih
we shall all the indued involution mathing on S.

Proof Sine (·′) is H-lass-preserving it indues an involution on AH by

Ha 7→ Ha′ . We then have an involution mathing on AH de�ned by b 7→ b′

where b ∈ Ha say and b′ is the unique inverse of b in Ha′ .

We now onstrut what we shall refer to as the natural mathing involu-

tion for Pn, whih is the indued involution mathing on Pn extending the

involution of OPn reorded in [6℄.

Theorem 3.1.2 The semigroup Pn has an H-lass-preserving involution

mathing (·′) de�ned by the rule:

(α = Φ(K,R, i, k)) ⇒ (α′ = Φ(R,K,−ki, k)) (2)

Proof From Theorem 2.1.9 and its proof it follows that (2) de�nes an H-

lass-preserving involution that maps eah of OPn and ORn onto OPn and

ORn respetively: ertainly α′′ = α as (−k)(−ki) = k2i = i. It remains

only to hek that (α,α′) ∈ V (Pn) and by symmetry it is enough to verify

that α = αα′α. To this end take x ∈ [n] with x ∈ Kj say where the kernel

lasses of α are labelled by subsripts in the anonial order. Then sine

−ki+ k(i+ kj) = −ki+ ki+ k2j = j we obtain:

xαα′α = ajαα
′α = ri+kjα

′α = a−ki+k(i+kj)α = ajα = xα,

and so α = αα′α, as required.

Note that for t = 2 we have OPn ∩ D2 = ORn ∩ D2 = D2 and in

this ase k = −k (mod t). This ollapse in the fourth entry of the KRik-

oordinates leads to the involution mathing taking on the simpler form

α = Φ(K,R, i) 7→ α′ = Φ(R,K, i).
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Examples 3.1.3 Let n = 8, t = 4, K = {0, 2, 4, 6}, R = {1, 3, 5, 7} and

α ∈ OR8 de�ned by α = Φ(K,R, 3,−1) so that α′ = Φ(R,K, 3,−1).

α =

(

0 1 2 3 4 5 6 7
7 7 5 5 3 3 1 1

)

α′ =

(

0 1 2 3 4 5 6 7
0 6 6 4 4 2 2 0

)

.

For an example in OPn let us take n = 10, t = 6, K = {0, 2, 4, 7, 8, 9},
R = {0, 1, 2, 5, 6, 7} and α = Φ(K,R, 4, 1). Sine −i = −4 = 2 (mod 6) we
obtain α′ = Φ(R,K, 2, 1):

α =

(

0 1 2 3 4 5 6 7 8 9
6 6 7 7 0 0 0 1 2 5

)

α′ =

(

0 1 2 3 4 5 6 7 8 9
4 7 8 8 8 9 0 2 2 2

)

.

Example 3.1.4 The natural involution inverse of a group element is not

neessarily a group element and nor does the natural involution map On into

itself. Both features are seen in the following example. Take n = 3, t = 2,
K = {0, 2}, R = {1, 2}, and put α = Φ(K,R, 0, 1) so that α′ = Φ(R,K, 0, 1):

α =

(

0 1 2
1 1 2

)

α′ =

(

0 1 2
2 0 2

)

;

we see that α ∈ E(O3) ⊆ E(OP3) and so is an order-preserving group

element while α′2
is the onstant mapping with range {2} and so α′

is not

ontained in any subgroup of OP3 and nor is α′
order-preserving. In the

next example α ∈ E(O2n), but α
′
has no �xed points.

Example 3.1.5 Take α ∈ E(O2n) so that R(α) = F (α), putting R(α)
as the set of odd members of [2n] and for eah even integer i ∈ [2n] we put
iα = i + 1. This yields an order-preserving idempotent α on [2n] of rank n
for whih

(0α, 1α, · · · , (2n − 2)α, (2n − 1)α) = (1, 1, 3, 3, · · · , 2n− 1, 2n − 1).

Now α = Φ(K,R, 0, 1) where K = {0, 2, 4, · · · , 2n − 2} and

R = {1, 3, 5, · · · , 2n− 1}. Hene α′ = Φ(R,K, 0, 1). The kernel lasses of α′

have the form (i, i + 1), (i = 1, 3, · · · , 2n − 1). We see that α′
ontains the

n-yle:
σ = (2n− 2 2n − 4 2n − 6 · · · 2 0),

and for all odd i we have iα′ = i − 1. (The digraph G(α) has exatly one

omponent onsisting of the n-yle σ along with n endpoints, one for eah

point on σ.) In partiular c(α) = 1 but c(α′) = n.

13



3.2 The dual mathing involution of Pn

The mapping on Pn de�ned by α 7→ αγ (resp. α 7→ γα) is an involution on

Pn that maps OPn onto ORn and maps ORn onto OPn. Additionally, for

any αγ ∈ ORn (resp. γα ∈ ORn) and α′ ∈ V (α) in OPn, γα
′ ∈ V (αγ)

(resp. α′γ ∈ V (γα)) whih lies in ORn. The upshot of this is that any

permutation mathing (·′) on OPn may be extended to one on Pn by de�ning

(αγ)′ = γα′
(or dually, (γα)′ = α′γ). However, if (·′) is an involution

mathing, the same is not generally true of either of these extensions, even

in the ase of the natural inverse mathing. Lemma 2.1.11 supplies enough

information to make this point.

Let β = Φ(K,R, i,−1) ∈ ORn so that ρ(β) = (K,R). Writing β = αγ
so that α = βγ we get ρ(α) = (K,n− 1−R) and so ρ(α′) = (n− 1−R,K).
Then for β = γα′

we have ρ(β) = (R + 1,K). Fatorizing β as (γα′γ)γ we

obtain ρ(γα′γ) = (R+1, n−K − 1) so that ρ((γα′γ)′) = (n−K− 1, R+1).

Finally, β = γ(γα′γ)′ for whih we have ρ(β) = (K+1, R+1). In partiular

we see that in general β 6= β, as K + 1 = K if and only if β is a member of

the group of units of Pn. However, by replaing the standard linear ordering

by the reverse, or as we shall all it the dual ordering of [n], we automatially

obtain a dual involution mathing on Pn, whih we shall denote by (·). This
generates a distint mathing involution of Pn to that of Theorem 3.1.2 and

we now seek to express (·) in KRik-oordinates.

Let α = Φ(K,R, i, k). Under (·), eah r ∈ R is mapped to the initial

point of rα−1
in the dual ordering, whih is the terminal point rα−1

in the

standard ordering. It follows that Xα = K − 1. Similarly, under (·), R
beomes the set of initial points of kernel lasses in the dual ordering, whih

is then the set of terminal points of those same lasses when expressed in the

standard ordering, and so K(α) = R+ 1. Therefore ρ(α) = (R + 1,K − 1).
Sine the hoie of ordering does not a�et whether or not α ∈ Pn preserves

or reverses orientation, we may write α = Φ(R+ 1,K − 1, i(α), k), where it
only remains to determine i(α).

Theorem 3.2.2 The dual mathing involution (·) : Pn → Pn ats by

α = Φ(K,R, i, k) 7→ Φ(R+ 1,K − 1), i(α), k) where:

Case (1): 0 6∈ K and n− 1 6∈ R: i(α) = 1 + k(1 − i);
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Case (2): 0 6∈ K and n− 1 ∈ R: i(α) = 1− ki;

Case (3): 0 ∈ K and n− 1 6∈ R: i(α) = k(1− i);

Case (4): 0 ∈ K and n− 1 ∈ R: i(α) = −ki.

Moreover, α is in Case (1/4) if and only if α is in Case (1/4) and α is in

Case (2/3) if and only if α is in Case (3/2).

Proof Sine ρ(α) = (R + 1,K − 1) it follows that ρ(αα) = (K,K − 1).
Observe that the unique member of K − 1 in the kernel lass Kj is aj+1 − 1
and sine αα ∈ E(Pn) we have:

Kjαα = aj+1 − 1

⇒ ri+kjα = aj+1 − 1 ⇒ ri+jα = akj+1 − 1

⇒ rjα = ak(j−i)+1 − 1 = a(1−ki)+kj − 1

∴ (rj + 1)α = rj+1α = a(1+k(1−i))+kj − 1 (3)

The value of i now falls into four ases.

Case (1): 0 6∈ K and n− 1 6∈ R. Sine 1 ≤ a0 and rt−1 ≤ n− 2 we have,

in asending order:

K−1 = {a0−1, a1−1, · · · , at−1−1}, R+1 = {r0+1, r1+1, · · · , rt−1+1} (4)

Then putting j = 0 in (3) yields (r0 + 1)α = a1+k(1−i) − 1 and so α =
Φ(R+ 1,K − 1, 1 + k(1− i), k).

Case (2): 0 6∈ K but n−1 ∈ R so that the ordered set R+1 = {rt−1+1 =
0, r0 + 1, · · · , rt−2 + 1}. Then sine rt−1 + 1 is the initial entry of R + 1 we

substitute j = t− 1 ≡ −1 (mod t) into (3) to reover that i is 1− ki and so

α = Φ(R+ 1,K − 1, 1− ki, k).

Case (3): 0 ∈ K but n − 1 6∈ R so that the ordered set K − 1 =
{a1 − 1, a2 − 1, · · · , at−1 − 1, a0 − 1 = n− 1}. As in Case (1) we put j = 0 in
(3) to get a1+k(1−i)− 1 but sine eah entry is now listed one plae earlier in

the ordered set K−1 ompared to Case (1), we subtrat 1 from the outome

in Case (1) to obtain α = Φ(R+ 1,K − 1, k(1 − i), k).
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Case (4): 0 ∈ K and n− 1 ∈ R so the ordered set R+1 is as in Case (2)

and K − 1 is as in Case (3). Hene r−1 +1 is the �rst entry of R+1, whih,
by (3), is mapped to a1−ki, whih is the entry at position −ki in the list of

K − 1. Hene we obtain α = Φ(R+ 1,K − 1,−ki, k).

Also note that 0 ∈ K ⇔ n− 1 ∈ K − 1 and n − 1 ∈ R ⇔ 0 ∈ R+ 1. It
follows that α is in Case (1/4) if and only if α is in Case (1/4) and that α is

in Case (2/3) if and only if α is in Case (3/2).

Remarks 3.2.3 If we take the union of the natural involution mathing

(·)′ on OPn with the dual involution mathing (·) on its omplement in Pn,

we have another involution mathing on Pn. Sine the natural involution

mathing on Pn is the unique involution mathing that extends (·)′ to Pn

while preserving H-lasses, it follows that this alternative mathing is an

example of an involution mathing of Pn that does not preserve H.

We may hek diretly that (·) de�nes an involution: the only non-

obvious feature is that the formulas for the shift o-ordinates are self-inverse

in Cases (1) and (4) and mutually inverse for Cases (2) and (3) but these

are readily heked: for example in Case (1): 1 + k(1− (1 + k(1− i))) = i.

An approah by `half duals' leads to permutation mathings that are

however not involutions. For instane we may look to inverses that map to

terminal points of kernel lasses while keeping R as the set of initial points of

kernel lasses of the inverse. In detail, for α ∈ Pn suh that ρ(α) = (K,R) the
H-lasses de�ned by the kernel-range pairs (K,K−1) and (R,R) are groups
and so there exists a unique inverse α̇ of α suh that ρ(α̇) = (R,K−1). The
mapping α 7→ α̇ is then a permutation mathing of Pn but not an involution

as ρ(α̈) = (K − 1, R − 1) 6= ρ(α) (unless α lies in the group of units of Pn).

A dual omment applies to the other half dual where the inverse of α lies in

the H-lass de�ned by the pair (R + 1,K).

Examples 3.2.4 We take n = 8, t = 4, K = {0, 2, 4, 6}, R = {1, 3, 5, 7}
and put α = Φ(K,R, 0, 1). We have R + 1 = {0, 2, 4, 6} = K, K − 1 =
{1, 3, 5, 7} = R. Here we have 0 ∈ K and n−1 = 7 ∈ R so that we are in Case

(4). By Theorem 3.2.1 we obtain α = Φ(R+ 1,K − 1, 0, 1) = α, and indeed

α is an idempotent. In ontrast, the natural inverse α′ = Φ(R,K, 0, 1):

α = α2 =

(

0 1 2 3 4 5 6 7
1 1 3 3 5 5 7 7

)

= α, α′ =

(

0 1 2 3 4 5 6 7
6 0 0 2 2 4 4 6

)

.
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Next we revisit the �rst of Examples 3.1.3: α = Φ(K,R, 3,−1)∈ OR8, where

K = {0, 2, 4, 6} and R = {1, 3, 5, 7}. Sine 0 ∈ K and n− 1 = 7 ∈ R we are

in Case (4) and so α = Φ(R+1,K−1, 3,−1) and so R+1 = {0, 2, 4, 6} = K
and K − 1 = {1, 3, 5, 7} = R. Hene:

α =

(

0 1 2 3 4 5 6 7
7 7 5 5 3 3 1 1

)

= α.

Sine α = α, therefore α = α also, and α3 = α. In partiular, α 6= α′
. In

general, ORn ontains no idempotents of rank greater than 2, so that α = α2

is impossible for α ∈ ORn \ OPn.

As a third example let n = 10, t = 5, K = {1, 3, 5, 7, 8}, R = {2, 3, 4, 6, 8}
with α = Φ(K,R, 4,−1). Here 0 6∈ K and n − 1 = 9 6∈ R and so we are in

Case (1). Note that sine k = −1 we have for all i that i = 1 − (1− i) = i,
so in partiular i(α) = 4 and so α = Φ(R + 1,K − 1, 4,−1). We see that

R+ 1 = {3, 4, 5, 7, 9} and K − 1 = {0, 2, 4, 6, 7}:

α =

(

0 1 2 3 4 5 6 7 8 9
2 8 8 6 6 4 4 3 2 2

)

α =

(

0 1 2 3 4 5 6 7 8 9
0 0 0 7 6 4 4 2 2 0

)

.

Beginning with α = Φ(R+1,K− 1, 4,−1) we have 0 6∈ R+1 and 9 6∈ K− 1
so we are (neessarily) again in Case (1). As before i(α) = 4 and we obtain

as expeted:

α = Φ((K − 1) + 1, (R + 1)− 1, 4,−1) = Φ(K,R, 4,−1) = α.

In ontrast the natural inverse of α is α′ = Φ(R,K, 1,−1).

As an example illustrating Cases (2/3) let n = 10, t = 6,K = {1, 2, 5, 7, 8, 9},
R = {0, 4, 5, 6, 7, 9} with α = Φ(K,R, 4, 1). Here 0 6∈ K but n− 1 = 9 ∈ R,
putting α in Case (2). Theorem 3.2.1 gives i(α) = 1−ki(α) = 1−4 = −3 ≡ 3
(mod 6). Hene α = Φ(R+1,K− 1, 3, 1), where 0 ∈ R+1 = {0, 1, 5, 6, 7, 8}
and 9 6∈ K − 1 = {0, 1, 4, 6, 7, 8}, plaing α in Case (3). Therefore

α =

(

0 1 2 3 4 5 6 7 8 9
6 7 9 9 9 0 0 4 5 6

)

α =

(

0 1 2 3 4 5 6 7 8 9
6 7 7 7 7 8 0 1 4 4

)

,

and α = α: i(α) = k(1 − i(α)) = 1(1− 3) = −2 ≡ 4 (mod 6) = i(α).
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4 Inverse overs and involution mathings for Tn

4.1 Inverse overs for Tn

In 1971 it was shown by Shein [10℄ that every �nite full transformation

semigroup Tn is overed by its inverse subsemigroups, a result that does not

extend to the ase of an in�nite base set, [5, Ex. 6.2.8℄. If there existed

a over A = {Ai}1≤i≤m of inverse subsemigroups of Tn with the additional

property that the intersetion of any pair of semigroups of A was also an

inverse subsemigroup of Tn then we ould dedue (as explained below) that

Tn had an involution mathing. (The semigroupsOPn and Pn of the previous

setions have an inverse over only if n ≤ 3, [2℄).

It is onvenient in what follows to onsider the empty set also to be an

inverse semigroup. Suppose that A = {Ai}1≤i≤m is an inverse over of Tn
meaning that eah Ai is an inverse subsemigroup of Tn and that ∪

m
i=1Ai = Tn.

It follows that, for all 1 ≤ i, j ≤ m, the subsemigroup Ai,j =: Ai∩Aj of Tn has
ommuting idempotents. Indeed it follows easily from this that Reg(Ai,j),
the set of regular elements of Ai,j , forms an inverse subsemigroup of Ai,j .

However it does not automatially follow that Ai,j = Reg(Ai,j).

Let S be an arbitrary semigroup and a ∈ S. We say that b ∈ V (a) is a
strong inverse of a if the subsemigroup 〈a, b〉 of S is an inverse semigroup.

We denote the set of strong inverses of a by S(a). We next observe that S
has an inverse over if and only if every element of S has a strong inverse for,

on the one hand, if every element a has a strong inverse then S is overed by

its inverse subsemigroups 〈a, b〉 where b ∈ S(a). On the other hand suppose

that S has an inverse over. Take a ∈ S and hoose an inverse subsemigroup

Aa of S ontaining a and let b be the (unique) inverse of a in Aa. Then

A = 〈a, b〉 is a subsemigroup of Aa with ommuting idempotents and every

element of A is regular as for any produt p = c1c2 · · · ck ∈ A (ci ∈ {a, b})
we see that p′ = c′kc

′
k−1 · · · c

′
1 is an inverse of p in A, where we take a′ = b

and b′ = a, beause both produts take plae within the inverse semigroup

Aa. It follows that to prove that a given semigroup S has an inverse over

is equivalent to showing that S(a) is non-empty for every a ∈ S.

The following general observation applies to any inverse overA = {Ai}i∈I
of an arbitrary semigroup S: if the pairwise intersetion of any two mem-
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bers of A is an inverse subsemigroup of S then the same is true of arbitrary

intersetions. To see this let J ⊆ I and onsider A = ∩j∈JAj . Either A
is the empty inverse subsemigroup or we may hoose a ∈ A and onsider

an arbitrary Aj (j ∈ J). Then a has a unique inverse a−1
in Aj . Now let

k ∈ J . By hypothesis, Aj ∩Ak is an inverse subsemigroup of S that ontains

a. Sine Aj ∩ Ak is an inverse subsemigroup of the inverse semigroup Aj ,

it follows that the unique inverse of a in Aj ∩ Ak is a−1
. Sine k ∈ J was

arbitrary, it follows that a−1 ∈ A and so A is indeed an inverse subsemi-

group of S. We shall say that S has a losed inverse over if S has a over

by inverse subsemigroups for whih all pairwise intersetions of its members

are themselves inverse semigroups.

Theorem 4.1.1 For a �nite semigroup S:

(i) if S has a losed inverse over then S has an involution mathing by

strong inverses.

(ii) If every element a ∈ S has a unique strong inverse b then S has a

losed inverse over

C = {∩k
i=1Ui, Ui = 〈a, b〉, a ∈ S, k ≥ 1}.

(iii) If a is a group element of S then a−1, the group inverse of a in S, is
the unique strong inverse of a.

Proof (i) Suppose there exists a losed inverse over A = {A0}0≤i≤m

of S where, without loss, we inlude ∅ as A0. The olletion A is partially

ordered by inlusion. Sine every partial order may be extended to a total

order, we may order the members of A in suh a way that if Ai ⊂ Aj , then

Ai appears before Aj in the list. This is assumed in the following argument.

We now show how A ould be used to build an involution mathing (·′)
of S for whih a′ ∈ S(a). First A0 has an involution mathing (·′) in the

empty funtion. Next let U = ∪k
i=0Ai (k ≥ 1). Suppose indutively that we

have extended the involution (·′) to V = ∪k−1
i=0Ai and that for eah a ∈ Aj ,

(0 ≤ j ≤ k − 1) a′ ∈ Aj (so that a′ ∈ S(a)). Let a ∈ Ak. Suppose �rst that

a ∈ V so that a ∈ Aj for some 0 ≤ j ≤ k− 1. Then a′ is already de�ned and

by the nature of the linear order we have imposed on A, Ai = Aj ∩Ak ⊆ V ,
with i ≤ j ≤ k− 1. Therefore by indution we have a′ ∈ Aj ∩Ak and so the
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indution ontinues in the ase where a ∈ Ak ∩ V .

Otherwise a 6∈ V . Then there exists a unique strong inverse a′ ∈ S(a) ∩
Ak. What is more a′ 6∈ V for if to the ontrary a′ ∈ Aj say (0 ≤ j ≤ k − 1)
then a′ is again a member of the inverse semigroup Ai = Aj∩Ak ⊆ V , where
i ≤ k−1. In this event, (a′)′ is already de�ned and would be an inverse of a′

in Aj∩Ak, whene (a
′)′ = a. But then a ∈ Aj , ontrary to our hoie of a. It

follows that a′ 6∈ V and so we may extend the involution by strong inverses

(·′) to U = V ∪Ak by setting a′ as the unique inverse of a in Ak \ V for all

a ∈ Ak \ V . Therefore we see that in both ases the indution ontinues.

Sine A overs S, the proess terminates when k = m, yielding an involution

mathing by strong inverses (·′) of S.

(ii) Let U, V ∈ A and suppose that U ∩ V 6= ∅. For any a ∈ U ∩ V let b
be the unique strong inverse of a. Let u ∈ V (a) in the inverse semigroup U .
Then u ∈ S(a), whene u = b. We may draw the orresponding onlusion

for the inverse v ∈ V (a) ∩ V , so that u = b = v. In partiular b ∈ U ∩ V ,
whene it follows that U ∩ V is an inverse subsemigroup. Therefore by

adjoining all intersetions U1 ∩ U2 ∩ · · · ∩ Uk (k ≥ 2) of members Ui ∈ A to

the inverse over A we generate a losed inverse over for S.

(iii) Clearly a−1 ∈ S(a). Consider an arbitrary b ∈ S(a) and let e = ab,
f = ba. Then we have eRaLf in S. Then sine Ha is a group we have feHb.
Sine b ∈ S(a) it follows that ef = fe ∈ E(S). But then aHef = feHb
and so b, a−1 ∈ V (a) with bHa−1

, whene b = a−1
by uniqueness of inverses

within an H-lass.

Remark 4.1.2 As observed prior to Theorem 4.1.1, for any semigroup

with a losed inverse over, the intersetion of any olletion of members of

A is also an inverse subsemigroup of S. This allows the argument of the

previous proof to be extended to arbitrary semigroups through the Axiom

of hoie and trans�nite indution (the part (iii) argument makes no use of

�niteness). Part (ii) of Theorem 4.1.1 is a partial onverse of part (i). It

remains open as to whether or not the full onverse holds.

In the next setion, we shall prove that in general Tn has no involution

mathing by strong inverses, from whih it follows from the ontrapositive

of Theorem 4.1.1(i) that Tn has no losed inverse over.
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4.2 Closed inverse overs for Tn do not exist

In this setion our ontext throughout will be Tn. The aount here of the
onstrution of strong inverses in Tn follows [5, Setion 6.2℄.

Let α ∈ Tn. For x ∈ Xn the depth of x, denoted by d(x), is the length
of the longest dipath in G(α) ending at x; if x ∈ stran(α) we onventionally
de�ne d(x) = ∞. Note that d(x) = k < ∞ if and only if x ∈ Xαk \Xαk+1

.

The height of x, denoted by h(x) is the least positive integer k suh that

d(xαk) ≥ d(x) + k + 1; again we take h(x) = ∞ if x ∈ stran(α). The height
of x is the length of the dipath whih begins at x and terminates at the �rst

point u whih is also the terminal point of some dipath that is longer than

the dipath from x to u. A neessary ondition for membership of S(a) is the
following.

Lemma 4.2.1 Let β ∈ S(α). Then for all x ∈ Xα, xβ is a member of

xα−1
of maximal depth.

When onstruting strong inverses, the orret treatment of the endpoints

of G(α), whih are those x ∈ Xn for whih d(x) = 0, is more ompliated.

The next parameter is de�ned on the verties of G(α) in terms of some �xed

but arbitrary β ∈ Tn, but is only signi�ant when β ∈ V (α). For eah

x ∈ Xn the grasp g(x) of α is the greatest non-negative integer k suh that

xαkβk = x.

Lemma 4.2.2 Let β ∈ S(α). If d(x) = 0, and h(x) = h then xβ = y
satis�es g(y) ≥ g(x) + 1 and yαh+1 = xαh

.

Lemmas 4.2.1 and 4.2.2 are all we require here. However, if β ∈ Tn
satis�es these onditions together with the equality xβα · αg(x)+1βg(x)+1 =
xαg(x)+1βg(x)+1 · βα, it may then be proved that that β ∈ S(α). We may

show from this point that Tn has an inverse over for the lemmas represent

the two stages in the onstrution of a partiular type of strong inverse

β ∈ S(α): Lemma 4.2.1 applies to points of positive depth in G(α), while for
eah endpoint x we may follow the dipath (of length k say) from x until we

meet a point u of depth exeeding k. Then uβt
has already been de�ned for

all 0 ≤ t ≤ k + 1 and we then put xβ = xαkβk+1
. This stage an always be

arried out and indeed this β ∈ S(α) is uniquely determined by the hoies

made in determining Xαβ. The outome of this is a partiular strong inverse
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β ∈ S(α) for suh a β will also satisfy the additional ondition and indeed the

set of all idempotents αtβt, βsαs
then ommute with eah other, a neessary

and su�ient ondition for 〈α, β〉 to be an inverse semigroup.

The main result of this setion is the following.

Theorem 4.2.3 The full transformation semigroup Tn has a losed in-

verse over if and only if n ≤ 3.

Lemma 4.2.4 For n ≤ 3, Tn has a losed inverse over.

Proof For n = 1, 2 we note that Tn is a union of groups so the laim

follows from Theorem 4.1.1. Although T3 is not a union of groups, we may

verify that eah α ∈ T3 has a unique strong inverse as follows.

In general, an element α ∈ Tn is a group element if and only ifXα = Xα2
.

It follows that all members of T3 of ranks 1 or 3 are group elements. There

are 33 − 3 − 3! = 18 mappings in T3 of rank 2. All of those with two

omponents are idempotent (these number 3 × 2 = 6). Those with one

omponent for whih |Xα2| = 2 are group elements (these also number 6).
This leaves 18− 6− 6 = 6 mappings of rank 2 with a single omponent and

for whih |Xα2| = 1. These are evidently the 6 mappings α of the form

a 7→ b 7→ c 7→ c where {a, b, c} = {1, 2, 3}, whih we denote for our urrent

purposes by (a b c). Observe that eah suh α has a unique strong inverse,

whih is α′ = (b a c). The result now follows by Theorem 4.1.1(ii).

Examples 4.2.5 For α = (1 2 3) we have S(α) = α′ = (2 1 3), αα′ :
1 7→ 1, 2, 3 7→ 3, α′α : 1, 3 7→ 3, 2 7→ 2. The inverse subsemigroup U3 =
〈α,α′〉 is a 5-element ombinatorial Brandt semigroup with zero element

given by α2 = α′2
, whih is the onstant mapping with range {3}. The

subsemigroups U1, U2, U3 are pairwise disjoint. However not all intersetions

of distint members of the inverse over C ={〈a, b〉 : b ∈ S(a)} are empty: for

example onsider the mapping γ : 1 7→ 3, 2, 3 7→ 1, whih is its own strong

inverse. Sine γ2 = αα′
we obtain 〈γ〉 ∩ 〈α,α′〉 = {αα′}.

By way of ontrast, let us examine a subsemigroup 〈α,α1〉, where α1 ∈
V (α) \ S(α): we take α1 = (3 2 1). Then e = αα1 ∈ E(T3) and has �xed

point set of {1, 2} with 3e = 2. Also f = α2 ∈ E(T3) is the onstant mapping

with range {3}, so that ef = f . However fe is the onstant mapping onto 2
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and so idempotents do not ommute in U = 〈α,α1〉. In fat U is a 7-element

regular subsemigroup of S, ontaining all three onstant mappings, as α2
1 is

the onstant with range {1}.

Given Lemma 4.2.4 we now need to prove that Tn does not have a losed

inverse over for n ≥ 4. The remaining substantial task is to show that

T4 has no involution mathing through strong inverses for that implies that

T4 has no losed inverse over. For n ≥ 5 we then onsider the opy of T4
embedded in Tn de�ned by T = {α ∈ Tn : kα = k ∀ k ≥ 5}. Suppose that

C were a losed inverse over for Tn. If α ∈ T then for any β ∈ S(α) we
have β ∈ T . It follows that CT = {A ∩ T : A ∈ C} would be a losed inverse

over for T , whih is isomorphi to T4, whih would then also have suh a

over. Therefore, to omplete the proof of our theorem, it remains only to

show that T4 does not have an involution mathing by strong inverses.

First we identify every member of T4 that possesses a unique strong

inverse, a olletion that inludes all mappings of ranks 1 or 4 as these

are group elements. Indeed for any rank we only need onsider non-group

elements, whih are the mappings α suh that Xα2
is proper subset of Xα.

Consider mappings of rank 3. It follows that |Xα2| ≤ 2. If α has two

omponents, sine Xα2 6= Xα, it follows that α has an isolated �xed point d
say and a seond omponent of the form a 7→ b 7→ c 7→ c, whih has a unique

strong inverse b 7→ a 7→ c 7→ c, d 7→ d. If α has just one omponent with

|stran(α)| = 2 then α neessarily now has the form a 7→ b 7→ c 7→ d 7→ c,
whih has a unique strong inverse, whih is the mapping b 7→ a 7→ d 7→ c 7→ d.
Otherwise |stran (α)| = 1 and α has the form a 7→ b 7→ c 7→ d 7→ d, whih
has a unique strong inverse given by c 7→ b 7→ a 7→ d 7→ d. We onlude that

all mappings of ranks 1, 3, or 4 eah have a unique strong inverse.

Finally onsider mappings of rank 2. Sine we may assume there exists a

point x ∈ Xα\stran(α) (as otherwise α is a group element) it follows that we

are restrited to mappings α with a single omponent and that omponent

has a �xed point. The two remaining ases are:

A: the form of a `Y': α =

(

a b c d
c c d d

)

or B: the form β =

(

a b c d
b d d d

)

.

We next at the strong inverse operator S(·) for mappings of these two
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types. We will see that this generates a set of four 9-yles, with eah

mapping within a yle sharing the same �xed point. Consequently these

yles are pairwise disjoint.

The given mapping α of type A has exatly two strong inverses, both of

whih are of type B:

β1 :

(

a b c d
d d a d

)

β2 =

(

a b c d
d d b d

)

(B) (5)

The mapping β of type B also has exatly two strong inverses, the �rst of

type A, the seond of type B:

α1 :

(

a b c d
d a a d

)

(A) β2 :

(

a b c d
d a d d

)

(B) (6)

Consider the olletion C of all mappings of rank 2 with two strong inverses

and a ommon �xed point, d. There are 3 mappings of type A and 6 of type
B, so that C has 9 members. We use the symbols α and β, with appropriate

subsripts, to denote mappings of types A and of B respetively.

The strong inverse operator S(·) ating on a point in C outputs exatly

two distint mappings, whih are also members of C, in aord with the rules

(5) and (6). Let us write α1 = α for the type A mapping above. We write

β1 → α1 → β2 with the arrow indiating the �rst map is a strong inverse

of the seond (so that the reverse arrow is equally valid). We now at the

operator S(·) on the rightmost member of our sequene, whih will produe

as outputs the previous member and a new sequene member. Bearing in

mind rules (5) and (6) our sequene C will thus take on the form:

C : β1 → α1 → β2 → β3 → α2 → β4 → β5 → α3 → β6 · · · . (7)

The output of S(γ) when ating on γ ∈ C omprises two distint mappings,

neither of whih is γ, and one of whih is the predeessor of γ in the sequene.

Eventually the output S(γ) will produe a repeated member of C (in addition

to the predeessor of γ), whih must appear at least two steps before γ.
However, all suh members of C, apart from β1, have already had their two

strong inverses appear in C, and so annot have γ as a third strong inverse.

Therefore the repeated sequene member is neessarily β1. Hene C is a

yle of length l say with l ≥ 2 and l|9, and so l = 3 or l = 9. However

l = 3 would imply that β1 and β2 were mutual inverses, whih is not the

ase. Therefore l = 9 and and the yle C is ompleted by β6 → β1.
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Suppose now that T4 possessed an involution (·′) by strong inverses. Any
mapping α with a unique strong inverse β is neessarily paired with β under

′
. This inludes all mappings in T4 exept for the mappings whih are the

verties of the four disjoint 9-yles we have just identi�ed. Eah member of

suh a 9-yle C is then paired with an adjaent partner in that yle, but

sine 9 is odd, this is not possible and so we have a ontradition. Therefore

T4 has no involution by strong inverses, whih implies by Theorem 4.1.1(i)

that T4 has no inverse over losed under the taking of intersetions.

Remarks 4.2.6 We may expliitly alulate the 9-yle C that ontains

the mapping α above, denoted here as α1, through repeated use of rules

(5) and (6) as follows. We write S(α1) = {β1, β2}, with the βi as given

in (5). Then following (7) the subsequent members of C are β2 → β3 =
(

a b c d
d c d d

)

→ α2 =

(

a b c d
b d b d

)

→ β4 =

(

a b c d
d a d d

)

→ β5 =
(

a b c d
b d d d

)

→α3 =

(

a b c d
d a a d

)

→ β6 =

(

a b c d
c d d d

)

→ β7 = β1 =
(

a b c d
d d a d

)

, giving the antiipated 9-yle C.

Running down the ranks from 4 to 1, elementary ombinatorial onsid-

erations give that:

|E(T4)| = 1 + 2

(

4

2

)

+
(

3

(

4

1

)

+ (2)(2)

(

4

2

)

)

+ 4 = 1 + 12 + 36 + 4 = 53.

In a similar fashion, braketing term sum ontributions from a ommon rank,

the number of non-idempotent self-inverse elements is given by:

(

(

4

2

)

+
1

2

(

4

2

)

)

+ (2)(3)

(

4

2

)

+ 2

(

4

2

)

= 9 + 36 + 12 = 57.

The number of mappings with a distint unique strong inverse is given by:

(3!+2!

(

4

3

)

)

+
(

(3)(2!)

(

4

3

)

+(2)(2)

(

4

2

)

)+4!)+(2)(2)

(

4

2

)

)

= 14+96 = 110.

The number of mappings with exatly two strong inverses is 4× 9 = 36, giv-
ing the total of (53 + 57) + 110 + 36 = 256 = 44 = |T4|. The graph of strong

inverses of T4 then onsists of 110 singletons, 55 pairs, and four 9-yles.
In partiular the above analysis shows that T4 does possess a permutation
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mathing by strong inverses. We may use one of these permutations to on-

strut an involution mathing of T4. (There are 24 = 16 suh permutations,

determined by the 2 hoies of orientation of the 4 yles). First onsider the
9-yle expliitly alulated above in whih all mappings �x a point d. The

mapping α = α1 has an idempotent inverse εd =

(

a b c d
b b b d

)

. We then

remove the pair (εd, εd) from our permutation, replaing it by (εd, α) and
pair up the remaining 8 members of the assoiated 9-yle in neighbouring

pairs. We repeat this proedure with the other three yles, noting that

there is no repetition of idempotents used in our pairings. This then yields

an involution mathing for T4.

We lose with an example showing however that in general Tn does not

possess a permutation mathing by strong inverses.

Example 4.2.7 Consider the following pair of members of T8:

α1 =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 3 8 4

)

α2 =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 8 3 4

)

.

The two mappings are idential exept for the interhange of the images of

6 and 7, and so their digraphs are isomorphi. They share a ommon range:

Xα1 = Xα2 = {2, 3, 4, 5, 8}. Moreover for eah x ∈ Xαi (i = 1, 2) there is
a unique member of y ∈ xα−1

i of maximal depth and so by Lemma 4.2.1 we

see that any strong inverse βi ∈ S(αi) has the following form:

β1 =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − 7

)

β2 =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − 6

)

.

In eah ase the points of depth zero are 1, 6, and 7. For both mappings and

for any strong inverses βi we see that g(1) = 3 so that for any hoie of y =
1βi we have by Lemma 4.2.2 that g(y) ≥ 4, whih implies that y = 1βi = 5.
To determine 6β1 we note that 6α1 = 3 and so d(6α1) = 2 > 0+1 = d(6)+1;
hene h(6) = 1 and g(6) = 0. Writing y = 6β1 we have by Lemma 2.2 that

g(y) ≥ 1 and yα2
1 = 6α1 = 3 so that y = 6β1 = 1. By the same argument

with 6 replaed by 7 we obtain 7β2 = 1.

Finally onsider 7β1. We have 7α1 = 8 so we see that d(7α1) = 1
and g(7) = 1, h(7) = 2 as d(7α2

1) = d(4) = 3 > 2 + 0 = 2 + d(7) while

d(7α) = d(8) = 1 6> 1 + 0. Hene we have by Lemma 4.2.2 that y = 7β1
must satisfy g(y) ≥ 2 and yα3 = 7α2 = 4 so that 7β1 = 1. By symmetry we
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also obtain 6β2 = 1. Therefore eah of the αi has a unique strong inverse βi:

β1 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 7

)

β2 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 6

)

.

We now onsider a third mapping β ∈ T8 and a putative strong inverse

β′ ∈ S(β). As before we have Xβ = {2, 3, 4, 5, 8} and again Lemma 4.2.2

gives the following unique partial de�nition of β′
:

β =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 8 8 4

)

β′ =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − −

)

.

We see that 8β′ ∈ {6, 7}; for the moment let us make the hoie 8β′ = 7
and heneforth denote β′

by β′
1. The points of zero depth are again 1, 6,

and 7 and the same analysis that applied to the αi again yields 1β′
1 = 5.

Next we note that g(6) = 0 and h(6) = 2 as d(6α2) = d(4) = 3 > 2 + 0
but d(6α) = d(8) = 1 6> 1 + 0. Hene y = 6β′

1 must satisfy g(y) ≥ 1 and

yβ3 = 6β2 = 4 so that y = 6β′
1 = 1. Finally we have g(7) = 1 and h(7) = 2

as for h(6). Hene y = 7β′
must satisfy g(y) ≥ 2 and yβ3 = 6β2 = 4 so that

y = 7β′ = 1 also. We have then identi�ed one strong inverse of β′
1 ∈ S(β).

Similarly there exists a seond strong inverse β′
2 ∈ S(β) determined by the

alternative hoie 8β′
2 = 6. Exhanging the roles of the symbols 6 and 7

makes no di�erene to the images of the other domain points in that we

again obtain that 1β′
2 = 5, 6β′

2 = 7β′
2 = 1. Therefore we �nd that

β′
1 = β1 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 7

)

β′
2 = β2 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 6

)

.

The upshot of all this is that we have a set of three members of T8 in U =
{α1, α2, β} suh that the set S(U) of all strong inverses of elements of U is

the two-element set S(U) = {β1, β2}. It follows that there is no permutation
mathing (·)′ on T8 that maps the set U into the set S(U), thereby yielding

the result mentioned earlier, whih we now formally state.

Corollary 4.2.8 There is no permutation mathing (·′) of Tn (n ≥ 8)
suh that, for all a ∈ Tn, a

′
is a strong inverse of a.

Proof Example 4.2.7 shows the orollary is true for n = 8. For n ≥ 9 we
may extend the above example with eah of the the mappings α1, α2, β ating

identially on all integers exeeding 8. Sine any strong inverse preserves

omponents, we again obtain the onlusion that S(α1) = {β1}, S(α2) =
{β2} and S(β) = {β1, β2}, whih implies the result.
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