

LSHTM Research Online

Olaru, ID; Albert, H; Zallet, J; Werner, U-E; Ahmed, N; Rieder, HL; Salfinger, M; Kranzer, K; (2018) Impact of quality improvement in tuberculosis laboratories in low- and lower-middle-income countries: a systematic review. INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 22 (3). pp. 309-320. ISSN 1027-3719 DOI: https://doi.org/10.5588/ijtld.17.0629

Downloaded from: http://researchonline.lshtm.ac.uk/4652417/

DOI: https://doi.org/10.5588/ijtld.17.0629

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

https://researchonline.lshtm.ac.uk

- 1 Article type: systematic review
- 2 Running title: Quality improvement in TB laboratories
- 3 Title: Impact of quality improvement in TB laboratories in low and lower-middle income
- 4 countries: a systematic review
- 5 Authors: Ioana D Olaru^{1,2*}, Heidi Albert³, Julia Zallet⁴, Ulf-Eike Werner⁴, Nada Ahmed⁵, Hans
- 6 L. Rieder⁶, Max Salfinger⁷, Katharina Kranzer^{4,8}
- 7 1. Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- 8 2. Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- 9 3. Foundation for Innovative New Diagnostics (FIND), Waverley Business Park 17-107, Wyecroft Road, Mowbray,
- 10 Cape Town, South Africa
- 11 4. National Mycobacterium Reference Laboratory, Research Center Borstel, Borstel, Germany
- 12 5. Centre for Clinical Microbiology, University College London, London, United Kingdom
- 13 6. Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland and Tuberculosis
- 14 Consultant Services, Kirchlindach, Switzerland
- 15 7. Mycobacteriology and Pharmacokinetics Laboratory and Department of Medicine, National Jewish Health,
- 16 Denver, Colorado, USA
- 17 8. London School of Hygiene and Tropical Medicine, London, United Kingdom
- 18 *Correspondence: Ioana D. Olaru, Dept. of Clinical Microbiology, University Hospitals of Leicester NHS Trust,
- 19 Infirmary Square, LE1 5WW, Leicester, United Kingdom; e-mail: ioanad_olaru@yahoo.co.uk
- 20 **Summary:** 195 words
- 21 Word count, tables and figures: 2746 words; 1 figure, 3 Tables, 3 supplementary Tables.
- 22 **References:** 38
- 23 Key words: tuberculosis, laboratory, quality management, quality improvement, EQA, IQA

24 Summary

25 **Objective:**

26 The effect of quality improvement measures on performance of diagnostic tuberculosis

27 laboratories in low- and lower-middle income countries is currently unknown and is the subject

28 of this review.

29 Methods:

30 Three databases were searched for quality improvement studies presenting data on performance

31 parameters before and after the implementation of quality improvement interventions.

32 **Results:**

A total of 21 studies were included in this review. Quality improvement measures were most 33 frequently implemented by an external organization; settings targeted ranged from microscopy 34 centers, hospitals, districts, regional and national reference laboratories. Quality improvement 35 interventions and outcome measurements were highly heterogeneous. Most studies investigated 36 37 interventions aimed at improving smear microscopy (n=17). Two studies evaluated comprehensive quality improvement measures (n=2) and another three studies focused on 38 mycobacterial culture and drug susceptibility testing. Most studies showed an improvement in 39 40 outcomes measured in a before-after or time trend analysis.

41 **Conclusion:**

Quality improvement measures implemented in tuberculosis laboratories showed a positive
impact on various outcomes. Due to high heterogeneity of outcome reporting and interventions
and the low quality of studies the effect size is unclear. Identification of standardized quality
indicators and their link to quality of patient care would improve knowledge in this field.

47 Introduction

Worldwide, an estimated 10.4 million new tuberculosis cases occurred in 2015; a third remained 48 undiagnosed.¹ Accurate, rapid diagnosis is critical for timely initiation of treatment and, 49 ultimately, disease control. Today quality assurance (QA) is an essential for the diagnostic 50 process. It comprises activities that enable the achievement and maintenance of high levels of 51 proficiency and accuracy in laboratory testing² and includes staff training, quality control (QC), 52 53 external and internal quality assessment (EQA and IQA) of laboratory proficiency, quality 54 performance indicator monitoring and continuous quality improvement. Continuous quality 55 improvement is a comprehensive management philosophy which employs scientific methods to increase knowledge and control on work processes variability³ with the goal of customer 56 satisfaction. EQA and IQA comprise systems aiming to continuously improve reliability and 57 efficiency of laboratory processes.⁴ Generally QA is the process of managing for quality, a 58 strategy of prevention with focus on planning and documenting. QC on the other side is aimed at 59 60 verifying the quality of the output, a strategy of detection including all activities designed to determine the level of quality. All these elements are managed by the quality management 61 system (QMS) that documents processes, procedures and responsibilities for achieving quality 62 63 policies and objectives that is critical for guiding laboratories towards international accreditation.⁵ 64

In 2008, the need to expand and strengthen laboratory capacity was acknowledged by the World
Health Organization (WHO) together with multiple international partners.⁶ This was swiftly
followed by Strengthening Laboratory Management Toward Accreditation (SLMTA) launched
in 2009.⁷⁻⁹ SLMTA is a large-scale effort aimed at improving the quality of laboratory services
and patient care in resource-limited settings by developing a cadre of competent laboratory

managers. The program seeks to engage laboratories in continuous quality improvement and 70 accelerate their preparations toward accreditation to international standards. WHO has also 71 developed a framework for targets and indicators for laboratory strengthening as part of the "End 72 TB Strategy", which includes indicators for EQA and implementation of QMS.¹⁰ Although there 73 has been progress towards the implementation of QMS in the African Region, more than 90% of 74 National Tuberculosis Reference Laboratories (NRLs) are not yet accredited.¹¹ 75 However, whether quality improvement measures impact on quality outputs of tuberculosis 76 laboratories in low- and lower-middle income countries¹² is currently unknown and subject of 77 78 this review. 79 Methods 80 Studies were selected if they were conducted in tuberculosis laboratories or microscopy centers 81 from low- and lower-middle income countries¹² and evaluated the implementation of QMS, their 82 83 components, or more general interventions (such as training, competency checks, EQA with feed-back loops, etc.) using a comparator (either the same laboratory in a before/after 84 comparison or other laboratories). Outcomes were extracted as defined by the authors. 85

MEDLINE, EMBASE and Web of Science were searched up to the 27th week of 2017 using a
compound search strategy (Table S2). The results were cross-referenced with the list of low and
lower-middle income countries from the World Bank from 2016.¹² No language restriction was
applied.

Articles identified were imported in the bibliographic software manager EndNoteTM X7. Titles
and abstracts were then screened for eligibility by KK and IDO. Full texts of eligible articles
were retrieved and eligibility criteria applied (KK and IDO). Due to the variability in

93 intervention and outcomes a narrative approach was taken. Data extraction was performed using
94 standardized tables. Quality was assessed using a modified Newcastle Ottawa scale (Table S3).¹³
95 Meta-analysis was deemed inappropriate due to the heterogeneity in interventions and outcome
96 measurements. Ethics approval was not required.

97

98 **Results**

99 Characteristics of the identified studies

100 971 unique citations were identified and screened, 78 were selected for full-text review and 21

101 were retained for further analysis (Figure 1). The majority of studies were conducted in India

102 $(n=5)^{14-18}$ and Ethiopia (n=4), ¹⁹⁻²² the remaining were from the Democratic Republic of the

103 Congo,²³ Ghana,²⁴ Kenya,²⁵ Malawi,²⁶ Mozambique,²⁷ Nigeria (n=2),^{28, 29} Sierra-Leone,³⁰ and

104 Uganda (n=2) (Table 2).^{31, 32} Two studies reported data from multiple countries including 48

African countries³³ and 7 countries and regions from Europe, Africa, and the Middle East.³⁴ The

number of participating laboratories ranged from one to 956.

107 Settings ranged from microscopy centers, hospitals, district, regional laboratories and NRLs. The

108 implementing agency in most studies was an external organization, usually the national or

109 regional reference laboratory. International partner organizations were often involved and

supported the national implementing authority^{21, 25, 27, 31} or were the sole implementers.¹⁹ Three

studies described quality improvement interventions implemented by laboratories themselves.^{25,}

112 ^{26, 32} Two multisite, multinational studies investigated the effect of EQA schemes with feedback

113 loops and troubleshooting on subsequent EQA results. Participants were NRLS and research

114 laboratories.^{33, 34}

Quality improvement interventions consisted of EQA schemes with feedback loops, supervisory 115 visits conducted by an external agency, implementation of internal quality assurance (IQA), 116 development of standard operating procedures (SOPs) and staff training. EQA comprised the 117 evaluation of a lower-level laboratory or microscopy center by a higher-level laboratory (usually 118 a regional, national or international organization), while IQA consisted of self-implemented 119 120 measures within the laboratory with the aim of improving performance. In most studies, laboratories underwent repeated rounds of assessment at regular time intervals. Three studies 121 122 presented laboratory assessment data obtained before and after implementation of interventions and comprised two evaluation rounds only.^{14, 23, 27} The following indicators were reported: 123 checklist or questionnaires scores across different dimensions, quality of AFB smears 124 (preparation and staining), number and type of smear reading errors (high- or low-grade),⁴ smear 125 result concordance between observers (Table 2). Other reported indicators included culture 126 contamination rates, proficiency of drug susceptibility testing (DST), and consumables wasted. 127

128

129 Interventions targeting microscopy

The majority of studies investigated interventions aimed at improving AFB smear microscopy 130 (n=17) with EQA schemes featuring as the most frequent intervention.^{14-16, 18-24, 26, 28-33} Slide 131 panels were provided to laboratories as part of microscopy EQA or randomly selected slides 132 133 were blindly rechecked. Slide panels sent by the higher-tier laboratories to the lower-tier 134 facilities aimed to evaluate staining techniques and reading performance. Random blindedrechecking of slides involved sending a proportion of slides from the lower-tier facility to the 135 136 higher-tier laboratory to investigate slide preparation and staining techniques as well as reading 137 performance. Reading errors were defined as false positive, false negative and quantification

138 errors. Smear quality was assessed across the following categories: staining, cleanliness,

thickness, size and evenness. Most studies 10/17 reported an improvement in performance,^{14, 15, 13}

140 ^{19-22, 24, 26, 28, 32} while the rest showed either no change or the results were difficult to interpret due

141 to variability.^{16, 18, 23, 29-31, 33} Although difficult to assess, studies of interventions showing no

142 improvement had infrequent evaluation visits²³, did not provide timely feed-back³⁰, or were

143 implemented in laboratories with a good baseline performance.^{18, 33}

Three studies evaluated the impact of panel testing EQA schemes. Panels of 5-100 stained or 144 unstained slides were provided^{14, 16, 29, 33} and the proportion of errors made were fed back to 145 participating laboratories. One study showed an improvement with no errors rated as "high-146 grade" and a decrease in the number of "low-grade" errors following two rounds of EQA.¹⁴ A 147 multi-country study evaluating the laboratory performance for a wide range of infectious 148 149 diseases including TB showed stable high overall scores for AFB smear microscopy across all settings.³³ Variable performance across laboratories and times was observed in a study from 150 India without any clear effect or trend.¹⁶ Another study from Nigeria showed an initial increase 151 in performance followed by a subsequent decrease but the number of slides sent for panel testing 152 was very small.²⁹ A study conducted in a newly established research biosafety level 3 research 153 154 laboratory showed overall excellent performance for microscopy while participating in two different EQA schemes.³² 155

Nine studies provided data investigating the effect of random blinded rechecking of microscopy slides. At baseline, the proportion of false positive (0.1%-19%) and false negative errors (0%-21%) varied widely across studies. Post intervention, the proportion of false positive and false negative errors ranged between 0% to 1.8% and 0% to 3.6%. Six of the nine studies reported an overall improvement with a decrease in the proportion of false positives ^{15, 20, 21, 24, 28} and false

negatives.^{20, 21, 24} Other studies reported a decrease in major errors¹⁵, an increase in laboratories 161 without any errors²¹ and increased concordance between laboratory staff and supervisors 162 performing the rechecking was reported.^{22, 28} Two studies conducted in India and Nigeria showed 163 a non-significant increase in the proportion of false negative errors.^{15, 28} Three studies failed to 164 show any impact.^{18, 23, 30} Those studies were conducted in India, Sierra-Leone and the 165 Democratic Republic of Congo and performed 2-12 rounds of random blinded rechecking. 166 Six studies reported on the effects of random blinded rechecking or slide reevaluation within an 167 EQA scheme on the quality of AFB smear preparation and staining.^{21, 22, 24, 26, 28, 30} Quality of 168 staining improved in five studies^{21, 22, 24, 26, 28} with 10-20% improvement on quantifiable effect.^{21,} 169 ^{24, 28} One study from Sierra-Leone failed to show improvement in AFB smear quality, staining 170 and reading. However, there was delayed feedback of findings to the submitting laboratory. 171 These results lead to on-site training of staff.³⁰ 172

173

174 Interventions targeting culture and antimicrobial susceptibility testing

A study from Kenya conducted in a district laboratory reported on the implementation of quality
improvement measures initiated by the laboratory management aiming for accreditation.

177 Analytical SOPs, laboratory policies and a quality manual were developed. Regular analyses of

178 quality indicators such as contamination frequency were implemented and optimization of

processes was initiated when required. Culture contamination decreased from 15.4% to 5.3% on

solid media and 15.2% to 9.3% in liquid media. External support was provided for conducting

181 quality audits, implementing the QMS and gaining accreditation.²⁵

182 A study conducted by the Italian supranational reference laboratory reported the impact of four

rounds of EQA for phenotypic DST involving two low-income countries in Africa and several

laboratories in Europe. Following the first round of EQAs, the results were discussed with the 184 national reference laboratories. Expert support was provided both remotely and on-site, if 185 required, to struggling laboratories aimed to address shortcomings and improving performance. 186 During subsequent EQA rounds, improvement across all performance parameters including 187 efficiency and reproducibility was recorded.³⁴ Another study from Uganda periodically reviewed 188 189 culture contamination rates and implemented corrective measures when targets were not attained. Additionally, the center participated in EQA schemes for mycobacterial identification and 190 DST.³² 191

192

193 Comprehensive quality improvement interventions

Studies implementing comprehensive quality improvement measures included on-site 194 evaluations as part of EQA schemes, supervisory visits, staff training and development and 195 implementation of SOPs and electronic inventories. Eight studies described on-site evaluation of 196 laboratories assessing equipment, consumables, procedures, and levels of staff training.^{14, 17, 19, 21,} 197 ^{23, 24, 27, 31} Results of evaluation visits were systematically reported back. Additionally, 198 199 laboratories were supported to address shortcomings. Site visits were documented using standardized checklists and questionnaires in six studies.^{14, 17, 19, 23, 27, 31} One study assessed the 200 extent and accuracy of data documentation during site vists²⁴, while one study assessed the levels 201 of theoretical and practical knowledge of staff.²³ All studies reported improvement in the 202 203 checklist scores, decreased number of recommendations made over time and enhanced documentation practices.^{14, 17, 19, 24, 27, 31} One study implemented an electronic inventory system to 204 enable real-time control of stock, facilitate procurement and check product expiry dates.²⁵ This 205 206 decreased expenses due to product expiry from 6% to 1%. Another study reported on the

207	implementation of a QMS at the NRL. The interventions comprised intensive staff training and
208	mentoring to strengthen local capacity building. The SLIPTA checklist comprising over 250
209	items was used for outcome assessment. ³⁵ The interventions led to a significant increase in
210	checklist scores and from zero to a three-star rating. ²⁷ Two studies conducted site visits, but did
211	not report findings. ^{21, 23}

212

213 Quality of included studies

Nine studies were marked as moderate quality and twelve studies as low quality (Table 3). This
was mostly due to the study design, lack of evaluation of secular trends, relatively short followup time in some studies and uncertainties concerning completeness of follow-up data.

217

218 Discussion

The results of this review suggest a measurable impact of quality improvement measures across 219 220 different settings, analytic processes and interventions in tuberculosis laboratories in low- and lower-middle income countries. Unfortunately, results do not allow firm conclusions regarding 221 effectiveness of specific interventions as both interventions and outcome measures were highly 222 223 heterogeneous. Furthermore, only one study evaluated the effect of implementing a multicomponent QMS eventually resulting in accreditation of the laboratory.²⁵ The majority of 224 studies evaluated a single component of a QMS, most frequently EQAs^{15-18, 20, 22, 28-30, 33, 34} or 225 aimed at improving a specific process for example documentation.²⁴ Additionally, the feedback 226 following evaluation and the corrective measures were poorly described. 227 228 The SLMTA program was recently introduced with the scope of improving quality in 229 laboratories in low-resource settings ultimately aiming to facilitate laboratory accreditation. In a

study including more than 600 laboratories across 47 countries in Africa, Asia, the Americas, 230 SLMTA led to a substantial increase in laboratory performance and quality measured by a 231 standardized checklist score. Although, this program was not specifically targeted at tuberculosis 232 laboratories, it shows that training and mentoring of laboratory managers is highly effective in 233 improving quality. In spite of these encouraging findings, only a small fraction of less than 1% of 234 participating laboratories completed accreditation.³⁶ Unfortunately, laboratories in countries with 235 high prevalence of multi-drug resistant (MDR)-tuberculosis such as some countries in Central-236 237 Asian were not included. Tuberculosis laboratories are key to MDR-tuberculosis diagnosis and 238 treatment as results of first and second line DST are vital in guiding MDR-tuberculosis treatment. Therefore, TB laboratories in high MDR-tuberculosis-burden countries should be a 239 priority for quality improvement. 240

Until recently AFB smear microscopy was the main tuberculosis diagnostic in low- and lower-241 middle income countries. Thus, quality improvement has largely focused on microscopy. 242 National EQA schemes for microscopy as recommended by WHO³⁷ have been rolled out across 243 many countries. It is therefore not surprising that the majority of studies included in this review 244 investigated the effect of microscopy EQA schemes. Reassuringly these schemes had a positive 245 246 effect. However, more comprehensive quality improvement measures are needed if broader culture and molecular diagnostic coverage is to succeed at least in regions with high MDR-247 248 tuberculosis prevalence, ultimately aiming to attain the indicators for laboratory strengthening proposed by the WHO.¹⁰ This could include comprehensive interventions targeted at analytic 249 250 tests other than microscopy, such as mycobacterial culture, drug susceptibility testing and 251 molecular techniques. In addition, rather than focusing on individual diagnostic assays,

introduction of a quality management system which also manages areas such as staff, safety, 252 procurement, pre- and post-analytic processes to name a few should be the ultimate aim. 253 The review highlights high heterogeneity of outcome measures. Ideally, outcome measures 254 should be standardized to enable comparison across studies. The SLMTA checklist score 255 provides such a standardized tool. However, completing the comprehensive checklist is time-256 257 consuming and requires expertise. This might impede its widespread use in future studies. A simpler and user-friendlier tool might be more appropriate. Alternatively, independent external 258 259 assessors trained in tuberculosis diagnostics, QMS and ISO 15189 and 17043 standards should 260 be considered to assess outcomes comprehensively. Other important outcome measures and quality performance indicators such as turn-around times, service interruptions, specimen 261 rejection rates, QC results, cost-effectiveness and laboratory staff productivity⁵ were not reported 262 in any of the studies included in this review. Furthermore, the cost-effectiveness of implementing 263 the additional step for attaining accreditation needs to be investigated. Additionally, standardized 264 reporting on results of quality improvement projects should be attempted.³⁸ 265 The strengths of this review are its comprehensive search strategy across multiple databases and 266 inclusion of all studies irrespective of language or year of publication. This review is limited by 267 268 the small number of countries included. No studies from the Americas or Asia (except for India) could be identified. The large heterogeneity in interventions and outcomes prohibited 269 270 comparisons across studies and meta-analysis. All studies had a before-and-after design. No 271 study was identified using more stringent study designs such as quasi-experimental studies or cluster randomized controlled trials. Outcomes were often poorly defined and the quality of most 272 273 studies was rated low.

In summary, this review shows that implementation of quality improvement measures in 274 tuberculosis laboratories in low resources settings improves laboratory performance. Firm 275 conclusions with regards to the effect size and the most important aspects of the interventions 276 cannot be drawn due to high heterogeneity of outcomes and interventions and the overall low 277 quality of studies. Recently, there have been extensive investments in laboratory QMS. This 278 279 should be accompanied by research to investigate the impact of QMS interventions and their cost-effectiveness. Rather than performing before-after studies at one site, a multi-site cluster 280 281 randomized trials design should be adopted.

282

283 **Competing interests** - The authors have no conflicts of interests to declare.

Acknowledgements and funding – This study had no external funding.

Author contributions: IDO contributed to the concept and design of the manuscript,

acquisition, analysis and interpretation of the data, drafting and revising of the article and

approved the final version of the draft for publication. HA, JZ, UEW, NA, HLR and MS

contributed to the design of the manuscript, interpretation of data, drafting and revising of the

article and approved the final version of the draft for publication. KK contributed to the idea,

290 concept and design of the manuscript, the analysis and interpretation of the data, drafting and

revising of the article and approved the final version of the draft for publication.

292 Ethics Approval Statement: not applicable for this type of manuscript (systematic review).

Figure 1. PRISMA Flow diagram of study selection

296 Table 1. Study characteristics – Setting and implementing agencies

	Years the study		Type of laboratory(ies), centres,	Number of	
Author (year)	was conducted	Country	setting	laboratories	Implementing agency
Addo (2006)	2000-2002	Ghana	District laboratories from the Greater Accra Region	12	NRL
Audu (2014)	2009-2011	Nigeria	Local laboratories from different regions, national coverage	44	National Institute of Medical Research
Aziz (2002)	1997-1998	Uganda	Microscopy centers from six pilot districts, regional	48	NTP, international partner
Fattorini (2008)	2002-2006	Albania, Bahrain, Kosovo, Mozambique, Oman, Qatar, Turkey	NRLs	7	SRL
Frean (2012)	2005-2009	48 African countries	NRLs, laboratories at tertiary hospital, research laboratories	68	WHO
Kumar (2009)	2005-2008	India	RRL from nine states	9	NRL
Malik (2011)	2006-2007	India	Microscopy centers from one state in India	183	RRL
Marinucci (2013)	2009-2011	Ethiopia	Microscopy centers, regional	6	International partner
Melese (2016)	2011-2015	Ethiopia	Microscopy centers, regional	956	NRL, international partner
Misganaw (2016)	2012-2013	Ethiopia	Microscopy centers and hospital	33	NTP

			laboratories from Addis Ababa		
Mundy (2002)	1997-1999	Malawi	District laboratory	1	Self-implemented/ international organizations for EQA
Musau (2015)	2011-2013	Kenya	Research laboratory	1	Self-implemented, National Medical Research Center, international partner
Paramasivan (2003)	1998-2000	India	RRL from seven states	8	NRL
Patel (2012)	2005-2010	India	District laboratories from one state	29	RRL
Sarkinfada (2009)	2005-2006	Nigeria	Microscopy centers from one state	5	Laboratories at secondary and tertiary hospitals
Selvakumar (2003)	1999-2001	India	Microscopy centers, regional	12	District laboratory
Shargie (2005)	2000-2002	Ethiopia	Microscopy centers from one state	167	RRL, NRL
Skaggs (2016)	2011-2012	Mozambique	NRL	1	National Ministry of Health, international partner
Ssengooba (2015)	2010-2012	Uganda	University hospital research laboratory	1	National TB Reference Laboratory/ self- implemented
Sticht-Groh (1993)	1990-1992	Sierra-Leone	District laboratories	10	SRL
Van Rie (2008)	NR	Democratic Republic of Congo	Microscopy centers from Kinshasa	13	NRL

297 NRL=National Reference Laboratory, NTP= National TB Program, RRL= Regional Reference Laboratory, SRL=Supranational Reference Laboratory, WHO=

298 World Health Organization

Table 2 – Interventions and outcomes of quality improvement measures

Author (year)	Intervention	Procedures targeted	Methods to assess outcomes	Number, periodicity,	Outcome measurements	Results	Overall impact of intervention
				approach			
Addo	1. EQA with	Equipment	On-site evaluation:	7 EQA rounds	Documentation	Improved documentation practices	Positive
(2006)	feedback	Consumable	laboratory checklist	Quarterly SVs			
	loop	s Procedures	Direct observation	Prompt feedback			
	2.	Training	of procedures	provided			
	Supervisory	Microscopy	Random blinded	Results of blinded-	Error rates	Decrease in error rates (false positives 15% to	Positive
	visits		re-checking of	rechecking discussed	Slide labelling and	0%, false negatives 21% to 0%)	
	3. Training		slides	with staff	storage	Improved slide labelling, cleaning and storage	
	4. IQA		Direct observation		Slide preparation	Improved smear preparation (10-20% increase	
	5. SOPs		of staining		Quality of slides	across all quality parameters)	
Audu	1. EQA with	Microscopy	Panel testing	4 quarterly rounds of	Identification of	Initial improvement of overall scores (from	Mixed
(2014)	feedback			5 unstained slides	slide status	42% to 78%), decrease in false negatives	
	loop				(positive/ negative)	(from 28% to 4%) and increase in incorrect	
	2. Training				and quantification	grading of smears (from 64% to 96%) in the	
	3. Provision of					second round followed by decrease in overall	
	procedural					scores in the subsequent rounds (to 55% and	

	instructions					34% in the third and fourth rounds).	
Aziz	1 Suparvisory	Equipmont	On site evaluation:	5 EOA rounds	Chacklist score	Improvement in all checklist items	Dositivo
AZIZ	4. Supervisory	Equipment,	On-site evaluation.	5 EQA Tourius	Checklist score	Improvement in an checklist items	rosuive
(2002)	visits	Consumable	laboratory checklist	Quarterly SVs			
		s,	Direct observation	(5 rounds)			
		Procedures	of procedures				
		Microscopy	Direct observation		Slide preparation	Not reported	Uncertain
			of microscopy		and reading		
			procedures and				
			reading				
Fattorin	1. EQA with	Drug	EQA results	4 EQA rounds	Performance and	Improvement of all performance parameters	Positive
i (2008)	feedback	susceptibilit		Results discussed	reproducibility of	including efficiency and reproducibility	
	loop	y testing		with laboratory	drug susceptibility		
	2. Supervisory			director	testing.		
	visits			SVS conducted when			
				required			
Frean	1. EQA with	Smear	EQA results (panel	3 EQA rounds per	Performance of	Stable 85% acceptable scores, no	No change
(2012)	feedback	staining and	testing)	year over 5 years	smear microscopy	improvement during the evaluation period.	
	loop	microscopy		Implementation of			
	2. Supervisory			corrective measures			

	visits			sole responsibility of			
	3. Training			laboratory staff			
Kumar	1.EQA with	Equipment,	On-site evaluation	2 EQA rounds	Number of	Improvement of facilities, infrastructures and	Positive
(2009)	feedback	Consumable	using a checklist	2 SVs	recommended	human resources.	
	loop	s,			actions	Increase in the number of staff trained in EQA	
	2. Supervisory	Procedures			Evaluation of	(from 42% to 55%).	
	visits	Training			checklist items	Fewer recommended actions recommended	
	3. Training					during follow-up visits	
						Overall improvement of checklist items	
		Microscopy	EQA results (on-		Number and type	Improved performance (no high-grade false	Positive
			site panel testing)		of errors	results during the follow-up visit)	
						Decrease in number of low-grade false results.	
Malik	1. EQA with	Microscopy	Random blinded	monthly EQA rounds	Number and type	Decrease in the number of major errors by	Positive
(2011)	feedback		rechecking of	Monthly SVs over 2	of errors	29%. Decrease in the number of high false-	
	loop		slides	years		positive results by 64%.	
				Feedback of number		Slight increase in the number of high false	
				and type of errors and		negative errors (by 20%)	
				suggestions for			
				improvement			
Marinuc	1. EQA with	Microscopy	On-site evaluation	4-6 EQA rounds	Questionnaire	Decrease in centers with inadequate	Positive

ci	feedback	for TB and	using questionnaire	Quarterly SVs	score	performance from 5/6 at baseline to 0/6.	
(2013)	loop	malaria		High turnaround time		Improvement in score for all sections of the	
	2. Supervisory			for feedback		questionnaire	
	visits						
	3. Training						
Melese	1. EQA with	Equipment,	On-site evaluation:	Quarterly SVs	NR	NR	Uncertain
(2016)	feedback	Consumable	direct observation				
	loop	s,	of procedures,				
	2. Supervisory	Procedures	consumables, data				
	visits	Training	documentation				
	3. Training	Microscopy	Random blinded	11 EQA rounds	Number of errors.	Decrease in false positive rates from 0.6% to	Positive
	4. IQA		rechecking of		Smear and staining	0.2% Decrease in false negative results from	
			slides		quality	7.6% to 1.6%	
						Increase in the proportion of centers with no	
						errors from 78% to 91%	
						Increase in quality of staining from 71% to	
						81% Improvement in other smear quality	
						parameters	
Misgan	1. EQA with	Microscopy	Random blinded	7 EQA rounds	Evaluation of	Increase in smear quality	Positive
aw	feedback		rechecking of	Quarterly SV	smear quality	Decrease in the number of discordant results	

(2016)	loop		slides	Regular feedback	Discordant results		
	2. Training			provided and	Number of errors		
				corrective measures			
				discussed			
Mundy	3. IQA	Microscopy	Random blinded	NR	Sample labelling	Increase in the number of samples labelled	Positive
(2002)	4. EQA with		re-checking as part		and staining	correctly from 31% collected at health centers	
	feedback		of IQA		Proportion of	and -80% collected at the hospital to 100%.	
	loop		Evaluation of		discordant results	Improvement in staining techniques	
			specimen		(not reported as		
			suitability, smear		before and after)		
			preparation,				
			staining and				
			reading.				
			Specimen labeling				
Musau	1. IQA	Consumable	Calculation of	NR	Waste from	Decrease in expenditures due to product	Positive
(2015)	2. EQA with	s,	costs for expired		product expiry	expiry from 6.1% to 1.3%	
	feedback	Procedures	products		Client satisfaction	Client satisfaction of 98%	
	loop	Training	Electronic		Accreditation	Accreditation of laboratory	
	3. Training		inventory system			High EQA pass results (90-100%) for	
	4. SOPs		issuing alerts for			microscopy, culture, DST and Xpert.	

	5.	Electronic		expired products				
		inventory		and items requiring				
				re-ordering				
			Culture	Evaluation of		Culture	Decrease in contamination rates for solid	Positive
				culture		contamination rates	media from 15% to 5% and for liquid media	
				contamination		for solid and liquid	from 15% to 9%	
						media		
Paramas	1.	EQA with	Microscopy	Panel testing of	5 EQA rounds	Proportion and	Variable levels of performance and	Uncertain
ivan		feedback		slides		type of errors	consistency during the evaluation rounds	
(2003)		loop				Concordance		
						between		
						technicians		
Patel	1.	EQA with	Infrastructur	On-site evaluation:	3 EQA rounds	Checklist scores	Improvement in scores for all categories.	Positive
(2012)		feedback	е,	checklist-based	3 SVs		Overall increase in scores from 86% to 92%.	
		loop	Equipment,				Increase in internal quality control parameters	
	2.	Supervisor	Consumable				from 66% to 93%.	
		y visits	s,					
	3.	IQA	Procedures.					
	4.	SOPs	Training					
Sarkinfa	1.	EQA with	Microscopy	Random blinded	6 EQA rounds	Concordance of	Increase in concordance of results from 81%	Positive

da		feedback	for TB and	re-checking of	(comparison between	results,	to 91%. Decrease in false positive results from	
(2009)		loop	malaria	slides	baseline and final	Reading errors,	19% to 1.8%. Slight increase in false negative	
	2.	Staff			visits only)	Quality of smear	results from 0% to 3.6%	
		training				preparation and	Increase in specificity from 80% to 97.9%	
						staining	Decrease in sensitivity from 100% to 77.8%	
							Increase in the proportion of good smears	
							from 38 to 57% and good staining from 48%	
							to 59%	
Selvaku	1.	EQA with	Microscopy	Blinded rechecking	12 EQA rounds	Reading errors	Low proportion of false positive results of 0-	Uncertain
mar		feedback		of slides	Monthly SVs		1.2% and false negative results of 1.7%-4.7%.	
(2003)		loop					No clear trend over time.	
	2.	Training						
Shargie	1.	EQA with	Microscopy	Random blinded	10 EQA rounds	Reading errors	Decrease in false positive slides from 4.4% to	Positive
et al.		feedback		rechecking of	Quarterly SVs		1.5%. Decrease in false negative slides from	
		loop		slides	Regular feedback		3.9% to 2.6%.	
					provided			
Skaggs	1.	QMS	Equipment	On site-evaluation,	2 EQA rounds	Checklist scores	Increase in checklist score from 59 to 196	Positive
et al	2.	Staff	Consumable	checklist (SLIPTA)			points (maximum of 250 points). Achieved a	
(2016)		training	s Procedures				3-star grading	
		and	Training					

		mentoring						
	3.	External						
		and						
		internal						
		audits						
Ssengoo	1.	EQA with	Microscopy	EQA results	9 EQA rounds	Performance for	High performance for microscopy EQA of	Positive
ba		feed-back	Culture	(participation in		microscopy and	100% with a decrease to 83% at the end of the	
(2015)		loop	Drug	two EQA schemes)		drug susceptibility	evaluation period	
	2.	Monitorin	susceptibilit	Panel testing		testing EQAs	Increase in performance of drug susceptibility	
		g of	y testing	Evaluation of		Culture	testing from 89% to 100% for isoniazid, from	
		performan		culture		contamination rates	78% to 100% for rifampicin and from 78%%	
		ce		contamination		for solid and liquid	to 90% for ethambutol. Decrease for	
		indicators				media (yearly	streptomycin from 100% to 90%	
	3.	QMS				reports)	Variable contamination rates between 1.8-	
							5.5% for LJ and 8.2-26.1% for MGIT	
Sticht-	1.	EQA	Microscopy	Blinded rechecking	8 EQA rounds	Reading errors	No improvement in smear quality or staining.	No change
Groh				of slides		Quality of smear	No improvement in the performance of slide	
(1993)				Evaluation of		preparation and	reading	
				smear quality and		staining	(training of local staff was initiated following	
				staining			results)	

Van Rie	1.	EQA with	Equipment	On-site evaluation	2 SVs (9 months	Checklist score	Improvement of practical skills in smear	Positive
(2008)		feedback	Consumable	using a checklist	apart)	Evaluation of	preparation, staining and reading following	
		loop	S		Outline of corrective	knowledge and	training (increase in score from 70% to 86%).	
	2.	Supervisor	Procedures		actions	skills of	Increase in knowledge of technicians of	
		y visits	Training		Delayed feedback to	technicians	theoretical aspects of TB diagnosis (increased	
	3.	Training			lower-tier centers		score from 89% to 92%).	
	4.	Provision	Microscopy	Random blinded		Reading errors	No improvement in the number of errors	No change
		of		rechecking			(major errors were present in 8/13 laboratories	
		equipment					before the intervention and in 10/13 centers	
		(microscop					after the intervention).	
		es)					No change in the proportion of laboratories	
							with minor errors	

301 EQA= external quality assessment; IQA= internal quality assessment; NR= not reported; SV = supervisory visits, SOP= standard operating procedures.

304	Table 3: Summary of quality assessment of included studies

Author (year)	Selection		Comparability* Outcome			Total	Quality of	
(year)	1	2	1	1	2	3	1000	evidence
Addo (2006)	1	2	0	1	1	0	5	Low
Audu (2014)	1	2	0	2	0.5	1	6.5	Moderate
Aziz (2002)	1	2	0	1	0.5	0	4.5	Low
Fattorini (2008)	2	2	0	2	1	1	8	Moderate
Frean (2012)	2	2	0	1.5	1	0	6.5	Moderate
Kumar (2009)	2	1	0	0.5	0	0	3.5	Low
Malik (2011)	2	2	0	2	2	0	8	Moderate
Marinucci (2013)	1	2	0	1	1	1	6	Low
Melese (2016)	2	1	0	1	2	0	6	Low
Misganaw (2016)	1	2	0	2	1	0	6	Low
Mundy (2002)	1	2	0	1	0	2	6	Low
Musau (2015)	1	2	0	1	2	2	8	Moderate
Paramasivan (2003)	2	2	0	1.5	1	2	8.5	Moderate
Patel (2012)	2	2	0	2	1	0	7	Moderate
Sarkinfada (2009)	1	2	0	2	1	2	8	Moderate

Selvakumar (2003)	1	2	0	2	1	0	6	Low
Shargie (2005)	1	2	0	2	1	0	6	Low
Skaggs (2016)	2	2	0	2	0	2	8	Moderate
Ssengooba (2015)	1	1	0	2	2	0	6	Low
Sticht-Groh (1993)	1	1	0	1.5	1	0	4.5	Low
Van Rie (2008)	1	1	0	1	0	2	5	Low

 305
 *None of the studies reported on trends prior to intervention. Quality of evidence: 0-6 points: low; 7-9 points: moderate; 10-12 points: high.

310 References

- 311 1. World Health Organization. Global tuberculosis report 2016. Geneva, Switzerland.
- 312 2. Centers for Disease Control and Prevention. Laboratory Quality Assurance and Standardization
- 313 Programs. Accessed from https://www.cdc.gov/labstandards.
- 314 3. Tindill, B. S. and Stewart, D. W. (1993) Integration of Total Quality and Quality Assurance. In
- Al-Assaf, A. F. and Schmele, J. A. (eds) The Textbook of Total Quality in Healthcare. St Lucie Press,
- 316 Delray Beach, FL, pp. 209–220.
- 4. APHL/CDC/IUATLD/KNCV/RIT/WHO . External quality assessment for AFB Smear
- 318 microscopy. Washington, DC: APHL; 2002.
- 5. Global Laboratory Initiative. GLI Practical Guide to TB Laboratory Strengthening, 2017.
- 320 Available from <u>http://www.stoptb.org/wg/gli/assets/documents/GLI_practical_guide.pdf</u>.

321 6. World Health Organization . The Maputo Declaration on strengthening of laboratory systems.

- 322 January 2008. <u>http://www.who.int/diagnostics_laboratory/Maputo-Declaration_2008.pdf</u>. .
- Yao K, Maruta T, Luman E T, Nkengasong J N. The SLMTA programme: Transforming the
 laboratory landscape in developing countries. Afr J Lab Med 2014;3.
- 8. Gershy-Damet G M, Rotz P, Cross D, et al. The World Health Organization African region
- laboratory accreditation process: improving the quality of laboratory systems in the African region. Am J
 Clin Pathol 2010;134:393-400.
- Yao K, McKinney B, Murphy A, et al. Improving quality management systems of laboratories in
 developing countries: an innovative training approach to accelerate laboratory accreditation. Am J Clin
 Pathol 2010;134:401-409.
- World Health Organization. Framework of indicators and targets for laboratory strengthening
 under the end TB strategy, 2016. Available from: www.who.int/tb/publications/labindicators.
- 11. Albert H, Iragena J D, Kao K, Erni D, Onyebujoh P. Implementation of quality management
- 334 systems and progress towards accreditation of National Tuberculosis Reference Laboratories in Africa.
- 335 Afr J Lab Med 2017;6:a490.

- 12. The World Bank. World Bank Country and Lending Groups, 2016. Available from
- 337 https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-
- 338 <u>groups</u>.
- 339 13. Wells G A, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the
- 340 quality of nonrandomised studies in meta-analysis. Available from:
- 341 <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.</u>
- 342 14. Kumar V, Raghavan R, Nagamiah S, Chauhan L S. External quality assessment of smear
- 343 microscopy by the National Reference Laboratory in nine states of India. Int J Tuberc Lung Dis
- **344** 2009;13:1183-1185.
- 15. Malik S, Hanif M, Chopra K K, Aggarwal N, Vashist R P. Evaluation of a new quality
- assessment strategy for blinded rechecking of random sputum smears for TB in Delhi, India. The
- 347 Southeast Asian J Trop Med Public Health 2011;42:342-346.
- 16. Paramasivan C N, Venkataraman P, Vasanthan J S, Rahman F, Narayanan P R. Quality
- assurance studies in eight State tuberculosis laboratories in India. Int J Tuberc Lung Dis 2003;7:522-527.
- 350 17. Patel N D, Rade K, Dave P V, et al. Impact of the RNTCPIRL-EQA-OSE visits on quality of
- sputum smear microscopy services of Gujarat, India. Indian J Tuberc 2012;59:12-17.
- 352 18. Selvakumar N, Prabhakaran E, Rahman F, et al. Blinded rechecking of sputum smears for acid-
- 353 fast bacilli to ensure the quality and usefulness of restaining smears to assess false-positive errors. Int J
- 354 Tuberc Lung Dis 2003;7:1077-1082.
- 19. Marinucci F, Manyazewal T, Paterniti A D, et al. Impact of horizontal approach in vertical
- 356 program: continuous quality improvement of malaria and tuberculosis diagnostic services at primary-level
- medical laboratories in the context of HIV care and treatment program in Ethiopia. Am J Trop Med Hyg
 2013;88:547-551.
- Shargie E B, Yassin M A, Lindjorn B. Quality control of sputum microscopic examinations for
 acid-fast bacilli in Southern Ethiopia. Ethiop. J. Health Dev. 2005;19:104-108.

361 21. Melese M, Jerene D, Alem G, et al. Decentralization of Acid Fast Bacilli (AFB) External Quality
362 Assurance Using Blind Rechecking for Sputum Smear Microscopy in Ethiopia. PLoS ONE
363 2016;11:e0151366.

22. Misganaw A S, Abebe M T, Lulie A D, Bika A T. External Quality Assessment (EQA) of

365 Randomly Blinded Rechecking Slides on TB AFB Microscopy Laboratories: A Retrospective Study,

366 Addis Ababa, Ethiopia. Am J Lab Med 2016;1:9-15.

23. Van Rie A, Fitzgerald D, Kabuya G, et al. Sputum smear microscopy: Evaluation of impact of

training, microscope distribution, and use of external quality assessment guidelines for resource-poor

369 settings. J Clin Microbiol 2008;46:897-901.

370 24. Addo K K, Dan-Dzide M, Yeboah-Manu D, et al. Improving the laboratory diagnosis of TB in

Ghana: the impact of a quality assurance system. Int J Tuberc Lung Dis 2006;10:812-817.

372 25. Musau S, McCarthy K, Okumu A, et al. Experience in implementing a quality management

373 system in a tuberculosis laboratory, Kisumu, Kenya. Int J Tuberc Lung Dis 2015;19:693-695.

26. Mundy C J, Harries A D, Banerjee A, Salaniponi F M, Gilks C F, Squire S B. Quality assessment

375 of sputum transportation, smear preparation and AFB microscopy in a rural district in Malawi. Int J

Tuberc Lung Dis 2002;6:47-54.

27. Skaggs B, Pinto I, Masamha J, Turgeon D, Gudo E S. Implementing Laboratory Quality

378 Management Systems in Mozambique: The Becton Dickinson-US President's Emergency Plan for AIDS

Relief Public-Private Partnership Initiative. J Infect Dis 2016;213 Suppl 2:S47-52.

380 28. Sarkinfada F, Aliyu Y, Chavasse C, Bates I. Impact of introducing integrated quality assessment

for tuberculosis and malaria microscopy in Kano, Nigeria. J Infect Dev Ctries 2009;3:20-27.

382 29. Audu R A, Onubogu C C, Okoye R N, et al. Proficiency testing for HIV, tuberculosis and

383 malaria diagnosis in clinical laboratories in Nigeria. Afr J Lab Med 2014;3.

384 30. Sticht-Groh V, Boillot F. External quality control of direct sputum smears from Sierra Leone,

385 West Africa. Tuber Lung Dis 1993;74:409-411.

386	31. Aziz M, Bretzel G. Use of a standardised checklist to assess peripheral sputum smear
387	microscopy laboratories for tuberculosis diagnosis in Uganda. Int J Tuberc Lung Dis 2002;6:340-349.
388	32. Ssengooba W, Gelderbloem S J, Mboowa G, et al. Feasibility of establishing a biosafety level 3
389	tuberculosis culture laboratory of acceptable quality standards in a resource-limited setting: an experience
390	from Uganda. Health Res Policy Syst 2015;13:4.
391	33. Frean J, Perovic O, Fensham V, et al. External quality assessment of national public health
392	laboratories in Africa, 2002-2009. Bull World Health Organ 2012;90:191-199.
393	34. Fattorini L, Iona E, Cirillo D, et al. External quality control of Mycobacterium tuberculosis drug
394	susceptibility testing: Results of two rounds in endemic countries. Int J Tuberc Lung Dis 2008;12:214-
395	217.
396	35. World Health Organization Regional Office for Africa. Stepwise Laboratory Quality
397	Improvement Process Towards Accreditation (SLIPTA) Checklist Version 2:2015 For Clinical and Public
398	Health Laboratories. Available from: https://slmta.org/resource/training/teaching-guide/16-SLIPTA-
399	checklist.pdf.
400	36. Yao K, Luman E T, Authors S C. Evidence from 617 laboratories in 47 countries for SLMTA-
401	driven improvement in quality management systems. Afr J Lab Med 2014;3.
402	37. World Health Organization. Quality Assurance of Sputum Microscopy in DOTS Programmes:
403	Regional Guidelines for Countries in the Western Pacific. WHO 2003, Geneva, Switzerland.
404	38. Ogrinc G, Mooney S E, Estrada C, et al. The SQUIRE (Standards for QUality Improvement
405	Reporting Excellence) guidelines for quality improvement reporting: explanation and elaboration. Qual
406	Saf Health Care 2008;17 Suppl 1:i13-32.
407	