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Abstract

Background: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect
the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social
distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our
estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing
and vaccination on influenza epidemics in urban and rural regions of the United States.

Methods: We conducted a survey of a nationally representative sample of US adults to collect data on their
self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection.
We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban
region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia.

Results: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus
non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing
and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in
comparison to differentiated compliance among different demographic subpopulations. This result holds for both
urban and rural regions.

Conclusions: By taking into account the behavioral differences in social distancing and vaccination uptake among
different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic
outcomes that can assist in improved public health interventions for prevention and control of influenza.

Keywords: Influenza, Epidemics, Self-protective behaviors, Health disparities

Background
According to the World Health Organization, influenza
outbreaks occur annually and affect 10–20% of the U.S.
population and result in about a billion cases of infec-
tions globally per year [1]. Two primary self-protective
ways to reduce influenza infection include pharmaceutical
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measures such as vaccination, anti-viral medications, and
non-pharmaceutical interventions such as social distanc-
ing, handwashing, fluid intake and cough-etiquettes [2, 3].
During an influenza pandemic, when a novel viral strain
is encountered for which vaccines are not available, non-
pharmaceutical interventions and antivirals are the only
viable way to support early mitigation efforts, and indeed
existing research has shown their effectiveness in delaying
and containing influenza pandemics [4–6].
Mathematical models of influenza transmission often

incorporate these protective behaviors to predict the likely
outcomes of the disease under different scenarios in order
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to aid public health decision making. Predictions that do
not take behavioral dynamics into account may be unre-
liable, and moreover, unable to effectively inform public
health policies, especially the ones that target individual-
level behaviors [7]. In the context of infectious disease
modeling, individual level mixing and behavioral hetero-
geneities are critically important because they signifi-
cantly affect the transmission pathways of the epidemic
[8, 9]. To capture these heterogenities, we use a detailed
agent based model in which each individual is endowed
with a complete set of demographic and social variables;
and the disease propagates on the social contact network.
Although this level of detail increases model complexity,
it allows for a more realistic representation of the het-
erogeneity present in the natural system [10]. This model
reflects greater epidemic realism by integrating contact
network structure, infection dynamics, and detailed indi-
vidual behavior, which are computationally challenging to
implement and remain scarce [11].
Although the use of individual-based models in epi-

demiology is becoming more common, assignment of
various behavioral parameters to individuals is still done
uniformly, i.e., behaviors are probabilistically uniformly
assigned to individuals in the population to study their
impact on the epidemic dynamics. There are studies in
the literature that measure the compliance to protective
behaviors based on demographics, but they do not capture
their effect on the disease spread. For example, studies
[3, 12] have identified demographic determinants of pro-
tective behaviors but their impacts on controlling the
spread of the disease have not been measured. There are
many reasons why this gap exists in the literature. In order
to carry out such an analysis, one needs (a) survey data to
assess the actual level of compliance based on demograph-
ics; (b) a detailed model in which agents can be assigned
unique demographics and behavioral attributes; and (c) a
contact network to study the population level effects of
these heterogeneous behaviors on epidemic outcomes.
In this research we use survey data to build a model that

ties protective health behaviors to the demographics of the
individuals [13]. Thismodel helps calculate the probability
of compliance to each health behavior, for each individ-
ual given his/her demographic attributes. This is further
used to accurately represent behavioral assignments in the
population, and then to study their impact on the dynam-
ics of the epidemic. In order to determine the effect of
demographic-based behavioral compliance assignment on
epidemic outcomes, we simulate an influenza epidemic
and compare the results in the two scenarios, (a) indi-
viduals follow protective behaviors as predicted by their
demographics, referred to as “with-predictors” scenario
and (b) individuals follow protective behaviors based on
the distribution of protective behaviors in the survey
responses, independent of their demographics, referred

to as “without-predictors” scenario. The results show that
epidemic outcomes based on (a) are significantly worse
than those based on (b).

Methods
Model to estimate compliance probabilities of preventive
behaviors
A nationwide survey of 2168 respondents, conducted by
the Gfk Group (Gfk.com) in 2016, recorded demographics
and preventive health behaviors in response to a hypothet-
ical influenza-like-illness outbreak. The target population
was adults aged 18 and above. It recorded a variety of
preventive behaviors such as vaccine uptake, social dis-
tancing, adoption of personal hygiene such as washing
hands, wearing masks, covering cough etc. Our focus here
is on two types of preventive behaviors, i.e., vaccination
and social distancing. The individuals may adopt any one
of them or both or none.
We model the choice of selecting a preventive behavior

as a multinomial logit (MNL) model. This is a stan-
dard modeling framework when individuals face multiple
choices that are not ordered. The response variable ynj is
defined as the observed choice of behavior j: vaccination,
social distancing, both vaccination and social distancing
or neither adopted by the nth individual. In order to make
the choice set exhaustive we also include the option that
the individual might not adopt any of the three alterna-
tives [14, 15]. Thus the preventive behaviors are indexed
as j = 1, 2, 3, 4 such that yn1 indicates that individual n
chooses vaccination, yn2 indicates choice of social distanc-
ing, yn3 indicates both and yn4 indicates neither. Thus,
unordered condition applies because these are mutually
exclusive choices and no assumption is imposed regarding
households’ ranking of the alternatives.
We further assume that person n’s utility function for

the four protection alternatives is given byUnj = Vnj+εnj,
where Vnj is the deterministic part of the utility function
(often called representative utility) and Vnj = X′

nβj. Here,
Xn denotes the respondent’s characteristics like age, gen-
der and income. The joint density of the random error
vector can be denoted as f (ε) and used to assess the
probability of the choice of different behaviors. Person n
chooses behavior i if it provides higher utility than the
three other behavior. The probability of choosing the pre-
cautionary behavior i, where i is one of the four choice
alternatives, can be written as [16]:

P(yni) = P(Uni > Unj) ∀i �= j
P(εnj − εni < Vni − Vnj) ∀i �= j

Using f (ε) this cumulative probability can be rewritten
as [15]

P(yni) =
∫

ε

I(εnj − εni < Vni − Vnj, ∀i �= j)f (ε)dε (1)
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Where I(.) is an indicator function that equals 1 if the
term in the parentheses is true, and is 0 otherwise. Differ-
ent discrete choice models can be obtained from assigning
different specifications for f (ε). The multinomial logit
model is obtained by assuming that each εnj is indepen-
dent, identically distributed (iid) extreme value that is
also called Gumbel or Type-1 value distribution. Thus,
f (εnj) = e−εnj e−e−εnj and the cumulative distribution is
F(εnj) = e−e−εnj . This distributional assumption entails
a closed form solution for the multidimensional integral
[15]. If two random error terms are iid extreme value
distributed, their difference follows a logistic distribution.
The probability of choosing the precautionary behavior

i can be written as [16, 17]

Pni = eVni∑
j eVnj

= eX′
nβi∑

j eX
′
nβj

(2)

The coefficients are estimated using maximum likelihood
and putting them in Eq. 2 we can predict the probability
of the observed behavior. In order to form the likelihood
function we assign binary codes to indicate the group
membership of the observation [17]. In our case we have
four options so we create four binary variables y1, y2, y3, y4.
Thus, if the respondents choose vaccination, i.e., yn1 then
y1 = 1, and y2 = y3 = y4 = 0. If we denote the conditional
probability in 2 as πj(X) then the likelihood function can
be written as

l(β) = �n
[
π1(Xn)

y1nπ2(Xn)
y2nπ3(Xn)

y3nπ4(Xn)
y4n]

(3)

β̂ is the maximum likelihood estimator that can be used
to predict the probability of preventive behavior. To assess
the magnitude of change in probabilities due to a unit
change in an explanatory variable, the marginal effect
is calculated. The marginal effect of demographic xk on
behavior j is measured as

∂pj
∂xk

= pj
(
βjk −

∑
pjβjk

)
(4)

Synthetic models of two US regions
We use an agent based model to construct synthetic rep-
resentations of two regions, an urban region, i.e., Miami
Dade county in Florida, and a rural region, i.e., Mont-
gomery county in Southwest Virginia. The synthetic pop-
ulations and the social contact networks of these regions
have been developed using a “first principles” approach.
The synthetic population is a set of synthetic people and
households, located geographically, each endowed with
the demographic variables recorded in the US census. A
synthetic population integrates a variety of databases from

commercial and public sources into a common archi-
tecture for data exchange to create realistic attributes of
the synthetic individuals. The population synthesis pro-
cess preserves the confidentiality of the individuals in
the original data sets. Joint demographic distributions are
reconstructed from the marginal distributions available
in typical census data using an iterative proportional fit-
ting (IPF) technique [18–20]. Each household is located
geographically using land-use data and data pertaining to
transportation networks. The process guarantees that a
census of our synthetic population is statistically indistin-
guishable from the original census.
Next each synthetic person in a household is assigned

a set of activities to perform during the day, along with
the times when the activities begin and end, as given
by an activity survey or time-use survey data. Then an
appropriate real location is chosen for each activity for
every synthetic person based on a gravity model and
data sources such as land use patterns and commercial
location data from Dun and Bradstreet. Finally a social
contact network is generated in which each synthetic
person is deemed to have made contact with a subset
of other synthetic people simultaneously present at a
location [21–23].
The resulting model is a dynamic representation of

human mobility and interaction over the course of a nor-
mative day. The induced social contact network is an
interaction based graph whose vertices are synthetic peo-
ple, labeled by their demographics, and edges represent
estimated contacts, labeled by duration of contact and
type of activity. This social contact network is specific to a
geographic location because of its dependence on “contin-
gent realities” for the area – demographics of people who
live there and the distribution of actual activity locations.
It provides a plausible, bottom-up mechanism for gener-
ating large scale social structure without making assump-
tions about hierarchies [6, 24–26]. The distribution of age
and household income in the two model populations used
in this study are available in the Additional file 1.
It is important to note that the procedures followed

while creating the agent based model provide some the-
oretical guarantees. For example, the generated synthetic
population is guaranteed to match the marginal distribu-
tions of the true population. Additionally, the model has
been validated in multiple ways. First, it has been shown
that the distribution of variables not included in the IPF
step (e.g., the number of workers in a household) closely
match between the synthetic and true population [27].
Second, it has been shown that the activity profiles of our
generated synthetic population better match the true pop-
ulation than previous techniques [28]. Third, the mobility
patterns in the synthetic population have been validated
using various measures of traffic (e.g., trip counts between
zones [21]). Lastly, multiple network structural measures



Singh et al. BMC Infectious Diseases          (2019) 19:221 Page 4 of 13

(e.g., distribution of numbers of contacts per person out-
side of home) obtained from the generated synthetic
population show expected patterns (e.g., Power-law distri-
butions), reported in literature [29].

Interventions
We consider two types of behavioral interventions, vac-
cination and social distancing. Individuals who are vacci-
nated become immune to the disease with a probability
given by the efficacy of the vaccine.We consider three lev-
els of vaccine efficacy, i.e., 20%, 40% and 60%. For example,
if vaccine efficacy is 20%, and the individual takes the vac-
cine, she will have a 20% chance of becoming immune to
influenza.
To simulate social distancing, appropriate edges are

removed from the social contact network. Each agent
in the network can perform six types of activities, i.e.,
home, work, school, college, shop and other. The cate-
gory “other” represents all activities not covered by the
first five categories, and are labeled “non-essential” activ-
ities. These include social, cultural and sport activities
that could be avoided if the person is following self-
protective behaviors. In our model when a person is
trying to avoid getting infected through social-distancing,
all her non-essential activities are stopped. Hence, we
remove all social contact network edges that are labeled

“other”, for individuals who are deemed compliant to
social-distancing.

Disease model
We use Episimdemics, an interaction-based high per-
formance computing simulator for studying epidemic
dynamics [30]. A simple 4-state Probabilistic Timed Tran-
sition Systems (PTTS) disease model designed for agent-
based simulations is used. The four states, Susceptible,
Exposed, Infected, and Recovered, depict the change in a
susceptible individual’s health status upon getting infected
with influenza. These states are also consistent with the
SEIR model used in epidemiology. Each agent remains in
the susceptible state until it comes into contact with an
infected agent through one of its contacts in the social
contact network [6, 20]. Figure 1 shows a schematic of
the disease model. Upon contact with an infected agent, a
susceptible agent i transitions to the exposed state with a
probability pi which is computed as:

pi = 1 − exp
(

τ
∑
r∈R

Nr ln(1 − rsiρ)

)
(5)

Here, τ is the duration of exposure, R is the set of
infectivities (rs) of all the infected agents, Nr , co-located

Fig. 1 Susceptible Exposed Infectious Recovered (SEIR) disease model used in our simulations to capture the health states of the individuals.
Everyone starts out in susceptible state and if infected, moves to the exposed state, followed by one of symptomatic or asymptomatic infectious
states, followed by the recovered state. The duration of time spent by an infected individual in the exposed and infectious states is shown in the
distributions associated with them
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with the susceptible agent i, si is the susceptibility of i
and ρ is the transmission rate, i.e. the probability of a sus-
ceptible agent getting infected by an infectious agent per
minute of contact time. For a completely susceptible indi-
vidual i (having susceptibility si = 1.0), coming in contact
with one completely infectious individual (having infectiv-
ity r = 1.0) for unit exposure time (i.e., τ = 1.0), the prob-
ability of transitioning to the exposed state becomes equal
to the disease transmission rate (i.e., pi = ρ). The presence
of multiple infectious individuals (i.e., Nr > 1) and/or
larger exposure time (i.e., τ > 1.0) would increase the
probability of the susceptible individual getting infected
(i.e., pi). Thus, Eq. (5) accounts for this using the sum-
mation term in the exponent. When a person becomes
infectious, s/he may be asymptomatically infectious or
symptomatically infectious. An asymptomatic person is
less likely to transmit the disease to susceptible people
than a symptomatic person. Initially, everyone in the pop-
ulation is assumed to be susceptible, except for the few
individuals with whom the epidemic is seeded. The spe-
cific values of disease and simulation parameters used in
our simulation experiments are provided in Table 1.

Experiments
We consider two protective behavior assignment scenar-
ios. In the first scenario, we assign the average probability

of adapting protective behaviors to agents, consistent with
the behavior distribution observed in the survey irrespec-
tive of demographics. In this case, behavior assignment is
done in such a way that the proportion of individuals who
adopt a particular behavior in the simulation is equal to
the proportion of survey respondents who report adopt-
ing that behavior. In other words, the behavior is averaged
across the population; no information about the demo-
graphics of an individual is considered while assigning it a
compliance behavior.
In the second scenario, we use the multinomial logit

model to calculate compliance probabilities as determined
by the survey respondents’ demographics. Note that the
survey only collects data for individuals who are older
than 18 years. Therefore for individuals below 18 years of
age in our simulations, we assume that they behave the
same as their respective family members and hence we
assign them the mean compliance probabilities of their
older family members’, as a proxy. Their compliance rates
are provided in the Additional file 1. Additionally, for any
scenario that considers vaccination, we simulate three lev-
els of vaccine efficacy. Each run is simulated for 200 days
and all results are reported as the average of the 25 repli-
cates. A rural and an urban region is used for testing
the robustness of the results. The epidemic outcomes are
measured by the number of infections when the epidemic

Table 1 Simulation parameters, their values and sources, used in the experiments

Variables Values Source

Population size (number of
individuals)

Miami-Dade (2,169,349), Montgomery (77, 820) Synthetic populations [5, 24, 41]

Total number of daily contacts
between individuals

Miami-Dade (55,187,587), Montgomery (2,019,222) Synthetic populations [5, 24, 41]

Transmission rate Miami-Dade (0.00010), Montgomery (0.00018) Calibrated for each region to generate
an attack rate of 25% in both the
regions

Attack rate (Cumulative
infections)

25% [42]

Serial interval Miami-Dade (2.65 days), Montgomery (2.59 days) Estimated from our disease model [43]

Interventions Vaccination and/or social distancing

Latent period 1 day [s.d.: 0.63] [44, 45]

Infectious period 2 days [s.d.: 1.06] [44, 45]

Symptomatic proportion 67% [46]

Asymptomatic infectivity 33% [47–49]

Vaccine efficacy 20%, 40%, 60% [50]

Simulation days 200 days Assumed

Initial number of infections
(seeds)

20 for both Miami-Dade and Montgomery Assumed

Initial number of susceptible
individuals

Everyone, except the seeds Assumed

Number of replicates 25 Assumed

Number of scenarios 2 (compliance probability estimated with, and without
predictors)
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peaks (i.e., peak infections), the day of peak infections (i.e.,
peak day, also known as time-to-peak), and the cumulative
number of infections over the simulation duration (i.e.,
the size of the epidemic). Low values of peak infections
and cumulative infections are desirable but high values of
peak day are desirable. A baseline case of an unmitigated
epidemic that is absent of any protective behavior is also
simulated to measure the effectiveness of intervention
strategies.

Results
Relationship between demographics and behavior
adoption
Table 2 shows the results of a multinomial logit (MNL)
model which predicts protective behavioral choices as
a function of demographics. It shows the MNL model’s
coefficient estimates corresponding to the explanatory
variables, for each of the three response variables. Here,
the explanatory variables are demographics of the sur-
veyed individuals, which are age, gender, family size,
family income, and whether the person’s family has chil-
dren. The three response variables considered are (i)
if the individual applied social distancing or not (i.e.,
Social Distancing), (ii) if the individual took the vac-
cine or not (i.e., Vaccination), and (iii) if the individual
applied both the interventions (i.e., Vaccination & Social
Distancing). The base response is that no intervention
was applied. To check for the independence of irrele-
vant alternatives (IIA), we conducted the Hausman test
[31, 32]. We failed to reject the hypothesis that IIA holds
for the full set of alternatives at less than 1% level of
significance.
Results in Table 2 show that age follows a non-linear

relationship with the response variables as shown by the

“square of age” variable which is significant in predict-
ing protective behaviors. This has also been observed
by other researchers in the literature [3, 33, 34]. Addi-
tionally variables such as gender, household size and the
presence of children in the household do not appear to
be significant predictors [33, 35]. Among the explana-
tory variables considered in the regression, age of the
respondent and the household income are the most
statistically significant predictors. Hence in our simula-
tions, we use age and household income as predictors
for generating the probabilities of adopting preven-
tive behaviors. For the scenario that uses demograph-
ics as a predictor of compliance to behaviors, we
apply the MNL model based probabilities to reflect the
level of compliance by each synthetic individual in the
simulation.
Note that the estimated coefficients of the MNL model

only provide the direction of the change with respect to
the base outcome but not the magnitude. To assess the
impact of each independent variable on the response, we
calculate the marginal effects of the MNLmodel as shown
in Eq. 4.

Behavioral interventions under different scenarios
We describe results from our experimental scenarios here.

(a) No intervention case
To set up a baseline we run an influenza epidemic with no
interventions. In this base case, the epidemic infects 25%
of the population over its course. The peak of the epidemic
occurs close to the 60th day in the Montgomery county
and 45th day in Dade county. Approximately 0.65% of the
population is infected inMontgomery and 0.8% is infected
in Miami Dade on the peak day.

Table 2 Coefficient estimates corresponding to the explanatory variables, for each of the three response variables in the Multinomial
Logit regression model

Independent variable Response variable

Social distancing Vaccination Vaccination & social distancing

Age of the respondent 0.00655 (0.0252) -0.0605*** (0.0214) -0.0576*** (0.0222)

Age squared 8.49e−05 (0.000263) -0.000983*** (0.000219) 0.000941*** (0.000226)

Gender -0.0710 (0.132) -0.168 (0.115) -0.159 (0.122)

Household size 0.0905 (0.0674) 0.00538 (0.0624) 0.0317 (0.0650)

Children at home -0.0341* (0.198) 0.0254 (0.176) -0.0718 (0.187)

Household income −3.94e−06***
(
1.48e−06

)
6.31e−06***

(
1.23e−06

) −2.23e−06***
(
1.36e−06

)
Constant -1.072* (0.621) -0.254 (0.543) 0.129 (0.568)

Predicted probabilities 0.16 0.27 0.22

Num. of observations: 2121; Log-likelihood: -2741;
Chi-square: 229.1

The three response variables are: social distancing, vaccination, both vaccination & social distancing. The values in the parentheses are standard errors for the estimates.
Statistical significance is shown by: ***, **, and *, which correspond to p < 0.01, p < 0.05 and p < 0.1 respectively
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(b) Assigning behaviors independent of demographic
predictors
We use survey results to estimate the probability of pre-
ventive behavior adoption by setting it equal to the pro-
portion of survey respondents who selected that behavior.
Based on these proportions we assign the preventive
behaviors to the synthetic individuals in the simula-
tion. We set the probability of adopting vaccination or
P(vaccination) to be 0.264, probability of adopting social
distancing or P(socialdistancing) to be 0.158, probabil-
ity of adopting both the behaviors or P(both) to be 0.216
and probability of not adopting any behavior or P(none)
to be 0.361. In this scenario all individuals encounter
the same probabilities for behavior assignment, i.e., no
demographic information of individuals is used in this
assignment.

(c) Assigning behaviors based on demographics
Next we assign the probability of adopting preventive
behaviors using the demographics as determined by the
MNL model in the Methods section. Based on the regres-
sion model results, we find each person’s unique proba-
bility based on her age and income category and use it to
determine compliance to preventive behaviors during the
epidemic. Figure 2 shows the probability of compliance to
the three protective behaviors (social distancing, vaccina-
tion, both social distancing and vaccination) or none of

these three (no intervention) based on age and income.
The income categories are not labeled on the x-axis due to
lack of space but are reflected in the figure. The compli-
ance to preventive behavior goes up by age, implying older
individuals are more compliant.

Comparison of epidemic outcomes
The results show that the outcomes of the epidemic are
significantly worse when demographics based behavior
adaptation probabilities are used, as compared to the case
when no demographic predictors are used to determine
behaviors. The size of the epidemic is bigger, and the num-
ber of infections on the peak day are larger. This holds true
for both regions and at almost all levels of vaccine effi-
cacy. Additionally, the differences between the outcomes
grow larger as the vaccine efficacy increases. The detailed
results for each scenario (reported as the mean of 25 sim-
ulation replicates) are presented in Table 3. Figures 3 and 4
show the epidemic curves for the each scenario, including
the baseline “no interventions case”.
To assess the significance-level of the differences

between the mean epidemic measures for with and with-
out predictor scenarios in Table 3, we performed the
t-test. The results are reported in Table 4. We observe
that the difference in the values for peak and total infec-
tions obtained with and without demographic predic-
tors is always significant except in Montgomery when

Fig. 2 Compliance probability distributions determined by the Multinomial logit model, for the three protective behaviors (vaccination, social
distancing, both vaccination and social distancing) across age and income groups present in the survey. The x-axis shows age and income group
combinations. Ages are marked on the axis and the interval between two successive age marks is divided into 19 income groups (from less than
5000 USD to greater than 175,000 USD) belonging to that age. The income groups are not marked for the lack of space. The y-axis shows the
compliance probability in a stacked bar format where the length of a colored bar represents the compliance probability for the intervention
represented by the corresponding color. The plot shows that the overall compliance towards preventive behaviors increases with age
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Table 3 Mean epidemic outcomes of 25 replicates for the “With predictor” and “Without predictor” scenarios in the Montgomery and
Miami regions, under three vaccine efficacy levels of 20%, 40% and 60%

Regions Epidemic measure Scenario Vaccine efficacy

20% 40% 60%

Montgomery, VA Peak Infections (% of total population) With predictors 0.2 0.08 0.036

Without predictors 0.16 0.05 0.033

% increaseWith vs. Without predictors 25 60 9.09

Peak day With predictors 81 83 40

Without predictors 83 76 37

% increaseWith vs. Without predictors -2.41 9.21 8.10

Total infections (% of total population) With predictors 11.57 4.28 1.23

Without predictors 10.07 2.6 0.95

% increaseWith vs. Without predictors 14.89 64.61 29.47

Miami, FL Peak infections (% of total population) With predictors 0.52 0.33 0.18

Without predictors 0.5 0.29 0.153

% increaseWith vs. Without predictors 4 13.79 18.3

Peak day With predictors 50 54 58

Without predictors 50 56 62

% increaseWith vs. Without predictors 0 -3.57 -6.45

Total infections (% of total population) With predictors 16.2 10.86 6.48

Without predictors 15.42 9.64 5.37

% increaseWith vs. Without predictors 5.05 12.65 20.67

“With predictor” refers to the case where compliance probabilities are derived from the Multinomial Logit (MNL) model and are based on survey participant demographics,
whereas “Without predictor” refers to the case where compliance probabilities are equal to mean compliance levels of all participants in the survey, irrespective of their
demographics. The highlighted rows show the differences in epidemic outcomes under the two scenarios

Fig. 3 Epidemic curves for the three scenarios in Montgomery county, Virginia. Here, the vertical axis shows the prevalence of Influenza in the
population. “Base Case, no interventions” refers to the baseline scenario where we simulate the influenza epidemic without any interventions. “With
predictors” refers to the scenario where compliance levels are measured by the MNL model and “no predictors” refers to the scenario where
compliance is not determined by demographics, and only average level of compliance is applied. For the last two scenarios, three levels of vaccine
efficacy (i.e., 20%, 40% and 60%) were considered
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Fig. 4 Epidemic curves for the three scenarios in Miami Dade county, Florida. Here, the vertical axis shows the prevalence of Influenza in the
population. “Base Case, no interventions” refers to the baseline scenario where we simulate the influenza epidemic without any interventions. “With
predictors” refers to the scenario where compliance levels are measured by the MNL model and “no predictors” refers to the scenario where
compliance is not determined by demographics, and only average level of compliance is applied. For the last two scenarios three levels of vaccine
efficacy (i.e., 20%, 40% and 60%) were considered

vaccine efficacy is 60%. The reason for the low signif-
icance in Montgomery is that at 60% vaccine efficacy,
the intervention is fairly strong for this rural region
and the epidemic almost dies out in both the scenar-
ios as can be seen in Fig. 3. The day on which the
peak infections occur do not change significantly between
scenarios.
Figure 5 provides a comparative evaluation of the cumu-

lative infections observed in 25 simulation replicates, for

each scenario, in both the regions. For all vaccine efficacy
levels, and in both regions, the scenario with predictors
performed worse than those without predictors. These
findings imply that public policy will be misguided if inac-
curate estimates of compliance to preventive behaviors
are used. Assignment of behavioral interventions based on
mean values will lead to more optimistic results about the
epidemic, giving a false sense of security to public health
decision makers.

Table 4 T-test results for the three epidemic outcomes, with versus without predictors scenarios, in the Montgomery and Miami
regions

Geography Epidemic measure Scenario Vaccine efficacy

20% 40% 60%

Montgomery, VA Peak Infections with vs. without predictors t-statistic 4.27 4.85 1.26

p-value 9.16e−5 1.33e−5 0.211

Peak Day with vs. without predictors t-statistic -0.31 0.5643 0.6094

p-value 0.755 0.575 0.545

Total Infections with vs. without predictors t-statistic 4.53 6.13 2.19

p-value 3.94e−5 1.59e−5 0.033

Miami, FL Peak infections with vs. without predictors t-statistic 1.847 7.33 6.32

p-value 0.0708 2.23e−9 7.84e−8

Peak Day with vs. without predictors t-statistic -0.1222 -0.6071 -0.9177

p-value 0.9032 0.5466 0.3633

Total Infections with vs. without predictors t-statistic 18.46 35.5 39.06

p-value 1.91e−23 4.13e−36 4.84e−38

The highlighted numbers show statistically significant t-statistic values corresponding to differences in epidemic outcomes
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Fig. 5 Comparative evaluation of cumulative infections observed for three experimental scenarios (i.e., “base case” in which no preventive behavior
is modeled, “With predictors” case in which preventive behavior is assigned to individuals based on their demographics and “no predictors” case in
which preventive behavior is assigned to individuals based on the average behavior observed in survey). The figure also compares cumulative
infections across three vaccine efficacy levels (i.e., 20%, 40% and 60%) and two geographic regions (i.e., Montgomery, VA and Miami Dade, FL). Each
box in the figure presents a five number summary: minimum, first quartile, median, third quartile, and maximum. Therefore, each box describes the
distribution of cumulative infections produced by 25 replicates for each of the three experimental scenarios. Considering the median of 25
replicates to be the representative of a scenario, we observe that for a given vaccine efficacy, the scenarios with predictors (green boxes)
consistently produce larger number of cumulative infections than those produced by scenarios without predictors (orange boxes). The red boxes
show the base case where no intervention is applied. Therefore, every other scenario has a substantially lower number of cumulative infections as
compared to the base case

Age based infection rates
Figure 6 shows the prevalence of influenza (i.e. proportion
infected in each age group) among different age groups in
the populations for the two regions, for the scenario “with-
predictors”. The vaccine efficacy is assumed to be 40%. For
the youngest age group the prevalence of influenza is dis-
proportionately high; and this effect is more pronounced
in Montgomery than in Miami. Except for the 0–18 age
group, in both Montgomery and Miami, the distribution
of the infected population is well aligned with the over-
all population, higher for middle age groups and lower for
older people. However in Montgomery, the age composi-
tion is quite different than Miami, i.e., a lot more young
adults are present in the age group 19–24 and a lot less
older individuals aged 65 and above.

We believe that the high incidence of infections in the
youngest age group (0–18 years) is due to the following
reasons: (1) People in the 0–18 age group have a higher
number of contacts because they visit high-density loca-
tions such as school and daycare, and therefore a higher
rate of exposure. Our earlier work has shown that children
have a much higher network degree and social connec-
tivity [36, 37]; (2) Children and young adults form a
significant proportion of the total population in both the
regions and interact more with other children and young
adults. Age groups 0–24 make 30% of the population in
Miami and 40% in Montgomery county.
Note that the compliance rate and the social network

connectivity both play an important role in determin-
ing the epidemic outcome. Low compliance rates in the
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Fig. 6 Influenza prevalence among different age groups for the two geographic regions, for the scenario “with predictors”. The vaccine efficacy is
assumed to be 40%. Red bars correspond to Montgomery county, VA and Blue bars correspond to Miami Dade county, FL. The y-axis of the figures
show the proportion of infected individuals in an age group. The x-axis of the figures show, 8 successive age groups (From ’Less than 18’ years to ’75
years and above’)

younger population, combined with a higher number of
contacts result in disproportionately high levels of infec-
tions in the younger population. On the other hand, older
people have a high level of compliance and a low level of
connectivity, resulting in a proportionately lower number
of infections. Note that this model does not consider the
lower level of immunity and other co-morbidities among
older people.

Discussion
In the past, studies like [38] have tried to understand
the impact of heterogeneity in parameters like suscepti-
bility, infectivity and contact rates on the outbreak size,
using ordinary differential equations. It has been shown
that heterogeneous assignment of parameters, instead
of a uniform assignment, affects the epidemic dynamics
differently. In this study, we use an agent based model
that explicitly models interactions among individuals in
the true population, along with self-protective-behavior
compliance rates that vary by demographics. The results
show that uniform compliance versus demographics-
based compliance lead to markedly different epidemic
outcomes. These findings are consistent with the findings
of the ODE modelling literature [38].
When compliance probabilities for protective behaviors

are assigned based on average compliance, independent
of individuals’ demographics, these behaviors are able
to control the spread of the epidemic more effectively.
However, if these behaviors are assigned based on the
demographic characteristics, their effect on the epidemic
outcomes is more subdued. This occurs even when the
level of intervention is the same, i.e., on average, the same

number of people are intervened. In other words, a more
precise, demographic based assignment of compliance to
behavioral interventions shows that the epidemic size and
peak number of infections will be larger as compared to
the case where mean values of compliance to protective
behaviors observed in a sample are assigned to all indi-
viduals, independent of the demographic disparities that
exist between them. The results hold for both the rural
and urban regions in US.
The reason for this observation is that in the survey

data, the compliance rates among the young adults are
less than the average compliance rates. As evident from
Fig. 2, young adults do not follow protective behaviors
at the level reported by the mean compliance observed
in the survey data. Given that these individuals have a
much higher rates of mixing and contact time, lower
compliance among them makes it easier to spread the
infections. However this distinction is not captured when
mean compliance is assigned to these cohorts. This makes
the epidemic outcomes look better than the case when
demographics based compliance rates are assigned.
This is a subtle but important distinction to understand

from public health viewpoint because complex models
are being increasingly used to inform public health policy
[39]. A well characterized model for behavior adaptation
guided by demographics will provide a more accurate
prediction of the impact of preventative behaviors on epi-
demic outcomes. Infectious disease models are the result
of a vast number of interacting social and biological pro-
cesses in which complexmodels are necessary for accurate
characterization of behaviors [40]. Our study addresses
the need to more accurately parametrize models in which
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human behaviors are used to analyze the infectious dis-
ease dynamics. Such data-driven, analytic modeling also
plays an important role in guiding future data collection,
particularly by highlighting those data to which epidemic
outcomes are most sensitive [11].
Lastly, there aremany opportunities to extend this work.

Here, we have used two geographic regions with signif-
icant differences in size, populations and their demo-
graphic distributions. We believe experimenting with
other geographic regions could add more validity to this
research and further highlight the role played by demo-
graphic disparities in the uptake of protective health
behaviors. Similarly, in this study we have used a multino-
mial logit model for predicting individual’s health behav-
ior adoption. Given the plethora of predictive modeling
techniques available today, experimenting with other state
of the art techniques for predicting compliance to health
behaviors might be useful. Additionally, in this study, the
initial survey does not capture individual attributes like
psychographics and influence networks. These attributes
might also play a role in determining an individual’s
compliance decisions and can be explored in future
research.
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