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ABSTRACT
Urban environments are restricted by various physical, regulatory
and customary barriers such as buildings, one-way systems and
pedestrian crossings. These features create challenges for predic-
tive modelling in urban space, as most proximity-based models
rely on Euclidean (straight line) distance metrics which, given
restrictions within the urban landscape, do not fully capture spa-
tial urban processes. Here, we argue that road distance and travel
time provide effective alternatives, and we develop a new low-
dimensional Euclidean distance metric based on these distances
using an isomap approach. The purpose of this is to produce a
valid covariance matrix for Kriging. Our primary methodological
contribution is the derivation of two symmetric dissimilarity
matrices (Bþ and B2þ), with which it is possible to compute low-
dimensional Euclidean metrics for the production of a positive
definite covariance matrix with commonly utilised kernels. This
new method is implemented into a Kriging predictor to estimate
house prices on 3,669 properties in Coventry, UK. We find that a
metric estimating a combination of road distance and travel time,
in both R

2 and R
3, produces a superior house price predictor

compared with alternative state-of-the-art methods, that is, a
standard Euclidean metric in R

N and a non-restricted road dis-
tance metric in R

2 and R
3. F
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1. Introduction

By 2030, it is expected that 5 billion people will live in urban areas, 662 cities will have at
least 1 million residents and there will be a total urban spread of 1.2 million km2 (Biello
2012, Seto et al. 2012, Nations 2016). Hence, cities will continue to accommodate over
50% of the world’s population.

In the United Kingdom, over 82% of citizens live in its 64 cities, a figure which has
grown by more than 13% in the past 30 years (Champion 2014). Many UK cities
suffer from legacy infrastructure – the City of London, for example, relies on sewage
infrastructure originally built in the 1860s – which impacts on their ability to support
projected growth. Such challenges are well documented: Housing supply is not
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matching demand (Henretty 2018), commuting times are increasing (Gayle 2017) and
there are shortages in services for the most vulnerable citizens (Stewart et al. 2003).
Issues of urban growth and sustainability motivate the development of mathematical
tools and models for explanatory and predictive analysis (Townsend 2015).

Urban models provide insight into the relationship between some chosen target
value, house prices for example, and other potentially related variables, such as topo-
graphy (Kok et al. 2011), building footprints (Pace et al. 1998) and crime (Thaler 1978).
Space (Crosby et al. 2016) and time (Huang et al. 2010) consistently feature in most
urban models, for example in house price prediction (Crosby et al. 2018), traffic flow
prediction (Zou et al. 2012) and in the analysis of green space and its impact on well-
being (Houlden et al. 2017). A typical approach to understanding spatial characteristics
in this way is through geostatistical proximity-based modelling. An example of this
approach is Kriging (defined in Section 4), which assumes random variables to be
spatially dependent and non-stationary over space.

A common assumption in geostatistical models (including Kriging) is that proximity is
based on Euclidean distance; this is in spite of the fact that dispersion in a city landscape
is unlikely to exhibit such properties.

Traditionally, research in real-estate price modelling has considered distance to
a specific location (e.g. workplace) and/or comparable prices of other sub-markets within
close proximity. A more sophisticated approach to this is to include physical barriers
such as buildings, road layout and non-accessible open space to the models, as distance,
in practice, is clearly governed by such obstacles. This is evident in recent work on road
distance-based Kriging, which has been shown to be highly effective for urban house
price prediction (Crosby et al. 2018).

Our paper presents a natural extension to this earlier work by including travel time. In
so doing, it integrates a number of otherwise difficult-to-capture variables such as traffic
flow, road layout, junction priority and congestion caused by on-road parking. Our
primary purpose is to show the effect that road distance and travel time have on
predictive modelling; note that we do not prescribe reasons for these effects (i.e. we
will not be considering any covariates).

Our methodological advances are motivated by our work in urban house price
prediction; that is, we attempt to model unexplained variation through proximity
between observations, to underpin and improve on hedonic pricing models already
available in academia and in industry.

An essential prerequisite to geostatistical models is the production of a variogram
and covariance function. Covariance and variogram functions must remain valid –
positive definite (PD) and conditionally negative definite (CND), respectively (Curriero
2005, 2006) (see Section 4.1 for formal definition).

Given the extensive research based on Euclidean pairwise distance (straight lines),
there is no guarantee that any non-Euclidean distance matrix (PD or otherwise) will
produce valid covariance or variogram functions. For this reason, pairwise road distance
and travel time matrices are unlikely to be valid. Hence, the purpose of this research is to
propose an isometric embedding approach with which we can approximate road dis-
tance and travel time in a lower dimensional Euclidean space, to allow physical proper-
ties of cities to be represented in spatial prediction whilst still producing mathematically
valid approximations.
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In order to illustrate the benefits of these new distance metrics, a so-called real-
estate automated valuation model (AVM) for residential properties is developed for
the city of Coventry in the United Kingdom. This AVM is used to provide mathema-
tically modelled individual market values for 3669 properties. The case study in
Section 5 shows that a combination of road distance and travel time produces
a superior Kriging predictor compared with a Euclidean approach for all assessed
validation metrics.

1.1. Contributions

The contributions of this research are as follows:

● First, methodological contributions are made via the derivation of two sym-
metric dissimilarity matrices (Bþ and B2þ), with which it is possible to compute
low-dimensional Euclidean metrics for the production of a PD covariance
matrix with commonly utilised kernels and non-valid, non-Euclidean, input
spaces.

● Second, we demonstrate the application of this new geostatistical approach to the
calculation of (1) approximate restricted road distance, (2) approximate travel time
and (3) combined road distance and travel time matrices, in each case within an
embedded lower dimensional Euclidean space.

● Third, we compare a number of the most popularly employed cross-validation
techniques to assess the ability of each to estimate how well our model generalises
to unseen data.

1.2. Sections

The remainder of this paper is organised as follows: background research is detailed
in Section 2; Section 3 motivates the need for this research through two practical
examples; new methodological contributions are described in Section 4 and applica-
tions of these methods, to urban house price prediction, can be found in Section 5.
The paper concludes in Section 6 in which we also document avenues for future
research.

2. Related literature and key concepts

2.1. Constructing optimal urban Kriging predictors

Kriging is a geostatistical spatial predictor which accounts for spatial covariance. The
method utilises observation distances to understand the spatial structure of a dataset
and hence determine its own interpolation parameters (Cressie 2015). Kriging is used
extensively for interpolation by ecologists (Little et al. 1997), geographers Changling
(1987) application and geo-scientists (Hudson and Wackernagel 1994). The first stage of
Kriging models the degree to which distance between observations is correlated. The
experimental variogram does this by calculating an average difference between
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observations (termed the lag). If the experimental variogram is able to observe spatial
patterns accurately, then Kriging applies the modelling coefficients to determine inter-
polation parameters (Matheron 1963). Parameter optimisation, kernel selection and lag
sizes are the primary strategies used in optimising experimental variogram and Kriging
algorithms (Cressie 1985, Garcıa-Soidán et al. 2004, Yu et al. 2007).

Kriging is commonly used in urban science and examples of its application include
traffic flow prediction (Zou et al. 2012), and travel time (Miura 2010) and trip planning
(Liebig et al. 2014). The use of Kriging for urban real-estate pricing is motivated by Dubin
(1988), Basu and Thibodeau (1998) and Crosby et al. (2016) who together note that
space and time are highly influential in house price prediction. Each of these approaches
however uses Euclidean distance only.

A small number of non-Euclidean distance-based approaches have been employed to
Kriging, including those based on Minkowski (including Manhattan) (Ganio et al. 2005,
Theodoridou et al. 2015, Crosby et al. 2018), geodetic (Banerjee 2005) and water-based
(shortest path over water) (Murphy et al. 2014) distances. Each offers its own benefits;
however, it is difficult to assess whether each produces valid experimental variograms
without access to the initial data; we show in Section 3 that relying on the fact that input
distances are PD metrics is no guarantee of valid variograms.

In a similar manner to this research, Crosby et al. (2018) utilises Open Street Map (OSM)
data to estimate restricted road distance and travel time between pairwise points. Crosby
et al. (2018) uses a Minkowski P value of 1.6, which demonstrates the highest correlation to
road distance, travel time and a linear combination of both, with the OSM data. Their work
also discovered that the same P value returned positive results when applied to the domain
of house price prediction. We directly compare the results of Crosby et al. (2018) with our
new approach, see Section 5. Figure 1 provides a simple comparison of Minkowski distance
(P = 1.6), a Euclidean distance, a Manhattan distance and regular road distance.

Research which bears similarity to our own can be found in Lu et al. (2014), who use
geographically weighted regression (GWR) and a non-Euclidean distance metric for
predicting London house prices. Their research also utilises road distance and travel
time, however is limited to network shape and speed limit; our measures include
a wealth of other data provided by OSM, see Table 5.

Approaches based on GWR have advantages, in particular because there is no require-
ment for the matrix to be Euclidean [the matrix wi of weights is diagonal; hence, there is no
need to check for positive definiteness, which is not the case with the covariance matrix
used in Kriging (Curriero 2006)]. However, it is noted in Crosby et al. (2018) that Kriging
typically outperforms GWR in spatial pricing models; this is especially true when imple-
mented locally, which is the case in Ordinary Kriging which assumes intrinsic stationarity
(i.e. a moving mean but a stationary variance between any two points).

2.2. Overcoming non-metric input spaces

For the most part, geostatistics relies on the assumption that each set of distances lie in
a metric space ðM; dÞ, where M is a set and d is a metric on M; for example, d might be
a function:
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d : MXM! R
þ: (1)

R
þ 2 M is a set of non-negative real numbers whose values satisfy the properties P1–P4:

di;j>0 (P1: Non negativity)
di;j ¼ 0( xi ¼ xj (P2: Identity of indiscernibles)

di;j ¼ dj;i ðP3 : SymmetryÞ
di;j<di;k þ dk;j (P4: Triangle inequality).

There are three known methods which ensure that a distance matrix is valid (i.e. it
produces a PD covariance matrix): the first uses isometric embedding to ensure
a Euclidean input; the second is the use of kernel convolution so that the kernel fits
any matrix; the third is to select a matrix which produces a valid covariance matrix.
Previous research has assumed that the distance matrix does not have to satisfy P1–P4
per se, but that it must ensure a PD covariance matrix. We do not subscribe to this view,
as the example in Section 3 highlights.

With regard to the three methods that ensure matrix validity: Isometric embedding
provides a dimensionality reduction technique with which it is possible to build a low
dimensional Euclidean approximation of non-Euclidean inputs for variogram modelling.

Figure 1. A comparison of the actual road, Euclidean, Minkowski and Manhattan distances between
two points on a map (OpenStreetMap Contributors 2008).
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Using simulated data with isotropic spatial dependence, Curriero (2006) builds four
omnidirectional experimental variograms, each representing an α norm, for α = 1, …,
4 (α = 2 is Euclidean). When these data are applied with Kriging, the newly defined
‘stream’ distances outperform Euclidean distances in all cases; this is therefore our
method of choice.

We note that other research proposes similar approaches to approximate road
distance metrics, see Tenenbaum et al. (2000) and Zou et al. (2012). In Zou et al.
(2012), the Floyd Warshall (FW) algorithm is applied to a road network to estimate
the actual road distance between pairwise locations. We note however that FW only
selects the shortest distance, irrespective of restrictions such as transport patterns
and one-way systems.

The use of kernel convolutions, which can be used to express moving averages,
assumes that correlated data can be expressed as linear combinations of uncorrelated
data. This method has been successfully applied by Crawford and Young (2008); how-
ever, we note that this method can be difficult to implement on problems with large
datasets and is hence not considered further in this work.

Finally, the selection or creation of a valid covariance function can be undertaken.
For example, Curriero (2006) noted that a set of Manhattan distances produced non-
valid variograms with Gaussian, Matern and spherical kernels but were valid for an
exponential kernel. We are aware that this approach has several restrictions and is
also time consuming to compute, and so for this reason, isometric embedding
remains our method of choice.

3. Motivation

The contributions of this work are based on the following assertion: The only way to
guarantee that a covariance matrix and variogram function are valid in this context is to
ensure that a Euclidean distance metric is input for their calculation.

The only way to ensure that a variogram is valid is to input a Euclidean distance
function. This implies that even PD distance functions cannot always produce
a valid variogram, a concept which has potential to invalidate much previous
research.

3.1. Non-PD inputs

Non-PD matrices produce non-PD kernels (covariance functions) which is usually as
a consequence of the L2 norm; note that Section 3.2 provides other examples where this
is the case. Matrices 1 and 2 show a set of possible pairwise distances. Thesematrices are not
symmetric, much like a road network containing one-way systems, and hence, they are not
PD. To test whether each matrix always produces a valid variogram, we select a Gaussian

covariance function (CðhÞ ¼ σ2eð�h=aÞ
2
) with σ2 = 0.5, 0.08 and a = 450, 1.5. The output

vectors from this calculation are shown in Vectors 1 and 2.
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Matrix 1. Road distance (m).Matrix 2. Travel time (min).

1 2 3 4 5 6 7
1 0 266:5 459:4 738:1 602:5 614:3 640:6
2 266:5 0 321:6 600:3 464:8 476:5 502:8
3 459:4 321:6 0 278:7 143:1 154:9 181:2
4 738:1 600:3 278:7 0 346:6 358:4 342:4
5 602:5 464:8 143:1 346:6 0 358:4 342:4
6 614:3 476:5 154:9 358:4 222:8 0 133:8
7 640:6 502:8 181:2 384:7 249:1 133:8 0

2
66666666664

3
77777777775

1 2 3 4 5 6 7
1 0 0:81 1:188 1:186 1:71 1:628 1:75
2 0:702 0 0:855 1:523 1:38 1:29 1:42
3 1:133 0:8 0 0:67 0:522 0:44 0:56
4 1:8 1:47 0:67 0 0:96 0:982 1:05
5 1:55 1:212 0:412 0:956 0 0:603 0:723
6 1:681 1:348 0:548 0:98 0:72 0 0:44
7 1:7 1:36 0:56 0:99 0:72 0:44 0

2
66666666664

3
77777777775

Vector 1. Road distance.Vector 2. Travel time.

2:09991
0:74078
0:27006
0:22365
0:13790
0:04218
�0:0145

2
666666664

3
777777775

and

0:38814
0:098924
0:03598
0:018321

0:010134þ 0:00194i
0:010134� 0:00194i

�0:014469

2
666666664

3
777777775

In view of the negative roots in Vectors 1 and 2, it is clear that both covariance
functions are not conditionally PD (

Pn
i¼1
Pn

j¼1 αiαjCðhÞ � 0) and hence road distance
and travel time are not valid for variogram modelling.

3.2. PD inputs

Additionally, non-Euclidean PD matrices may also produce non-PD kernels, a fact that
previous research has been known to overlook. Matrix 3 below represents the same
roads as in Matrix 1 and 2, but this time, the road distance is not restricted (much
like the work by Zou et al. 2012); that is to say, one-way systems are not considered
and hence are completely PD. The same covariance function and hyperparameters
are used.

Matrix 3. Road distance (m).

1 2 3 4 5 6 7
1 0 266:5 459:4 738:1 602:5 614:3 640:6
2 266:5 0 321:6 600:3 464:8 476:5 502:8
3 459:4 321:6 0 278:7 143:1 154:9 181:2
4 738:1 600:3 278:7 0 346:6 358:4 384:7
5 602:5 464:8 143:1 346:6 0 222:8 249:1
6 614:3 476:5 154:9 358:4 222:8 0 133:8
7 640:6 502:8 181:2 384:7 249:1 133:8 0

2
66666666664

3
77777777775

Vector 3. PD road distances.
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2:1346
0:74503
0:30465
0:153779
0:12919
0:039961
�0:0072856

2
666666664

3
777777775

Vector 3 shows that the output eigenvector still contains negative roots, which itself
means that the covariance function is not conditionally PD, despite the input matrix
being PD. This motivates our new approach for estimating non-Euclidean, non-PD
distance matrices in a Euclidean space in order to produce valid covariance and
variogram functions.

4. Method

We describe how current state-of-the-art approaches estimate city-based proximity (i.e.
non-Euclidean distance metrics) and compare these approaches to our new method. We
show how our proposed approach, isometric embedding with two symmetric dissim-
ilarity matrices (Bþ and B2þ), produces a PD covariance matrix. As a result of this, we
then show application of this new technique to the establishment of an urban real-
estate price predictor.

4.1. Distance matrix calculation

To undertake geostatistical modelling, a pairwise distance metric is required. This pair-
wise distance metric is populated with distances di;j from a list of locations
{xi; i ¼ 1; . . . ; n} in Euclidean space R

n. The matrix provides the basis for a valid metric
if all di;j satisfy P1–P4, see Section 2.2.

As we have previously shown, road distance and travel time are not natural metrics.
Given this, we compare four methods for calculating conforming geostatistical distance
metrics from these inputs: (1) A Euclidean distance (see Section 4.1.1), (2) a Minkowski
approximation of restricted road distance and travel time (see Section 4.1.2), (3) an
isomap estimate of road distance (see Section 4.1.3) and (4) a newly formulated
improved isometric embedding approach to estimating restricted road distance and
travel time (see Section 4.1.3).

4.1.1. Euclidean distance
Unless otherwise stated, it is typical to assume a Euclidean function when referring to
distance. Assuming two sites as vectors s = ðs1; . . . ; sdÞ and u = ðu1; . . . ; udÞ, in Euclidean

space R
d , then the Euclidean distance is

s� uj jj j ¼
Xd
i¼1
ðsi � uiÞ2

( )1
2

; (2)
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where d is the number of dimensions (or attributes) and si and ui are the attributes.

4.1.2. Minkowski distance
Assuming the same notation as above, the Minkowski distance is

s� uj jj j ¼
Xd
i¼1
jjðsi � uiÞP

( )1
P

; (3)

where P is an user-defined parameter. Manhattan and Euclidean distances are special
cases of Minkowski, with P = {1,2}, respectively. Crosby et al. (2018) show that Minkowski
distances with P� {1,2} can better estimate road distance and travel time compared with
Manhattan or Euclidean distances.

4.1.3. Isometric embedding and isomap
Isometric embedding provides the spatial transformation of a new metric space
ζ 0=ðs0; d0Þ from ζ ¼ ðs; dÞ, with point set s ¼ ðs1; s2; . . . ; snÞ, distance function D of ζ

and distance function D′ of ζ 0. All associated s and dij values are intrinsic. If D ’ D′,
then the transformation still preserves topological adjacency among points in the
original space ζ. Dimensionality reduction is a good means of achieving isometric
embedding; multidimensional scaling (MDS) is the most popular such scheme.

Isomap, in addition to isometric embedding, attempts to detect the intrinsic char-
acteristics of non-linear data, in which ζ may be a non-metric space. For example,
isometric embedding assumes a Euclidean distance, whereas isomap supports other
spatial features such as non-restricted approximate road (Zou et al. 2012) and geodesic
(Banerjee 2005) distances on a set of discrete points (Tenenbaum et al. 2000). Figure 2
provides an example of a road distance layout (left) transformed into a low-dimensional
Euclidean space (right) using isomap.

As stated, MDS is a dimensionality reduction technique used to achieve isometric
embedding or isomap. Given an input metric D (which is e.g. Euclidean) in n-dimen-
sional metric space ζ, the first stage of MDS is to calculate the dissimilarity matrix B

B ¼ 1
2

aij � ai:� aj:þ a::
� �

(4)

where ai: is the average of all aij across j. Formally, each element Bij in matrix B is
calculated by

Figure 2. Illustration of the spatial transformation from road distance (or travel time) into
a Euclidean space.
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B�ij ¼
1
2
�d2ij þ

1
n

Xn
l¼1

d2il þ
1
n

Xn
l¼1

d2lj �
1
n2
Xn
l¼1

Xn
m¼1

d2lm

 !
(5)

where B is a new set of isometric distances which mimics a kernel where B is doubly
centred. Although B is semi-PD, it is not guaranteed to produce a PD covariance
function or a CND variogram (see proof in Section 3). B is definitely valid only when
the input distance matrix D= dij

� �
nxn is symmetric and positive. Given this, classical MDS

requires that the eigenvalues of B are λ1 � λ2 � . . . � λα, where α is a user-selected
value based on an optimal κ:

κ ¼
Pk

i¼1 λiPn
i¼1 λij j

; (6)

where λα>0. The optimal κ provides the smallest value of α given some user-defined
minimum variation threshold. Thereafter, the corresponding eigenvectors (Γ ¼ �i, for
i ¼ 1; . . . ; α) are calculated. The penultimate step of MDS is to calculate a new dataset of

points in the new α-dimensional subspace ζ0=ðs; dÞ, where s0 ¼ ΓΛ
1
2 and

Λ ¼ diagðλ1; λ2; . . . ; λkÞ. This new s0 point set is the isometric subspace which best
describes point set D; this process is called eigenvalue decomposition and explains the
variance of the data in a lower dimension. In the final stage of isomap, the new coordinates
in s0 are used to calculate a new approximate distance metric using the Euclidean function.

If some inputs are non-metric, such as may be the case with travel time or restricted
road distance, the dissimilarity matrix B may not be semi-PD with an L2-norm, a property
which is essential for MDS. For this reason, a new Bþ dissimilarity matrix is proposed in
which D is forced to be symmetric within the calculation:

Bþij ¼
1
2
� 1
2
ðd2ij � d2ji

� �
þ 1
2n

Xn
l¼1

d2il þ
Xn
l¼1

d2jl þ
Xn
l¼1

d2lj þ
Xn
l¼1

d2li

 !

� 1
n2
Xn
l¼1

Xn
m¼1

d2lmÞ (7)

Additionally, B2þij takes a combination of both road distance and travel time matrices
(the maximum and minimum distances are normalised between 0 and 1) to produce
isometric distances, where δij represents the normalised road distance and τij represents
the normalised travel time distance between each i and j:

B2þij ¼ 1
2 ð� 1

2 ðδ2ij þ τ2ij � δ2ji � τ2jiÞ þ 1
2n ð
Pn
l¼1
ðδ2il þ τ2ilÞ þ

Pn
l¼1
ðδ2jl þ τ2jlÞ þ

Pn
l¼1
ðδ2lj þ τ2ljÞþPn

l¼1
ðδ2li þ τ2liÞÞ � 1

n2 ð
Pn
l¼1

Pn
m¼1

δ2lm þ τ2lmÞÞ
(8)

Each new Bþij and B2þij solves the problem of non-symmetry for travel time and restricted
road networks. This ensures that B is semi-PD so that the process of MDS and the output
distance matrices is also both valid. Bþij and B2þij are key contributions of this research.

‘Stress’ validates the effectiveness of classical MDS – it tests the goodness of fit for D′
with the input metric D (the normalised sum of squares), such that
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Stress ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
jðdij � d0 ijÞP
i

P
j d

2
ij

s
: (9)

However, when implementing non-metric inputs, Stress should be calculated differently
such that db

þ
ij and db

2þ
ij are the Euclidean functions on space Bþ and B2þ, respectively.

The reason for this is because we are no longer reconstructing elements dij. Rather, we
reconstruct the dissimilarity matrix for the new metric space. A metric space can be
confirmed such that

d2ij ¼ ðbi
!� bj

!ÞTðbi!� bj
!Þ where ðbi!� bj

!Þ ¼ ½bi1 � bj1; . . . ; bin � bjn�

hence

d2ij ¼ ðbi1 � bj1Þ2 þ ðbi2 � bj2Þ2 þ . . . ¼ Pn
d¼1
ðbin � bjnÞ2 (Euclidean)

Given that we can define a Euclidean metric from B, we are assured that it is indeed
a valid metric space.

5. Case study: real-estate valuation

Real-estate valuation has become a much more data-driven and quantitative process.
This said, the process of estimating the value of a property or land parcel through
market appraisal remains the de rigueur of skilled market professionals. Having now
worked in this domain for several years, our aim has been to scale-up and semi-
automate the use of big data for real-estate valuation.

To this end, we build a so-called AVM for a sample of 3669 residential properties in
the city of Coventry in the United Kingdom, using Ordinary Kriging with a target
valuation date of 1 January 2017. We develop a new approximate road distance and
travel time metric for variogram calculations. Figure 3 diagrammatically depicts the
entire process in this study and Algorithm 1 represents the purple coloured section of
the diagram.

Algorithm 1. Pseudocode for the entire isomap algorithm displayed in the purple
coloured section of Figure 3.

Require: D ¼ dij
� �

, ζ ¼ ðs; dÞi, x, Floyd–Warshall, Bþij , B
�
ij , B

2þ
ij , κ, S.

1: for experiment in 3–6 do
2: Let: ζ ¼ ðs; dÞi be a metric space with point set s ¼ ðs1; s2; . . . ; snÞi and distance

function d and x ¼ xn is the point set of midpoints for each vertex.
3: if {i = 3}
4: D ¼ dij

� �  Floyd–Warshall
5: Map D to a semi-PD distance metric with Eq. (5)
6: else if {i = 4,5}
7: D ¼ dij

� �  OSRM restricted road distance, travel time
8: Map D to a semi-PD distance metric with Eq. (7) (r<n)
9: else
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10: D ¼ dij
� �  OSRM restricted road distance, travel time

11: Map D to a semi-PD distance metric with Eq. (8) (r<n)
12: end if
13: Embed into low-dimensional Euclidean space ζ 0 ¼ ðs0; d0Þi such that α<r (Eq. 6)
14: Collect new coordinates s0 given S0 in ζ 0

15: Calculate the new Euclidean distances
16: end for

For the purpose of comparison, and to ensure robust results, we run six experiments
where each contains a different input distance metric:

(1) Euclidean (vector norm of 2);
(2) Optimal Minkowski (P = 1.6) Crosby17;
(3) FW on a road network (PD Road) HaixongDistanceMatric;
(4) OSM road distance with restrictions;
(5) OSM travel time with restrictions;
(6) A combination of normalised road distance and travel time with restrictions.

Each experiment is subsequently referred to using the numerical identifier (1–6).

5.1. Data description

Our AVM uses input data regarding all houses that were sold in Coventry in 2016. For
each of these 3669 properties, the percentage change in house price, between the date
sold and 1 January 2017, is calculated using the predicted change in value in each
output area as defined by the UK Office for National Statistics. This provides a predicted
price per property for the data as at the 1 January 2017.

The datasets that we use are all open source. The house prices are obtained from Her
Majesty’s Land Registry. In addition, experiment (3) requires road network data, which is
also sourced from the Ordnance Survey. Experiments (4)–(6) all require distances
between points along a roadway and the time that it takes to travel these distances;
this is sourced from the Open Street Routing Machine (OSRM) powered by OSMs. Table 1
provides a description of each dataset and Table 2 lists roadway restrictions routinely
used in the calculations by the OSRM.

Figure 4 provides a graphical representation of all house prices from a low price
(small, light-coloured circles) to a high price (large, dark-coloured circles). Empirically, it
can be seen that the south west of the city of Coventry has a larger proportion of more
expensive houses compared with the north east; hence, there exists some global spatial
autocorrelation (SAC). Formally, a standard Moran’s I test was implemented (see defini-
tion by Moran 1950) to confirm a statistically significant SAC. This dataset showed
a strong result for Iobserved ¼ 0:1559136>>Iexpected ¼ �0:00267094, with a standard devia-
tion of 0:001123158 and a P-value ’ 0. These results allow us to reject the null
hypothesis that there is no SAC present at α = 0:05. This result supports the notion
that spatial regression is appropriate for our application.
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5.2. Matrix construction

We process five distance matrices for our six experiments. Experiments (1) and (2) require
a Euclidean and a Minkowski distance metric, respectively, which are valid for variogram
modelling (see the beige-coloured portion of Figure 3). Experiment (2) uses a P-value of 1.6
which was previously reported to perform best on the same dataset, see Crosby et al.
(2018). Experiments (3)–(6) require pre-processing using isomap (see purple-coloured
portion of Figure 3). Experiment (3) utilises a road network to calculate a shortest path
using the FW algorithm. Experiment (3) embeds the input distance matrix using dissim-
ilarity matrix B�. Experiments (4) and (5) embed the distance matrices sourced from OSRM
and dissimilarity Bþ. Finally, experiment (6) utilises the same distance matrices sourced
from OSRM but now implementing the B2þ dissimilarity matrix. This entire process is

Table 1. A list of all datasets, sources and descriptions used in our case study.
Dataset Source Description

House
prices

Land
Registry

A list of n actual sold prices for each house i in Coventry

House
locations

Ordnance
Survey

A list of n long/lat points for location i

Restricted
road

OSRM A pairwise distance matrix containing an average daily restricted road distance

Travel time OSRM A pairwise distance matrix containing an average daily travel time
Road
network

Ordnance
Survey

A node-edge diagram of Coventry City with no legal or restrictive barriers, e.g. this
network does not take into account one-way systems

Table 2. Example restrictions to road networks from OSM labels.
Restriction type Description

Barrier (Rising) bollard, cattle grid, toll booth etc.
Restriction Motor vehicle, vehicle, permissive, designated, destination, private, agricultural, forestry,

emergency, parking aisle etc.
Speed profile Motorway, trunk, primary, secondary, tertiary etc.
Surface speeds Concrete, paved, cement, compacted, paving stones, metal, grass, gravel, unpaved,

cobblestone, stone, sand, mud etc.
Max speed Urban, rural, trunk, motorway, single/dual carriageway
U-turns and traffic
signal

Time (s)

One way Boolean (y/n)
Route speed Ferries, piers, movable bridges

Table 3. The r2 values for each distance metric compared with actual
road distance and travel time matrices.

Experiment
Distance
Metric

Actual road
Distance (r2)

Actual travel
Time (r2)

1 DEuc 0.377 0.359
2 DMink 0.379 0.359
3 D0FW 0.374 0.365
4 D0RD 0.621 0.592
5 D0TT 0.606 0.614
6 D0RDTT 0.446 0.419
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depicted in thematrix production column in Figure 3, the purple-coloured portion of which
is captured in Algorithm 1 and used in experiments (3)–(6). Table 3 provides a comparison
of all distance metrics calculated in our experiment compared with OSRM's actual road
distance and travel time matrices.

5.3. Data sampling for cross-validation

The most sophisticated validation sampling techniques (hold-out and k-fold) assume
data in both the test and training sets to be independent of each other. This is an
assumption that may be unrealistic with datasets containing SAC, especially if the
purpose of the modelling is for interpolation or close proximity extrapolation
(Pohjankukka et al. 2017). As such, four sampling techniques are considered, three of
which consider spatial dependence for comparison (see ‘data sampling’ in Figure 3):

(1) 10-Fold cross-validation on the full dataset of 3669 properties;
(2) spatially stratified 10-fold cross-validation (spatially stratified k-fold cross-

validation [SSKCV]) on the full dataset of 3669;

Figure 4. A plot of all locations and prices in the houses dataset. Small and light points represent
cheaper houses and large dark points represent the more expensive.
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(3) chequerboard holdout on a training set of 1832 properties, with a test set of 1837
properties;

(4) spatial k-fold cross-validation (SKCV) (Pohjankukka et al. 2017) on samples of the
entire dataset, with each sample including 3187 properties � 135 for each fold.

5.3.1. k-Fold cross-validation
k-Fold cross-validation (KCV) randomly partitions a dataset into k equally sized subsets.
One of these subsets is retained for testing, whereas the other k − 1 are considered for
training. For each fold, a different subset is retained for testing until all k subsets are
tested. Figure 5(e,f) shows 2 of the 10-folds in our 6 experiments. KCV overestimates
statistical effects on spatial random variables and hence produces an optimistic estimate
of generalisation performance for unseen data.

5.3.2. Chequerboard holdout
Chequerboard holdout trains approximately 50% of the data and tests the remaining
data based on whether they lay in the black or white grid squares (see Figure 5(a)). Our
case study uses a training and test set of 1832 and 1837 properties, respectively.
Chequerboard holdout is quick to apply, simple and removes some SAC. On the other
hand, it removes a significant amount of training data and still contains bias at block
borders.

5.3.3. SSKCV
SSKCV processes data in a similar manner to standard k-fold; however, the data splits are
spatial and not random. Two of the 10-folds are shown in Figure 5(c,d). As can be seen,
each test subset is spatially separated from the training set, which can appropriately
remove some bias caused by SAC. However, the data splits still contain SAC at and near
sample borders.

5.3.4. SKCV
SKCV estimates a predictor’s performance by implementing traditional k-fold cross-
validation, whilst at the same time removing all training points within an empirically
designed Euclidean dead zone from all test points (Pohjankukka et al. 2017). Figure 5(b)
demonstrates this method where training points within 20 m of each test point are in
yellow for a specific fold. This method more efficiently removes SAC than the other
methods. However, it relies on a user-defined dead zone with no given heuristic and
removes training points which in turn can cause pessimistic results. For our case study,
we apply 20 m dead-zones, which removes approximately 8% of the total training
points: this parameter value is selected as it is at this level that we see the most
significant change in results; close inspection shows that this removes on average 3–5
of properties’ closest neighbours.

5.4. Variogram construction and ordinary Kriging

Let s 2 R
d be a single location representing a house in a d-dimensional Euclidean space

and suppose that the house price Z(s) at spatial location s is a random quantity. Then, let
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s vary over index set D, which is a subset of Rd (D � R
d), so as to generate the random

process ZðsÞ : s 2 D.
For each experiment (six in total) and each sampling technique (four in total), a new

variogram is produced together with a parametric model (kernel); see ‘variogram con-
struction’ in Figure 3. The maximum distance and lag classes are empirically selected.

(a) Chequerboard holdout: Training points (black grid)
and testing points (white grid).

(b) Spatial k -fold with deadzone radii: Yellow points
are removed from the training set.

(c) Blue points are the training set and brown points
are the test set, spatial K=1.

(d) Blue points are the training set and brown points
are the test set, spatial K=2.

(e) Blue points are the training set and brown points
are the test set, standard K=1.

(f) Blue points are the training set and brown points
are the test set, standard K=2.

Figure 5. A comparison of all sampling techniques: (a) chequerboard holdout: training points (black
grid) and testing points (white grid); (b) spatial k-fold with dead-zone radii: yellow points are
removed from the training set; (c) blue points are the training set and brown points are the test set,
spatial K = 1; (d) blue points are the training set and brown points are the test set, spatial K = 2; (e)
blue points are the training set and brown points are the test set, standard K = 1; and (f) blue points
are the training set and brown points are the test set, standard K = 2.
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The nugget, sill and range are selected by ordinary least squares. For each fold in a k-fold
sampling technique, a new variogram is estimated. By means of an example, Figure 6
graphically displays the variogram for the first fold of experiment (4) (restricted road
distance metric) with its three best performing kernels: Gaussian, spherical and Matern
(in improving order). We undertake two approaches to selecting the best variogram: (1)
the user empirically selects the kernel; and (2) a maximum likelihood estimator (MLE)
selects the best kernel (Lark 2002). We find that the empirical fitting approach, although
lengthy to undertake, produces in all cases a matching or better predictor result. Hence,
Section 5.6 reports the optimal results with empirical fitting for all sampling techniques
as well as MLE for k-fold cross-validation as evidence that we selected the best approach.
Table 4 provides the selected parameters and hyperparameters for each experiment
with our most realistic sampling approach – SKCV. It can be seen that the kernel used
can change between each experiment; this is because we select the kernel which
produces the best Kriging result for each experiment. The kernels show that different
distance matrices can make a significant difference to the parameters and weightings of
an optimal Kriging predictor. Given that we provide the best result, irrelevant of the
kernel, we are providing a more robust like-for-like comparison than we would if we just

Figure 6. A graph of the three best kernels for a road distance matrix.

Table 4. Selected hyperparameters for all experiments (1)–(6) (Exp. 1–6) with dead-zone 10-fold
cross-validation.

Euclidean Minkowski PD road Road Travel Combined

Distance
(Exp. 1)

Distance
(Exp. 2) HaixongDistanceMatric (Exp. 3) Distance (Exp. 4) Time (Exp. 5) Matrices (Exp. 6)

Nugget 0.03 0.003 0.0035 0.018 0.0015 0.008
Sill 0.07 0.03 0.02 0.03 0.05 0.05
Range 20,000 20,000 15,000 15,000 30 30,000
Kernel Matern Matern Matern Gaussian Spherical Spherical
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selected one kernel for all experiments. We believe that this avoids overly optimistic
results for one or two experiments and pessimistic results for the remainder.

5.5. Validation

Three validation metrics are utilised: (1) r2, (2) root mean squared error (RMSE) and (3)
mean absolute percentage error (MAPE) (see Equations (10)–(12)). The r2 calculation
measures the predictor’s ‘goodness of fit’, the RMSE calculates the square root of the
sum of the mean squared errors and MAPE is the mean absolute error expressed as
a percentage.

r2 ¼ nðP xyÞ � ðPxÞðP yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnPðx2Þ � ðP xÞ2ÞðnPðy2Þ � ðP yÞ2Þ

q
0
B@

1
CA

2

: (10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1
ðyi � ŷiÞ2

s
(11)

MAPE ¼ 100
n

Pn
i¼1

yi � ŷið Þ2

yi

0
BB@

1
CCA (12)

5.6. Results and analysis

A summary of all results is recorded in Table 5, which provides the validation results for
each experiment (1–6) for all validation techniques (k-fold, chequerboard, SSKCV and
SKCV). All values in bold represent the experiment which provides the best house price
predictor for each sampling technique. If more than one experiment is selected for one
sampling technique, then all results between are statistically insignificant based on
a t-value of 0.05 on a paired t-test, and hence, all are optimal. It can be seen that
prior state-of-the-art Euclidean and Minkowski consistently under-perform compared
with the urban road distance and travel time-based models. For example, Euclidean-
based Kriging delivers an r2 of 0.23 compared with a combination of road distance and
travel time of r2 of 0.56 (>x2 goodness of fit) on the most pessimistic/realistic sampling
technique (SKCV). In addition, we note that by considering the shortest path with
restrictions (i.e. experiments (4)–(6)), unlike the current state of the art in isomap
(experiment (3)), we are able to find a statistically improved house price regression in
3 out of 4 sampling techniques.

Notably, the significance of the improvements between our new approaches (experi-
ments (4)–(6)) compared to Euclidean distances increases as the sampling technique
becomes more pessimistic. This is intuitive because in SKCV, a Euclidean dead zone is
utilised to penalise the over bias caused by SAC. Additionally, our novel approaches take
account of a more sophisticated SAC which better infers the covariates of an urban
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environment and hence is less affected by the assumption of independent and identi-
cally distritributed (IID) in k-fold cross-validation.

As previously discussed (Section 5.4), Table 6 presents the results for all experiments
with a MLE. These are inferior to the empirical approach; hence, we opted to undertake
all experiments with the empirical approach; these results are shown in Table 5. Table 7
emphasises this point by reporting that our empirically selected kernels produce
improved urban house price Kriging predictors compared with the MLE approach
undertaken in Crosby et al. (2018).

Overall, we see that our isomap approach can, in some cases, deliver a goodness of fit
which is twice as good as results from an approach using Euclidean distance. This
statistically significant outcome highlights the potential of using restricted road distance,
travel time and non-Euclidean distance matrices, in urban studies and in other geosta-
tistical applications such as restricted stream distances.

Isomap is representative of a network’s global structure and is theoretically under-
stood across disciplines. Local isometric embedding, on the other hand, attempts to
preserve the local geometry of data; these methods include sparse matrix computations
that speed up calculation and utilise local geometry and Euclidean distances in
a network, which may otherwise be non-Euclidean globally. Given that we have utilised
the commonly understood global approach, further research would include testing
against local isometric embedding, especially if one were interested in producing real-
time applications which require a low computational complexity.

6. Conclusion

Through the use of a practical urban modelling case study, we demonstrate that
variogram functions do not always remain valid with non-Euclidean distance inputs,
and therefore establishing the validity of each distance function becomes essential.
Using isomapping – a method for nonlinear dimensionality reduction – we show that
it is possible to produce PD Euclidean distance metrics, and as a result valid variogram
functions.

Table 7. A comparison of the results from Crosby et al. (2018) with those
from this research using 10-fold cross-validation.

P = 2
New

P = 2
Crosby17

P = 1.6
New

P = 1.6
Crosby17

r2 0.801 0.663 0.8 0.6901
RMSE 55,177 58,913 74,786 57,013
MAPE 17.9% 18.12% 24.5% 17.895%

Table 6. Maximum likelihood results with dead zone spatial k-fold cross-validation.

Euclidean
distance (Exp. 1)

Minkowski
distance (Exp. 2)

PD road
HaixongDistanceMatric

(Exp. 3)

Road
distance
(Exp. 4)

Travel time
(Exp. 5)

Combined
matrices (Exp.

6)

r2 0.187 0.236 0.431 0.413 0.327 0.457
RMSE 102,155.62 108,238 91,047 94,655.37 104,157 92,051
MAPE 32.60 33.25 36.01 29.62 27.79 28.04

532 H. CROSBY ET AL.



In contrast to previous research, we demonstrate that shortest path link-based road
distances do not always improve the output of geostatistical models compared with
Euclidean-based approaches. However, road networks which consider real-world restric-
tions, such as one-way systems, congestion and the presence of traffic lights can
significantly improve modelling accuracy. Two such approaches presented in this
research are travel time and a combination of restricted road distance and travel time,
the latter of which accounts for a greater number of factors than road distance alone.

More specifically, a newly defined isomap approach is presented, which shows that
road distance and travel time can both be more accurately modelled against a PD
approximation of both, compared to Euclidean, Minkowski and link-based approaches
(Zou et al. 2012, Crosby et al. 2018). In some cases, this provides a goodness-of-fit value
which is twice as good as state-of-the-art approaches.

Furthermore, an extensive comparison of spatial cross-validation techniques is con-
ducted, in which we conclude that k-fold cross-validation does not accurately estimate
how well a model generalises to unseen data in a spatial setting – SKCV is shown to be
a more appropriate sampling technique for cross-validation.

We highlight that using an inappropriate validation sampling technique can lead to
an incorrect selection of prediction models. In the case study that we present, the results
for our combined road distance and travel time method are significantly better with SAC
removal than with standard k-fold cross-validation. Our results show that restricted road
distance and travel time predictions produce a statistically improved house price pre-
dictor with an r2 = 0.56; this compares with a Euclidean-based approach which achieves
a result of r2 = 0.23 in the case of sampling with a pessimistic/realistic dead-zone k-fold
cross-validation technique (SKCV).

Further avenues of research include the introduction of covariates for an optimal
AVM, the production of a restricted road distance and travel time kernel for urban
variogram modelling, and an improved estimate of combined road distance and travel
time metrics.
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