

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/115622

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/195265664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/115622
mailto:wrap@warwick.ac.uk

Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Online Algorithms for Multi-Level Aggregation

Marcin Bienkowski
Institute of Computer Science, University of Wroc law, Poland

Martin Böhm
CSLog, Universität Bremen, Germany and Computer Science Institute, Charles University, Czech Republic

Jaroslaw Byrka
Institute of Computer Science, University of Wroc law, Poland

Marek Chrobak
Department of Computer Science, University of California at Riverside, USA

Christoph Dürr
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, France

Lukáš Folwarczný
Institute of Mathematics, Czech Academy of Sciences, Czech Republic and Computer Science Institute, Charles University,

Czech Republic

 Lukasz Jeż
Institute of Computer Science, University of Wroc law, Poland

Jǐŕı Sgall
Computer Science Institute, Charles University, Czech Republic, sgall@iuuk.mff.cuni.cz

Nguyen Kim Thang
IBISC, Université d’Evry Val d’Essonne, France

Pavel Veselý
Department of Computer Science, University of Warwick, Coventry, UK and Computer Science Institute, Charles University,

Czech Republic

1

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted tree T ,

and have to be served eventually. A service is defined as a subtree X of T that contains the root of T .

This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal

to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The

objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP

is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is

equivalent to the TCP Acknowledgment Problem, while for trees of depth 2, it is equivalent to the Joint

Replenishment Problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor

networks, communication in organization hierarchies, and in supply-chain management. The instances of

MLAP associated with these applications are naturally online, in the sense that aggregation decisions need

to be made without information about future requests.

Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been

open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing

this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth.

The competitive ratio is O(D42D), where D is the depth of T . The algorithm works for arbitrary waiting

cost functions, including the variant with deadlines.

Key words : algorithmic aspects of networks, online algorithms, scheduling and resource allocation, lot

sizing, multi-stage assembly problem

1. Introduction

Certain optimization problems can be formulated as aggregation problems. They typically arise

when expensive resources can be shared by multiple agents, who incur additional expenses for

accessing a resource. For example, costs may be associated with waiting until the resource is

accessible, or, if the resource is not in the desired state, a costly setup or retooling may be required.

1-level aggregation. A simple example of an aggregation problem is the TCP Acknowledgment

Problem (TCP-AP), where control messages (“agents”) waiting for transmission across a network

link can be aggregated and transmitted in a single packet (“resource”). Such aggregation can reduce

network traffic, but it also results in undesirable delays. A reasonable compromise is to balance

the two costs, namely the number of transmitted packets and the total delay, by minimizing their

weighted sum (Dooly et al. 2001). Interestingly, TCP-AP is equivalent to the classical Lot Sizing

Problem studied in the operations research literature since the 1950s. (See, for example, Wagner

and Whitin (1958).)

An example in Figure 1 illustrates an instance of TCP-AP and a schedule of packet transmissions.

The x-axis represents time. Messages, represented by circles, arrive at integer times. Up-arrows

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

0 5 10 15 time

Figure 1 An example of TCP-AP with linear cost function.

point to transmission times and horizontal dashed lines represent waiting times of messages. Assume

that the cost of each packet’s transmission is 10 and that we charge for delay at rate 1 per time

unit. The schedule consists of three transmissions whose total cost is 30. The first transmitted

packet will contain 5 messages with total delay 4 + 3 + 3 + 1 + 0 = 11. The total delay of messages

in the second and third transmissions will be, respectively, 12 and 13. So the total cost of the

schedule in Figure 1 is 66.

The offline variant of TCP-AP, that is computing the optimum schedule of transmissions of

messages aggregated into packets, assuming that all arrival times of control messages are known

beforehand, can be naturally represented by an integer linear program. The optimum solution

can also be quite easily and efficiently found with dynamic programming, with the fastest known

algorithm for this problem achieving running time O(n logn) (Aggarwal and Park 1993).

In practice, however, packet aggregation decisions must be done on the fly, in real time. This

gives rise to the online version of TCP-AP, in which an online algorithm receives information

about messages as they are released over time. At each time step, this algorithm needs to decide

whether to transmit the packet with pending messages or not, without any information about

future message releases. Online algorithms for a variety of other scheduling problems (and other

optimization problems) have been a topic of extensive study since 1980’s – see, for example, Sgall

(1998), Borodin and El-Yaniv (1998). With incomplete information about the input sequence,

an online algorithm cannot, in general, guarantee to compute an optimal solution. Thus research

in this area focuses on designing near-optimal algorithms. The quality of solutions computed by

an online algorithm is typically measured by its competitive ratio, which is defined (roughly) as the

worst-case ratio between its cost and the optimum cost (computed offline). Naturally, the smaller

the ratio the better.

The online variant of TCP-AP has been well studied: It is known that the optimal competitive

ratio is 2 in the deterministic case (Dooly et al. 2001), i.e., there is an algorithm that computes

a solution of cost not more than twice the optimum, and it is not possible to achieve a smaller

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

10
2

3

5
8

4

r5

r4 r3
r2

r1
w

s

0 5 10 time

r1
r2
r3
r4
r5

r1
r2
r3
r5

r1
r2
r5 r4

r5

r2
r3

Figure 2 An example of JRP with linear cost function.

ratio online. With randomization, it is possible to reduce the ratio to e/(e− 1) ≈ 1.582 (Karlin

et al. 2003, Buchbinder and Naor 2009, Seiden 2000). Online variants of TCP-AP that use different

assumptions or objective functions were also examined in the literature (Frederiksen et al. 2003,

Albers and Bals 2005).

2-level aggregation. Another optimization problem involving aggregation is the Joint Replen-

ishment Problem (JRP), well-studied in operations research. JRP models tradeoffs that arise in

supply-chain management. One such scenario involves optimizing shipments of goods from a sup-

plier to retailers, through a shared warehouse, in response to their demands. In JRP, aggregation

takes place at two levels: items addressed to different retailers can be shipped together to the

warehouse, at a fixed cost, and then multiple items destined to the same retailer can be shipped

from the warehouse to this retailer together, also at a fixed cost, which can be different for different

retailers. Pending demands accrue waiting cost until they are satisfied by a shipment. The objective

is to minimize the sum of all shipment costs and all waiting costs.

Figure 2 shows an example of an instance of JRP and a schedule. This instance has five retail-

ers r1, r2, ..., r5, the warehouse is denoted w and the supplier is denoted s. The connections are

represented by a “star” tree, shown on the left, with shipping costs associated with its edges. For

example, the shipping cost from the supplier to the warehouse is 10. On the right, requests are

represented by circles and are arranged in five rows corresponding to the retailers. There are three

shipments, at times 4, 9 and 13, marked by up-arrows, with their participating retailers listed

below. The first shipment serves retailers r1, r2, r3 and r5 and its cost is 10 + 2 + 3 + 5 + 4 = 24.

Assume that the waiting cost is equal to the time elapsed between the request and the ship-

ment that satisfies it. Then the waiting cost of the requests served by the first shipment will be

(4 + 2 + 1) + (3 + 0) + 3 + 4 = 17.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

Similarly to TCP-AP, JRP can also be represented by an integer linear program (see, for example

(Buchbinder et al. 2008)). In contrast to TCP-AP, however, JRP is known to be NP-hard (Arkin

et al. 1989), and even APX-hard (Nonner and Souza 2009, Bienkowski et al. 2015). The currently

best approximation algorithm, due to Bienkowski et al. (2014), achieves a factor of 1.791, improving

on earlier work (Levi et al. 2005, 2008, Levi and Sviridenko 2006). In the deadline variant of JRP,

denoted JRP-D, there is no cost for waiting, but each demand needs to be satisfied before its

deadline. As shown by Bienkowski et al. (2015), JRP-D can be approximated with ratio 1.574.

For the online variant of JRP, Buchbinder et al. (2008) gave a 3-competitive algorithm using

a primal-dual scheme (improving an earlier bound of 5 by Brito et al. (2012)) and proved a lower

bound of 2.64, that was subsequently improved to 2.754 (Bienkowski et al. 2014). The optimal

competitive ratio for JRP-D is 2 (Bienkowski et al. 2014).

Multiple-level aggregation. TCP-AP and JRP can be thought of as aggregation problems on edge-

weighted trees of depth 1 and 2, respectively. In TCP-AP, this tree is just a single edge between the

sender and the recipient. In JRP, this tree consists of the root (supplier) with one child (warehouse)

and any number of grandchildren (retailers). A shipment can be represented by a subtree of this

tree and edge weights represent shipping costs. These trees capture the general problem on trees

of depth 1 and 2, as the children of the root can be considered separately (see Section 2).

This naturally extends to trees of any depth D, where aggregation is allowed at each level. Multi-

level message aggregation has been, in fact, studied in communication networks in several contexts.

In multicasting, protocols for aggregating control messages (see, for example, Bortnikov and Cohen

(1998), Badrinath and Sudame (2000)) can be used to reduce the so-called ack-implosion, the

proliferation of control messages routed to the source. Such global approach is likely to be more

effective than applying aggregation on each link separately (which amounts to solving an instance

of the TCP-AP problem for each link). For example, the root of the tree can represent a web server

that gathers TCP acknowledgements from its open TCP connections. These TCP acknowledgement

messages are very small (40 bytes), yet each individual message needs to be processed by each node

it traverses in order to determine its route through a routing table lookup. With aggregation, only

one such processing is needed, per node, for an aggregated message that contains multiple acknowl-

edgements. As shown experimentally by Badrinath and Sudame (2000), this approach reduces

packet latency. A similar problem arises in energy-efficient data aggregation and fusion in sensor

networks (Hu et al. 2005, Yuan et al. 2003). Outside of networking, tradeoffs between the cost

of communication and delay arise in message aggregation in organizational hierarchies (Papadim-

itriou 1996). In supply-chain management, multi-level variants of lot sizing have been studied as

well (Crowston and Wagner 1973, Kimms 1997). The need to consider more tree-like (in a broad

sense) supply hierarchies has also been advocated by Lambert and Cooper (2000).

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

These applications have inspired research on offline and online approximation algorithms for

multi-level aggregation problems. Becchetti et al. (2009) gave a 2-approximation algorithm for the

deadline case. (See also (Brito et al. 2012).) Pedrosa (2013) showed, adapting an algorithm of Levi

et al. (2006) for the multi-stage assembly problem, that there is a (2 + ε)-approximation algorithm

for general waiting cost functions, where ε can be made arbitrarily small.

In the online case, Khanna et al. (2002) gave a rent-or-buy solution (that serves a group of

requests once their waiting cost reaches the cost of their service) and showed that their algorithm

is O(logW)-competitive, where W is the sum of all edge weights. However, they assumed that each

request has to wait at least one time unit. This assumption is crucial for their proof, as demonstrated

by Brito et al. (2012), who showed that the competitive ratio of a rent-or-buy strategy is Ω(D),

even for paths with D edges. The same assumption of a minimal cost for a request and a ratio

dependent on the edge-weights is also essential in the work of Vaya (2012), who studies a variant

of the problem with bounded bandwidth (the number of packets that can be served by a single

edge in a single service).

The existence of a primal-dual (2 + ε)-approximation algorithm (Pedrosa 2013, Levi et al. 2006)

for the offline problem suggests the possibility of constructing an online algorithm along the lines

of the scheme by Buchbinder and Naor (2009). Nevertheless, despite substantial effort of many

researchers, the online multi-level setting remains wide open. This is perhaps partly due to impos-

sibility of direct emulation of the cleanup phase in primal-dual offline algorithms in the online

setting, as this cleanup is performed in the “reverse time” order.

The case when the tree is just a path has also been studied. An offline polynomial-time algorithm

that computes an optimal schedule was given by Bienkowski et al. (2013). For the online variant,

Brito et al. (2012) gave an 8-competitive algorithm. This result was improved by Bienkowski et al.

(2013) who showed that the competitive ratio of this problem is between 2 +φ≈ 3.618 and 5.

A related problem of integrated scheduling and distribution has also been studied in the online

setting (Azar et al. 2016): It resembles JRP, but in our terms, actually corresponds to a 1-level

tree with multiple leaves. While services of those are independent, there is an interplay at the root

of the tree, as each request has to be processed for its own specified amount of time at the root

before being serviced — like in lot-sizing or JRP, these can be thought of as re-stocking orders, but

fulfilled directly by a manufacturer once the items are produced. Azar et al. (2016) consider linear

waiting costs (and preemptive scheduling/production), but, in principle, one could study arbitrary

waiting functions and allow complex aggregation in shipment, as we do in this work.

1.1. Our Contributions

We study online competitive algorithms for multi-level aggregation. Minor technical differences

notwithstanding, our model is equivalent to those studied by Brito et al. (2012), Khanna et al.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

MLAP and MLAP-L MLAP-D
upper lower upper lower

depth 1 2∗ [Doo01] 2 [Doo01] 1 1
rand. alg. for depth 1 1.582∗ [Kar03] 1.582 [Sei00] 1 1

depth 2 3 [Buc08] 2.754 [Bie14] 2 [Bie14] 2 [Bie14]
fixed depth D≥ 2 O(D42D) 2.754 D22D 2

paths of arbitrary depth 5∗ [Bie13] 3.618 [Bie13] 5∗ 2
Table 1 Previous and current bounds on the competitive ratios for MLAP for trees of various depths. Ratios

written in bold are shown in this paper. Except the second line in the table, all bounds are for deterministic

algorithms. The references to particular papers were shortened in the following way: [Sei00] (Seiden 2000),

[Doo01] (Dooly et al. 2001), [Kar03] (Karlin et al. 2003), [Buc08] (Buchbinder et al. 2008), [Bie13] (Bienkowski

et al. 2013), and [Bie14] (Bienkowski et al. 2014). Unreferenced results are either immediate consequences of other

entries in the table or trivial observations. Asterisked ratios represent results for MLAP with arbitrary waiting cost

functions, which, though not explicitly stated in the respective papers, are straightforward extensions of the

corresponding results for MLAP-L. Some values in the table are approximations: 1.582 represents e/(e− 1) and 3.618

represents 2 +φ, where φ is the golden ratio.

(2002), also extending the deadline variant (Becchetti et al. 2009) and the assembly problem

(Levi et al. 2006). We have decided to choose a more generic terminology to emphasize general

applicability of our model and techniques.

Formally, in our model, an instance of the problem consists of a tree T with positive weights

assigned to edges, and a set R of requests that arrive in the nodes of T over time. These requests

are served by subtrees rooted at the root of T . Such a subtree X serves all requests pending at the

nodes of X at cost equal to the total weight of X. Each request incurs a waiting cost, defined by

a non-negative and non-decreasing function of time, which may be different for each request. The

objective is to minimize the sum of the total service and waiting costs. We call this the Multi-Level

Aggregation Problem (MLAP).

In most earlier papers on aggregation problems, the waiting cost function is linear, that is, it is

assumed to be simply the delay between the times when a request arrives and when it is served. We

denote this version by MLAP-L. However, most of the algorithms for this model extend naturally

to arbitrary cost functions. Another variant is MLAP-D, where each request is given a certain

deadline, has to be served before or at its deadline, and there is no penalty associated with waiting.

This can be modeled by the waiting cost function that is 0 up to the deadline and +∞ afterwards.

In this paper, we mostly focus on the online version of MLAP, where an algorithm needs to

produce a schedule in response to requests that arrive over time. When a request appears, its

waiting cost function is also revealed. At each time t, the online algorithm needs to decide whether

to generate a service tree at this time, and if so, which nodes should be included in this tree.

The main result of our paper is anO(D42D)-competitive algorithm for MLAP for trees of depthD,

presented in Section 5. A simplerD22D-competitive algorithm for MLAP-D is presented in Section 4.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

No competitive algorithms have been known so far for online MLAP for arbitrary depth trees, even

for the special case of MLAP-D on trees of depth 3.

For both results we use a reduction, described in Section 3, of the general problem to the special

case of trees with rapidly decreasing weights. For such trees we then provide an explicit competitive

algorithm. While our algorithm is compact and elegant, it is not a straightforward extension of the

2-level algorithm. (In fact, we have been able to show that näıve extensions of the latter algorithm

are not competitive.) It is based on carefully constructing a sufficiently large service tree whenever

it appears that an urgent request must be served. The specific structure of the service tree is then

heavily exploited in an amortization argument that constructs a mapping from the algorithm’s

cost to the cost of the optimal schedule. We believe that these three new techniques: the reduction

to trees with rapidly decreasing weights, the construction of the service trees, and our charging

scheme, will be useful in further studies of online aggregation problems.

Finally, in Section 6, we discuss several technical issues concerning the use of general functions

as waiting costs in MLAP. In particular, when presenting our algorithms for MLAP we assume that

all waiting cost functions are continuous (which cannot directly capture some interesting variants

of MLAP). This is done, however, only for technical convenience; as explained in Section 6, these

algorithms can be extended to left-continuous functions, which allows us to model MLAP-D as a

special case of MLAP. We also consider two alternative models for MLAP: the discrete-time model

and the model where not all requests need to be served, showing that our algorithms can be

extended to these models as well.

Notes. An extended abstract of this work appeared in the proceedings of 24th Annual Euro-

pean Symposium on Algorithms (ESA) (Bienkowski et al. 2016). (Other results announced in

(Bienkowski et al. 2016) will be published in a separate companion paper.) In a subsequent work,

Azar et al. (2017) study a more general service problem with delays. This problem includes MLAP

as a special case when in addition to the requests from MLAP, we repeat many requests to the

root of the tree. The results of Azar et al. (2017) then imply O(DO(1)) competitive algorithm for

MLAP. Finally, Buchbinder et al. (2017) improve the competitive ratio for MLAP-D (the variant

with deadlines) to O(D). Their approach uses a more subtle charging argument, combined with

a reduction to the case with rapidly decreasing weights (similar to ours), showing that some of

the ideas introduced in this paper could indeed be helpful for ultimately determining the tight

competitive ratio for MLAP.

2. Preliminaries

Weighted trees. Let T be a tree with root r. The parent of a node x is denoted parent(x). The

depth of x, denoted depth(x), is the number of edges on the simple path from r to x. In particular,

r is at depth 0. The depth D of T is the maximum depth of a node of T .

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

For any set of nodes Z ⊆ T and a node x, Zx denotes the set of all descendants of x in Z; in

particular, Tx is the induced subtree of T rooted at x. Furthermore, Zi denotes the set of nodes

in Z of depth i in tree T . Let also Z<i =
⋃i−1
j=0Z

j and Z≤i = Z<i ∪ Zi. These notations can be

combined with the notation Zx, so, e.g., Z<ix is the set of all descendants of x that belong to Z and

whose depth in T is smaller than i.

We will deal with weighted trees in this paper. For x 6= r, by `x or `(x) we denote the weight of

the edge connecting node x to its parent. (In a typical application this weight would represent the

length or the cost of traversing this edge.) For the sake of convenience, we will often refer to `x as

the weight of x. We assume that all these weights are positive. We extend this notation to r by

setting `r = 0. If Z is any set of nodes of T , then the weight of Z is `(Z) =
∑

x∈Z `x.

Definition of MLAP. A request ρ is specified by a triple ρ= (σρ, aρ, ωρ), where σρ is the node of T

in which ρ is issued, aρ is the non-negative arrival time of ρ, and ωρ is the waiting cost function

of ρ. We assume that ωρ(t) = 0 for t ≤ aρ and ωρ(t) is non-decreasing for t ≥ aρ. MLAP-L is the

variant of MLAP with linear waiting costs; that is, for each request ρ we have ωρ(t) = t− aρ, for

t≥ aρ. In MLAP-D, the variant with deadlines, we have ωρ(t) = 0 for aρ ≤ t≤ dρ and ωρ(t) = +∞

for t > dρ, where dρ is called the deadline of request ρ. We assume that all the deadlines in the

given instance are distinct. This may be done without loss of generality, as in case of ties we can

modify the deadlines by infinitesimally small perturbations.

In our algorithm for MLAP with general costs, we will be assuming that all waiting cost functions

are continuous. This is only for technical convenience and we discuss more general waiting cost

functions in Section 6; we also show there that MLAP-D can be considered a special case of MLAP,

and that our algorithms can be extended to the discrete-time model.

A service is a pair (X, t), where X is a subtree of T rooted at r and t is the time of this service. We

will occasionally refer to X as the service tree (or just service) at time t, or even omit t altogether

if it is understood from context.

An instance J = 〈T ,R〉 of the Multi-Level Aggregation Problem (MLAP) consists of a weighted

tree T with root r and a set R of requests arriving at the nodes of T . A schedule is a set S of

services. For a request ρ, let (X, t) be the service in S with minimal t such that σρ ∈X and t≥ aρ.

We then say that (X, t) serves ρ and the waiting cost of ρ in S is defined as wcost(ρ,S) = ωρ(t).

Furthermore, the request ρ is called pending at all times in the interval [aρ, t]. Schedule S is called

feasible if all requests in R are served by S.

The cost of a feasible schedule S, denoted cost(S), is defined by

cost(S) = scost(S) +wcost(S),

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

where scost(S) is the total service cost and wcost(S) is the total waiting cost, that is

scost(S) =
∑

(X,t)∈S

`(X) and wcost(S) =
∑
ρ∈R

wcost(ρ,S).

The objective of MLAP is to compute a feasible schedule S for J with minimum cost(S).

Online algorithms. We use the standard and natural definition of online algorithms and the

competitive ratio. We assume the continuous time model. The computation starts at time 0 and

from then on the time gradually progresses. At any time t new requests can arrive. If the current

time is t, the algorithm has complete information about the requests that arrived up until time t,

but has no information about any requests whose arrival times are after time t. The instance

includes a time horizon H that is not known to the online algorithm, which is revealed only at

time t=H. At time H, all requests that are still pending must be served. (In the offline case, H

can be assumed to be equal to the maximum request arrival time.)

If A is an online algorithm and c≥ 1, we say that A is c-competitive if cost(S)≤ c ·opt(J) for any

instance J of MLAP, where S is the schedule computed by A on J and opt(J) is the optimum cost

for J . (Note that the definition of competitiveness in the literature often allows an additive error

term, independent of the request sequence. For our algorithms, this additive term is not needed.)

Quasi-root assumption. Throughout the paper we will assume that r, the root of T , has only

one child. This is without loss of generality, because if we have an algorithm (online or offline) for

MLAP on such trees, we can apply it independently to each child of r and its subtree. This will

give us an algorithm for MLAP on arbitrary trees with the same performance. From now on, let us

call the single child of r the quasi-root of T and denote it by q. Note that q is included in every

(non-trivial) service. Requests at r can be serviced immediately at cost 0, so we can simply assume

that there are no such requests in R.

Urgency functions. When choosing nodes for inclusion in a service, our online algorithms give

priority to those that are most “urgent”. For MLAP-D, naturally, urgency of nodes can be measured

by their deadlines, where a deadline of a node v is the earliest deadline of a request pending in

the subtree Tv, i.e., the induced subtree rooted at v. But for the arbitrary instances of MLAP we

need a more general definition of urgency, which takes into account the rate of increase of the

waiting cost in the future. To this end, each of our algorithms will use some urgency function

f : T →R∪ {+∞}, which also depends on the set of pending requests and the current time step,

and which assigns some time value to each node. The earlier this value, the more urgent the node is.

Formally, for MLAP-D, we define the function dt(v) for any time t as follows. For any node v,

dt(v) is the earliest deadline among all requests in Tv that are pending for the algorithm at time t;

if there is no pending request in Tv, we set dt(v) = +∞. We use dt as the urgency function at time

t in our algorithm for MLAP-D.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

Definition 1. Let f be an urgency function, A be a set of nodes in T and β ≥ 0 be a real number.

Then, Urgent(A,β, f) is the smallest set of nodes in A such that

1. for all u∈Urgent(A,β, f), and v ∈A−Urgent(A,β, f) we have f(u)≤ f(v), and

2. either `(Urgent(A,β, f))≥ β or Urgent(A,β, f) =A.

Intuitively, Urgent(A,β, f) is the set of nodes obtained by choosing the nodes from A in order

of their increasing urgency value, until either their total weight exceeds β or we run out of nodes

from A. In case of ties in the values of f , there may be multiple choices for Urgent(A,β, f); we

choose among them arbitrarily.

3. Reduction to α-Decreasing Trees

One basic intuition that emerges from earlier works on trees of depth 2 (Buchbinder et al. 2008,

Brito et al. 2012, Bienkowski et al. 2014) is that the hardest case of the problem is when `q,

the weight of the quasi-root, is much larger than the weights of leaves. For arbitrary depth trees,

the hard case is when the weights of nodes quickly decrease with their depth. We show that this

is indeed the case, by defining the notion of α-decreasing trees that captures this intuition and

showing that MLAP reduces to the special case of MLAP for such α-decreasing trees, increasing the

competitive ratio by a factor of at most Dα. The value of α used in our algorithms will be fixed

later. This is a general result, not limited only to algorithms in our paper.

Definition 2. Fix α≥ 1. A tree T is α-decreasing if for any node u different from the root of T

and for any child v of u, it holds that `u ≥ α · `v.

Note that the α-decreasing property is one of the conditions of α-HST (a hierarchically well-

separated tree with separation α, see, e.g., (Bartal 1996)). That is, any α-HST is also an α-

decreasing tree. However, for our purposes we do not require that the edge weight from any node

to its children is the same, which is required by α-HST.

Theorem 1. If there exists a c-competitive algorithm A for MLAP (resp. MLAP-D) on α-decreasing

trees (where c can be a function of D, the tree depth), then there exists a Dαc-competitive algo-

rithm B for MLAP (resp. MLAP-D) on arbitrary trees.

Proof. Fix the underlying instance J = (T ,R), where T is a tree andR is a sequence of requests

in T . In our reduction, we convert T to an α-decreasing tree T ′ on the same set of nodes. We then

show that any service on T is also a service on T ′ of the same cost and, conversely, that any service

on T ′ can be converted to a slightly more expensive service on T .

We start by constructing an α-decreasing tree T ′ on the same set of nodes. For any node u ∈

T − {r}, the parent of u in T ′ will be the lowest (closest to u) ancestor w of u in T such that

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

`w ≥ α ·`u; if no such w exists, we take w= r. The length of an edge from u to its parent remains `u.

Note that T ′ may violate the quasi-root assumption, which does not change the validity of the

reduction, as we may use independent instances of the algorithm for each child of r in T ′. Since

in T ′ each node u is connected to one of its ancestors from T , it follows that T ′ is a tree rooted

at r with depth at most D. Obviously, T ′ is α-decreasing.

The construction implies that if a set of nodes X is a service subtree of T , then it is also a service

subtree for T ′ of the same cost. (However, note that the actual topology of the trees with node

set X in T and T ′ may be very different. For example, if α= 5 and T is a path with costs (starting

from the leaf) 1,2,22, ...,2D, then in T ′ the node of weight 2i is connected to the node of weight

2i+3, except for the last three nodes that are connected to r. Thus the resulting tree consists of three

paths ending at r with roughly the same number of nodes. In particular, X in T ′ may now contain

paths without any request.) Therefore, any schedule for J is also a schedule for J ′ = (T ′,R), which

gives us that opt(J ′)≤ opt(J).

The algorithm B for T is defined as follows: On a request sequence R, we simulate A for R in T ′,
and whenever A contains a service X, B issues the service X ′ ⊇X, created from X as follows: Start

with X ′ =X. Then, for each u ∈X − {r}, if w is the parent of u in T ′, then add to X ′ all inner

nodes on the path from u to w in T . By the construction of T ′, for each u we add at most D− 1

nodes, each of weight less than α · `u. It follows that `(X ′)≤ ((D− 1)α+ 1)`(X)≤Dα · `(X).

In total, the service cost of B is at most Dα times the service cost of A. Any request served by A
is served by B at the same time or earlier, thus the waiting cost of B is at most the waiting cost

of A (resp. for MLAP-D, B produces a valid schedule for J). Since A is c-competitive, we obtain

cost(B,J)≤Dα · cost(A,J ′)≤Dαc · opt(J ′)≤Dαc · opt(J),

and thus B is Dαc-competitive. �

4. A Competitive Algorithm for MLAP-D

In this section we present our online algorithm for MLAP-D with competitive ratio at most D22D.

To this end, we will give an online Algorithm OnlTreeD that achieves competitive ratio cα =

(2+1/α)D−1 for α-decreasing trees. Together with the reduction given in the previous section, this

will imply the following result.

Theorem 2. There exists a D22D-competitive online algorithm for MLAP-D on trees of depth D.

Proof. Applying Theorem 1 to Algorithm OnlTreeD, we obtain that there exists a Dαcα =

Dα(2 + 1/α)D−1-competitive algorithm for general trees. For D ≥ 2, choosing α = D/2 yields

a competitive ratio bounded by 1
2
D22D−1 · (1 + 1/D)D ≤ 1

4
D22D · e ≤ D22D. For D = 1 there is

a trivial 1-competitive algorithm. �

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

4.1. Intuition

Consider the optimal 2-competitive algorithm for MLAP-D for trees of depth 2 (Bienkowski et al.

2014). Assume that the tree is α-decreasing, for some large α. (Thus `q � `v, for each leaf v.)

Whenever a pending request reaches its deadline, this algorithm serves a subtree X consisting

of r, q and the set of leaves with the earliest deadlines and total weight of about `q. This is a natural

strategy: We have to pay at least `q to serve the expiring request, so including an additional

set of leaves of total weight `q can at most double our overall cost. At the same time, assuming

that no new requests arrive, serving this X can significantly reduce the cost in the future, since

servicing these leaves individually is expensive: it would cost `v + `q per each leaf v, compared to

the incremental cost of `v to include v in X.

For α-decreasing trees with three levels (that is, for D = 3), we may try to iterate this idea.

When constructing a service tree X, we start by adding to X the set of most urgent children of q

whose total weight is roughly `q. Now, when choosing nodes of depth 3, we have two possibilities:

(1) for each v ∈X −{r, q} we can add to X its most urgent children of combined weight `v (note

that their total weight will add up to roughly `q, because of the α-decreasing property), or (2)

from the set of all children of the nodes in X −{r, q}, add to X the set of total weight roughly `q

consisting of (globally) most urgent children.

It is not hard to show that option (1) does not lead to a constant-competitive algorithm: The

counter-example involves an instance with one node w of depth 2 having many children with

requests with early deadlines and all other leaves having requests with very distant deadlines.

Assume that `q = α2, `w = α, and that each leaf has weight 1. The example forces the algorithm to

serve the children of w in small batches of size α with cost more than α2 per batch or α per each

child of w, while the optimum can serve all the requests in the children of w at once with cost O(1)

per request, giving a lower bound Ω(α) on the competitive ratio. (The requests at other nodes can

be ignored in the optimal solution, as we can keep repeating the above strategy in a manner similar

to the lower-bound technique presented, e.g., by Buchbinder et al. (2008) or by Bienkowski et al.

(2013).) A more intricate example shows that option (2) by itself is not sufficient to guarantee

constant competitiveness either.

The idea behind our algorithm, for trees of depth D= 3, is to do both (1) and (2) to obtain X.

This increases the cost of each service by a constant factor, but it protects the algorithm against

both bad instances. The extension of our algorithm to depths D> 3 carefully iterates the process

of constructing the service tree X, to ensure that for each node v ∈X and for each level i below v

we add to X sufficiently many urgent descendants of v at that level.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

4.2. Algorithm OnlTreeD

At any time t when some request expires, that is when t= dt(q) for the quasi-root q, the algorithm

serves a subtree X constructed by first initializing X = {r, q}, and then incrementally augmenting

X according to the following pseudo-code:

for each depth i= 2, . . . ,D

Zi← set of all children of nodes in X i−1

for each v ∈X<i

U(v, i, t)←Urgent(Ziv, `v, d
t)

X←X ∪U(v, i, t)

In other words, at depth i, we restrict our attention to Zi, the children of all the nodes in X i−1,

i.e., of the nodes that we have previously selected to X at level i− 1. (We start with i = 2 and

X1 = {q}.) Then we iterate over all v ∈X<i and we add to X the set U(v, i, t). U(v, i, t) itself is

created by taking nodes from T iv (descendants of v at depth i) whose parents are in X, one by one,

in the order of increasing deadlines, stopping when either their total weight exceeds `v or when we

run out of such nodes. Since T is α-decreasing, each added node has weight at most `v/α, and thus

the total weight of U(v, i, t) is at most `v + `v/α. Note that added sets do not need to be disjoint.

The constructed set X is a service tree, as we are adding to it only nodes that are children of

the nodes already in X.

Let ρ be the request triggering the service at time t, i.e., satisfying dρ = t. (By the assumption

about different deadlines, ρ is unique.) Naturally, all the nodes u on the path from r to σρ have

dt(u) = t and qualify as the most urgent, thus the node σρ is included in X. Therefore every request

is served before its deadline.

4.3. Analysis

Intuitively, it should be clear that Algorithm OnlTreeD cannot have a better cost-to-optimum

ratio than `(X)/`q: If all requests are in q, the optimum will serve only q, while our algorithm uses

a set X with many nodes that turn out to be useless. As we will show, via an iterative charging

argument, the ratio `(X)/`q is actually achieved by the algorithm.

Recall that cα = (2 + 1/α)D−1. We now prove a bound on the cost of the service tree.

Lemma 1. Let X be the service tree produced by Algorithm OnlTreeD at time t. Then `(X)≤

cα · `q.

Proof. We prove by induction that `(X≤i)≤ (2 + 1/α)i−1`q for all i≤D.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

The base case of i = 1 is trivial, as X≤1 = {r, q} and `r = 0. For i ≥ 2, X i is the union of the

sets U(v, i, t) over all nodes v ∈X<i. Recall that by our construction, `(U(v, i, t)) ≤ `v + `v/α =

(1 + 1/α)`v. Therefore, by the inductive assumption, we get that

`(X≤i)≤ (1 + (1 + 1/α)) · `(X<i)

≤ (2 + 1/α) · (2 + 1/α)i−2`q = (2 + 1/α)i−1`q ,

proving the induction step and completing the proof that `(X)≤ cα · `q. �

The competitive analysis uses a charging scheme. Fix some optimal schedule S∗. Consider a ser-

vice (X, t) of Algorithm OnlTreeD. We will identify in X a subset of “critically overdue” nodes

(to be defined shortly) of total weight at least `q ≥ `(X)/cα, and we will show that for each such

critically overdue node v we can charge the portion `v of the service cost of X to an earlier service

in S∗ that contains v. Further, each occurrence of v in the services of S∗ will be charged at most

once in this way. This implies that the total cost of our algorithm is at most cα times the optimal

cost, giving us an upper bound of cα on the competitive ratio for α-decreasing trees.

In the proof, by nostv we denote the time of the first service in S∗ that includes v and is strictly

after time t; we also let nostv = +∞ if no such service exists (nos stands for next optimal service).

For a service (X, t) of the algorithm, we say that a node v ∈X is overdue at time t if dt(v)< nostv.

Servicing of such v is delayed in comparison to S∗, because S∗ must have served v before or at

time t. Note also that r and q are overdue at time t, as dt(r) = dt(q) = t by the choice of the service

time. We define v ∈X to be critically overdue at time t if (i) v is overdue at t, and (ii) there is no

other service of the algorithm in the time interval (t,nostv) in which v is overdue.

We are now ready to define the charging for a service (X, t). For each v ∈X that is critically

overdue, we charge its weight `v to the last service of v in S∗ before or at time t. This charging is

well-defined as, for each overdue v, there must exist a previous service of v in S∗. The charging is

obviously one-to-one because between any two services in S∗ that involve v there may be at most

one service of the algorithm in which v is critically overdue. The following lemma shows that the

total charge from X is large enough.

Lemma 2. Let (X, t) be a service of Algorithm OnlTreeD and suppose that v ∈X is overdue at

time t. Then the total weight of critically overdue nodes in Xv at time t is at least `v.

Proof. The proof is by induction on the depth of Tv, the induced subtree rooted at v.

The base case is when Tv has depth 0, that is when v is a leaf. We show that in this case

v must be critically overdue, which implies the conclusion of the lemma. Towards contradiction,

suppose that there is some other service at time t′ ∈ (t,nostv) in which v is overdue. Since v is a

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

r q

w
σρ

X

Y

v

x

i

U(v,i,t)

Figure 3 Illustration of the proof of Lemma 2.

leaf, after the service at time t there are no pending requests in Tv = {v}. As v is overdue at time

t′, we have dt
′
(v) < nost

′
v = nostv and this implies that there is a request ρ with σρ = v such that

t < aρ ≤ dρ < nostv. But this is not possible, because S∗ does not serve v in the time interval (t,nostv).

Thus v is critically overdue and the base case holds.

Assume now that v is not a leaf, and that the lemma holds for all descendants of v. If v is

critically overdue, the conclusion of the lemma holds.

Thus we can now assume that v is not critically overdue. This means that there is a service

(Y, t′) of Algorithm OnlTreeD with t < t′ < nostv which contains v and such that v is overdue

at t′. Thus nostv = nost
′
v .

Let ρ be the request with dρ = dt
′
(v), i.e., the most urgent request in Tv at time t′.

We claim that aρ ≤ t, i.e., ρ arrived no later than at time t. Indeed, since v is overdue at time t′,

it follows that dρ < nost
′
v = nostv. The optimal schedule S∗ cannot serve ρ after time t, as S∗ has no

service from v in the interval (t, dρ]. Thus S∗ must have served ρ before or at t, and hence aρ ≤ t,
as claimed.

Now consider the path from σρ to v in Y . (See Figure 3.) As ρ is pending for the algorithm at

time t and ρ is not served by (X, t), it follows that σρ 6∈X. Let w be the last node on this path in

Y −X. Then w is well-defined and w 6= v, as v ∈X. Let i be the depth of w. Note that the parent

of w is in X<i
v , so w ∈Zi in the algorithm when X is constructed.

The node σρ is in Tw and ρ is pending at t, thus we have dt(w)≤ dρ. Since w ∈ Zi but w was

not added to X at time t, we have that `(U(v, i, t))≥ `v and each x∈U(v, i, t) is at least as urgent

as w. This implies that such x satisfies

dt(x)≤ dt(w)≤ dρ < nost
′
v = nostv ≤ nostx,

and thus x is overdue at time t. By the inductive assumption, the total weight of critically overdue

nodes in each induced subtree Xx is at least `x. Adding these weights over all x ∈ U(v, i, t), we

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

obtain that the total weight of critically overdue nodes in Xv is at least `(U(v, i, t))≥ `v, completing

the proof. �

Now consider a service (X, t) of the algorithm. The quasi-root q is overdue at time t, so Lemmata 2

and 1 imply that the charge from (X, t) is at least `q ≥ `(X)/cα. Since each node in any service

in S∗ is charged at most once, we conclude that Algorithm OnlTreeD is cα-competitive for any

α-decreasing tree T .

5. A Competitive Algorithm for MLAP

In this section, we show that there is an online algorithm for MLAP whose competitive ratio for

trees of depth D is O(D42D). As in Section 4, we will assume that the tree T in the instance is

α-decreasing and present a competitive algorithm for such trees, which will imply the existence of

a competitive algorithm for arbitrary trees by using Theorem 1 and choosing an appropriate value

of α.

5.1. Preliminaries and Notations

Recall that ωρ(t) denotes the waiting cost function of a request ρ. As explained in Section 2, we

assume that the waiting cost functions are continuous. (In Section 6, we discuss how to extend

our results to arbitrary waiting cost functions.) We will overload this notation, so that we can talk

about the waiting cost of a set of requests or a set of nodes. Specifically, for a set P of requests

and a set Z of nodes, let

ωP (Z, t) =
∑

ρ∈P :σρ∈Z

ωρ(t).

Thus ωP (Z, t) is the total waiting cost of the requests from P that are issued in Z. We sometimes

omit P , in which case the notation refers to the set of all requests in the instance, that is ω(Z, t) =

ωR(Z, t). Similarly, we omit Z when Z contains all nodes, that is ωP (t) = ωP (T , t).

Maturity time. In our algorithm for MLAP-D in Section 4, the times of services and the urgency

of nodes are both naturally determined by the deadlines. For MLAP with continuous waiting costs

there are no hard deadlines. Nevertheless, we can still introduce the notion of maturity time of

a node, which is, roughly speaking, the time when some subtree rooted at this node has its waiting

cost equal to its service cost; this subtree is then called mature. This maturity time will be our

urgency function, as discussed earlier in Section 2. We use the maturity time in two ways: first, the

maturity times of the quasi-root determine the service times, and second, maturity times of other

nodes are used to prioritize them for inclusion in the service trees. We now proceed to define these

notions formally.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Consider some time t and any set P ⊆R of requests and a subtree Z of T (not necessarily rooted

at r). Z is called P -mature at time t if ωP (Z, t)≥ `(Z). Let

µP (Z) = arg min
t
{ωP (Z, t)≥ `(Z)}.

That is, µP (Z) is the earliest time τ at which Z is P -mature; if such τ does not exist, we set µP (Z) =

+∞. Since ωP (Z,0) = 0, `(Z)≥ 0, and ωP (Z, t) is a non-decreasing and continuous function of t,

µP (Z) is well-defined.

In the following definition, a condition Z vTv denotes that a set of nodes Z is not only a subtree

of Tv, but is also itself rooted at v. Consider any node v and any set P ⊆R of requests. Let

MP (v) = min
ZvTv

µP (Z) and (1)

CP (v) =arg min
ZvTv

µP (Z). (2)

MP (v) is called the P -maturity time of v and CP (v) is called the P -critical subtree rooted at v;

if there are more such trees, we choose one arbitrarily. From the above definitions, we have that

ωP (CP (v),MP (v)) = `(CP (v)).

The following simple lemma guarantees that the maturity time of any node in the P -critical

subtree CP (v) is upper bounded by the maturity time of v.

Lemma 3. Let u∈CP (v) and let Y = (CP (v))u be the induced subtree of CP (v) rooted at u. Then

MP (u)≤ µP (Y)≤MP (v).

Proof. The first inequality follows directly from the definition of MP (u). To show the second

inequality, we proceed by contradiction. Let t=MP (v). If the second inequality does not hold, then

u 6= v and ωP (Y, t)< `(Y). Take Y ′ =CP (v)−Y , which is a tree rooted at v. Since ωP (CP (v), t) =

`(CP (v)), we have that ωP (Y ′, t) = ωP (CP (v), t)−ωP (Y, t)> `(CP (v))− `(Y) = `(Y ′). This in turn

implies that µP (Y ′)< t, which is a contradiction with the definition of t=MP (v). �

We stress that the concepts of maturity times and critical subtrees are defined above abstractly

with respect to arbitrary sets P of requests, and are independent of the online algorithm. Yet,

naturally, in our algorithm and its analysis, in most cases this P will represent the set of requests

pending for the algorithm at a given time. Thus, for any time t, we will also introduce simplified

notations M t(v) and Ct(v) to denote the time MP (v) and the P -critical subtree CP (v), where P is

the set of requests pending for the algorithm at time t; if it so happens that the algorithm schedules

a service at some time t, then this P represents the set of requests that are pending at time t

right before this service is executed. Note that in general it is possible that M t(v)< t. However,

our algorithm will maintain the invariant that for the quasi-root q we will have M t(q)≥ t at each

time t.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

5.2. Algorithm

We now describe our algorithm for α-decreasing trees. A service will occur at each maturity time of

the quasi-root q (with respect to the pending requests), that is at each time t for which t=M t(q).

At such a time, the algorithm chooses a service that contains the critical subtree C = Ct(q) of q

and an extra set E, whose service cost is not much more expensive than that of C. The extra set

is constructed similarly as in Algorithm OnlTreeD, where the urgency of nodes is now measured

by their maturity time. In other words, our urgency function is now f =M t (see Section 2.) As

before, this extra set will be a union of a system of sets U(v, i, t) for i= 2, . . . ,D, and v ∈C<i∪E<i,

except that now, for technical reasons, the sets U(v, i, t) will be mutually disjoint and also disjoint

from C.

Algorithm OnlTree. At any time t such that t=M t(q), serve the set X =C ∪E constructed

according to the following pseudo-code:

C←Ct(q)∪{r}

E←∅

for each depth i= 2, . . . ,D

Zi← set of all nodes in T i−C whose parent is in C ∪E

for each v ∈ (C ∪E)<i

U(v, i, t)←Urgent(Ziv, `v,M
t)

E←E ∪U(v, i, t)

Zi←Zi−U(v, i, t)

At the end of the instance (when t = H, the time horizon), if there are any pending requests,

OnlTree issues the last service that contains all nodes v with a pending request in Tv.

Note that X = C ∪E is indeed a service tree, as it contains r, q and we are adding to it only

nodes that are children of the nodes already in X. The initial choice and further changes of Zi

imply that the sets U(v, i, t) are pairwise disjoint and disjoint from C — a fact that will be useful

in our analysis.

We also need the following fact.

Lemma 4. Suppose that Algorithm OnlTree issues a service at a time t, that is M t(q) = t. Let

P ′ denote the set of requests pending at time t and not served at time t. Then MP ′(q)> t.

Proof. Consider any subtree Y of T rooted at q. It is sufficient to show that ωP ′(Y, t)< `(Y).

We claim that the following relations hold:

ω(Ct(q)∪Y, t)≥ ω(Ct(q), t) +ωP ′(Y, t) (3)

ω(Ct(q), t) = `(Ct(q)) (4)

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

ω(Ct(q)∪Y, t)≤ `(Ct(q)∪Y) (5)

`(Ct(q)∪Y)< `(Ct(q)) + `(Y) (6)

Indeed, inequality (3) is true because each request pending at time t in Ct(q)∪ Y contributes to

at most one of the terms on the right-hand side: if it is in Ct(q) then it’s served at time t, so it

cannot be in P ′. Inequalities (4) and (5) follow from the assumption that M t(q) = t and from the

definition of Ct(q). (Observe that Ct(q)∪Y vTq, that is Ct(q)∪Y is also a candidate for a critical

set in (2).) Inequality (6) holds because Ct(q) and Y both contain q with `(q)> 0.

Combining (3)-(6), we obtain

`(Ct(q)) +ωP ′(Y, t) = ω(Ct(q), t) +ωP ′(Y, t)

≤ ω(Ct(q)∪Y, t)

≤ `(Ct(q)∪Y)< `(Ct(q)) + `(Y),

and ωP ′(Y, t)< `(Y) follows. �

Corollary 1. At any time t we have M t(q)≥ t.

Proof. The statement holds trivially at the beginning, at time t= 0. In any time interval without

new requests released nor services, the inequality M t(q)≥ t is preserved by the definition of the

service times and continuity of waiting cost functions. Releasing a request ρ at a time aρ = t cannot

decrease M t(q) to below t, because the waiting cost function of ρ is identically 0 up to t, and thus

releasing ρ does not change the waiting costs at time t or before. Finally, Lemma 4 implies that

the inequality is also preserved when a service occurs. �

Corollary 1 shows that the sequence of service times is non-decreasing and thus the definition of

the algorithm is sound. In fact Lemma 4 even shows that no two services can occur at the same

time.

5.3. Competitive Analysis

We now present the proof that there is a O(D42D)-competitive algorithm for MLAP for trees of

depth D. The overall argument is quite intricate, so we will start by summarizing its main steps:

• First, as explained earlier, we will assume that the tree T in the instance is α-decreasing.

For such T we will show that Algorithm OnlTree has competitive ratio O(D2cα), where cα =

(2 + 1/α)D−1. Our bound on the competitive ratio for arbitrary trees will then follow, by using

Theorem 1 and choosing an appropriate value of α (see Theorem 3).

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

• For α-decreasing trees, the bound of the competitive ratio of Algorithm OnlTree involves

four ingredients:

— We show (in Lemma 5) that the total cost of Algorithm OnlTree is at most twice its

service cost.

— Next, we show that the service cost of Algorithm OnlTree can be bounded (within a con-

stant factor) by the total cost of all critical subtrees Ct(q) of the service trees in its schedule.

— To facilitate the estimate of the adversary cost, we introduce the concept of a pseudo-

schedule denoted S. The pseudo-schedule S is a collection of pseudo-services, which include the

services from the original adversary schedule S∗. We show (in Lemma 7) that the adversary pseudo-

schedule has service cost not larger than D times the cost of S∗. Using the pseudo-schedule allows

us to ignore the waiting cost in the adversary’s schedule.

— With the above bounds established, it remains to show that the total cost of critical sub-

trees in the schedule of Algorithm OnlTree is within a constant factor of the service cost of

the adversary’s pseudo-schedule. This is accomplished through a charging scheme that charges

nodes (or, more precisely, their weights) from each critical subtree of Algorithm OnlTree to their

appearances in some earlier adversary pseudo-services.

Two auxiliary bounds. We now assume that T is α-decreasing and proceed with our proof,

according to the outline above.

The definition of the maturity time implies that the waiting cost of all the requests served is

at most the service cost `(X), as otherwise X would be a good candidate for a critical subtree at

some earlier time. Denoting by S the schedule computed by Algorithm OnlTree, we thus obtain:

Lemma 5. cost(S)≤ 2 · scost(S).

Using Lemma 5, we can restrict ourselves to bounding the service cost, losing at most a factor

of 2. We now bound the cost of a given service X; recall that cα = (2 + 1/α)D−1.

Lemma 6. Each service tree X =C ∪E constructed by the algorithm satisfies `(X)≤ cα · `(C).

Proof. Since T is α-decreasing, the weight of each node that is a descendant of v is at most `v/α

and thus `(U(v, i, t))≤ (1 + 1/α)`v.

We now estimate `(X). We claim and prove by induction for i= 1, . . . ,D that

`(X≤i)≤ (2 + 1/α)i−1`(C≤i) . (7)

The base case for i= 1 is trivial, as X≤1 =C≤1 = {r, q}. For i≥ 2, the set X i consists of Ci and the

sets U(v, i, t), for v ∈X<i. Each of these sets U(v, i, t) has weight at most (1 + 1/α)`v. Therefore

`(X i)≤ (1 + 1/α)`(X<i) + `(Ci) . (8)

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Now, using (8) and the inductive assumption (7) for i− 1, we get

`(X≤i) = `(X<i) + `(X i)

≤ (2 + 1/α)`(X<i) + `(Ci)

≤ (2 + 1/α)i−1`(C<i) + `(Ci) ≤ (2 + 1/α)i−1`(C≤i).

Taking i=D in (7), the lemma follows. �

Waiting costs and pseudo-schedules. Our plan is to charge the cost of Algorithm OnlTree to

the optimal (or the adversary’s) cost. Let S∗ be an optimal schedule. To simplify this charging, we

extend S∗ by adding to it pseudo-services, where a pseudo-service from a node v is a partial service

of cost `v that consists only of the edge from v to its parent. We denote this modified schedule S

and call it a pseudo-schedule, reflecting the fact that its pseudo-services are not necessarily subtrees

of T rooted at r. Adding such pseudo-services will allow us to ignore the waiting costs in the

optimal schedule.

We now define more precisely how to obtain S from S∗. For each node v independently we define

the times when new pseudo-services of v occur in S. Intuitively, we introduce these pseudo-services

at intervals such that the waiting cost of the requests that arrive in Tv during these intervals adds

up to `v. The formal description of this process is given in the pseudo-code below, where we use

notation R(> t) for the set of requests ρ∈R with aρ > t (i.e., requests issued after time t). Recall

that H denotes the time horizon.

t←−∞

while ωR(>t)(Tv,H)≥ `v
let τ be the earliest time such that ωR(>t)(Tv, τ) = `v

add to S a pseudo-service of v at τ

t← τ

We apply the above procedure to all the nodes v ∈ T −{r} such that R contains a request in Tv.

The new pseudo-schedule S contains all the services of S∗ (treated as sets of pseudo-services of all

served nodes) and the new pseudo-services added as above. The service cost of the pseudo-schedule,

scost(S), is defined naturally as the total weight of the nodes in all its pseudo-services and we

bound it in the next lemma for D ≥ 2 (recall that for D = 1 a constant-competitive algorithm is

already known).

Lemma 7. For D≥ 2 it holds scost(S)≤D · cost(S∗).

Proof. It is sufficient to show that the total service cost of the new pseudo-services added inside

the while loop is at most scost(S∗) +D ·wcost(S∗): Adding scost(S∗) once more to account for the

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

service cost of the services of S∗ that are included in S, and using our assumption that D≥ 2, we

obtain scost(S)≤ 2 · scost(S∗) +D ·wcost(S∗)≤D · cost(S∗), thus the lemma follows.

To prove the claim, consider some node v, and a pair of times t, τ from one iteration of the while

loop, when a new pseudo-service was added to S at time τ . This pseudo-service has cost `v. In S∗,

either there is a service in (t, τ] including v, or the total waiting cost of the requests within Tv
released in this interval is equal to ωR(>t)(Tv, τ) = `v. In the first case, we charge the cost of `v of

this pseudo-service to any service of v in S∗ in (t, τ]. Since we consider here only the new pseudo-

services, created by the above pseudo-code, this charging will be one-to-one. In the second case,

we charge `v to the total waiting cost of the requests in Tv released in the interval (t, τ]. For each

given v, the charges of the second type from pseudo-services at v go to disjoint sets of requests

in Tv, so each request in Tv will receive at most one charge from v. Therefore, for each request ρ,

its waiting cost in S∗ will be charged at most D times, namely at most once from each node v on

the path from σρ to q. From the above argument, the total cost of the new pseudo-services is at

most scost(S∗) +D ·wcost(S∗), as claimed. �

Using the bound in Lemma 7 will allow us to use scost(S) as an estimate of the optimal cost in

our charging scheme, losing at most a factor of D in the competitive ratio.

Charging scheme. According to Lemma 5, to establish constant competitiveness it is sufficient

to bound only the service cost of Algorithm OnlTree. By Lemma 6 for any service tree X of the

algorithm we have `(X)≤ cα · `(C). Therefore, it is in fact sufficient to bound the total weight of

the critical sets in the algorithm’s services. Further, using Lemma 7, instead of using the optimal

cost in this bound, we can use the pseudo-service cost. Following this idea, we will show how we can

charge, at a constant rate, the cost of all critical sets C in the algorithm’s services to the adversary

pseudo-services.

The basic idea of our charging method is similar to that for MLAP-D. The argument in Section 4

can be interpreted as an iterative charging scheme, where we have a charge of `q that originates

from q, and this charge is gradually distributed and transferred down the service tree, through

overdue nodes, until it reaches critically overdue nodes that can be charged directly to adversary

services. For MLAP with general waiting costs, the charge of `(C) will originate from the current

critical subtree C. Several complications arise when we attempt to distribute the charges to nodes

at deeper levels. First, due to gradual accumulation of waiting costs, it does not seem possible to

identify nodes in the same service tree that can be used as either intermediate or final nodes in this

process. Instead, when defining a charge from a node v, we will charge descendants of v in earlier

services of v. Specifically, the weight `v will be charged to the set U(v, i, t−) for some i > depth(v),

where t− is the time of the previous service of the algorithm that includes v. The nodes — or,

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

more precisely, services of these nodes — that can be used as intermediate nodes for transferring

charges will be called depth-timely. As before, we will argue that each charge will eventually reach

a node u in some earlier service that can be charged to some adversary pseudo-service directly.

Such service of u will be called u-local, where the name reflects the property that this service has

an adversary pseudo-service of u nearby (to which its weight `u will be charged).

We now formalize these notions. Let (X, t) be some service of Algorithm OnlTree that

includes v, that is v ∈X. By Prevt(v) we denote the time of the last service of v before t in the

schedule of the algorithm; if it does not exist, set Prevt(v) = −∞. By Nextt(v, i) we denote the

time of the ith service of v following t in the schedule of the algorithm; if it does not exist, set

Nextt(v, i) = +∞.

We say that the service of v at time t <H is i-timely, if M t(v)<Nextt(v, i); furthermore, if v is

depth(v)-timely, we will say simply that this service of v is depth-timely. We say that the service

of v at time t < H is v-local, if this is either the first service of v by the algorithm, or if there is

an adversary pseudo-service of v in the interval (Prevt(v),Nextt(v,depth(v))].

Given an algorithm’s service (X, t), we now define the outgoing charges from X. For any v ∈

X −{r}, its outgoing charge is defined as follows:

(C1) If t <H and the service of v at time t is both depth-timely and v-local, charge `v to the first

adversary pseudo-service of v after time Prevt(v).

(C2) If t < H and the service of v at time t is depth-timely but not v-local, charge `v to the

algorithm’s service at time Prevt(v).

(C3) If t <H and the service of v at time t is not depth-timely, the outgoing charge is 0.

(C4) If t=H, we charge `v to the first adversary pseudo-service of v.

We first argue that the charging is well-defined. To justify (C1) suppose that this service is

depth-timely and v-local. If (X, t) is the first service of v then Prevt(v) =−∞ and the charge goes

to the first pseudo-service of v which exists as all the requests must be served. Otherwise there

is an adversary pseudo-service of v in the interval (Prevt(v),Nextt(v,depth(v))] and rule (C1) is

well-defined. For (C2), note that if the service (X, t) of v is depth-timely but not v-local then there

must be an earlier service including v. (C3) is trivial. For (C4), note again that an adversary service

of v must exist, as all requests must be served.

The following lemma implies that all nodes in the critical subtree will have an outgoing charge,

as needed.

Lemma 8. Suppose there is a service at a time t < H. The service of each v ∈ Ct(q) at time t is

1-timely, and thus also depth-timely.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

Proof. From Lemma 3, each v ∈ Ct(q) satisfies M t(v)≤M t(q) = t < Nextt(q,1)≤ Nextt(v,1),

where the sharp inequality follows from Lemma 4. �

The following lemma captures the key property of our charging scheme. For any depth-timely

service of v ∈X that is not v-local, it identifies a subset U(v, i, t−) of the previous service (X−, t−)

including v that is suitable for receiving a charge from v. It is important that each such set is used

only once, has sufficient weight, and contains only depth-timely nodes. As we show later, these

properties imply that in this charging scheme the net charge (the difference between the outgoing

and incoming charge) from each service X is at least as large as the total weight of its critical

subtree.

As in the argument for MLAP-D, we need to find an urgent node w ∈Xv which is not in X− and

has its parent in X−. There are two important issues caused by the fact that the urgency is given

by the maturity times instead of deadlines. The first issue is that the maturity time can decrease

due to new request arrivals — to handle this, we argue that if the new requests had large waiting

costs, they would guarantee the existence of a pseudo-service of node v in the given time interval

and thus the algorithm’s service of v would be v-local. The second issue is that the maturity time

is not given by a single descendant but by adding the node contributions from the whole tree —

thus instead of searching for w on a single path, we need a more subtle, global argument to identify

such w.

Lemma 9. Assume that the service of v at time t < H is depth-timely and not v-local. Let i =

depth(v), and let (X−, t−) be the previous service of Algorithm OnlTree including v, that is t− =

Prevt(v). Then there exists j > i such that all the nodes in the set U(v, j, t−) from the construction

of X− in the algorithm are depth-timely and `(U(v, j, t−))≥ `v.

Proof. Let t∗ =M t(v) and let C ′ =Ct(v) be the critical subtree of v at time t. Since the service

of v at time t is i-timely, we have t∗ <Nextt(v, i). (It may be the case that t∗ < t, but that does

not hamper our proof in any way.) Also, since the service of v at time t is not v-local, it is not the

first service of v, thus t− and X− are defined.

Let P− be the set of requests pending right after time t− (including those with arrival time t−

but not those served at time t−), and let P be the set of requests with arrival time in the interval

(t−, t]. The key observation is that the total waiting cost of all the requests in C ′ that arrived

after t− satisfies

ωP (C ′, t∗)< `v . (9)

To see this, simply note that ωP (C ′, t∗) ≥ `v would imply that ωR(>t−)(Tv, t∗) ≥ `v. This in turn

would imply the existence of a pseudo-service of v in the interval (t−, t∗]⊆ (Prevt(v),Nextt(v, i)],

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

r q

w

C'

X-

v

B
C'w

Figure 4 Illustration of the proof of Lemma 9.

which would contradict the assumption that the service of v at time t is not v-local. (Note that if

t∗ ≤ t− then ωP (C ′, t∗) = 0 as t∗ is before the arrival time of any request in P and the inequality

holds trivially.)

Since P− ∪P contains all the requests pending at time t, the choice of t∗ and C ′ implies that

ωP−∪P (C ′, t∗) = `(C ′) . (10)

P− does not contain any requests in C ′ ∩ X−, as those were served at time t−; therefore

ωP−(C ′, t∗) = ωP−(C ′−X ′, t∗). Letting B be the set of all nodes w ∈C ′−X− for which parent(w)∈

X−, we have C ′−X ′ =
⋃
w∈B C

′
w, where all sets C ′w, for w ∈B, are disjoint. (See Figure 4.) Also,

v ∈C ′ ∩X−. Combining these observations, and using inequalities (9) and (10), we get

∑
w∈B ωP−(C ′w, t

∗) = ωP−(
⋃
w∈B C

′
w, t
∗)

= ωP−(C ′−X ′, t∗)

= ωP−(C ′, t∗)

= ωP−∪P (C ′, t∗)−ωP (C ′, t∗)

> `(C ′)− `v

≥ `(C ′)− `(C ′ ∩X−)

= `(C ′−X−) =
∑

w∈B `(C
′
w) .

It follows that there exists w ∈B such that

ωP−(C ′w, t
∗)> `(C ′w) . (11)

Equation (11) implies that M t−(w)≤ t∗, using also the fact that w was not served at t−, so P−

contains exactly all the requests used to define M t−(w). Let j = depth(w); note that j > i as w is

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

a descendant of v. Since w 6∈X− but parent(w) ∈X−, and M t−(w) is finite, the definition of the

extra sets for X− implies that U(v, j, t−) has sufficient weight and all its nodes are more urgent

than w. More precisely, `(U(v, j, t−))≥ `v and any z ∈U(v, j, t−) has M t−(z)≤M t−(w)≤ t∗.

It remains to show that every z ∈U(v, j, t−) is depth-timely at time t−. Indeed, since depth(z) =

j ≥ i+ 1 and any service containing z contains also v, we get

Nextt
−

(z, j)≥Nextt
−

(z, i+ 1)≥Nextt
−

(v, i+ 1) = Nextt(v, i)> t∗ ≥M t−(z) ,

where the last step uses the inequality t∗ ≥M t−(z) derived in the previous paragraph. Thus z is

depth-timely, as needed. The proof of the lemma is now complete. �

Competitive analysis. We are now ready to complete our competitive analysis of MLAP.

Theorem 3. There exists an O(D42D)-competitive algorithm for MLAP on trees of depth D.

Proof. We will show that Algorithm OnlTree’s competitive ratio for α-decreasing trees of

depth D≥ 3 is at most 4D2cα, where cα = (2 + 1/α)D−1. By applying Theorem 1, this implies that

there is an online algorithm for arbitrary trees with ratio at most 4D3α(2+1/α)D−1. For α=D/2,

this ratio is bounded by 3D42D, implying the theorem (together with the fact that for D = 1,2,

constant-competitive algorithms are known).

Next, fix an α-decreasing tree T and focus our attention on Algorithm OnlTree’s schedule S

and on the adversary pseudo-schedule S. Define the net charge from a service (X, t) in S to be

the difference between the outgoing and incoming charge of (X, t). Our goal is to show that each

pseudo-service in S is charged only a constant number of times and that the net charge from each

service (X, t) in S is at least `(X)/cα.

Consider first an adversary pseudo-service of v at a time τ . We argue that it is charged at most

(D+ 3)`v: If this is the first pseudo-service of v, it may be charged once from both the first service

of v by rule (C1) and from the last service of v at time t=H by rule (C4). In addition, by rule

(C1) it may be charged D times from the last D services of v before τ , and once from the first

service at or after τ . All the charges are equal to `v.

Now consider a service (X, t) of Algorithm OnlTree. For t = H, all the nodes of X have an

outgoing charge by rule (C4) and there is no incoming charge. Thus the net charge from X is

`(X)≥ `(X)/cα.

For t <H, let X =C ∪E, where C is the critical subtree and E is the extra set. From Lemma 8,

all nodes in C are depth-timely, so they generate outgoing charge of at least `(C) from X.

We now consider the remaining balance of charges associated with X, namely the outgoing

charges from E minus the total incoming charge to X. We claim that this quantity is non-negative.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Recall that E is a disjoint union of sets of the form U(w,k, t) and E is disjoint from C. If a future

service of a node v generates the charge of `v to X by rule (C2), it must be serviced at time

Nextt(v,1), so such a charge is unique for each v. Furthermore, Lemma 9 implies that one of the

extra sets U(v, j, t), for j > i, has `(U(v, j, t))≥ `v and consists of depth-timely nodes only. Thus

these nodes have outgoing charges adding up to at least `v; these charges go either to the adversary’s

pseudo-services or the algorithm’s services before time t. We have shown that the net charge from

each extra set U(w,k, t) is non-negative; therefore, the net charge from E is non-negative as well.

We conclude that the net charge from X is at least `(C). Applying Lemma 6, we obtain that this

net charge is at least `(X)/cα.

Summing over all the services (X, t) in S, we get a bound for the service cost of schedule S:

scost(S)≤ (D+ 3)cα · scost(S). Applying Lemmata 5 and 7, we get

cost(S)≤ 2 · scost(S)

≤ 2(D+ 3)cα · scost(S)

≤ 2D(D+ 3)cα · cost(S∗) ≤ 4D2cα · cost(S∗).

We have thus shown that Algorithm OnlTree’s competitive ratio for α-decreasing trees is at most

4D2cα, which, as explained earlier, is sufficient to complete the proof. �

6. General Waiting Costs

Our model of MLAP assumes full continuity, namely that the time is continuous and that the

waiting costs are continuous functions of time, while in some earlier literature authors use the

discrete model. Thus, we still need to show that our algorithms can be applied in the discrete

model without increasing their competitive ratios. We also consider the model where some request

may remain unserved. We explain how our results can be extended to these models as well. We

will also show that our results can be extended to functions that are left-continuous, and that

MLAP-D can be represented as a special case of MLAP with left-continuous functions. While those

reductions seem intuitive, they do involve some pesky technical challenges, and they have not been

yet formally treated in the literature.

Extension to the discrete model. In the discrete model (see, e.g., (Buchbinder et al. 2008)),

requests arrive and services may happen only at integral points t = 1, . . . ,H, where H is the

time horizon. The waiting cost functions ωρ are also specified only at integral points. (The model

in (Buchbinder et al. 2008) also allows waiting costs to be non-zero at the release time. However

we can assume that ωρ(aρ) = 0, since increasing the waiting cost function uniformly by an additive

constant can only decrease the competitive ratio.) We now show how to reduce the discrete time

model to the model where time and waiting costs are continuous.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

Theorem 4. Suppose that A is a c-competitive online algorithm for the model with continuous

time and continuous waiting cost functions. Then, there exists a c-competitive algorithm B for the

discrete time model.

Proof. Algorithm B is constructed as follows. Let J = 〈T ,R〉 be an instance given to B.

We extend each waiting cost function ωρ to non-integral times as follows: for each integral t =

aρ, . . . ,H−1 we define ωρ(τ) for τ ∈ (t, t+1) so that it continuously increases from ωρ(t) to ωρ(t+1)

(e.g., by linear interpolation); ωρ(τ) = 0 for all τ < aρ; and ωρ(τ) = ωρ(H) for all τ >H.

Algorithm B presents the instance J = 〈T ,R〉 with these continuous waiting cost functions to A.

At each integral time t= 1, . . . ,H − 1, B simulates A on the whole interval [t, t+ 1). If A makes

one or more services, B makes a single service at time t which is their union. This is possible, since

no request arrives in (t, t+ 1). At time H, algorithm B issues the same service as A.

Overall, B produces a feasible schedule in the discrete time model. The cost of B does not exceed

the cost of A. On the other hand, any feasible (offline) schedule S in the discrete time model is also

a feasible schedule in the continuous time model with the same cost. Thus B is c-competitive. �

Unserved requests with bounded waiting costs. In our definition of MLAP we require that all

requests are eventually served. However, if the waiting cost of a request ρ is bounded, it is natural

to allow a possibility that ρ is not served in a schedule S; in that case ρ’s contribution to the waiting

cost of S is wcost(ρ,S) = limt→+∞ωρ(t). In this variant, there is no time horizon in the instance,

and the total cost of S is defined as before, as the sum of its service and waiting costs.

Our algorithm OnlTree works in this model as well, with the competitive ratio increased at

most by one. The only modification of the algorithm is that there is no final service at the time

horizon. Instead we let the time proceed to infinity, issuing services at the maturity times of q (the

quasi-root of T).

Let S∗ be the optimal schedule. Using the charging scheme described earlier in the paper, all

costs of OnlTree other than the waiting cost of unserved requests will be charged to S∗. To extend

the charging scheme to unserved requests, for each node v we consider the service times of v in S∗

and in OnlTree, and we define v to be one of three types:

Type 1: v is not serviced neither by S∗ nor by OnlTree,

Type 2: the last service of v is by OnlTree (possibly tied with S∗),

Type 3: the last service of v is by S∗.

Nodes of Type 1 pay the same waiting cost in S∗ and OnlTree’s schedule, so their contributions

can only decrease the competitive ratio and we can ignore them in the cost calculations. The same

argument applies to nodes of Type 2, because there OnlTree’s cost of unserved requests is not

larger than that of S∗. It thus remains to show how we can charge the waiting cost of nodes v of

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Type 3 to S∗. Let Y be the subtree of T rooted at r induced by nodes of Type 3 and let Q be the set

of requests in Y that are never served. OnlTree’s schedule satisfies limτ→∞wcostQ(τ)≤ `(Y), for

otherwise Y would become eventually mature and the requests in Q would be served by OnlTree.

On the other hand, `(Y)≤ scost(S∗), because all nodes in Y are served in S∗ at least once, by the

definition of Type 3 nodes. So we can charge limτ→∞wcostQ(τ) to S∗, increasing the competitive

ratio by at most 1.

Extension to left-continuous waiting costs. We now argue that we can modify our algorithms to

handle left-continuous waiting cost functions, i.e., functions that satisfy limτ↗tωρ(τ) = ωρ(t) for

each time t ≥ 0. Left-continuity enables an online algorithm to serve a request at the last time

when its waiting cost is at or below some given threshold.

Some form of left-continuity is also necessary for constant competitiveness. To see this, think

of a simple example of a tree of depth 1 and with `q = 1, and a sequence of requests in q with

release times approaching 1, and waiting cost functions defined by ωρ(1) = K � 1 and ωρ(t) = 0

for t < 1. If an online algorithm serves one such request before time 1, the adversary immediately

releases another. The sequence stops either after K requests or after the algorithm serves some

request at or after time 1, whichever comes first. The optimal cost is at most `q = 1, while the

online algorithm pays at least K.

The basic (but not quite correct) idea of our argument for left-continuous waiting cost functions

is this: For any time point h where some waiting cost function has a discontinuity, we replace

point h by a “gap interval” [h,h + ε], for some ε > 0. The release times after time h and the

values of all waiting cost functions after h are shifted to the right by ε. In the interval [h,h+ ε],

for each request ρ, its waiting cost function is filled in by any non-decreasing continuous curve

with value ν− at h and ν+ at h+ ε, for ν− = ωρ(h) and ν+ = limτ↘hωρ(τ). Thus the waiting cost

functions that are continuous at h are simply “stretched” in this gap interval, where their values

remain constant. This will convert the original instance J into an instance J ′ with continuous

waiting cost functions; then we can apply a reduction similar to the one for the discrete model,

with the behavior of an algorithm A on J ′ inside [h,h+ ε] mimicked by the algorithm B on J

while staying at time h.

The above construction, however, has a flaw: as B is online, for each newly arrived request ρ it

would need to know the future requests in order to correctly modify ρ’s waiting cost function (which

needs to be fully revealed at the arrival time). Thus, inevitably, B will need to be able to modify

waiting cost functions of earlier requests, but the current state of A may depend on these functions.

Such changes could make the computation of A meaningless. To avoid this problem, we will focus

only on algorithms A for continuous cost functions that we call stretch-invariant. Roughly, those

are algorithms whose computation is not affected by the stretching operation described above.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

To formalize this, let I = {[hi, hi + εi] | i= 1, . . . , k} be a finite set of gap intervals, where all

times hi are distinct. (For now we can allow the εi’s to be any positive reals; their purpose will be

explained later.) Let shift(t, I) = t+
∑

i:hi<t
εi denote the time t shifted right by inserting intervals I

on the time axis. We extend this operation to requests in a natural way: for any request ρ with

a continuous waiting cost function, shift(ρ, I) denotes the request modified by inserting I on the

time axis and filling in the values of ωρ in the inserted intervals by constant functions, as described

earlier. For a set of requests P ⊆R, the stretched set of requests shift(P, I) is the set consisting of

requests shift(ρ, I), for all ρ∈ P .

Consider an online algorithm A for MLAP with continuous waiting cost functions. We say that

A is stretch-invariant if for every instance J = 〈T ,R〉 and any set of gap intervals I, the schedule

produced by A for the instance 〈T , shift(R, I)〉 is obtained from the schedule produced by A for J
by shifting it according to I, namely every service (X, t) is replaced by service (X, shift(t, I)).

Most natural algorithms for MLAP are stretch-invariant. In case of OnlTree, observe that its

behavior depends only on the maturity times MP (v) where P is the set of pending requests and

Mshift(P,I)(v) = shift(MP (v), I); in particular stretching does not change the order of the maturity

times. Using induction on the current time t, we observe OnlTree creates a service (X, t) in its

schedule for the request set R if and only if OnlTree creates a service (X, shift(t, I)) in its schedule

for the request set shift(R, I).

Theorem 5. Suppose that A is a c-competitive online algorithm for continuous waiting cost func-

tions that is stretch-invariant. Then, there exists a c-competitive algorithm B for left-continuous

waiting costs.

Proof. Let J = 〈T ,R〉 be an instance given to B. Algorithm B maintains the set of gap inter-

vals I, and a set of requests P presented to A; both sets are initially empty. Algorithm B at time t

simulates the computation of A at time shift(t, I).

If a new request ρ ∈ R is released at time t = aρ, algorithm B obtains ρ′ from shift(ρ, I) by

replacing the discontinuities of ωρ by new gap intervals Iρ on which ωρ′ is defined so that it

continuously increases. (If a gap interval already exists in I at the given point, it is used instead of

creating a new one, to maintain the starting points distinct.) We set aρ′ = shift(t, I), which is the

current time in A. We update I to I∪ Iρ; this does not change the current time in A as all new gap

intervals start at or after t. We stretch the set of requests P by Iρ; this does not change the past

output of A, because A is stretch-invariant. (Note that the state of A at time t may change, but

this does not matter for the simulation.) Finally, we add the new request ρ′ to P.

If the current time t in B is at a start point of a gap interval, i.e., t= hi, algorithm B simulates

the computation of A on the whole shifted gap interval 〈shift(hi, I), εi〉. If A makes one or more

services in 〈shift(hi, I), εi〉, B makes a single service at time t which is their union.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The cost of B for requests R does not exceed the cost of A for requests P, since the service

cost can only be smaller for B due to the merging of A’s services in gap intervals, and the waiting

cost of a request in B’s schedule is at most its waiting cost in A’s schedule by left-continuity. Any

adversary schedule S for R induces a schedule S′ for P with the same cost. Since A’s cost is at

most c · cost(S′), we obtain that B’s cost is at most c · cost(S); hence B is c-competitive.

In the discussion above we assumed that the instance has a finite number of discontinuities.

Arbitrary left-continuous waiting cost functions may have infinitely many discontinuity points, but

the set of these points must be countable. The construction described above extends to arbitrary

left-continuous cost functions, as long as we choose the εi values so that their sum is finite. �

Reduction of MLAP-D to MLAP. We now argue that MLAP-D can be expressed as a variant of

MLAP with left-continuous waiting cost functions. The idea is simple: a request ρ with deadline

dρ can be assigned a waiting cost function ωρ(t) that is 0 for times t∈ [0, dρ] and +∞ for t > dρ –

except that we cannot really use +∞, so we need to replace it by some sufficiently large number. If

σρ = v, we let ωρ(t) = `∗v, where `∗v is the sum of all weights on the path from v to r (the “distance”

from v to r). This will convert an instance J of MLAP-D into an instance J ′ of MLAP with

left-continuous waiting cost functions.

We claim that, without loss of generality, any online algorithm A for J ′ serves any request ρ

before or at time dρ. Otherwise, A would have to pay waiting cost of `∗v for ρ (where v = σρ), so

we can modify A to serve ρ at time dρ instead, without increasing its cost. We can then treat A as

an algorithm for J . A will meet all deadlines in J and its cost on J will be the same as its cost

on J ′, which means that its competitive ratio will also remain the same.

Note that algorithm OnlTree (or rather its extension to the left-continuous waiting costs, as

described above) does not need this modification, as it already guarantees that when the waiting

cost of a request at v reaches `∗v, all the nodes on the path from v to r are mature and thus the

whole path is served.

Acknowledgments

Research partially supported by NSF grants CCF-1536026, CCF-1217314 and OISE-1157129, Polish

National Science Centre grants 2016/21/D/ST6/02402, 2016/22/E/ST6/00499 and 2015/18/E/ST6/00456,

project 17-09142S of GA ČR, GAUK project 634217, FMJH PGMO, ANR OATA, and RFSI.

References

Aggarwal A, Park JK (1993) Improved algorithms for economic lot sizing problems. Operations Research

41:549–571.

Albers S, Bals H (2005) Dynamic TCP acknowledgment: Penalizing long delays. SIAM Journal on Discrete

Mathematics 19(4):938–951.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

Arkin E, Joneja D, Roundy R (1989) Computational complexity of uncapacitated multi-echelon production

planning problems. Operations Research Letters 8(2):61–66.

Azar Y, Epstein A, Jeż L, Vardi A (2016) Make-to-Order Integrated Scheduling and Distribution. Proc. 24th

ACM-SIAM Symp. on Discrete Algorithms (SODA), 140–154.

Azar Y, Ganesh A, Ge R, Panigrahi D (2017) Online service with delay. Proc. 49th ACM Symp. on Theory

of Computing (STOC), 551–563.

Badrinath BR, Sudame P (2000) Gathercast: the design and implementation of a programmable aggregation

mechanism for the internet. Proc. 9thInternational Conference on Computer Communications and

Networks (ICCCN), 206–213.

Bartal Y (1996) Probabilistic approximations of metric spaces and its algorithmic applications. Proc. 37th

IEEE Symp. on Foundations of Computer Science (FOCS), 184–193.

Becchetti L, Marchetti-Spaccamela A, Vitaletti A, Korteweg P, Skutella M, Stougie L (2009) Latency-

constrained aggregation in sensor networks. ACM Transactions on Algorithms 6(1):13:1–13:20.

Bienkowski M, Böhm M, Byrka J, Chrobak M, Dürr C, Folwarczný L, Jeż L, Sgall J, Thang NK, Veselý P

(2016) Online algorithms for multi-level aggregation. Proc. 24th European Symp. on Algorithms (ESA),

12:1–12:17.

Bienkowski M, Byrka J, Chrobak M, Dobbs NB, Nowicki T, Sviridenko M, Swirszcz G, Young NE (2015)

Approximation algorithms for the joint replenishment problem with deadlines. Journal of Scheduling

18(6):545–560.

Bienkowski M, Byrka J, Chrobak M, Jeż L, Nogneng D, Sgall J (2014) Better approximation bounds for the

joint replenishment problem. Proc. 25th ACM-SIAM Symp. on Discrete Algorithms (SODA), 42–54.

Bienkowski M, Byrka J, Chrobak M, Jeż L, Sgall J, Stachowiak G (2013) Online control message aggregation

in chain networks. Proc. 13th Int. Workshop on Algorithms and Data Structures (WADS), 133–145.

Borodin A, El-Yaniv R (1998) Online Computation and Competitive Analysis (Cambridge University Press).

Bortnikov E, Cohen R (1998) Schemes for scheduling of control messages by hierarchical protocols. Proc.

17th IEEE Int. Conference on Computer Communications (INFOCOM), 865–872.

Brito C, Koutsoupias E, Vaya S (2012) Competitive analysis of organization networks or multicast acknowl-

edgement: How much to wait? Algorithmica 64(4):584–605.

Buchbinder N, Feldman M, Naor JS, Talmon O (2017) O(depth)-competitive algorithm for online multi-level

aggregation. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA’17), 1235–1244.

Buchbinder N, Kimbrel T, Levi R, Makarychev K, Sviridenko M (2008) Online make-to-order joint replenish-

ment model: Primal-dual competitive algorithms. Proc. 19th ACM-SIAM Symp. on Discrete Algorithms

(SODA), 952–961.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Buchbinder N, Naor JS (2009) The design of competitive online algorithms via a primal-dual approach.

Foundations and Trends in Theoretical Computer Science 3(2–3):93–263.

Crowston WB, Wagner MH (1973) Dynamic lot size models for multi-stage assembly systems. Management

Science 20(1):14–21.

Dooly DR, Goldman SA, Scott SD (2001) On-line analysis of the TCP acknowledgment delay problem.

Journal of the ACM 48(2):243–273.

Frederiksen JS, Larsen KS, Noga J, Uthaisombut P (2003) Dynamic TCP acknowledgment in the LogP

model. Journal of Algorithms 48(2):407–428.

Hu F, Cao X, May C (2005) Optimized scheduling for data aggregation in wireless sensor networks. Int.

Conference on Information Technology: Coding and Computing (ITCC), volume 2, 557–561.

Karlin AR, Kenyon C, Randall D (2003) Dynamic TCP acknowledgement and other stories about e/(e - 1).

Algorithmica 36(3):209–224.

Khanna S, Naor J, Raz D (2002) Control message aggregation in group communication protocols. Proc. 29th

Int. Colloq. on Automata, Languages and Programming (ICALP), 135–146.

Kimms A (1997) Multi-Level Lot Sizing and Scheduling: Methods for Capacitated, Dynamic, and Determin-

istic Models (Springer-Verlag).

Lambert DM, Cooper MC (2000) Issues in supply chain management. Industrial Marketing Management

29(1):65–83.

Levi R, Roundy R, Shmoys DB (2005) A constant approximation algorithm for the one-warehouse multi-

retailer problem. Proc. 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), 365–374.

Levi R, Roundy R, Shmoys DB (2006) Primal-dual algorithms for deterministic inventory problems. Math-

ematics of Operations Research 31(2):267–284.

Levi R, Roundy R, Shmoys DB, Sviridenko M (2008) A constant approximation algorithm for the one-

warehouse multiretailer problem. Management Science 54(4):763–776.

Levi R, Sviridenko M (2006) Improved approximation algorithm for the one-warehouse multi-retailer

problem. Proc. 9th Int. Workshop on Approximation Algorithms for Combinatorial Optimization

(APPROX), 188–199.

Nonner T, Souza A (2009) Approximating the joint replenishment problem with deadlines. Discrete Mathe-

matics, Algorithms and Applications 1(2):153–174.

Papadimitriou C (1996) Computational aspects of organization theory. Proc. 4th European Symp. on Algo-

rithms (ESA), 559–564.

Pedrosa LLC (2013) Private communication.

Seiden SS (2000) A guessing game and randomized online algorithms. Proc. 32nd ACM Symp. on Theory of

Computing (STOC), 592–601.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

Sgall J (1998) On-line scheduling. Online Algorithms: The State of the Art, 196–231 (Springer).

Vaya S (2012) Brief announcement: Delay or deliver dilemma in organization networks. Proc. 31st ACM

Symp. on Principles of Distributed Computing (PODC), 339–340.

Wagner H, Whitin T (1958) Dynamic version of the economic lot size model. Management Science 5:89–96.

Yuan W, Krishnamurthy SV, Tripathi SK (2003) Synchronization of multiple levels of data fusion in wireless

sensor networks. Proc. Global Telecommunications Conference (GLOBECOM), 221–225.

Marcin Bienkowski obtained a PhD degree from the University of Paderborn, Germany, where he

worked in the Algorithms and the Complexity Theory group. He is currently an associate professor

and the head of the Combinatorial Optimization Group at the Computer Science Institute of the

University of Wroclaw, Poland. His research interests are focused on online and approximation

algorithms, especially for network problems.

Martin Böhm is a postdoc researcher at CSLog, Universität Bremen, Germany. He obtained

his PhD at Charles University, Prague in 2018. His research focuses approximation and online

algorithms.

Jaroslaw Byrka is an associate professor in CS Institute, University of Wroclaw, where he is

a faculty since 2010. Since 2016 he is a vice dean of Department of Mathematics and Computer

Science. He obtained his PhD from TU Eindhoven in 2008. His research focuses on algorithmic

techniques in combinatorial optimization.

Marek Chrobak is a professor of computer science at University of California, Riverside, where

he has been faculty member since 1987. He received his PhD degree from Warsaw University in

1985. His research interests are in algorithms and theoretical computer science, with main focus

on online competitive algorithms and approximation algorithms for combinatorial optimization

problems.

Christoph Dürr graduated in 1997 from the University Paris-South, in the area of quantum

computing. He is currently a senior researcher at the CNRS, affiliated to Sorbonne University, in

the Operation Research group of the lab LIP6. His research focuses on scheduling, more generally

on online algorithms and combinatorial optimization.

Lukáš Folwarczný is a PhD student at Institute of Mathematics, Czech Academy of Sciences, and

Charles University, Prague. His research interests are in complexity theory and online algorithms.

 Lukasz Jeż is an assistant professor in CS Institute, University of Wroclaw since 2016. He received

his PhD from University of Wroclaw in 2011. His research focuses on online algorithms.

Jǐŕı Sgall is a professor of computer science and a vice-dean at Faculty of Mathematics and

Physics, Charles University, Prague. He received his PhD from Carnegie Mellon University in 1994.

Bienkowski et al.: Online Algorithms for Multi-Level Aggregation
36 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

His current research focuses on online and approximation algorithms for scheduling and related

problems.

Nguyen Kim Thang obtained his PhD in 2009 from Ecole Polytechnique France. He is cur-

rently associate professor in Univ Evry, University Paris-Saclay. His main research is the design

and analysis of algorithms, especially the interaction between algorithms, game theory and online

optimization.

Pavel Veselý is a research fellow at University of Warwick. He obtained his PhD at Charles

University, Prague in 2018. His research interests are in algorithms, namely in online competitive

algorithms and streaming algorithms.

	Introduction
	Our Contributions

	Preliminaries
	Reduction to -Decreasing Trees
	A Competitive Algorithm for MLAP-D
	Intuition
	Algorithm OnlTreeD
	Analysis

	A Competitive Algorithm for MLAP
	Preliminaries and Notations
	Algorithm
	Competitive Analysis

	General Waiting Costs

