

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/115619

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/195265661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/115619
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Online Packet Scheduling with Bounded Delay and Lookahead∗

Martin Böhm1,2, Marek Chrobak3, Lukasz Jeż4, Fei Li5, Jǐŕı Sgall1, and Pavel Veselý1,6

1 Computer Science Institute of Charles University, Prague, Czech Republic,
{sgall,vesely}@iuuk.mff.cuni.cz

2 University of Bremen, Germany, martin.boehm@uni-bremen.de
3 Department of Computer Science and Engineering, University of California, Riverside,

USA, marek@cs.ucr.edu
4 Institute of Computer Science, University of Wroc law, Poland, lje@cs.uni.wroc.pl
5 Department of Computer Science, George Mason University, USA, lifei@cs.gmu.edu

6 Department of Computer Science, University of Warwick, UK

Abstract

We study the online bounded-delay packet scheduling problem (PacketScheduling), where
packets of unit size arrive at a router over time and need to be transmitted over a network link.
Each packet has two attributes: a non-negative weight and a deadline for its transmission.
The objective is to maximize the total weight of the transmitted packets. This problem has
been well studied in the literature; yet currently the best published upper bound is 1.828 [8],
still quite far from the best lower bound of φ ≈ 1.618 [11, 2, 6].

In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled
in at most s consecutive slots, starting at its release time. The lower bound of φ applies even
to the special case of 2-bounded instances, and a φ-competitive algorithm for 3-bounded
instances was given in [5]. Improving that result, and addressing a question posed by
Goldwasser [9], we present a φ-competitive algorithm for 4-bounded instances.

We also study a variant of PacketScheduling where an online algorithm has the additional
power of 1-lookahead, knowing at time t which packets will arrive at time t + 1. For
PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online
algorithm with competitive ratio 1

2 (
√

13−1) ≈ 1.303 and we prove a nearly tight lower bound

of 1
4 (1 +

√
17) ≈ 1.281. In fact, our lower bound result is more general: using only 2-bounded

instances, for any integer ` ≥ 0 we prove a lower bound of 1
2(`+1) (1+

√
5 + 8`+ 4`2) for online

algorithms with `-lookahead, i.e., algorithms that at time t can see all packets arriving by
time t+ `. Finally, for non-restricted instances we show a lower bound of 1.25 for randomized
algorithms with `-lookahead, for any ` ≥ 0.

1 Introduction

Background. Optimizing the flow of packets across an IP network gives rise to a plethora of
challenging algorithmic problems. In fact, even scheduling packet transmissions from a router
across a specific network link can involve non-trivial tradeoffs. Several models for such tradeoffs

∗M. Böhm, J. Sgall, and P. Veselý were supported by project 17-09142S of GA ČR and by the GAUK project
634217. M. Chrobak was supported by NSF grants CCF-1217314 and CCF-1536026. L. Jeż was supported by
Polish National Science Center grant 2016/21/D/ST6/02402. F. Li was supported by NSF grant CCF-1216993.
The conference version of this paper appeared in ISAAC 2016 [3]

1

have been formulated, depending on the architecture of the router, on characteristics of the
packets, and on the objective function.

In the model that we study in this paper, each packet has two attributes: a non-negative
weight and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight of the
transmitted packets. We focus on the online setting, where at each time step the router needs to
choose a pending packet for transmission, without the knowledge about future packet arrivals.
This problem, which we call online bounded-delay packet scheduling problem (PacketScheduling),
was introduced by Kesselman et al. [12] as a theoretical abstraction that captures the constraints
and objectives of packet scheduling in networks that need to provide quality of service (QoS)
guarantees. The combination of deadlines and weights is used to model packet priorities.

In the literature, the PacketScheduling problem is sometimes referred to as bounded-delay
buffer management in QoS switches. It can also be formulated as the job-scheduling problem
1|pj = 1, rj |

∑
wjUj , where packets are represented by unit-length jobs with deadlines, with the

objective to maximize the weighted throughput.
A router transmitting packets across a link needs to make scheduling decisions on the fly,

based only on the currently available information. This motivates the study of online competitive
algorithms for PacketScheduling. A simple online greedy algorithm that always schedules the
heaviest pending packet is known to be 2-competitive [11, 12]. In a sequence of papers [7, 14, 8],
this ratio was gradually improved, and currently the best published ratio is 1.828 [8]. The best
lower bound, widely believed to be the optimal ratio, is φ = (1 +

√
5)/2 ≈ 1.618 [11, 2, 6].

s-Bounded instances. In an attempt to bridge this gap, restricted models have been studied.
In the s-bounded variant of PacketScheduling, each packet must be scheduled within k consecutive
slots, starting at its release time, for some k ≤ s possibly depending on the packet; this k is
then called the span of the packet. The lower bound of φ from [11, 2, 6] holds even in the
2-bounded case. A matching φ-competitive algorithm was given Kesselman et al. [12] for 2-
bounded instances and by Chin et al. [5] for 3-bounded instances. Both results are based on the
algorithm EDFα, with α = φ, which always schedules the earliest-deadline packet whose weight
is at least the weight of the heaviest pending packet divided by α (ties are broken in favor of
heavier packets). EDFφ is not φ-competitive for 4-bounded instances; however, a different choice
of α yields a 1.732-competitive algorithm for the 4-bounded case [5].

Our contribution. We present a φ-competitive online algorithm for PacketScheduling restricted to
4-bounded instances, matching the lower bound of φ (see Section 3). This improves the results
from [5] and answers the question posed by Goldwasser in his SIGACT News survey [9].

Our algorithm, called ToggleH, is based on a careful modification of EDFφ. Unlike EDFφ,
under certain circumstances it schedules a packet lighter than the weight of the heaviest pending
packet divided by φ. ToggleH is not memoryless, as it maintains one mark that may be assigned
to a pending packet.

Algorithms with lookahead. In Sections 4 and 5, we investigate a variant of PacketScheduling
where an online algorithm is able to learn at time t which packets will arrive by time t+ 1. This
property is known as 1-lookahead. From a practical point of view, 1-lookahead corresponds to
the situation in which a router can see the packets that are just arriving in the buffer and that
will be available for transmission in the next time slot.

The notion of lookahead is quite natural and it has appeared in the online algorithm literature
for paging [1], scheduling [15] and bin packing [10] since the 1990s. Ours is the first paper, to
our knowledge, that considers lookahead in the context of packet scheduling.

Our contributions. We provide three results about PacketScheduling with lookahead. First,
in Section 4, we present an online algorithm with 1-lookahead for 2-bounded instances with

2

competitive ratio of 1
2(
√

13− 1) ≈ 1.303.

Then, in Section 5, we give a lower bound of 1
4(1 +

√
17) ≈ 1.281 on the competitive ratio

of algorithms with 1-lookahead which holds already for the 2-bounded case. Our argument
is an extension of the lower bound proof of φ in [11, 2, 6]. In fact, our lower bound result is
more general: using only 2-bounded instances, for any integer ` ≥ 0 we prove a lower bound of

1
2(`+1)(1 +

√
5 + 8`+ 4`2) for online algorithms with `-lookahead, that is algorithms that at time

t can see all packets arriving by time t+ `. It follows that there is no 1-competitive algorithm
with any constant lookahead, even for 2-bounded instances.

Finally, in Section 6 we consider unrestricted instances, for which we generalize the lower
bound of 1.25 by Chin and Fung [6], by proving that, for any constant ` ≥ 0, there is no better
than 1.25-competitive randomized algorithm with `-lookahead.

Subsequent work. There are two recent developments related to the presented work that
need to be mentioned here. In paper [16], by a subset of authors of the present paper, a φ-
competitive algorithm for general instances [16] was announced, thereby establishing the optimal
competitive ratio of PacketScheduling (without lookahead). This new result notwithstanding,
our φ-competitiveness proof for 4-bounded instances remains of independent interest, as it is
significantly simpler than the proof in [16]. Further, unlike the algorithm in [16], our algorithm
ToggleH uses very little memory (just one mark). Thus our proof may provide useful insights into
the question whether there is a memory-efficient, or even memoryless, φ-competitive algorithm
for PacketScheduling.

Also recently, Kobayashi [13] announced an optimal deterministic algorithm with 1-lookahead
for 2-bounded instances, matching our lower bound of 1

4(1 +
√

17) ≈ 1.281.

2 Definitions and Notation

Problem statement. Formally, we define the PacketScheduling problem as follows. The
instance is a set of packets, with each packet p specified by a triple (rp, dp, wp), where rp and
dp ≥ rp are integers representing the release time and deadline of p, and wp ≥ 0 is a real number
representing the weight of p. Time is discrete, divided into unit time slots, also called steps. A
schedule assigns time slots to some subset of packets such that (i) any packet p in this subset is
assigned a slot in the interval [rp, dp], and (ii) each slot is assigned to at most one packet. The
objective is to compute a schedule that maximizes the total weight of the scheduled packets,
also called the profit.

In the s-bounded variant of PacketScheduling, we assume that each packet p in the instance
satisfies dp ≤ rp + s− 1. In other words, this packet must be scheduled within some specified
number, at most s, of consecutive slots starting at its release time.

Online algorithms. In the online variant of PacketScheduling, which is the focus of our work,
at any time t only the packets released at times up to t are revealed. Thus an online algorithm
needs to decide which packet to schedule at time t (if any) without any knowledge of packets
released after time t.

As is common in the area of online optimization, we measure the performance of an online
algorithm by its competitive ratio. An algorithm A is said to be R-competitive if, for all instances,
the total weight of the optimal schedule (computed offline) is at most R times the weight of the
schedule computed by A.

We say that a packet p is pending for an algorithm at time t, if rp ≤ t ≤ dp and p is not
scheduled before time t. A (pending) packet p is expiring at time t if dp = t, that is, it must be
scheduled now or never. A packet p is tight if rp = dp; thus p is expiring already at its release
time.

3

Algorithms with lookahead. In Sections 4 and 5, we investigate the PacketScheduling problem
with `-lookahead, mainly focusing on the case ` = 1. With `-lookahead, the problem definition
changes so that at time t, an online algorithm can also see the packets that will be released at
times t+ 1, t+ 2, . . . , t+ `, in addition to the pending packets. Naturally, only a pending packet
can be scheduled at time t.

Other terminology and assumptions. We will make several assumptions about our problem
that do not affect the generality of our results. First, we can assume that all packets have
different weights. Any instance can be transformed into an instance with distinct weights through
infinitesimal perturbation of the weights, without affecting the competitive ratio. Second, we
assume that at each step there are at least two pending packets. (If not, we can always release
some tight packets of weight 0 at each step.)

We define the earliest-deadline relation on packets, or canonical ordering, denoted ≺, where
x ≺ y means that either dx < dy or dx = dy and wx > wy (so the ties are broken in favor of
heavier packets). At any step t, the algorithm maintains the earliest-deadline relation on the
set of its pending packets. Throughout the paper, “earliest-deadline packet” means the earliest
packet in the canonical ordering.

Regarding the adversary (optimal) schedule, we can assume that it satisfies the following
earliest-deadline property : if packets p, p′ are scheduled in steps t and t′, respectively, where
rp′ ≤ t < t′ ≤ dp (that is, p and p′ can be swapped in the schedule without violating their release
times and deadlines), then p ≺ p′. This can be rephrased in the following useful way: at any
step, the optimum schedule transmits the earliest-deadline packet among all the pending packets
that it transmits in the future.

3 An Algorithm for 4-bounded Instances

In this section, we present a φ-competitive algorithm for 4-bounded instances. Ratio φ is of
course optimal as the lower bound instance is 2-bounded [11, 2, 6]. Up until now, the best
competitive ratio for 4-bounded instances was

√
3 ≈ 1.732, achieved by algorithm EDF√3 in [5].

Our algorithm can be seen as a modification of EDFφ. Unlike EDFφ, in some circumstances our
algorithm may schedule a packet lighter than wh/φ, where h is the heaviest pending packet.

We remark that our algorithm uses memory; in particular, it marks one pending packet under
certain conditions. This is in contrast to EDFα, which is memoryless, i.e., it makes decisions
solely based on the current set of pending packets. It is an interesting question whether there is
a memoryless φ-competitive algorithm for 4-bounded instances.

Algorithm ToggleH. The algorithm maintains one mark that may be assigned to one of the
pending packets. Initially, no packet is marked. For a given step t, we choose the following
packets from among all pending packets:

h = the heaviest packet,

s = the second-heaviest packet,

f = the earliest-deadline packet with wf ≥ wh/φ, and

e = the earliest-deadline packet with we ≥ wh/φ2.

We then proceed as follows:

if h is not marked or ws ≥ wh/φ or de > t
schedule f
if there is a marked packet then unmark it
if dh = t+ 3 and df = t+ 2 then mark h

4

else // h is marked and ws < wh/φ and de = t
schedule e
unmark h

We remark that all four packets h, s, e, and f are defined as we assume w.l.o.g. that there are at
least two pending packets in each step. Note that when f 6= h, then the algorithm will always
schedule f . This is because in this case f is a candidate for s, so the condition ws ≥ wh/φ
holds. The algorithm never specifically chooses s for scheduling – it is only used to determine if
there is one more relatively heavy pending packet other than h. (But s may get scheduled if it
so happens that s = f or s = e.) Note also that, if e 6= f , then e is scheduled only in a very
specific scenario, namely when all of the following conditions hold: e is expiring, h is marked,
and ws < wh/φ.

We distinguish two types of packets scheduled by Algorithm ToggleH: f-packets, scheduled
using the first case, and e-packets, scheduled using the second case. Similarly, we refer to the
steps as f -steps and e-steps.

Intuition. Let us give a high-level view of the analysis using charging schemes and an example
that motivates both our algorithm and its analysis. The example consists of four packets j, k, f, h
released in step 1, with deadlines 1, 2, 3, 4 and weights 1− ε, 1− ε, 1, φ, respectively, for some
small ε > 0. The optimum schedules all packets.

Compared to ToggleH, algorithm EDFφ performs only f -steps; in our example it schedules f
and h in steps 1 and 2, while j and k are lost. Thus the ratio is larger than φ. (In fact, after
optimizing the threshold and the weight of h, this is the tight example for EDF√3 on 4-bounded
instances.) ToggleH deals with the predicament in step 2 of this example by marking h in step
1, and thus in step 2 it performs an e-step and schedules k which has the role of e and s in the
algorithm.

This example and its variants are also important for our analysis. We analyze the algorithms
by charging schemes, where the weight of each packet scheduled by the adversary is charged
to one or more of the slots of the algorithm’s schedule. If the weight charged to each slot is at
most R times the weight of the packet scheduled by the algorithm in that slot, the algorithm is
R-competitive. In the case of EDFφ [5], one can charge the weight of each packet j scheduled by
the adversary at time t either fully to the step where EDFφ schedules j, if it is before t, or fully
to step t otherwise. In our example, the weight charged to step 1 is 2− ε while EDFφ schedules
only weight 1, giving the ratio 2. Considering steps 1 and 2 together leads to a better ratio and
after balancing the threshold it gives the tight analysis of EDF√3 for 4-bounded instances.

Our analysis of ToggleH is driven by the variants of the example above where step 2 is
an f -step. This may happen in several cases. One case is if in step 2 another packet s with
ws ≥ wh/φ arrives. If s is not scheduled in step 2, then s is pending in step 3, thus ToggleH
schedules a relatively heavy packet in step 3, and we can charge a part of the weight of f ,
scheduled in step 3 by the adversary, to step 3. This motivates the definition of regular up and
back charges below and corresponds to Case 5.1 in the analysis. Another case is when the weight
of k is changed to 1/φ− ε. Then ToggleH performs an f -step because k is not a candidate for
e, thus the role of e is taken by the non-expiring packet h. However, then the weight of the
four packets charged to steps 1 and 2 in the way described above is at most φ times the weight
of f and h; this corresponds to Case 5.2 of the analysis. Lemma 3.3 gives a subtle argument
showing that in the 4-bounded case essentially these two variants of our example are the only
difficult situations. Finally, in the original example, ToggleH schedules k in step 2 which is an
e-step. Then again h is a pending heavy packet and we can charge some weight of f to step 3.
Intuitively it is important that an e-step is performed only in a very specific situation where it
is guaranteed that h can be scheduled in the next two steps (as it is marked) and that there is

5

no other packet of comparable weight due to the condition ws < wh/φ. Still, there is a case to
be handled: If more packets arrive in step 3, it is also possible that the adversary schedules h
already in step 2 and we need to redistribute its weight. This case motivates the definition of
the special up and back charges below.

Theorem 3.1. Algorithm ToggleH is φ-competitive on 4-bounded instances.

Proof. Fix some optimal adversary schedule. Without loss of generality, we can assume that
this schedule satisfies the earliest-deadline property (see Section 2).

Let t be the current step. By h, f , e, and s we denote the packets from the definition of
ToggleH. By j we denote the packet scheduled by the adversary. By h′ and h′′ we denote the
heaviest pending packets in steps t+ 1 and t+ 2, respectively. We use the same convention for
packets f , e, s, and j.

Our analysis uses a new charging scheme which we now define. The adversary packet j
scheduled in step t is charged according to the first case below that applies:

1. If t is an e-step and j = h, we charge wh/φ to step t and wh/φ
2 to step t − 1. We call

these charges a special up charge and a special back charge, respectively. Note that the
total charge is equal to wh = wj .

2. If j is pending for ToggleH in step t, charge wj to step t. We call this charge a full up
charge.

3. Otherwise j is scheduled before step t. We charge wh/φ
2 to step t and wj − wh/φ2 to the

step where ToggleH scheduled j. We call these charges a regular up charge and a regular
back charge, respectively. We point out that the regular back charge may be negative, but
this causes no problems in the proof.

We start with an easy observation that we use several times throughout the proof.

Lemma 3.2. If an f -step t receives a regular back charge, then the up charge it receives is less
than wh/φ.

Proof. For a regular up charge the lemma is trivial (with a slack of a factor of φ). For a full up
charge, the existence of a regular back charge implies that the adversary schedules f after j,
thus the earliest-deadline property of the adversary schedule implies that j ≺ f , as both j and f
are pending for the adversary at t. Thus ToggleH would schedule j if wj ≥ wh/φ. Finally, an
f -step does not receive a special up charge.

We examine packets scheduled by ToggleH in the order of time. For each time step t, if p
is the packet scheduled at time t, we want to show that the charge to step t is at most φwp.
However, as it turns out, this will not always be true. In one case we will also consider the next
step t+ 1 and the packet p′ scheduled in step t+ 1, and show that the total charge to steps t
and t+ 1 is at most φ(wp + wp′).

Let t be the current step. We consider several cases.

Case 1: t is an e-step. By the definition of ToggleH, we ≥ wh/φ2 and de = t; the latter implies
that step t receives no regular back charge. Note that the heaviest pending packet h′ in step
t+ 1 is unmarked at the beginning of step t+ 1 as only h is marked at the beginning of step t
and we unmark it, while marking no other packet. This further implies that step t + 1 is an
f -step. Thus, step t receives no special back charge, which, combined with de = t, implies it
receives no back charge of any kind.

6

ALG

t t + 1 t̄ = t + 2

OPT j j′ f

f h

t + 3

h

Figure 1: An illustration of the situation in Case 5.2. Up charges are denoted by solid arrows
and back charges by dashed arrows.

Now we claim that the up charge is at most wh/φ. For a special or regular up charge this
follows from its definition. For a full up charge, packet j is pending at time t for ToggleH and
j 6= h (as for j = h the special charges are used). This implies that wj < wh/φ, as otherwise
ws ≥ wh/φ and t would be an f -step. Thus the full charge is wj ≤ wh/φ as well.

Using we ≥ wh/φ2, the charge is at most wh/φ ≤ φwe and we are done.

Case 2: t is an f -step and t does not receive a back charge. Then t can only receive an up-charge,
and this up charge is at most wh ≤ φwf , where the inequality follows from the definition of f .

Case 3: t is an f -step and t receives a special back charge. From the definition of special charges,
the next step is an e-step, and therefore h′ is marked at its beginning. Since the only packet that
may be marked after an f -step is h, we thus have h = h′ = j′, and the special back charge is
wh/φ

2. Note that f 6= h as h is pending in step t+ 1. It follows that f ≺ h and as h is scheduled
by the adversary in step t+ 1, the adversary cannot schedule f after step t, so step t cannot
receive a regular back charge.

We claim that the up charge to step t is at most wf . Indeed, a regular up charge is at
most wh/φ

2 ≤ wf , and a special up charge does not happen in an f -step. To show this bound
for a full up charge, assume for contradiction that wj > wf . This implies that j 6= f and,
since ToggleH scheduled f , we have dj > df . In particular j is pending at time t + 1. Thus
ws′ ≥ wj > wf ≥ wh/φ, contradicting the fact that t+ 1 is an e-step. Therefore the full charge
is wj ≤ wf , as claimed.

As wh ≤ φwf , the total charge to t is at most wf + wh/φ
2 ≤ wf + wf/φ = φwf .

Case 4: t is an f -step, t receives a regular back charge and no special back charge, and f = h.
The up charge is at most wh/φ by Lemma 3.2 and the back charge is at most wh, thus the total
charge is at most wh + wh/φ = φwh, and we are done.

Case 5: t is an f -step, t receives a regular back charge and no special back charge, and f 6= h.
Let t̄ be the step when the adversary schedules f . We distinguish two sub-cases.

Case 5.1: In step t̄, a packet of weight at least wh/φ is pending for the algorithm. Then the regular
back charge to t is at most wf−(wh/φ)/φ2 = wf−wh/φ3. As the up charge to t is at most wh/φ by
Lemma 3.2, the total charge to t is at most wh/φ+wf−wh/φ3 = wf+wh/φ

2 ≤ (1+1/φ)wf = φwf ,
and we are done.

Case 5.2: In step t̄, no packet of weight at least wh/φ is pending for the algorithm. In this case
we consider the charges to steps t and t+ 1 together. First, we claim the following.

Lemma 3.3. ToggleH schedules h in step t + 1. Furthermore, step t + 1 receives no special
charge and it receives an up charge of at most wh/φ

2.

Proof. Since f 6= h, we have f ≺ h and thus, using also the definition of t̄ and 4-boundedness,
t̄ ≤ df < dh ≤ t + 3. The case condition implies that h is not pending at t̄, thus ToggleH
schedules h before t̄. The only possibility is that ToggleH schedules h in step t+1, t̄ = df = t+2,
and dh = t+ 3; see Figure 1 for an illustration. This also implies that ToggleH marks h in step t.

7

We claim that ws′ < wh/φ. Indeed, otherwise either s′ is pending in step t+ 2, contradicting
the condition of Case 5.2, or ds′ = t+ 1 < dh, thus s′ is a better candidate for f ′ than h, which
contradicts the fact that the algorithm scheduled f ′ = h.

The claim also implies that h′ = h, as otherwise ws′ ≥ wh. Since h = h′ is scheduled in step
t+ 1, there is no marked packet in step t+ 2 and t+ 2 is an f -step; thus there is no special back
charge to t+ 1.

We note that step t+1 is also an f -step, since ToggleH schedules h in step t+1 and dh > t+1.
Since h′ = h is marked when step t+ 1 starts and ws′ < wh/φ, the reason that step t+ 1 is an
f -step must be that de′ > t+ 1.

There is no special up charge to step t+ 1 as it is an f -step. If the up charge to step t+ 1 is
a regular up charge, by definition it is at most wh′/φ

2 = wh/φ
2 and the lemma holds.

The only remaining case is that of a full up charge to step t+ 1 from a packet j′ scheduled by
the adversary in step t+ 1 and pending for ToggleH in step t+ 1. Since j′ 6= h, it is a candidate
for s′, and thus wj′ < wh/φ ≤ wf . The earliest-deadline property of the adversary schedule
implies that j′ ≺ f ; together with df = t+ 2 and wj′ < wf this implies dj′ = t+ 1. Therefore
wj′ < wh/φ

2, as otherwise j′ is a candidate for e′, but we have shown that de′ > t+ 1. Thus the
full up charge is wj′ < wh/φ

2 and the lemma holds also in the remaining case.

By Lemma 3.3, step t+ 1 receives no special charge and an up charge of at most wh/φ
2 and

ToggleH schedules h in step t+ 1. Step t+ 1 thus also receives a regular back charge of at most
wh. So the total charge to step t + 1 is at most wh/φ

2 + wh ≤ wf/φ + wh. Moreover, using
Lemma 3.2, the total charge to step t is at most wh/φ+wf . Thus, the total charge to these two
steps, where ToggleH schedules f and h, is at most (wh/φ+ wf) + (wf/φ+ wh) = φ(wf + wh).

In each case we have shown that a step or a pair of consecutive steps receive a total charge of
at most φ times the weight of packets scheduled in these steps. Thus ToggleH is φ-competitive
for the 4-bounded case.

4 An Algorithm for 2-Bounded Instances with Lookahead

In this section, we present an algorithm for 2-bounded PacketScheduling with 1-lookahead, as
defined in Section 2.

Consider some online algorithm A. Recall that, for a time step t, packets pending for A are
those that are released at or before time t and have neither expired nor been scheduled by A
before time t. Lookahead packets at time t are the packets with release time t+ 1. For A, we
define the plan in step t to be the optimal schedule in the time interval [t,∞) that consists of
pending and lookahead packets at time t and has the earliest-deadline property. For 2-bounded
instances, this plan will only use slots t, t+ 1 and t+ 2. We will typically denote the packets in
the plan scheduled in these slots by p1, p2, p3, respectively. The earliest-deadline property then
implies that if both p1 and p2 have release time t and deadline t+ 1 then p1 is heavier than p2.
A similar condition holds for p2 and p3.

Algorithm CompareWithBias(α). Fix some parameter α > 1. At any time step t, the
algorithm proceeds as follows:

let p1, p2, p3 be the plan at time t
if rp2 = t and wp1 < min(wp2 , wp3 ,

1
2α(wp2 + wp3))

then schedule p2
else schedule p1

8

Note that if the algorithm schedules p2, then p1 must be expiring, for otherwise wp1 > wp2
(by canonical ordering). Also, the scheduled packet is at least as heavy as the heaviest expiring
packet q, since clearly wp1 ≥ wq and the algorithm schedules p2 only if wp1 < wp2 .

Theorem 4.1. The algorithm CompareWithBias(α) is R-competitive for packet scheduling
on 2-bounded instances for R = 1

2(
√

13− 1) ≈ 1.303 if α = 1
4(
√

13 + 3) ≈ 1.651.

Let ALG be the schedule produced by CompareWithBias. Let us consider an optimal
schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical ordering, i.e., if a packet
x is scheduled before a packet y in OPT then either y is released after x is scheduled or x ≺ y.
Recall that we are assuming w.l.o.g. that the weights of packets are different.

The analysis of CompareWithBias is based on a charging scheme. First we define a few
packets by their schedule times, relative to some time t:

• e = packet scheduled in step t− 1 in ALG,
• f = packet scheduled in step t in ALG,
• g = packet scheduled in step t+ 1 in ALG,
• h = packet scheduled in step t+ 2 in ALG,
• i = packet scheduled in step t− 1 in OPT,
• j = packet scheduled in step t in OPT,
• k = packet scheduled in step t+ 1 in OPT,
• ` = packet scheduled in step t+ 2 in OPT.

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h

`

Figure 2: Packet definition.

Informal description of charging. We use three types of charges. The adversary’s packet j
in step t is charged using a full charge either to step t− 1 if ALG schedules j in step t− 1 or to
step t if wf ≥ wj (including the case f = j) and f is not in step t+ 1 in OPT; the last condition
assures that step t does not receive two full charges.

The second type are split charges that occur in step t if wf > wj , j is pending in step t in
ALG and f is in step t+ 1 in OPT, i.e., step t receives a full back charge from f . In this case, we
distribute the charge from j to f and another relatively large packet f ′ scheduled in step t+ 1
or t+ 2 in ALG; we shall prove that one of these steps satisfies 2α ·wj < wf + w′f . We charge to
step t+ 2 only when it is necessary, which allows us to prove that split-charge pairs are pairwise
disjoint. Also, in this case we analyze the charges to both steps together, thus it is not necessary
to fix a distribution of the weight to the two steps.

The remaining case is when wf < wj and j is not scheduled in t − 1 in ALG. We analyze
these steps in maximal consecutive intervals, called chains and the corresponding charges are
chain charges. Inside each chain we distribute the charge of each packet j scheduled at t in OPT
to steps t− 1, t and t+ 1, if these steps are also in the chain. The distribution of weights shall
depend on a parameter δ. Packets at the beginning and at the end of the chain are charged in a
way that minimizes the charge to steps outside of the chain. In particular, the step before a
chain receives no charge from the chain.

Parameters and constants. We set the parameter α and constants δ and R which we will
use in the analysis so that they satisfy the following equalities:

2− δ − R− 1 + 2δ

α
= R (1)

1− 2δ + 2αδ = R (2)

1 +
1

2α
= R (3)

9

ALG

t− 1 t

OPT j

j

a full back charge

ALG

t

OPT j

f

a full up charge

ALG

t t + 1

OPT j

f g ALG

t t + 1 t + 2

OPT j

f g h

a close split charge a distant split charge

f f

Figure 3: Non-chaining charges. Note that for split charges f is scheduled in step t+ 1 in OPT
which follows from the fact that we do not charge j using a full up charge.

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h ALG

t t + 1

OPT j

f g

a singleton chaina chain of length 3

Figure 4: On the left, a chain of length 3 starting in step t− 1 and ending in step t+ 1. The
chain beginning charges are denoted by dotted (blue) lines, the chain end charges are denoted
by gray lines and the forward charge from a chain is depicted by a dashed (red) arrow. Black
arrows denote the chain link charges. On the right, an example of a singleton chain, with the up
charge from a singleton chain denoted with a dashed (green) line and the forward charge from a
singleton chain denoted with a dotted (orange) line.

By solving these equations we get α = 1
4(
√

13 + 3) ≈ 1.651, δ = 1
6(5 −

√
13) ≈ 0.232, and

R = 1
2(
√

13− 1) ≈ 1.303. We will prove that the algorithm is R-competitive.
We also use the following properties of these constants:

2−R− 3δ = 0 (4)

2−R− 2δ > 0 (5)

1− δ − R− 1 + 2δ

2α
> 0 (6)

1− R

2α
> 0 (7)

3αδ < R (8)

2− R

α
< R (9)

where (4) follows from (1) and (2).

Notations and the charging scheme. A step t for which wf < wj and j is pending in step
t in ALG is called a chaining step. A maximal sequence of successive chaining steps is called a
chain. The chains with a single step are called singleton chains, the chains with at least two
steps are called long chains.

The pair of steps that receives a split charge from the same packet is called a split-charge
pair. The charging scheme does not specify the distribution of the weight to the two steps of the
split-charge pair, as the charges to them are analyzed together.

Packet j scheduled in OPT at time t is charged according to the first rule below that applies.
See Figures 3 and 4 for an illustration of different types of charges.

10

1. If j is scheduled in step t− 1 in ALG (that is, e = j), charge wj to step t− 1. We call this
charge a full back charge.

2. If wf ≥ wj and f is not scheduled in step t+ 1 in OPT (in particular, if j = f), charge wj
to step t. We call this charge a full up charge.

3. If wf > wj and at least one of the following holds (in both cases, p1 is the first packet in
the plan at time t):

• 2α ·wp1 < wf + wg, or
• g does not get a full back charge and 2α ·(wp1 − wg) < wf + wg,

then charge wj to the pair of steps t and t+ 1. We call this charge a close split charge.

4. If wf > wj , then charge wj to the pair of steps t and t+ 2. We call this charge a distant
split charge.

5. Otherwise step t is a chaining step, as wf < wj and ALG does not schedule j in step t− 1
by the previous cases. We distinguish the following subcases.

(a) If step t is (the only step of) a singleton chain, then charge min(wj , R ·wf) to step t
and wj −R ·wf to step t+ 1 if wj > R ·wf . We call these charges an up charge from
a singleton chain and a forward charge from a singleton chain.

(b) If step t is the first step of a long chain, charge 2δ ·wj to step t, and (1− 2δ) ·wj to
step t+ 1. We call these charges chain beginning charges.

(c) If step t is the last step of a long chain, charge δ ·wj to step t− 1, (R− 1 + 2δ) ·wf to
step t, and (1− δ) ·wj− (R−1 + 2δ) ·wf to step t+ 1. We call these charges chain end
charges; the charge to step t+ 1 is called a forward charge from a chain. (Note that
we always have (1− δ) ·wj > (R− 1 + 2δ) ·wf , since wj > wf and 1− δ = R− 1 + 2δ
which follows from (4).)

(d) Otherwise, i.e., if step t is inside a long chain, charge δ ·wj to step t− 1, δ ·wj to step
t, and (1− 2δ) ·wj to step t+ 1. We call these charges chain link charges.

To estimate the competitive ratio we need to show that each step or a pair of steps
does not receive too much charge. We start with a useful observation about plans of Al-
gorithm CompareWithBias(α), that will be used multiple times in our proofs.

Lemma 4.2. Consider a time t, where the algorithm has two pending packets a, b and a lookahead
packet c with the following properties: da = t, (rb, db) = (t, t+ 1), (rc, dc) = (t+ 1, t+ 2), and
wa < min(wb, wc). If the algorithm schedules packet a in step t then the plan at time t is a, b, c,
and 2α ·wa ≥ wb + wc.

Proof. We claim that there is no pending or lookahead packet q /∈ {b, c} heavier than a. Suppose
for a contradiction that such a q exists. Then a schedule containing packets q, b, c in some order
is feasible and has larger profit than a, b, c. This implies that the plan does not contain a and
thus a cannot be scheduled, contradicting the assumption of the lemma.

The schedule a, b, c is feasible and the claim above implies that it is optimal, thus it is
the plan. It remains to show that 2α ·wa ≥ wb + wc, which follows easily by a contradiction:
Otherwise 2α ·wa < wb + wc and CompareWithBias(α) would schedule b, contradicting the
assumption of the lemma.

11

Next, we will provide an analysis of full, split and chain charges, starting with full and split
charges. We prove several lemmas from which the analysis follows. We fix some time slot t, and
use the notation from Figure 2 for packets at time slots t− 1, t, t+ 1 and t+ 2 in the schedule
ALG of the algorithm and the optimal schedule OPT.

Analysis of full charges. Using Rules 1 and 2, if step t receives a full back charge, then
the condition of Rule 2 guarantees that it will not receive a full up charge. This gives us the
following observation.

Lemma 4.3. Step t receives at most one full charge, i.e., a charge by Rule 1 or 2.

Analysis of split charges. We now analyze close and distant split charges. The crucial
property of split charges is that, similar to full charges, each step receives at most one split
charge. Before we prove this, we establish several useful properties of split charges.

Lemma 4.4. Let the plan at time t be p1, p2, p3. If j is charged using a close or a distant split
charge, then the following holds:
(a) j is not scheduled by the algorithm in step t− 1, i.e., j is pending for the algorithm in step t.
(b) df = t+ 1 and f is scheduled in step t+ 1 in OPT (that is, k = f). In particular, step t

receives a full back charge.
(c) dj = t and wj ≤ wp1.
(d) p2 = f .

Proof. By Rule 1, packet j would be charged using a full back charge if it were scheduled in step
t− 1, implying (a). As j is charged using a split charge, we have wf > wj . Thus, f is scheduled
in step t+ 1 in OPT, since j is not charged using a full up charge, showing (b).

To show (c), note that if j is not expiring, then j and f would have equal deadlines. As
we also have wf > wj , f would be scheduled before j in OPT by the canonical ordering, a
contradiction. The inequality wj ≤ wp1 now follows from the definition of the plan.

It remains to prove (d). Towards contradiction, suppose that f = p1. We know that j is
expiring and thus it is not in the plan. If dp2 = t+ 1 then the optimality of the plan implies
wp2 > wj (otherwise j, f, p3 would be a better plan), so, since p2 is not in OPT, we could improve
OPT by scheduling f in step t and p2 in step t+ 1.

Next, assume that dp2 = t + 2. The optimality of the plan implies that wp2 > wj and
wp3 > wj . Since both p2, p3 have deadline t+ 2, at least one of them is not scheduled in OPT.
So OPT could be improved by scheduling f in step t and one of p2 or p3 in step t+ 1. In both
cases we get a contradiction with the optimality of OPT.

We show a useful lemma about a distant split charge from which we derive an upper bound
on wj , similar as the upper bound in the definition of close split charge.

Lemma 4.5. If j is charged using a distant split charge, then wg < wp3 where p3 is the third
packet in the plan at time t, and dg = t+ 1.

Proof. Suppose that wg ≥ wp3 . Then, from Lemma 4.4(d) and the choice of p2 = f in the
algorithm, we have that 2αwp1 < wp2 +wp3 ≤ wf +wg, so we would use the close split charge in
step t, not the distant one. Thus wg < wp3 , as claimed.

To prove the second part, if we had dg = t+ 2 then, since the algorithm chose g in step t+ 1
and also dp3 = t+ 2, we would have wg ≥ wp3 – a contradiction.

Lemma 4.6. If j is charged using a distant split charge, then 2α ·wj < wf +wh. (Recall that h
is the packet scheduled in step t+ 2 in ALG.)

12

Proof. Let p1, p2, p3 be the plan in step t. By Lemma 4.4(d) we have that f = p2. Thus
2α ·wp1 < wp2 + wp3 by the definition of the algorithm. By Lemma 4.4(c), j is expiring and
wj ≤ wp1 . As g 6= p3 by Lemma 4.5, the algorithm has p3 pending in step t+2 where it is expiring,
implying that wp3 ≤ wh. Putting it all together, we get 2αwj ≤ 2αwp1 < wp2+wp3 ≤ wf+wh.

For a split charge from j in step t, let t′ be the other step that receives the split charge from
j; that is, t′ = t + 1 for a close split charge and t′ = t+ 2 for a distant split charge. We now
show that split-charge pairs are pairwise disjoint.

Lemma 4.7. If j is charged using a split charge to a pair of steps t and t′, then neither of t
and t′ is involved in another pair that receives a split charge from a packet j′ 6= j.

Proof. No matter which split charge we use for j, using Lemma 4.4(b), step t + 1 does not
receive a split charge from k = f . By a similar argument, since j is not scheduled in step t− 1 in
ALG, step t does not receive a close split charge from the packet scheduled in step t− 1 in OPT.

It remains to prove that if j is charged using a distant split charge, then the packet `
scheduled in step t+ 2 in OPT is not charged using a split charge. (This also ensures that step t
does not receive a distant split charge from a packet scheduled in step t− 2 in OPT.)

For a contradiction, suppose that packet ` is charged using a split charge. Let p1, p2, p3 be
the plan in step t. Recall that g and h are the packets scheduled in steps t+ 1 and t+ 2 in ALG.

From Lemma 4.5, step t+ 1 does not receive a full back charge. Since we did not apply the
close split charge for j in Rule 3, we must have

2α(wp1 − wg) ≥ wf + wg ≥ wf . (10)

By Lemma 4.4(b) applied to step t + 2, we get dh = t + 3. Since dp3 = t + 2, we get
wp3 < wh. We now use Lemma 4.2 for step t+ 1 with a = g, b = p3, and c = h. We note that
all the assumptions of the lemma are satisfied: we have dg = t + 1, (rp3 , dp3) = (t + 1, t + 2),
(rh, dh) = (t+ 2, t+ 3), and wg < wp3 < wh. This gives us that 2αwg ≥ wp3 + wh > wp3 .

Since the algorithm schedules f = p2 in step t, we have 2αwp1 < wf + wp3 . Subtracting the
inequality derived in the previous paragraph, we get 2α(wp1 −wg) < (wf +wp3)−wp3 = wf – a
contradiction with (10). This completes the proof.

The lemmas above allow us to estimate the total of full and split charges.

Lemma 4.8. If j is charged using a split charge to a pair of steps t and t′, then the total of full
and split charges to steps t and t′ does not exceed R ·(wf + wf ′) where f ′ is the packet scheduled
in step t′ in ALG.

Proof. Each of steps t and t′ may receive a full charge, but each step at most one full charge
from a packet of smaller or equal weight by Lemma 4.3 and charging rules.

First suppose that we use a distant split charge, or we use a close split charge and 2α ·wp1 <
wf + wf ′ . Then we have 2α ·wj < wf + wf ′ by Lemma 4.6 for a distant split charge or by
wj ≤ wp1 from Lemma 4.4(c) for a close split charge. Thus the total of full and split charges to
steps t and t′ is upper bounded by

wf + wf ′ + wj < wf + wf ′ +
wf + wf ′

2α
=

(
1 +

1

2α

)
·(wf + wf ′) = R ·(wf + wf ′)

where we used (3) in the last step.
Otherwise, i.e., if we use a close split charge and 2α ·wp1 ≥ wf +wf ′ , then step t′ = t+ 1 does

not get a full back charge and we have 2α ·(wp1 − wf ′) < wf + wf ′ by Rule 3. By Lemma 4.4(c)
we have wj ≤ wp1 and 2α ·(wj − wf ′) < wf + wf ′ . Also, step t + 1 does not receive a full up

13

charge by Lemma 4.4(b). We thus bound the total of full and split charges to steps t and t+ 1
by

wf + wj < wf +
wf + (2α+ 1) ·wf ′

2α
=

(
1 +

1

2α

)
·(wf + wf ′) = R ·(wf + wf ′)

using (3) in the last step again.

Analysis of chain charges. We now analyze chaining steps starting with a lemma below
consisting of several useful observations. In particular, Part (c) motivates the name “chaining”
for such steps.

Lemma 4.9. If step t is a chaining step, then the following holds:
(a) dj = t+ 1,
(b) df = t.
Moreover, if step t+ 1 is also a chaining step, then
(c) j is scheduled by the algorithm in step t+ 1, i.e., g = j,
(d) 2α ·wf ≥ wj + wk (recall that k is the packet scheduled in step t+ 1 in OPT).

Proof. Recall that Algorithm CompareWithBias(α) never schedules a packet lighter than the
heaviest expiring packet. As in step t it schedules f with wf < wj (by Rule 5 for chain charges)
and j is pending (otherwise we use Rule 1), (a) follows. Furthermore, it follows that f is expiring
in step t, because otherwise the algorithm would schedule j (or another packet of weight at least
wj), since both would have the same deadline and j is heavier. Thus (b) holds as well.

Now assume that step t+ 1 is also in the chain and for a contradiction suppose that g 6= j.
Since j is expiring and pending for the algorithm in step t+ 1, we have wg > wj and wk > wg
as step t+ 1 is in the chain.

Summarizing, the algorithm sees all packets f, j, g, k in step t (some are pending and some
may be lookahead packets), and they are all distinct packets with wf < wj < wg < wk, df = t,
(rj , dj) = (t, t+1), and both g and k can be feasibly scheduled at time t+1. Thus, independently
of the release times and deadlines of g and k, the plan at time t containing f would not be
optimal – a contradiction. This proves that (c) holds.

Finally, we show (d). Since f is expiring in step t by (b) and both j and k are considered for
the plan at time t and satisfy (rj , dj) = (t, t+ 1), (rk, dk) = (t+ 1, t+ 2) by (a), wf < wj < wk,
we use Lemma 4.2 with a = f, b = j, and c = k and get the inequality in (d).

First we show that chaining steps does not receive charges of other types.

Lemma 4.10. If step t is a chanining step, then t does not receive a full charge or a split
charge.

Proof. By Lemma 4.9, f is expiring, thus step t does not receive a full back charge. As wj > wf ,
the step also does not get a full up charge or a split charge from step t. So it remains to show
that f does not receive a split charge.

First observe that step t cannot receive a close split charge from step t− 1 in OPT, because j
is pending in step t in ALG, while Lemma 4.4(b) states that a split charge from step t− 1 would
require j to be scheduled at time t− 1 in ALG.

Finally, we show that step t does not receive a distant split charge. For a contradiction,
suppose that step t receives a distant split charge from the packet x scheduled in step t − 2
in OPT. Let p1, p2, p3 be the plan in step t − 2. According to Lemma 4.4(d) and (b), p2 is
scheduled in step t−2 in ALG and in step t−1 in OPT. Moreover, by Lemma 4.4(c), x is pending
and expiring in step t − 2 and wp1 ≥ wx. As the algorithm scheduled p2 in step t − 2 we get
rp2 = t− 2 and wp1 < wp3 .

14

Observe that p3 is not scheduled in OPT, since it is expiring in step t and j is not expiring,
by Lemma 4.9(a). Thus we could increase the weight of OPT if we scheduled p2 in step t− 2
instead of x and p3 in step t− 1. This contradicts the optimality of OPT.

We now analyze how much charge does each chaining step get.

Lemma 4.11. If step t is a chaining step, then it receives a charge of at most R ·wf .

Proof. By Lemma 4.10, step t does not receive any full or split charges; therefore we just need
to prove that the total of chain charges to step t does not exceed R ·wf .

Case 1: t is the last step of a chain. If t is the only step in the chain then Rule 5a implies directly
that the charge to t is at most R ·wf . Otherwise, Lemma 4.9(c) implies that f is scheduled in
step t− 1 in OPT, and thus the charge from step t− 1 is (1− 2δ) ·wf . The charge from step t is
(R− 1 + 2δ) ·wf by Rule 5c. So the total charge is at most R ·wf .

Case 2: t is not the last step of a chain. Since step t+ 1 is also in the chain, by Lemma 4.9(c)
we have that j is scheduled in step t+ 1 in ALG and OPT has a packet k with wk > wj in step
t+ 1. From Lemma 4.9(d) we know that 2α ·wf ≥ wj + wk.

There are two sub-cases. If t is the first step of the chain, then the charge to t is at most

2δ ·wj + δ ·wk ≤ 3
2δ ·(wj + wk) ≤ 3αδ ·wf < R ·wf ,

where the last inequality follows from (8). Otherwise, using Lemma 4.9(c), f is scheduled in
step t− 1 in OPT, so the total charge to step t is at most

(1− 2δ) ·wf + δ ·wj + δ ·wk ≤ (1− 2δ) ·wf + 2αδ ·wf = R ·wf

where the last equality follows from (2).

Analysis of forward charges from chains. We now show that a forward charge from a chain
does not cause an overload on the step just after the chain which may also get both a full charge
and a split charge. (This is the only case when a step receives charges of all three types.)

For the following lemmas we assume that step t− 1 is a chaining step. Recall that i is the
packet scheduled in step t− 1 in OPT and e is the packet scheduled in step t− 1 in ALG. First,
we prove some useful observations.

Lemma 4.12. If step t receives a forward charge from a chain, then the following holds
(a) j 6= e (that is, j is not charged using a full back charge),
(b) wf ≥ wj,
(c) wf ≥ wi.
Moreover, if step t is not in a split-charge pair:
(d) j is charged using a full up charge to step t,
(e) step t does not receive a full back charge.

Proof. Part (a) holds because e is expiring in step t− 1, by Lemma 4.9(b). Part (b) follows from
(a) and the fact that step t is not chaining.

To show (c), Lemma 4.9(a) implies that di = t. Also, since i 6= e, i is pending in ALG in step
t. Now (c) follows, because each packet scheduled by the algorithm is at least as heavy as the
the heaviest expiring packet.

Part (d) follows from (a) and (b) and the assumption that t is not in a split-charge pair.
Part (e) follows from (d) and Lemma 4.3.

Note that f may be the same packet as i or j. We start with the case in which f is not in a
split-charge pair.

15

Lemma 4.13. If step t receives a forward charge from a chain C and t is not in a split-charge
pair, then the total charge to step t is at most R ·wf .

Proof. The proof is by case analysis, depending on the relative weights of j and e, and on
whether C is a singleton or a long chain. In all cases we use Lemma 4.12 and the charging rules
to show upper bounds on the total charge.

Case 1: wj < we.

Case 1.1: The chain C is long. The charge to step t is then at most

wj + (1− δ) ·wi − (R− 1 + 2δ) ·we < wj + (1− δ) ·wi − (R− 1 + 2δ) ·wj
= (2−R− 2δ) ·wj + (1− δ) ·wi
≤ (2−R− 2δ) ·wf + (1− δ) ·wf (11)

= (3−R− 3δ) ·wf = wf . (12)

To justify inequality (11), note that 2−R− 2δ ≥ 0 by (5) and 1− δ ≥ 0 by the choice of δ, so
we can apply inequalities wj ≤ wf and wi ≤ wf from Lemma 4.12(b) and (c). The last step (12)
follows from equation (4).

Case 1.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no forward
charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·wj ≤ wi ≤ wf ,

where in the last step we used Lemma 4.12(c).

Case 2: wj > we. We claim first that j is not expiring in step t, that is dj = t+ 1. Indeed, if we
had dj = t, then in step t− 1 the algorithm would have pending packets e and i, plus packet j
(pending or lookahead), that need to be scheduled in slots t− 1 and t. Since we < wi (because
step t− 1 is a chaining step) and we < wj (by the case assumption), packet e could not be in
the plan in step t− 1 which is a contradiction. Thus dj = t+ 1.

Recall that e is expiring in step t − 1 by Lemma 4.9(b) and both i and j are considered
for the plan in step t − 1. Moreover, we know that wi > we, wj > we, (ri, di) = (t − 1, t) (by
Lemma 4.9(a)), and (rj , dj) = (t, t+ 1). We thus use Lemma 4.2 for step t− 1 with a = e, b = i,
and c = j, to get that 2α ·we ≥ wi + wj .

Case 2.1: The chain C is long. The charge to step t is

wj + (1− δ) ·wi − (R− 1 + 2δ) ·we

≤ wj + (1− δ) ·wi − (R− 1 + 2δ) ·wi + wj
2α

=

(
1− R− 1 + 2δ

2α

)
·wj +

(
1− δ − R− 1 + 2δ

2α

)
·wi

≤
(

1− R− 1 + 2δ

2α

)
·wf +

(
1− δ − R− 1 + 2δ

2α

)
·wf (13)

=

(
2− δ − R− 1 + 2δ

α

)
·wf = R ·wf . (14)

To justify inequality (13), we note that 1− δ − (R− 1 + 2δ)/(2α) ≥ 0, by (6), so we can again
apply inequalities wj ≤ wf and wi ≤ wf from Lemma 4.12(b) and (c). In the last step (14) we
used equation (1).

16

Case 2.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no forward
charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·
wi + wj

2α

=

(
1− R

2α

)
·(wi + wj)

≤
(

1− R

2α

)
·(2wf) (15)

=

(
2− R

α

)
·wf < R ·wf . (16)

Inequality (15) is valid, because wi ≤ wf and wj ≤ wf , by Lemma 4.12, and 1 − R/(2α) ≥ 0
by (7). In step (16) we used (9).

We now analyze how the forward charge from a chain combines with split charges. First we
observe that only the first step from a split-charge pair may receive a forward charge from a
chain.

Lemma 4.14. If j is charged using a split charge to a pair of steps t and t′ (where t′ is t+ 1 or
t+ 2), then t′ does not receive a forward charge from a chain.

Proof. By Lemma 4.4(b) we have k = f , which implies that steps t and t+ 1 are not chaining
steps.

Lemma 4.15. If j is charged using a split charge to a pair of steps t and t′, f ′ is the packet
scheduled in t′ in ALG, and step t receives a forward charge from a chain C, then the total charge
to steps t and t′ is at most R ·(wf + wf ′).

Proof. First we note that j is expiring in step t by Lemma 4.4(c). Furthermore, i is expiring in
step t by Lemma 4.9(a) and f is not expiring in step t by Lemma 4.4(b), so f 6= i.

We claim wj < we. Indeed, if wj > we, then in step t− 1 the algorithm would have pending
packets e and i, plus packet j (pending or lookahead), that need to be scheduled in slots t− 1
and t. Since we < wi (because step t− 1 is a chaining step) and we < wj , packet e could not be
in the plan in step t− 1 which is a contradiction. Therefore wj < we.

Let p1, p2, p3 be the plan at time t. We split the proof into two cases, both having two
subcases, one for long chains and one for singleton chains.

Case 1: j is charged using a distant split charge or f ′ gets a full back charge.
We claim that 2α ·wi < wf + wf ′ . Indeed, since i is expiring and pending in step t by

Lemma 4.9(a), we have wi ≤ wp1 . As the algorithm scheduled f = p2 by Lemma 4.4(d), we get
2α ·wp1 < wf + wp3 . To prove the claim, it remains to show wf ′ ≥ wp3 .

If j is charged using a distant split charge, then by Lemma 4.5 we have wg < wp3 and in
particular, g 6= p3. Thus p3 is pending and expiring in step t+ 2, hence wp3 ≤ wf ′ . Otherwise, if
j is charged using a close split charge, then f ′ = g gets a full back charge. Hence df ′ = t+ 2.
Since also dp3 = t+ 2 and the algorithm chooses the heaviest such packet, we have wp3 ≤ wf ′ .

The claim follows, since

2α ·wi ≤ 2α ·wp1 < wf + wp3 ≤ wf + wf ′ . (17)

17

Case 1.1: The chain C is long. The total charge to steps t and t′, consisting of the full charge to
f , a possible full charge to f ′, the split charge, and the forward charge from the chain, is at most

wf + wf ′ + wj + (1− δ) ·wi − (R− 1 + 2δ) ·we
≤ wf + wf ′ + (2−R− 2δ) ·we + (1− δ) ·wi
< wf + wf ′ + (2−R− 3δ) ·wi + wi (18)

= wf + wf ′ + wi (19)

< wf + wf ′ +
wf + wf ′

2α
(20)

= R ·(wf + wf ′) .

We can use we < wi in (18), because 2 − R − 2δ ≥ 0 by (5). Equality (19) follows from
2−R− 3δ = 0 by (4) and inequality (20) from (17). In the last step we use (3).

Case 1.2: The chain C is singleton. We suppose that wi > R ·we, otherwise there is no forward
charge from the chain. We upper bound the total charge to steps t and t′ by

wf + wf ′ + wj + wi −R ·we ≤ wf + wf ′ + (1−R) ·we + wi

< wf + wf ′ + wi

< wf + wf ′ +
wf + wf ′

2α
(21)

= R ·(wf + wf ′) ,

where we apply Equation 17 in (21), and we use (3) in the last step.

Case 2: j is charged using a close split charge and f ′ = g does not get a full back charge. Observe
that in this case g does not receive any full charge as k = f is charged by a full back charge. We
have (i) 2α ·wp1 < wf + wg, or (ii) 2α ·(wp1 − wg) < wf + wg by the definition of the close split
charge. We suppose that we have (ii), since (i) is stronger than (ii).

Since i is expiring and pending in step t by Lemma 4.9(a), we have wi ≤ wp1 . Hence
2α ·(wi − wg) < wf + wg. This is equivalent to

wi <
wf + (2α+ 1) ·wg

2α
. (22)

Case 2.1: The chain C is long. The total charge to steps t and t′ = t+ 1 is

wf + wj + (1− δ) ·wi − (R− 1 + 2δ) ·we
≤ wf + (2−R− 2δ) ·we + (1− δ) ·wi
< wf + (2−R− 3δ) ·wi + wi (23)

= wf + wi (24)

< wf +
wf + (2α+ 1) ·wf ′

2α
(25)

= wf + wf ′ +
wf + wf ′

2α
= R ·(wf + wf ′) ,

We can use we < wi in (23), because 2−R− 2δ ≥ 0 by (5). Then we use 2−R− 3δ = 0 by (4)
in (24), Equation 22 in (25), and Equation 3 in the last step.

18

Case 2.2: The chain C is singleton. We again suppose that wi > R ·we, as otherwise there is no
forward charge from the chain. We upper bound the total charge to steps t and t+ 1 by

wf + wj + wi −R ·we ≤ wf + (1−R) ·we + wi

< wf + wi

< wf +
wf + (2α+ 1) ·wf ′

2α
(26)

= wf + wf ′ +
wf + wf ′

2α
= R ·(wf + wf ′) ,

where we apply (22) in inequality (26), and (3) in the last step.

We now summarize our analysis of CompareWithBias(α). If t is not in a split-charge pair,
we show upper bounds on the total charge to step t. For each split-charge pair (t, t′), we show
upper bounds on the total charge to both steps t and t′. This is sufficient, since split-charge pairs
are pairwise disjoint by Lemma 4.7, thus summing all the bounds gives the result in Theorem 4.1.

For each step t, we distinguish three cases according to whether t is in a split-charge pair
and whether t is a chaining step. In all cases, let f be the packet scheduled at time t in ALG
and let j be the packet scheduled at time t in OPT.

Case 1: Step t is not chaining and it is not in a split-charge pair. Then t receives at most one
full charge from a packet p such that wp ≤ wf (by Lemma 4.3 and charging rules) and possibly
a forward charge from a chain C; then Lemma 4.13 shows that the sum of a forward charge from
a chain and a full charge is at most R ·wf .

Case 2: Step t is a chaining step. Then it does not receive a split charge or a full charge, by
Lemma 4.10. Lemma 4.11 implies that step t receives a charge of at most R ·wf .

Case 3: (t, t′) is a split-charge pair, i.e., t is the first step of the split-charge pair and t′ = t+ 1,
or t′ = t+ 2. Thus j is charged using a split charge. Let f ′ be the packet scheduled in step t′ in
ALG.

By Lemma 4.14 step t′ does not receive a forward charge from a chain. If step t also does
not receive a forward charge from a chain, then the total charge to steps t and t′ is at most
R ·(wf + wf ′) by Lemma 4.8. Otherwise, step t receives a forward charge from a chain and we
apply Lemma 4.15 to show that the total charge to steps t and t′ is again at most R ·(wf +wf ′).

5 A Lower Bound for 2-bounded Instances with Lookahead

In this section, we prove that there is no deterministic online algorithm for PacketScheduling
with `-lookahead that has competitive ratio smaller than R := 1

2(`+1)(1 +
√

5 + 8`+ 4`2) for any
` ≥ 0, even for 2-bounded instances. We note that R > 1 for any ` ≥ 0, that R tends to 1 as `
goes to infinity, and that R is the positive root of the quadratic equation

(`+ 1)R2 −R− (`+ 1) = 0 . (27)

The idea of our proof is similar to the proof of the lower bound of φ for PacketScheduling [11,
2, 6] and, indeed, for ` = 0 our lower bound is equal to φ. For the case of 1-lookahead we obtain
a lower bound of 1

4(1 +
√

17) ≈ 1.281.

Theorem 5.1. Let ` ≥ 0 be an integer and R = 1
2(`+1)(1 +

√
5 + 8`+ 4`2). For each ε > 0, no

deterministic online algorithm for PacketScheduling with `-lookahead can be (R− ε)-competitive,
even for 2-bounded instances.

19

a0

1 2 3 4 5

b0,0
b0,1

a1
b1,0

b1,1

a2

r0 r1 r2

Figure 5: The instance for ` = 1 and k = n = 2. Each packet has a row which shows slots
between its release time and deadline. Packets from different phases are separated by a dashed
line.

Proof. Fix some online algorithm A and some ε > 0. We will show that, for some sufficiently
large integer n and sufficiently small δ > 0, there is a 2-bounded instance of PacketScheduling
with `-lookahead, parameterized by n and δ, for which the optimal profit is at least (R − ε)
times the profit of A.

Our instance will consist of phases 0, . . . , k, for some k ≤ n. The number k of phases is
determined by the adversary based on the behavior of A. Each phase (except phase n) will
involve `+ 2 packets. The weights of these packets will grow roughly exponentially from one
phase to next.

The adversary strategy is as follows. We start with phase 0. Suppose that some phase i,
where 0 ≤ i < n, has been reached. Let ri = (`+ 1)i+ 1 be the first slot of phase i. In phase i
the adversary releases the following `+ 2 packets:
• A packet ai with weight wi, release time ri and deadline ri, i.e., a tight packet.
• Packets bi,j for j = 0, . . . , ` with weight wi+1, release time ri + j and deadline ri + j + 1.

(The weights wi will be specified later.) Now, if A schedules an expiring packet in step ri (a tight
packet ai or bi−1,`, which may be pending from the previous phase), then the game continues;
the adversary will proceed to phase i + 1. Otherwise, the algorithm schedules packet bi,0, in
which case the adversary lets k = i and the game ends. Note that in steps ri + 1, . . . , ri + ` the
algorithm may schedule only bi,j (for some j) of weight wi+1. Also, importantly, in step ri the
algorithm cannot yet see whether the packets from phase i+ 1 will arrive or not.

If phase i = n is reached, then k = n, and in phase n the adversary releases a single tight
packet an with weight wn and release time and deadline rn. See Figure 5 for an illustration.

We calculate the ratio between the weight of packets in an optimal schedule and the weight
of packets sent by the algorithm. Let Sk =

∑k
i=0wi. There are two cases: either k < n, or

k = n.

Case 1: k < n. In all steps ri for i < k algorithm A scheduled an expiring packet of weight wi and
in step rk it scheduled packet bk,0 of weight wk+1. In steps ri+ 1, . . . , ri+ ` for i < k it scheduled
packets of weight wi+1. Finally, in phase k the algorithm scheduled `+ 1 packets of weight wk+1,
including bk,0. Overall, A scheduled packets of total weight Sk−1 + ` · (Sk−w0) + (`+ 1) ·wk+1 =
(`+ 1) · Sk+1 − wk − ` · w0.

The adversary schedules packets of weight wi+1 in steps ri, . . . , ri + ` for i < k and all
packets from phase k in steps rk, . . . rk + `+ 1. In total, the optimum has a schedule of weight
(`+ 1) · (Sk − w0) + wk + (`+ 1) · wk+1 = (`+ 1) · Sk+1 + wk − (`+ 1) · w0. The ratio is

Rk =
(`+ 1) · Sk+1 + wk − (`+ 1) · w0

(`+ 1) · Sk+1 − wk − ` · w0
.

20

Case 2: k = n. As before, in all steps ri for i < n algorithm A scheduled an expiring packet of
weight wi and in steps ri + 1, . . . , ri + ` for i < n it scheduled a packet of weight wi+1. In the
last step rn it scheduled a packet of weight wn as there is no other choice. Overall, the total
weight of the A’s schedule is Sn−1 + ` · (Sn − w0) + wn = (`+ 1) · Sn − ` · w0.

The adversary schedules packets of weight wi+1 in steps ri, . . . , ri + ` for i < n and a packet
of weight wn in the last step rn which adds up to (`+ 1) · Sn + wn − (`+ 1) · w0. The ratio is

R̂n =
(`+ 1) · Sn + wn − (`+ 1) · w0

(`+ 1) · Sn − ` · w0
.

We normalize the instances so that w0 = 1. It remains to show that we can set the weights
so that Rk ≥ R− ε for all k ≥ 0 and R̂n ≥ R− ε.

We first define a sequence of weights, parametrized by some parameter δ ≥ 0, such that
Rk = R for all k ≥ 1. Using wk = Sk − Sk−1 for k ≥ 1 and w0 = 1, the condition Rk = R for
k ≥ 1 is rewritten as

R =
(`+ 1) · Sk+1 + Sk − Sk−1 − (`+ 1)

(`+ 1) · Sk+1 − Sk + Sk−1 − `
,

or equivalently as

(`+ 1)(R− 1)Sk+1 − (R+ 1)Sk + (R+ 1)Sk−1 = `R− (`+ 1) . (28)

By (27) we get that (` + 1)(R − 1) = R/(R + 1) and similarly `R − (` + 1) = −R2/(R + 1).
Substituting and multiplying by R+ 1, we obtain that (28) is equivalent to

R · Sk+1 − (R+ 1)2Sk + (R+ 1)2Sk−1 = −R2 . (29)

To define our instance, we set w0 = 1 and for i = 1, 2, . . .,

wi = (γ + 1)αi−1(α− 1) + δ[βi−1(β − 1)− αi−1(α− 1)] ,

where

α = 1 +
1

R
=
R+ 1

R
, β = R+ 1, γ = R,

and δ > 0 is a parameter to be chosen later. Summing the geometric sequences in Sk =
∑k

i=0wi,
we obtain that, for k = 0, . . . , n,

Sk = (γ + 1)αk + δ(βk − αk)− γ . (30)

It can be verified that (29) holds and thus, for any choice of δ and any k ≥ 1, we have Rk = R.
In fact, (30) describes a general solution of the linear recurrence (29) that satisfies one initial
condition S0 = w0 = 1, as α, β are the two roots of Rx2 − (R + 1)2x+ (R + 1)2 which is the
characteristic polynomial of the recurrence, and S0 = S1 = · · · = Sn = −γ is a particular solution
of the recurrence; furthermore, for δ = 0 (30) gives a particular solution satisfying S0 = 1 and
changing δ does not change S0.

We now show that for δ = 0 the solution would satisfy R0 = R. We first calculate w1:

w1 = (γ + 1)(α− 1) = (R+ 1) · 1

R
= α .

By (27) we have (`+ 1)α = 1/(R− 1). Using this we can calculate R0 as

R0 =
(`+ 1)w1 + 1

(`+ 1)w1
= 1 +

1

(`+ 1)α
= R .

21

By continuity of the dependence of w1 and R0 on δ, for a sufficiently small δ > 0 we have
R0 ≥ R− ε. We fix such a δ > 0.

Since 1 < α < β, for n→∞, the dominating term in Sn is δβn and w0 is negligible compared
to Sn. Thus we obtain

lim
n→∞

R̂n = lim
n→∞

(`+ 1)Sn + Sn − Sn−1
(`+ 1)Sn

= lim
n→∞

(`+ 2)δβn − δβn−1

(`+ 1)δβn
=

(`+ 2)β − 1

(`+ 1)β
= R .

The last equality follows from (27). Actually, this is the equation that defines R as the optimal
ratio for our construction (if β is expressed in terms of R as the root of the characteristic
polynomial). Consequently, for some sufficiently large n, we have that R̂n ≥ R− ε. Fix this n.

Summarizing, we showed that for any ε > 0 the adversary can choose δ > 0 and n, and an
instance with up to n phases, such that for this instance we have R0 ≥ R − ε, Rk = R for all
k ≥ 1, and R̂n ≥ R− ε. This implies that the competitive ratio of A is at least R, completing
the proof.

6 A Lower Bound for Radomized Algorithms with Lookahead

In this section we consider arbitrary instances — without the s-bounded restriction. We show
that, somewhat counter-intuitively, it is not possible to achieve a competitive ratio arbitrarily
close to 1 by using sufficiently large lookahead. In fact, it is not possible to achieve ratio lower
than 1.25 even by a randomized algorithm against the oblivious adversary. Our argument is a
generalization of the one by Chin and Fung [6] for 2-bounded instances without lookahead.

Theorem 6.1. For any fixed ` ≥ 0, there is no better than 1.25-competitive randomized algorithm
with `-lookahead.

Proof. We use the easy direction of the Yao’s minimax principle for online algorithms (see
e.g. [4]). This principle states that the competitive ratio of a randomized algorithm on the
worst-case instance can be lower bounded by the performance of deterministic algorithms with
inputs drawn from a suitable probability distribution of instances. More precisely, suppose that
for each deterministic algorithm, its expected profit on an input drawn from this distribution is
at most 1/R of the expected optimal profit for the same distribution of the inputs. Then the
competitive ratio of every randomized algorithm is at least R.

Let n, k � ` be large integers. We define a set of n+ 1 instances as follows (each instance is
a set of packets, with each packet p specified by a triple (rp, dp, wp)):

J0 = {a0,m = (1, k, 1), b0,m = (1, 2k, 2) |m = 1, . . . , k},
Ji = Ji−1 ∪ {ai,m = (ik + 1, (i+ 1)k, 2i), bi,m = (ik + 1, (i+ 2)k, 2i+1) |m = 1, . . . , k}

for i = 1, . . . , n− 1,

Jn = Jn−1 ∪ {an,m = (nk + 1, (n+ 1)k, 2n) |m = 1, . . . , k} .

A span of a packet (rp, dp, wp) is defined as dp − rp + 1. Note that this equals the number of
slots where the packet can be scheduled, corresponding to the informal definition of span in
the introduction. Then, in words, in instance Ji, i = 0, . . . , n− 1, in step ik + 1 the adversary
releases k packets ai,1, . . . , ai,k of span k and k packets bi,1, . . . , bi,k of span 2k in addition to
packets from instance Ji−1. In instance Jn it additionally releases k packets an,1, . . . , an,k of
span k only. See Figure 6 for an example. For i = 0, . . . , n, we call the interval [ik + 1, (i+ 1)k]
of slots the i-th phase. Note that in each phase except the last one, pending packets are of two
types: lighter packets expiring in that phase and heavier packets expiring in the next phase.

22

We define the probability distribution of the instances Ji such that for i = 0, . . . , n − 1,
instance Ji is drawn with probability pi = 1/2i+1 and instance Jn is drawn with probability
pn = 1/2n. Clearly,

∑
i pi = 1.

First, we analyze the offline optimum profits. Observe that on instance Ji, i = 1, . . . , n−1, in
the j-th phase for j = 0, . . . , i− 1 the adversary schedules k heavier packets (of span 2k), which
are expiring in the next phase, while in each of the last two phases it transmits k packets expiring
in the phase. Thus its profit is OPT(Ji) =

∑i−1
j=0 k · 2j+1 + k · 2i + k · 2i+1 = k · (2i+2 + 2i − 2).

Similarly, it holds that OPT(Jn) =
∑n−1

j=0 k · 2j+1 + k · 2n = k · (2n+1 + 2n − 2). It follows that
the expected optimum profit is

E [OPT] =
n∑
i=0

pi · OPT(Ji) =
n−1∑
i=0

k · (2i+2 + 2i − 2)

2i+1
+
k · (2n+1 + 2n − 2)

2n

= k ·
n−1∑
i=0

(
2 +

1

2
− 1

2i

)
+ k ·

(
2 + 1− 1

2n−1

)
= k ·

(
5

2
n− 2 +

1

2n−1
+ 3− 1

2n−1

)
= k ·

(
5

2
n+ 1

)
.

Fix a deterministic algorithm ALG. To upper bound the expected profit of ALG, we first get
rid of the influence of lookahead, which affects its behavior only in the last ` steps in each phase.
Namely, we make the following assumption about the behavior of ALG on instance Ji without
loss of generality: For each phase j = 0, . . . , i − 1, in the last ` slots of the phase (when ALG
knows that more packets will arrive) ALG schedules packets not expiring in the j-th phase only,
i.e., the heaviest pending packets. Moreover, if i < n, in the last ` slots of the i-th phase (which
is the penultimate phase) it sends packets expiring in that phase only.

Let αi, i = 0, . . . , n− 1, be the number of lighter packets that the algorithm schedules in the
first k − ` slots of the phase. We get the following expressions of the algorithm’s profits on the
instances:

ALG(Ji) =
i−1∑
j=0

(
αj · 2j + (k − `− αj + `) · 2j+1

)
+ (αi + `) · 2i + k · 2i+1

=
i−1∑
j=0

(
k · 2j+1 − αj · 2j

)
+ αi · 2i + ` · 2i + k · 2i+1

≤ k · 2i+2 + ` · 2i −
i−1∑
j=0

αj · 2j + αi · 2i

ALG(Jn) =

n−1∑
j=0

(
αj · 2j + (k − `− αj + `) · 2j+1

)
+ k · 2n

=
n−1∑
j=0

(
k · 2j+1 − αj · 2j

)
+ k · 2n

≤ k · 2n+1 + k · 2n −
n−1∑
j=0

αj · 2j .

Our goal is to express E [ALG] =
∑

i pi · ALG(Ji). We now show that for any j = 0, . . . , n − 1
the coefficient of αj in E [ALG] is 0 by simply summing the coefficients of αj over all i in the
bounds on ALG(Ji) multiplied by pi. We note that αj appears with positive coefficient 2j in

23

J0

J1

J2

J3

Phase
0 1 2 3

Figure 6: An illustration of the lower bound of 1.25 with k = 2 and n = 3. The dotted vertical
lines split slots into phases.

the bound for ALG(Jj) and with negative coefficients −2j in the bounds for ALG(Ji) for all
i = j + 1, . . . , n− 1, n. We thus obtain that the sum is

2j

2j+1
−

n−1∑
i=j+1

2j

2i+1
− 2j

2n
= 0

It follows that

E [ALG] ≤
n−1∑
i=0

k · 2i+2 + `2i

2i+1
+
k · 2n+1 + k · 2n

2n

= k · n · 2 + ` · n · 1

2
+ k · 3 = k · (2n+ 3) + ` · 1

2
n .

We conclude that the ratio E [OPT]/E [ALG] tends to 1.25 if n and k go to infinity.

Note that in the case ` = 0 (i.e., no lookahead), we can choose k = 1 and then the construction
is the same as in [6].

References

[1] Susanne Albers. On the influence of lookahead in competitive paging algorithms. Algorith-
mica, 18(3):283–305, 1997.

[2] Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing policies for QoS
switches. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03),
pages 761–770, 2003.

[3] Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jiŕı Sgall, and Pavel Veselý. Online packet
scheduling with bounded delay and lookahead. In Proc. 27th International Symposium on
Algorithms and Computation (ISAAC’16), pages 21:1–21:13, 2016.

[4] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[5] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Jawor, Jǐŕı Sgall, and
Tomáš Tichý. Online competitive algorithms for maximizing weighted throughput of unit
jobs. J. of Discrete Algorithms, 4(2):255–276, 2006.

24

[6] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with partial job values: Does
timesharing or randomization help? Algorithmica, 37(3):149–164, 2003.

[7] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Improved online algorithms
for buffer management in QoS switches. ACM Trans. Algorithms, 3(4), 2007.

[8] Matthias Englert and Matthias Westermann. Considering suppressed packets improves buffer
management in quality of service switches. SIAM Journal on Computing, 41(5):1166–1192,
2012.

[9] Michael H. Goldwasser. A survey of buffer management policies for packet switches. SIGACT
News, 41(1):100–128, 2010.

[10] Edward F. Grove. Online bin packing with lookahead. In Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’95), pages 430–436, 1995.

[11] Bruce Hajek. On the competitiveness of on-line scheduling of unit-length packets with hard
deadlines in slotted time. In Proc. Conference on Information Sciences and Systems, pages
434–438, 2001.

[12] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM Journal on
Computing, 33(3):563–583, 2004.

[13] Koji M Kobayashi. An optimal algorithm for 2-bounded delay buffer management with
lookahead. arXiv preprint arXiv:1807.00121, June 2018.

[14] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet
scheduling with agreeable deadlines. In Proc. 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’05), pages 801–802, 2005.

[15] Rajeev Motwani, Vijay Saraswat, and Eric Torng. Online scheduling with lookahead:
Multipass assembly lines. INFORMS J. on Computing, 10(3):331–340, 1998.

[16] Pavel Veselý, Marek Chrobak, Lukasz Jeż, and Jǐŕı Sgall. A φ-competitive algorithm for
scheduling packets with deadlines. arXiv preprint arXiv:1807.07177, July 2018.

25

	Introduction
	Definitions and Notation
	An Algorithm for 4-bounded Instances
	An Algorithm for 2-Bounded Instances with Lookahead
	A Lower Bound for 2-bounded Instances with Lookahead
	A Lower Bound for Radomized Algorithms with Lookahead

