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Cooperation in Public Goods Games Predicts 

Behavior in Incentive-Matched Binary Dilemmas: 

Evidence for Stable Pro-Sociality 

 

Abstract 

We report the results of an experiment in which subjects completed second mover public 

goods game tasks and second mover binary social dilemma tasks. Each task was completed 

under three different incentive structures which were matched across tasks. The use of non-

linear incentive structures, along with a novel categorization method, allowed us to identify 

behavioral subtypes that cannot be distinguished using conventional linear incentive 

structures. We also examined how well behavior could be predicted across tasks. Subjects’ 

average conditional cooperation levels showed significant cross-task predictability and 

stability. However, almost a third of responses (28%) demonstrated unambiguous 

preference reversals across tasks. We argue that pro-sociality is best described as an 

individual-level trait, similar to risk aversion in choice under risk. (JEL Classifications: C7 

C91 H41) 

 

Keywords: Public Goods; Social Dilemmas; Cross-Task Prediction; Prisoner’s Dilemma; 

Stag Hunt; Cooperation 
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1.Introduction 

A key development in the study of cooperation has been the identification of 

behavioral subtypes. It has long been possible to categorize individuals as “cooperators” or 

“defectors” in terms of their performance on simple binary dilemma (BD) games such as the 

prisoner’s dilemma, where subjects explicitly choose between cooperation and defection 

within a standard game matrix. More recently, better than binary classification of individuals 

has been made possible by the use of public goods (PG) games which reveal the 

responsiveness of an individual’s contributions to the public good as a function of the 

contributions made by others to the same public good (see, e.g., Fischbacher, Gächter & 

Fehr 2001)1.  

        Two key questions are addressed here. The first concerns whether behavioral 

subtyping based on responses in one task can predict behavior on different tasks (e.g., 

whether cooperativeness on PG games predicts cooperativeness on BD games). Is 

“conditional cooperativeness” akin to a personality trait, i.e., a stable characteristic of an 

individual that governs their behavior across a wide range of contexts? Or do individuals 

apply such different strategies across tasks that it is not possible to use their behavioral 

subtype in a single task to predict their behavior in other tasks?  A behavioral subtyping that 

does not predict performance across economic games within the laboratory is unlikely to 

predict behavior outside the laboratory. Furthermore, comparisons between more closely 

controlled tasks may help to identify why results vary so substantially between different tests 

of lab to field generalizability (Camerer, 2011). 

        The second question is whether there are additional, or alternative, behavioral 

subtypes that are only apparent in PG games with non-linear incentive structures. Prior 

investigations have largely used the linear PG game. However, this approach is limited in the 

number of strategies it can identify because quite differently motivated strategies can 

produce identical patterns of behavior. Specifically, “free-riders” are defined as individuals 

who contribute zero to the public pot regardless of the amount being contributed by other 

players. These individuals are often interpreted as payoff-maximizers, because the dominant 

strategy for a self-interested individual in the linear PG game is to contribute nothing 

regardless of others’ contributions2. However, zero contribution could alternatively reflect 

strategies of non-investment or non-engagement with the market. Similarly, it is unclear 

                                                           
1 For reviews, see, e.g., Ledyard (1994) and Chaudhuri (2011). 
2 An additional point contributed to the public pot gives a return less than that from keeping it in the 
private account, regardless of the other players’ contributions. 
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whether conditional cooperators imitate other players or whether they base their decisions 

on some mix of factors such as equality of contribution, equality of outcome, and total group 

payout.  

To address our two key questions we develop a novel within-subjects methodology in 

which individuals complete PG and BD tasks with the same three incentive structures being 

used in both tasks. Prior studies on the cross-task stability of social preferences have led to 

mixed conclusions. This is particularly true when comparing pro-social behavior in laboratory 

tasks to behavior in the real world. Some studies find significant correlations (Camerer, 

2011; Dai, Galeotti, & Villeval, 2016; Karlan, 2005; Normann, Requate, & Waichman, 2014), 

but others report remarkably robust null effects across a wide range of tasks and measures 

(Carpenter & Seki, 2011; Galizzi & Navarro-Martinez, 2018; Stoop, Noussair, & van Soest, 

2012). In many studies that do report a significant relationship, the correlation is often 

noticeably smaller than test-retest correlations when an individual completes the same task 

multiple times. Overall, the results suggest that many unidentified factors affect responses 

and measured pro-sociality (Fehr & Leibbrandt, 2011; Lamba & Mace, 2011).  

However, it is not straightforward to identify specific features of study designs that 

could explain why some studies show an effect whilst others do not. This is largely because 

the many differences between the tasks used in the various studies make it impossible to 

determine the effect of each. Consider, for example, Stoop et al., (2012) which compares 

behavior in cooperation tasks in an abstract lab setting to behavior in comparable field 

studies at a recreational fishing pond. These authors find cooperation in the lab, but virtually 

none in the field, and convincingly demonstrate that this contrast is driven by task 

differences rather than population differences. However, identifying the mechanism 

underpinning the task effect is impossible, due to the many differences which could account 

for (or significantly contribute towards) the difference in cooperation. For example, social 

considerations (real or perceived) may have been more salient in the field because a subject 

can more immediately see who else is fishing in the pond, with potential perceived 

reputational costs. There are likely to be diminishing returns to catching fish, since subjects 

were required to take their catch home or dispose of it. Importantly for our own design, it is 

difficult to identify how well the incentives matched across tasks, since the utility of catching 

a fish is likely to vary substantially between subjects in a way that is not true for the money 

received in financial tasks. Stoop at al. made an impressive attempt to control for, or 

address, as many potential differences as possible. However, in this and other field studies, 

the differences in framing and incentives will be multi-faceted, and all but impossible to 

define comprehensively. 
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Although we focused on the example of Stoop et al., (2012) similar issues apply 

more generally across laboratory and field experiments. The potential for real or perceived 

social pressures and reputational effects will often differ between studies, or between tasks 

within a study. The immediacy or depth of social interactions will typically be different in 

computerized tasks compared to physical or verbal interactions in tasks in the field. Even the 

physical effort required to complete the tasks may differ. Undoubtedly, studies in the field 

generate insights that are valuable in their specific contexts, but due to the proliferation of 

differences discussed above, trying to identify the common causes of behavioral patterns will 

at best be a long and inefficient process. The potential variation in incentives, framing, and 

subject perceptions are simply too large. To address this, others have used entirely 

laboratory-based studies. Even in these studies, however, the evidence for  cross-task 

predictability is mixed.  

For example, Blanco et al. (2011) examined inequity aversion (Fehr & Schmidt, 

1999) using four different tasks: an ultimatum game, a PG game, a dictator game, and a 

sequential prisoner’s dilemma game. They found that the majority of players did not behave 

consistently across the different games in the way predicted by the inequity aversion model. 

There were, however, correlations across games — for example, individuals’ sequential 

prisoner’s dilemma second mover-decisions were correlated with their offers in the ultimatum 

game. 

In a detailed analysis of the evidence for the inequity aversion model, Binmore and 

Shaked (2010) concluded that the cross-task predictive power of the model had not been 

established; i.e. it is not clear that parameters estimated from behavior on one task can be 

used to predict behavior on another (but for discussion, see Binmore & Shaked, 2010; 

Gintis, 2010). Even if payoff structures are identical, the level of cooperativeness may differ. 

For example, a number of studies have found greater cooperativeness in public goods 

games than in common pool resource games3, despite suggestions that the games are 

strategically equivalent (Ledyard & Palfrey, 1995). In contrast, other studies have found that 

overall levels of cooperation over repeated games are qualitatively similar when payoffs are 

equivalent across these tasks (Apesteguia & Maier-Rigaud, 2006), with results depending on 

experimental parameters (Kingsley & Liu, 2014). However, such studies have not examined 

the strategies employed by the same subjects in different tasks. This is particularly important 

due to the strong evidence of large individual differences in cooperation and strong 

behavioral subgrouping (Fischbacher, Gächter, & Fehr, 2001).  

                                                           
3 Perhaps because of “warm glow” effects (Andreoni, 1995). 
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Here, we present a strategy that addresses all of the issues outlined above. We 

present a within-subject methodology that maintains the same financial incentive structure 

across two different lab tasks. This allows us to examine the extent to which cooperation can 

be generalized across different task frames and incentive structures. By allowing such a high 

level of control, this paradigm also presents a starting point from which the effect of specific 

experimental manipulations can be unambiguously measured. 

 We directly assess cross-task predictability and the effect of incentive structure. 

Subjects completed an experiment with two sections — a PG section and a BD section, and 

within these sections completed first and second mover responses. We focus on the second 

mover responses. For the PG games we adopted the strategy game methodology (“P-

game”) used in Fischbacher, Gächter and Fehr (2001; see also Selten 1967). Subjects 

stated their conditional contribution in response to all possible integer values of the mean of 

others’ contributions (0 – 20). Subsequently they provided their first mover contribution (as in 

a “C-game”). The PG section included three versions of the game, each with a different 

incentive structure. The same three incentive structures were included in the BD section, as 

well as a fourth incentive structure used to test for violations of dominance. The incentive 

structures were chosen to correspond to three common binary dilemmas: prisoner’s 

dilemma, stag hunt and hawk-dove. In the PG task this correspondence was achieved by 

transforming the group summed contributions into the shared payoff from the public good 

according to either a linear, convex, or concave function (see below for details). The use of 

quadratic functions (following Isaac & Walker, 1988, Keser, 1996, Sefton & Steinberg, 1996, 

and others) also allowed us to examine whether there are subtypes of individuals that cannot 

be identified using only the linear structure. When responding to the BD, subjects answered 

both as first mover and second mover in all incentive structures. In the second mover case, 

subjects were told the other player(s) had chosen to cooperate. Our experiment exploits the 

equivalence between incentives in these second mover choices and in the PG strategy task. 

Our principal findings are as follows. First, using a novel categorization method we 

grouped subjects into three behavioral subtypes in the PG game: 69% of subjects were 

conditional cooperators; 11% were payoff-maximizers, and 20% were non-contributors. 

Second, both payoff-maximizers and conditional cooperators were sensitive to the incentive 

structure of the PG game, although the effect was by definition smaller for those who were 

categorized as conditional cooperators. Only 9% of subjects exhibited a pure matching 

strategy (i.e. contributed the same amount as other players, regardless of the incentive 

structure). We also found evidence for cross-task stability: Cooperativeness in binary social 

dilemmas was significantly predicted by parameters describing an individual’s behavior in 

the PG games. Furthermore, this predictive accuracy was independent of incentive structure, 
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with predictive power no better within an incentive structure than between. We interpret this 

as evidence for pro-sociality as a stable trait that influences responses under all incentive 

structures. However, subjects also demonstrated variability across tasks. A substantial 

minority of individuals exhibited preference reversals between PG and BD, even when 

incentive structures were held constant (e.g. an individual cooperated in a BD but 

contributed little or nothing in the equivalent PG). 

The remainder of the paper is structured as follows. In section 1.1, we describe the 

incentive structures and show how they can be varied in PG games to be made equivalent to 

the incentive structures of prisoner’s dilemma, stag hunt, and hawk-dove games, while also 

allowing us to distinguish between the different possible strategies being used by non-

investors and by conditional cooperators. The experimental design is described in section 2, 

and results are reported in section 3. Section 4 concludes. 

1.1 Incentive Structures 

As set out by Ledyard (1994), any public goods game environment can be described 

as follows. Each agent, 𝑖 = 1, … , 𝑁 in the group holds an endowment, 𝑧𝑖. The PG is 

produced from contributions out of this endowment, according to some function 𝑦 = 𝑔(𝑡) 

where 𝑡 represents the part of the initial endowments that group members contribute. The 

rest (𝑥𝑖) is retained, so that 𝑡 =  ∑ (𝑧𝑖 − 𝑥𝑖)𝑁
𝑖=1 . The group’s outcome is then 𝑎 =

(𝑦, 𝑥1, … , 𝑥𝑁). Each individual is assumed to derive utility from the PG and from their own 

private good, according to some function 𝑈𝑖(𝑦, 𝑥𝑖). The total payoff for each participant is 

typically given by 𝑥𝑖 +
𝑦

𝑁
. 

Some of these parameters were fixed for this study. 𝑁 = 4 in all PG games, and 𝑧𝑖 =

20 for all participants in each game. The functional form taken by 𝑔(𝑡) is specified as 𝑔(𝑡) =

(𝛼𝑡)𝛽 where 𝛼 and 𝛽 are varied to generate the linear, convex and concave incentives. In 

the linear form of the PG game, 𝛽 = 1 to generate linearity, and 𝛼 > 1 to provide the tension 

between private and social incentives4. To generate convexity 𝛽 > 1; and for concavity, 𝛽 < 

1. 

These incentive structures generate different second mover best-response functions 

under the assumption of payoff maximization. The payoff function for an individual can be 

summarized as 

                                                           
4 That is, while the dominant strategy (and therefore the Nash Equilibrium) is to contribute no points to 
the PG, the Pareto Efficient outcome is for everybody to contribute all twenty points. 
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𝜋𝑖 = 20 − 𝑡𝑖 +
1

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽
      (1) 

𝑇𝐽 is the sum of the other 3 players’ contributions. Differentiating equation (1) with 

respect to 𝑡𝑖 gives the result that contributing an additional point to the public pot increases 

one’s own payoff as long as 

1 <
𝛼𝛽

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽−1
       (2) 

Where 𝛽 = 1, the condition in (2) simplifies to contribution whenever 1 <
𝛼

4
, a fixed 

condition that, with 𝛼 = 1.4, is never satisfied. This generates the boundary solution where 

zero contributions are always the best response to any level of others’ contribution. 

In the convex case with 𝛽 > 1, the benefit from contributing an additional point 

increases in both 𝑇𝐽 and 𝑡𝑖. The more that has been contributed, the more valuable is an 

additional contribution. Substituting in the numbers used in this study, with 𝛼 = 0.07 and 𝛽 =

3, the threshold amount in the pot for which the value of an additional contribution exceeds 1 

is 62.35 points. 

In the concave case with 𝛽 < 1, the benefit from contributing an additional point 

decreases in both 𝑇𝐽 and 𝑡𝑖. The more that has been contributed, the less valuable is an 

additional contribution. The concave case employed in this study uses 𝛼 = 800 and 𝛽 = 0.4, 

and an additional point contributed to the public pot generates additional private return only 

when the total contributions are zero or 1 (the threshold is 1.85). Therefore, except when 

others contribute nothing, there is no payoff maximizing incentive to contribute to the PG in 

the concave case. The workings are provided in Appendix A. 

So far, the focus has been on the PG incentive structures. But in order to explore the 

consistency of behavior across contexts, it is necessary to create scenarios that are 

equivalent in terms of their payoffs, but different in their framing. To do this, we make use of 

a little-recognized theoretical observation. Specifically, variants of the standard PG and BD 

tasks can be created such that the payoff structures are equivalent across the two task 

formats at particular levels of PG contribution (see Kollock, 1998, for a discussion along 

similar lines). Any strategy that relies solely on the payoffs (of the respondent and/or of the 

other players) will therefore lead to the same levels of cooperation across task formats.  

To understand how the payoff-equivalence is constructed, first consider the one-shot 

linear PG task (“C-game”) with a total of four players. In each round, 𝑡𝑖 ∈ [0,20] , so the 

decision maker contributes any number of points between 0 and 20, knowing that the 
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average of others’ contributions will also be between 0 and 20. Consider instead a case 

where the decision maker’s choice set is limited to two possible contributions; e.g. 𝑡𝑖 ∈

{5,20}. If all players face the same restricted choice5, the PG game reduces to a BD between 

cooperating (by contributing 20) and defecting (by contributing 5). This is illustrated in the 

leftmost panel of Figure 1.6 The points marked on the pot payout functions show the possible 

combinations of cooperation and defection when the PG game is reduced to the {5,20} 

binary dilemma described above. For example, the leftmost highlighted point shows the 

result of the Player and the Others all defecting, resulting in a pot of 20 and a pot payout of 

28. The rightmost highlighted point shows the result of Player and Others all cooperating, 

with pot size 80 and pot payout 112. The four highlighted payoffs from these cooperate-

defect choices form the prisoner’s dilemma shown in panel a of Figure 2 (for a 2 player 

version) and Figure 3 (for a 4 player version). We are not the first to notice this equivalence, 

which is clearly set out in Hauert and Szabo (2003) and discussed in some detail by 

Conybeare (1984), but we are the first to use the equivalence to test consistency of behavior 

within-subjects across task frames.  

Similar equivalences can be constructed for stag hunt games and for hawk-dove 

games. In a PG game where the transformation determining the public good payoff is 

convex in summed contributions, the benefit from contributing an additional point to the 

public pot increases in the average of others’ contributions. When reduced to a binary choice 

between cooperation (contribute all) and defection (contribute nothing), the choice is 

equivalent to the stag hunt dilemma in panel c of Figures 2 and 3. This is illustrated in the 

context of the public goods game in the rightmost panel of Figure 1. If the payoff 

transformation is concave, as in the middle panel of Figure 1, the benefit of contributing an 

additional point to the public pot declines with the average of others’ contributions. This can 

be reduced to the hawk-dove BD shown in panel b of Figures 2 and 3, where the best 

response is to defect when the other player(s) cooperate, but cooperate when the other(s) 

defect. 

FIGURE 1 

                                                           
5 The methods section details how a group would decide. 
6 The incentive structures and payoffs shown in this figure are those used in our experiment. 
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Figure 1 Three Incentive Structures in Public Goods and Binary Dilemmas. The points marked on the pot payout functions 

show the possible combinations of cooperation and defection when the PG game is reduced to the binary dilemmas. 

 

One difference between the PG game and the classic BD games is the number of 

other players. In the BD the decision maker typically faces just one other player instead of 

three others. To account for this, our design features 2-player and 4-player versions of the 

binary dilemmas. Table 1 and Table 2 give the payoffs for the 2-player and 4-player BD 

games, respectively.  

FIGURE 2 

 

Figure 2 Payoff matrices for all binary dilemmas with one other player. 

 

FIGURE 3 

 

Figure 3 Payoff matrices for binary dilemmas with three other players. 

 

The Nash equilibria for the binary dilemmas with two players are as follows. The 

prisoner’s dilemma has a single Nash Equilibrium (NE) of {D,D} despite the efficient outcome 

being {C,C}. This captures the private – social tradeoff and reflects the structure of the linear 

PG game. The hawk-dove has two pure strategies NE, {C,D} and {D,C}. That is, one should 
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defect if the other cooperates and vice versa. This logic is reflected in the concave PG 

game. There also exist two pure strategies NE for the stag hunt: {C,C} and {D,D}, reflecting 

the increasing returns to contributions in the convex incentive structure of the PG game.  

Turning to the 4 player versions, the structure is that a single player is facing a group 

of three others who will vote on their preferred outcome. The NE are equivalent to those for 

2-players for the concave and convex versions. However, it is not possible to select values in 

the prisoner’s dilemma (linear case) with 3 other players that produce the incompatibility 

between payoff maximization and socially optimal outcomes, since the requirement that the 

other players divide the payoff by 3 precludes this. Therefore the NE for the 4 player version 

of the prisoner’s dilemma is {D,C}. The ‘group of others’ has a dominant strategy to 

cooperate regardless of the single player’s behavior. While this clearly changes expectations 

about others’ behavior, relevant for the first mover choice, it does not change the fact that 

the single player’s own dominant strategy is to defect. In our experiment we exploit the 

equivalence between second mover BD tasks and ‘second mover’ responses elicited 

through the strategy version of the PG game. 

2. Methods 

2.1 Overview 

The experiment was divided into two sections: a PG section (including both P- & C-

games) and a BD section. Each section included sets of questions implementing the three 

different incentive structures introduced above. Subjects answered all questions in both 

sections. The order of the sections and of the question sets within each section were 

randomized for each subject. 

2.2 Public goods game  

The PG section included three sets of questions. In each set we implemented one of 

the three incentive structures outlined above. Subjects were informed that they were part of 

a group of 4 players. Each player was endowed with 20 points and they allocated as many of 

them as they wished to the public pot.7 Points in the public pot were transformed into the 

“pot payout” according to the formula in equation (1). The pot payout was shared equally 

between the four group members. Each individual’s payoff was therefore the total of the 

points they did not contribute and their share of the pot payout. The payoff for player 𝑖 is 

                                                           
7 Points were converted to GBP at a rate of 20 points to £1.00, for the question selected to be played 
out. 
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summarized in equation (3), where 𝜋𝑖 is the payoff for player 𝑖 given a contribution of 𝑡𝑖, N is 

the total number of players, and total contributions are  ∑ 𝑡𝑖𝑁
𝑖=1 . 

                               𝜋𝑖 = 𝑧𝑖 − 𝑡𝑖 + 
1

𝑁
(𝛼 ∑ 𝑡𝑖𝑁

𝑖=1 )𝛽     (3) 

As described previously, the pot payout was a linear, concave or convex transformation of 

summed contributions as determined by the parameters 𝛼 and 𝛽. In the linear case 𝛼 =1.4 

and 𝛽 = 1; in the convex case 𝛼 = 0.07 and 𝛽 = 3; and in the concave case 𝛼 = 800 and 𝛽 = 

0.4.8  

To communicate the incentive structures in an intuitive way we developed an 

interactive computer interface in which the relationship between the groups’ contributions to 

the pot and the pot payout was plotted graphically, as shown in Figure 4. The subject could 

use a slider to change the level of summed contributions to the pot, and the program 

reported the corresponding pot payout, as well as the respondent’s own share of the pot 

payout. The amounts updated in real time as the slider was moved along. We ensured that 

respondents familiarized themselves with the slider by requiring them to fill in worked 

examples for each of the three incentive structures. We measured whether subjects 

understood the task by requiring them to answer a number of example questions before 

progressing to the main task.  

FIGURE 4 

                                                           
8 These parameters were chosen to produce the same incentive structure in the PG and BD tasks as 
outlined above (Figure 1).   
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Figure 4 An example of the experiment interface for the PG task with the concave incentive structure plotted graphically. 

Moving the slider would update the numerical values displayed underneath in real time. 

 

Next, subjects completed three sets of questions (one for each incentive structure). 

Each set included a P-game (Fischbacher et al., 2012), in which subjects were asked how 

many points they would contribute if they knew that the other players were going to 

contribute an average of X points. Responses were elicited for all possible integer values of 

X (0 through 20). These form the ‘second mover’ responses used for the main analyses. 

Subjects then completed a C-game, reporting how many points they would contribute if they 

did not know how many the other players were going to contribute. Finally (following, e.g., 

Fischbacher et al., 2012), subjects were asked what they expected the other player(s)’ 

average first mover contribution to be.  
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2.3 Binary games  

The binary games were based on four incentive structures: the three structures 

outlined above plus an incentive structure with transparent dominance and no conflict 

between individual and collective welfare. The latter was included as a check that 

respondents were paying attention and understood the task. For each of the four incentive 

structures subjects provided first mover responses against one other person (Figure 2), first 

mover responses against three other people (Figure 3), second mover responses against 

one other person and second mover responses against three other people. When playing 

against three others, subjects were told that the three other people would all independently 

choose their favored response and that the majority choice would be played. 

FIGURE 5 

 

Figure 5 Binary choice as displayed to subjects (example, second mover), with “your points” displayed using green, and 

“their points” displayed using blue. This example is from the information screen and these specific payoffs were not used in 

any of the real tasks. 

 

The dilemmas were presented in a grid, with different colors used to represent the 

payoffs for self and other(s). This presentation was supplemented by a written description of 

what the payoffs to the respondent and to the other player(s) would be for all four potential 

outcomes in that dilemma. There were two information screens: one for the choices where 

the subject faced one other player, and one for the choices where the subject faced three 

other players. After each information screen, the subject made their choices (as first and 
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second mover under each of the four incentive structures9). For the first mover choice, the 

subject chose between Top (cooperate) and Bottom (defect). The second mover choice was 

also presented as a decision between Top and Bottom, but this time in the knowledge that 

the other player(s) would choose Left. To make this clear, the irrelevant column of the table 

was covered with a translucent grey overlay (Figure 5). The order of blocks (1 other then 3 

other or vice versa) was randomized between subjects, and the order of the four incentive 

structures within each of these blocks was also randomized. Each first mover question was 

always immediately followed by the relevant second mover question. 

The task was incentivized by informing players that one question would be selected 

at random for each individual. This could be any of the choices from the first or second 

mover responses from either the PG or the BD tasks. If a PG task was selected, three other 

subjects were chosen at random to provide the “others”’ responses. If the subject’s role was 

as first mover, then their unconditional estimate was averaged with those of two others to 

generate the average contribution which was then rounded. The fourth player’s conditional 

contribution was used to complete the public pot. If their role in the PG task was second 

mover, the (rounded) average of the other three players’ unconditional contributions was 

used, and the subject’s relevant conditional cooperation amount was used to complete the 

public pot.  

If a BD task was selected with 1 other player and the role of second mover was 

selected there was no need to use the responses of any other player, and the subject simply 

received the relevant payout. If in this task, the role of first mover was selected, then another 

subject was chosen at random and their first mover response was used as the other player 

choice. If a BD task was selected with 3 other players, then this could not be properly 

incentivized using subjects from within this task, as none completed a voting task (which 

forms the responses of the others in the 3-other condition). Therefore, an auxiliary study was 

conducted where subjects were told they were one of three individuals voting for the BD 

choice10. Three subjects from this auxiliary task were selected to provide the votes in the BD 

with 3 others. 

                                                           
9 Although we refer to the choices as first and second mover, this does not imply that the choices 
were all sequential, with one person always choosing first then the second choosing based upon their 
response. These terms were never used in the task instructions or procedure. Subjects were told the 
two cases represented situations where no players knew what the other(s) would choose, and times 
where they already knew what the other player(s) would do. 
 
10 A total of 11 new subjects were recruited from the same prolific academic subject pool as the main 
study. These subjects were told that at the end of the study a random number between 1 and 10 
would be selected. If the number was 10 then one of the questions would be picked and played for 
real. No subject got a number of 10. 
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The experiments were programmed online using Qualtrics, and JavaScript was used 

for the interactive displays. All 117 subjects in the main experiment, and the additional 11 

subjects filling the role of the “others” in the binary dilemma section, were recruited through 

Prolific Academic and completed the experiment over the internet. Ethical approval was 

granted by the University of Warwick Humanities & Social Sciences Research Ethics 

Committee. Subjects in the main experiment received a fee of £6 for participating in addition 

to earnings based on their choices in the experiment. Points were converted into money at a 

rate of 5 pence (0.05 GBP) per point, and subjects’ choice-dependent earnings ranged from 

£0 to £4.50. Payment amounts were calculated and paid as soon as all data collection was 

complete. The mean earnings were £7.46 in total. Subjects in the short auxiliary experiment 

were paid £1.50 for participating in addition to having a 1 in 10 chance of receiving a reward 

based on their choices. 

3. Results 

3.1 Exclusions 

We report the full results here using responses from all subjects who provided a 

response for every question (as a result, only three subjects were excluded).  There are of 

course many reasonable criteria upon which one could exclude subjects from the analysis. 

We take a default approach of reporting analyses using the full set to ensure maximum 

openness and prevent any danger of selective exclusions driving significant results or of 

particular criteria potentially excluding subjects employing unusual strategies. However, for 

all of the reported analyses a parallel analysis has been performed upon a subset of 

subjects selected using deliberately conservative inclusion criteria. An individual was 

excluded from this subset if they chose the dominated option in any of the 4 binary dilemmas 

with the transparent dominance incentive structure, or if they began the main experiment 

without having answered all practice questions correctly. This resulted in 37 subjects being 

excluded. The qualitative result remains the same in all analyses, and quantitative 

differences are also small (e.g. 26% overall preference reversal, as opposed to 28% in the 

full sample).  

3.2 Categorizing individuals by “traditional types” in the PG game 

We begin by replicating Fischbacher et al.’s (2012) categorization, which we will refer 

to as the “traditional type” categorization. This method relies solely upon responses in the 

PG game with a linear incentive structure. Individuals are categorized as free-riders if they 

contribute zero regardless of the average contribution of others (13 subjects, 11%). They are 
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categorized as conditional cooperators if their contributions rise monotonically with others’ 

contributions, or if there is a significant positive correlation between their contributions and 

the contributions of others (89 subjects, 78%). They are categorized as “triangle responders” 

if the maximum amount they contributed is not given in response to the maximum 

contributions by the other players and either a) subjects’ contributions rise monotonically 

towards their maximum contribution and decline monotonically after that, or b) there is a 

significant positive correlation between their contributions and those of the other players up 

to the maximum point and a negative correlation thereafter (10 subjects, 9%). All others are 

categorized as “other” (2 subjects, 2%). These proportions are similar to those found in 

previous studies. Due to the low number of triangle and other responders, we follow the 

approach of several previous papers by combining them. 

3.3 Responsiveness to incentive structures 

           We next test whether behavior differed between the incentive structures. To provide a 

summary view, the mean contribution and the 95% confidence intervals were calculated for 

each level of “others’ contribution” for each incentive structure in the P-game. The results are 

plotted in Figure 6 which shows that, although all three patterns approximate conditional 

contribution, there are significant differences between the incentive structures. When “others’ 

contributions” are low, subjects generally contribute less in the convex condition than in the 

concave condition. When “others’ contributions” are high, subjects contribute more in the 

convex than in the concave incentive structure. These differences are in the direction of 

payoff maximization, indicating that subjects understood the incentive structures. In fact, 

despite the largest group being “conditional co-operators” only 9 subjects (8%) exhibited 

pure contribution matching across all incentive structures, whilst only 5 subjects (4%) 

exhibited pure non-investment. The majority of subjects (all but 14) changed their behavior in 

response to the incentive structure. 

FIGURE 6 
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Figure 6 Levels of contribution in the PG game under each incentive structure. The shaded area represents 95% confidence 

intervals around the mean. 

 

 

To quantify behavior within each incentive structure, polynomial fits were estimated 

for each individual’s set of 21 responses under each incentive structure. Second order 

polynomial fits were estimated. The mean coefficients and 95% confidence intervals are 

shown in Figure 7. The confidence intervals show that there are clear differences between 

incentive structures. The quadratic component is largest for responses in the convex 

condition, whereas the linear slope component is largest for the linear structure, and 

smallest for the convex. 

FIGURE 7 

 

Figure 7 Parameters of the model fits for PG game responses, by incentive structure, pooling all respondents, with 95% 

confidence intervals. 

 

 

3.4 PG responses by sub-types 

           To examine how conditional cooperators, free-riders and triangle/other responders 

behaved under each incentive structure, the mean contributions and confidence intervals 

were plotted separately for each sub-type. Figure 8 shows clear differences between the 

categories. The leftmost panel shows that, despite their categorization (a strict interpretation 

of which would suggest they will simply match or respond to the contributions of others 

regardless of associated outcomes) conditional cooperators actually moderate their behavior 

according to the incentive structure.  

FIGURE 8 
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Figure 8 Levels of contribution in the PG game in different incentive conditions with subjects categorized by the traditional 

Fischbacher et al., (2012) methods. The shaded areas represent 95% confidence intervals around the mean. 

 

The middle panel illustrates a limitation of the traditional classification. Free-riders 

were so classified because they contributed nothing in the linear incentive structure. 

However, clearly they do not all exhibit this behavior in the convex or concave incentive 

structures. Consider for example the convex structure. Inclusion of this structure allows us to 

distinguish between behavioral subtypes that respond identically in the linear case. 

Specifically, a non-investor and a payoff-maximizer would both contribute 0 (i.e., free ride in 

the linear condition). In the convex structure, however, a payoff-maximizer would contribute 

20, whilst a non-investor would contribute 0 in response to the maximum possible 

contribution of others. The large confidence intervals around the mean in the middle row 

panels hide an underlying bimodal distribution.  

We therefore develop an alternative categorization technique based on responses 

across all incentive structures. The three categories are conditional cooperator, payoff-

maximizer and non-investor. We first create the profile of a hypothetical exemplar responder 

for each type. The exemplar conditional cooperator always matches the contributions of the 

“other players”, the exemplar payoff-maximizer always makes the contribution that 

maximizes their own payoff, and the exemplar non-investor always contributes zero. 

Subjects are categorized as the subtype whose exemplar they most closely resemble 
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(resemblance is quantified in terms of summed squared distance between subjects’ and 

exemplars’ responses). As with the traditional classification method the majority of subjects 

were classified as conditional cooperators (79 subjects, 69%). However, our novel exemplar-

based technique allowed us to classify the remaining subjects as either payoff-maximizers 

(12 subjects, 11%) or non-investors (23 subjects, 20%). This classification could not be 

achieved using the standard linear PG game. Figure 9 shows that the contribution patterns 

of these groups match the description of their behavior and strategy. 

FIGURE 9 

 

Figure 9 Levels of contribution in the PG game in different incentive conditions with subjects categorized by the novel 

exemplar matching method. The shaded areas represent 95% confidence intervals around the mean. 

 

 

3.5 Binary dilemmas: variability 

Next we turn to BDs. Table 1 gives the proportion of subjects defecting in each BD. 

Much heterogeneity is evident between subjects, with most defection rates between 45% 

and 74%. The exceptions are the second mover choices in the stag hunt (convex structure). 

The very high levels of cooperation occur because once the subject knows that others will 
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cooperate, cooperation option dominates defection11 (here we define dominating as both 

own and others’ payoffs being higher). When comparing defection rates in first and second 

mover choices, there is a tendency for decreased defection rates in the prisoner’s dilemma 

(linear structure) when acting as the second mover. In the hawk-dove game (concave 

structure), there is a slight tendency to increase defection, but these changes are small. For 

full statistical analysis see appendix B. 

TABLE 1 

 
Facing 1 Other Facing 3 Others 

 
1st Mover 2nd Mover 1st Mover 2nd Mover 

Linear 66% 54% 74% 63% 

Concave 54% 64% 62% 67% 

Convex 45% 10% 55% 14% 

Table 1 The proportion of subjects choosing to defect in each binary dilemma, as 1st and 2nd mover. 

 

3.6 Binary dilemmas and responder types 

The overall levels of defection and cooperation may mask more homogenous 

patterns of behavior within groups of responders. Therefore, defection rates are shown 

separately for each responder sub-type; first by traditional types in Table 2 and then by our 

exemplar based types in Table 3. If individuals’ strategies are stable across tasks, then there 

should be less heterogeneity within sub-types than in the sample overall. For specific sub-

types there are clear predictions. For example, one would expect all free-riders and payoff 

maximizers to defect in all prisoner’s dilemmas, and one would expect all conditional 

cooperators to cooperate in all second mover prisoner’s dilemmas. Table 2 shows that 

patterns of defection rates generally match these intuitive predictions given the sub-types 

defined: Conditional cooperators appear generally less likely to defect than other individuals, 

and free-riders are generally most likely to defect. However, the effect of responder type is 

far from deterministic: The largest difference between types within any single question is a 

48 percentage point difference in defection rates. This is the difference between the 

                                                           
11 Note that the detected rate of defection in the second mover convex BD is the one result that shows 
a meaningful difference between the full and restricted sample. After excluding subjects for failure to 
answer attention check BDs and failing to complete understanding questions, the rates of defection 
fall to 1% when facing 1 other and 1% when facing 3 others. 
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conditional cooperators and the payoff maximizers (as defined by our exemplar method) 

when making second mover choices in the prisoner’s dilemma.  

Performing statistical analyses upon defection rates is difficult due to the small 

number of subjects in some groups (e.g. free riders and other) and the lack of variation in 

convex choices (with almost all subjects cooperating when acting as second mover). Logistic 

regressions were performed for each combination of first/second mover and number of other 

players, separately for the traditional types and exemplar types. Full results are presented in 

Appendix B but, to summarize, the only comparison showing any significant main effect of 

responder type is when subjects were acting as the second mover against 1 other player. 

The traditionally-defined free-riders, and the exemplar-defined payoff maximizers and non-

investors were all more likely to defect than the corresponding conditional cooperators. 

However, comparing the log-likelihoods of different models demonstrates that the exemplar 

method is more accurate at predicting second mover responses. 

TABLE 2 

 

Linear Concave  Convex  

Facing 1 Other 1st Mover 2nd Mover 1st Mover 2nd Mover 1st Mover 2nd Mover 

Conditional 65% 51% 53% 58% 44% 8% 

Free-Rider 85% 85% 77% 85% 62% 15% 

Other 50% 60% 30% 90% 40% 20% 

Facing 3 Others 
      

Conditional 72% 58% 61% 62% 56% 12% 

Free-Rider 92% 100% 77% 92% 62% 15% 

Other 80% 70% 70% 90% 50% 30% 

Table 2 Proportion of subjects choosing to defect in each binary dilemma; subjects are categorized 
by the traditional Fischbacher et al., (2012) method. 

 

TABLE 3 

 

Linear Concave  Convex  

Facing 1 Other 1st Mover 2nd Mover 1st Mover 2nd Mover 1st Mover 2nd Mover 

Conditional 62% 44% 49% 58% 43% 8% 
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Payoff Maximizers 83% 92% 67% 92% 42% 8% 

Non-Investors 70% 70% 61% 70% 52% 17% 

Facing 3 Others 
      

Conditional 71% 57% 59% 62% 53% 14% 

Payoff Maximizers 83% 83% 75% 83% 67% 8% 

Non-Investors 78% 74% 65% 74% 57% 17% 

Table 3 Proportion of subjects choosing to defect in each binary dilemma; subjects are categorized 
by the novel exemplar matching method. 

 

3.7 Preference Reversals 

To provide a more robust test of cross-task consistency, each individual’s responses 

in one task were compared to their responses in the equivalent incentive structure of the 

other task to identify preference reversals. To demonstrate how preference reversals are 

identified, take the linear structure as an example. The choice to defect in the BD is 

equivalent to contributing 5 in the PG. The choice to cooperate in the BD is equivalent to 

contributing 20 in the PG. Therefore, anyone who cooperates in the BD, and then 

contributes 5 in the PG exhibits an unambiguous reversal of preference. This is also true for 

anyone who cooperates and then contributes less than 5. For individuals who defect in the 

BD, a contribution of 20 in the PG indicates an unambiguous preference reversal. Since we 

are interested in cases of unambiguous reversals, we restrict our analysis to subjects who 

contribute an amount in the PD equal to or greater than the amount equivalent to 

cooperating in the BD, and those who contribute an amount in the PG equal to or smaller 

than the amount equivalent to defecting in the BD.  

Table 4 shows in brackets the total number of the 114 subjects who contributed an 

amount greater than or less than these values, and the associated percentage indicates the 

proportion of those subjects who indicated the reverse preference in their BD choice. 

Looking across all subjects regardless of whether their level of PG contribution would make 

it possible to unambiguously identify preference reversals, we find that in the second mover 

condition with three others, 30.7% of all subjects unambiguously reversed their preference in 

the linear condition, 36.8% did so in the concave condition, and 15.8% in the convex 

condition. 

TABLE 4 
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1st mover 2nd Mover 

1 Other Cooperation given 

<min contribution  

Defection given 

>max 

contribution  

Cooperation given 

<min contribution 

Defection given 

>max 

contribution 

Linear 29% (24) 58% (60) 21% (24) 47% (60) 

Concave 48% (27) 53% (53) 22% (27) 53% (53) 

convex 46% (13) 44% (77) 77% (13) 6% (77) 

3 Others 
    

Linear 21% (24) 68% (60) 13% (24) 53% (60) 

Concave 37% (27) 62% (53) 30% (27) 64% (53) 

convex 38% (13) 55% (77) 85% (13) 9% (77) 

 

Table 4 The numbers in brackets indicate the number of subjects who in the PG game contributed at least the amount 
equivalent to cooperating in the BD, and who contributed an amount no more than that equivalent to defecting in the BD. 
The associated percentages indicate the proportion of those subjects who exhibited the reverse preference in their BD 
choice. 

 

3.8 Predictions across tasks using continuous measures 

Despite the significant proportion of preference reversals, it remains possible that 

there is a link between behavior in the two tasks. This link is clearly not deterministic, and 

not well described by a subject’s categorization, but an individual who exhibits ‘cooperative’ 

response patterns in the PG game may be more likely to cooperate in the BDs. To examine 

this, we return to the individual-level polynomial regressions outlined earlier and use the 

estimated coefficients from the regressions upon behavior in the PG game (see section 3.3). 

A further, logistic regression was used to predict binary dilemma choices using these (z-

scored) estimates of curve, slope and intercept as independent variables. All incentive 

structures were included in the one model on separate rows, e.g. the polynomial coefficients 

estimated from a subject’s responses in the linear PG game were used to predict the 

likelihood that they would defect in the linear BD games, and those from the concave PG 

game were used to predict responses from the concave BD games etc. 

The model intercept is -0.13 (CI = [-0.25, 0.10], p = 0.258). The strongest predictor is 

the polynomial intercept term (Beta = -1.33, CI = [-1.79, -0.87], p < 0.001), with smaller 

significant results for the polynomial linear term (Beta = -0.74, CI = [-1.20, -0.27], p = 0.002) 
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and the polynomial quadratic term (Beta = -0.39, CI = [-0.68, -0.10], p = 0.009). All three 

coefficients are negative indicating that higher intercept, steeper slope and greater curvature 

in an individual’s PG response profile predict lower probability of defecting in BDs. The 

model overall shows that the polynomial coefficients are significantly predictive, with a 

McFadden’s R-Square of 0.102. 

A similar analysis can be performed on the first mover responses. In the PG game, 

each first mover response is an integer between 0 and 20. This was entered into a logistic 

regression (along with an intercept term) to predict whether the individual then defected in 

the corresponding first mover choice in the BD game. The intercept term is larger than zero 

(Beta = 0.57, CI = [0.35, 0.79], p<0.001) indicating high baseline levels of defection. There is 

also a significant effect of PG first mover contribution in the predicted direction (Beta = -0.37, 

CI = [-0.61, -0.14], p = 0.002), meaning that if subjects contribute more in the PG then they 

are less likely to defect in the BD. However, the overall accuracy of predictions (McFadden’s 

R-Square of 0.025) is not as good as in the case of the second mover responses. This is 

likely due to subjects displaying caution due to uncertainty about other players’ contribution 

levels, and the additional variability caused by different subjects making different 

assumptions about the other players’ likely contribution levels.  

3.9 Generalized individual-level traits or structure-specific strategies?  

Finally, we ask whether individuals can be described as having an underlying 

propensity to cooperate in all situations. Such a tendency would be akin to a personality trait, 

which could be labelled “pro-sociality”. If so, cross-task predictability should be as good 

across as within incentive structures. The alternative possibility is that individuals’ 

cooperativeness is specific to incentive structures. If this is so, individuals’ rates of 

cooperation will show greater cross-task predictability when the incentive structures are 

identical.  

For this analysis, we return to the individual-level polynomial regressions outlined 

earlier and use the estimated coefficients from the regressions upon behavior in the PG 

game. To examine whether strategies are specific to incentive structures, a logistic 

regression was used to predict binary dilemma choices using these estimates of curve, slope 

and intercept. 

Specifically, we examined whether an individual’s cooperation in the BDs under one 

incentive structure is better predicted by the estimated parameters obtained from their 

responses in the PG game within that incentive structure than by the parameters obtained 

from the PG games with the other incentive structures. Therefore, 9 separate regression 
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models were estimated – one for every pairwise combination of PG incentive structure and 

BD incentive structure. The deviance (a goodness of fit measure) was then used to assess 

the predictive accuracy of each of the 9 models. To provide confidence intervals, a 

bootstrapping approach was used. For each regression, 10,000 bootstrap samples were 

randomly selected with replacement from the subjects in our dataset. Figure 10 shows the 

deviance estimates for each model and the confidence intervals around them. The deviance 

is very similar regardless of the incentive structure used to estimate the PG parameters, and 

the confidence intervals overlap substantially. Thus there is no evidence of any advantage to 

using incentive structure-specific estimates of cooperativeness, consistent with the idea that 

pro-sociality is a trait. 

FIGURE 10 

Figure 10 Deviance estimates for each model with 95% confidence intervals, demonstrating no improvement in prediction 

within than between incentive structures. Note that the asymmetrical confidence intervals are a natural result of the 

bootstrap estimation method: for some models there is a negative skew in the deviance of the bootstrap samples. 

 

4. Discussion 

The viability of predicting behavior in laboratory social dilemmas from behavior on 

other laboratory tasks has not been well-established, despite a number of investigations 

(Apesteguia & Maier-Rigaud, 2006; Blanco et al., 2007; Binmore & Shaked, 2010; Camerer, 

2011; Galizzi & Navarro-Martinez, 2018; Kingsley & Liu, 2014). If such a link cannot be 

established, claims that results in the laboratory can inform us about behavior in decision 

contexts outside the laboratory where the stakes, framing and incentives all differ are 

premature. The results presented here established just such cross-task predictability, but 

also note its limitations. More specifically, we find that contribution levels in PG tasks predict 

choices in BD tasks, but that there is significant stochasticity and that even strictly defined 

responder types do not deterministically predict responses in different tasks, even when the 

incentives are identical.  
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We obtained our results from what is, to our knowledge, the first experiment that 

compares behavior within subjects across PG games and binary social dilemmas with 

identical financial incentives. Our novel paradigm allowed us to test the validity and 

generalizability of laboratory social dilemmas more strictly than has been previously 

possible, since all normatively relevant aspects of the decisions can be held constant. We 

addressed two key questions. First we asked what strategies were employed in the PG 

game when incentive structures were modified, including whether the traditionally identified 

categories of individuals could also characterize behavior in non-linear incentive structures. 

Second we asked whether behavior in the PG games predicts behavior in BDs, and whether 

this predictive ability is specific to particular incentive structures or if strategies predict 

behavior across incentive structures as well as across tasks. 

We applied the traditional categorization of individuals according to their behavior in 

the PG game with a standard, linear incentive structure (Fischbacher et al., 2012), and found 

proportions of conditional cooperators, free-riders and other responders that were in keeping 

with the existing literature. However, the standard categorization based on the linear PG 

game confounds own-payoff maximization and a simple strategy of non-investment, since 

these produce indistinguishable behavior (i.e., non-contribution at all levels). By introducing 

different incentive structures and categorizing individuals by their fit with “exemplar” 

subtypes, we were able to distinguish payoff maximization and non-investment. We find that 

many individuals who are traditionally categorized as free-riders can more accurately be 

described as either payoff-maximizers or non-contributors. This alternative categorization 

better captures the contributions in the non-linear incentive structures, suggesting that the 

traditional categorization method cannot be extended beyond the linear PG task.  

Both the non-contributors and the payoff-maximizers were sensitive to changes in the 

incentive structure, with their aggregate behavior adapting to changing incentives in the 

direction that would improve their own payoff. This behavior is an important departure from 

that predicted by a strict interpretation of conditional cooperation, according to which 

individuals match the contributions of others. Instead, this result suggests that their 

responses reflect a compromise between pro-social preferences for contribution or outcome 

equality, and payoff maximization. We see little evidence that the behavior of these 

individuals is the result of simple imitation strategies, with only 9% of subjects always 

matching the contributions of the other players. 

Next we turn to the question of cross-task predictability. Subjects responded to a set 

of BDs as first and second mover in addition to the PG game. These BDs were designed 

such that the financial incentive structures matched those of the PG games at the levels of 
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contribution equivalent to defect and cooperate choices. This property is crucial as it allows 

the direct assessment of cross-task consistency whilst the incentive structure is held 

constant.  

We found a significant relationship between an individual’s likelihood of cooperating 

in the PG game and their BD choices. This relationship was weak when using PG game 

categorization to predict BD choices, with only one analysis showing a statistically significant 

increase in defection for payoffs maximizers. However, by using the continuous nature of PG 

responses to make more fine-grained probabilistic predictions of BD choices, accuracy was 

dramatically increased and the relationship was significant across tasks.  

A further question was whether cross-task consistency only occurs when incentive 

structures are identical. If individuals applied qualitatively different strategies under different 

incentive structures then it might be possible to predict BD choices from PG contributions 

when incentive structures match (e.g. linear from linear), and yet not possible to predict BD 

choices from PG contributions when incentive structures differ (e.g. linear from convex). An 

alternative possibility is that cross-task prediction is possible but is not sensitive to incentive 

structure. Such a result would be consistent with the existence of an individual-level trait, 

such as pro-sociality or other-regarding preference that influences behavior in all tasks and 

incentive structures.  The results favor the latter possibility. 

Overall, there is a significant relationship between responses in the PG and BD 

tasks. However, this link is far from deterministic. When the rates of cooperation in the BDs 

were calculated separately for different PG responder types, the differences in choice 

proportions were in line with intuitive expectations, but there was still much heterogeneity 

within responder types. If subgroups were applying a particular strategy consistently then 

one would expect individuals of the same type to display the same behavior. To illustrate, 

define “high agreement” as occurring when at least 90% of individuals within a group 

respond in the same way on a given choice. This level of agreement was found in only 14% 

of cases12 (excluding questions involving dominance) when subjects were classified by our 

exemplar method, and in 17% of cases when subjects were classified using the traditional 

method (see Tables 2 & 3). Furthermore, in 28% of cases, individuals exhibited 

unambiguous preference reversals between tasks –  either by cooperating in the binary 

dilemma and contributing less than the defect amount in the PG game, or by defecting in the 

binary dilemma and contributing more than the cooperate amount in the PG game. 

                                                           
12 A “case” here refers to a subgroup-question combination as defined in the cells of Tables 2 and 3. 
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Preference reversals in the former direction are substantially more common than in the 

latter. 

 In summary we have two findings that appear hard to reconcile: There is significant 

cross-task predictive power, but there is also significant within-group heterogeneity with even 

unambiguous preference reversals being relatively common. However, when considered as 

a whole, these results support the hypothesis that individuals have stable pro-sociality traits 

that influence their propensity to cooperate, whilst at the same time their strategies can also 

vary between tasks. Such variation could reflect framing and other structural differences. A 

stable trait such as this would act as a parameter on task-specific strategies. The presence 

of this same parameter value in different task strategies explains the cross-task correlations 

in behavior. However, the fact that individuals can be differentially sensitive to particular 

framing effects, and that different strategies can be applied by different individuals in each 

task explains the heterogeneity in responses. This interpretation also explains why behavior 

cannot be better predicted within an incentive structure, as individuals are likely to employ 

the same strategy within a task, regardless of the incentive structure associated with that 

specific question.  

Our framework of stable traits and changing strategies may seem something of a 

departure from typical approaches in experimental economics. However, it is actually very 

similar to the approach taken in many other parts of the literature. As an analogue, consider 

how individuals respond in tasks involving risky financial gambles. Individuals respond 

significantly differently in choice tasks than in valuation tasks, similarly to how they behave 

differently in different social dilemma tasks. However, an individual who displays strong risk 

aversion when choosing between risky gambles is also likely to show strong risk aversion 

when valuing risky gambles. This risk aversion may manifest itself differently in the two 

tasks; nonetheless, once one has a robust model of behavior in each task, risk aversion can 

be estimated in one, and then used to predict responses in the other. Our results suggest 

that the same approach can be used in social dilemma tasks, opening a new route to 

understanding pro-social behavior in a variety of settings. 

Why do we find consistent levels of cooperation across both tasks and incentive 

structures while a number of other studies have not? There are two possible reasons for the 

different patterns of findings. On one interpretation, studies which have failed to find cross-

task or cross-incentive-level correlations may be theoretically misconceived in that their 

chosen tasks do not assess the same dimensions of pro-sociality. A second possibility is that 

extraneous and theoretically irrelevant / uninteresting noise variables explain the 

discrepancy by in some way either overwhelming or obscuring effects of a true underlying 
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prosociality trait. We incline towards the latter interpretation. Our study differs from earlier 

experiments in several ways, in particular by holding incentive structures constant across 

task frames. Further research will be needed to identify the specific features that determine 

whether evidence for a stable personality-like pro-sociality trait will be found in a particular 

study, but the results we have presented here, in providing evidence for cross-task 

prosociality under carefully controlled experimental conditions, may provide at least a 

starting-point for such an exploration. 
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Appendix A  

Calculating equilibria in PG games with our incentive structures 

The payoff to any individual is given as 

𝜋𝑖 = 20 − 𝑡𝑖 +
1

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽
  

To differentiate by ti we need the chain rule  

Let 𝑢 =  𝛼(𝑇𝐽 + 𝑡𝑖) 

Then 

𝜋𝑖 = 20 −
𝑢

𝛼
+ 𝑇𝐽 +

1

4
(𝑢)𝛽  

𝜕𝜋𝑖

𝜕𝑢
= −

1

𝛼
+

𝛽

4
(𝑢)𝛽−1 = −

1

𝛼
+

𝛽

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽−1
 

𝜕𝑢

𝜕𝑡𝑖 = 𝛼  

𝜕𝜋𝑖

𝜕𝑡𝑖 =
𝜕𝜋𝑖

𝜕𝑢

𝜕𝑢

𝜕𝑡𝑖 = −1 +
𝛼𝛽

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽−1
  

So, contributing an additional point to the pot is beneficial to a self-interested individual as 

long as 

1 <
𝛼𝛽

4
(𝛼(𝑇𝐽 + 𝑡𝑖))

𝛽−1
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Appendix B  

The marginal effects on increase defection in BD games across all subjects.  

 Beta p-Value 95% Cis 

intercept 0.654*** 0.001 [0.267, 1.041] 

Concave -0.513 0.06 [-1.047, 0.021] 

Convex -0.865** 0.002 [-1.400, -0.330] 

3-others 0.376 0.195 [-0.193, 0.944] 

2nd mover -0.478 0.08 [-1.012, 0.056] 

Concave * 3-others -0.015 0.97 [-0.791, 0.761] 

Concave * 2nd mover 0.914* 0.017 [0.161, 1.668] 

Convex * 3-others 0.047 0.905 [-0.725, 0.819] 

Convex * 2nd mover -1.547*** 0.001 [-2.447, -0.648] 

3-others * 2nd mover -0.013 0.975 [-0.790, 0.765] 

Concave * 3-others * 
2nd mover -0.232 0.676 [-1.319, 0.855] 

Convex * 3-others * 
2nd mover 0.014 0.982 [-1.228, 1.256] 

    

LogLikelihood -833.0   

 

 

 

The marginal effects on increase defection in BD games when acting as the first mover and 

playing against one other player. Predictors are the PG category defined using the 

Fashbacher et al. method, and the type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.63** 0.005 [0.19, 1.06] 
Free-Riders 1.08 0.178 [-0.49, 2.65] 
Other -0.63 0.311 [-1.84, 0.59] 
Concave -0.51 0.095 [-1.12, 0.09] 

Convex -0.87** 0.005 [-1.48, -0.27] 
Free-
Riders*Concave 

0.01 0.99 [-2.06, 2.09] 

Other*Concave -0.36 0.72 [-2.33, 1.61] 

Free-Riders*Convex -0.18 0.842 [-1.94, 1.58] 
Other* Convex 0.18 0.839 [-1.58, 1.94] 
    

LogLikelihood -449.9   

 

 

The marginal effects on increase defection in BD games when acting as the first mover and 

playing against three other players. Predictors are the PG category defined using the 

Fashbacher et al. method, and the type of BD game being played.  
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 Beta p-Value 95% Cis 

intercept 0.94*** <0.001 [0.48, 1.4] 

Free-Riders 1.54 0.148 [-0.55, 3.64] 
Other -0.25 0.707 [-1.53, 1.04] 
Concave -0.51 0.114 [-1.13, 0.12] 
Convex -0.69* 0.03 [-1.32, -0.07] 
Free-
Riders*Concave 

-0.77 0.543 [-3.27, 1.72] 

Other*Concave -1.32 0.281 [-3.73, 1.08] 
Free-Riders*Convex 0.15 0.869 [-1.63, 1.93] 
Other* Convex -0.34 0.709 [-2.11, 1.44] 
    
LogLikelihood -433.3   

 

 

The marginal effects on increase defection in BD games when acting as the second mover 

and playing against one other player. Predictors are the PG category defined using the 

Fashbacher et al. method, and the type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.02 0.916 [-0.39, 0.44] 
Free-Riders 1.68* 0.035 [0.12, 3.25] 
Other -0.02 0.971 [-1.23, 1.18] 

Concave 0.32 0.293 [-0.27, 0.91] 
Convex -2.48*** <0.001 [-3.36, -1.61] 

Free-
Riders*Concave 

-0.32 0.778 [-2.53, 1.89] 

Other*Concave -0.93 0.431 [-3.23, 1.38] 
Free-Riders*Convex 1.29 0.202 [-0.69, 3.28] 

Other* Convex 0.87 0.412 [-1.21, 2.96] 
    

LogLikelihood -365.0   

 

 

The marginal effects on increase defection in BD games when acting as the second mover 

and playing against three other players. Predictors are the PG category defined using the 

Fashbacher et al. method, and the type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.34 0.114 [-0.08, 0.76] 

Free-Riders 113.28 1 [-3.6e+7, 3.6e+7] 
Other 0.00 0.995 [-1.23, 1.22] 

Concave 0.14 0.646 [-0.46, 0.74] 
Convex -2.30*** <0.001 [-3.06, -1.54] 

Free-
Riders*Concave 

-111.27 1 [-3.6e+7, 3.6e+7] 

Other*Concave -113.02 1 [-3.6e+7, 3.6e+7] 
Free-Riders*Convex 0.62 0.508 [-1.22, 2.46] 
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Other* Convex 0.86 0.372 [-1.03, 2.76] 

    

LogLikelihood -367.3   

 

 

Predicting defection in BD games when acting as the first mover and playing against one 

other player. Predictors are the PG category defined using the exemplar method, and the 

type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.49* 0.034 [0.04, 0.94] 
Payoff-Maximizers 1.12 0.166 [-0.47, 2.7] 
Non-Investor 0.34 0.509 [-0.66, 1.33] 
Concave -0.52 0.110 [-1.15, 0.12] 

Convex -0.77* 0.018 [-1.41, -0.13] 

Payoff-Maximizers 
*Concave 

-0.4 0.700 [-2.44, 1.64] 

Non-
Investor*Concave 

-1.17 0.251 [-3.18, 0.83] 

Payoff-Maximizers 
*Convex 

0.13 0.852 [-1.24, 1.51] 

Non-Investor* 
Convex 

0.03 0.964 [-1.33, 1.4] 

    

LogLikelihood -455.7   

 

Predicting defection in BD games when acting as the first mover and playing against three 

other players. Predictors are the PG category defined using the exemplar method, and the 

type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.89*** <0.001 [0.40, 1.38] 

Payoff-Maximizers 0.72 0.376 [-0.87, 2.31] 
Non-Investor 0.39 0.487 [-0.71, 1.49] 
Concave -0.51 0.134 [-1.17, 0.16] 
Convex -0.76* 0.023 [-1.42, -0.11] 
Payoff-Maximizers 
*Concave 

-0.01 0.996 [-2.11, 2.1] 

Non-
Investor*Concave 

-0.15 0.883 [-2.20, 1.89] 

Payoff-Maximizers 
*Convex 

-0.15 0.845 [-1.62, 1.32] 

Non-Investor* 
Convex 

-0.26 0.729 [-1.70, 1.19] 

    

LogLikelihood -436.0   
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Predicting defection in BD games when acting as the second mover and playing against one 

other player. Predictors are the PG category defined using the exemplar method, and the 

type of BD game being played.  

 Beta p-Value 95% Cis 

intercept -0.23 0.312 [-0.67, 0.22] 
Payoff-Maximizers 2.63* 0.014 [0.53, 4.72] 

Non-Investor 1.06* 0.037 [0.06, 2.05] 
Concave 0.56 0.081 [-0.07, 1.19] 
Convex -2.27*** <0.001 [-3.21, -1.33] 
Payoff-Maximizers 
*Concave 

-0.56 0.711 [-3.52, 2.4] 

Non-
Investor*Concave 

-2.53 0.104 [-5.57, 0.52] 

Payoff-Maximizers 
*Convex 

-0.56 0.434 [-1.97, 0.84] 

Non-Investor* 
Convex 

-0.11 0.894 [-1.8, 1.57] 

    

LogLikelihood -356.8   

 

 

Predicting defection in BD games when acting as the second mover and playing against 

three other players. Predictors are the PG category defined using the exemplar method, and 

the type of BD game being played.  

 Beta p-Value 95% Cis 

intercept 0.28 0.217 [-0.17, 0.73] 

Payoff-Maximizers 1.33 0.1 [-0.25, 2.91] 
Non-Investor 0.76 0.148 [-0.27, 1.79] 

Concave 0.21 0.517 [-0.43, 0.85] 

Convex -2.1*** <0.001 [-2.88, -1.32] 
Payoff-Maximizers 
*Concave 

-0.21 0.854 [-2.45, 2.03] 

Non-
Investor*Concave 

-1.91 0.161 [-4.57, 0.76] 

Payoff-Maximizers 
*Convex 

-0.21 0.778 [-1.67, 1.25] 

Non-Investor* 
Convex 

-0.5 0.548 [-2.12, 1.12] 

    

LogLikelihood -379.2   

 

 

 


