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CHARTING THE REPLICA SYMMETRIC PHASE

AMIN COJA-OGHLAN§, CHARILAOS EFTHYMIOU§§, NOR JAAFARI, MIHYUN KANG§§§, TOBIAS KAPETANOPOULOS§§§§

ABSTRACT. Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random
graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in
combinatorics and computer science. In a path-breaking paper based on the non-rigorous ‘cavity method’, physicists
predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a
detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important
problems in combinatorics, computer science and physics [Krzakala et al.: PNAS 2007]. In this paper we rigorise this
picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-
XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the
stochastic block model that has received considerable attention [Decelle et al.: Phys. Rev. E 2011].

1. INTRODUCTION

1.1. The cavity method. Contrasting the awe-inspiring arsenal of techniques at the disposal of modern combi-
natorics and probability with the utter simplicity of terms in which, say, the Erdős-Rényi random graph model is
defined, one might expect that after a half-century of study everything ought to be known about this and alike
models. Yet beneath the surface lurks a picture of mesmerizing complexity. Its unexpected intricacy was brought
out most clearly by a line of research that commenced in the statistical physics community with the study of di-
luted mean-field models, spin systems whose geometry of interactions is induced by a sparse random graph or
hypergraph. Such models were put forward in physics as models of disordered systems [47]. Prominent examples
include the diluted k-spin model or the Potts antiferromagnet on a random graph [25, 37, 60]. The graph structure,
convergent locally to the Bethe lattice or a Galton-Watson tree, induces a non-trivial metric, which is why such
models have been argued to evince a closer semblance of physical reality than fully connected ones such as the
Sherrington-Kirkpatrick model [48, 50]. But perhaps even more importantly, apart from and beyond the disor-
dered systems thread, in the course of the past half-century models based on random graphs have come to play a
role in combinatorics, probability, statistics and computer science that can hardly be overstated. For example, the
random k-SAT model is of fundamental interest in computer science [9], the stochastic block model has gained
prominence in statistics [1, 38, 55], low-density parity check codes are the bread and butter of modern coding the-
ory [63], and problems such as random graph coloring have been the lodestars of probabilistic combinatorics ever
since the days of Erdős and Rényi [9, 21, 30].

In the course of the past 20 years physicists developed an analytic but non-rigorous technique for the study
of such models called the ‘cavity method’. It has been brought to bear on all of the aforementioned and very
many other models in an impressive and ongoing line of work that has led to numerous predictions that impact
on an astounding variety of problems (e.g., [26, 47, 51, 67]). The task of putting the cavity method on a rigorous
foundation has therefore gained substantial importance, and despite recent successes (e.g., [23, 28, 36, 55]) much
remains to be done. In particular, while the cavity method can be applied to a given model almost mechanically,
most rigorous arguments are still based on ad hoc, model-specific deliberations. This leads to the question of
whether we can come up with abstract arguments that rigorise the cavity method wholesale, which is the thrust of
the present paper.

One of the most important predictions of the cavity method is that the Gibbs measures induced by random
graph models undergo a replica symmetry breaking or condensation phase transition [43]. Physically this phase
transition resembles the Kauzmann transition from the study of glasses [40]. The fact that a phase transition occurs
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§§ Supported by DFG grant EF 103/1-1
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§§§§Supported by Stiftung Polytechnische Gesellschaft PhD grant.
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and dcond(k,Ø) = inf{d > 0 : supº2P 2
§ ({±1}) Bk°spin(d ,Ø,º) > ln2}. Then 0 < dcond(k,Ø) <1 and

lim
n!1

1
n
E[ln ZØ(H, J )]

(
= ln2+ dp

2ºk

R1
°1 ln(cosh(z))exp(°z2/2)dz if d ∑ dcond(k,Ø),

< ln2+ dp
2ºk

R1
°1 ln(cosh(z))exp(°z2/2)dz if d > dcond(k,Ø).

From now on we assume that k ∏ 4 is even. The regime d < dcond(k,Ø) is called the replica symmetric phase.
According to the cavity method, its key feature is that with probability tending to 1 in the limit n ! 1, two in-
dependent samples æ1,æ2 (‘replicas’) chosen from the Gibbs measure µH,J ,Ø are “essentially perpendicular”. To
formalize this define for æ,ø : Vn ! {±1} the overlap as %æ,ø =

P
x2Vn æ(x)ø(x)/n. We write h ·iH,J ,Ø for the average on

æ1,æ2 chosen independently from µH,J ,Ø and denote the expectation over the choice of H and J by E [ · ].

Theorem 1.2. For all Ø> 0 and k ∏ 4 even we have dcond(k,Ø) = inf
n

d > 0 : limsupn!1E
≠
%2
æ1,æ2

Æ
H,J ,Ø > 0

o
.

The corresponding statement for k = 2 was proved by Guerra and Toninelli, but as they point out their argument
does not extend to larger k [37].

Theorem 1.2 implies the absence of extensive long-range correlations in the replica symmetric phase. Indeed,
for two vertices x, y 2Vn and s, t 2 {+1,°1} let

µH,J ,Ø,x,y (s, t ) =
≠

1{æ1(x) = s,æ1(y) = t }
Æ
H,J ,Ø

be the joint distribution of the spins assigned to x, y . Further, let Ω̄ be the uniform distribution on {±1}£ {±1}.
Then the total variation distance kµH,J ,Ø,x,y ° Ω̄kTV is a measure of how correlated the spins of x, y are. Indeed,
in the case that k is even for every x 2 Vn the Gibbs marginals satisfy µH,J ,Ø,x (±1) = h1{æ1(x) =±1}iH,J ,Ø = 1/2
because µH,J ,Ø(æ) = µH,J ,Ø(°æ) for every æ 2 {°1,+1}Vn . Therefore, if the spins at x, y were independent, then
µH,J ,Ø,x,y =µH,J ,Ø,x ≠µH,J ,Ø,y = Ω̄. Furthermore, it is well known (e.g., [13, Section 2]) that

lim
n!1

E
≠
%2
æ1,æ2

Æ
H,J ,Ø = 0 iff lim

n!1
1

n2

X

x,y2Vn

EkµH,J ,Ø,x,y ° Ω̄kTV = 0. (1.2)

Thus, Theorem 1.2 implies that for d < dcond(k,Ø), with probability tending to 1, the spins assigned to two random
vertices x, y of H are asymptotically independent. By contrast, Theorem 1.2 and (1.2) show that extensive long-
range dependencies occur beyond but arbitrarily close to dcond(k,Ø).

Looking beyond the replica symmetric phase, Panchenko [59] further investigated the structure of the 1-RSB
asymptotic Gibbs measures in the diluted k-spin model. However, his approach requires a perturbation of the
Hamiltonian (e.g., to guarantee the Ghirlanda-Guerra identities) that affects the underlying Gibbs distribution. By
contrast, Theorem 1.2 holds for the unperturbed Gibbs measure and Theorem 1.1 quantifies precisely for what d
replica symmetry occurs and understanding the k-spin model for d > dcond remains an exciting open problem.

1.3. The Potts antiferromagnet. Let q ∏ 2 be an integer, let ≠ = {1, . . . , q} be a set of q “colors” and let Ø > 0.
The antiferromagnetic q-spin Potts model on a graph G = (V (G),E(G)) at inverse temperature Ø is the probability
distribution on≠V (G) defined by

µG ,q,Ø(æ) = 1
Zq,Ø(G)

Y

{v,w}2E(G)
exp(°Ø1{æ(v) =æ(w)}), where Zq,Ø(G) =

X

ø2≠V (G)

Y

{v,w}2E(G)
exp(°Ø1{ø(v) = ø(w)}). (1.3)

The Potts model on the random graph G=G(n, p) with vertex set Vn = {x1, . . . , xn} whose edge set E(G) is obtained
by including each of the

°n
2

¢
possible pairs {v, w}, v, w 2 Vn , v 6= w , with probability p 2 [0,1] independently, has

received considerable attention (e.g. [12, 22, 25]). As in the k-spin model, the most challenging case is that p = d/n
for a fixed real d > 0, so that the average degree converges to d in probability.

The condensation phase transition in this model was pinpointed recently [23]. As in the k-spin model, the an-
swer comes as a distributional optimization problem. To be precise, let∞ be a Po(d)-random variable, letΩº1 ,Ωº2 , . . .
denote samples from º 2P 2

§(≠), mutually independent and independent of ∞, and set

BPotts(d , q,Ø,º) = E
"
§(

Pq
æ=1

Q∞
i=1 1° (1°e°Ø)Ωºi (æ))

q(1° (1°e°Ø)/q)∞
° d

2
·
§(1° (1°e°Ø)

Pq
ø=1Ω

º
1 (ø)Ωº2 (ø))

1° (1°e°Ø)/q

#

, (1.4)

dcond(q,Ø) = inf

(

d > 0 : sup
º2P 2

§ (≠)
BPotts(d , q,Ø,º) > ln q +d ln(1° (1°e°Ø)/q)/2

)

. (1.5)
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Then [23, Theorem 1.1] shows that 0 < dcond(q,Ø) <1 and

lim
n!1

1
n
E[ln Zq,Ø(G)]

(
= ln q +d ln(1° (1°e°Ø)/q)/2 if d ∑ dcond(q,Ø),

< ln q +d ln(1° (1°e°Ø)/q)/2 if d > dcond(q,Ø).
(1.6)

While it may be difficult to calculate dcond(q,Ø) numerically, there is the explicit Kesten-Stigum bound [3]

dcond(q,Ø) ∑ dKS(q,Ø) =
√

q °1+e°Ø

1°e°Ø

!2

, (1.7)

which is known to be tight for q = 2 for all Ø [45, 57, 58], conjectured to be tight for q = 3 for all Ø [26, 46], and
known not to be tight for q ∏ 5 [66].

What can we say about the nature of the Gibbs measure in the ‘replica symmetric phase’ 0 < d < dcond(q,Ø)?
Azuma’s inequality shows that 1

n ln Zq,Ø(G) converges to limn!1
1
n E[ln Zq,Ø(G)] in probability, i.e., the free energy

ln Zq,Ø(G) has fluctuations of order o(n). On the other hand, given that key parameters such as the size of the
largest connected component of G exhibit fluctuations of order

p
n even once we condition on the number |E(G)|

of edges, one might expect that so does ln Zq,Ø(G). Yet remarkably, the following theorem shows that throughout
the replica symmetric phase the free energy merely has bounded fluctuations given |E(G)|. In fact, we know the
precise limiting distribution.

Theorem 1.3. Let q ∏ 2, Ø > 0 and 0 < d < dcond(q,Ø). With (K`)`∏3 a sequence of independent Poisson variables
with mean E[Kl ] = d`/(2`), let

K =
1X

`=3
K` ln(1+±`)° d`±`

2`
where ±` = (q °1)

√
e°Ø°1

q °1+e°Ø

!`
.

Then E|K | <1 and, in distribution,

ln Zq,Ø(G)°
µ
n + 1

2

∂
ln q ° |E(G)| ln

√

1° 1°e°Ø

q

!

+ q °1
2

ln

√

1+ d(1°e°Ø)

q °1+e°Ø

!

+ d±1

2
+ d 2±2

4
n !1! K .

Further, as in the k-spin model the replica symmetric phase can be characterized in terms of the overlap. For-
mally, define the overlap of two colorings æ,ø : Vn ! ≠ as the probability distribution Ωæ,ø = (Ωæ,ø(s, t ))s,t2≠ on
≠£≠ where Ωæ,ø(s, t ) = |æ°1(s)\ ø°1(t )|/n is the probability that a random vertex v is colored s under æ and t
under ø. Let Ω̄ denote the uniform distribution on ≠£≠, write æ1,æ2 for two independent samples from µG,q,Ø,
denote the expectation with respect to æ1,æ2 by h ·iG,q,Ø and the expectation over the choice of G by E [ · ].

Theorem 1.4. For all q ∏ 2,Ø> 0 we have dcond(q,Ø) = inf
n

d > 0 : limsupn!1E
≠
kΩæ1,æ2 ° Ω̄kTV

Æ
G,q,Ø > 0

o
.

As in the case of the k-spin model it is easy to see that EhkΩæ1,æ2 ° Ω̄kTViG,q,Ø = o(1) iff the colors assigned to two
randomly chosen vertices of G are asymptotically independent with probability tending to one. Hence, dcond(q,Ø)
marks the onset of long-range correlations.

In many diluted models, and in particular in the Potts antiferromagnet, the condensation transition is conjec-
tured to be preceded by another threshold where certain “point-to-set correlations” emerge [43]. Intuitively, the
reconstruction threshold is the point from where for a random vertex y 2Vn correlations between the color assigned
to y and the colors assigned to all vertices at a large enough distance ` from y persist. Formally, with æ chosen
from µG,q,Ø let r`,q,Ø(G, y) be the æ-algebra on ≠Vn generated by the random variables æ(z), where z ranges over
all vertices at distance at least ` from y . Then

corrq,Ø(d) = lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E

DØØØ
≠

1{æ(y) = s}
ØØr`,q,Ø(G, y)

Æ
G,q,Ø°1/q

ØØØ
E

G,q,Ø
(1.8)

measures the extent of correlations between y and a random boundary condition in the limit `,n !1 (the outer
limit exists due to monotonicity). Indeed, with the expectation E [ · ] in (1.8) referring to the choice of G, the outer
h ·iG,q,Ø chooses a random coloring of the vertices at distance at least ` from y and the inner h · |r`,q,Ø(G, y)iG,q,Ø
averages over the color of y given the boundary condition.

The reconstruction threshold is defined as drec(q,Ø) = inf{d > 0 : corrq,Ø(d) > 0}. A priori, calculating drec(q,Ø)
appears to be rather challenging because we seem to have to control the joint distribution of the colors at distance
` from y . However, according to physics predictions drec(q,Ø) is identical to the corresponding threshold on a
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random tree [43], a conceptually much simpler object. Formally, let T(d) be the Galton-Watson tree with offspring
distribution Po(d). Let r be its root and for an integer ` ∏ 1 let T`(d) be the finite tree obtained by deleting all
vertices at distance greater than ` from r . Then

corr?q,Ø(d) = lim
`!1

X

s2≠
E

øØØØØ
D

1{æ(r ) = s}
ØØr`,q,Ø(T`(d),r )

E

T`(d),q,Ø
°1/q

ØØØØ

¿

T`(d),q,Ø

measures the extent of correlations between the color of the root and the colors at the boundary of the tree. Accord-
ingly, the tree reconstruction threshold is defined as d?rec(q,Ø) = inf{d > 0 : corr?q,Ø(d) > 0}. Combining Theorem 1.4
with a result of Gerschenfeld and Montanari [35], we obtain the following result.

Corollary 1.5. For every q ∏ 2 and Ø> 0 we have 1 ∑ drec(q,Ø) = d?rec(q,Ø) ∑ dcond(q,Ø).

Previously it was known that drec(q,Ø) = d?rec(q,Ø) for q exceeding some (large but) undetermined constant q0 [54].
This assumption was required because the proof depended on model-specific combinatorial considerations. A
merit of the present approach is that we replace such combinatorial arguments by abstract probabilistic ones.

1.4. The stochastic block model. The disassortative stochastic block model, originally introduced by Holland,
Laskey, and Leinhardt [38], is an intensely studied statistical inference problem associated with the Potts model [55].
We first choose a random coloring æ§ : Vn !≠ of n vertices with q ∏ 2 colors. Then, setting

din = d qe°Ø

q °1+e°Ø
, dout =

d q

q °1+e°Ø

we generate a random graph G§ by connecting any two vertices v, w of the same color æ§(v) =æ§(w) with proba-
bility din/n and any two with distinct colors with probability dout/n independently. Thus, the average degree of G§

converges to d in probability.
Two fundamental statistical problems arise [26]. First, given q,Ø, for what values of d is it possible to recover

a non-trivial approximation of æ§ given just the random graph G§, i.e., to do better than just a random guess (see
[26] for a formal definition)? A second, more modest task is the detection problem, which merely asks whether the
random graph G§ chosen from the stochastic block can be told model apart from the natural “null model”, namely
the plain Erdős-Rényi random graph G.

Decelle, Krzakala, Moore and Zdeborová [26] predicted that for d < dcond(q,Ø), i.e., below the Potts condensa-
tion threshold (1.5), it is information-theoretically impossible to solve either problem. That is, there is no test or
algorithm that can infer with probability tending to 1 as n !1 whether its input was created via the stochastic
block model or the Erdős-Rényi model, let alone obtain a non-trivial approximation toæ§. On the other hand, they
predicted that there exist efficient algorithms to solve either problem if d exceeds the Kesten-Stigum bound (1.7).
Both of these conjectures were proved in the case q = 2 by Mossel, Neeman and Sly [57, 58] and Massoulié [45].
After advances by Bordenave, Lelarge and Massoulié [20], the positive algorithmic conjecture was proved in full
by Abbe and Sandon [3]. On the negative side, [23, Theorem 1.3] shows that no algorithm can infer a non-trivial
approximation toæ§ if d < dcond(q,Ø) for any q ∏ 3, Ø> 0. Additionally, Banks, Moore, Neeman, and Netrapalli [12]
employed a second moment argument based on Achlioptas and Naor [8] to determine an explicit range of d where
it is impossible to discern whether the graph was created via the stochastic block model or the Erdős-Rényi model.
However, there remained a small multiplicative gap between their explicit bound and the actual condensation
threshold.

Our next result closes this gap and thus settles the conjecture from [26]. Recall that the random graph models
G,G§ are mutually contiguous for d > 0 if for any sequence (An)n of events we have

lim
n!1

P [G 2An] = 0 iff lim
n!1

P
£
G
§ 2An

§
= 0.

If so, then clearly no algorithm (efficient or not) can discern with probability 1°o(1) whether a given graph stems
from the stochastic block model G§ or the “null model” G.

Theorem 1.6. For all q ∏ 3, Ø> 0, d < dcond(q,Ø) the random graph models G and G§ are mutually contiguous.

This result is tight since [23, Theorem 2.6] implies that G,G§ fail to be mutually contiguous for d > dcond(q,Ø).
Theorem 1.6 deals with the disassortative version of the block model, which corresponds to the Potts antiferro-

magnet. There is a contiguity conjecture in [26] for the assortative (viz. ferromagnetic) version as well, and Banks,
Moore, Neeman, and Netrapalli [12] obtained upper and lower bounds in that case too, but the techniques of the
present work do not apply to ferromagnetic models (see Section 2.4).
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2. MAIN RESULTS

Factor graph models have emerged as a unifying framework for a multitude of concrete models arising in physics,
combinatorics, and other disciplines [47, 63]. The main results of this paper, which we present in this section,
therefore deal with a general class of random factor graph models, subject merely to a few easy-to-check assump-
tions. In Section 2.1 we define this general notion. Then we state the results for general random factor graph
models in Section 2.2. Moreover, in Section 2.3 we indicate how the diluted k-spin model, the Potts antiferromag-
net and the stochastic block model fit this framework. Section 2.4 contains a discussion of related work.

2.1. Factor graphs. The following definition encompasses most important examples of spin systems on graphs [47].

Definition 2.1. Let≠ be a finite set of spins, let k ∏ 2 be an integer and let™ be a set of functions √ :≠k ! (0,2) that
we call weight functions. A™-factor graph G = (V ,F, (@a)a2F , (√a)a2F ) consists of

• a finite set V of variable nodes,
• a finite set F of constraint nodes,
• an ordered k-tuple @a = (@1a, . . . ,@k a) 2V k for each a 2 F ,
• a family (√a)a2F 2™F of weight functions.

The Gibbs distribution of G is the probability distribution on≠V defined by µG (æ) =√G (æ)/Z (G) for æ 2≠V , where

√G (æ) =
Y

a2F
√a(æ(@1a), . . . ,æ(@k a)) and Z (G) =

X

ø2≠V

√G (ø). (2.1)

Of course we refer to Z (G) as the partition function. The use of the interval (0,2) in the above definition may seem
arbitrary, but with 1 being the ‘neutral’ weight, this choice allows to use the weight functions to either reward or
penalize certain value combinations. This is natural in glassy models such as the k-spin model. At the same time
having an explicit upper bound on the values of √ is convenient to avoid integrability issues, although any other
interval can be rescaled into (0,2), see the example of the k-spin model in Section 2.3.3. But we emphasize that the
value 0 is not allowed, i.e., in this paper we do not deal with ‘hard’ constraints.

A™-factor graph G induces a bipartite graph with vertex sets V and F where a 2 F is adjacent to @1a, . . . ,@k a. We
shall therefore use common graph-theoretic terminology and refer to, e.g., the vertices @1a, . . . ,@k a as the neighbors
of a. Furthermore, the length of shortest paths in the bipartite graph induces a metric on the nodes of G .

Diluted mean-field models correspond to random factor graphs. To define them formally, we observe that any
weight function √ :≠k ! (0,2) can be viewed as a point in |≠|k -dimensional Euclidean space. We thus endow the
set of all possible weight functions with the æ-algebra induced by the Borel algebra. Further, for a weight function
√ :≠k ! (0,2) and a permutation µ : {1, . . . ,k} ! {1, . . . ,k} we define√µ :≠k ! (0,2), (æ1, . . . ,æk ) 7!√(æµ(1), . . . ,æµ(k)).
Throughout the paper we assume that ™ is a measurable set of weight functions such that for all √ 2 ™ and all
permutations µ we have √µ 2™. Moreover, we fix a probability distribution P on ™. We always denote by √ an
element of™ chosen from P , and we set

q = |≠| and ª= q°k X

æ2≠k

E[√(æ)].

Furthermore, we always assume that P is such that the following three inequalities hold:

E[ln8(2°max{√(ø) : ø 2≠k })] <1, E[max{√(ø)°4 : ø 2≠k }] <1,
X

ø2≠k

E[(√(ø)°ª)2] > 0. (2.2)

The first two inequalities bound on the upper and the lower ‘tails’ of √(ø) for ø 2 ≠k . Specifically, the first one
provides that the eighth moment of the log of the reflected maximum weight ln(2°maxø2≠k √(ø)) exists. The
purpose of this condition is to guarantee integrability in some of our estimates. The second condition bounds the
lower tail. The third one simply provides that√ is non-constant.

With these conventions in mind suppose that n,m > 0 are integers. Then we define a random ™-factor graph
G(n,m,P ) as follows. The set of variable nodes is Vn = {x1, . . . , xn}, the set of constraint nodes is Fm = {a1, . . . , am}
and the neighborhoods @ai 2V k

n are chosen uniformly and independently for i = 1, . . . ,m. Furthermore, the weight
functions √ai 2™ are chosen from the distribution P mutually independently and independently of the neighbor-
hoods (@ai )i=1,...,m . Where P is apparent we just write G(n,m) rather than G(n,m,P ).

Since we aim to study models on sparse random graphs such as the Potts model on the Erdős-Rényi graph we
are concerned with the case that m = O(n) as n !1. To express this elegantly and in order to be able to take the
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thermodynamic limit n !1 easily, we fix a real d > 0 that does not depend on n, let m = md (n) have distribution
Po(dn/k) and write G =G(n,m,P ) for brevity. Then the expected degree of a variable node is equal to d .

While in G the neighborhoods @ai 2 V k
n are chosen uniformly, in order to accommodate certain applications

such as the Potts model on the Erdős-Rényi graph we need to impose two conditions. First, that for any constraint
node ai the k neighboring variable nodes @1ai , . . . ,@k ai are distinct. Second, that {@1ai , . . . ,@k ai } 6= {@1a j , . . . ,@k a j }
for all i 6= j . Let us denote the event that these two conditions hold by S. Combinatorially S is the event that the
hypergraph whose vertices are the variable nodes and whose edges are the neighborhoods of the constraint nodes
is simple and k-uniform. We are going to state all results both for the unconstraint G and conditional on S.

Apart from the condition (2.2), which we assume tacitly, the main results require (some of) the following four
assumptions. Crucially, they only refer to the distribution P on the set™ of weight functions.

SYM For all i 2 {1, . . . ,k}, ! 2≠ and √ 2™we have
X

ø2≠k

1{øi =!}√(ø) = qk°1ª (2.3)

and for every permutation µ and every measurable A Ω™we have P (A ) = P ({√µ :√ 2A }).

BAL The function

¡ :µ 2P (≠) 7!
X

ø2≠k

E[√(ø)]
kY

i=1
µ(øi )

is concave and attains its maximum at the uniform distribution on≠.
MIN Let R(≠) be the set of all probability distributions Ω = (Ω(s, t ))s,t2≠ on ≠ £ ≠ such thatP

s2≠Ω(s, t ) =P
s2≠Ω(t , s) = q°1 for all t 2≠. The function

Ω 2R(≠) 7!
X

æ,ø2≠k

E[√(æ)√(ø)]
kY

i=1
Ω(æi ,øi )

has the uniform distribution on≠£≠ as its unique global minimizer.

POS For all º,º0 2P 2
§(≠) the following is true. With Ω1,Ω2, . . . chosen from º, Ω0

1,Ω0
2, . . . chosen from º0

and√ 2™ chosen from P , all mutually independent, we have

E

"

§

√
X

ø2≠k

√(ø)
kY

i=1
Ωi (øi )

!

+ (k °1)§

√
X

ø2≠k

√(ø)
kY

i=1
Ω0

i (øi )

!

°k§

√
X

ø2≠k

√(ø)Ω1(ø1)
kY

i=2
Ω0

i (øi )

!#

∏ 0.

Conditions very similar to SYM, BAL and POS appeared in [23] as well. SYM is a symmetry condition.1 Condi-
tion BAL is going to guarantee that for small enough values of d the Gibbs measure µG is typically concentrated
on “balanced” æ 2 ≠Vn , i.e., |æ°1(!)| ª n/q for all ! 2 ≠. Further, MIN is a technical condition that we need in
order to study the overlap of two independent Gibbs samples. Finally, POS is required so that we can apply certain
results from [23]. As we shall see in Section 2.3, these conditions are easily verified in the models from Section 1
and several others.

2.2. Results. We proceed to state the results on the condensation phase transition, the limiting distribution of the
free energy, the overlap, the reconstruction and the detection thresholds for random factor graph models.

2.2.1. The condensation phase transition. The following theorem pins down the condensation phase transition in
random factor graph models precisely in terms of a distributional optimization problem that encodes the “1-RSB
cavity equations with Parisi parameter 1” from the cavity method [47]. In particular, the functional B in equation
(2.4) is a version of the Bethe free energy from the cavity method.

Theorem 2.2. Assume that P satisfies SYM, BAL and POS and let d > 0. With ∞ a Po(d)-random variable, Ωº1 ,Ωº2 , . . .
chosen from º 2P 2

§(≠) and√1,√2, . . . 2™ chosen from P, all mutually independent, let

B(d ,P,º) = E
"

1
qª∞

§

√
X

æ2≠

∞Y

i=1

X

ø2≠k

1{øk =æ}√i (ø)
k°1Y

j=1
Ωºk(i°1)+ j (ø j )

!

° d(k °1)
kª

§

√
X

ø2≠k

√1(ø)
kY

j=1
Ωºj (ø j )

!#

, (2.4)

dcond = inf

(

d > 0 : sup
º2P 2

§ (≠)
B(d ,P,º) > ln q + d

k
lnª

)

. (2.5)

1The condition (2.3) emerged out of a discussion with Guilhem Semerjian.
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Then 1/(k °1) ∑ dcond <1 and

lim
n!1

1
n
E[ln Z (G)] = lim

n!1
1
n
E[ln Z (G)|S] = ln q + d

k
lnª if d < dcond,

limsup
n!1

1
n
E[ln Z (G)] = limsup

n!1

1
n
E[ln Z (G)|S] < ln q + d

k
lnª if d > dcond.

Theorem 2.2 generalizes [23, Theorem 2.7], which requires that the set™ of weight functions is finite.
Admittedly the formula for dcond provided by Theorem 2.2 is neither very simple nor very explicit, but we are

not aware of any reason why it ought to be. Yet there is a natural generalization of the Kesten-Stigum bound for
the Potts model from (1.7) that provides an easy-to-compute upper bound on dcond in terms of the spectrum of a
certain linear operator. The operator is constructed as follows. For √ 2™ let©√ 2R≠£≠ be the matrix with entries

©√(!,!0) = q1°kª°1 X

ø2≠k

1{ø1 =!,ø2 =!0}√(ø) (!,!0 2≠) (2.6)

and let •=•P be the linear operator on the q2-dimensional space R≠≠R≠ defined by

•=•P = E[©√≠©√]. (2.7)

Further, with 1 denoting the vector with all entries equal to one, let

E =
©

z 2Rq ≠Rq : 8y 2Rq :
≠

z,1≠ y
Æ
=

≠
z, y ≠1

Æ
= 0

™
. (2.8)

Thus, if we identify the space Rq ≠Rq with the space of all q £ q matrices, then E is the set of all matrices whose
row and column sums all vanish. Finally, we introduce

dKS =
µ
(k °1) max

x2E :kxk=1
h•x, xi

∂°1

, (2.9)

with the convention that dKS =1 if maxx2E :kxk=1 h•x, xi= 0.

Theorem 2.3. If P satisfies SYM and BAL, then dcond ∑ dKS.

We shall see in Section 3 that • is related to the “broadcasting matrix” of a suitable Galton-Watson tree, which
justifies referring to dKS as a generalized version of the classical Kesten-Stigum bound from [41]. While the Kesten-
Stigum bound is not generally tight, it plays a major conceptual role, as will emerge in due course.

2.2.2. The free energy. Theorem 2.2 easily implies that n°1 ln Z (G) converges to ln q + d
k lnª in probability if d <

dcond. Yet due to the scaling factor of 1/n this is but a rough first order approximation. The next theorem, arguably
the principal achievement of this paper, yields the exact limiting distribution of the unscaled free energy ln Z (G) in
the entire replica symmetric phase. Recalling (2.6), we introduce the≠£≠-matrix

©=©P = E[©√]. (2.10)

Also recall that m
d=Po(dn/k) denotes the number of constraint nodes of G and let Eig(©) be the spectrum of©.

Theorem 2.4. Assume that P satisfies SYM, BAL, POS and MIN and that 0 < d < dcond. Let (Kl )l∏1 be a family of
Poisson variables with means E[Kl ] = 1

2l (d(k°1))l and let (√l ,i , j )l ,i , j∏1 be a sequence of samples from P, all mutually
independent. Then the random variable

K =
1X

l=1

"
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©√l ,i , j

#

(2.11)

satisfies E|K | <1 and

ln Z (G)°
µ
n + 1

2

∂
ln q °m ln(ª)+ 1

2

X

∏2Eig(©)\{1}
ln(1°d(k °1)∏)

n !1°! K (2.12)

in distribution. Further, given S the random variable on the left hand side of (2.12) converges in distribution to

K 0 = d(k °1)(1° tr(©))
2

+1{k = 2}
d 2(1° tr(©2))

4
+

1X

l=2+1{k=2}

"
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©√l ,i , j

#

,

which also satisfies E|K 0| <1.
8



Since key parameters of the random factor graph such as the size of the largest connected component of G
exhibit fluctuations of order

p
n even once we condition on m, one might a priori expect that the same is true of

the free energy ln Z (G). However, (2.12) shows that given m the free energy has bounded fluctuations.

2.2.3. The overlap. For æ,ø 2≠Vn we define the overlap Ωæ,ø = (Ωæ,ø(!,!0))s,t2≠ 2P (≠£≠) by letting

Ωæ,ø(!,!0) = |æ°1(!)\ø°1(!0)|/n.

Let Ω̄ be the uniform distribution on ≠£≠. The following theorem confirms one of the core tenets of the cavity
method, namely the absence of extensive long-range correlations for d < dcond. We write æ,ø for two indepen-
dent samples chosen from the Gibbs measure µG , h ·iG for the expectation with respect to the µG and E [ · ] for the
expectation with respect to the choice of G .

Theorem 2.5. If P satisfies SYM, BAL, POS and MIN, then

dcond(q,Ø) = inf
Ω

d > 0 : limsup
n!1

E
≠
kΩæ,ø° Ω̄kTV

Æ
G > 0

æ
= inf

Ω
d > 0 : limsup

n!1
E
£≠
kΩæ,ø° Ω̄kTV

Æ
G |S

§
> 0

æ
.

If we let µG ,y ( · ) =
≠

1{æ(y) = · }
Æ

G be the Gibbs marginal of y 2Vn and µG ,y1,y2 ( · , · ) =
≠

1{æ1(y1) = · ,æ2(y2) = · }
Æ

G
the joint distribution of the spins at y1, y2 2Vn , then Theorem 2.5 implies together with standard arguments that

lim
n!1

1
n2

X

y1,y22Vn

E

∞∞µG ,y1,y2 °µG ,y1 ≠µG ,y2

∞∞
TV = 0 for all d < dcond.

In other words, for d < dcond with probability tending to 1 as n !1, the spins assigned to two randomly chosen
variable nodes y1, y2 are asymptotically independent.

Conversely, Theorem 2.5 shows that for any "> 0 there exists dcond < d < dcond +" such that

limsup
n!1

1
n2

X

y1,y22Vn

E

∞∞µG ,y1,y2 ° Ω̄
∞∞

TV > 0. (2.13)

Hence, if we know that the Gibbs marginals µG ,y are uniform (e.g., due to the symmetry among colors in the Potts
model or the inversion symmetry in the k-spin model for even k), then (2.13) becomes

limsup
n!1

1
n2

X

y1,y22Vn

E

∞∞µG ,y1,y2 °µG ,y1 ≠µG ,y2

∞∞
TV > 0. (2.14)

Since two randomly chosen variable nodes y1, y2 of G have distance ≠(lnn) with probability 1°o(1), (2.14) states
that long range correlations persist for d beyond but arbitrarily close to dcond.

2.2.4. The teacher-student model. Finally, there is a natural statistical inference version of the random factor graph
model, the teacher-student model [67], a generalization of the stochastic block model from Section 1.4. Suppose
thatæ : Vn !≠ is an assignment of spins to variable nodes. Then we introduce a random factor graph G§(n,m,P,æ)
with variable nodes Vn and constraint nodes Fm such that, independently for each j = 1, . . . ,m, the neighborhood
@a j and the weight function √a j are chosen from the following joint distribution: for any y1, . . . , yk 2 Vn and for
any measurable A Ω™,

P

h
@a j = (y1, . . . , yk ),√a j 2A

i
= E[1{√ 2A }√(æ(y1), . . . ,æ(yk ))]

P
z1,...,zk2Vn E[√(æ(z1), . . . ,æ(zk ))]

. (2.15)

Thus, the probability of the outcome (y1, . . . , yk ),√a j =√ is proportional to the ‘prior’ probability P (√) of selecting
√ times the ‘posterior’ weight √(æ(y1), . . . ,æ(yk )). In effect, due to the independence of the individual constraint
nodes the distribution of G§(n,m,P,æ) is characterized by the identity

P
£
G§(n,m,P,æ) 2A

§
=
E
£
1{G(n,m,P ) 2A }√G(n,m,P )(æ)

§

E[√G(n,m,P )(æ)]
for any event A . (2.16)

Of course, if the distribution P on weight functions is discrete, then (2.16) just boils down to

P
£
G§(n,m,P,æ) =G

§
= √G (æ)P [G(n,m,P ) =G]

E[√G(n,m,P )(æ)]
for any factor graph G . (2.17)

Alternatively, (2.16)–(2.17) can be cast in terms of Radon-Nikodym derivatives as

dG§(n,m,P,æ)
dG(n,m,P )

=
√G(n,m,P )(æ)
E[√G(n,m,P )(æ)]

.
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Thus, factor graphs are simply weighted according to the weight of the assignment æ.
Further, given d > 0 consider the following experiment where the initial assignment is chosen randomly as well.

TCH1: an assignment æ§ : Vn !≠, the ground truth, is chosen uniformly at random.
TCH2: independently of æ§, draw m = md (n) from the Poisson distribution with mean dn/k.
TCH3: generate G§ =G§(n,m,P,æ§).

The intuition behind this model is that a “teacher”, in possession of the ground truth æ§, finds herself unable to
communicate æ§ to a student directly. Instead the teacher utilizes æ§ to set up a random factor graph G§ that the
student gets to observe. Given G§ the student aims to recover æ§ as best as possible. Crucially, it turns out that
the posterior distribution ofæ§ essentially coincides with the Gibbs distribution µG§ (see Lemma 3.1 below), a fact
known as the Nishimori identity in physics [23, 67].

As in the case of the stochastic block model, two natural questions arise: given G§, is it information-theoretically
possible to accomplish a better approximation to æ§ than a mere independent random guess? More modestly,
there is the detection problem: given a factor graph G is it possible to discern with probability 1°o(1) as n !1
whether G was chosen from the model G§ or from the “null model” G? As the imprint that the ground truth imbues
on G§ increases with d , we should expect the existence of a threshold from where either problem turns solvable.
Regarding the detection problem, we recall that the random graph models G ,G§ are mutually contiguous if for
any sequence (An)n of events we have limn!1P [G 2An] = 0 iff limn!1P [G§ 2An] = 0. The following theorem
establishes a generalization of the conjectures put forward in [26] for the stochastic block model to the case of
random factor graph models.

Theorem 2.6. If P satisfies SYM, BAL, POS and MIN, then G ,G§ are mutually contiguous for all d < dcond, while
G ,G§ fail to be mutually contiguous for d > dcond. The same holds given G ,G§ 2S.

Previously it was known that for d < dcond it is impossible to recover an assignment that has a strictly greater
overlap with æ§ [23, Theorem 2.6]. Theorem 2.6 shows that, in fact, dcond marks the threshold for the feasibility of
the humble detection problem.

While Theorem 2.6 is bad news from a statistical inference point of view, the upshot is that throughout the
replica symmetric phase typical properties of Gibbs samples of G can be investigated accurately by way of the
teacher-student model (G§,æ§), a technique known as “quiet planting” [4, 42]. This idea has been used critically
in rigorous work on specific examples of random factor graph models, e.g., [53]. Formally, quiet planting applies
if the factor graph/assignment pair (G§,æ§) comprising the ground truth æ§ and the outcome G§ of TCH1–TCH3
and the pair (G ,æ) consisting of the random factor graph G and a Gibbs sample æ of G are mutually contiguous.
Previously this was known to be true for a few specific models (e.g., [16, 22]), albeit not generally in the entire replica
symmetric phase. The following corollary to Theorem 2.6 shows that “quiet planting” is a universal phenomenon.

Corollary 2.7. Assume that P satisfies SYM, BAL, POS and MIN. For all d < dcond the pairs (G ,æ) and (G§,æ§) are
mutually contiguous. The same is true given G ,G§ 2S.

2.2.5. Reconstruction. According to the physics deliberations the condensation phase transition is generally pre-
ceded by another threshold where certain point-to-set correlations emerge, the reconstruction threshold [43]. Re-
construction plays a major role in the cavity formalism because it provides the conceptual underpinning for the
notion that the Gibbs measure decomposes into a multitude of “clusters” [47, 51]. Formally, suppose that G is a
factor graph with variable nodes V , y 2 V and that ` ∏ 0. Let r`(G , y) be the æ-algebra on ≠V generated by the
random variables æ(z) such that z is a variable node whose distance from y in G is at least 2`. Further, define

corr(d) = lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
≠ØØ≠1{æ(y) = s}

ØØr`(G , y)
Æ

G °1/q
ØØÆ

G . (2.18)

Of course, the expectation E [ · ] refers to the choice of G , the outer expectation h ·iG averages over the “boundary
condition”, i.e., the spins of the variable nodes at distance at least 2` from y , and the inner h · |r`(G , y)iG is the
conditional expectation given the boundary condition. If corr(d) = 0, then the influence of a “typical" boundary
condition on the spin of y decays with the radius `. Thus, the reconstruction threshold drec = inf{d > 0 : corr(d) > 0}
is the smallest degree where the influence of the boundary persists.

A priori determining drec appears to be challenging because the joint distribution of the spins at distance 2`
from y is determined not merely by the “local” effects within the radius-2` neighborhood of y but also by the graph
beyond. But according to physics predictions (e.g., [43]), actually drec is equal to the corresponding threshold on
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a suitable Galton-Watson tree. Conceptually this amounts to an enormous simplification because the branches of
the tree are mutually dependent only through their being connected to the root, a situation amenable to precise
treatment via the Belief Propagation message passing scheme [47].

Formally, we introduce a multi-type Galton-Watson tree T (d ,P ) that mimics the local geometry of G . The types
are either variable nodes or constraint nodes, each of the latter endowed with a weight function √ 2™. The root
of the Galton-Watson tree is a variable node r . The offspring of a variable node is a Po(d) number of constraint
nodes whose weight functions are chosen from P independently. Moreover, the offspring of a constraint node is
k °1 variable nodes. For an integer `∏ 0 we let T `(d ,P ) denote the (finite) tree obtained from T (d ,P ) by deleting
all variable or constraint nodes at distance greater than 2` from r . In analogy to (2.18) we set

corr?(d) = lim
`!1

X

s2≠
E

DØØØ
D

1{æ(r ) = s}
ØØr`(T `(d ,P ),r )

E

T `(d ,P )
°1/q

ØØØ
E

T `(d ,P )
(2.19)

The tree reconstruction threshold is defined as d?rec = inf{d > 0 : corr?(d) > 0}.

Theorem 2.8. Suppose that P satisfies SYM, BAL, POS and MIN. Then 0 < drec = d?rec ∑ dcond and corr(d) > 0 for all
d 2 (drec,dcond). Moreover,

lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
£≠ØØ≠1{æ(y) = s}

ØØr`(G , y)
Æ

G °1/q
ØØÆ

G |S
§
= 0 if and only if corr?(d) = 0.

In many specific examples the reconstruction threshold drec strictly precedes the condensation threshold dcond.
The Potts antiferromagnet with q ∏ 5 is a case in point [66]. The onset of reconstruction has been identified with
the ‘dynamic replica symmetry breaking’ phenomenon predicted by the cavity method [43], which appears to have
significant repercussions on the behavior of efficient algorithms (e.g., [4]).

We prove Theorem 2.8 by way of the teacher-student model and the “quiet planting” result Corollary 2.7. This
argument provides a perspective on the reconstruction problem that has an impact on the statistical inference
questions as well. Specifically, we observe that the reconstruction problem on the random tree T (d ,P ) is equivalent
to a natural “Bayesian” reconstruction problem in the teacher-student model. Formally, let r§

`
(G§,æ§, y) be the æ-

algebra generated by the graph G§ and the random variables æ§(z) with z at distance at least 2` from y . Then

corr§(d) = lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
£ØØP

£
æ§(y) = s

ØØr§
`(G§,æ§, y)

§
°1/q

ØØ§ (2.20)

measures the correlation betweenæ§(y), the spin at y under the ground truth, and the spins thatæ§ assigns to the
variables at distance at least 2`. The proof of Theorem 2.8 is based on showing that corr§(d) = corr?(d) for all d .

Theorem 2.9. If P satisfies SYM, BAL, POS and MIN, then for all d > 0 we have

corr?(d) = corr§(d) = lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E

hØØ≠1{æ(y) = s}
ØØr`(G§, y)

Æ
G§ (æ§)°1/q

ØØ
ØØØS

i
.

As mentioned before, in many specific models the reconstruction threshold strictly precedes the condensation
threshold. Theorem 2.9 indicates that in the regime between these two thresholds, an inference algorithm applied
to the graph G§ might erroneously sample from a restricted distribution that corresponds to a locally consistent
collection of non-uniform marginals. In terms of statistical inference this means that the algorithm would overfit;
see [55] for a more detailed discussion of this effect in the case of the stochastic block model.

Finally, we highlight an immediate but interesting consequence of Theorems 2.3 and 2.8 that generalizes the
classical Kesten-Stigum upper bound for reconstruction on trees [41].

Corollary 2.10. If P satisfies SYM, BAL, POS and MIN, then corr?(d) > 0 for all d > dKS.

The reconstruction problem on a certain class of random factor graph models (that includes, e.g., the Potts an-
tiferromagnet) was previously studied by Gerschenfeld and Montanari [35]. They observed that overlap concen-
tration about Ω̄ as provided by Theorem 2.5 for d < dcond guarantees that the reconstruction thresholds drec and
d?rec coincide. Subsequently, with the condensation threshold well out of reach at the time, Montanari, Restrepo
and Tetali [54] attempted to verify the required overlap concentration at least for all d up to the tree reconstruction
threshold. However, their combinatorial (essentially second moment) argument did not cover the entire range of
parameters, e.g., all q and/or all Ø in the Potts model. By comparison to [35, 54], Theorem 2.9 provides a different,
perhaps more conceptual angle: tree reconstruction is equivalent to reconstruction in the teacher-student model
for all d , and up to dcond the equivalence extends to the random factor graph model G thanks to contiguity.
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2.3. Examples. Here we show how the models from Section 1 can be cast as random factor graph models that
satisfy the assumptions SYM, BAL, POS and MIN.

2.3.1. The Potts antiferromagnet. For an integer q ∏ 2 and a real Ø> 0 we let≠= {1, . . . , q} and

√q,Ø : (æ1,æ2) 2≠2 7! exp(°Ø1{æ1 =æ2}). (2.21)

Let™ be the singleton {√q,Ø}. Then the Potts model on a given graph G = (V ,E) can be cast as a™-factor graph: we
just set up the factor graph G 0 = (V ,E , (@e)e2E , (√e )e2E ) whose variable nodes are the vertices of the original graph
G and whose constraint nodes are the edges of G . For an edge e = {x, y} 2 E we let @e = (x, y), where, say, the order
of the neighbors is chosen randomly, and √e =√q,Ø, of course. Then µG 0 coincides with µG ,q,Ø from (1.3).

To mimic the Potts model on the Erdős-Rényi graph G = G(n,d/n) we let PPotts = ±√q,Ø be the atom on √q,Ø.
Then the sole difference between the factor graph representationG0 of the Erdős-Rényi graphG and G =G(n,m,P )
is that the latter may have factor nodes a such that @1a = @2a (“self-loops”) or pairs of distinct factor nodes a,b
such that {@1a,@2a} = {@1b,@2b} (“double-edges”). However, conditioning on the event S rules out self-loops and
double-edges. Indeed, we have the following.

Fact 2.11 ([23, Lemma 4.1]). The random factor graph G0 and G given S are mutually contiguous.

Lemma 2.12. The assumptions SYM, BAL, POS and MIN hold for PPotts for all q ∏ 2 and all Ø> 0.

Proof. That SYM, BAL and POS hold is known already [23, Lemma 4.3]. With respect to MIN, we observe that for
any distribution Ω 2R(≠) with uniform marginals,

X

æ1,æ2,ø1,ø22≠
√q,Ø(æ1,æ2)√q,Ø(ø1,ø2)Ω(æ1,ø1)Ω(æ2,ø2) = 1°2(1°e°Ø)/q + (1°e°Ø)2 X

æ,ø2≠
Ω(æ,ø)2.

The last expression is strictly convex as a function of Ω with the minimum attained at the uniform distribution. ⇤

Thus the results stated in Section 1.3 follow from the results for general random factor graph models. Indeed,
to obtain Theorem 1.3 we observe that the matrices from (2.6), (2.7) and (2.10) satisfy

©=©√q,Ø = (q °1+e°Ø)°1(1° (1°e°Ø)id), •= (q °1+e°Ø)°2((1° (1°e°Ø)id)≠ (1° (1°e°Ø)id)), (2.22)

where 1 is the all-ones matrix and id is the identity matrix. Clearly, the eigenvalues of© are 1 and (e°Ø°1)/(q °1+
e°Ø), the latter with multiplicity q °1. Hence,

tr(©`)°1 = (q °1)

√
e°Ø°1

q °1+e°Ø

!`
, lntr(©`) = ln

√

1+ (q °1)

√
e°Ø°1

q °1+e°Ø

!`!

.

Thus, Theorem 1.3 follows from Theorem 2.4 and Theorem 1.4 from Theorem 2.5. Finally, (2.22) shows that
maxx2E :kxk=1 h•x, xi= (1°e°Ø)2/(q °1+e°Ø)2 and thus (2.9) matches the “classical” Kesten-Stigum bound (1.7).

2.3.2. The stochastic block model. The teacher-student model G§ corresponding to PPotts is very similar to the
stochastic block model. As in the case of the Potts model on the Erdős-Rényi graph, the only discrepancy is due to
the possible occurrence of self-loops and double-edges.

Lemma 2.13 ([23, Lemma 4.4]). For any q ∏ 2, Ø > 0, d > 0 the stochastic block model G§ and the teacher-student
model G§ given S are mutually contiguous.

Theorem 1.6 follows from Theorem 2.6 and Lemma 2.13.

2.3.3. The k-spin model. Let ≠ = {±1}. For J 2 R,Ø > 0 we could define the weight function √̃J ,Ø(æ1, . . . ,æk ) =
exp(ØJæ1 · · ·æk ) to match the definition (1.1) of the k-spin model. However, these functions do not necessarily
take values in (0,2). To remedy this problem we introduce √J ,Ø(æ1, . . . ,æk ) = 1+ tanh(JØ)æ1 · · ·æk . Then (cf. [60])

√̃J ,Ø(æ1, . . . ,æk ) = cosh(JØ)√J ,Ø(æ1, . . . ,æk ). (2.23)

Thus, let™= {√J ,Ø : J 2R}, let√=√J ,Ø, where J is a standard Gaussian and let P J ,Ø be the law of√. Similarly as in
the case of the Potts model we have the following.
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Fact 2.14. For all k ∏ 2,d > 0,Ø> 0 the random measure µH,J ,Ø from (1.1) and the Gibbs measure µG(n,m,P J ,Ø) of the
random factor graph given S are mutually contiguous. Furthermore,

E

"

ln ZØ(H, J )°
X

e2E(H)
lncosh(ØJ e )

#

= E[ln Z (G(n,m,P J ,Ø))|S]+o(n).

Instead of just verifying the conditions SYM, BAL, POS and MIN for the k-spin model with standard Gaussian
couplings J , we will establish the following more general statement. Recall that a random variable J is symmetric
if J and °J have the same distribution.

Lemma 2.15. For any k ∏ 2, Ø > 0 and for any symmetric random variable J such that P J ,Ø satisfies (2.2) the three
conditions SYM, BAL and POS hold. If k is even, then MIN holds as well .

Proof. It is immediate that ª= 1 and that P J ,Ø satisfies SYM. For BAL observe that µ 7!P
ø2≠k E[√(ø)]

Qk
i=1µ(øi ) is

constant because J is symmetric. To verify POS we generalize the argument from [23, Section 4.4] by observing
that for any integer `∏ 1, with the notation from POS,

√

1°
X

æ2≠k

√J ,Ø(æ)
kY

i=1
Ωi (æi )

!`
=

°
tanh(JØ)

¢` kY

i=1

°
Ωi (1)°Ωi (°1)

¢` .

Hence, expanding§( · ) into a power series and using (2.2), we find

E

"

§

√
X

ø2≠k

√(ø)
kY

i=1
Ωi (øi )

!#

=°1+
1X

`=2

E
£
tanh(JØ)`

§

`(`°1)
E

h
(Ω1(1)°Ω1(°1))`

ik
.

Applying similarly manipulations to the other two terms from POS and introducing X` = E[(Ω1(1) °Ω1(°1))`],
Y` = E[(Ω0

1(1)°Ω0
1(°1))`], we see that POS comes down to showing that

1X

`=2

1
`(`°1)

E

h
tanh(JØ)`

i≥
X k
` °k X`Y k°1

` + (k °1)Y k
`

¥
∏ 0. (2.24)

Since J is symmetric we get E[tanh(JØ)`] = 0 for odd `, while E[tanh(JØ)`] ∏ 0 and X`,Y` ∏ 0 for even `. Hence,
(2.24) follows from the elementary fact that xk °kx yk°1 + (k °1)yk ∏ 0 for all x, y ∏ 0.

Moving on to MIN, we assume that k is even. Suppose that Ω 2 R(≠) is a distribution on ≠£≠ with uniform
marginals and let Æ= Ω(1,1)+Ω(°1,°1). Then Ω(1,1) = Ω(°1,°1) =Æ/2, Ω(1,°1) = Ω(°1,1) = (1°Æ)/2 and because
J is symmetric,

X

æ,ø2≠k

E
£
√J ,Ø(æ)√J ,Ø(ø)

§ kY

i=1
Ω(æi ,øi ) = 1+E[tanh(ØJ )2]

√
X

æ,ø2≠
æøΩ(æ,ø)

!k

= 1+E[tanh(ØJ )2](2Æ°1)k .

Because k is even, the last expression is convex with the minimum attained at Æ= 1/2, viz. Ω = Ω̄. ⇤

Lemma 2.15 shows not only that the k-spin model from Section 1.2 with a standard Gaussian J satisfies SYM,
BAL, POS and MIN, but that the same is true if J is the uniform distribution on {±1}. This model is known as the
k-XORSAT model in computer science. It is intimately related to low-density generator matrix codes [2].

Proof of Theorem 1.1. Comparing (1.1) and (2.23), we see that

1
n
E[ln ZØ(H, J )] = 1

n
E

"
X

e2E(H)
lncosh(ØJ e )

#

+ 1
n
E

"

ln
X

ø2{±1}Vn

Y

e2E(H)
1+ tanh

√

ØJ e
Y

y2e
ø(y)

!#

= d
p

2ºk

Z1

°1
ln(cosh(z))exp(°z2/2)dz + 1

n
E [ln Z (G)|S] .

Therefore, Theorem 1.1 follows from Theorem 2.2 and Lemma 2.15. ⇤

Proof of Theorem 1.2. Equations (1.1) and (2.23) ensure that the Gibbs measures µH,J ,Ø and µG given S are identi-
cally distributed. Hence, Theorem 1.2 follows from Theorem 2.5 and Lemma 2.15. ⇤
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2.4. Discussion and related work. The results in this section provide a map of the replica symmetric phase, its
boundary and the evolution of the Gibbs measure within it, thereby vindicating for a large class of models the pre-
dictions of the cavity method [43]. The results extend, complement or generalize prior work on the condensation
phase transition from [23], which only dealt with the case where the support ™ of P is finite, and on the recon-
struction problem [35, 54]. Additionally, in the example of the Potts antiferromagnet and the stochastic block
model prior work based on combinatorial methods only gave approximate results [12, 22], whereas the present
results are tight for all values of q,Ø. Indeed, a merit of the present approach is that we perform fairly abstract
arguments that do not require model-specific deliberations.

Beyond the examples treated explicitly in Section 2.3 there are several other important and well-studied models
that also satisfy the assumptions of our main results. For instance, Bapst, Coja-Oghlan and Raßmann [16] obtained
approximate results on the replica symmetry breaking phase transition in the random hypergraph 2-coloring prob-
lem. This model is easily seen to satisfy SYM, BAL, POS and MIN and thus the main results of the present paper
clarify the structure of the entire replica symmetric phase. More generally, the hypergraph version of the Potts
model satisfies our assumptions as well. So does the random k-NAESAT model, a variant of Boolean satisfiability
that resembles the hypergraph 2-coloring model.

Apart from proving an upper bound on the condensation threshold, the Kesten-Stigum bound plays an impor-
tant role with respect to statistical inference aspects of random factor graph models. Specifically, by extension of
the predictions from [26] for the stochastic block model, it seems natural to expect that there should be efficient
algorithms for both the detection problem and for recovering a non-trivial approximation to the ground truth in
the teacher-student model for d > dKS. On the other hand, an intriguing question is whether for dcond < d < dKS
these two problems may be solvable in exponential time but not efficiently, i.e., in polynomial time [12, 26]. In-
deed, while Theorem 2.2 shows that dcond is always finite, there are models where dKS = 1, e.g., the k-XORSAT
model or the k-spin model. Thus, for such models there might be an enormous computational gap. This question
is intimately related to the k-SAT refutation problem, an important question in computer science [31, 32].

There are a few models that fail to satisfy our assumptions. For instance, in the random k-SAT model [9] and the
hardcore model on the Erdős-Rényi random graph [11] condition SYM is violated. Indeed, in these two cases the
Gibbs marginals are non-uniform in the replica symmetric phase. In effect, we do not expect that the free energy
is as tightly concentrated as Theorem 2.4 shows it is in the case of “symmetric” models. Thus, it is not just that
the present proof methods do not apply, but “asymmetric” models appear to be materially different. Moreover,
ferromagnetic models generally violate SYM, BAL and POS.

A further class of models that we do not treat in this paper is models where the weight functions √ take val-
ues in {0,1}, thus imposing hard constraints. An example of this is the “zero-temperature” version of the Potts
antiferromagnet, better known as the random graph coloring problem [9]. Certain specific models with hard con-
straints have received considerable attention in combinatorics. For example, [15, 17, 62] established the precise
condensation threshold, a contiguity result and the exact limiting distribution of the number of q-colorings of
the Erdős-Rényi random graph via combinatorial methods under the assumption that q exceeds a large enough
constant. (Subsequently the condensation threshold in the random graph coloring problem was determined for
all q ∏ 3 [23].) Similar results, albeit not quite up to the precise condensation threshold, are know for the hyper-
graph 2-coloring and the k-NAESAT problems [6, 7, 61], a version of the random k-SAT problem with regular literal
degrees [24] and the independent set problem in random regular graphs [18]. Additionally, in zero temperature
models the ‘satisfiability threshold’ above which Z (G) is typically equal to 0 plays a major role [5, 10, 27, 28, 29, 56].

3. PROOF STRATEGY

Throughout this section we keep the notation from Section 2.

The apex of the present work is Theorem 2.4 about the limiting distribution of the free energy; all the other results
either lead up to it or derive from it relatively easily. The classical approach to proving such a result would be
the second moment method, pioneered in this context by Achlioptas and Moore [6], in combination with the
small subgraph conditioning technique of Robinson and Wormald [39, 64]. This strategy was applied to, e.g., the
stochastic block model [12] and the k-spin model [37]. But only in the stochastic block model with two colors
and the diluted 2-spin model was it possible to obtain complete results [37, 57]. Indeed, as noticed by Guerra and
Toninelli [37], a combinatorial second moment computation generally appears to be too crude a device to cover
the entire replica symmetric phase.
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Therefore, here we pursue a different strategy. We craft a proof around the teacher-student model G§. More
specifically, the main achievement of the recent paper [23] was to verify the cavity formula for the leading order
limn!1

1
n E[ln Z (G§)] of the free energy in the teacher-student model (in the case that the set ™ is finite). We will

replace the second moment calculation by that free energy formula, generalized to infinite™, and combine it with
a suitably generalized small subgraph conditioning technique. The challenge is to integrate these two components
seamlessly. We accomplish this by realizing that, remarkably, both arguments are inherently and rather elegantly
tied together via the spectrum of the linear operator• from (2.7). But to develop this novel approach we first need
to recall the classical second moment argument and understand why it founders.

3.1. Two moments do not suffice. For any second moment calculation it is crucial to fix the number of constraint
nodes because its fluctuations would otherwise boost the variance. Hence, we will work with a deterministic inte-
ger sequence m = m(n) ∏ 0. More precisely, we will fix d > 0 and consider specific integer sequences m = m(n) ∏ 0
such that |m(n)°dn/k|∑ n3/5 for all n. Let M (d) be the set of all such sequences.

The second moment method rests on showing that E[Z (G(n,m))2] is of the same order of magnitude as the
square E[Z (G(n,m))]2 of the first moment. If so, then standard concentration results can be used to show that
limn!1

1
n E[ln Z (G(n,m))] = limn!1

1
n lnE[Z (G(n,m))]. The second limit is easy to compute because the expecta-

tion sits inside the logarithm, and thus we obtain the leading order of the free energy.
In fact, if we can calculate the second moment E[Z (G(n,m))2] sufficiently accurately, then it may be possible

to determine the limiting distribution of ln Z (G(n,m)) precisely. Suppose, for example, that there is a “simple”
random variable Q(G(n,m)) such that

Var[Z (G(n,m))] = (1+o(1))Var[E[Z (G(n,m))|Q(G(n,m))]]. (3.1)

Then the basic formula Var[Z (G(n,m))] = Var[E[Z (G(n,m))|Q(G(n,m))]]+E[Var[Z (G(n,m))|Q(G(n,m))]] implies

E[Var[Z (G(n,m))|Q(G(n,m))]] = o(E[Z (G(n,m))]2) (3.2)

and typically it is not difficult to deduce from (3.2) that ln Z (G(n,m))° lnE[Z (G(n,m))|Q(G(n,m))] converges to 0
in probability. Hence, if Q(G(n,m)) is “reasonable enough” so that the law of lnE[Z (G(n,m))|Q(G(n,m))] is easy
to express, then we have got the limiting distribution of ln Z (G(n,m)). The basic insight behind the small sub-
graph conditioning technique is that (3.1) sometimes holds with a variable Q that is determined by the statistics of
bounded-length cycles in G(n,m) [39, 64].

Anyhow, the crux of the entire argument is to calculate E[Z (G(n,m))2]. Of course, by the linearity of expectation
and the independence of the constraint nodes, the second moment can be written in terms of the overlap Ωæ,ø as

E[Z (G(n,m))2] =
X

æ,ø2≠Vn

E

"
mY

i=1
√ai (æ(@1ai ), . . . ,æ(@k ai ))√ai (ø(@1ai ), . . . ,ø(@k ai ))

#

=
X

æ,ø2≠Vn

√
X

s,t2≠k

E[√(s)√(t )]
kY

i=1
Ωæ,ø(si , ti )

!m

. (3.3)

Given a probability distribution Ω = (Ω(s, t ))s,t2≠ on ≠2 such that nΩ(s, t ) is integral for all s, t 2≠, the number of
assignments æ,ø 2≠Vn with Ωæ,ø = Ω equals

° n
Ωn

¢
. Therefore, Stirling’s formula yields the approximation

lnE[Z (G(n,m))2] = max
Ω2P (≠2)

nH (Ω)+m ln

√
X

s,t2≠k

E[√(s)√(t )]
kY

i=1
Ω(si , ti )

!

+O(lnn), (3.4)

where H (Ω) denotes the entropy of Ω.
Under assumptions SYM and BAL it is not difficult to see (cf. Lemma 4.5 below) that the first moment satisfies

lnE[Z (G(n,m))] = n ln q +m lnª+O(lnn). (3.5)

Also it is easy to see that the contribution value of the right hand side of (3.4) at the uniform distribution Ω̄ on ≠2

equals 2(n ln q +m lnª)+O(lnn). Thus, the second moment argument will work if and only if the maximum (3.4)
is attained at Ω̄. A necessary condition for this to be true is that d < dKS, because the matrix • is closely related to
the Hessian of the function from (3.5) and in effect dKS is the largest value of d up to which Ω̄ is a local maximum.

Indeed, there are two major issues with the second moment argument. First, actually solving the innocent-
looking optimization problem (3.4) turns out to be daunting even in special cases. For example, in the Potts anti-
ferromagnet the task remains wide open, despite very serious attempts [8, 22]. The source of the trouble is that the
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entropy is concave while the second summand in (3.4) is convex (cf. MIN), causing a proliferation of local maxima.
Second, and even worse, comparing (3.4) and (3.5) we can verify easily that the desired second moment bound
E[Z (G(n,m,P )2] =O(E[Z (G(n,m,P )]2) can hold only if the maximizer Ω? of (3.4) satisfies

∞∞Ω?° Ω̄
∞∞

TV = o(1). How-
ever, this is not generally true for average degrees d below but near the condensation threshold. For instance, in
the Potts antiferromagnet the second moment exceeds the square of the first moment by an exponential factor
exp(≠(n)) for d below the condensation threshold [22].

The problem was noticed and partly remedied in prior work by applying the second moment method to a suit-
ably truncated random variable (e.g. [17, 22]). This method revealed, e.g., the condensation threshold in a few
special cases such as the random graph q-coloring problem [17], albeit only for q exceeding some (astronomical)
constant q0, and in the random regular k-SAT model for large k [14]. Yet apart from introducing such extraneous
conditions, ad-hoc arguments of this kind tend to require a meticulous combinatorial study of the specific model.

3.2. The condensation phase transition and the overlap. The merit of the present approach is that we avoid com-
binatorial deliberations altogether. Rather than bothering with the second moment bound (3.4) we will employ an
asymptotic formula for the free energy of the teacher-student model G§.

To be precise, it will be convenient to work with a slightly tweaked version Ĝ of this model: following [23, Sec-
tion 3], we let Ĝ(n,m,P ) be the random factor graph chosen from the distribution

P
£
Ĝ(n,m,P ) 2A

§
= E[Z (G(n,m,P ))1{G(n,m,P ) 2A }]

E[Z (G(n,m,P ))]
for any event A . (3.6)

Equivalently, in terms of Radon-Nikodym derivatives we can write

dĜ(n,m,P )
dG(n,m,P )

= Z (G(n,m,P ))
E[Z (G(n,m,P ))]

,

and in analogy to the teacher-student model (2.17), in the case that the distribution P is discrete (3.6) simplifies to

P
£
Ĝ(n,m,P ) =G

§
= Z (G)P [G(n,m,P ) =G]

E[Z (G(n,m,P ))]
for any factor graph G .

Recalling that m = md (n) is a random variable with distribution Po(dn/k), we also introduce Ĝ = Ĝ(n,m,P ). As
before we ease the notation by dropping P where possible.

The model Ĝ and the teacher-student model G§ are very closely related (cf. [67] for a discussion from the physics
viewpoint). To explicate this connection, we need to define an appropriately reweighted distribution on the set≠Vn

of spin assignments. Specifically, we let æ̂n,m,P 2≠Vn be a random assignment chosen from the distribution

P[æ̂n,m,P =æ] =
E[√G(n,m,P )(æ)]
E[Z (G(n,m,P ))]

(æ 2≠Vn ). (3.7)

Equivalently, recalling that æ§ 2≠Vn is chosen uniformly, we can write

dæ̂n,m,P

dæ§ =
E[√G(n,m,P )( · )]
E[Z (G(n,m,P ))]

. (3.8)

As before we skip the index P where possible. The distribution of the assignment æ̂n,m may or may not be uniform.
For instance, in the case of the k-spin model the Radon-Nikodym derivative in (3.8) is just one because the signs
of the coupling coefficients associated with the edges are random. But in the Potts antiferromagnet æ̂n,m is not
uniformly distributed. In fact, the weight that æ̂n,m assigns to more equitable partitions increases as d gets larger
because the perfectly equitable coloring maximizes the probability that a random edge is bichromatic. But we will
see momentarily that assumptions SYM and BAL ensure that æ̂n,m and æ§ are mutually contiguous.

The following Nishimori identity highlights the connection between the models G§ and Ĝ by showing that the
latter is distributed as the teacher-student model with ground truth æ̂n,m .

Lemma 3.1 ([23, Proposition 3.10]). For every distribution P on weight functions ≠k ! (0,2), for all integers n,m,
for every æ 2≠Vn and for every event A we have

P
£
æ̂n,m,P =æ

§
·P

£
G§(n,m,P,æ) 2A

§
= E

h
1{Ĝ(n,m,P ) 2A }µĜ(n,m,P )(æ)

i
. (3.9)

Clearly, in the case that P is discrete the Nishimori identity (3.9) simplifies to

P
£
æ̂n,m,P =æ

§
·P

£
G§(n,m,P,æ) =G

§
=µG (æ) ·P [G(n,m,P ) =G] for any G ,æ.

We include the simple proof of Lemma 3.1 for the convenience of the reader.
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Proof of Lemma 3.1. For any event A and any assignment æ,

P
£
æ̂n,m,P =æ

§
·P

£
G§(n,m,P,æ) 2A

§
=
E[√G(n,m,P )(æ)]
E[Z (G(n,m,P ))]

·
E
£
1{G(n,m,P ) 2A }√G(n,m,P )(æ)

§

E[√G(n,m,P )(æ)]
[by (3.7), (2.16)]

=
E
£
1{G(n,m,P ) 2A }Z (G(n,m, p))µG(n,m,P )(æ)

§

E[Z (G(n,m,P ))]
[by (2.1)]

= E
h

1{Ĝ(n,m,P ) 2A }µĜ(n,m,P )(æ)
i

[by (3.6)],

as claimed. ⇤
Further, we shall see in Section 4 that Lemma 3.1 fairly easily implies the following contiguity statement.

Lemma 3.2. If P satisfies conditions SYM and BAL, then æ̂n,m and æ§ are mutually contiguous for all d > 0, m 2
M (d), and so are G§(n,m,æ§) and Ĝ(n,m).

The following theorem verifies the cavity formula for the free energy of Ĝ and G§.

Theorem 3.3. Assume that P satisfies SYM, BAL and POS and let d > 0. Then with B(d ,P,º) from (2.4) we have

lim
n!1

1
n
E[ln Z (G§)] = lim

n!1
1
n
E[ln Z (Ĝ)] = sup

º2P 2
§ (≠)

B(d ,P,º).

Theorem 3.3 was established in [23] for the case that the set™ of weight functions is finite. In Section 10 we extend
that results via a limiting argument to prove Theorem 3.3 for infinite ™. Furthermore, in Section 6 we deduce the
following result from Theorem 3.3.

Proposition 3.4. Assume that BAL, SYM, POS and MIN hold and that d < dcond. There exists a sequence ≥ = ≥(n),
≥(n) = o(1) but n1/6≥(n) !1 as n !1, such that for all m 2M (d) we have

E
≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
Ĝ(n,m) ∑ ≥2. (3.10)

Proposition 3.4 resolves our second moment troubles. Indeed, the proposition enables a completely generic
way of setting up a truncated second moment argument: with ≥ from Proposition 3.4 we define

Z (G) = Z (G)1
©≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
G ∑ ≥

™
. (3.11)

Hence, Z (G) = Z (G) if “most” pairsæ1,æ2 drawn from µG have overlap close to Ω̄, and Z (G) = 0 otherwise. Propo-
sition 3.4 shows immediately that the truncation does not diminish the first moment.

Corollary 3.5. If BAL, SYM, POS and MIN hold and d < dcond, then E[Z (G(n,m))] ª E[Z (G(n,m))] uniformly for
all m 2M (d).

Proof. Equation (3.6) and Proposition 3.4 yield

E[Z (G(n,m))] = E[Z (G(n,m))] ·P
h≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
Ĝ(n,m) ∑ ≥

i
= (1+o(1))E[Z (G(n,m))],

as claimed. ⇤
The second moment calculation for Z is easy, too. Indeed, the very construction (3.11) of Z guarantees that the

dominant contribution to the second moment of Z comes from pairs with an overlap close to Ω̄. Hence, computing
the second moment comes down to expanding the right hand side of (3.4) around Ω̄ via the Laplace method. Yet
in order to apply the Laplace method we need to verify that Ω̄ is a local maximum of the function

Ω 2P (≠2) 7!H (Ω)+ d
k

ln
X

s,t2≠k

E[√(s)√(t )]
kY

i=1
Ω(si , ti ) (3.12)

from (3.4). For the special case of the Potts antiferromagnet the overlap concentration (3.10) was established and
the second moment argument for Z was carried out in [23, Section 4.3]. While the generalization to random factor
graph models is anything but straightforward, an even more important difference lies in the application of the
Laplace method. More specifically, in the case of the Potts antiferromagnet the fact that Ω̄ is a local maximum of
(3.12) for all d < dcond was derived extremely indirectly by resorting to the statistical inference algorithm of Abbe
and Sandon for the stochastic block model [3]. But of course there ought to be a general, conceptual explanation.
As we shall see momentarily, there is one indeed, namely the generalized Kesten-Stigum bound.

17



3.3. The Kesten-Stigum bound. To see the connection, we observe that the Hessian of (3.12) at the point Ω̄ is equal
to q(id°d(k °1)•) (with • the matrix from (2.7)). Hence, taking into account that the argument Ω is a probability
distribution on≠£≠, we find that Ω̄ is a local maximum of (3.12) if and only if

h(id°d(k °1)•)x, xi> 0 for all x 2Rq ≠Rq such that x ? 1≠1. (3.13)

In order to get a handle on the spectrum of the operator• from (2.7) we begin with the following observation about
the matrices©√ and© from (2.6) and (2.10).

Lemma 3.6. Assume that P satisfies SYM. Then the matrix ©√ is stochastic and thus ©√1 = 1 for every √ 2 ™.
Moreover,© is symmetric and doubly-stochastic. If, additionally, P satisfies BAL, then maxx?1 h©x, xi ∑ 0.

Proceeding to the operator •, we recall the definition of the space E from (2.8) and we introduce

E 0 = {x 2Rq ≠Rq : hx,1≠1i= 0} æ E . (3.14)

Lemma 3.7. Assume that P satisfies SYM and BAL. The operator • is self-adjoint, •(1≠ 1) = 1≠ 1 and for every
x 2Rq we have •(x ≠1) = (©x)≠1, •(1≠x) = 1≠ (©x) and

h•(x ≠1), x ≠1i ∑ 0, h•(1≠x),1≠xi ∑ 0 if x ? 1. (3.15)

Furthermore, •E Ω E and •E 0 Ω E 0.

Lemma 3.7 shows that • induces a self-adjoint operator on the space E . The following proposition yields a
bound on the spectral radius of this operator. Let

Eig§(•) = {∏ 2R : 9x 2 E \ {0} :•x =∏x} . (3.16)

Proposition 3.8. If P satisfies SYM and BAL, then dcond(k °1)max∏2Eig§(•) |∏|∑ 1.

The proof of Proposition 3.8 highlights the inherent connection between the spectrum of • and the Bethe free
energy functional B from (2.4). The details can be found in Section 5. Let us observe that Theorem 2.3 is immediate
from Proposition 3.8.

Proof of Theorem 2.3. We have maxx2E :kxk=1 h•x, xi = max∏2Eig§(•) |∏| because Lemma 3.7 shows that • is self-
adjoint. Therefore, Theorem 2.3 follows from Proposition 3.8. ⇤

Lemma 3.7 and Proposition 3.8 show that (3.13) is satisfied, and thus that Ω̄ is a local maximum of (3.12), for all
d < dcond. Indeed, it is immediate from (3.15) that h(id°d(k °1)•)x, xi> 0 if x is of the form 1≠ y or y ≠1 for some
1 ? y 2 Rq , and Theorem 2.3 shows that h(id°d(k °1)•)x, xi> 0 for all x 2 E . Hence, Proposition 3.8 provides the
link between the free energy calculation for the reweighted model Ĝ and the second moment of Z .

3.4. Second moment redux. We begin by deriving the following asymptotic formula for the first moment in Sec-
tion 7. Observe that by Lemma 3.6 the set Eig(©) of eigenvalues of© contains precisely one non-negative element,
namely 1. Therefore, the following formula makes sense.

Proposition 3.9. Suppose that P satisfies SYM and BAL and let 0 < d. Then uniformly for all m 2M (d),

E[Z (G(n,m))] ª qn+ 1
2 ªm

Q
∏2Eig(©)\{1}

p
1°d(k °1)∏

. (3.17)

Proceeding to the second moment, we recall from Lemma 3.7 that • induces an endomorphism on the subspace
E 0 from (3.14) and we write

Eig0(•) = {∏ 2R : 9x 2 E 0 \ {0} :•x =∏x}

for the spectrum of • on E 0. Lemma 3.7 and Proposition 3.8 imply that dcond(k °1)∏∑ 1 for all ∏ 2 Eig0(•). There-
fore, the following formula for the second moment, whose proof we defer to Section 7, makes sense as well.

Proposition 3.10. Suppose that P satisfies SYM and BAL and let 0 < d < dcond. Then uniformly for all m 2M (d),

E[Z (G(n,m))2] ∑ (1+o(1))q2n+1ª2m

Q
∏2Eig0(•)

p
1°d(k °1)∏

. (3.18)
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Combining Corollary 3.5 with Propositions 3.9 and 3.10 and applying Lemma 3.7, we obtain for m 2M (d),

E[Z (G(n,m))2]
E[Z (G(n,m))]2 ª

Q
∏2Eig(©)\{1} 1°d(k °1)∏

Q
∏2Eig0(•)

p
1°d(k °1)∏

=
Y

∏2Eig§(•)

1
p

1°d(k °1)∏
if d < dcond. (3.19)

In particular, the ratio of the second moment and the square of the first is bounded as n !1.

3.5. Virtuous cycles. In order to determine the limiting distribution of ln Z (G(n,m)) we are going to “explain” the
remaining variance of Z (G(n,m)) in terms of the statistics of the bounded-length cycles of G(n,m). However, by
comparison to prior applications of the small subgraph conditioning technique, here it does not suffice to merely
record how many cycles of a given length occur. We also need to take into account the specific weight functions
along the cycle. Yet this approach is complicated substantially by the fact that there may be infinitely many differ-
ent weight functions. To deal with this issue we are going to discretize the set of weight functions and perform a
somewhat delicate limiting argument.

We need a few definitions. A signature of order ` is a family

Y = (E1, s1, t1,E2, s2, t2, . . . ,E`, s`, t`)

such that E1, . . . ,E` Ω™ are events, s1, t1, . . . , s`, t` 2 {1, . . . ,k} and si 6= ti for all i 2 {1, . . . ,`} and s1 < t1 if ` = 1. Let
Y` be the set of all signatures of order `, let Y∑` =

S
l∑`Yl and let Y = S

`∏1 Y` be the set of all signatures. If G is
a factor graph with variable nodes Vn and constraint nodes Fm , then we call a family (xi1 , ah1 , . . . , xi` , ah` ) a cycle of
signature Y in G if the following conditions are satisfied.

CYC1: i1, . . . , i` 2 {1, . . . ,n} are pairwise distinct and i1 = min{i1, . . . , i`},
CYC2: h1, . . . ,h` 2 {1, . . . ,m} are pairwise distinct and h1 < h` if `> 1,
CYC3: √ah j

2 E j for all j 2 {1, . . . ,`},

CYC4: @s j ah j = xi j for all j 2 {1, . . . ,`}, @t j ah j = xi j+1 for all j < ` and @t`ah` = xi1 .

Conditions CYC1– CYC2 provide that the variable nodes that the cycle passes through are pairwise distinct. More-
over, to avoid over-counting CYC1 specifies that the cycle starts at the variable node with the smallest index and
CYC2 that from there the cycle is oriented towards the constraint node with the smaller index if `> 1, respectively
that s1 < t1 if ` = 1. Further, CYC3 states that the weight functions along the cycle belong to E1, . . . ,E`. Finally,
CYC4 ensures that the cycle enters the j th constraint node in position s j and leaves in position t j .

Let CY (G) denote the number of cycles of signature Y . Moreover, for an event A Ω™ with P(A ) > 0 and h,h0 2
{1, . . . ,k} define the q £q matrix©A ,h,h0 by letting

©A ,h,h0 (!,!0) = q1°kª°1 X

ø2≠k

1{øh =!,øh0 =!0}E[√(ø)|A ] (!,!0 2≠). (3.20)

In addition, for a signature Y = (E1, s1, t1, . . . ,E`, s`, t`) define

∑Y = 1
2`

µ
d
k

∂` Ỳ

i=1
P (Ei ), ©Y =

Ỳ

i=1
©Ei ,si ,ti , ∑̂Y = ∑Y tr(©Y ). (3.21)

Further, two signatures Y = (E1, s1, t1, . . . ,E`, s`, t`), Y 0 = (E 0
1, s01, t 01, . . . ,E 0

`0 , s0
`0 , t 0

`0 ) are disjoint if either ` 6= `0, or
(si , ti ) 6= (s0i , t 0i ) for some i , or Ei \E 0

i =; for some i . Finally, a cycle of order ` is a family (xi1 , ah1 , . . . , xi` , ah` ) that
is a cycle of signature (™, s1, t1, . . . ,™, s`, t`) for some sequence s1, t1, . . . , s`, t`, and we let C` signify the number of
such cycles. The following is a basic fact from the theory of random graphs.

Fact 3.11 ([19]). Let `1, . . . ,`l ∏ 1 be pairwise distinct integers and let y1, . . . , yl ∏ 0 be integers. Then for every d > 0
uniformly for all m 2M (d) we have

P
£
8i ∑ l : C`i (G(n,m,P )) = yi

§
ª

lY

i=1
P

"

Po

√
((k °1)d)`i

2`i

!

= yi

#

and the expected number of pairs of cycles of order at most `1 +·· ·+`l that share a common vertex is O(1/n).

In Section 8 we establish the following enhancement that takes the weight functions along the cycles into account.
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Proposition 3.12. Suppose that P satisfies SYM and BAL. Let Y1,Y2, . . .Yl 2Y be pairwise disjoint signatures and let
y1, . . . , yl be non-negative integers. Let d > 0. Then uniformly for all m 2M (d),

P
£
8t ∑ l : CYt (G(n,m)) = yt

§
ª

lY

t=1
P

£
Po(∑Yt ) = yt

§
, P

£
8t ∑ l : CYt (Ĝ(n,m)) = yt

§
ª

lY

t=1
P

£
Po(∑̂Yt ) = yt

§
. (3.22)

Moreover,

P [G(n,m) 2S] =P [C1(G(n,m))+1{k = 2}C2(G(n,m)) = 0]+O(1/n) ª exp
°
°d(k °1)/2°1{k = 2}d 2/4

¢
,

P
£
Ĝ(n,m) 2S

§
=P

£
C1(Ĝ(n,m))+1{k = 2}C2(Ĝ(n,m)) = 0

§
+O(1/n) ª exp

µ
°d(k °1)

2
tr(©)° 1{k = 2}d 2

4
tr(©2)

∂
.

Thus, for disjoint Y1, . . . ,Yl the cycle counts CYt are asymptotically independent Poisson.
In order to determine the limiting distribution of ln Z (G) a discretization of ™ and a limiting argument are

required on top of the small subgraph conditioning technique as set out in [39] because we need to accommodate
an infinite set of weight functions like in the k-spin model. Specifically, recall that

™Ω [0,2]≠
k

and for an integer r ∏ 1 let Cr be the partition of ™ induced by slicing the cube [0,2]≠
k

into pairwise disjoint
sub-cubes of side length 1/r . Further, let Y`,r denote the set of all signatures (E1, s1, t1, . . . ,E`, s`, t`) such that
E1, . . . ,E` 2Cr and such that P(Ei ) > 0 for all i ∑ `, and define Y∑`,r =

S`
l=1 Yl ,r . Furthermore, if √ 2™ belongs to a

sub-cube C 2Cr , then we let

√(r )(ø) = E[√(ø)|C ] (ø 2≠k ).

The following proposition, whose proof can be found in Section 9, establishes that the random variable K from
Theorem 2.4 is well-defined and that it can be approximated arbitrarily well via the discretizations Cr .

Proposition 3.13. Assume that P satisfies SYM and BAL and let 0 < d < dcond. Let (Kl )l∏1 be a family of indepen-
dent Poisson variables with E[Kl ] = (d(k °1))l /(2l ) and let (√l ,i , j )l ,i , j be a family of independent samples from P.
Furthermore, define

K`,r =
X̀

l=1

"
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©
√(r )

l ,i , j

#

, K` =
X̀

l=1

"
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©√l ,i , j

#

and K = P1
`=1 K` as in (2.11). Then all K`,r are uniformly bounded in the L1-norm, K`,r is L1-convergent to K`

as r !1 and K` is L1-convergent to K as `!1. Furthermore,

lim
`!1

lim
r!1

exp
X

Y 2Y∑`,r

(∑Y ° ∑̂Y )2

∑Y
=

Y

∏2Eig§(•)

1
p

1°d(k °1)∏
. (3.23)

3.6. Small subgraph conditioning. We have all the ingredients in place to prove Theorem 2.4. Thus, fix 0 < d <
dcond and let m 2 M (d). Let F`,r = F`,r (n,m) be the æ-algebra generated by the cycle counts (CY )Y 2Y∑`,r . Fol-
lowing the small subgraph conditioning paradigm, we intend to show that for sufficiently large `,r , with prob-
ability tending to 1 as n ! 1, Z (G(n,m)) is “close” to E[Z (G(n,m))|F`,r ]. Since Proposition 3.10 shows that
E[Z (G(n,m))°Z (G(n,m))] is small and that the second moment of Z (G(n,m)) is under control, we are going
to argue via the truncated random variable.

More specifically, to show that Z (G(n,m)) is “close” to E[Z (G(n,m))|F`,r ] with probability 1° o(1) for suffi-
ciently large `,r , we are going to prove that E[Var(E[Z (G(n,m))|F`,r ])] is small. Clearly,

Var[Z (G(n,m))] = Var(E[Z (G(n,m))|F`,r ])+E[Var(E[Z (G(n,m))|F`,r ])]. (3.24)

Hence, to prove that E[Var(E[Z (G(n,m))|F`,r ])] is small it suffices to show that

Var(E[Z (G(n,m))|F`,r ]) = E[E[Z (G(n,m))|F`,r ]2]°E[Z (G(n,m))]2 (3.25)

is nearly as big as Var[Z (G(n,m))]. Given what we know at this point this is not particularly difficult. Nonetheless,
let us put the details off for just a little while to Section 3.7, where we prove the following.
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Lemma 3.14. Suppose that P satisfies SYM and BAL and let 0 < d < dcond. For any ¥> 0 there exists `0(¥) such that
for every `> `0(¥) there exists r0(¥,`) such that for all r > r0(¥,`), uniformly for all m 2M (d),

lim
n!1

P
£
|Z (G(n,m))°E[Z (G(n,m))|F`,r ]| > ¥E[Z (G(n,m))]

§
= 0.

Proof of Theorem 2.4. Because Z (G(n,m)) ∑ Z (G(n,m)) and E[Z (G(n,m))] ª E[Z (G(n,m))] by Corollary 3.5, we
have E|Z (G(n,m))°Z (G(n,m))| = o(E[Z (G(n,m))]). Therefore, Lemma 3.14 implies that

lim
n!1

P
£
|Z (G(n,m))°E[Z (G(n,m))|F`,r ]| > ¥E[Z (G(n,m))]

§
= 0. (3.26)

Thus, we are left to determine the law of E[Z (G(n,m))|F`,r ]. On this count, Proposition 3.12 shows that for any
non-negative integer vector (cY )Y 2Y∑`,r ,

E[Z (G(n,m))|8Y 2Y∑`,r : CY (G(n,m)) = cY ]

E[Z (G(n,m))]
=
P[8Y 2Y∑`,r : CY (Ĝ(n,m)) = cY ]

P
£
8Y 2Y∑`,r : CY (G(n,m)) = cY

§

ª
Y

Y 2Y∑`,r

P [Po(∑̂Y ) = cY ]
P [Po(∑Y ) = cY ]

= exp

√
X

Y 2Y∑`,r

cY ln(tr©Y )° (∑̂Y °∑Y )

!

.

Hence, letting K 0
`,r (G(n,m)) =P

Y 2Y∑`,r
CY (G(n,m)) ln(tr©Y )° (∑̂Y °∑Y ) we conclude that, in distribution,

K`,r (G(n,m)) = lnE[Z (G(n,m))|F`,r ]° lnE[Z (G(n,m))]
n !1! K 0

`,r (G(n,m)). (3.27)

Further, by (3.21)

K 0
`,r (G(n,m)) =

X̀

l=1

"
(d(k °1))l

2l
(1° tr(©l ))+

X

Y 2Yl ,r

CY (G(n,m)) lntr©Y

#

.

Thus, combining Propositions 3.12 and 3.13, we conclude that K 0
`,r (G(n,m)) converges to K`,r in distribution as

n !1 for every `,r . Hence, due to (3.27) so does K`,r (G(n,m)). Consequently, Proposition 3.13 and (3.26) show
that for any bounded continuous function g :R!R,

8"> 09`0(")8`∏ `0(")9r0(",`)8r > r0(",`) : limsup
n!1

E[g (K )]°E[g (K`,r (G(n,m)))] < ",

8"> 09`00(")8`∏ `00(")9r 0
0(",`)8r > r 0

0(",`) : limsup
n!1

E[g (K`,r (G(n,m)))]°E
∑

g
µ
ln

Z (G(n,m))
E[Z (G(n,m))]

∂∏
< ".

Combining these two statements and observing that the first and the last term are independent of `,r , we obtain

limsup
n!1

E[g (K )]°E[g (ln Z (G(n,m))° lnE[Z (G(n,m))])] = 0,

i.e., ln Z (G(n,m))° lnE[Z (G(n,m))] converges to K in distribution. Plugging in the formula for the first moment
from (3.17) yields (2.12). Finally, because Proposition 3.12 shows that

P [G(n,m) 2S4{C1(G(n,m))+1{k = 2}C2(G(n,m)) = 0}] =O(1/n),

the formula for the conditional free energy given S follows from (2.12) and Lemma 3.14. ⇤

Organization. The paper is organized as follows. After proving Lemma 3.14 in Section 3.7, in Section 4 we collect
some preliminaries, introduce notation, supply the proofs of Lemmas 3.6 and 3.7 and show how Theorem 2.5,
Theorem 2.6 and Corollary 2.7 follow from Theorem 2.4. Because the proof of Proposition 3.8 is self-contained
and as we deem the argument rather interesting, that proof follows in Section 5. Further, Section 6 contains the
proof of Proposition 3.4, which is by way of a (substantial) generalization of an argument from [23] for the Potts
antiferromagnet. Subsequently Section 7 contains the proofs of Proposition 3.9 and Proposition 3.10 about the
moments of the truncated variable Z . Moreover, Section 8 deals with the proof of Proposition 3.12. The somewhat
delicate proof of Proposition 3.13 can be found in Section 9. Section 10 contains the rather technical proofs of
Theorem 2.2 and Theorem 3.3. Finally, the proof of Theorem 2.8 about the reconstruction problem can be found
in Section 11.

21



3.7. Proof of Lemma 3.14. The proof is by generalization of the argument from [24, Section 2] for the random
regular k-SAT model to the current setting of random factor graph models. We begin with the following lower
bound on the second moment of the conditional expectation. Let ±Y = tr(©Y )°1 = (∑̂Y °∑Y )/∑Y .

Lemma 3.15. Suppose that P satisfies SYM and BAL and let 0 < d < dcond, `,r > 0. Then uniformly for all m 2M (d),

E[E[Z (G(n,m))|F`,r ]2] ∏ E[Z (G(n,m))]2 exp

√

o(1)+
X

Y 2Y∑`,r

±2
Y ∑Y

!

.

Proof. Fix a number Æ > 0, choose B = B(Æ,`,r ) sufficiently large and let ° = °(`,r,B) be the set of all families
c = (cY )Y 2Y∑`,r of non-negative integers such that

P
Y 2Y∑`,r

cY ∑ B . Moreover, let C = C (`,r,B) be the event that
(CY (G(n,m)))Y 2Y∑`,r 2 °. Then (3.6) and Proposition 3.12 yield

E[1{C }E[Z (G(n,m))|F`,r ]2]

E[Z (G(n,m))]2 =
X

c2°

P[8Y 2Y∑`,r : CY (Ĝ(n,m)) = cY ]2

P
£
8Y 2Y∑`,r : CY (G(n,m)) = cY

§ ª
X

c2°

Y

Y 2Y∑`,r

P [Po((1+±Y )∑Y ) = cY ]2

P [Po(∑Y ) = cY ]

= exp

√

°
X

Y 2Y∑`,r

(1+2±Y )∑Y

!
X

c2°

Y

Y 2Y∑`,r

((1+±Y )2∑Y )cY

cY !
. (3.28)

Let S = P
Y 2Y∑`,r

(1+±Y )2∑Y . Since the matrices ©√ are stochastic, (3.21) shows that there is a number T (`) such
that S ∑ T (`). Therefore, choosing B = B(Æ,`,r ) sufficiently large, we can ensure that exp(S) ∑ exp(Æ)

P
L∑B SL/L!.

Hence,

exp(S °Æ) ∑
X

L∑B

SL

L!
=

X

c2°

Y

Y 2Y∑`,r

((1+±Y )2∑Y )cY

cY !
. (3.29)

Combining (3.28) and (3.29), we find

E[1{C }E[Z (G(n,m))|F`,r ]2] ∏ E[Z (G(n,m))]2 exp

√

°Æ+
X

Y 2Y`,r

±2
Y ∑Y

!

. (3.30)

Finally, we need to show that Z (G(n,m)) can be replaced by Z (G(n,m)) on the l.h.s. of (3.30). Since Z (G(n,m)) ∏
Z (G(n,m)) but E[Z (G(n,m))] ª E[Z (G(n,m))], we have

E
£
1{C }(E[Z (G(n,m))|F`,r ]2 °E[Z (G(n,m))|F`,r ]2)

§

= E
£
1{C }(E[Z (G(n,m))|F`,r ]+E[Z (G(n,m))|F`,r ])(E[Z (G(n,m))|F`,r ]°E[Z (G(n,m))|F`,r ])

§

∑ 2k1{C }E[Z (G(n,m))|F`,r ]k1E
£
E[Z (G(n,m))|F`,r ]°E[Z (G(n,m))|F`,r ]

§

= o(E[Z (G(n,m))])k1{C }E[Z (G(n,m))|F`,r ]k1. (3.31)

To bound k1{C }E[Z (G(n,m))|F`,r ]k1 we observe that for all (cY )Y 2 °,

E[Z (G(n,m))|8Y : CY = cY ]
E[Z (G(n,m))]

=
P[8Y 2Y∑`,r : CY (Ĝ(n,m)) = cY ]

P
£
8Y 2Y∑`,r : CY (G(n,m)) = cY

§ [by (3.6)]

ª
Y

Y 2Y∑`,r

P [Po((1+±Y )∑Y ) = cY ]
P [Po(∑Y ) = cY ]

[by Proposition 3.12]

=
Y

Y 2Y∑`,r

(1+±Y )cY exp(°±Y ∑Y ) =O(1) [as ±Y =O(1) and
P

Y cY ∑ B ].

Hence, k1{C }E[Z (G(n,m))|F`,r ]k1 = O(E[Z (G(n,m))]) and the assertion follows from (3.30) and (3.31) by taking
Æ! 0 sufficiently slowly as n !1. ⇤

Proof of Lemma 3.14. We use a similar trick as in the proof of [24, Corollary 2.6]. Recall that we aim to show that

lim
n!1

P
£
|Z (G(n,m))°E[Z (G(n,m))|F`,r ]| > ¥E[Z (G(n,m))]

§
= 0. (3.32)

Given ¥ > 0 choose Æ = Æ(¥) > 0 small enough. Then by (3.24), (3.25) and Lemma 3.15 and (3.23), for sufficiently
`,r,n we have

E
£
Var[Z (G(n,m))|F`,r ]

§
<ÆE[Z (G(n,m))]2. (3.33)
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Now define

X (G(n,m)) = |Z (G(n,m))°E[Z (G(n,m))|F`,r ]|1
Ω |Z (G(n,m))°E[Z (G(n,m))|F`,r ]|

E[Z (G(n,m))]
>Æ1/3

æ
.

Then

X (G(n,m)) <Æ1/3
E[Z (G(n,m))] )

ØØZ (G(n,m))°E[Z (G(n,m))|F`,r ]
ØØ∑Æ1/3

E[Z (G(n,m))]. (3.34)

Furthermore, by Chebyshev’s inequality

E[X (G(n,m))|F`,r ] ∑Æ1/3
E[Z (G(n,m))]

X

j∏0
2 j+1

P

h
X (G(n,m)) > 2 jÆ1/3

E[Z (G(n,m))]
ØØF`,r

i

∑ 4Æ°1/3
E[Z (G(n,m))] ·

Var[Z (G(n,m))|F`,r ]

E[Z (G(n,m))]2 . (3.35)

Combining (3.33) and (3.35), we obtain

E[X (G(n,m))] = E[E[X (G(n,m))|F`,r ]] ∑Æ1/2
E[Z (G(n,m))]. (3.36)

Finally, (3.32) follows from (3.34), (3.36) and Markov’s inequality. ⇤

4. GETTING STARTED

4.1. Basics. Throughout the paper we continue to use the notation introduced in Sections 2 and 3. In particular,
we write Vn = {x1, . . . , xn} for a set of n variable nodes and Fm = {a1, . . . , am} for a set of m constraint nodes. Further,
md (n) is a random variable with distribution Po(dn/k) and we just write md or m if n and/or d are apparent.
Moreover, for an integer l ∏ 1 we let [l ] = {1, . . . , l }.

For a finite set X we denote the set of probability distributions on X by P (X ). We identify P (X ) with the
standard simplex in RX and endow P (X ) accordingly with the Borel æ-algebra. By P 2(X ) we denote the set of
probability measures on P (X ) and by P 2

§(X ) the set of all º 2 P 2(X ) whose mean
R
P (X )µdº(µ) is the uniform

distribution on X . In addition, for a point x in a measurable space we write ±x for the Dirac measure on x. The
entropy of a probability distributionµ on a finite set X is always denoted by H (µ). Thus, recalling that§(z) = z ln z
for z > 0 and setting§(0) = 0, we have H (µ) =°P

x2X §(µ(x)).
Further, if µ 2P (≠Vn ) is a probability measure on the discrete cube≠Vn , thenæµ,øµ,æ1,µ,æ2,µ, . . . 2≠Vn denote

mutually independent samples from µ. If µ = µG is the Gibbs measure induced by a factor graph G , we write æG
etc. instead of æµG . Where µ or G are apparent from the context we omit the index and just write æ,ø, etc. If
X : (≠Vn )l !R is a random variable, then we use the notation

hX iµ = hX (æ1, . . . ,æl )iµ =
X

æ1,...,æl2≠Vn

X (æ1, . . . ,æl )
lY

j=1
µ(æ j ).

Thus, hX iµ is the mean of X over independent samples from µ. If µ=µG for a factor graph G , then we simplify the
notation by writing h ·iG rather than h ·iµG . We use this notation to distinguish averages over µG from other sources
of randomness (e.g., the choice of the random factor graph), for which we reserve the symbols E [ · ] and Var[ · ].

Finally, we need a few facts about probability distributions on sets of the form ≠l . For æ1, . . . ,æl : Vn ! ≠ let
Ωæ1,...,æl 2P (≠l ) denote the l -wise overlap, defined by

Ωæ1,...,æl (!1, . . . ,!l ) = |æ°1
1 (!1)\ · · ·\æ°1

l (!l )|/|Vn |. (4.1)

We use this notation also in the case l = 1 and observe that Ωæ1 is nothing but the empirical distribution of the
spins under æ1. Further, we let Ω̄l signify the uniform distribution on ≠l ; we usually omit the index l to ease the
notation. For two spin assignments æ,ø : Vn !≠we let æ4ø= {v 2Vn :æ(v) 6= ø(v)}.

Lemma 4.1 ([13]). For any finite set≠, any "> 0 and any l ∏ 3 there exist ±= ±(≠,", l ) and n0 = n0(≠,", l ) such that
for all n > n0 and all µ 2P (≠Vn ) the following is true: if

≠∞∞Ωæ1,æ2 ° Ω̄
∞∞

TV

Æ
< ±, then

≠∞∞Ωæ1,...,æl ° Ω̄l
∞∞

TV

Æ
< ".

Call æ 2≠Vn nearly balanced if
∞∞Ωæ° Ω̄

∞∞
TV ∑ n°2/5.

Lemma 4.2 ([23, Lemma 4.7]). For any "> 0 there is ±> 0 such that for all sufficiently large n the following is true.
If µ 2P (≠n) satisfies

≠∞∞Ωæ,ø° Ω̄
∞∞

TV

Æ
µ < ±, then for all nearly balanced ¬ we have

≠∞∞Ωæ,¬° Ω̄
∞∞

TV

Æ
µ
< ".

Finally, we need the following elementary observation that follows from the triangle inequality.
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Fact 4.3. For any finite set ≠ and any "> 0 there is ±> 0 such that the following holds. If Ω = (Ω(s, t ))s,t2≠ 2 P (≠2)
satisfies

X

s2≠

ØØØØØ
1
q
°

X

t2≠
Ω(s, t )

ØØØØØ+
ØØØØØ

1
q
°

X

t2≠
Ω(t , s)

ØØØØØ< ±,

then there exists Ω0 2P (≠2) such that
∞∞Ω°Ω0∞∞

TV < " and
P

t2≠Ω
0(s, t ) =P

t2≠Ω
0(t , s) = 1/q for all s 2≠.

4.2. Eigenvalues. The vector or matrix with all entries equal to one (in any dimension) is signified by 1. The
transpose of a matrix A we denote by A§. Additionally, id denotes the identity matrix (in any dimension). Further,
the standard basis vectors on R≠ are denoted by e!,! 2≠. For the entries of a matrix A 2R≠£≠ we use the notation
A(æ,ø); thus, A(æ,ø) = hAeø,eæi for all æ,ø 2≠. The spectrum of a linear operator X : E ! E 0 is denoted by Eig(X ).

The following simple observation will be used several times. Recall © from (2.10). Throughout the paper we
always denote by D f the Jacobi matrix of a function f : Ra ! R

b (or gradient if b = 1) and by D2 f the Hessian
matrix of f . Derivatives are always understood to be unconstrained, i.e., we never take derivatives within a sub-
manifold. (Where we need to deal with linear constraints we will project out the irrelevant eigenvectors of D f ,
D2 f ‘by hand’.)

Lemma 4.4. Assume that P satisfies SYM. Then the function

¡ :R≠! (0,2), Ω 7!
X

ø2≠k

E[√(ø)]
kY

i=1
Ω(øi ) (4.2)

satisfies D¡(Ω̄) = kª1, D2¡(Ω̄) = qk(k °1)ª© and ¡ is bounded away from 0.

Proof. Since @¡
@Ω(!) =

Pk
j=1

P
ø2≠k 1{ø j =!}E[√(ø)]

Q
i 6= j Ω(øi ) for every ! 2≠, SYM immediately yields D¡(Ω̄) = kª1.

Proceeding to the second derivatives, we find

@2¡

@Ω(!)@Ω(!0)
=

X

ø2≠k

X

j ,l2[k]: j 6=l
1{ø j =!, øl =!0}E[√(ø)]

Y

i2[k]\{ j ,l }
Ω (øi ) .

Consequently, SYM yields D2¡(Ω̄) = qk(k °1)ª©. Finally, the fact that infΩ2P (≠)¡(Ω) > 0 follows from (2.2). ⇤

As an immediate application we prove Lemmas 3.6 and 3.7.

Proof of Lemma 3.6. Condition SYM readily implies that ©√ is stochastic for every √ 2™. Hence, ©√1 = 1 for all
√ 2™ and consequently©1 = 1. To see that© is symmetric let µ be the permutation on {1, . . . ,k} such that µ(1) = 2,
µ(2) = 1 and µ(i ) = i for all i > 2. Since SYM implies that√ and√µ are identically distributed, we obtain

©(!,!0) = q1°kª°1 X

ø2≠k

1{ø1 =!,ø2 =!0}E[√(ø)]

= q1°kª°1 X

ø2≠k

1{ø1 =!,ø2 =!0}E[√µ(ø)] = q1°kª°1 X

ø2≠k

1{ø1 =!0,ø2 =!}E[√(ø)] =©(!0,!).

To verify the last assertion, consider the function ¡ from (4.2). Condition BAL ensures that ¡ is concave on the set
P (≠) of probability measures on≠. Since by Lemma 4.4 the Hessian satisfies D2¡(Ω̄) = qk(k °1)ª©, we see that©
induces a negative semidefinite endomorphism of the subspace {x 2Rq : x ? 1}. Hence, maxx?1 h©x, xi ∑ 0. ⇤

Proof of Lemma 3.7. To see that• is self-adjoint let (e!)!2≠ be the canonical basis of R≠ and let µ be the permuta-
tion on {1, . . . ,k} such that µ(1) = 2, µ(2) = 1 and µ(i ) = i for all i > 2. Then for all s, t ,æ,ø 2≠we have

h•eæ≠eø,es ≠et i= E
£≠
©√eæ,es

Æ≠
©√eø,et

Æ§
= E

£
©√(s,æ)©√(t ,ø)

§
= E

£
©√µ (s,æ)©√µ (t ,ø)

§
[due to SYM]

= E
£
©√(æ, s)©√(ø, t )

§
= E

£≠
eæ,©√es

Æ≠
eø,©√et

Æ§
= heæ≠eø,•es ≠et i . (4.3)

Since (es ≠et )s,t2≠ is a basis of R≠≠R≠, (4.3) shows that • is self-adjoint.
Furthermore, since©√1 = 1 for all√ 2™ by Lemma 3.6, we see that•(x≠1) = E[©√x≠©√1] = (©x)≠1. Similarly,

•(1≠ x) = 1≠ (©x) and thus (3.15) follows from Lemma 3.6. In particular, since ©1 = 1 by Lemma 3.6 we obtain
•(1≠1) = 1≠1. Because • is self-adjoint, this implies that •E 0 Ω E 0. Finally, assume that z 2 E . Then for all y 2Rq

we have
≠
•z, y ≠1

Æ
=

≠
z,•(y ≠1)

Æ
=

≠
z, (©y)≠1

Æ
= 0, and analogously

≠
•z,1≠ y

Æ
= 0. Hence, •E Ω E . ⇤
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4.3. Contiguity. Throughout the paper we apply contiguity between several probability spaces. Some of these
contiguity results derive from the following first moment calculation, which also delivers the proof of (3.5).

Lemma 4.5. Suppose that P satisfies SYM and BAL. For any D > 0 there exists 0 < c ∑ 1 such that for all m ∑ Dn/k,

cqnªm ∑ E[Z (G(n,m))] ∑ qnªm .

Moreover, for any æ 2≠Vn we have, uniformly for all m ∑ Dn/k,

E| ln Z (G(n,m))|∑O(n), E| ln Z (G§(n,m,æ))|∑O(n). (4.4)

Proof. By the linearity of expectation and because the constraint nodes of G(n,m) are chosen independently,

E[Z (G(n,m))] =
X

æ2≠Vn

¡(Ωæ)m .

Since SYM and BAL provide that ¡(Ωæ) ∑ ª for every æ, the upper bound E[Z (G(n,m))] ∑ qnªm is immediate. With
respect to the lower bound, recall that the number of æ : Vn ! ≠ such that

∞∞Ωæ° Ω̄
∞∞

TV ∑ n°1/2 is of order ≠(qn).
Hence, applying Lemma 4.4, we see that for such æ,

¡(Ωæ) =¡(Ω̄)+kª
≠

1,Ωæ° Ω̄
Æ
+qk(k °1)ª

≠
©(Ωæ° Ω̄),Ωæ° Ω̄

Æ
/2+O(

∞∞Ωæ° Ω̄
∞∞3

TV)

=¡(Ω̄)+O(
∞∞Ωæ° Ω̄

∞∞2
TV) =¡(Ω̄)+O(1/n). (4.5)

Thus, E[Z (G(n,m))] ∏≠(qn)(¡(Ω̄)+O(1/n))m =≠(qnªm), uniformly for all m ∑ Dn/k. Finally, (4.4) follows because
E| ln Z (G(n,m))|∑ mE[maxø2≠k | ln√(ø)|]+O(n) =O(n) due to (2.2) and the independence of the constraint nodes,
and similarly E| ln Z (G§(n,m,P,æ))|∑ 2mE

£
maxø2≠k | ln√(ø)|

§
/¡(Ωæ)+O(n) =O(n) by Lemma 4.4 and (2.2). ⇤

Corollary 4.6. Assume that P satisfies SYM and BAL and let D > 0. Then uniformly for all m ∑ Dn/k,

P

h∞∞Ωæ̂n,m ° Ω̄
∞∞

TV > n° 1
2 lnn

i
∑O(n° lnlnn) (4.6)

and the distribution of æ̂n,m and that of �§ are mutually contiguous. Additionally, for any " > 0 there exists c =
c(",D) > 0 such that

limsup
n!1

max
m∑Dn

P

h∞∞Ωæ̂n,m ° Ω̄
∞∞

TV > cn°1/2
i
∑ ". (4.7)

Proof. The bound (4.6) and the mutual contiguity of æ̂n,m and the uniformly random æ§ follow from [23, Corol-
lary 3.27]. With respect to (4.7) BAL, SYM and Lemma 4.5 ensure there is c 0 = c 0(D) > 0 such that for every c > c 0,

P

h∞∞Ωæ̂n,m ° Ω̄
∞∞

TV > cn° 1
2

i
=

X

æ2≠Vn

1
n∞∞Ωæ° Ω̄

∞∞
TV > cn° 1

2

o
E[√G(n,m)(æ)]
E[Z [G(n,m)]

∑ qnªm

E[Z (G(n,m))]
P

h∞∞Ωæ§ ° Ω̄
∞∞

TV > cn° 1
2

i
∑ c 0 ·P

£∞∞Ωæ§ ° Ω̄
∞∞

TV > cn°1/2§ .

By Stirling we can choose c = c(") > 0 large enough so that the last expression is smaller than "> 0. ⇤

Corollary 4.7. Assume that P satisfies SYM and BAL, let d > 0 and let (Sn)n be a sequence of events. Then the
following two statements are true.

8"> 09±> 0 : limsup
n!1

P
£
(G§,æ§) 2Sn

§
< ±) limsup

n!1
P

£
(Ĝ ,æ̂) 2Sn

§
< ", (4.8)

8"> 09±> 0 : limsup
n!1

P
£
(Ĝ ,æĜ ) 2Sn

§
< ±) limsup

n!1
P

£
(G§,æ§) 2Sn

§
< ". (4.9)

Proof. Fix m 2M (d). By Lemma 3.1, BAL and Lemma 4.5,

P

h
(Ĝ(n,m),æĜ(n,m)) 2Sn

i
=P

£
(G§(n,m,æ̂n,m),æ̂n,m) 2Sn

§
=

X

æ2≠Vn

P
£
(G§(n,m,æ),æ) 2Sn

§
P

£
æ̂n,m =æ

§

∑ ªm

E[Z (G(n,m))]

X

æ2≠Vn

P
£
(G§(n,m,æ),æ) 2Sn

§
∑ c°1

P
£
(G§(n,m,æ§),æ§) 2Sn

§
(4.10)
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which implies (4.8). To prove (4.9) pick L = L(") > 0 large enough so that P
£
kΩæ§ ° Ω̄kTV > Ln°1/2§ < "/2. Then

Lemma 4.4 shows that there exists ¥ = ¥(L) > 0 such that E[√G(n,m)(æ)] = ¡(Ωæ)m ∏ ¥ªm for all æ 2≠Vn such that
kΩæ° Ω̄kTV ∑ Ln°1/2. Hence, by Lemmas 3.1 and 4.5,

P
£
(G§(n,m,æ§),æ§) 2Sn

§
∑ "

2
+P

£
(G§(n,m,æ§),æ§) 2Sn , kΩæ§ ° Ω̄kTV ∑ Ln°1/2§

∑ "

2
+

X

æ:kΩæ°Ω̄kTV∑Ln°1/2

P
£
(G§(n,m,æ),æ) 2Sn

§ E[√G(n,m)(æ)]
¥qnªm

∑ "

2
+ E[Z (G(n,m))]

¥qnªm P
£
(G§(n,m,æ̂n,m),æ̂n,m) 2Sn

§
∑ "

2
+
P[(Ĝ(n,m),æĜ(n,m)) 2Sn]

¥
.

Thus, setting ±= "¥/3, we obtain (4.9). ⇤

Proof of Lemma 3.2. By construction, the mutual contiguity of G§(n,m,æ§) and G§(n,m,æ̂n,m) is immediate from
the mutual contiguity of æ§ and æ̂n,m furnished by Corollary 4.6. Moreover, Ĝ(n,m) and G§(n,m,æ̂n,m) are iden-
tically distributed by the Nishimori identity. ⇤

Finally, we derive Theorem 2.6, Corollary 2.7 and Theorem 2.5 from Theorem 2.4.

Proof of Theorem 2.6. Suppose that d < dcond and that (Sn)n is a sequence of events. We will prove the following
two statements, from which the mutual contiguity of G and Ĝ is immediate.

8"> 09Æ> 0 : limsup
n!1

P
£
Ĝ 2Sn

§
<Æ) limsup

n!1
P [G 2Sn] < ", (4.11)

8"> 09Æ> 0 : limsup
n!1

P [G 2Sn] <Æ) limsup
n!1

P
£
Ĝ 2Sn

§
< ". (4.12)

Since Ĝ and G§ are mutually contiguous by Lemma 3.2, mutual contiguity of G and G§ follows from (4.11) and
(4.12). Moreover, the conditional mutual contiguity givenS follows by applying the unconditional result to Sn\S,
because Lemma 3.2 and Proposition 3.12 show that the probability of S is bounded away from 0 in either model.

We proceed to prove (4.11). Because the random variable K from Theorem 2.4 satisfies E |K | <1, there exists
±> 0 such that E[P [Z (G) < ±E[Z (G)|m]|m]] < "/2. Hence,

P [G 2Sn] = E[P [G 2Sn |m]] ∑ "/2+E[P [G 2Sn , Z (G) ∏ ±E[Z (G)|m]|m]]

∑ "/2+±°1
E

∑
E[Z (G)1{G 2Sn}|m]

E[Z (G)|m]

∏
= "/2+±°1

E[P[Ĝ 2Sn |m]] = "/2+±°1
P

£
Ĝ 2Sn

§
.

Thus, setting Æ= ±"/2, we obtain (4.11).
Let us move on to the proof of (4.12). Proposition 3.10 shows that for every d < dcond there is c(d) > 0 such that

uniformly for all m 2M (d),

E[Z (Ĝ(n,m))] = E[Z (Ĝ(n,m))Z (G(n,m))]
E[Z (G(n,m))]

= E[Z (G(n,m))2]
E[Z (G(n,m))]

∑ c(d)E[Z (G(n,m))].

Hence, by Markov’s inequality for any "> 0 there is L > 0 such that P[Z (Ĝ(n,m)) > L ·E[Z (G(n,m))]] < "/2. More-
over, P[Z (Ĝ(n,m)) = Z (Ĝ(n,m))] = 1°o(1) by Proposition 3.4. As a consequence,

P
£
Ĝ(n,m) 2Sn

§
= o(1)+P

£
Ĝ(n,m) 2Sn , Z (Ĝ(n,m)) = Z (Ĝ(n,m))

§

∑ "/2+o(1)+P
£
Ĝ(n,m) 2Sn , Z (Ĝ(n,m)) = Z (Ĝ(n,m)), Z (Ĝ(n,m)) ∑ L ·E[Z (G(n,m))]

§

∑ "/2+o(1)+P
£
Ĝ(n,m) 2Sn , Z (Ĝ(n,m)) ∑ L ·E[Z (G(n,m))]

§

= "

2
+o(1)+ E[Z (G(n,m))1{G 2Sn , Z (G(n,m)) ∑ L ·E[Z (G(n,m)]}]

E[Z (G(n,m))]
∑ "

2
+o(1)+L ·P [G(n,m) 2Sn] .

Thus, choosing Æ< "/(3L), say, we obtain (4.12). ⇤

Proof of Corollary 2.7. The corollary is immediate from Theorem 2.6, Lemma 3.1 and Corollary 4.6. ⇤
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Proof of Theorem 2.5. Theorem 2.6 and Proposition 3.4 imply that limn!1E
≠
kΩæ1,æ2 ° Ω̄kTV

Æ
G = 0 for all d < dcond.

To prove that this fails to hold for d beyond but arbitrarily close to dcond, we calculate the derivative @
@d E[ln Z (G)]

(for the random graph coloring problem a similar argument was used in [21]). It is well known that

1
n

@

@d
E[ln Z (G)] = 1

n

1X

m=0

∑
@

@d
P [Po(dn/k) = m]

∏
E[ln Z (G)|m = m]

= 1
k

1X

m=0
[°1{m ∏ 1}P [Po(dn/k) = m °1]+P [Po(dn/k) = m]]E[ln Z (G)|m = m]

= 1
k

[E[ln Z (G(n,m +1))]°E[ln Z (G(n,m)]] = E[lnh√am+1 (æ(@1am+1), . . . ,æ(@k am+1))iG(n,m)]. (4.13)

Expanding the logarithm using Fubini and (2.2), we find

1
n

@

@d
E[ln Z (G)] =°

1X

l=1

X

h1,...,hk2[n]

1

l knk
Eh1°√(æ(xh1 , . . . , xhk )il

G . (4.14)

Further with Ωæ1,...,æl denoting the overlap of l independent samples from µG as in (4.1), we can cast (4.14) as

1
n

@

@d
E[ln Z (G)] =°

1X

l=1

X

h1,...,hk2[n]

1

lknk
E

*
lY

i=1
1°√(æi (xhi ))

+

G

=°
1X

l=1

1
kl
E

"
X

ø2≠k£l

*
kY

j=1
Ωæ1,...,æl (ø j ,1, . . . ,ø j ,l )

+

G

lY

i=1
1°√(ø1,i , . . . ,øk,i )

#

.

Hence, if limn!1E
≠
kΩæ1,æ2 ° Ω̄kTV

Æ
G = 0, then due to (2.2), dominated convergence and Lemma 4.1

lim
n!1

1
n

@

@d
E[ln Z (G)] =°

1X

l=1

(1°ª)l

kl
= k°1 lnª. (4.15)

Now, suppose that D > 0 is such that E
≠
kΩæ1,æ2 ° Ω̄kTV

Æ
G = o(1) for all d < D . Then (2.2), dominated convergence

and (4.15) yield

ln q + D
k

lnª= ln q +
ZD

0
lim

n!1
1
n

@

@d
E[ln Z (G)]dd = ln q + lim

n!1
1
n

ZD

0

@

@d
E[ln Z (G)]dd = lim

n!1
1
n
E[ln Z (G(n,mD ))].

Thus, Theorem 2.2 shows that D ∑ dcond. Consequently, for any D > dcond there exists an average degree d < D
such that limsupn!1E

≠
kΩæ1,æ2 ° Ω̄kTV

Æ
G > 0, as claimed. The very same argument applies given S. ⇤

As a preparation for Section 11 we put the following on record.

Corollary 4.8. Assume that P satisfies SYM and BAL and that d < dcond. Then for any sequence (Sn)n of events the
following two statements hold.

8"> 09±> 0 : limsup
n!1

P
£
(G§,æ§) 2Sn

§
< ±) limsup

n!1
P [(G ,æ) 2Sn] < ", (4.16)

8"> 09±> 0 : limsup
n!1

P [(G ,æ) 2Sn] < ±) limsup
n!1

P
£
(G§,æ§) 2Sn

§
< ". (4.17)

Proof. To prove (4.16) pick a small enough ¥ = ¥(") > 0 and a smaller ± = ±(¥) > 0. Then Corollary 4.7 shows that
limsupn!1P [(G§,æ§) 2Sn] < ± implies limsupn!1P

£
(Ĝ ,æĜ ) 2Sn

§
< ¥. Hence,

limsup
n!1

P
£≠

1{(Ĝ ,æĜ ) 2Sn}
Æ

Ĝ ∏p
¥
§
<p

¥

and thus (4.11) implies limsupn!1P
£
h1{(G ,æ) 2Sn}iG ∏ "

§
< ", which proves (4.16).

Similarly, to obtain (4.17) choose ¥ = ¥(") > 0 and ± = ±(¥) > 0 sufficiently small. If limsupP [(G ,æ) 2Sn] < ±,
then (4.12) yields limsupn!1P

£
(Ĝ ,æĜ ) 2Sn

§
< ¥. Hence, (4.8) implies limsupn!1P [(G§,æ§) 2Sn] < ". ⇤

5. THE KESTEN-STIGUM BOUND

Throughout this section we assume that P satisfies SYM and BAL.
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5.1. Outline. In this section we prove Proposition 3.8. The key insight is that the dominant eigenvector of • re-
stricted to the space E gives rise to a natural family of probability distributions º" 2 P 2

§(≠), " > 0. Up to an error
term that decays as "! 0, the Bethe free energy B(d ,P,º") of this distribution is given by a quadratic function of
the corresponding eigenvalue. Ultimately, the desired bound on max{|∏| : ∏ 2 Eig§(•)} follows because the defini-
tion (2.5) of dcond ensures that B(d ,P,º") ∑ ln q+ d

k lnª for all d < dcond, "> 0. To implement this program we need
to show that the dominant eigenvector of • has a particular form. More precisely, in Section 5.2 we prove

Lemma 5.1. Let ∏̂= maxEig§(•). Then ∏̂∏°minEig§(•) and there exist an orthonormal basis u1, . . . ,uq°1 2R≠ of
the space {x 2R≠ : x ? 1} and ∏̄1, . . . , ∏̄q°1 ∏ 0 such that

ß=
q°1X

i=1
∏̄i ui ≠ui 2R≠≠R≠ (5.1)

is a unit vector and •ß= ∏̂ß.

Throughout this section we denote the eigenvector promised by Lemma 5.1 by ß and the corresponding eigen-
value by ∏̂. The particular structure of ß ensures that

hß,eæ≠eøi= hß,eø≠eæi . (5.2)

Further, because the coefficients ∏̄i in (5.1) are non-negative and u1, . . . ,uq°1 ? 1, we obtain

¥=
q°1X

i=1

q
∏̄i ui ≠ui 2 E . (5.3)

Recalling that (e!)!2≠ is the canonical basis of R≠, for each ! 2≠we define º",! 2R≠ by letting

º",!(æ) = 1
q
+"

≠
¥,e!≠eæ

Æ
. (5.4)

Finally, let º" = 1
q

P
!2≠±º",! (with ±z the Dirac measure on z 2R≠).

Lemma 5.2. There exists "0 > 0 such that for all 0 < "< "0 we have º",! 2P (≠) for all ! 2≠ and º" 2P 2
§(≠).

Proof. Clearly, º",!(æ) ∏ 0 for all æ,! 2≠ for small enough "> 0. Moreover, since ¥ 2 E by (5.3),
X

æ2≠
º",!(æ) = 1+"

X

æ2≠

≠
¥,e!≠eæ

Æ
= 1+"

≠
¥,e!≠1

Æ
= 1 for all ! 2≠.

Hence, º",! 2P (≠) and º" 2P 2(≠). Similarly, once more because ¥ 2 E , for each æ 2≠we have

1
q

X

!2≠
º",!(æ) = 1

q

X

!2≠

µ
1
q
+"

≠
¥,e!≠eæ

Æ∂
= 1

q
+"

≠
¥,1≠eæ

Æ
= 1

q
,

whence º" 2P 2
§(≠). ⇤

Our next goal is to calculate B(d ,P,º"). More precisely, we aim to expand B(d ,P,º") to the fourth order in
the limit "! 0. The key tool for this expansion is the following elementary lemma, whose proof can be found in
Section 5.3. Recall that §(x) = x ln x. For a function F (y) with values in (0,1) we let § ±F be the composition
y 7!§(F (y)).

Lemma 5.3. Suppose `∏ 1 and that F : P (≠)`! (0,1), (Ω1, . . . ,Ω`) 7! F (Ω1, . . . ,Ω`) has four continuous derivatives.
Moreover, setting ā = (Ω̄, . . . , Ω̄) 2P (≠)`, assume that F satisfies the following conditions.

T1: for all a = (a1, . . . , a`) 2P (≠)`, all r 2 [`] and all c1,c2 2≠we have

@2F (a)
@Ωr (c1)@Ωr (c2)

= 0.

T2: there is C0 2R such that the gradient of F at ā satisfies DF (ā) =C01.

Further, suppose that º 2P 2
§(≠), let Ω,Ω1,Ω2, . . . be mutually independent samples from º and define

J : P (≠)` !R, (Ω1, . . . ,Ω`) 7!
4X

j=1

X

r2[`] j ,c2≠ j

1
j !

@ j §±F
@Ωr1 (c1) · · ·@Ωr j (c j )

(ā) ·
jY

h=1
(Ωrh (ch)°1/q). (5.5)
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Then

E[J (Ω1, . . . ,Ω`)] = 1
24F (ā)

X

r1 6=r22[`],c2≠4

µ
@2F (ā)

@Ωr1 (c1)@Ωr2 (c3)
@2F (ā)

@Ωr1 (c2)@Ωr2 (c4)
+ @2F (ā)
@Ωr1 (c2)@Ωr2 (c3)

@2F (ā)
@Ωr1 (c1)@Ωr2 (c4)

∂

·
°
E
£
Ω(c1)Ω(c2)

§
°q°2¢°

E
£
Ω(c3)Ω(c4)

§
°q°2¢ . (5.6)

Equipped with Lemma 5.3 we will derive the following asymptotic formula in Section 5.4.

Lemma 5.4. We have B(d ,P,º") =B(d ,P,º0)+ d(k°1)
12

°
(k °1)d ∏̂2 ° ∏̂

¢
"4 +O("5) as "! 0.

At first glance it might seem surprising that B(d ,P,º")°B(d ,P,º0) merely scales as O("4). This is because only
the ‘covariance terms’ E

£
Ω(c1)Ω(c2)

§
°q°2, E

£
Ω(c3)Ω(c4)

§
°q°2 contribute to the expansion provided by (5.6), and

each of these covariance terms scales as O("2).
Finally, Proposition 3.8 is immediate from Lemma 5.4.

Proof of Proposition 3.8. Due to SYM it is straightforward to verify that B(d ,P,º0) = ln q + d
k lnª. Hence, if 0 < d <

dcond, then B(d ,P,º") ∑ B(d ,P,º0) for all small enough " > 0 because º" 2 P 2
§(≠) by Lemma 5.2. Therefore,

Lemma 5.4 implies that (k°1)d ∏̂2°∏̂∑ 0 and ∏̂∏ 0. As this holds for all d < dcond, we conclude that (k°1)dcond∏̂∑
1, and thus the assertion follows from Lemma 5.1. ⇤
Remark 5.5. A local expansion of the Bethe functional around the atom º = ±Ω̄ on the uniform distribution was
performed independently by Guilhem Semerjian (manuscript in preparation), albeit with a different objective and
without the realization that the eigenvectors of• can be used to construct an explicit family of perturbations, cf. (5.4).

5.2. Proof of Lemma 5.1. The canonical basis (e!)!2≠ ofR≠ gives rise to the basis (eæ≠eø)æ,ø2≠ of the q2-dimensional
space R≠≠R≠. Hence, we can identify R≠≠R≠ with the space R≠£≠ of q £q-matrices via the linear map

∂ :R≠≠R≠!R
≠£≠,

X

æ,ø2≠
aæ,ø eæ≠eø 7!

X

æ,ø2≠
aæ,øeæe§ø (aæ,ø 2R).

Since ker ∂= {0}, ∂ is an isomorphism. Moreover, if we equip the space R≠£≠ with the Frobenius inner product h · , ·i,
then

≠
x, y

Æ
=

≠
∂(x), ∂(y)

Æ
for all x, y 2R≠≠R≠.

By Lemma 3.7 the linear operator • is self-adjoint and •E Ω E . Therefore, E admits an orthogonal decomposi-
tion into eigenspaces of•. Suppose that ∏= max{|L| : L 2 Eig§(•)} and let E∏ Ω E be the corresponding eigenspace.
Moreover, consider the linear map defined by # : E ! E , eæ ≠ eø 7! eø ≠ eæ for æ,ø 2 ≠. Due to the particular
form (2.7) of • we have •#y = #•y for all y 2 E . Consequently, #E∏ Ω E∏. Therefore, for any z 2 E∏ we have
1
2 (z +#(z)) 2 E∏. Because #2 = id, this means that there exists a unit vector z 2 E∏ such that #z = z. Further, ∂(z) is
a symmetric matrix as #z = z and ∂(z) satisfies ∂(z)1 = 0 and ∂(z)x ? 1 for all x 2R≠ because z 2 E . Thus, there exist
an orthonormal basis u1, . . . ,uq°1 of the space {x 2R≠ : x ? 1} and w1, . . . , wq°1 2R such that

∂(z) =
q°1X

i=1
wi ui u§

i . (5.7)

Since ∂ is an isomorphism, (5.7) yields the representation

z =
q°1X

i=1
wi ui ≠ui . (5.8)

Further, if we define ß=Pq°1
i=1 |wi |ui ≠ui , then ß 2 E because ui ? 1 for all i . Moreover, because z is a unit vector

and u1, . . . ,uq°1 are orthonormal,

kßk2 = hß,ßi=
q°1X

i , j=1
|wi w j |

≠
ui ,u j

Æ2 =
q°1X

i=1
w2

i = kzk2 = 1. (5.9)

Finally, once more due to the particular form (2.7) of •, (5.7) yields

∏= |h•z, zi | =
ØØØØØ

q°1X

i , j=1
wi w j

≠
•ui ≠ui ,u j ≠u j

Æ
ØØØØØ=

ØØØØØ

q°1X

i , j=1
wi w jE

h≠
©√ui ,u j

Æ2
iØØØØØ

∑
q°1X

i , j=1

ØØwi w j
ØØE

h≠
©√ui ,u j

Æ2
i
=

q°1X

i , j=1

ØØwi w j
ØØ≠•ui ≠ui ,u j ≠u j

Æ
= h•ß,ßi . (5.10)
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Combining (5.9) and (5.10), we thus see that ß is a unit vector with h•ß,ßi= ∏= max{|
≠
•y , y

Æ
| : y 2 E ,kyk= 1}, as

desired.

5.3. Proof of Lemma 5.3. We recall the following well-known generalization of the chain rule.

Fact 5.6 (Faà di Bruno’s formula). Suppose that F : (R≠) j !1 has j ∏ 1 continuous derivatives. Let ¶( j ) be the set
of all partitions of [ j ], denote by |®| the cardinality of a partition® 2¶( j ) and similarly let |B | denote the cardinality
of a set B 2® in the partition®. Then

@ j§(F (x1, . . . , x j ))

@x1 . . .@x j
=

X

®2¶( j )
§(|®|)(F (x1, . . . , x j ))

Y

B2®

@|B |F (x1, . . . , x j )
Q

i2B @xi
. (5.11)

For r 2 [`] j and c 2≠ j let

Jr,c =
@ j §±F

@Ωr1 (c1) · · ·@Ωr j (c j )
(ā) ·E

"
jY

h=1
(Ωrh

(ch)°1/q)

#

.

BecauseΩ1, . . . ,Ω` are mutually independent with mean Ω̄, we have Jr,c = 0 unless for each i 2 [ j ] there is h 2 [ j ]\{i }
such that ri = rh . Hence, setting R j = {r 2 [`] j : 8i 2 [ j ]9h 2 [ j ] \ {i } : ri = rh}, we see that

J j =
X

r2[`] j ,c2≠ j

Jr,c =
X

r2R j ,c2≠ j

Jr,c . (5.12)

In particular, (5.12) implies
J1 = 0. (5.13)

Proceeding to j = 2, we apply Fact 5.6 to obtain

@2§±F
@Ωr1 (c1)@Ωr2 (c2)

(ā) =§00(F (ā))
@F

@Ωr1 (c1)
@F

@Ωr2 (c2)
(ā)+§0(F (ā))

@2F
@Ωr1 (c1)@Ωr2 (c2)

(ā). (5.14)

Since R2 = {(r,r ) : r 2 [`]}, T1 and (5.14) entail that

J2 =§00(F (ā))
X̀

r=1

X

c1,c22≠

@F (ā)
@Ωr (c1)

@F (ā)
@Ωr (c2)

E
£
(Ωr (c1)°1/q)(Ωr (c2)°1/q)

§

=C 2
0§

00(F (ā))` ·E
"

X

c1,c22≠
(Ω(c1)°1/q)(Ω(c2)°1/q)

#

[due to T2]

=C 2
0§

00(F (ā))` ·E
"√

X

c2≠
(Ω(c)°1/q)

!2#

= 0 [as
P

c2≠Ω(c) = 1]. (5.15)

Moving on to J3, we observe that R3 = {(r,r,r ) : r 2 [`]}. Moreover, Fact 5.6 yields

@3§±F
@Ωr (c1)@Ωr (c2)@Ωr (c3)

=§0(F (ā))
@3F

@Ωr (c1)@Ωr (c2)@Ωr (c3)

+§00(F (ā))
µ

@F
@Ωr (c1)

@2F
@Ωr (c2)@Ωr (c3)

+ @F
@Ωr (c2)

@2F
@Ωr (c1)@Ωr (c3)

+ @F
@Ωr (c3)

@2F
@Ωr (c1)@Ωr (c2)

∂

+§000(F (ā))
@F

@Ωr (c1)
@F

@Ωr (c2)
@F

@Ωr (c3)

=§000(F (ā))
@F

@Ωr (c1)
@F

@Ωr (c2)
@F

@Ωr (c3)
[due to T1].

Hence, T2 yields

J3 =§000(F (ā))
X

r2[`],c1,c2,c32≠

@F (ā)
@Ωr (c1)

@F (ā)
@Ωr (c2)

@F (ā)
@Ωr (c3)

E

"
3Y

h=1
(Ω(ch)°1/q)

#

= `C 3
0§

000(F (ā)) ·E
"√

X

c2≠
(Ω(c)°1/q)

!3#

= 0 [as
P

c2≠Ω(c) = 1]. (5.16)
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Finally, we come to J4. Fact 5.6 yields

@4§±F
@Ωr1 (c1) · · ·@Ωr4 (c4)

=§0(F (ā))
@4F

@Ωr1 (c1) · · ·@Ωr4 (c4)

+§00(F (ā))
X

i2[4]

@F
@Ωri (ci )

@3F
Q

j2[4]\{i }@Ωr j (c j )

+§00(F (ā))
X

i , j2[4],i< j

@2F
@Ωri (ci )@Ωr j (c j )

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

+§000(F (ā))
X

i , j2[4],i< j

@F
@Ωri (ci )

@F
@Ωr j (c j )

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

+§0000(F (ā))
@F

@Ωr1 (c1)
@F

@Ωr2 (c2)
@F

@Ωr3 (c3)
@F

@Ωr4 (c4)
. (5.17)

Since R4 = {(r1,r2,r3,r4) 2 [`]4 : |{r1,r2,r3,r4}|∑ 2}, T1 implies that

@4F
@Ωr1 (c1) · · ·@Ωr4 (c4)

= 0 and
@3F

Q
j2[4]\{i }@Ωr j (c j )

= 0 for all r 2 R4, i 2 [4]. (5.18)

Moreover, similarly as before T2 implies

§0000(F (ā))
X

r2R4,c2≠4

@F
@Ωr1 (c1)

@F
@Ωr2 (c2)

@F
@Ωr3 (c3)

@F
@Ωr4 (c4)

E

"
4Y

h=1
(Ωrh

(ch)°1/q)

#

=C 4
0§

0000(F (ā))
X

r2R4

E

"
4Y

h=1

√
X

c2≠
Ωrh

(c)°1/q)

!#

= 0 [as
P

c2≠Ω(c) = 1]. (5.19)

Analogously, once more by T2

§000(F (ā))
X

r2R4,c2≠4

X

i , j2[4],i< j

@F
@Ωri (ci )

@F
@Ωr j (c j )

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

E

"
4Y

h=1
(Ωrh

(ch)°1/q)

#

=C 2
0§

000(F (ā))
X

i , j2[4],i< j

X

r2R4,c2≠4

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

E

"
4Y

h=1
(Ωrh

(ch)°1/q)

#

=C 2
0§

000(F (ā))
X

i , j2[4],i< j

X

r2R4,ci3 ,ci42≠

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

E

"
2Y

h=1

√
X

c2≠
(Ωrh

(c)°1/q)

!
4Y

h=3
(Ωrh

(ch)°1/q)

#

= 0. (5.20)

Thus, combining (5.17)–(5.20), we obtain

J4 =§00(F (ā))
X

r2R4,c2≠4

X

i , j2[4],i< j

@2F
@Ωri (ci )@Ωr j (c j )

@2F
Q
`2[4]\{i , j }@Ωr` (c`)

E

"
4Y

h=1
(Ωrh

(ch)°1/q)

#

=§00(F (ā))
X

r1 6=r22[`],c2≠4

µ
@2F

@Ωr1 (c1)@Ωr2 (c3)
@2F

@Ωr1 (c2)@Ωr2 (c4)
+ @2F
@Ωr1 (c2)@Ωr2 (c3)

@2F
@Ωr1 (c1)@Ωr2 (c4)

∂

·
°
E
£
Ω(c1)Ω(c2)

§
°q°2¢°

E
£
Ω(c3)Ω(c4)

§
°q°2¢ [due to T1]. (5.21)

Since E[J (Ω1, . . . ,Ω`)] =P4
j=1

1
j ! J j and§00(x) = 1/x, the assertion follows from (5.13), (5.15), (5.16) and (5.21).

5.4. Proof of Lemma 5.4. Recall that ∏̂= max∏2Eig§(•) |∏|, that ß 2 E is an eigenvector of • with eigenvalue ∏̂, and
that ¥ is the vector defined by (5.3). We tacitly assume that " is small enough so that º" 2 P §

2 (≠) (cf. Lemma 5.2)
and we denote byΩ,Ω1,Ω2, . . . independent samples fromº". Hence, for any function X : (R≠)` !R the expectation
E[X (Ω1, . . . ,Ω`)] can be viewed as a function of ". Further, since º" is the uniform distribution on the distributions
º",! from (5.4), which are atoms, the function " 7! E[X (Ω1, . . . ,Ω`)] has the same continuity as X .

Ultimately we are going to expand the function " 7! B(d ,P,º") to the fourth order. But first we need a few
preparations. First we observe that ß encodes the covariance matrix of the random vector (Ω(!))!2≠.
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Claim 5.7. We have E[⇢(c1)°q°1] = 0 and E[(⇢(c1)°q°1)(⇢(c2)°q°1)] = q°1"2 ≠
ß,ec1 ≠ec2

Æ
for all c1,c2 2≠.

Proof. The first assertion follows from Lemma 5.2, which shows that º" 2 P 2
§(≠). Moreover, because the vectors

u1, . . . ,uq°1 2 E from (5.3) are orthonormal, (5.1) and (5.4) yield

q"°2
E
£°
⇢(c1)°q°1¢°⇢(c2)°q°1¢§=

X

!2≠

≠
¥,e!≠ec1

Æ≠
¥,e!≠ec2

Æ

=
q°1X

i , j=1

q
∏̄i ∏̄ j

X

!2≠

≠
ui ≠ui ,e!≠ec1

Æ≠
u j ≠u j ,e!≠ec2

Æ
=

q°1X

i , j=1

q
∏̄i ∏̄ j

≠
ui ,ec1

Æ≠
u j ,ec2

Æ X

!2≠
hui ,e!i

≠
u j ,e!

Æ

=
q°1X

i , j=1

q
∏̄i ∏̄ j

≠
ui ,ec1

Æ≠
u j ,ec2

Æ≠
ui ,u j

Æ
=

q°1X

i=1
∏i

≠
ui ≠ui ,ec1 ≠ec2

Æ
=

≠
ß,ec1 ≠ec2

Æ
,

as claimed. ⇤
Additionally, we need the following algebraic relation.

Claim 5.8. For any √ 2™we have h
°
©√≠©√

¢
ß,ßi=P

c2≠4©√(c1,c3)©√(c2,c4)
≠
ß,ec1 ≠ec2

Æ≠
ß,ec3 ≠ec4

Æ
.

Proof. Since ß=P
i2≠ ∏̄i ui ≠ui we have

≠
(©√≠©√)ß,ß

Æ
=

X

i , j2≠
∏̄i ∏̄ j

≠
(©√≠©√)(ui ≠ui ), (u j ≠u j )

Æ
=

X

i , j2≠
∏̄i ∏̄ j

≠
©√ui ,u j

Æ2

=
X

i , j2≠
∏̄i ∏̄ j

√
X

c2≠

≠
©√ui ,ec

Æ≠
u j ,ec

Æ
!2

=
X

i , j2≠
∏̄i ∏̄ j

√
X

c,c 02≠
©√(c,c 0)hui ,ec 0 i

≠
u j ,ec

Æ
!2

=
X

i , j2≠

X

c2≠4

∏̄i ∏̄ j©√(c1,c3)©√(c2,c4)
≠

u j ,ec1

Æ≠
u j ,ec2

Æ≠
ui ,ec3

Æ≠
ui ,ec4

Æ

=
X

c2≠4

©√(c1,c3)©√(c2,c4)

√
X

j2≠
∏̄ j

≠
u j ≠u j ,ec1 ≠ec2

Æ
!√

X

i2≠
∏̄i

≠
ui ≠ui ,ec3 ≠ec4

Æ
!

=
X

c2≠4

©√(c1,c3)©√(c2,c4)
≠
ß,ec1 ≠ec2

Æ≠
ß,ec3 ≠ec4

Æ
,

as claimed. ⇤
We proceed to expand " 7!B(d ,P,º"). For √,√1, . . . ,√∞ 2™ let

B1(√1, . . . ,√∞) = E
"

§

√
X

h2[q]

∞Y

j=1

X

ø2≠k

1{øk = h}√ j (ø)
k°1Y

i=1
Ωk( j°1)+i (øi )

!#

, B2(√) = E
"

§

√
X

ø2≠k

√(ø)
kY

i=1
Ωi (øi )

!#

.

Then with√,√1,√2, . . . chosen independently from P ,

B(d ,P,º") = 1
q
E

h
ª°∞B1(√1, . . . ,√∞)

i
° d(k °1)

kª
E
£
B2(√)

§
(5.22)

and we shall derive the approximations to both summands separately, using Lemma 5.3 in either case.

Claim 5.9. We have

E

h
q°1ª°∞B1(√1, . . . ,√∞)

i
= ln q +d lnª+ "4d(k °1)

12

£
(k °2)h•ß,ßi+d(k °1)

≠
•2ß,ß

Æ§
+O("5). (5.23)

Proof. Fixing ∞ and √1, . . . ,√∞ for the moment, we consider the function

F√1,...,√∞ : P (≠)(k°1)∞! (0,1), (Ω1,1, . . . ,Ω∞,k°1) 7!
X

h2≠

∞Y

j=1

X

ø2≠k

1{øk = h}√ j (ø)
k°1Y

i=1
Ω j ,i (øi ).

Then with J√1,...,√∞ denoting the fourth Taylor polynomial of § ± F√1,...,√∞ as in equation (5.5), we can write § ±
F√1,...,√∞ = J√1,...,√∞ +R√1,...,√∞ . We are going to show that, with√1, . . . ,√∞ chosen from P and (Ωi , j )i , j chosen from
º", all mutually independent,

E[J√1,...,√∞
(Ωi , j )i , j ] =§(qª∞)+ qª∞"4(k °1)

12

£
d(k °2)h•ß,ßi+d 2(k °1)

≠
•2ß,ß

Æ§
, (5.24)

E[R√1,...,√∞
(Ωi , j )i , j ] =O("5)exp(O(∞)), (5.25)
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whence (5.23) is immediate because the Poisson distribution has sub-exponential tails.
To prove (5.24) we apply Lemma 5.3. Thus, we need the first and second partial derivatives of F√1,...,√∞ . To work

out the first partial derivatives, let s 2 [∞], r 2 [k °1] and c1 2≠. Then

@F√1,...,√∞

@Ωs,r (c1)
=

X

h2≠

√
Y

j2[∞]\{s}

X

ø2≠k

1{øk = h}√ j (ø)
k°1Y

i=1
Ω j ,i (øi )

!√
X

ø2≠k

1{øk = h, ør = c1}√s (ø)
Y

i2[k°1]\{r }
Ωs,i (øi )

!

.

In particular, SYM yields
@F√1,...,√∞
@Ωs,r (c1) (Ω̄, . . . , Ω̄) = qª∞, and thus the assumptions T1–T2 of Lemma 5.3 are satisfied.

With respect to the second derivatives, there are two cases. First, fix s 2 [∞], distinct r1,r2 2 [k°1] and c1,c3 2≠. Let
µ1 : [k] 7! [k] be the permutation such that µ1(r1) = 1, µ1(r2) = 2 and µ(i ) = i for all i 6= r1,r2. Using SYM, we obtain

@2F1(Ω̄, . . . , Ω̄)
@Ωs,r1 (c1)@Ωs,r2 (c3)

=
X

h2≠

√
Y

j2[∞]\{s}

X

ø2≠k

1{øk = h}√ j (ø)q1°k

!√
X

ø2≠k

1{øk = h,ør1 = c1,ør2 = c3}√s (ø)q3°k

!

= ª∞°1q3°k X

h2[q]

X

ø2≠k

1{øk = h,ør1 = c1,ør2 = c3}√s (ø)

= ª∞°1q3°k X

ø2≠k

1{ør1 = c1,ør2 = c3}√s (ø) = ª∞q2©
√
µ1
s

(c1,c3).

Second, fix distinct s, s0 2 [∞] and any r1,r2 2 [k ° 1], c1,c3 2 ≠. Let µ2,µ3 be the permutations such that µ2(k) =
2, µ2(r1) = 1 and µ2(i ) = i for all i 6= r1,k and µ3(k) = 1,µ3(r2) = 2 and µ3(i ) = i for all i 6= r2,k. Then SYM yields

@2F1(Ω̄, . . . , Ω̄)
@Ωs,r1 (c1)@Ωs0,r2 (c3)

=
X

h2≠

√
Y

j2[∞]\{s,s0}

X

ø2≠k

1{øk = h}√ j (ø)q1°k

!

·
√

X

ø2≠k

1{øk = h,ør1 = c1}√s (ø)q2°k

!√
X

ø2≠k

1{øk = h,ør2 = c3}√s0 (ø)q2°k

!

= ª∞°2q4°2k X

h2≠

√
X

ø2≠k

1{øk = h,ør1 = c1}√s (ø)

!√
X

ø2≠k

1{øk = h,ør2 = c3}√s0 (ø)

!

= ª∞q2 X

h2[q]
©√µ2

s(h,c1)©√µ3
s0(c3,h) = ª∞q2

µ
©
√
µ2
s
·©

√
µ3
s0

∂
(c1,c3).

Hence, Lemma 5.3 gives

E[J√1,...,√∞ (Ωi , j )] =§(ª∞q)+ qª∞"4

24

°
(k °1)(k °2)S1 + (k °1)2S2)

¢
, where
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s2[∞]
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©
√
µ1
s
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√
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s

(c2,c4)+©
√
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s

(c2,c3)©
√
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s
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¥≠
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Æ
,

S2 =
X
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X
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≠
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Æhµ
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√
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s
·©

√
µ3
s0

∂
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µ
©
√
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s
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√
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∂
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+
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√
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∂
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µ
©
√
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s
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√
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∂
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i
.

Further, Claim 5.8 yields

S1 = 2
X

s2[∞]

D≥
©
√
µ1
s
≠©

√
µ1
s

¥
ß,ß

E
,

S2 = 2
X
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øµµ
©
√
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s
·©

√
µ3
s0

∂
≠

µ
©
√
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s
·©

√
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∂∂
ß,ß

¿
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X
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øµ≥
©
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√
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Therefore, since SYM provides that the distribution P is invariant under permutations,

E[J√1,...,√∞
(Ωi , j )i , j ] =§(ª∞q)+ "4qª∞(k °1)(k °2)

12
E

∑ ∞X

s=1

≠
(©√s

≠©√s
)ß,ß

Æ∏

+ "4ª∞q(k °1)2

12
E

"
X

s,s02[∞]:s 6=s0

≠
(©√s

≠©√s
)(©√s0 ≠©√s0 )ß,ß

Æ
#

=§(ª∞q)+ "4qª∞(k °1)
12

£
d(k °2)h•ß,ßi+d 2(k °1)

≠
•2ß,ß

Æ§
,

which completes the proof of (5.24).
Moving on to (5.25), we write the remainder R√1,...,√∞ for Ωi , j in the support of º" as

R√1,...,√∞ (Ωi , j ) =
X

h2([∞]£[k°1])5,c2≠5

1
5!

@§±F√1,...,√∞ (Ω̃)

@Ωh1 (c1) · · ·@Ωh5 (c5)

5Y

i=1
(Ω̃hi (ci )°q°1), (5.26)

where Ω̃ = (Ω̃i , j )i , j is a point on the line segment between the points (Ω̄, . . . , Ω̄) and (Ωi , j )i , j . In particular,
Q5

i=1(Ω̃hi (ci )°
q°1) =O("5). Hence, Fact 5.6 shows that

R√1,...,√∞ (Ωi , j ) =O("5) ·
X

h,c

X

®2¶(5)
sup
Ω̃
§(|®|)(F√1,...,√∞ (Ω̃))

Y

B2®

@|B |F√1,...,√∞ (Ω̃)
Q

i2B @Ωhi (ci )
,

where Ω̃ ranges over the convex hull of the support of º". Because all weight functions take values in the interval
(0,2), we find

Q
B2®(@|B |F√1,...,√∞ (Ω̃)/

Q
i2B @xi ) = exp(O(∞)). In addition,

§0(F√1,...,√∞ (Ω̃)) = 1+ lnF√1,...,√∞ (Ω̃) =O(1)
∞X

i=1
max
ø2≠k

| ln√i (ø)|,

§(l )(F√1,...,√∞ (Ω̃)) =O(F√1,...,√∞ (Ω̃)1°l ) =O(1)
∞Y

i=1
max{√i (ø)1°l : ø 2≠k } (l ∏ 2).

Thus, (2.2) shows that R√1,...,√∞ (Ωi , j ) =O("5)exp(O(∞)), which is (5.25). ⇤

Claim 5.10. We have E
£
B2(√)

§
=§(ª)+ "4ªk(k°1)

12 h•ß,ßi+O("5).

Proof. To investigate B2(√) we apply Lemma 5.3 to F√(Ω1, . . . ,Ωk ) =P
ø2≠k √(ø)

Qk
i=1Ωi (øi ). The derivatives are

@F√
@Ωr (c1)

=
X

ø2≠k

1{ør = c1}√(ø)
Y

i2[k]\{r }
Ωi (øi ),

@2F√
@Ωr1 (c1)@Ωr2 (c3)

(Ω̄, . . . , Ω̄) = 1{r1 6= r2}
X

ø2≠k

1{ør1 = c1,ør2 = c3}√(ø)q2°k = qª©√µ (c1,c3),

where µ : [k] ! [k] is such that µ(r1) = 1, µ(r2) = 2 and µ(r ) = r for all r 6= r1,r2. Thus, SYM yields

F√(Ω̄, . . . , Ω̄) = ª and
@F√

@Ωr (c1)
(Ω̄, . . . , Ω̄) = ª.

Once more we write§±F√ = J√+R√, where J√ is the fourth Taylor polynomial as in (5.5). Applying Lemma 5.3, we
obtain

E
£

J√(Ω1, . . . ,Ωk )
§
=§(ª)+

k(k °1)q2ª

24

X

c2[q]4

≥
©√µ (c1,c3)©√µ (c2,c4)+©√µ (c2,c3)©√µ (c1,c4)

¥°
E
£
Ω(c1)Ω(c2)

§
°q°2¢°

E
£
Ω(c3)Ω(c4)

§
°q°2¢ .

Further, Claim 5.7 yields (E[Ω(c1)Ω(c2)]° q°2)(E[Ω(c3)Ω(c4)]° q°2) = "4q°2 ≠
ß,ec1 ≠ec2

Æ≠
ß,ec3 ≠ec4

Æ
, whence by

Claim 5.8,

E
£

J√(Ω1, . . . ,Ωk )
§
=§(ª)+ "4ªk(k °1)

12
h(©√µ ≠©√µ )ß,ßi. (5.27)
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Furthermore, by Fact 5.6 for any Ω1, . . . ,Ωk in the support of º" exist Ω̃ on the line segment between (Ω̄, . . . , Ω̄) and
(Ω1, . . . ,Ωk ) such that

R√(Ω1, . . . ,Ωk ) =O("5) ·
X

h,c

X

®2¶(5)
sup
Ω̃
§(|®|)(F√(Ω̃))

Y

B2®

@|B |F√(Ω̃)
Q

i2B @Ωhi (ci )
,

Hence, (2.2) guarantees that E[R√(Ω1, . . . ,Ωk )] =O("5) and thus the assertion follows from (5.27). ⇤
Proof of Proposition 5.4. Combining (5.22) with Claims 5.9 and 5.10, we obtain

B(d ,P,º") = ln q + d
k

lnª+ "4d(k °1)
12

£
d(k °1)

≠
•2ß,ß

Æ
°h•ß,ßi

§
+O("5). (5.28)

Since h•ß,ßi= ∏̂,
≠
•2ß,ß

Æ
= ∏̂2 and B(d ,P, º̄) = ln q + d

k lnª, the assertion follows from (5.28). ⇤

6. OVERLAP CONCENTRATION IN THE TEACHER-STUDENT MODEL

Throughout this section we assume that P satisfies conditions BAL, SYM, MIN and POS.

6.1. Outline. In this section we prove Proposition 3.4. We will exhibit a connection between the overlap and the
derivative @

@d E[ln Z (Ĝ)] of the free energy: if EhkΩæ1,æ2 ° Ω̄kTViĜ is bounded away from 0 for some d < dcond, then
the derivative of the free energy is so large that the formula n°1

E[ln Z (Ĝ)] = ln q+ d
k lnª+o(1) cannot possibly hold,

in contradiction to Theorem 3.3. We begin with the following “continuity statement”, which is a generalization
of [23, Lemma 4.6] for the Potts model: if the overlap deviates from Ω̄ for some average degree d , then the same
holds for at least a small interval of average degrees.

Lemma 6.1. For any "> 0, d > 0 there is 0 < ±= ±(",d ,P ) < " such that the following holds. Assume that m 2M (d)
is a sequence such that

limsup
n!1

E
≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
Ĝ(n,m) > ". (6.1)

Then

limsup
n!1

min
n
E
≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
Ĝ(n,m) : ±n < m °dn/k < 2±n

o
> ±.

The proof of Lemma 6.1 can be found in Section 6.2. Further, in Section 6.3 we derive the following asymptotic
formula for the derivative of the free energy.

Lemma 6.2. Uniformly for all d ∑ dcond +1 we have

k
n

@

@d
E[ln Z (Ĝ)] = o(1)+ª°1

E
£
§

°≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ

¢§
(6.2)

with√ chosen from P independently of Ĝ and i 1, . . . , i k 2 [n] chosen uniformly and independently.

Corollary 6.3. Uniformly for all d < dcond +1 we have

1
n

@

@d
E[ln Z (Ĝ)] ∏ lnª

k
+o(1). (6.3)

Moreover, for any "> 0 there is ±= ±(",P ) > 0, independent of n or d, such that uniformly for all d < dcond +1,

E
≠∞∞Ωæ,ø° Ω̄

∞∞
TV

Æ
Ĝ > " ) 1

n
@

@d
E[ln Z (Ĝ)] ∏ lnª

k
+±+o(1). (6.4)

For the special case of the Potts model a result like Corollary 6.3 was known [23, Lemma 4.10]. The proof was rel-
atively straightforward because in the special case it is possible to write a fairly explicit formula for the expression
§

°≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ

¢
. Remarkably, the following proof shows that we can do without an explicit formula

thanks to a mildly tricky application of Jensen’s inequality in combination with condition MIN.

Proof of Corollary 6.3. Since§(x) = x ln x is convex, Jensen’s inequality gives

E
£
§

°≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ

¢§
∏§

°
E
≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ

¢
. (6.5)

Hence, using the Nishimori identity (3.9) and Corollary 4.6, we obtain

E
≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ = E

£
√(æ̂n,m (xi 1 ), . . . ,æ̂n,m (xi k ))

§
= ª+o(1). (6.6)
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Combining (6.2), (6.5) and (6.6) with Lemma 6.2 gives (6.3).
To prove the second assertion we expand§(x) to the second order around ª to obtain

§(x) =§(ª)+ (x °ª)§0(ª)+ 1
2

(x °ª)2§00(≥x ) for some ≥x between ª and x. (6.7)

Since§00(x) ∏ 1/2 for all x 2 (0,2), (6.7) and (6.6) yield

E
£
§

°≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ

¢§
∏§(ª)+§0(ª)

£
E
≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ °ª

§
+ 1

4
E

h°≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ
Ĝ °ª

¢2
i

=§(ª)+ 1
4
E

h≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ2
Ĝ

i
° ª2

4
. (6.8)

Further, with æ1,æ2 denoting two independent samples from the Gibbs measure of Ĝ we obtain

E

h≠
√(æ(xi 1 ), . . . ,æ(xi k ))

Æ2
Ĝ

i
= E

≠
√(æ1(xi 1 ), . . . ,æ1(xi k ))√(æ2(xi 1 ), . . . ,æ2(xi k ))

Æ
Ĝ . (6.9)

Since i 1, . . . , i k are chosen uniformly and independently of each other and of Ĝ and √, we can cast (6.9) in terms
of the overlap Ωæ1,æ2 as

E
≠
√(æ1(xi 1 ), . . . ,æ1(xi k ))√(æ2(xi 1 ), . . . ,æ2(xi k ))

Æ
Ĝ =

X

æ,ø2≠k

E

*

√(æ)√(ø)
kY

i=1
Ωæ1,æ2 (æi ,øi )

+

Ĝ

. (6.10)

Further, Corollary 4.6 and the Nishimori identity (3.9) yield E
≠∞∞Ωæ1 ° Ω̄

∞∞
TV +

∞∞Ωæ2 ° Ω̄
∞∞

TV

Æ
Ĝ = o(1), whence

E

"
X

æ2≠

*ØØØØØ
X

ø2≠
Ωæ1,æ2 (æ,ø)

ØØØØØ+
ØØØØØ
X

ø2≠
Ωæ1,æ2 (ø,æ)

ØØØØØ

+

Ĝ

#

= o(1). (6.11)

Moreover, the function Ω 2 P (≠2) 7! P
æ,ø2≠k E[√(æ)√(ø)]

Q
i2[k]Ω(æi ,øi ) is uniformly continuous. Therefore, if

E
≠∞∞Ωæ,ø° Ω̄

∞∞
TV

Æ
Ĝ > ", then Fact 4.3, (6.11) and conditions MIN and SYM yield ±= ±(") > 0 such that

X

æ,ø2≠k

E

*

√(æ)√(ø)
kY

i=1
Ωæ1,æ2 (æi ,øi )

+

Ĝ

> ±+o(1)+q°2k X

æ,ø2≠k

E[√(æ)√(ø)] = ª2 +±+o(1). (6.12)

Finally, (6.2), (6.8), (6.9), (6.10) and (6.12) yield (6.4). ⇤

Corollary 6.4. For all d > 0 we have limn!1
1
n E[ln Z (Ĝ)] ∏ ln q + d

k lnª.

Proof. This follows from (6.3) by integrating. ⇤

Finally, to prove Proposition 3.4 we combine Lemma 6.1 and Corollary 6.3 to argue that if E
≠∞∞Ωæ,ø° Ω̄

∞∞
TV

Æ
Ĝ is

bounded away from 0 for some d < dcond, then in fact for all d in a small interval the derivative 1
n

@
@d E[ln Z (Ĝ)]

strictly exceeds k°1 lnª. Consequently, n°1
E[ln Z (Ĝ)] is strictly greater than ln q + d

k lnª for some d < dcond, in
contradiction to Theorem 3.3.

Proof of Proposition 3.4. Assume that there exist D0 < dcond and "> 0 such that

limsup
n!1

E
≠∞∞Ωæ,ø° Ω̄

∞∞
TV

Æ
Ĝ(n,mD0 (n)) > ".

Then Lemma 6.1 shows that there is ±> 0 such that with D1 = D0 +3±/2 < dcond for infinitely many n we have

E
≠∞∞Ωæ,ø° Ω̄

∞∞
TV

Æ
Ĝ(n,m) > ±+o(1) for all D0 +4±/3 < d < D1.

But then Corollaries 6.3 and 6.4 imply that for infinitely many n,

1
n
E[ln Z (Ĝ(n,mD1 (n)))] = 1

n
E[ln Z (Ĝ(n,mD0 (n)))]+ 1

n

ZD1

D0

@

@d
E[ln Z (Ĝ)]dd ∏ ln q + D1

k
lnª+≠(1).

Consequently,

limsup
n!1

1
n
E[ln Z (Ĝ(n,mD1 ))] > ln q + D1

k
lnª.

Therefore, Theorem 3.3 yields supº2P 2
§ (≠) B(D1,P,º) > ln q + D1

k lnª, in contradiction to D1 < dcond. ⇤
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6.2. Proof of Lemma 6.1. The proof, which is a non-trivial generalization of the argument for [23, Lemma 4.6] for
the Potts model, is based on a coupling of the random factor graphs Ĝ(n,m) and Ĝ(n,m0) with different numbers
m,m0 of constraint nodes; to set up the coupling we use the Nishimori identity (3.9). Thus, as a first step we need
a coupling of æ̂n,m and æ̂n,m0 .

Lemma 6.5. For any ¥> 0, d > 0 there is ±> 0 such that

limsup
n!1

max
©
dTV

°
æ̂n,m ,æ̂n,m0

¢
: |m °dn/k|+ |m0 °dn/k| < ±n

™
< ¥. (6.13)

Proof. Given ¥ > 0 pick a sufficiently small Ø = Ø(¥) > 0. Let ¡ be the function from (4.2). Because the constraint
nodes of G are chosen independently, for all m ∏ 0, æ 2≠Vn we have

lnE[√G(n,m)(æ)] = m ln¡(Ωæ). (6.14)

Furthermore, by Corollary 4.6 there exists C > 0 such that

P

h∞∞Ωæ̂n,m ° Ω̄
∞∞

TV >C /
p

n
i
+P

h∞∞∞Ωæ̂n,m0 ° Ω̄
∞∞∞

TV
>C /

p
n

i
∑ 2Ø for all m,m0 ∑ (d +1)n/k, (6.15)

which due to BAL implies that
X

æ2≠Vn

1
©∞∞Ωæ° Ω̄

∞∞
TV ∑C /

p
n

™
E[√G(n,m)(æ)] ∏ (1°Ø)E[Z (G(n,m))] for all m ∑ (d +1)n/k. (6.16)

Applying Lemma 4.4 to expand (6.14) to the second order, we obtain C 0 > 0 such that for all m and all æ satisfying∞∞Ωæ° Ω̄
∞∞

TV ∑C /
p

n,
ØØlnE[√G(n,m)(æ)]°m

°
lnª+qk(k °1)

≠
©(Ωæ° Ω̄),Ωæ° Ω̄

Æ
/2

¢ØØ∑C 0m/n3/2.

Hence, choosing ± = ±(Ø,C ,d) > 0 small enough, we can ensure that for all m,m0 such that |m °dn/k| + |m0 °
dn/k|∑ ±n and all æ satisfying

∞∞Ωæ° Ω̄
∞∞

TV ∑C /
p

n the estimate
ØØlnE[√G(n,m)(æ)]° lnE[√G(n,m0)(æ)]° (m °m0) lnª

ØØ∑ 2±
°
nq(d +1)(k °1)

ØØ≠©(Ωæ° Ω̄),Ωæ° Ω̄
ÆØØ/2+C 0/

p
n

¢

<Ø (6.17)

holds. Further, combining (6.16) and (6.17), we obtain that
ØØlnE[Z (G(n,m))]° lnE[Z (G(n,m0))]° (m °m0) lnª

ØØ∑ ¥/4, (6.18)

provided that |m °dn/k|+ |m0 °dn/k|∑ ±n and Ø = Ø(¥) was chosen small enough. Moreover, combining (6.17)
and (6.18), we conclude that if |m °dn/k|+ |m0 °dn/k|∑ ±n and

∞∞Ωæ° Ω̄
∞∞

TV ∑C /
p

n, then

exp(°¥/2) ∑
P

£
æ̂n,m =æ

§

P
£
æ̂n,m0 =æ

§ =
E[√G(n,m)(æ)] ·E[Z (G(n,m0))]
E[√G(n,m0)(æ)] ·E[Z (G(n,m))]

∑ exp(¥/2). (6.19)

Finally, the assertion follows from (6.15) and (6.19). ⇤

Proof of Lemma 6.1. Assume that m 2 M (d) satisfies (6.1). Pick ¥ = ¥(") > 0 small enough, let ± = ±(¥) > 0 be the
number promised by Lemma 6.5 and assume that n is a large enough number such that |m °dn/k| < ±n/2 and

E
≠∞∞Ωæ1,æ2 ° Ω̄

∞∞
TV

Æ
Ĝ(n,m) > "/2. (6.20)

Further, suppose that m0 > m is such that |m0 °dn/k| < ±n/2. Then by Lemma 6.5 we can couple æ̂n,m and æ̂n,m0

such that the event A = {æ̂n,m = æ̂n,m0 } satisfies

P [A ] > 1°¥. (6.21)

We extend this to a coupling of a pair of factor graphs G 0,G 00 such that G 0 is distributed as G§(n,m0,æ̂n,m0 ) and
G 00 is distributed as G§(n,m,æ̂n,m) as follows. First choose G 0 from the distribution G§(n,m0,æ̂n,m0 ). Then obtain
G 000 from G 0 by deleting a uniformly chosen set of m0 °m constraint nodes. On the event A set G 00 =G 000. If A does
not occur, then choose the constraint nodes of G 00 independently of those of G 0 in such a way that G 00 is distributed
as G§(n,m,æ̂n,m).

Now, (6.20) implies that with probability at least "/2 the random graph G 00 is such that a random sample ø from
µG 00 satisfies hkΩæ,ø° Ω̄kTViG 00 ∏ "/2. By Corollary 4.6 and the Nishimori identity (3.9), with probability 1°o(1) this
random sample ø is nearly balanced. Consequently, there exists a map G 7! øG that provides a nearly balanced
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øG for every factor graph G such that P[hkΩæ,øG00 ° Ω̄kTViG 00 > "/2] ∏ "/2. Thus, EhkΩæ,øG00 ° Ω̄kTViG 00 > "2/2. Hence,
assuming that ¥ was chosen small enough, we obtain from (6.13) and the Nishimori identity (3.9) that

E

h∞∞Ωæ̂n,m ,øG00 ° Ω̄
∞∞

TV
|A

i
> "2/3. (6.22)

Finally, on the event A the factor graph G 00 =G 000 is obtained from G 0 by deleting a few random constraint nodes.
Thus, for a graph G 0 let øG 0 be a random assignment with distribution øG 000 . Then (6.22) implies

E

h∞∞∞Ωæ̂n,m0 ,øG0 ° Ω̄
∞∞∞

TV
|A

i
> "2/3.

Hence, by the Nishimori identity (3.9) and (6.21),

E

D∞∞Ωæ,øG0 ° Ω̄
∞∞

TV

E

G 0 = E
∞∞∞Ωæ̂n,m0 ,øG0 ° Ω̄

∞∞∞
TV

> "2/6. (6.23)

Since by construction øG 0 is nearly balanced, the assertion follows from (6.23) and Lemma 4.2. ⇤
6.3. Proof of Lemma 6.2. We shall see shortly that calculating the derivative @

@d E[ln Z (Ĝ)] basically comes down to
calculating the difference E[ln Z (Ĝ(n,m+1))]°E[ln Z (Ĝ(n,m))]. We are going to perform this calculation by way of
a very accurate coupling of Ĝ(n,m+1) and Ĝ(n,m). A similar argument was used in [23] for the case that the set™
of weight functions is finite. Once more the coupling is based on the Nishimori identity (3.9). Thus, we begin with
a coupling of the random assignments æ̂n,m and æ̂n,m+1. The following is a generalization of [23, Corollary 3.29].

Lemma 6.6. There exists a coupling of æ̂n,m and æ̂n,m+1 such that the following holds uniformly for all d ∑ dcond+1.

(i) With probability 1°O(n°1 ln2 n) we have æ̂n,m = æ̂n,m+1.
(ii) With probability 1°O(1/n2) the set æ̂n,m4æ̂n,m+1 = {x 2Vn : æ̂n,m (x) 6= æ̂n,m+1(x)} has size at most n2/3.

Proof. By definition, for any æ 2≠Vn

P[æ̂n,m =æ] =
E[√G(n,m)(æ)]

E[Z (G(n,m))]
, P[æ̂n,m+1 =æ] =

E[√G(n,m+1)(æ)]

E[Z (G(n,m +1))]
. (6.24)

Further, due to the independence of the constraint nodes, we obtain

E[√G(n,m+1)(æ)]

E[√G(n,m)(æ)]
= 1

nk

X

y1,...,yk2Vn

E
£
√(æ(y1), . . . ,æ(yk ))

§
. (6.25)

Let ¡ be the function from (4.2). Then Lemma 3.6 and Lemma 4.4 show that for Ω 2P (≠),

¡(Ω) = ª+O(
∞∞Ω° Ω̄

∞∞2
TV). (6.26)

Hence, expanding the r.h.s. of (6.25) to the second order, we obtain

1

nk

X

y1,...,yk2Vn

E
£
√(æ(y1), . . . ,æ(yk ))

§
=¡(Ωæ) = ª+O

≥∞∞Ωæ° Ω̄
∞∞2

TV

¥
. (6.27)

Moreover, let N be the set of all Ω 2P (≠) such that nΩ(!) is an integer for every ! 2≠. Then

E[Z (G(n,m))] =
X

ø2≠Vn

√

n°k X

y1,...,yk2Vn

E
£
√(ø(y1), . . . ,ø(yk ))

§
!m

=
X

Ω2N

√
n

nΩ

!

¡(Ω)m . (6.28)

Further, let N 0 =
©
Ω 2N :

∞∞Ω° Ω̄
∞∞

TV ∑ n°1/2 lnn
™
. Then (6.28), Stirling’s formula and Lemmas 3.6 and 4.4 yield

E[Z (G(n,m))] = (1+O(n°1))
X

Ω2N 0

√
n

nΩ

!

¡(Ω)m .

Of course, the corresponding formula holds for E[Z (G(n,m +1))]. Hence, (6.25) and (6.26) yield

E[Z (G(n,m +1))]
E[Z (G(n,m))]

= ª+O(n°1 ln2 n). (6.29)

Combining (6.24), (6.25), (6.27) and (6.29), we conclude that

P[æ̂n,m+1 =æ] =P[æ̂n,m =æ]
≥
1+O

≥∞∞Ωæ° Ω̄
∞∞2

TV +n°1 ln2 n
¥¥

. (6.30)

By Corollary 4.6 kΩæ̂n,m ° Ω̄kTV is bounded by O(n°1/2 lnn) with probability at least 1°O(1/n). Hence, (6.30) shows
that æ̂n,m ,æ̂n,m+1 have total variation distance O(n°1 ln2 n), which yields the first assertion follows.
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With respect to the second assertion, we obtain from Corollary 4.6 that

P

h∞∞Ωæ̂n,m ° Ω̄
∞∞

TV ∑ n°1/2 lnn
i
+P

h∞∞Ωæ̂n,m+1 ° Ω̄
∞∞

TV ∑ n°1/2 lnn
i
°1 = 1°O(n°3).

Hence, if we choose the empirical distributionsΩæ̂n,m ,Ωæ̂n,m+1 independently, then
∞∞Ωæ̂n,m °Ωæ̂n,m+1

∞∞
TV ∑ 2n°1/2 lnn

with probability 1°O(n°3). Finally, we obtain the desired coupling of æ̂n,m , æ̂n,m+1 for (ii): given Ω, Ω0 2N choose
a collection of pairwise disjoint sets (S!)!2≠ ΩVn with |S!| = n min{Ω(!),Ω0(!)} randomly, set æ(x) =æ0(x) =! for
all x 2 S! and letæ,æ0 assign different spins to the nodes in Vn \

S
!2≠ S! so as to ensure that Ωæ = Ω and Ωæ0 = Ω0. ⇤

Corollary 6.7. Uniformly for all d ∑ dcond + 1 the following is true. Given the random assignment æ̂n,m choose a
constraint node a from the distribution

P
£
@a = (y1, . . . , yk ),√a 2A

§
=

R
A √(æ̂n,m (y1), . . . ,æ̂n,m (yk ))dP (√)

P
z1,...,zk2Vn

R
™√(æ̂n,m (z1), . . . ,æ̂n,m (zk ))dP (√)

(y1, . . . , yk 2Vn , A Ω™) (6.31)

and choose G§(n,m,æ̂n,m ) independently. Then

E[ln Z (Ĝ(n,m +1))]°E[ln Z (Ĝ(n,m)] = E
h

ln
≠
√a (æ(@1a), . . . ,æ(@k a))

Æ
G§(n,m,æ̂n,m )

i
+o(1). (6.32)

Proof. By the Nishimori identity (3.9) we have

E[ln Z (Ĝ(n,m))] = E[ln Z (G§(n,m,æ̂n,m ))], (6.33)

E[ln Z (Ĝ(n,m +1))] = E[ln Z (G§(n,m +1,æ̂n,m+1))]. (6.34)

To calculate the difference of the two terms on the r.h.s. we couple æ0 = æ̂n,m and æ00 = æ̂n,m+1 via Lemma 6.6.
Clearly, if æ0 =æ00, then we can couple G 0 =G§(n,m,æ̂n,m ) and G 00 =G§(n,m +1,æ̂n,m+1) such that G 00 is obtained
from G 0 by adding one additional independent constraint node a = am+1 and thus

Z (G 00)
Z (G 0)

=
X

ø2≠Vn

√a (ø(@1a), . . . ,ø(@k a))
√G 0 (ø)
Z (G 0)

=
≠
√a (æ(@1a), . . . ,æ(@k a))

Æ
G 0 .

Hence, by (2.2) and the first part of Lemma 6.6,

X = E
∑

ln
Z (G 00)
Z (G 0)

ØØØæ0 =æ00
∏
= E

£
ln

≠
√a (æ(@1a), . . . ,æ(@k a))

Æ
G 0 |æ0 =æ00§

= E
£
ln

≠
√a (æ(@1a), . . . ,æ(@k a))

Æ
G 0

§
+o(1). (6.35)

If |æ04æ00|∑ n2/3 and kΩæ0 ° Ω̄kTV ∑ n°1/2 lnn, then by definition we have
X

z1,...,zk2Vn

E[√(æ0(z1), . . . ,æ0(zk ))] ª nkª,
X

z1,...,zk2Vn

E[√(æ00(z1), . . . ,æ00(zk ))] ª nkª. (6.36)

Further, let us write a 0 for a factor node chosen from (2.15) with respect toæ0 and a 00 for one chosen with respect to
æ00. Let A be the event that a random factor node does not have a neighbor inæ04æ00. Since kΩæ0°Ω̄kTV ∑ n°1/2 lnn,
(2.2) and (6.36) imply that

P
£

a 0 62A
§
=

P
z1,...,zk2Vn 1{{z1, . . . , zk }\ (æ04æ00) 6=;}E[√(æ0(z1), . . . ,æ0(zk ))]

P
z1,...,zk2Vn E[√(æ0(z1), . . . ,æ0(zk ))]

=O(|æ04æ00|/n) =O(n°1/3),

and similarly P
£

a 00 62A
§
= O(n°1/3). Moreover, given that a 0, a 00 2 A , both factor nodes a 0, a 00 are identically dis-

tributed. Therefore, there is a coupling of a 0, a 00 such that a 0 = a 00 with probability 1°O(n°1/3). Hence, G 0,G 00 can
be coupled such that the set ¢ of constraint nodes in which both factor graphs differ has expected size O(n2/3).
Indeed, |¢| is a binomial random variable because the constraint nodes are chosen independently. Thus, (2.2)
implies

ØØØØE
∑

ln
Z (G 00)
Z (G 0)

ØØØ|æ04æ00|∑ n2/3,kΩæ0 ° Ω̄k ∑ lnn
p

n
, |¢|

∏ØØØØ∑O(|¢|)E
∑

max
ø2≠k

| ln√(ø)|
∏
=O(|¢|)

and therefore

X 0 = E
∑

ln
Z (G 00)
Z (G 0)

ØØØ0 < |æ04æ00|∑ n2/3,kΩæ0 ° Ω̄k ∑ n°1/2 lnn
∏
=O(n2/3). (6.37)
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Finally, if either |æ04æ00| > n2/3 or kΩæ0 ° Ω̄k> n°1/2 lnn, then we couple G 0,G 00 by just choosing their constraint
nodes independently. Then (2.2) implies

X 00 = E
∑

ln
Z (G 00)
Z (G 0)

ØØØ|æ04æ00| > n2/3 or kΩæ0 ° Ω̄k> n°1/2 lnn
∏
=O(n). (6.38)

Combining (6.33)–(6.38) and applying Corollary 4.6 and Lemma 6.6, we obtain

E[ln Z (Ĝ(n,m +1))]°E[ln Z (Ĝ(n,m)] = (1°o(1))X +O(n°1 ln2 n)X 0+O(n°2)X 00

= E
£
ln

≠
√a (æ(@1a), . . . ,æ(@k a))

Æ
G 0

§
+o(1),

as claimed. ⇤

Proof of Lemma 6.2. The proof is a generalization of the proof of [23, Lemma 3.32], which dealt with the Potts
model. We begin with the well-known observation that

1
n

@

@d
E[ln Z (Ĝ)] = 1

n

1X

m=0

∑
@

@d
P [Po(dn/k) = m]

∏
E[ln Z (Ĝ)|m = m]

= 1
k

1X

m=0
[°1{m ∏ 1}P [Po(dn/k) = m °1]+P [Po(dn/k) = m]]E[ln Z (Ĝ)|m = m]

= 1
k

[E[ln Z (Ĝ(n,m +1))]°E[ln Z (Ĝ(n,m)]]. (6.39)

To calculate the last term we apply Corollary 6.7. Let us write h ·i= h ·iG§(n,m,æ̂n,m ) for brevity. Expanding the loga-
rithm on the r.h.s. of (6.32), we obtain

1
n

@

@d
E[ln Z (Ĝ)] = o(1)°E

1X

l=1

1
kl

≠
1°√a (æ(@1a), . . . ,æ(@k a))

Æl

(where the expectation is over the choice of æ̂n,m , G§(n,m,æ̂n,m) and a). Due to (2.2) and Fubini’s theorem we
can interchange the sum and the expectation. Hence, writing the expectation on a chosen from (6.31) out, with√
chosen from P independently of everything else, we obtain

1
n

@

@d
E[ln Z (Ĝ)] = o(1)°

1X

l=1
E

"P
i1,...,ik2[n]√(æ̂n,m(xi1 ), . . . ,æ̂n,m(xik ))

≠
1°√(æ(xi1 ), . . . ,æ(xik ))

Æl

kl
P

i1,...,ik2[n]
R
™√(æ̂n,m(xi1 ), . . . ,æ̂n,m(xik ))dP (√)

#

.

Further, because |æ̂°1
n,m (!)| ª n/q for all ! 2 ≠ with probability at least 1°o(1) by Corollary 4.6, we obtain from

(2.2) and SYM that

1
n

@

@d
E[ln Z (Ĝ)] = o(1)°

1X

l=1

X

i1,...,ik2[n]

1

klªnk
E

h
√(æ̂n,m(xi1 ), . . . ,æ̂n,m(xik ))

≠
1°√(æ(xi1 ), . . . ,æ(xik ))

Æl
i

. (6.40)

To evaluate the expectation on the r.h.s. of (6.40) we harness the Nishimori identity (3.9), which implies the follow-
ing: if X : (G ,æ) 7! X (G ,æ) 2 R is an L1-function, then E[X (G§(n,m,æ̂n,m),æ̂n,m)] = E

≠
X (Ĝ ,æ)

Æ
Ĝ . Applying this

fact to the function X (G ,æ) =√(æ(xi1 ), . . . ,æ(xik ))
≠

1°√(æ(xi1 ), . . . ,æ(xik ))
Æl

G , we obtain

E

h
√(æ̂n,m(xi1 ), . . . ,æ̂n,m(xik ))

≠
1°√(æ(xi1 ), . . . ,æ(xik ))

Æl
i

= E
h≠

1°√(æ(xi1 ), . . . ,æ(xik ))
Æl °

≠
1°√(æ(xi1 ), . . . ,æ(xik ))

Æl+1
i

. (6.41)

Plugging (6.41) into (6.40) and writing i 1, . . . , i k for uniformly random indices chosen from [n] we obtain

k
n

@

@d
E[ln Z (Ĝ)] = o(1)° 1

ª
E
≠

1°√(æ(xi 1 ), . . . ,æ(xi k ))
Æ
+

1X

l=2

1
l (l °1)ª

E
≠

1°√(æ(xi 1 ), . . . ,æ(xi k ))
Æl . (6.42)

Finally, since
P

l∏2
1

l (l°1) (1°x)l = 1°x +§(x), (6.42) yields (6.2). ⇤

7. MOMENT CALCULATIONS

In this section we prove Propositions 3.9 and 3.10. We begin with a very general calculation in Section 7.1, from
which we subsequently deduce Propositions 3.9 and 3.10.
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7.1. An asymptotic formula. The following result paves the way for the proofs of Propositions 3.9 and 3.10.

Proposition 7.1. Assume that P satisfies SYM and that d > 0 is such that the eigenvalues ∏1 ∏ · · ·∏∏q of© satisfy

d(k °1)max{∏2, . . . ,∏q } < 1. (7.1)

Furthermore, assume that "= "(n) ! 0 but
p

n"!1 as n !1 and let

Z"(G(n,m)) = Z (G(n,m))
≠

1{8! 2≠ : ||æ°1(!)|°n/q| < "n}
Æ

G(n,m) .

Then uniformly for all m 2M (d),

E[Z"(G(n,m))] ª qn+ 1
2 ªm

Qq
i=2

p
1°d(k °1)∏i

.

Proof. Let Rn," be the set of all distributionsΩ 2P (≠) such that nΩ 2R≠ is an integer vector and such that kΩ°Ω̄k2 <
" for all ! 2≠. Additionally, for each Ω 2 Rn," let ZΩ(G(n,m)) = Z (G(n,m))

≠
1{Ωæ = Ω}

Æ
G(n,m) . Then

E[Z"(G(n,m))] =
X

Ω2Rn,"

E[ZΩ(G(n,m))]. (7.2)

Remembering ¡ from (4.2), we claim that uniformly for all Ω 2 Rn," and m 2M (d),

E[ZΩ(G(n,m))] ª exp(n fn(Ω))
p

(2ºn)q°1 Q
!2≠Ω(!)

, where fn(Ω) =H (Ω)+ m
n

ln¡(Ω). (7.3)

Indeed, because there are precisely
° n

nΩ

¢
assignments æ 2≠Vn such that Ωæ = Ω and since the constraint nodes of

G(n,m) are chosen independently, we have the exact expression E[ZΩ(G(n,m))] =
° n
Ωn

¢
¡(Ω)m and thus (7.3) follows

from Stirling’s formula. Combining (7.2) and (7.3), we obtain

E[Z"(G(n,m))] ª (2ºn)(1°q)/2q q/2 X

Ω2Rn,"

exp(n fn(Ω)). (7.4)

In order to calculate the sum via the Laplace method, we compute the first two derivatives of f . The first derivative
works out to be

@ fn

@Ω(!)
=° ln(Ω(!))°1+ m

n
·
P
ø2≠k

Pk
j=1E[√(ø)]1{ø j =!}

Q
i2[k]\{ j }Ω (øi )

P
ø2≠k E[√(ø)]

Q
i2[k]Ω (øi )

.

Hence, using SYM we see that the gradient at the point Ω̄ equals

D fn(Ω̄) = (ln(q)°1)1+ km
n

1 = (ln(q)°1+km/n)1. (7.5)

Proceeding to the second derivatives, we find

@2 fn

@Ω(!)@Ω(!0)
=°1{!=!0}

Ω(!)
+ m

n
·
P
ø2≠k

P
j ,l2[k]: j 6=l 1{ø j =!, øl =!0}E[√(ø)]

Q
i2[k]\{ j ,l }Ω (øi )

P
ø2≠k E[√(ø)]

Q
i2[k]Ω (øi )

° m
n

≥P
ø2≠k E[√(ø)]

Pk
j=1 1

©
ø j =!

™Q
i 6= j Ω (øi )

¥≥P
ø2≠k E[√(ø)]

Pk
j=1 1

©
ø j =!0™Q

i 6= j Ω (øi )
¥

°P
ø2≠k E[√(ø)]

Q
i2[k]Ω (øi )

¢2 .

Consequently, using SYM we find that the Hessian at Ω̄ comes out as

D2 fn(Ω̄) =°q(id° (k(k °1)m/n)©)+ (k2m/n)1. (7.6)

Additionally, the third derivatives of f are uniformly bounded. Thus, combining (7.5) and (7.6) and observing that
Ω° Ω̄? 1 for all Ω 2 Rn,", we see that uniformly for all Ω 2 Rn,",

fn(Ω) = fn(Ω̄)° q
2

≠
(id° (k(k °1)m/n)©)(Ω° Ω̄), (Ω° Ω̄)

Æ
+O("3). (7.7)
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Since "= o(1), plugging (7.7) into (7.2) we obtain uniformly for all m 2Md ,

E[Z"(G(n,m))] ª (2ºn)(1°q)/2q q/2 X

Ω2Rn,"

exp(n fn(Ω))

ª (2ºn)(1°q)/2q q/2 exp(n f (Ω̄))
X

Ω2Rn,"

exp
h
°qn

2

≠
(id° (k(k °1)m/n)©)(Ω° Ω̄), (Ω° Ω̄)

Æi

ª (2ºn)(1°q)/2qn+q/2ªm X

Ω2Rn,"

exp
h
°qn

2

≠
(id° (k(k °1)m/n)©)(Ω° Ω̄), (Ω° Ω̄)

Æi
. (7.8)

Since Lemma 3.6 shows that © is symmetric, there exists an orthogonal matrix Q such that © = QLQ§, where L is
the diagonal matrix whose entries are the eigenvalues 1 =∏1 ∏∏2 ∏ · · ·∏∏q of©. Since © is stochastic (once more
by Lemma 3.6), the top eigenvalue is ∏1 = 1 and the corresponding eigenvector is 1. Moreover, because all Ω 2 Rn,"
are probability distributions on ≠, we have Ω° Ω̄ ? 1 for all Ω 2 Rn,". Therefore, the set R 0

n," = {Q§(Ω° Ω̄) : Ω 2 Rn,"}
is contained in the (q ° 1)-dimensional subspace spanned by the eigenvectors of © corresponding to ∏2, . . . ,∏q .
Hence, because "

p
n !1 the sum from (7.8) can be approximated by a (q °1)-dimensional Gaussian integral and

thus uniformly for all m 2Md ,

E[Z"(G(n,m))] ª (2º/q)
1°q

2 qn+ 1
2 ªm

Z

Rq°1
exp

"

°q
2

q°1X

i=1

≥
1°k(k °1)

m
n
∏i+1

¥
x2

i

#

dx ª qn+ 1
2 ªm

Qq
i=2

p
1°d(k °1)∏i

,

as claimed. ⇤
Remark 7.2. We observe that the proof of Proposition 7.1 did not use (2.2).

7.2. Proof of Proposition 3.9. In this section we assume that P satisfies SYM and BAL. Then Lemma 3.6 readily
shows that (7.1) holds for all d > 0 and thus Proposition 7.1 applies. Hence, to prove Proposition 3.9 we merely
need to show that E[Z"(G(n,m))] ª E[Z (G(n,m))] for a suitable "(n) = o(1).

Lemma 7.3. Assume that P satisfies SYM and BAL, let d > 0 and set " = "(n) = n°1/3. Then uniformly for all m 2
M (d) we have E[Z"(G(n,m))] ª E[Z (G(n,m))].

Proof. Let Rn be the set of all distributions Ω 2P (≠) such that nΩ is an integer vector and let Rn," be the set of all
Ω 2 Rn such that |Ω (!)°1/q | < " for all ! 2≠. Let ¡ : Ω 2 R≠ 7! P

ø2≠k E[√(ø)]
Q

i2[k]Ω(øi ) (cf. (4.2)). Then by the
linearity of expectation and the independence of the constraint nodes of G(n,m),

E[Z (G(n,m))] =
X

Ω2Rn

√
n

nΩ

!

¡(Ω)m , E[Z"(G(n,m))] =
X

Ω2Rn,"

√
n

nΩ

!

¡(Ω)m .

Hence, with Ω̄ denoting the uniform distribution, uniformly for all m 2M (d),

E[Z (G(n,m))]°E[Z"(G(n,m))] =
X

Ω2Rn \Rn,"

√
n

nΩ

!

¡(Ω)m

∑
X

Ω2Rn \Rn,"

exp
°
nH (Ω)+m ln¡(Ω)+O(lnn)

¢
[by Stirling]

∑
X

Ω2Rn \Rn,"

exp
°
nH (Ω)+m ln¡(Ω̄)+O(lnn)

¢
[due to BAL]

∑ exp
°
nH (Ω̄)+m ln¡(Ω̄)°≠(n1/3)

¢
[as H ( · ) is strictly concave]

= qnªm exp(°≠(n1/3)) [due to SYM].

Finally, Proposition 7.1 implies that qnªm exp(°≠(n1/3)) = o(E[Z"(G(n,m))]). ⇤
Proposition 3.9 is immediate from Proposition 7.1 and Lemma 7.3.

7.3. Proof of Proposition 3.10. Assume that P satisfies SYM and BAL and that d < dcond. In order to calculate the
second moment, we employ a known construction (e.g., [13]) of an auxiliary random factor graph model whose
first moment equals the second moment of the original model. The spin set of this auxiliary model is the set
≠≠ =≠£≠ and we denote the pairs (s, t ) 2≠£≠ by s ≠ t . Further, for functions ',√ :≠k !R we define

'≠√ : (≠≠)k !R, (æ1 ≠ø1, . . . ,æk ≠øk ) 7!'(æ1, . . . ,æk )√(ø1, . . . ,øk ).
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Then the set of weight functions of the auxiliary model is™≠ = {√≠√ :√ 2™}. Moreover, the probability distribu-
tion P≠ on™≠ is simply the image of P under the measurable map √ 2™ 7!√≠√. Clearly, the fact that P satisfies
SYM implies that so does P≠. (However, P≠ does not necessarily satisfy BAL, and P≠ need not satisfy the last two
bounds in (2.2), but these are not needed to apply Proposition 7.1 due to Remark 7.2.)

For any √ 2™ the matrix ©√≠√ as defined in (2.6) can be expressed in terms of the matrix ©√ induced by the
original weight function as©√≠√ =©√≠©√. Hence, recalling the definitions (2.7) and (2.10),

©P≠ = E[©√≠√] = E[©√≠©√] =•P . (7.9)

Proof of Proposition 3.10. For a factor graph G let G≠ be the factor graph obtained by replacing the weight function
√a by √a ≠√a for every factor node a of G . Then

Z (G≠) =
X

æ2(≠≠)n

Y

a2F (G)
(√a ≠√a)(æ(@1a), . . . ,æ(@k a))

=
X

æ,ø2≠n

Y

a2F (G)
√a(æ(@1a), . . . ,æ(@k a))√a(ø(@1a), . . . ,ø(@k a)) = Z (G)2.

Hence, if "= "(n) = o(1) satisfies "
p

n !1, then (7.9), Lemma 3.7, Proposition 3.8 and Proposition 7.1 yield

E[Z"(G(n,m))2] ∑ E[Z"(G(n,m)≠)] ª q2n+1ª2m

Q
∏2Eig(•)\{1}

p
1°d(k °1)∏

,

as desired. ⇤

8. CYCLE CENSUS

Throughout this section we assume that P satisfies SYM and BAL.

The aim is to prove Proposition 3.12. The proof of the first assertion is rather straightforward.

Lemma 8.1. Let d > 0. For any Y 2 Y we have E[CY (G(n,m))] ª ∑Y , uniformly for all m 2 M (d). Moreover, if
Y1, . . . ,Yl 2Y are pairwise disjoint and y1, . . . , yl ∏ 0, then uniformly for all m 2M (d),

P
£
8i ∑ l : CYi (G(n,m)) = yi

§
ª

lY

t=1
P[Po(∑Yt ) = yt ]. (8.1)

Proof. Let m 2 M (d) be such that m(n) takes the least possible value for every n. Then (8.1) is immediate from
Fact 3.11 and the fact that in G(n,m) the weight functions of the constraint nodes are chosen independently from
P . Furthermore, if m0 2 M (d) is another sequence, then the random graph G(n,m0) is obtained from G(n,m) by
adding at most n3/4 random edges and with probability 1° o(1) none of these edges closes a cycle of bounded
length. Hence, we obtain the desired uniform rate of convergence for all sequences in M (d). ⇤

Lemma 8.2. Let d > 0. For any Y 2 Y with ∑Y > 0 we have E[CY (Ĝ(n,m))] ª ∑̂Y , uniformly for all m 2 M (d).
Moreover, if Y1, . . . ,Yl 2Y are pairwise disjoint, ∑Y1 , . . . ,∑Yl > 0 and y1, . . . , yl ∏ 0, then uniformly for all m 2M (d),

P
£
8i ∑ l : CYi (Ĝ(n,m)) = yi

§
ª

lY

t=1
P[Po(∑̂Yt ) = yt ].

The proof is based on known arguments. We begin by calculating the expected number of dense small subgraphs
of Ĝ(n,m).

Claim 8.3. Let u ∏ 1 be an integer and let U (G) be the number of subsets S Ω Vn [Fm of size |S| = u that span more
than 2u edges. Then E[U (G§(n,m,æ))] =O(1/n) uniformly for all m 2M (d) and all æ 2≠Vn .

Proof. Fix numbers u1,u2 such that u1 +u2 = u and let S1 Ω Vn and S2 Ω Fm be sets of size |S1| = u1, |S2| = u2.
Moreover, let E Ω S2 £ [k] be a set of size v > u1 +u2 and let A (S1,S2,E) be the event that for all pairs (a, i ) 2 E we
have @i a 2 S1. Then

E[U (G§(n,m,æ))] ∑
X

u1,u2,S1,S2,E
P

£
G§(n,m,æ) 2A (S1,S2,E)

§
. (8.2)
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Furthermore, (2.2) ensures that there is a number Æ = Æ(P ) > 0 that does not depend on æ such that the lower
bound

P
y1,...,yk2Vn E[√(æ(y1), . . . ,æ(yk ))] ∏ Ænk holds. Therefore, (2.15) implies that for variable nodes y1, . . . , yk 2

S1, any constraint node a 2 S2 and for any subset J Ω [k] we have

P
£
8i 2 J : @i a = yi

§
∑
E[maxø2≠k √(ø)]nk°|J |

Ænk
=O(n°|J |). (8.3)

Since the constraint nodes are chosen independently, (8.3) implies that, uniformly for all æ and all m 2M (d),

P
£
G§(n,m,æ) 2A (S1,S2,E)

§
∑O(n°|E |). (8.4)

Finally, given u1,u2 the number of possible sets S1 is bounded by nu1 , the number of possible S2 does not exceed
mu2 and given v and S2 the number of possible sets E is bounded. Thus, since u1 +u2 < v ∑ ku2 the assertion
follows from (8.2) and (8.4). ⇤

Proof of Lemma 8.2. Due to the Nishimori identity (3.9) we may prove the claim for the random factor graph model
G 0 =G§(n,m,æ̂n,m). Let A be the set of all nearly balanced æ 2≠Vn and recall that for all æ 2A we have

X

u1,...,uk2[n]
E[√(æ(xu1 ), . . . ,æ(xuk ))] ª nkª. (8.5)

We begin by showing that for any Y = (E1, s1, t1, . . . ,E`, s`, t`) 2Y` uniformly for all m 2M (d),

E[CY (G 0)] ª ∑̂Y . (8.6)

Indeed, let i = (i1, . . . , i`) 2 [n]` be a family of pairwise distinct indices such that i1 < min{i2, . . . , i`} (cf. CYC1) and
let j = ( j1, . . . , j`) 2 [m]` be pairwise distinct indices such that j1 < min{ j2, . . . , j`} if ` > 1 (cf. CYC2). Let CY (i , j )
be the event that xi1 , a j1 , . . . , xi` , a j` form a cycle with signature Y . Set i`+1 = i1. Then by (2.15), (3.20) and (8.5) we
have for any æ 2A

P
£
G§(n,m,æ) 2CY (i , j ) |æ̂=æ

§
=

Ỳ

h=1

P
u1,...,uk2[n] 1{ush = ih ,uth = ih+1}E[√(æ(xu1 ), . . . ,æ(xuk ))1{√ 2 Eh}]

P
u1,...,uk2[n]E[√(æ(xu1 ), . . . ,æ(xuk ))]

ª
Ỳ

h=1
P [Eh]n°kª°1 X

u1,...,uk2[n]
1{ush = ih ,uth = ih+1}E

£
√(æ(xu1 ), . . . ,æ(xuk )) |Eh

§

ª n°2`q`
Ỳ

h0=1
P [Eh0 ]

Ỳ

h=1
©Eh ,sh ,th (æ(xih ),æ(xih+1 )). (8.7)

Since æ 2A , summing the last product of (8.7) over i , j yields

X

i , j

lY

h=1
©Eh ,sh ,th (æ(xih ),æ(xih+1 )) ª

µ
mn

q

∂`
tr

lY

h=1
©Eh ,sh ,th (8.8)

Combining (8.7) and (8.8) it follows

E[CY (G 0) |æ̂ 2A ] ª 1
2`

µ
d
k

∂` Ỳ

h0=1
P [Eh0 ] tr

lY

h=1
©Eh ,sh ,th = ∑̂Y , (8.9)

as claimed. Finally, as we have CY (G 0) ∑ (nm)`, Corollary 4.6 and (8.9) yield (8.6).
For integers h1, . . . ,hl ∏ 1 let Ch1,...,hl (Ĝ) = Ql

v=1
Qhv

w=1(CYv (G 0)° w + 1). Then due to the inclusion/exclusion
argument for the joint convergence to independent Poisson variables [19, Theorem 1.23], in order to complete the
proof it suffices to show that for any h1, . . . ,hl ∏ 1, uniformly for all m 2M (d),

E
£
Ch1,...,hl (G 0)

§
ª

lY

v=1
∑̂hv

Yv
.

Combinatorially, Ch1,...,hl (G 0) is nothing but the total number of (h1 + . . .+hl )-tuples of cycles in G 0 such that the
first h1 cycles have signature Y1, the next h2 cycles have signature Y2, etc. Hence, if we define C 0

h1,...,hl
(G 0) as the

number of such families of pairwise vertex disjoint cycles, then Claim 8.3 yields

E
£
Ch1,...,hl (G 0)

§
= E

h
C 0

h1,...,hl
(G 0)

i
+o(1). (8.10)
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Furthermore, we claim that uniformly for all m 2M (d),

E

h
C 0

h1,...,hl
(G 0)

i
ª

lY

v=1
∑̂hv

Yv
. (8.11)

Indeed, the argument that we used to prove (8.6) easily extends to a proof of (8.11); for if we fix index families
(i v,w , j v,w )v=1,...,l ,w=1,...,hv that suit the signatures Y1, . . . ,Yl such that no index from [n] resp. [m] occurs more than
once, then similar steps as above reveal that

P

"

G 0 2
l\

v=1

hv\

w=1
CYv (i v,w , j v,w )

#

ª
lY

v=1

hvY

w=1
P

£
G 0 2CYv (i v,w , j v,w )

§

Hence, (8.11) follows by summing on all (i v,w , j v,w )v,w . Finally, (8.10) and (8.11) show the desired convergence for
a single sequence m 2 M (d) and the uniformity of the rate of convergence follows from a similar argument as in
the proof of Lemma 8.1. ⇤

Proof of Proposition 3.12. The claim (3.22) about the cycle counts is immediate from Lemmas 8.1 and 8.2. To prove
the assertion about the probability of S, let us first assume that k = 2. Then the event S occurs iff C1 =C2 = 0 and
thus the assertion aboutP [G(n,m) 2S] is immediate from Fact 3.11. Moreover, the assertion aboutP[Ĝ(n,m) 2S]
follows from Lemma 8.2 applied to all signatures of the form (s1, t1,™) and (s1, t1,™, s2, t2,™). For k > 2 we express
the eventS asS=

©
C1 = 0^81 ∑ i < j ∑ m : {@1ai , . . . ,@k ai } 6= {@1ai , . . . ,@k ai }

™
. In particular,S occurs only if C1 = 0

and therefore, by the same token as in the case k = 2, the expressions stated in Proposition 3.12 are asymptotic
upper bounds on P[G(n,m) 2S],P[Ĝ(n,m) 2S]. Finally, we notice that for k > 2 the expected number of pairs
1 ∑ i < j ∑ m such that {@1ai , . . . ,@k ai } = {@1ai , . . . ,@k ai } is O(1/n). ⇤

9. THE LIMITING DISTRIBUTION

Throughout this section we assume that P satisfies SYM and BAL.

In this section we prove Proposition 3.13. Let √,√1,√2, . . . be chosen independently from P and for ` ∏ 0 set
Y ` = tr

Q`
j=1©√ j

. The following lemma is the main step toward the proof of (3.23).

Lemma 9.1. If d < dcond, then
P1
`=1

(d(k°1))`
2` E

£
(Y `°1)2§=° 1

2
P
∏2Eig§(•) ln(1°d(k °1)∏) .

Proof. Let©` =
Q`

j=1©√ j
. Then

(tr©`°1)2 = (tr©`)2 °2tr©`+1 = tr(©`≠©`)°2tr©`+1.

Hence, remembering (2.7) and (2.10), we find E[(Y ` ° 1)2] = E[(tr©` ° 1)2] = tr(•`) ° 2tr(©`) + 1. Furthermore,
Lemmas 3.6 and 3.7 yield

tr(•`) =
X

∏2Eig(•)
∏` = 1+2

X

∏2Eig(©)\{1}
∏`+

X

∏2Eig§(•)
∏` =°1+2tr(©`)+

X

∏2Eig§(•)
∏`,

and thus

(d(k °1))`

2`
E
£
(Y `°1)2§=

X

∏2Eig§(•)

(d(k °1)∏)`

2`
. (9.1)

As d < dcond Proposition 3.8 yields max∏2Eig§(•) |∏| < (d(k°1))°1, whence summing (9.1) on ` completes the proof.
⇤

To prove (3.23) we need to get a handle on the discretization of the set ™ induced by the partition Cr for r ∏ 1.
Hence, we introduce Y `,r = tr

Q`
j=1©√(r )

j
.

Corollary 9.2. If d < dcond, then
P1
`=1

(d(k°1))`
2` E[(Y `,r °1)2] ∑° 1

2
P
∏2Eig§(•) ln(1°d(k °1)∏).

Proof. By Jensen’s inequality
P1
`=1

(d(k°1))`
2` E[(Y `,r °1)2] ∑P1

`=1
(d(k°1))`

2` E[(Y `°1)2] and thus the assertion follows
from Lemma 9.1. ⇤

We are ready to prove (3.23).
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Proof of Proposition 3.13, part 1. Given L,r let

SL,r =
X

Y 2Y∑L,r

(∑Y ° ∑̂Y )2

∑Y
=

LX

`=1

(d(k °1))`

2`
E[(Y `,r °1)2], SL =

LX

`=1

(d(k °1))`

2`
E[(Y `°1)2].

The construction of Cr ensures that for every fixed `, Y `,r converges to Y ` almost surely as r ! 1. Hence, by
Lemma 9.1, Corollary 9.2 and dominated convergence,

lim
L!1

lim
r!1

exp(SL,r ) = lim
L!1

exp(SL) =
Y

∏2Eig§(•)
(1°d(k °1)∏)°

1
2 ,

which proves (3.23). ⇤
In order to establish the convergence of K`,r to K we use similar arguments. We begin with the following bound.

Lemma 9.3. For every 0 < d ∑ dcond there exists Ø> 0 such that
P1
`=1

(d(k°1))`
2` E

ØØ1{Y ` <Ø} lnY `

ØØ<1.

Proof. Pick Ø> 0 sufficiently small. Because by Lemma 3.6 the matrices©√ are stochastic, we have

tr(©√1
· · ·©√`

) =
X

æ1,...,æ`
©√1

(æ1,æ2) · · ·©√`
(æ`,æ1) ∏ min

æ,æ0
©√`

(æ,æ0) ∏ q1°kª°1 min
ø2≠k

√`(ø).

In fact, since the trace is invariant under cyclic permutations, we obtain

tr(©√1
· · ·©√`

) ∏ q1°kª°1 max
j2[`]

min
ø2≠k

√ j (ø). (9.2)

Since √1, . . . ,√` are chosen independently, (2.2) and (9.2) imply that we can choose Ø > 0 small enough so that
E|1{Y ` <Ø} lnY `|∑ (d(k °1))°` for all `, in which case the sum converges. ⇤
Corollary 9.4. For every 0 < d < dcond and every `,r ∏ 1 we have E| lnY `|+E| lnY `,r | <1.

Proof. Because all weight functions √ 2™ take values in (0,2), it is obvious that E
ØØ1{Y ` ∏Ø} lnY `

ØØ <1 for every
Ø< 1. Moreover, similar steps as in the previous proof show

P
l∏1E

ØØ1{Y l <Ø} lnY l
ØØ <1 for some small 0 < Ø< 1.

Finally, since x 2 (0,Ø) 7! ° ln x is convex, the assertion about | lnY `,r | follows from Jensen’s inequality. ⇤
We are going to prove that K ,K` are well-defined by showing that they come out as the limit of the K`,r as

`,r !1. However, a priori it may not be entirely clear that the K`,r are well-defined because they involve sums
on random numbers Kl of terms. Let us observe that this is not a problem actually, because Corollary 9.4 implies
the following. We continue to let (√l ,i , j )l ,i , j signify a family of independent samples from P .

Corollary 9.5. For every l ∏ 1,r ∏ 1 the following L1-limits exist:
KlX

i=1
lntr

lY

j=1
©√l ,i , j

= lim
H!1

Kl^HX

i=1
lntr

lY

j=1
©√l ,i , j

,
KlX

i=1
lntr

lY

j=1
©
√(r )

l ,i , j
= lim

H!1

Kl^HX

i=1
lntr

lY

j=1
©
√(r )

l ,i , j
.

Lemma 9.6. For every 0 < d < dcond there exists c = c(d ,P ) > 0 such that for all r ∏ 1, L ∏ 1,

LX

l=1
E

ØØØØØ
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©√l ,i , j

ØØØØØ< c,
LX

l=1
E

ØØØØØ
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©
√(r )

l ,i , j

ØØØØØ< c.

Proof. Let ∑l = (d(k °1))l /(2l ), X l ,i = tr
Ql

j=1©√l ,i , j
, X (r )

l ,i = tr
Ql

j=1©√(r )
l ,i , j

. Then E[X l ,i ] = tr(©l ) and for every l ∏ 1,

E

ØØØØØ
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©√l ,i , j

ØØØØØ= E
ØØØØØ∑lE[Y l °1]°

KlX

i=1
ln X l ,i

ØØØØØ

∑ E
ØØØØØ∑lE[Y l °1]°

KlX

i=1
(X l ,i °1)

ØØØØØ+E
ØØØØØ

KlX

i=1
X l ,i °1° ln X l ,i

ØØØØØ∑
√

Var
KlX

i=1
(X l ,i °1)

!1/2

+E
ØØØØØ

KlX

i=1
X l ,i °1° ln X l ,i

ØØØØØ (9.3)

because E[
PKl

i=1(X l ,i °1)] = ∑lE[Y l °1] and due to Cauchy-Schwarz. Further, because the √l ,i , j are i.i.d., for any
given integer h we find

E

"√
hX

i=1
(X l ,i °1)

!2#

= h(h °1)E[Y l °1]2 +hE[(Y l °1)2]. (9.4)
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As E[Kl (Kl °1)] = ∑2
l , (9.4) implies

Var

"
KlX

i=1
(X l ,i °1)

#

= ∑lE[(Y l °1)2]. (9.5)

Recall from (9.1) that∑lE[(tr©l°1)2] =P
∏2Eig§(•) (d(k °1)∏)l /(2l ). Because Proposition 3.8 yields max∏2Eig§(•) |∏| <

(d(k °1))°1 for all d < dcond, we obtain ∑lE[(tr©l °1)2] =O(l°3), with room to spare. Consequently, summing the
square root of (9.5) on l gives a finite number.

Moving on to the second summand in (9.3), we recall that the function x 2 (0,1) 7! x°1° ln x ∏ 0 is convex and
that for any (small) Ø > 0 there exists u > 0 such that x °1° ln x ∑ u(x °1)2 for all x ∏ Ø. Hence, introducing the
convex function g : x 2 (0,1) 7! max{x °1° ln x,u(x °1)2} ∏ 0, we have

E

ØØØØØ

KlX

i=1
X l ,i °1° ln X l ,i

ØØØØØ∑ E
"

KlX

i=1
g (X l ,i )

#

∑ 2∑lE
ØØ1{Y l <Ø} lnY l

ØØ+u∑lE[(Y l °1)2]. (9.6)

Lemma 9.3 shows that summing the right hand side of (9.6) on l gives a finite number. Thus, the first assertion
follows from (9.3). With respect to the second bound, analogous steps yield

E

ØØØØØ
(d(k °1))l

2l

≥
1° tr(©l )

¥
+

KlX

i=1
lntr

lY

j=1
©
√(r )

l ,i , j

ØØØØØ∑

vuutVar

"
KlX

i=1
(X (r )

l ,i °1)

#

+E
"

KlX

i=1
g (X (r )

l ,i )

#

and thus the desired bound follows from Jensen’s inequality. ⇤

Proof of Proposition 3.13, part 2. Lemma 9.6 shows that the random variables K`,r are uniformly L1-bounded.
Furthermore, the construction of Cr guarantees that K`,r !K` almost surely for every fixed `. Hence, K`,r con-
verges to K` in the L1-norm and a second application of Lemma 9.6 shows that K` tends to K in the L1-norm. ⇤

10. THE CONDENSATION THRESHOLD

Throughout this section we assume that P satisfies SYM, BAL and POS.

In this section we prove Theorems 2.2 and 3.3. As a technical preparation we need a concentration inequality for
the free energy of our random factor graph models.

10.1. Concentration. We begin with the following elementary observation.

Lemma 10.1. Suppose that P satisfies SYM and BAL. For a factor graph G = (V ,F, (@a)a2F , (√a)a2F ) define

O (G) =
X

æ2≠k

X

a2F
ln2√a(æ).

Then for every D > 0 there exists C =C (D,P ) > 0 such that uniformly for all m ∑ Dn/k, t ∏ 1 and æ 2≠Vn we have

P [O (G(n,m,P )) > tC n]+P
£
O (G§(n,m,P,æ)) > tC n

§
= t°3O(n°2), (10.1)

E[ln Z (G(n,m,P ))|O (G(n,m,P )) ∑ tC n] = E[ln Z (G(n,m,P ))]+o(1) =O(n), (10.2)

E[ln Z (G§(n,m,P,æ))|O (G(n,m,P,æ)) ∑ tC n] = E[ln Z (G(n,m,P,æ))]+o(1) =O(n). (10.3)

Proof. The bound (2.2) guarantees thatP
£
maxø | ln√(ø)|∏ (tn)3/8§∑ t°3O(n°3). As a consequence, the probability

that either G(n,m,P ) or G§(n,m,P,æ) contains a constraint node ai such that maxø | ln√ai (ø)|∏ (tn)3/8 is bounded
by t°3O(n°2). Therefore, it suffices to prove (10.1) given A = {maxø | ln√ai (ø)| < (tn)3/8}. Due to (2.2) the condi-
tional expectation E[maxø | ln√(ø)|

ØØ maxø | ln√(ø)| < (tn)3/8] is bounded. Thus, the definition of the random factor
graph models guarantees that uniformly for all æ,m ∑ Dn/k,

E[O (G(n,m,P )) |A ]+E[O (G§(n,m,P,æ)) |A ] =O(n). (10.4)

Further, because the constraint nodes are chosen independently, Azuma’s inequality implies that for any s > 1,

P
£
O (G(n,m,P )) > E[O (G(n,m,P )) |A ]+ s

ØØA
§
∑ 2exp

µ
° s2

O(t 3/4n7/4)

∂
. (10.5)
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Thus, (10.1) follows from (10.4) and (10.5) applied to s = tC n°E[O (G(n,m,P )) |A ] with C > 0 chosen large enough.
Finally, let either G 0 = G(n,m,P ) or G 0 = G§(n,m,P,æ). Since ln Z (G 0) ∑ n ln q +

p
mO (G 0) by Cauchy-Schwarz,

(10.1) yields

E[1{O (G 0) >C n} ln Z (G 0)] ∑
p

mE

h
1{O (G 0) >C n}

p
O (G 0)

i
+o(1) ∑O(

p
m/n)+o(1) = o(1),

whence (10.2) and (10.3) are immediate. ⇤

Lemma 10.2. Suppose that P satisfies SYM and BAL and let D > 0. There exists C = C (D,P ) > 0 such that for any
"> 0 and C 0 >C there exists ±> 0 such that for all æ 2≠Vn , m ∑ Dn/k we have

P
£
|ln Z (G(n,m,P ))°E[ln Z (G(n,m,P ))]| > "n|O (G(n,m,P )) ∑C 0n

§
∑ 2exp(°±n) ,

P
£ØØln Z (G§(n,m,P,æ))°E[ln Z (G§(n,m,P,æ))]

ØØ> "n|O (G§(n,m,P,æ)) ∑C 0n
§
∑ 2exp(°±n) .

Proof. Let either G 0 =G(n,m,P ) or G 0 =G(n,m,P,æ) and choose c = c(",C 0) > 0 big enough so that the following is
true: if O (G 0) ∑C 0n, then X

i2[m]
max
ø

| ln√ai (ø)| ·1{max
ø

| ln√ai (ø)| > c} < "n/4. (10.6)

Let G 00 be the factor graph obtained from G 0 by deleting all constraint nodes ai such that maxø | ln√ai (ø)| > c. Then
(10.6) ensures that | ln Z (G 0)° ln Z (G 00)|∑ "n/4. Furthermore, if G 000 is obtained from G 00 by changing the neighbor-
hood of some constraint node a and/or its weight function, subject merely to the condition that the new weight
function √ satisfies maxø | ln√ai (ø)|∑ c, then | ln Z (G 000)° ln Z (G 00)|∑ c. Therefore, Azuma’s inequality implies that
for any t > 0,

P
£
| ln Z (G 00)°E ln Z (G 00)| > t

§
∑ 2exp(°t 2/(2c2m)). (10.7)

Combining (10.6) and (10.7) with (10.2) and (10.3) completes the proof. ⇤

10.2. Proof of Theorem 3.3. We recall from Section 3.5 that Cr is the partition of™ obtained by chopping [0,2]≠
k

into sub-cubes with side lengths 2/r . Since Cr is finite the distribution Pr of√(r ) is supported on a finite set™r of
weight functions≠k ! (0,2).

Lemma 10.3. For any Æ> 0, D > 0 there is r0 > 0 such that for all d ∑ D and all r > r0 we have

sup
º2P 2

§ (≠)
|B(d ,P,º)°B(d ,Pr ,º)| <Æ.

Proof. Let

B : (√1, . . . ,√∞,Ω1, . . . ,Ωk∞) 2™∞£P (≠)k∞ 7! 1
qª∞

§

√
X

æ2≠

∞Y

i=1

X

ø2≠k

1{øk =æ}√i (ø)
Y

j<k
Ωk(i°1)+ j (ø j )

!

.

Analogously, for a fixed r let

Br : (√1, . . . ,√∞,Ω1, . . . ,Ωk∞) 7! 1
qª∞

§

√
X

æ2≠

∞Y

i=1

X

ø2≠k

1{øk =æ}√(r )
i (ø)

Y

j<k
Ωk(i°1)+ j (ø j )

!

.

That is, we approximate √i by the average √(r )
i over the weight functions in the sub-cube that √i belongs to. Since

§ is continuous on [0,1) and therefore uniformly continuous on any compact subset of [0,1), Br ! B uniformly
as r !1 on the entire space ™r £P (≠)k∞ for every ∞. Since the Poisson distribution has sub-exponential tails,
this implies the desired convergence for the first term on the right hand side of (2.4). A similar argument applies
to the second term. ⇤

Lemma 10.4. The distribution Pr satisfies SYM and BAL. Moreover, for any Æ> 0, d > 0 there is r > 0 such that the
following is true for all º,º0 2 P 2

§(≠). With µ1,µ2, . . . chosen from º, µ0
1,µ0

2, . . . chosen from º0 and √0 2™ chosen
from Pr , all mutually independent, we have

E

"

§

√
X

ø2≠k

√0(ø)
kY

i=1
µi (øi )

!

+ (k °1)§

√
X

ø2≠k

√0(ø)
kY

i=1
µ0

i (øi )

!

°
kX

h=1
§

√
X

ø2≠k

√0(ø)µh(øh)
Y

i2[k]\{h}
µ0

i (øi )

!#

∏°Æ. (10.8)
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Proof. The fact that SYM and BAL are satisfied is immediate from the fact that Pr is a conditional expectation of P .
To prove (10.8) we observe that by the uniform continuity of § on compact subsets of [0,1), we can choose r > 0
large enough so that for all √ 2™, µ1,µ0

1, . . . ,µk ,µ0
k 2P (≠),

ØØØØØ§

√
X

ø2≠k

√(r )(ø)
kY

i=1
µi (øi )

!

°§
√

X

ø2≠k

√(ø)
kY

i=1
µi (øi )

!ØØØØØ<Æ/3,

ØØØØØ§

√
X

ø2≠k

√(r )(ø)
kY

i=1
µ0

i (øi )

!

°§
√

X

ø2≠k

√(ø)
kY

i=1
µ0

i (øi )

!ØØØØØ<Æ/3,

ØØØØØ§

√
X

ø2≠k

√(r )(ø)µh(øh)
Y

i2[k]\{h}
µ0

i (øi )

!

°§
√

X

ø2≠k

√(ø)µh(øh)
Y

i2[k]\{h}
µ0

i (øi )

!ØØØØØ<Æ/3.

Thus, (10.8) follows from the triangle inequality and the fact that P satisfies POS. ⇤

Lemma 10.5. For any Æ> 0, d > 0 there is r0 > 0 such that uniformly for all r ∏ r0 we have

|E[ln Z (Ĝ(n,m,P ))]°E[ln Z (Ĝ(n,m,Pr ))]| < (Æ+o(1))n.

Proof. By Lemma 3.2 the models Ĝ(n,m,P ) and G§(n,m,P,æ§) are mutually contiguous. Hence, Lemma 10.2 im-
plies that E[ln Z (Ĝ(n,m,P ))] = E[ln Z (G§(n,m,P,æ§))]+o(n). Similarly, since Pr satisfies SYM and BAL by Lemma 10.4,
another application of Lemmas 3.2 and 10.2 yields E[ln Z (Ĝ(n,m,Pr ))] = E[ln Z (G§(n,m,Pr ,æ§))]+o(n). Therefore,
it suffices to prove that for any Æ> 0 for all sufficiently large r we have

max
æ2≠Vn

ØØE[ln Z (G§(n,m,Pr ,æ))]°E[ln Z (G§(n,m,P,æ))]
ØØ∑ (Æ+o(1))n. (10.9)

In fact, since the Poisson variable m has sub-exponential tails, (4.4) shows that (10.9) would follow if we could show
that

max
æ2≠Vn ,m∑2dn/k

ØØE[ln Z (G§(n,m,Pr ,æ))]°E[ln Z (G§(n,m,P,æ))]
ØØ∑ (Æ+o(1))n. (10.10)

To prove (10.10) pick Ø = Ø(Æ,d ,P ) > 0 small enough and then r = r (Ø) > 0 large enough. Fix any æ 2≠Vn and
m ∑ 2dn/k. We couple two factor graphs G 0,G 00 such that G 0 has distribution G§(n,m,P,æ) and G 00 is distributed
as G§(n,m,Pr ,æ) as follows. First choose G 0 = G§(n,m,P,æ). Let us write √a1 , . . . ,√am for the weight functions
of G 0. Then let G 00 be the factor graph where each constraint node ai is adjacent to the same variable nodes as
in G 0 but where the corresponding weight function is √(r )

ai
. It is immediate from (2.15) that G 00 is distributed as

G§(n,m,Pr ,æ).
To bound E[ln(Z (G 00)/Z (G 0)] we observe that

E

ØØØØln
Z (G 00)
Z (G 0)

ØØØØ= E
ØØØØØln

X

ø2≠Vn

√G 00 (ø)
√G 0 (ø)

· √G 0 (ø)
Z (G 0)

ØØØØØ= E
ØØØØØln

*
mY

i=1

√(r )
ai

(⌧ (@1ai ), . . . ,⌧ (@k (ai )))

√ai (⌧ (@1ai ), . . . ,⌧ (@k (ai )))

+

G 0

ØØØØØ

∑ E max
ø2≠Vn

mX

i=1

ØØØØØln
√(r )

ai
(ø(@1ai ), . . . ,ø(@k (ai )))

√ai (ø(@1ai ), . . . ,ø(@k (ai )))

ØØØØØ∑ E
mX

i=1
max
ø2≠k

ØØØØØln
√(r )

ai
(ø)

√ai (ø)

ØØØØØ∑ dn ·E
"

max
ø2≠k

ØØØØØln
√(r )

a1 (ø)

√a1 (ø)

ØØØØØ

#

. (10.11)

Since the function x 7! ln2 x is strictly convex on (0,2) for small Ø and large r we obtain from (2.15), the tail bound
(2.2) and Jensen’s inequality that

E

∑µ
max
ø2≠k

ØØln√a1 (ø)
ØØ+max

ø2≠k

ØØln√(r )
a1

(ø)
ØØ
∂µ

1
Ω

max
ø2≠k

ØØln√a1 (ø)
ØØ>Ø°1

æ
+1

Ω
max
ø2≠k

ØØln√(r )
a1

(ø)
ØØ>Ø°1

æ∂∏
< Æ

2d
. (10.12)

On the other hand, since the map z 2 [e°1/Ø,2] 7! ln z is uniformly continuous, we can choose a sufficiently
large r = r (Ø) such that maxø | ln(√(r )

a1 (ø)/√a1 (ø))| < Æ/(2d) whenever maxø2≠k | ln√a1 (ø)|,maxø2≠k | ln√(r )
a1 (ø)| ∑

1/Ø. Thus, (10.10) follows from (10.11) and (10.12). ⇤

Proof of Theorem 3.3. Fix d > 0. Since Lemma 10.4 shows that Pr satisfies SYM and BAL, [23, Proposition 3.6]
implies that

limsup
n!1

n°1
E[ln Z (Ĝ(n,m,Pr ))] ∑ sup

º2P 2
§ (≠)

B(d ,Pr ,º). (10.13)

49



Furthermore, [23, Proposition 3.7] implies together with equation (10.8) from Lemma 10.4 that for any Æ> 0 there
is r > 0 such that

liminf
n!1

n°1
E[ln Z (Ĝ(n,m,Pr ))] ∏ sup

º2P 2
§ (≠)

B(d ,Pr ,º)°Æ. (10.14)

Combining (10.13) and (10.14) with Lemma 10.3, we conclude that for any Æ> 0 for all large enough r we have

sup
º2P 2

§ (≠)
B(d ,P,º)°Æ∑ liminf

n!1
n°1

E[ln Z (Ĝ(n,m,Pr ))] ∑ limsup
n!1

n°1
E[ln Z (Ĝ(n,m,Pr ))] ∑ sup

º2P 2
§ (≠)

B(d ,P,º)+Æ.

Applying Lemma 10.5 therefore yields

lim
n!1

n°1
E[ln Z (Ĝ(n,m,P ))] = sup

º2P 2
§ (≠)

B(d ,P,º). (10.15)

Moreover, since G§(n,m,P,æ§) and Ĝ(n,m,P ) are mutually contiguous by Lemma 3.2, Lemma 10.2 implies that
limn!1 n°1

E[ln Z (G§(n,m,P,æ§))] = supº2P 2
§ (≠) B(d ,P,º), too. Finally, since the probability of the event S is

bounded away from 0 by Proposition 3.12, Lemma 10.2 shows that

lim
n!1

n°1
E[ln Z (Ĝ(n,m,P ))|S] = lim

n!1
n°1

E[ln Z (G§(n,m,P,æ§))|S] = sup
º2P 2

§ (≠)
B(d ,P,º)

as well. ⇤
10.3. Proof of Theorem 2.2. We begin with the observation that dcond is bounded and bounded away from 0.

Lemma 10.6. We have 1/(k °1) ∑ dcond <1.

Proof. Fix any d < 1/(k °1). Then for any nearly balanced æ : Vn !≠ the expected degree of every variable node
of G§(n,m,P,æ) is d +o(1) < 1/(k °1). Therefore, the well-known result on the ‘giant component’ threshold of a
random hypergraph (e.g., [65]) shows that with probability 1°o(1) the random factor graph G§(n,m,P,æ) consists
of connected components of order O(lnn), all but a bounded number of which are trees. But assumption SYM
guarantees that for every tree factor graph with n variable nodes and m constraint nodes the free energy is precisely
equal to n ln q+m lnª, as is easily verified by induction on the size of the tree. Hence, n°1

E[ln Z (G§(n,m,m,P,æ))] =
ln q + d

k lnª+ o(1) by Lemma 10.2. Since this formula holds for every nearly balanced assignment æ, we obtain
n°1

E[ln Z (G§(n,m,P,æ§))] = ln q+ d
k lnª+o(1). Hence, Theorem 3.3 shows that d < dcond and thus dcond ∏ 1/(k°1).

We move on to the upper bound. Recalling that m has distribution Po(dn/k) and that the m constraint nodes
in the teacher-student model are chosen independently, we obtain

k
n

@

@d
E[ln√G§ (æ§)] = k

n
@

@d
E

"
mX

i=1
ln√ai (æ§(@1ai ), . . . ,æ§(@k ai ))

#

= E
£
ln√a1 (æ§(@1a1), . . . ,æ§(@k a1))

§
. (10.16)

Further, plugging in the definition (2.15) of the teacher-student model, we can write the last term out as

E
£
ln√a1 (æ§(@1a1), . . . ,æ§(@k a1))

§
= E

" P
i1,...,ik2[n]§(√(æ§(xi1 ), . . . ,æ§(xik )))

P
j1,..., jk2[n]

R
™'(æ§(x j1 ), . . . ,æ§(x jk ))dP (')

#

.

Since the uniformly randomæ§ is nearly balanced with probability 1°o(1) as n !1, due to SYM and (2.2) the last
expression simplifies to

E
£
ln√a1 (æ§(@1a1), . . . ,æ§(@k a1))

§
= o(1)+ 1

ªnk

X

i1,...,ik2[n]
E
£
§(√(æ§(xi1 ), . . . ,æ§(xik )))

§
. (10.17)

Further, due to the third part of (2.2) and because§ ( · ) is strictly convex, Jensen’s inequality shows that there exists
an n-independent number Æ> 0 such that

X

i1,...,ik

E
£
§(√(æ§(xi1 ), . . . ,æ§(xik )))

§

ªnk
∏Æ+o(1)+§

√
X

i1,...,ik

E
£
√(æ§(xi1 ), . . . ,æ§(xik ))

§

ªnk

!

=Æ+ lnª+o(1). (10.18)

Combining (10.16)–(10.18), we find @
@d

1
n E[ln√G§ (æ§)] ∏ k°1(Æ+ lnª)+o(1). Hence, for d > k

Æ ln q we obtain

1
n
E[ln Z (G§)] ∏ 1

n
E[ln√G§ (æ§)] ∏ d

k
(Æ+ lnª)+o(1) > ln q + d

k
lnª+≠(1).

Hence, applying Theorem 3.3 and recalling (2.5), we conclude that dcond ∑ k
Æ ln q <1. ⇤
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We derive Theorem 2.2 from Theorem 3.3 in two steps. First, generalizing the argument from [23, Section 3.5] to
the setting of infinite™, we prove the free energy formula for d ∑ dcond.

Proof of Theorem 2.2, part 1. First assume that d < dcond is such that for some ±> 0,

liminf
n!1

n°1
E ln Z (G(n,m,P )) < ln q + d

k
lnª°3±.

Then there exists a sequence m 2M (d) such that

liminf
n!1

n°1
E ln Z (G(n,m,P )) < ln q + d

k
lnª°2±.

Hence, Lemma 10.2 shows that for a suitably large C > 0 and a sufficiently small "> 0,

liminf
n!1

n°1 lnP
∑

n°1 ln Z (G(n,m,P )) ∏ ln q + d
k

lnª°±, O (G(n,m,P )) ∑C n
∏
∑°". (10.19)

Now, with µ = µ(±,") > 0 chosen small enough, we define

Z 0(G) = Z (G)1{n°1 ln Z (G) ∑ ln q + d
k

lnª+µ, O (G) ∑C n}. (10.20)

Theorem 3.3 and Lemma 10.2 yield P

h
n°1 ln Z (Ĝ(n,m,P )) ∑ ln q + d

k lnª+µ, O (Ĝ(n,m,P )) ∑C n
i
= 1 ° o(1) be-

cause d < dcond. Therefore, (3.5) and (3.6) yield

E[Z 0(G(n,m,P ))] = E[Z (G(n,m,P ))]P
∑

n°1 ln Z (Ĝ(n,m,P )) ∑ ln q + d
k

lnª+µ, O (Ĝ(n,m,P )) ∑C n
∏

= exp(n(ln q + d
k

lnª+o(1))). (10.21)

Moreover, the definition (10.20) of Z 0(G(n,m,P )) guarantees that

E[Z 0(G(n,m,P ))2] ∑ exp(2n(ln q + d
k

lnª+µ)). (10.22)

But combining (10.21) and (10.22) with the Paley-Zygmund inequality, we obtain

P

∑
n°1 ln Z (G(n,m,P )) ∏ ln q + d

k
lnª°µ

∏
∏P

∑
Z 0(G(n,m,P )) ∏ exp(n(ln q + d

k
lnª°µ))

∏

∏ E[Z 0(G(n,m,P ))]2

2E[Z 0(G(n,m,P ))2]
= exp(°2n(µ+o(1))),

which contradicts (10.19) if µ is chosen sufficiently small. Finally, since the probability of the event S is bounded
away from 0 by Proposition 3.12, the assertion about E[ln Z (Ĝ(n,m,P ))|S] follows from Lemma 10.2. ⇤

We proceed to show that limsupn!1
1
n E[ln Z (G)] < ln q + d

k lnª if d > dcond by generalizing the argument from [23,
Section 3.5] to infinite sets™.

Lemma 10.7. Assume that d > 0 is such that supº2P 2
§ (≠) B(d ,P,º) > ln q + d

k lnª+± for some ±> 0. Then for every
large enough C > 0 there exists Ø=Ø(C ) > 0 such that for large enough n,

P

∑
n°1 ln Z (G§(n,m,P,æ§)) ∑ ln q + d

k
lnª+±/2

ØØØO (G§(n,m,P,æ§)) ∑C n
∏
∑ exp(°Øn). (10.23)

Proof. If supº2P 2
§ (≠) B(d ,P,º) > ln q + d

k lnª+±, then Theorem 3.3 shows that

n°1
E[ln Z (G§(n,m,P,æ§))] = o(1)+ sup

º2P 2
§ (≠)

B(d ,P,º) > ln q + d
k

lnª+±+o(1). (10.24)

Fix a small enough Æ = Æ(d ,±) > 0 and an even smaller ¥ = ¥(Æ) > 0 and let S¥ =
©
æ 2≠Vn :

∞∞Ωæ° Ω̄
∞∞

TV ∑ ¥
™
.

Since æ§ 2 ≠Vn is chosen uniformly and thus P[æ§ 2 S¥] = 1 ° exp(°≠(n)) while for large enough C we have
P [O (G§(n,m,P,æ)) ∑C n] = 1°o(1) by Lemma 10.2, it suffices to prove that for all æ 2S¥,

P

∑
n°1 ln Z (G§(n,m,P,æ)) ∑ ln q + d

k
lnª+±/2

ØØØO (G§(n,m,P,æ)) ∑C n
∏
∑ exp(°Øn). (10.25)
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To establish (10.25) we set up a coupling of G 0 =G§(n,m,P,æ), G 00 =G§(n,m,P,ø) for any æ,ø 2S¥. Let us write
a0

j for the constraint nodes of G 0 and a00
j for those of G 00. Relabeling the variable node as necessary, we may assume

without loss that |æ4ø| ∑ 2¥n. Therefore, (2.15) shows that we can couple the distribution of the neighborhoods
@a0

j , @a00
j such that, with ¥> 0 chosen small enough,

P[@a0
j = @a00

j ,@a0
j \ (æ4ø) =;] ∏ 1°Æ. (10.26)

Furthermore, if indeed @a0
j = @a00

j and @a0
j \ (æ4ø) =;, then by (2.15) the weight functions √a0

j
,√a00

j
are identically

distributed and we couple such that √a0
j
=√a00

j
. If, on the other hand, @a0

j 6= @a00
j or (@a0

j [@a00
j )\ (æ4ø) 6=;, then

we choose √a0
j
, √a00

j
independently according to (2.15).

Since the m constraint nodes are chosen independently, (10.26) shows that the number X of j 2 [m] such that
either @a0

j 6= @a00
j or √a0

j
6=√a00

j
is binomially distributed with mean at most Æn. Hence, P [X > 2Æn] ∑ exp(°≠(n)).

Furthermore, (2.2) shows that the expected impact on the free energy of the X constraint nodes where G 0,G 00 differ
is bounded by c X for some number c = c(P ) > 0 that does not depend on Æ or æ. Therefore, choosing Æ> 0 small
enough we can ensure that

E

ØØln Z (G 0)° ln Z (G 00)
ØØ∑ ±n/2. (10.27)

Combining (10.24) and (10.27), we obtain

n°1
E[ln Z (G§(n,m,P,æ))] > ln q + d

k
lnª+±/2+o(1) for all æ 2S¥. (10.28)

Thus, (10.25) follows from (10.28) and Lemma 10.2. ⇤
Lemma 10.8. Assume that P satisfies SYM and BAL. For any D > 0 the following is true uniformly for m ∑ Dn/k. If
A is an event such that P [G§(n,m,P,æ§) 2A ] ∑ exp(°≠(n)), then P

£
Ĝ(n,m,P ) 2A

§
∑ exp(°≠(n)).

Proof. This is immediate from the Nishimori identity (3.9), Lemma 3.1 and (4.10). ⇤
Proof of Theorem 2.2, part 2. Suppose that d > dcond. Then there exist d 0 < d and ±> 0 such that

sup
º2P 2

§ (≠)
B(d 0,P,º) > ln q + d 0

k
lnª+±.

Let m0 = md 0 (n) be a Po(d 0n/k)-variable and consider the event F = {n°1 ln Z ∑ ln q + d 0
k lnª+±/2}. Then Markov’s

inequality and Lemma 4.5 yield

P
£
G(n,m0,P ) 62F

§
∑ o(1)+

X

m:|m°d 0n/k|∑n2/3

P[Po(d 0n/k) = m]E[Z (G(n,m,P ))]

qnªd 0n/k exp(±n)
= o(1). (10.29)

On the other hand, Lemma 10.7 shows that for large enough C > 0,

P
£
G§(n,m0,P,æ§) 2F , O (G§(n,m0,P,æ§)) ∑C n

§
∑ exp(°≠(n)). (10.30)

Now, for a factor graph G obtain G 0 by removing each constraint node with probability 1°d 0/d independently.
Moreover, let G be the set of all factor graphs G such that P[G 0 2F ] ∏ 1/2, where, of course, the probability is over
the removal process only. Since the distribution of G(n,m,P )0 is identical to that of G(n,m0,P ), (10.29) yields

P
£
G(n,m,P )0 2G

§
= 1°o(1). (10.31)

Similarly, G§(n,m, p,æ§)0 and G§(n,m0, p,æ§) are identically distributed. Thus, (10.30) and Lemma 10.1 imply that

P
£
G§(n,m,P,æ§) 2G , O (G§(n,m,P,æ§)) ∑C n

§
∑ exp(°≠(n)). (10.32)

Furthermore, (10.32) and Lemma 10.8 yield ¬> 0 such that

P
£
Ĝ(n,m,P ) 2G , O (Ĝ(n,m,P )) ∑C n

§
∑ exp(°2¬n). (10.33)

To complete the proof, assume for contradiction that limsupn!1 n°1
E[ln Z (G(n,m,P ))] ∏ ln q + d

k lnª. Then
n°1

E[ln Z (G(n,m,P ))] ∏ ln q + d
k lnª+o(1) for arbitrarily large n. Thus, we can apply Lemma 10.2 to conclude that

for infinitely many n,

P

∑
n°1 ln Z (G(n,m,P )) < ln q + d

k
lnª°¬

ØØO (G(n,m,P )) ∑C n
∏
∑ exp(°≠(n)). (10.34)
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Combining (10.34) with Lemma 10.1, we see that the event A = {n°1 ln Z < ln q + d
k lnª° ¬, O ∑ C n} satisfies

P [G(n,m,P ) 2A ] = 1°o(1) for arbitrarily large n. But then

1°o(1) =P [G(n,m,P ) 2A \G ] [by (10.31)]

∑ o(1)+
X

m:|m°dn/k|∑n2/3

exp(¬n +o(n))

qnªdn/k
E [1{G(n,m,P ) 2A \G }Z (G(n,m,P )] [by the definition of A ]

∑ o(1)+exp(¬n +o(1))P
£
Ĝ(n,m,P ) 2G , O (Ĝ(n,m,P )) ∑C n

§
[due to (3.5) and (3.6)]

= o(1) [because of (10.33)],

a contradiction that refutes the assumption limsupn!1 n°1
E[ln Z (G(n,m,P ))] ∏ ln q + d

k lnª. ⇤

11. RECONSTRUCTION

When there is no danger of confusion we abbreviate T (d ,P ) to T and T h(d ,P ) to T h . For a rooted factor tree T and
any vertex x in that tree, let @descx denote the set of children of x. Also, for any factor graph G , any variable node v
in this graph and any integer `∏ 0, we let S(v,`) denote the set of variable nodes at distance 2` from v .

Given some graph G = (V ,E), any M Ω V and an assignment æ 2 ≠V let æ(M), or æM , denote the assignment
thatæ specifies for the set M . Furthermore, if ∫,∫0 are two distribution on the configuration space≠V , then for any
M ΩV we let

||∫°∫0||M
be the total variation distance between the projections of ∫ and ∫0 on M . Also, for some æ 2≠M , where M ΩV , we
let ∫æ denote the distribution ∫ conditional on that M has assignment æ.

For the factor tree T we define the broadcasting process which generates an assignment� 2≠T as follows: There
is some initial distribution ≥ 2P (≠). We set �(r ) according to the distribution ≥. Then, inductively, assume that we
have �(x) for some variable node x. For each Æ 2 @descx, independently, the variables nodes in @descÆ are assigned
ø 2≠k with probability proportional to

1{ø( jÆ,x ) =�(x)}√Æ(ø) (11.1)

where√Æ is the weight function that corresponds to factor nodeÆ and jÆ,x is the position of x inside the constraint
√Æ.

Lemma 11.1. Consider some factor tree T of height h > 0, rooted at (variable) node r . Assume that for each factor
node Æ in T the corresponding weight √Æ satisfies SYM. Let � 2≠T be the assignment generated by the broadcasting
process such that the initial distribution is the uniform over≠. For any ø 2≠T , it holds that

P[� = ø] =µT (ø),

where µT is the Gibbs distribution specified by T .

Proof. Let⌘ be distributed as inµT . Then, we have that⌘(r ) is distributed uniformly at random in≠. Furthermore,
let x 2 T be a variable node. Given ⌘(x) for each Æ 2 @descx the assignment ⌘(@Æ) is independent of the other
vertices in @descx. Furthermore, for each assignment ø 2≠k we have ⌘(@Æ) = ø with probability proportional to

1{ø( jÆ,x ) =⌘(x)}√Æ(ø).

The lemma follows by comparing the above with the definition of the broadcasting process. ⇤

Consider a sequence of factor trees T = {T`}`∏0, where Th contains h levels of variable nodes. Let

corrT = lim
`!1

X

ø2≠S(r,`)

µT` (ø) ||µøT` °µT` ||{r },

we recall that S(r,`) is the set of variable nodes at distance 2` from the root r , while µT` is the Gibbs distribution
on T`. Similarly, we define

broadT = lim
`!1

max
c,c 02≠{r }

||µc
T`

°µc 0
T`
||S(r`,`),

we recall that, for c 2≠r` , µc
T`

stands for the Gibbs distribution induced by T`, conditional that the configuration
at the the root r` is c.
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We study the reconstruction problem on the sequence of factor tree T by means of the broadcasting processes
and the quantity broadT . To be more specific, for each T` 2 T , rooted at r`, consider two broadcasting pro-
cesses with some initial distribution ≥ and let �` and ⌧` be the assignments that are generated, respectively. Then,
the quantity broadT expresses the `1-distance between the distributions of the configurations �`(S(r`,`)) and
⌧`(S(r`,`)), as `! 1, conditional that �`(r`) = c, ⌧`(r`) = c 0, for worst-case pair c,c 0 2 ≠. The following result
implies that for studying reconstruction on T we can either consider broadT , or corrT .

Lemma 11.2. Let T = {T`}`∏0 be a sequence of factor trees, where T` contains ` levels of variable nodes. Assume
that for every `∏ 0, every factor node Æ in T` has weight √Æ which satisfies SYM. Then we have that broadT = 0 if
and only if corrT = 0.

Proof. Lemma 11.2 is a folklore result. We prove it here for the sake of completeness.
For some integer `> 0, we have that

||µc
T`

°µT` ||S(r`,`) =
ØØØØØ

X

ø2≠S(r` ,`)

h1{æ(S(r,`)) = ø}|æ(r ) = ciT` °h1{æ(S(r`,`)) = ø}iT`

ØØØØØ

= q
X

ø2≠S(r` ,`)

h1{æ(S(r`,`)) = ø}i
ØØh1{æ(r`) = c}|æ(S(r`,`)) = øiT` °h1{æ(r ) = ciT`

ØØ

= q
X

ø2≠S(r` ,`)

h1{æ(S(r`,`)) = ø}i
ØØh1{æ(r`) = c}|æ(S(r`,`)) = øiT` °q°1ØØ

∑ q
X

ø2≠S(r` ,`)

µT` (ø) ||µøT` °µT` ||{r`}. (11.2)

Clearly, the above implies that broadT ∑ q corrT . In turn, we get that if corrT = 0, then broadT = 0, as well.
We work in a similar way for the other direction. That is,
X

ø2≠S(r` ,`)

µT` (ø) ||µøT` °µT` ||{r`} =
X

ø2≠S(r` ,`)

h1{�(S(r`,`)) = ø}iT`

X

s2≠

ØØh1{�(r`) = s}|�(S(r`,`)) = øiT` °q°1ØØ

=
X

ø2≠S(r` ,`)

X

s2≠

ØØh1{�(r`) = s, �(S(r`,`)) = ø}iT` °h1{�(r`) = s}iT` h1{�(S(r`,`)) = ø}iT`

ØØ

=
X

s2≠
h1{�(r`) = s}iT`

X

ø2≠S(r` ,`)

ØØh1{�(S(r`,`)) = ø}|�(r`) = siT` °h1{�(S(r`,`)) = ø}iT`

ØØ

∑ 2 max
c,c 02≠{r`}

||µc
T`

°µc 0
T`
||S(r`,`).

Clearly, the above implies that corrT ∑ 2 broadT . In turn, we get that if broadT = 0, then corrT = 0. ⇤

In the following result we show that non-reconstruction is monotone in the expected degree of T (d ,P ), where P
satisfies SYM. In particular we show the following result.

Lemma 11.3. Assume that P satisfies SYM. Let d1 > d2 > 0. If corr?(d1) = 0, then corr?(d2) = 0.

The proof of Lemma 11.3 appears in Section 11.1
We proceed by introducing some further notions. For a rooted factor graph G , let ISM(G) be the isomorphism

class of rooted factor graphs in which G belongs. Let T G ,`(v) be the induced subgraph of G which includes v and
all variable nodes which are within graph distance 2` from v . For h = o(logn), T G ,h(v) is a tree with probability
1°o(1). In particular, there is a coupling Ω of the distribution induced by T G ,h(v) and T h such that the following
is true:

lim
n!1

EΩ

h
1{ISM(T G ,h(v)) 6= ISM(T h)}

i
= 0 and lim

n!1
EΩ

h
1{ISM(T G ,h(v)) 6= ISM(T h)} |S

i
= 0, (11.3)

where EΩ[·], is the expectation w.r.t. the measure Ω.
For what follows, we let the event I (v,h) = {1{ISM(T G ,h(v)) = ISM(T h)}.

Lemma 11.4. Assume that P satisfies SYM. Consider (G§,�§) generated according to Teacher-Student model and
some vertex v. Also, consider the pair (T h ,⌧ ) such that ⌧ is generated by a broadcasting process for which we assign
the root r the configuration �§(v) with probability 1 and h = o(logn).
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There is a coupling ∏̃ between (G§,�§) and (T h ,⌧ ) such that the following is true:

lim
n!1

E∏̃

2

41{I (v,h)}
X

ø2≠T h

ØØP[�§(T G§,h(v)) = ø]°
≠

1{⌧ = ø± f }
Æ

T h

ØØ

3

5= 0,

where f is an isomorphism between T G§,h(v) and T h and E∏̃ [ · ] is the expectation w.r.t. the coupling ∏̃. The same
result holds for G§ 2S.

The proof of Lemma 11.4 appears in Section 11.2.
Theorem 2.9 follows immediately by combining Lemma 11.4 and (11.3). We proceed, now, with the proof of

Theorem 2.8.
Lemma 11.4 and (11.3) imply that in the teacher-student model, the distribution of the configuration of T G§,h(v)

that is specified by �§ is asymptotically the same as the distribution of the configuration that is induced by the
broadcasting process on T G§,h(v). We use the above result with Corollary 2.7 to relate the reconstruction threshold
on random factor graph G and to that on the random tree T .

In the following lemma we provide the upper-bound for drec and d?rec.

Lemma 11.5. Assume that P satisfies SYM. For any " > 0 there exists dcond < d < dcond + " such that corr(d) > 0.
Furthermore, for any d > dcond we have corr?(d) > 0.

Proof. First we consider the case about corr(d). For any graph G and two vertices x, y it is elementary to show that
∞∞µG ,x,y ° Ω̄

∞∞
TV ∑ max

c2≠{x}

∞∞∞µc
G ,y °q°1

∞∞∞
TV

. (11.4)

Furthermore, if x, y are such that dist(x, y) ∏ ` and any c 2≠{x}, it is easy to see that ||µc
G °µG ||{y} ∑ ||µc

G °µG ||{S(x,`)}
which, combined with (11.4), implies that

∞∞µG ,x,y ° Ω̄
∞∞

TV ∑ max
c2≠x

||µc
G °µG ||{S(x,`)} ∑ q

X

ø2≠S(x,`)

µG (ø) ||µøG °µG ||{x}. (11.5)

The last inequality above follows from Lemma 11.2.
From (11.5), the following is true: For any fixed `> 0 and sufficiently large n we have that

1
n2

X

x,y2Vn

E

∞∞µG ,x,y ° Ω̄
∞∞

TV ∑ q
n2

X

x,y2Vn

E

X

ø2≠S(x,`)

h1{�(S(x,`) = ø}iG
X

s2≠

ØØh1{�(x) = s | �(S(x,`)) = øiG °q°1ØØ

+ q
n2

X

x,y2Vn

E 1{D`(x, y)},

where for any two fixed vertices x, y , we denote by D`(x, y) the event that dist(x, y) ∑ 2`.
For two fixed vertices x, y and any fixed `> 0 we have thatP[D`(x, y)] ∑ n°1/2. To see this, let Nx,` be the number

of vertices within distance ` from x. Furthermore, given Nx,` each vertex belongs to the ` neighborhood of x with
probability at most Nx,`/n. Then, noting that E[Nx,`] = o(n1/100), we get that

E
£
1{D`(x, y)}

§
∑P[Nx,` > n1/3]+n1/3/n ∑ n°1/3

E[Nx,`]+n°2/3 ∑ n°1/4, (11.6)

where in the second inequality use Markov’s inequality. Combining all the above, we get that for any d it holds that

limsup
n!1

1
n2

X

x,y2Vn

E

∞∞µG ,x,y ° Ω̄
∞∞

TV ∑ q corr(d). (11.7)

We conclude the part of the lemma about corr(d) by combining the above with the fact in (2.13) which states that
for any " there exists dcond < d < dcond +" such that the l.h.s. is strictly positive.

Repeating the same arguments as above, for dcond < d < dcond +1 we have that

limsup
n!1

1
n2

X

x,y2Vn

E

∞∞µG§,x,y ° Ω̄
∞∞

TV ∑ q corr§(d), (11.8)

where corr§(d) is defined in (2.19). If the l.h.s. of (11.8) were zero, then for d > dcond we would have had

lim
n!1

1
n
E[ln Z (G§)] = ln q + d

k
lnª.

From Corollary 6.3 and Theorem 3.3, we have that this cannot be true. We conclude that corr§(d) > 0 for dcond <
d < dcond +1.
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We get from corr§(d) to corr?(d) by means of Lemma 11.4. That is, we use Lemma 11.4 to prove that actually
corr?(d) > 0 for any d ∏ dcond +1. Then, we get that corr?(d) > 0 for any d > dcond from the monotonicity result in
Lemma 11.3.

For some dcond < d < dcond + 1, consider the pair (G§,�§) and (T ,⌧ ). Lemma 11.4 implies that for any h =
o(logn), there is a coupling between (T G§,h(v),�§(T G§,h(v))) and (T ,⌧ ) such that the following is true: With prob-
ability 1°o(1) we have ISM(T G§,h(v)) = ISM(T h), with some isomorphism f (·). Furthermore, for every u 2 T G§,h(v)
we have that �̂(u) = ⌧ ( f (u)). Clearly this coupling implies that corr§(d) = corr?(d).

From the above, we conclude that for for dcond < d < dcond +1 we have corr?(d) > 0. As argued before from the
monotonicity result in Lemma 11.3 we, also, get that corr?(d) > 0 for any d > dcond.

The lemma follows. ⇤
Furthermore, we have the following result:

Lemma 11.6. Assume that P satisfies SYM. For any d < d?rec we have that corr?(d) = corr(d) = 0. Also, for d?rec < d <
dcond we have that corr?(d),corr(d) > 0.

The proof of Lemma 11.6 appears in Section 11.3.
The results from Lemma 11.5 and Lemma 11.6, summarize as follows: We have 0 < drec = d?rec ∑ dcond and

corr(d) > 0 for all d 2 (drec,dcond). Clearly, this proves the first part of Theorem 2.8.
As far as the the second part of Theorem 2.8 is concerned this follows as a corollary from all the previous results

in this section. To be more specific, it is elementary to verify that

lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
£≠ØØ≠1{æ(y) = s}

ØØr`(G , y)
Æ

G °1/q
ØØÆ

G |S
§
∑ corr(d)

P[S]
. (11.9)

Using Lemma 8.1 we get that P[S] =≠(1). Then, using Lemma 11.6 we get that for any d < d?rec the l.h.s. of (11.9)
is equal to zero. We proceed by showing that for any "> 0 there exists dcond < d < dcond +" such that

lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
£≠ØØ≠1{æ(y) = s}

ØØr`(G , y)
Æ

G °1/q
ØØÆ

G |S
§
> 0. (11.10)

Using Theorem 2.5 and standard arguments (e.g., [13, Section 2]) there is "> 0 such that

lim
n!1

1
n2

X

y1,y22Vn

E
£∞∞µG ,y1,y2 ° Ω̄

∞∞
TV

ØØS
§
> 0 for dcond < d < dcond +".

Then (11.10) follows by working as in the proof of Lemma 11.5.
Finally, we show that for d?rec < d < dcond we have

lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E
£≠ØØ≠1{æ(y) = s}

ØØr`(G , y)
Æ

G °1/q
ØØÆ

G |S
§
> 0. (11.11)

For showing the above, we work as in the second case of Lemma 11.6, i.e. we use Lemma 11.4 and the contiguity
result in Corollary 2.7. More specifically, if there is d?rec < d < dcond such that the l.h.s. of (11.11) is zero, then
Corollary 2.7 would imply that

lim
`!1

limsup
n!1

1
n

X

y2Vn

X

s2≠
E

"
X

ø2≠T G§ ,`(y)

µG§ (ø) ||µøG§ °µG§ ||{y}

ØØØØØ S

#

= 0,

where µG§ is the Gibbs distribution over configurations in≠Vn that is induced by (G§,�§). In turn, if the above was
true, then Lemma 11.4 would imply that corr?(d) = 0. Clearly this can not be true due to Lemma 11.6. That is, we
proved that (11.11) is indeed true.

The theorem follows.

11.1. Proof of Lemma 11.3. Before proving Lemma 11.3 we introduce the notion of subtree for the factor trees we
consider. Consider two factor trees T1 and T2 with roots r1,r2, respectively. We say that T1,T2 satisfy the relation
T1 µ T2, i.e., T1 is a subtree of T2, if there is an injective mapping f : V (T1)[F (T1) ! V (T2)[F (T2) such that the
following is true:

• r2 = f (r1)
• for every v 2V (T1) and every Æ 2 @descv we have that
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– f (Æ) 2 @desc f (v),
– Æ and f (Æ) are both assigned the same weight function,
– v , f (v) occupy the same position within √Æ and √ f (Æ)

• for every Æ 2 F (T1) and every w 2 @descÆ we have that
– f (w) 2 @desc f (Æ)
– w occupies in √Æ the same position as f (w) in √ f (Æ).

Lemma 11.7. Consider two sequences of factor trees T1 and T2 such the the following is true: For T 1
`
2 T1 and

T 2
`
2 T2 we have T 1

`
µ T 2

`
, where ` = 1,2, . . . Also, assume that for every factor node Æ in any of the trees, the weight

√Æ satisfies SYM. Then, we have that
broadT1 ∑ broadT2 .

Proof. For ` ∏ 1, consider T 1
`
2 T1 and T 2

`
2 T2. Since we assumed that T 1

`
µ T 2

`
, let h : V (T 1

`
)[F (T 1

`
) ! V (T 2

`
)[

F (T 2
`

) be the mapping that verifies that property.
For any two s,c 2≠ consider ⌧1,�1 two configurations generated by the broadcasting process on T 1

`
such that

⌧1(r1) = s and �1(r1) = c. Similarly, let ⌧2,�2 two configurations generated by the broadcasting process on T 2
`

such
that ⌧2(r1) = s and �2(r2) = c. Then it suffices to show the following: For any Æ 2 [0,1], if there is a coupling ª2 for
�2,⌧2 such that the probability that �2(S(r,`)) 6= ⌧2(S(r,`)) is equal to Æ, then there exists a coupling ª1 for �1,⌧1
such that the probability that �1(S(r,`)) 6= ⌧1(S(r,`)) is at most Æ.

From the definition of the broadcasting process, we get the following: There is a coupling ≥1 for �1, �2 such that
for every v 2V (T 1

`
), we have that �1(v) =�2(h(v)). We have a similar coupling ≥2 for ⌧1, ⌧2.

We combine couplings ª2 and ≥1,≥2 to get ª1. In particular we use the couplings as follows: First, we couple �1
and �2 by using ≥1. Then, we use ª2 to couple �2 and ⌧2. Finally, we use ≥2 to couple ⌧2 and ⌧1.

In the above “chain of couplings", we have �1(S(r,`)) 6= ⌧1(S(r,`)) only if �2(S(r,`)) 6= ⌧2(S(r,`)). This implies
that if in ª2 the probability of the event �2(S(r,`)) 6= ⌧2(S(r,`)) is equal to Æ, then in ª1 the probability of having
�1(S(r,`)) 6= ⌧1(S(r,`)) is at most Æ.

The lemma follows. ⇤
In light of Lemmas 11.2, 11.7 we get the following corollary.

Corollary 11.8. Consider two sequences of factor trees T1 and T2 such that for T 1
`
2T1 and T 2

`
2T2 we have T 1

`
µ T 2

`
,

for ` = 1,2, . . .. Also, assume that for every factor node Æ in any of the trees, the weight √Æ satisfies SYM. Then the
following is true: If corrT2 = 0, then corrT1 = 0.

Lemma 11.3 follows by using the above corollary and noting that for any d1,d2 > 0 such that d1 ∏ d2 there is a
standard coupling such that T (d2,P ) µ T (d1,P ).

11.2. Proof of Lemma 11.4. The case where G§ 2S is almost identical to the case where we don’t restrict G§. For
this reason we omit the proof of the case where G§ 2S.

Consider the pairs (T G§,h(v),�§) and (T h ,⌧ ). Let v be the root of T G§,h and let r be the root of T h . Then, we
define the relation “ª=" such that (T G§,h(v),�§) ª= (T h ,⌧ ) is true if the following holds: T G§,h(v) and T h belong
to the same isomorphism class of rooted trees. Furthermore, if f is an isomorphism between the two trees, then
for every u 2 T G§,h(v) we have that �§(u) = ⌧ ( f (u)). Also, if (T G§,h(v),�§) ª= (T h ,⌧ ) is not true, then the relation
(T G§,h(v),�§) 6ª= (T h ,⌧ ) is true.

The lemma follows by showing that there is a coupling ∏̃ for (T G§,h(v),�§) and (T h ,⌧ ) such that

E∏̃

h
1

n°
T G§,h(v),�§¢ª=

≥
T h ,⌧

¥oi
∏ 1°3n°1/10, (11.12)

where E∏̃[·] is the expectation w.r.t. the coupling ∏̃. Before proceeding let us state some, easy to prove, results.
Let E be the event that (G§,�§) is such that kµæ§ °q°11k ∑ (

p
n)°1 lnn or |m°dn/k|∑ n2/3. With elementary

calculation, which we omit, it have that
P[E ] ∏ 1°O

≥
n° lnlnn

¥
. (11.13)

Furthermore, we let |T G§,h(v)| denote the number of vertices in T G§,h(v). Every variable node x 2 T G§,h(v),
the cardinality of @descx is dominated by the Poisson distribution with parameter d , while each Æ 2 @descx has
k ° 1 variable nodes for children. It is elementary to verify that there exists a constant C = C (k,d) > 1 such that
E
£
|T G§,h(v)|

§
∑C h .
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The fact that h = o(lnn) and Markov’s inequality imply the following: For any fixed number c 2 (0,1) and suffi-
ciently large n it holds that

P
£
|T G§,h(v)|∏ nc§∑ n°0.9c . (11.14)

We define the coupling ∏̃ as follows: If the event E does not holds, then we don’t couple (T G§,h(v),�§) and
(T h ,⌧ ) at all. That is, the two instances are independent. Otherwise, the coupling ∏̃ is defined inductively. We
couple the two pairs by considering the levels of the trees, starting from the root and moving downwards. As we
reveal the T G§,h(v) and T h in the two pairs we specify an isomorphism f between them, if there is any. We perceive
f as a mapping from the vertices of T G§,h(v) to those of T h .

We start by coupling �§(v) and ⌧ (r ) maximally. That is, we couple the two random variables so that the prob-
ability of the event �§(v) 6= ⌧ (r ) is minimized. The marginal distribution of ⌧ (r ) is the uniform one over ≠. For
�§(v) the marginal is induced by µæ§ . Since we assumed that the event E holds, the distribution of �§(v) is within
total variation distance O(n°1/2 lnn) from the uniform distribution. This implies that coupling �§(v) and ⌧ (r )
maximally, the following is true

E∏̃

£
1
©
�§(v) 6= ⌧ (r )

™
| E

§
=O(n°1/2 lnn). (11.15)

Before proceeding to the rest of the vertices, we set f (v) = r .
The induction step is as follows: Assume that we have exposed partly (T G§,h(v),�§) and (T h ,⌧ ) and the cor-

responding parts agree. More specifically, let (T 1,�1) and (T 2,�2) be the two parts of (T G§,h(v),�̂) and (T h ,⌧ ),
respectively, the coupling has exposed and assume that (T 1,�1) ª= (T 2,�2), with isomorphism f . We assume, also,
that the leaves of the trees are variable nodes.

If |T 1|, |T 2| , the size of the trees, is greater than n1/5, then we do not couple the rest of the trees. That is, we
reveal the rest of the graphs without correlating them. Otherwise, i.e. if |T 1|, |T 2|∑ n1/5, then we work as follows:
The coupling considers a leaf in T 1, the variable node x. The coupling considers at the same time f (x). Note that
our assumptions imply that the descendants of f (x) in T 2 have not been revealed, yet.

First we couple the number of descendants of x and f (x). For this we use the following claim.

Claim 11.9. For any j =O(lnn)2) it holds that

P
£
|@descx| = j | E

§
= e°d d j / j !+O(n°1/3(lnn)2). (11.16)

Also, it holds that P
£
|@descx| > (lnn)2§= o

°
n°10¢.

Proof. Let mx be the number of hyper-edges of G§ that have revealed so far. Recalling that the total number of all
hyper-edges in G§ is m. We compute the probability %x of an edge to be incident to vertex x. We have that

%x =
P

i2[k]
P
√

P
ø2≠k 1{øi =æ1(x)}P (√)√(ø)

°
(n/q)±

p
n(lnn)2¢k°1

P
√

P
ø2≠k P (√)√(ø)

°
(n/q)±

p
n(lnn)2

¢k

= (1+O(n°1/2(lnn)2))
k
n

q°(k°1) P
√

P
ø2≠k 1{øi =æ1(x)}P (√)√(ø)

q°k P
√

P
ø2≠k P (√)√(ø)

= (1+O(n°1/2(lnn)2))k/n,

where in the last derivation we use SYM. Then, it is an easy calculation to get that for any j =O((logn)2) we have

P
£
|@descx| = j |m,mx ,E

§
=

√
m°mx

j

!µ
k
n

(1+O(n°1/2(lnn)2))
∂ j µ

1° (1+O(n°1/2(lnn)2))
k
n

∂m°mx° j

=
°
1+O( j n°1/2(lnn)2)

¢ (m°mx ) j

j !

µ
k
n

∂ j µ
1° k

n

∂m°mx° j

. (11.17)

Since we have assumed that |T 1|∑ n2/10, it is easy to see that mx ∑ n2/10. From E we, also, have that |m°dn/k|∑
n2/3. Using (11.17) we have that

P
£
|@descx| = j | E

§
=

°
1+O( j n°1/3)

¢ (dn/k) j

j !

µ
k
n

∂ j

exp(°d)

= d j

j !
exp(°d)+O(n°1/3(lnn)2). (11.18)

We also have that P
£
|@descx| > (lnn)2§= 1°P

£
|@descx|∑ (lnn)2§= o(n°10). The claim follows. ⇤
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Recalling that for a vertex u 2 T h we have that |@descu| is distributed as in Poisson with parameter d . From this
observation and Claim 11.9, we can have ∏̃ such that

E∏̃

£
1

©
|@descx| 6= |@desc f (x)|

™ ØØ E
§
=O

°
n°1/3(lnn)2¢ . (11.19)

If the coupling is such that |@descx| 6= |@desc f (x)|, then the rest of the trees are not coupled. If, on the other hand,
|@descx| = |@desc f (x)|, then the coupling proceeds by extending f and defining a bijection between the sets @descx
and @desc f (x).

Let µ0
æ§ be the empirical distribution ofæ§ on the vertices outside T 1. Since the event E holds and we assumed

that |T 1|∑ n1/5, for every c 2≠we have that

|µ0
æ§ (c)°q°1| = O

°
n°1/2 lnn +|T 1|n°1¢ = O

°
n°1/2 lnn

¢
.

If µ0
æ§ was the uniform distribution in ≠, then the first child Æ 2 @descx would choose a weight function √ 2 ™

according to P . Since, µ0
æ§ is within total variation distance O(n°1/2 logn), Æ choses a weight function with proba-

bility distribution which is at total variation distance O(n°1/2 logn) from P . On the other hand, for f (Æ) we have
that it chooses its weight function √ according to P . Similar is the situation for the rest of the children of x.

The above and Claim 11.9 imply that we can have ∏̃ such that

E∏̃

£
1

©
9Æ 2 @descx s.t. √Æ 6=√ f (Æ)

™
| E

§
=O

°
n°1/2 ln2 n

¢
.

If forÆ 2 @descx we have√Æ =√ f (Æ), this also implies that the position of x and f (x) is the same in the two functions.
That is, for every pair of constraint nodes Æ and f (Æ), let jÆ,x , j f (Æ), f (x) be the position of x and f (x) inside the
constraints √Æ and √ f (Æ), respectively. It holds that jÆ,x = j f (Æ), f (x).

If the coupling is such that there existsÆ 2 @descx such that√Æ 6=√ f (Æ), then the rest of the trees are not coupled.
Otherwise, the coupling proceeds by specifying the variable nodes for √a and √ f (a) and their configurations.

Each k-tuple of vertices with configuration ø 2≠k is chosen from √Æ with probability proportional to

1
©
ø( jÆ,x ) =�§(x)

™
√Æ(ø)+O

°
n°1/2 lnn

¢
.

Given that the configuration of the vertices in @Æ is ø, we specify the vertices in @descÆ by choosing for the position
i , a uniformly at random vertex from the vertices outside T 1 which belong to the class ø°1, for i 2 [k] \ { jÆ,x }.

As far as √ f (Æ) is concerned, we also need to specify the configuration of the vertices in @desc f (Æ). The configu-
ration ø 2≠k is chosen with probability proportional to

1
©
ø( j f (Æ), f (x)) =�§( f (x))

™
√Æ(ø).

From the above, it is clear that we can have ∏̃ such that

E∏̃

£
1
©
�§(@Æ) 6= ⌧ (@ f (Æ))

™
| E

§
= O

≥
|≠|k n°1/2 lnn

¥
∑ O

°
n°1/2 lnn

¢
.

Having specified the configuration for √Æ we choose the vertices in @secÆ as we describe above. Also, for i 2 [k] \
{ jÆ,x } we specify that if vertex w, w 0 are at the i -th position in √Æ and √ f (Æ), respectively, then w 0 = f (w). We work
in the same way for the rest of factor nodes in @descx.

Let (T 0
1,�0

1) and (T 0
2,�0

2) be the new parts of (T G§,h(v),�§) and (T h ,⌧ ), after the revelation of @descx,@desc f (x)
and @descÆ,@desc f (Æ), for every Æ 2 @descx and for every f (Æ) 2 @desc f (x). Also let Ux be the event that (T 0

1,�0
1) 6ª=

(T 0
2,�0

2). A simple union bound gives that

E∏̃ [1 {Ux } | E ] ∑ dkn°1/3. (11.20)

Let A be the event that the number of steps in the coupling is at most n1/5. Also, letting S be the set of vertices in
(T G§,h(v),�§), we have that

E∏̃

h
1

n°
T G§,h(v),�

¢
6ª=

≥
T h ,⌧

¥oi
∑ E∏̃

h
1

n°
T G§,h(v),�

¢
6ª=

≥
T h ,⌧

¥o ØØØ E ,A
i
+P[E c ]+P[A c ]

∑ E∏̃ [ 1 {[x2SUx } | E ,A ]+P[E c ]+P[A c ]

∑ n1/5
E∏̃ [ 1 {Ux } | E ,A ]+P[E c ]+P[A c ]

∑ n1/5 E∏̃ [ 1 {Ux } | E ]

P[A ,E ]
+P[E c ]+P[A c ]

∑ 2n1/5
E∏̃ [ 1 {Ux } | E ]+2n°1/10 [from (11.13), (11.14)]

∑ 3n°1/10,
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where in the last inequality we use (11.20). The above implies that (11.12) is indeed true. The lemma follows.

11.3. Proof of Lemma 11.6. Lemma 11.3 implies that we have corr?(d) = 0 if and only if d < d?rec. To see this note
the following: Assume that there is d0 > d?rec such that corr?(d0) = 0. Then Lemma 11.3 implies that since d0 > d?rec
and corr?(d0) = 0, then we also have corr?(d?rec) = 0, which is false.

For proving Lemma 11.6, it remains to show that corr(d) = 0 if and only if d > d?rec. First we focus on showing
that for d < d?rec we have

corr(d) = 0. (11.21)

For even integer `> 0 consider the factor tree T` which contains ` levels of variable nodes and is rooted at r . The
configuration ¥ 2≠S(r,`) is called “(`,±)-mixing", for some ±∏ 0, if it holds that

||µ¥T` °µT` ||{r } ∑ ±.

Let M (T`,`,±) be the set of all configurations which are (`,±)-mixing for T`. Eq. (11.21) follows by showing the
following result.

Claim 11.10. Assume that P satisfies SYM. For d < d?rec and every ±> 0 there exists `0 = `0(±) such that for any even
`∏ `0 we have

lim
n!1

E
£≠

1{� 2M (T G ,h(v),`,±)}
Æ

G

§
∏ 1°±. (11.22)

Proof. We shift our attention to considering the teacher-student pair (G§,�§). In light of Corollary 4.8, it suffices
to show the following: For d < d?rec and every "> 0 there exists `0 = `0(") such that for any `∏ `0 we have

lim
n!1

P
£
�§ ›M (T G§,h(v),`,")}

§
∑ ". (11.23)

In light of Lemma 11.4, for (11.23) it suffices to show the following result: For any d < d?rec and any "> 0 there exists
`0 = `0(") such that for any `> `0 we have

E

D
1{� ›M (T `(d ,P ),`,")}

E

T `
∑ ".

Clearly the above follows from the definition of d?rec. ⇤
From Claim 11.10 we get (11.21) by working as follows: Let

corrv,`(d) = E

"
X

ø2≠S(v,`)

µG (ø)||µøG °µG ||{v}

#

.

Furthermore, for any ± > 0, integer ` > 0, for G , for any vertex v and � distributed as in Gibbs measure, let G =
G (v,`,±) be the event that � 2 M (T G ,`(v),`,±). Claim 11.10 implies that for d < d?rec, for every ± > 0 there exists
`0 = `0(±) such that for any `∏ `0 the following holds:

corrv,` = E

"

(1°1{G })
X

ø2≠S(v,`)

µG (ø) ||µøG °µG ||{v}

#

+E
"

1{G }
X

ø2≠S(v,`)

µG (ø) ||µøG °µG ||{v}

#

∑ E [1°1{G }]+±+o(1) ∑ 2±+o(1).

Noting that corr(d) = limsup`!1 limsupn!1 n°1 P
v2Vn corrv,`(d), we get that (11.21) is indeed true.

We conclude the proof of the Lemma 11.6 by showing that for d > d?rec we have

corr(d) > 0. (11.24)

The proof of (11.24) is by contradiction. We are going to show that if for some d > d?rec we have corr(d) = 0, then,
by means of contiguity, it would imply that corr?(d) > 0 which clearly is not true.

Assume that there exists d?rec < d such that corr(d) = 0. This would entail that (11.22) is true. However, reversing
the arguments from the proof of Claim 11.10 and combining them with Corollary 4.8, we get the following: for any
"> 0 there exists `0 = `0(") such that for any `> `0 we have

E

D
1{� ›M (T `(d ,P ),`,")}

E

T `
∑ ".

The above implies that corr?(d) = 0. Clearly we get a contradiction since we have shown in Lemma 11.3 that for
every d > d?rec we have corr?(d) > 0.
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[30] P. Erdős, A. Rényi, On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5 (1960) 17–61.
[31] U. Feige: Relations between average case complexity and approximation complexity. Proc. 24th STOC (2002) 534–543.
[32] V. Feldman, W. Perkins, S. Vempala: On the complexity of random satisfiability problems with planted solutions. Proc. 48th STOC (2015)

77–86.
[33] U. Ferrari, C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, T. Rizzo: Finite-size corrections to disordered systems on Erdős-Rényi
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