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of the complexity of electrode surfaces. However, despite this

ABSTRACT: Nanostructured electrochemical interfaces acknowledged complexity, electrochemical measurements rely
(electrodes) are found in diverse applications ranging mainly on rather old macroscopic techniques that provide
from electrocatalysis and energy storage to biomedical and activity averaged over a wide range of interacting surface sites,
environmental sensing. These functional materials, which thereby obscuring the nature of key elementary processes. The
possess compositional and structural heterogeneity over a aim of this Perspective is to highlight opportunities for
wide range of length scales, are usually characterized by fundamental electrochemistry and electrocatalysis studies,
classical macroscopic or “bulk” electrochemical techniques whereby electrode activity and dynamics (electrochemical
that are not well-suited to analyzing the nonuniform fluxes fluxes) can be visualized at the nanoscale in the form of
that govern the electrochemical response at complex electrochemical “activity pictures” and “activity movies”, and
interfaces. In this Perspective, we highlight new directions further, where these high spatiotemporal resolution electro-
to studying fundamental electrochemical and electro- chemical data can be correlated directly with the underlying
catalytic phenomena, whereby nanoscale-resolved infor- electrode structure and properties (electronic, chemical),
mation on activity is related to electrode structure and obtained by using complementary high-resolution microscopy
properties colocated and at a commensurate scale by using techniques in the same region of an electrode. This new age of
complementary high-resolution microscopy  techniques. correlative electrochemical multimicroscopy promises a much
This correlative electrochemical multimicroscopy strategy improved understanding of structural controls in electrocatalysis
aims to unambiguously resolve structure and activity by and will greatly advance the knowledge of electrochemical
identifying and characterizing the structural features that processes and facilitate rational catalyst design.

constitute an active surface, ultimately facilitating the
rational design of functional electromaterials. The
discussion encompasses high-resolution correlative struc-
ture—activity investigations at well-defined surfaces such
as metal single crystals and layered materials, extended
structurally/compositionally heterogeneous surfaces such
as polycrystalline metals, and ensemble-type electrodes
exemplified by nanoparticles on an electrode support
surface. This Perspective provides a roadmap for next-
generation studies in electrochemistry and electrocatalysis,
advocating that complex electrode surfaces and interfaces
be broken down and studied as a set of simpler “single
entities” (e.g., steps, terraces, defects, crystal facets, grain
boundaries, single particles), from which the resulting
nanoscale understanding of reactivity can be used to
create rational models, underpinned by theory and surface
physics, that are self-consistent across broader length
scales and time scales.

Toillustrate the power of these approaches, we discuss a range
of contemporary topical processes at different classes of
electrodes used in electrochemistry. At the simplest level, the
electrochemical processes can be divided into two categories
(Figure 1): outer-sphere redox processes, where there is little or
no physical interaction between the redox species and electrode
surface, and where questions relate to the influence of local
electronic structure (density of states), solvent/electrolyte
properties and double layer effects on electrochemical processes
(Figure 1a), and inner-sphere or catalytic redox processes, where
the bonding or adsorption of reactants, intermediates, and/or
products to the electrode surface has a profound effect on the
electrode reaction kinetics (Figure 1b).”* Outer-sphere redox
processes are fully described by a formal reduction potential
(E°"), standard rate constant (k°), and charge-transfer
coefficient (a), as defined in the classical Butler—Volmer
formalism of electrode kinetics, whereas inner-sphere (catalytic)
processes are often benchmarked by an overpotential (77), Tafel
slope (semiquantitative indicator of charge-transfer kinetics
and/or mechanisms for simple processes), and/or exchange

1. INTRODUCTION current density (j,, equal to the current density, j, at the
The structure of electrode surfaces has long been considered to equilibrium potential, which is a quantitative indicator of charge-
have a profound effect on electrode kinetics and reaction transfer lk:netlcs), as defined in the well-known Tafel
mechanisms. Understanding structure—activity—selectivity rela- equation. ' ) )

tionships for electrocatalysts has arguably never been more The traditional approach for exploring the role of surface

structure and defects in electrocatalysis has been to make use of
single crystals of long-range order, prepared with a particular
surface orientation (Figure 2a). Macroscopic electrochemical

important than today, with electrochemistry finding renewed
interest in areas from organic synthesis to sensor technologies
and being at the heart of energy storage and conversion
technologies," which need to be improved considerably and
quickly if we are to move to a world of decarbonized energy. Received: September 11, 2018
High-resolution microscopy has provided unprecedented views Published: November 28, 2018
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Figure 1. Mechanisms of heterogeneous electron transfer. (a) In an
outer-sphere redox process, the reactant and product do not interact
strongly with the electrode surface and electron transfer proceeds in the
absence of bond breakage/formation. Examples considered herein
include the [Ru(NH,)4]>*/? and [Fe(H,0)4]*/** (in the absence of
bridging ligands) processes in aqueous media. (b) In an inner-sphere
(catalytic) redox process, reactants, intermediates, and/or products
interact strongly with the electrode surface (specific adsorption) during
the electrochemical process, which often involves the breakage or
formation of chemical bonds. Examples considered herein include the
Fe?*/3* process (in the presence of bridging ligands such as CI7),
hydrogen evolution reaction, oxygen reduction reaction, and electro-
chemical CO, reduction.

measurements on such surfaces have been used to elucidate how
structure influences activity, particularly for noble-metal electro-
des.”™” However, single-crystal surfaces are not perfect over
large areas, and even on the best-quality surfaces it is challenging
to elucidate the roles of step edges and terraces.” As we discuss in
section 2, high-resolution electrochemical measurements at
characteristic individual “single-entity” surface sites are provid-
ing new perspectives on local activity at single-crystal surfaces
and layered materials.

Electrodes of practical importance are often polycrystalline
and, furthermore, may show compositional variations (Figure

2b). It is for this type of electrochemical interface that high-
resolution correlative structure—activity investigations come
into their own, by unambiguously and directly relating local
electrochemical fluxes to the corresponding local surface
structure (individual grains and grain boundaries (GBs)) and
composition, as we discuss in section 3. Local electrochemical
measurements are also powerful in detecting the transport of
reactive intermediates between neighboring active sites on a
surface and the synergistic operation of catalysts and electro-
catalysts.”'” These aspects critical to the operation of electro-
catalytic systems involving nanomaterials (e.g, nanoparticles,
NPs) on electrode supports (Figure 2c) are completely hidden
in macroscale measurements. A further consideration is the
nanoscale diffusion and interaction of electrochemically
generated reactive intermediates with the support, the possible
(unwanted) products thereof, and, in turn, their interaction with
the electrocatalyst. The physicochemical stability of the system
(e.g, NP—substrate interactions, attachment, migration, dis-
solution—growth—ripening, etc.) during, and as a consequence
of, the electrochemical process must be considered. These key
issues have brought about a diversity of different approaches to
assess NP activity and stability, the relative merits of which are
assessed and discussed in section 4.

2. WELL-DEFINED (SINGLE-CRYSTAL) SURFACES

It is widely postulated that atoms on a surface with low lattice
coordination numbers, present at defects, serve as the active sites
for (electro)catalytic processes. Directly identifying and
characterizing the intrinsic activity of these highly localized
surface sites would be valuable but is extremely challenging, due
to the estimated low coverage, small size, and tendency of these
sites to coarsen (restructure) under operational conditions.”
The electrochemical scanning tunneling microscope has
recently been proposed as a promising tool for identifying
catalytically active sites at the atomic scale, on the basis of the

Different
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Figure 2. Dynamic (electro)chemical and/or (electro)catalytic processes in action at nanostructured interfaces. (a) Well-defined (single-crystal)
surfaces, while nominally structurally and compositionally uniform, as in the terrace site (TS), possess defects such as step edges (SE) that may give rise
to nonuniform reactivity and dominate the overall macroscopic response. (b) Extended heterogeneous surfaces, such as polycrystalline metals,
comprise structurally (e.g., grains and grain boundaries, GBs) and/or compositionally disparate (e.g., inclusions) sites that can possess vastly different
intrinsic electrochemical activities. (c) Nanoparticles (NPs), possessing size-, shape-, and structure-dependent activity, may interact physicochemically
(diffusional coupling, aggregation, sintering, etc.) during electrocatalytic turnover (i), as well as undergo dynamic interaction with the support (ii).
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Figure 3. Revealing active sites directly and unambiguously with SECCM. (a) High-resolution (i) topographical and (ii) electrochemical activity maps
(—0.857 V vs reversible hydrogen electrode, RHE) obtained with a fine nanopipet probe (tip diameter, d, % 30 nm) in the SECCM format, visualizing
enhanced HER activity on the edge plane of MoS,. Insets in (i) are z-height line-scan profiles, showing multilayer surface defects of ca. 21 and 41 nm in
height (green and red traces, respectively). (iii) Averaged linear sweep voltammograms obtained on the basal plane (black trace) and surface defects
(steps) of ca. 21 nm (green trace) and ca. 41 nm (red trace) in height. Adapted with permission from ref 16. Copyright 2017 American Chemical
Society. (b) Bulk electrolysis (—0.4 V vs RHE) partial current densities associated with CO (jc, red points, left axis) and H, (ji,, gray points, right
axis) production versus total GB density, obtained on polycrystalline (poly-Au) and a series of annealed (200, 500, 700, and 970 °C) Au foil samples in
aqueous bicarbonate media. (c) (i) Electron backscatter diffraction (EBSD) map obtained at an Au wire (diameter ~500 ym) annealed at 970 °C
(colors indicate different grain orientations, legend shows pole figure orientations). Electrochemical activity line scan profiles obtained across the GB
labeled in (i) (paths shown inset), performed in the SECCM format under (ii) Ar (HER only) and (iii) CO, (CO, reduction plus competing HER)
atmospheres. The dashed lines in (ii) and (iii) indicate the position of the GB. From ref 18. Reprinted with permission from AAAS.

premise that, under reaction conditions, the electron tunnelin materials, even for simple outer-sphere redox processes (Figure
barrier will be different over active and nonactive sites' 1a). The advent of nanoscale electrochemical methods, notably
(induced by local changes in electrolyte composition or scanning electrochemical cell microscopy (SECCM), in tandem
adsorption/desorption processes). In practice, this has been with complementary microscopy techniques applied to the same
demonstrated by monitoring changes in tunneling current noise area (notably Raman microscopy and atomic force microscopy)
to directly identify the active sites at metal single-crystal surfaces. enabled these established hypotheses to be tested by targeting
For instance, elevated tunneling current noise (“activity”) was and characterizing key surface features independently for the

identified at steplike defects in comparison to terrace sites for the first time."”
hydrogen evolution reaction (HER) and oxygen reduction In SECCM, electrochemical measurements are performed in
reaction (ORR) on Pt(111) surfaces. Furthermore, this a series (typically many thousands) of small areas of a surface
approach revealed elevated HER activity at the boundary defined by a meniscus (droplet) cell created between a
regions between monoatomically high Pd islands supported on nanopipet probe filled with electrolyte solution (mobile
an Au(111) surface, attributed to the electronic properties of electrochemical cell) and substrate (working electrode) surface.
active Pd atoms in the centers of the island and at their During operation, the positions of the nanopipet probe and/or
boundaries being altered dissimilarly by the catalytically inactive substrate are precisely controlled in 3D space using piezoelectric
Au substrate."’ positioners, and electrochemical (e.g., voltammetric) measure-
A second class of materials that can be characterized by long- ments are performed by applying a potential between a quasi-
range order is carbon sp® materials (graphite, graphene, and reference counter electrode (QRCE) located within the probe
carbon nanotubes), which are widely used and studied and substrate surface.”> The QRCEs used in SECCM (and
electromaterials. Along with the predominant basal surface (or scanning ion conductance microscopy, SICM; vide infra) are
side wall for nanotubes), there are a variety of defects, with the predominantly comprised of electrochemically stable Ag/AgCl
type, concentration, and distribution depending on the source wires,'* although alternative QRCEs such as palladium—
and/or method of synthesis of the material.'> Identifying the hydrogen have also been used,'>™"” in addition to conventional
contribution of these different sites to the electrochemistry of three-electrode formats.'® A key attribute of SECCM is that it
carbon electrode surfaces is important, as there had been a can be viewed through the lens of classical electrochemical
longstanding view from classical macroscale electrochemistry methodology, i.e., well-known electrochemical techniques can
that defects dominated the electrochemistry of sp* carbon be applied directly, but in a format where the cell (i.e., working
2181 DOI: 10.1021/jacs.8b09828
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electrode area) is orders of magnitude smaller and more mobile,
enabling many thousands of local (spatially resolved) electro-
chemical measurements to be made across a surface, which can
be analyzed quantitatively.'” Additionally, as SECCM is usually
carried out under “ambient” conditions (i.e., exposed to air) or
under an inert atmosphere, the probe position can be
conveniently visualized pre- and/or post-experiment using a
camera; this key attribute greatly facilitates colocated ex situ
spectroscopic/microscopic analysis, allowing a range of
techniques (correlative multimicroscopy) to implemented in the
same area as SECCM scans.'”

An illustrative example of the type of measurements that can
be made with correlative electrochemical microscopy (i.e.,
SECCM in conjunction with colocated structural analysis) is the
characterization of single-, bi-, and few-layer exfoliated graphene
(identified by Raman microscopy), within a single sample on an
insulating oxide covered silicon support. The [Ru(NH;)¢]**/**
redox process (in aqueous solution) was shown to exhibit layer-
dependent electron-transfer kinetics, where the apparent k°
value scaled with overall layer number."” The history (aging)
of the sample was also shown to be an important factor
governing the electrochemical response of graphene and
graphite, with step edges showing enhanced activity in
comparison to the basal surfaces on aged samples for the
[Ru(NH;)]>*/%* process, in contrast to freshly cleaved highly
oriented pyrolytic graphite (HOPG), where the reaction was
entirely diffusion limited on the time scale accessible by
SECCM."**” These observations were rationalized in terms of
the local density of electronic states at these characteristic
features, and kinetic data were analyzed semiquantitatively in
terms of a Gerischer—Marcus model for heterogeneous electron
transfer.>" In a similar fashion, SECCM was able to prove that
defect-free regions of the sidewalls of single-walled carbon
nanotubes could support fast electron transfer for outer-sphere
redox processes and that conducting and semiconducting
carbon nanotubes showed contrasting behavior for certain
cathodic processes.'> While defects were not important for
simple redox processes, they were shown to be critical for the
ORR.*” An important aspect of many SECCM studies of sp*
carbon materials has been to show how nanoscale reactivity
scales up rationally to explain macroscopic behavior. Con-
sistency in electrochemical data across length scales and time
scales, rationally underpinned by surface physics, is a critical
theme for the future that needs to become routine in
electrochemistry.'>'*2%2*

Local voltammetric measurements with SECCM have also
revealed new insights on structure—activity dynamics in
molybdenum disulfide (MoS,), another class of layered material
that has received considerable attention as an earth-abundant
HER electrocatalyst."* Macroscopic electrochemical measure-
ments on ensembles of nanostructured (exfoliated/synthesized)
2H MoS, have alluded to high HER activity at the edge plane,
owing to the near-thermoneutral free energy of hydrogen
adsorption (AGy ~ 0 V) calculated for this structural element,
in comparison to the so-called “catalytically inert” basal
plane.””> SECCM was employed to perform current—potential
(i—E) measurements on structurally well-defined natural
crystals of molybdenite, which were subsequently combined to
create electrochemical flux movies over a wide potential range
with nanoscale spatial resolution.">'® Correlation with comple-
mentary structural information from SEM and/or atomic force
microscopy revealed uniform HER activity on the basal plane
and elevated current densities (i.e., enhanced activity) at the
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edge plane that scaled linearly with the number of exposed MoS,
layers (i.e., step height),15 in line with theoretical predictions
and macroscopic electrochemical studies, above.**® For
example, in the synchronously obtained high-resolution top-
ography and electrochemical activity maps in Figures 3a-i and ii,
the topographical features (corresponding to multilayer step
defects) of MoS, perfectly align with the areas of elevated surface
current, directly (and unambiguously) identifying the edge
plane as the active site for HER catalysis, also reflected in the
pixel-resolved voltammograms, shown in Figure 3a-iii.'® The
often claimed “catalytically inert” basal plane, which incorpo-
rates some surface defects (i.e., sulfur vacancies), was shown to
possess a j, value comparable to those of moderate HER
catalysts (Au and Cu), while the edge plane possessed a j, value
>10 times larger.'> It is worth noting that the much higher
activity found at the basal surface, particularly in comparison to
previous studies on the bulk material,* can be explained, at least
in part, by the fact that SECCM draws such small currents
(typically tens of pA), meaning that it is relatively immune to
bulk sample resistance, which is a major problem for
macroscopic measurements on resistive semiconductor materi-
als."”'>'® Furthermore, for SECCM there is no need to
encapsulate the material as an electrode, because the electro-
chemical meniscus cell is brought into contact with the substrate
(working electrode) of interest. In contrast, electrode
encapsulation and preparation can also be a practical problem
for conventional electrochemical studies of unusual materials
(e.g, 2D materials).

These studies'”'>'>'® and those discussed below clearly
demonstrate how scanning probe techniques can go well beyond
the capabilities of macroscopic electrochemical measurements
to look at the heterogeneities within the surfaces of well-defined
metal single crystals'' and layered materials.'>'>'® The
techniques discussed in this section collect electrochemical
and topographical information synchronously (in situ and in real
time) which, in conjunction with complementary structural
information, reveal nanoscale structure—activity dynamics at
functional electrochemical interfaces.

3. EXTENDED HETEROGENEOUS SURFACES

As mentioned in section 1, electrochemical interfaces of
practical importance in electrochemistry and (electro)catalysis
are structurally and/or compositionally heterogeneous (see
Figure 2b). To understand the overall behavior of these complex
surfaces, it is essential that structure and activity can be related at
the scale of surface heterogeneities. For polycrystalline surfaces,
we have introduced a pseudo single-crystal approach, where
SECCM is used to electrochemically interrogate individual
grains and GBs on a polycrystalline surface, which is structurally
characterized ex situ with electron backscatter diffraction
(EBSD).** This approach is being adopted by other groups,'®
and we expect that it should find considerable application in
electrocatalysis, as it enables the activity of a wide range of
surface features, including high-index facets, which are difficult
to prepare as single crystals, and grain boundaries.

This approach is well illustrated by the facet-dependent
electrochemistry of Fe>*/3*, a well-known outer-sphere process
(Figure 1a) with (anion-mediated) inner-sphere routes (Figure
1b),”> on polycrystalline Pt. In weakly adsorbing electrolyte
media (HCIO,), the individual (high-index) grains were shown
to have markedly different activities, whereas in strongly
adsorbing electrolyte media (H,SO,), the individual grains
exhibited comparable activities, while GBs were highly active,
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dominating the overall surface activity, suggesting that these
sites dominate the macroscopic response of polycrystalline Pt.
Interestingly, not all GBs exhibited enhanced activity, indicating
that the character (geometry) of the GB itself is important (vide
infra).”* The pseudo single-crystal approach has also revealed
grain-dependent ORR activity at polycrystalline Pt in acidic
media, where SECCM mimics the three-phase boundary of low-
temperature fuel cells, with an enhanced flux of O, across the
meniscus (droplet) cell giving rise to high rates of reactant mass
transport. The individual high-index grains were shown to
exhibit significantly different ORR activities, while the GBs did
not exhibit any enhancement under these conditions.”

A very recent study eloquently demonstrated the power of
pseudo single-crystal SECCM for rationalizing the macroscopic
response of polycrystalline Au for electrochemical CO,
reduction. Bulk electrolysis data demonstrated increased
selectivity for CO production relative to H, with increasing
GB density (Figure 3b), implying that GBs are more active than
the grains for CO, reduction but not for the competing HER.
This hypothesis was confirmed by SECCM line scanning across
a series of GBs with differing geometries (see Figure 3c), where
GB-dependent, elevated current (i.e., enhanced activity) was
measured at GB surface terminations for CO, reduction plus the
HER (i.e., enhanced activity at GB relative to the grains under a
CO, atmosphere; Figure 3c-iii) but not for HER alone (i.e., only
grain-dependent activity seen, no GB-specific enhancement
under an Ar atmosphere; Figure 3c-ii). The width of the region
exhibiting enhanced activity (Figure 3c-iii) was commensurate
with the dislocation-induced strain field associated with the each
GB, while the degree of enhancement in CO, reduction activity
was qualitatively consistent with the magnitude of the lattice
microstrain, an indicator of the concentration of dislocations
within the GB. Thus, GBs create strained regions by stabilizing
dislocations, creating high-energy surfaces that are “kinetically
trapped” under electrochemical polarization (catalytic turn-
over).'® Consequently, mechanical treatments were applied to
annealed (polycrystalline) Au foil to artificially increase the GB
(dislocation) density, which translated into substantially
increased CO, reduction activity at the macroscale,'® demon-
strating how a nanoscale understanding of activity can be
translated into the rational design of optimal catalysts.

In addition to structural heterogeneity, (electro)materials
may possess compositional heterogeneity, arising during
synthesis/growth (e.g, inclusions or surface enrichment in
metal alloys). SECCM is a promising technique for probing
compositionally heterogeneous surfaces, as demonstrated in a
recent study of local HER activity on single-crystal iron nickel
sulfides (nominally Fe,(Ni,Ss), which are highly efficient
electrocatalysts in bulk form. SECCM revealed lower activity
from the (111) planes of Fe,(Ni,Sg in comparison to bulk
macroscale measurements, suggesting that defects in single
crystals, which would be exposed in bulk measurements, are
largely responsible for the observed macroscopic activity. This
was confirmed by performing local measurements on a
macroscopic “defect” site, which showed higher activity in
comparison ot the basal (111) surface. Local composition was
also found to play an important role; Fe-enriched material with
segregated regions possessing Fe:Ni ratios higher than the
nominal 1:1 exhibited substantially higher activity.”®

These studies'®**7° and others (see below) have effectively
demonstrated SECCM as a powerful tool for probing structure-
dependent activity and rationalizing the macroscopic response
of structurally and/or compositionally heterogeneous electro-
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des. The pseudo single-crystal approach produces results that
are consistent with conventional single-crystal studies at low-
index facet electrodes,””*> while it also allows high-energy
surfaces, such as high-index facets and GBs, to be studied.
Moving forward, the high-speed, high-resolution SECCM
configuration established in refs 16 and 27 opens up the
possibility of probing a larger population of grains (or
compositions) in greater detail, where the entire i—E character-
istic can be mapped at each point of a heterogeneous electrode
surface and combined to create spatially resolved electro-
chemical flux movies. This information, taken in conjunction
with complementary information on the local heterogeneities
that give rise to the high activity (e.g, GBs'®** or the
crystallographic defects/Fe-enriched areas’®) that dominates
the macroscopic (bulk) response of these materials, will enable a
more holistic view of the structural and/or compositional
controls in (electro)catalysis.

4. NANOPARTICLES ON SURFACES

“Real” electrocatalysts are typically nanostructured, the most
common example being NPs (see Figure 2c), which serves to
maximize surface area and expose particular surface sites.”*” As
alluded to above, bulk measurements of NPs effectively “wash
out” the unique properties of each individual entity within an
ensemble, and for this reason there has been a strong drive to
develop techniques capable of performing measurements at the
single-entity level. Here, we highlight emerging trends in
identifying key physicochemical phenomena of NP electro-
chemistry at the nanoscale.

4.1. Single-Nanoparticle Electrodes. A single NP
electrode is the conceptually simplest approach to study
electrochemistry at the single-entity level. This approach has
many advantages, including well-defined and fast mass transport
when the size and geometry of the NP is known: for example,
through complementary SEM or transmission electron micros-
copy (TEM) analysis of the electrode/NP assembly. The
benefits of studying single NPs are well illustrated by considering
the energy storage and oxygen evolution reaction (OER)
properties of individual nonfaceted Ni(OH), NPs electro-
deposited onto carbon nanoelectrodes.”® By performing
voltammetry at the single-NP level, it was shown that charge
storage via the reversible Ni(II)/Ni(III) transformation was
diffusion-limited (nonpseudocapacitive) and that the OER
kinetics and mechanism (Tafel slope) were invariant with
respect to NP diameter in the considered size range (diameter of
NP (dyp) 40—1000 nm).**

Coupled in situ microscopy adds further benefits to single NP
studies, as exemplified by investigations of electrodeposited
Co(OH), particles (dyp = 0.5—3 um), where the overall
reaction rate (inferred from electrochemical current) was linked
to dark-field microscopy measurements of particle size and Co
redox state. The reversible Co(II)/Co(III) transformation was
shown to coincide with “electrochemical breathing”, where the
particle undergoes rapid volume expansion and slow volume
contraction during the oxidation and reduction processes,
respectively.”

Ongoing work in this area should focus on the study of
structurally well-defined, shape-controlled (faceted) NPs, which
can be grown through electrosynthesis (electrodeposition) and
characterized using selected area (electron) diffraction. This
strategy has been illustrated in a recent study”’ and will be
valuable in establishing relationships between structure (i.e., size
and/or shape) and activity at the single-NP level.

DOI: 10.1021/jacs.8b09828
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Figure 4. Imaging H, nanobubble formation and hydrogen spillover during electrocatalytic HER. (a) SEM image of an Au-nanoplate-modified ITO
electrode (individual nanoplates are falsely colored red and labeled 1—4). (b) Total internal reflection fluorescence images showing the dynamic
nucleation and growth of H, nanobubbles (recognized as the white contrast in the images) at the area of the Au nanoplate-modified ITO electrode
shown in (a) at increasingly negative potentials of (i) —1.6 V, (ii) —1.7 V, and (iii) —1.8 V (all vs Pt quasi-reference electrode). (c) Scatter plot showing
the accumulated spatial distribution of H, nanobubbles in the —1.5 to —1.8 V potential window, where each colored dot represents one detected

nanobubble. Adapted with permission from ref 35.

4.2. Local Ensemble Measurements. The single-NP
electrode approach is intrinsically low throughput (ie., single
NP at a time) and neglects the influence of the electromaterial
support and neighboring NPs. Local ensemble measurements
allow a number of individual NPs (or a small population of NPs)
to be selected and probed in situ and in a high-throughput
manner. The electrochemical characteristics of a single NP
within an ensemble can be resolved by detecting changes in the
surface refractive index (and thus scattering intensity) resulting
from surface electrochemical reactions, leading to optical
contrast in surface plasmon resonance images, which are used
to derive electrochemical currents and construct local (spatially
resolved) voltammograms.®" This techni%ue, originally used for
single-particle electrocatalysis studies,”* has recently been
expanded to obtain the electrochemical i—E profiles and
charge/discharge characteristics of single LiCoO, nanoplates
(size of ca. 200 nm) within an ensemble, resolving phase
transitions and quantifying Li* diffusion rates in situ.” To fully
elucidate the structural controls on the electrochemical activity
of individual entities within an ensemble, it would be interesting
to combine plasmonic-based electrochemical current imaging
with other high-resolution imaging tools, such as TEM and
scanning tunneling microscopy, applied to the same particle.

Super-resolution fluorescence techniques offer a spatial
resolution that is not limited by the diffraction of light (typically
tens of nanometers).”* While they are mainly focused on life
sciences applications,”* these techniques are beginning to find
use as a probe of electrode activity, as exemplified by a recent
study of the HER, where H, nanobubbles labeled with
fluorescent dye molecules were imaged at individual Au
nanoplates supported on an indium tin oxide (ITO) electrode
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at various potentials, as shown in Figure 4. The bubble
nucleation frequency was generally higher on the Au nanoplates
in comparison to the ITO support (see Figure 4b), although it
should be emphasized that only certain nanoplates exhibited
significant HER activity (e.g., nanoplates 1 and 3 versus
nanoplates 2 and 4), again highlighting the importance of single
(nano)entity studies in rationalizing the macroscopic electro-
chemical response of an ensemble. Interestingly, a very large
number of nanobubbles nucleated within the ca. 3 ym radius of
the “active” nanoplates on the ITO surface, particularly at high
driving potentials (Figure 4b-ii,b-iii), are clearly evident from the
cumulative scatter plot in Figure 4c. This was thought to be a
manifestation of the “hydrogen spillover effect”, where H atoms
generated on the catalyst surface migrate onto the support
before undergoing nucleation to form H, nanobubbles. This
phenomenon is well-known in the gas phase but has rarely been
reported in the electrochemical context, with this study being
the first example of real-time imaging of electrochemically
generated nanobubbles.”

A separate approach, and one that works at atomic resolution,
is the use of identical-location (ex situ) TEM imaging to monitor
structural changes within an ensemble induced by (electro)-
chemical perturbation. High-resolution aberration-corrected
scanning transmission electron microscopy (STEM), with an
electron-transparent conductive boron-doped diamond support,
has recently been used to probe the initial stages (0—30 ms) of
the nucleation and growth of Au through electrodeposition at
high #, progressing from single Au atoms to noncrystalline
nanoclusters (AuNCs) through to crystalline AuNPs (dyp ~ 1—
3 nm).*® Potential-induced atom movement, atom clustering,
and AuNC transformation into crystalline AuNPs, which in
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individual NCs during catalytic turnover. Adapted with permission from ref 38. Copyright 2018 American Chemical Society.

contrast to classical theory occurs through either loss or gain of shown to interact during the early stages of electrodeposition via
atoms, were observed ex situ, with monocrystalline AuNPs being
the dominant structure after 30 ms of electrodeposition.
Discrete entities (atoms, AuNCs, and/or AuNPs) were also disordered AuNCs to be consumed when they were in close

an aggregative growth mechanism,”” with a strong tendency for
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Figure 6. High-bandwidth measurements of electrochemical impact events, revealing dynamic NP—electrode interactions. (a) Multipeak current-time
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trace, deactivation caused by oxide formation, inset) at a single AuNP (dyp ~ 39 nm). Adapted with permission from ref 45. Copyright 2016 American
Chemical Society. (c) Multipeak i—t response associated with the oxidative dissolution (“partial stripping”) of single AgNPs (dyp ~ 60 nm) at a GC
collector electrode. Reproduced from ref 46 with permission from the Royal Society of Chemistry. (d) Simulated trajectory (time scale 100 ms) of an
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the electrode and glass sheath, respectively. Start and end positions are indicated by S and E, respectively. Reprinted with permission from ref 49.

Copyright 2017 American Chemical Society.

vicinity to ordered AuNPs, which transitioned through a
disordered state first, before undergoing recrystallization.3
Pipet probes have been employed to perform local ensemble
measurements, as demonstrated in a recent study’® where
SECCM was used to investigate the ORR response of a small
population (N < 16000) of size-selected Pt nanoclusters
(PtNCs, dyc ~ 3 nm) deposited onto a carbon-coated TEM
grid support, under hi§h mass transport rate conditions (O, flux
across the meniscus;>” see Figure 5a). At low surface coverages,
the activity decreased with successive electrochemical (voltam-
metric) measurements (Figure Sb—i), attributed to poisoning of
the PtNCs by carbon- and oxygen-containing moieties that are
produced by the reaction of reactive oxygen intermediates (RIs)
generated transiently in the ORR with the carbon support (i.e.,
carbon corrosion). This was less of an issue at high surface
coverage, where the distance between clusters was small,
meaning that Rls could be either be consumed at the same
PtNC (mass transport to individual particles is lower at high
coverages) or diffuse to neighboring PtNCs and undergo further
reduction, rather than react chemically with the support (Figure
Sb-ii). The impact energy during PtNC deposition (achieved
with a cluster beam source) also drastically affected NC stability
during electrocatalysis, with low-impact-energy PtNCs migrat-
ing as a result of ORR, as seen by STEM imaging (see Figure Sc).
This migration was attributed to electrochemical propulsion
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caused by an uneven flux distribution around individual PtNCs
within the ensemble, explored through finite element method
(FEM) modeling (Figure 5d). The random distribution of
PtNCs gives rise to uneven flux, depending on the degree of
shielding by neighboring clusters (see Figure 5d), which results
in nonuniform electric fields and/or chemical gradients.*®

SECCM coupled with the use of a TEM grid substrate
(explored further below) is a high-throughput approach to
performing local measurements on ensembles of true catalytic
NPs, strengthened by the capability of performing ex situ
structural characterization with STEM and complementary
quantitative analysis with FEM modeling. This approach is
generally applicable to any (electro)catalytic system. Future
work in this area may head in many directions: e.g., to resolve
structure—activity in nanostructured energy storage materials or
to elucidate support effects on activity, migration, and
deactivation of NPs.

4.3. Electrochemical Nanoparticle Impacts. A popular
approach for observing the electrochemical properties of single
NPs that has §ained considerable interest, as highlighted in
recent reviews,” is to monitor NP impact (or landing) from a
solution (colloidal suspension) onto a collector electrode
surface (Figure 2c-ii), with detection based, for example, on
blocking of the collector current,*” electrocatalytic amplification
at the NP,*' or oxidative dissolution (stripping) of the NP.** NP
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Figure 7. Delivery and manipulation of NPs near (electrochemical) interfaces using pipets. (a) CV obtained from the oxidation of [N,H;]" at a single
AuNP, delivered from a micropipet to a carbon-coated TEM grid substrate. The inset is a TEM image obtained ex situ, after electrochemical impact.
Adapted with permission from ref 50. Copyright 2012 American Chemical Society. (b) Controlled delivery and manipulation of a NP at an ITO
substrate surface, where a potential of 1 V vs Ag/AgCl was applied to “trap” the NP in the vicinity of the substrate, while a negative differential pressure
was applied at the pipet to drag the particle along the surface. The 3D trajectories of the pipet (controlled with a piezoelectric positioner) and NP
(tracked with superresolution fluorescence microscopy) are shown in the black and red traces, respectively. (c) Simulated pressure profile near a
“surface-trapped” NP, where the pipet orifice is located at a radial position of 0 ym. The white streamlines (right to left) indicate the directions of flow,
and the red arrow represents the direction of the force on the NP. Reprinted with permission from ref 54. Copyright 2017 American Chemical Society.

impacts are intrinsically fast (beyond the time scale of
conventional instrumental amplifiers*’), and recent works
have highlighted the importance of the measurement device
bandwidth and data filtering when the i—t transients associated
with electrochemical impact events are interpreted.

An important question in this field is whether NPs arriving at
an electrode undergo a single-pass interaction (hit and stick or
hit and bounce) or undergo multiple interactions. Multiple
interactions of a single NP were first exemplified in the study of
ruthenium oxide NP impacts on HOPG, detected through the
electrocatalytic oxidation of hydrogen peroxide (H,0,), where
multiple i—t events associated with a single (stochastic) NP
impact were detected (i.e, “multipeak” behavior on the
microsecond time scale; see Figure 6a). The multipeak behavior
was attributed to NPs becoming hydrodynamically trapped in
the vicinity of the collector electrode (HOPG) surface and
undergoing multiple impacts before release and semiquantita-
tively reproduced through 3D random walk simulations.** High-
bandwidth measurements are able to probe even faster processes
during electrochemical impact, as demonstrated for oxide
formation and associated catalytic deactivation of AuNPs
impacting with a collector electrode. The i—t transient
associated with AuQO, formation on AuNPs lasts ca. 500 us
(Figure 6b), and the femtocoloumb charge passed in these
events is proportional to the AuNP surface area, enabling
accurate electrochemical size analysis, with results comparable
to those of TEM.*
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The importance of bandwidth was further emphasized in a
study on AgNP dissolution dynamics. By opening of the time
window, studies from three different groups revealed that AgNP
stripping (oxidative dissolution) was a complex, NP-size-
dependent phenomenon, where larger AgNPs undergo multiple
and repetitive stripping events (impacts), resulting in often
incomplete electrodissolution on the microsecond time scale (a
representative example is shown in Figure 6c),46_48 contrary to
original reports.”” Long and co-workers developed a semi-
quantitative 3D random walk model to rationalize the size-
dependent multipeak stripping behavior of AgNPs during
electrochemical impact, where the trajectories of the AgNPs
were described by Brownian motion in bulk, hindered diffusion
(hydrodynamic trapping) as well as electric-field-driven motion
in the near-wall (electrode) region and size-dependent
adsorption/desorption of the AgNP in the electron-tunneling
region, where electrodissolution occurs.*®

White, Zhang, and co-workers attributed the multipeak
impact behavior (e.g., Figure 6¢) to a single AgNP moving in
and out of contact with the collector electrode during a collision
event, where the motion of an AgNP at the collector electrode/
solution interface was driven solely by Brownian motion.*” They
developed a 3D lattice random walk simulation of AgNP
Brownian motion dynamics (based on mass-dependent thermal
velocity) in the near-electrode region (Figure 6d), which in
combination with electrochemical kinetic parameters (i.e., j, for
the Ag/Ag" process) quantitatively reproduced the experimental
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Figure 8. High-resolution, synchronous topographical and electrochemical flux mapping with SICM. (a) SEM image of AuNPs supported on carbon
fiber. (b) TEM image of the cross-section of an individual AuNP, showing the NP—support gap that gives rise to hindered mass-transport effects. (c)
Topographical (j, ii) and synchronously recorded electrochemical activity images (iii, iv) obtained during catalytic [BH,]™ turnover at supported
AuNPs (mapped area indicated by red box in (a)). The applied potential (Eapp) is indicated in (c-iii) and (c-iv). These images allow important
characteristics of the ensemble to be directly visualized, including geometrical effects (e.g., “ring effect” in (iii)), diffusional overlap, competition
between neighboring NPs and heterogeneous NP activity (e.g., bottom-right, “blue” AuNPs in (c-iv)). (d) FEM simulations showing the distribution
ofions around an isolated NP during [BH, ]~ turnover with high and low E,,,, (i.e., high and low 7). Depletion of ions in the NP—support gap (see (b))
at low E,,, gives rise to the experimentally observed “ring effect” seen in (c-iii). Adapted with permission from ref 17. Copyright 2017, American
Chemical Society.

multipeak and partial stripping behavior. The simulations reveal approach was applied to study the catalytic properties of

that tens to thousands of NP—electrode collisions (nanosecond AuNPs for hydrazinium ([N,H;]") oxidation, where the entire

time scale) contribute to experimentally measured peak i—E response was measured at the single-NP level (representa-

currents, and suggest that NP thermal velocity controls the tive example in Figure 7'«1).50

electron-transfer rate during electrochemical impact.*” An important advance has been to monitor single NP impacts
By adoption of the highest possible bandwidth measurements, in situ with a range of optical methods, including 3D super-

the field of electrochemical impacts has progressed by providing
a wealth of information that was obscured in earlier i—t collision
: 41,42 . L .
transients.” "~ These improved data highlight single-NP . o L .
activity, **5 motion,**® anlzl surface—interac%iongdynamigcs 4446 complemg g/prec1p1tat1ngkage1lqts, AghP dstr111>plng s ahrapld
f , ) i i NP
all of which are important in the context of understanding both process ut n.l%YAHOt fake place imme 1ate?7 pon the
individual NP activity and the stability and dynamics in NP entering the vicinity of the near-electrode region, with a small

ensembles (Figure 2c). However, it has to be recognized that lag 'tl.me' often obserﬁed. In t}_1e flresen.ce. Of' complexing/
interpretation of i—t traces alone can be somewhat ambiguous, precipitating agents such as SCN, charge injection (Ag(s) —

necessitating the implementation of complementary microscopy A‘gSCN.(s)), detected electrochemically, ;n_zas followed by.slow
and/or spectroscopy techniques to understand the dynamic dissolution (AgSCN(s) — [Ag(SCN),,,]*"), observed optically

resolution holographic microscopy, where individual AgNP
stripping events are observed in real time. In the absence of

redox behavior at the electrode/solution interface during NP but “invisible” electrochemically. In other words, the onset of
impact. For this reason, SECCM was used to deliver single NPs AgSCN(s) dissolution was delayed relative to the electrochemi-
to a catalytically inert carbon-coated TEM grid substrate, used as cally detected i—t transient associated with AgNP oxidation.”'
a working electrode for impact studies, followed by ex situ An innovative nanochannel cell configuration has also been

morphological analysis of collected NPs with TEM. This developed to optically monitor the dynamic collision and
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oxidation of AgNPs in situ using single-particle fluorescence
microscopy.52

A further important development in the NP impact field has
been the improved delivery of NPs to electrified interfaces using
nanopipets, as illustrated by the local delivery of NPs
(polystyrene) using a combination of SICM for positioning
(vide infra), pressure-driven flow for controlled delivery (with
the delivery event sensed through a resistive-pulse method™”),
and super-resolution fluorescence microscopy for imaging NP
dynamics. The trajectory was tracked in 3D space and
manipulated by balancing the attractive/repulsive forces exerted
on the NP by convection and the electric field. NP diffusion
kinetics were analyzed to reveal subdiffusive (hindered) motion,
resulting from (potential-dependent) attractive electrostatic
interactions between the NP and an ITO substrate, or
superdiffusive (directed) motion, resulting from pressure-driven
flow (convection) at the pipet. This was exploited to manipulate
NP position in real time with tens of nanometers precision,
achieved by moving the nanopipet laterally across the surface
while “dragging” the NP along by fluid flow (negative differential
pressure; see Figure 7b). FEM modeling was employed to
quantify and visualize the distribution of forces impinged upon a
near-surface NP (“trapped” by the electric field) as a result of
pressure-driven flow (Figure 7c), rationalizing the real-time
manipulation of NP motion.”* This study highlights the
significant progress that has been made in the study of NP
impacts in terms of sophistication, control, and analysis, in
comparison to the original attempts in this field. Together with
other studies highlighted, there is a new course for NP impact
studies that are most effective when combining high-bandwidth
electrochemical measurements, NP sizing (on the fly), and/or
microscopy, including in situ optical methods, in order to tease
out several phenomena that contribute to the current—time—
potential response.

4.4. Electrochemical Imaging. As discussed in section 3,
electrochemical imaging is a powerful technique for mapping
spatially heterogeneous activity at complex (heterogeneous)
electrochemical interfaces. Among a limited set of techniques for
nanoscale electrochemical flux mapping, scanning electro-
chemical probe microscopy (SEPM) techniques (i.e., those
using a physical probe), most commonly scanning electro-
chemical microscopy (SECM), have attracted significant
interest. A very recent review covers the efforts on the use of
SECM and hybrid techniques in this area, and hence it will not
be covered here.”

In comparison to the solid nanoelectrodes used in SECM,
which can be difficult to make and are susceptible to damage,
nanopipets are easily fabricated, even with nanometric
dimensions, and produce a robust (unchanging) electro-
chemical response over extended time periods (hours to
days), making them ideal for electrochemical imaging at the
nanoscale. Indeed, building on a previous study,*® it was recently
demonstrated how fine nanopipet probes could be deployed in
the SICM format for synchronous nanoscale reaction-top-
ography mapping.'” In SICM, the tip of a nanopipet containing a
QRCE (e.g., Ag/AgCl; vide supra) is immersed in bulk solution,
where another QRCE is located, and a potential bias is applied
between these QRCEs to induce an ion conductance current
through the orifice of the pipet. The ion conductance current is
sensitive to the access resistance of the nanopipet, which is
governed by the tip—substrate distance (i.e, topographical
mappin_% in conventional SICM) in addition to surface
charge,” =% as well as ion flux arising from (electro)chemical
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reactions at the interface.'”° Through careful control of the

SICM probe bias, it is possible to map topography and surface
activity simultaneously.

In SICM reaction mapping, the probe acts as a “mobile
ion conductance sensor”, mapping the heterogeneous flux
arising from an electrochemical reaction. This aspect is
exemplified through studies of the oxidation of [BH,]™ at
carbon-fiber-supported AuNPs (see Figure 8a,b), which
consumes OHT, leading to a local change in ionic composition,
while also mapping topography with high fidelity (see Figure 8c-
i,c-ii). Ion flux heterogeneities arising from geometrical effects
(i.e, NP—support gap, Figure 8c-iii), diffusional overlap,
competition for reagent between neighboring NPs (arising
due to random distribution of NPs in the ensemble®®), and
differences in NP activity (e.g., bottom-right AuNPs in Figure
8c-iv) were visualized and quantified. FEM modeling (Figure
8d) was employed to rationalize the heterogeneous ion fluxes
measured experimentally, with hindered mass transport at the
NP—support gap (Figure 8b) giving rise to the characteristic
“ring” effect in the activity maps at low driving force (E,,,, e.g.,
see Figure 8c-iii)."”

Nanopipets can also be deployed in the SECCM format to
perform direct high-speed, high-resolution electrochemical
imaging, as demonstrated for mapping the OER activity of
iridium oxide (IrO,) NPs on a HOPG support. Heterogeneity in
OER activity was observed, with some IrO, NPs possessing
considerable activity before the onset of detectable current from
the whole ensemble (all NPs plus the support).”” The high-
speed, high-resolution voltammetric SECCM approach estab-
lished in refs 16 and 27 (e.g., see Figure 3a) has also been used to
elucidate the spatially resolved i—E behavior of individual
nonfaceted polycrystalline AuNPs (dyp &~ 350 nm) grown on a
glassy-carbon support. While different individual AuNPs
exhibited very similar overall catalytic activity toward [N,H;]*
oxidation (at the interparticle level), electrochemical reaction
rates varied significantly across the surface of individual AuNPs
(at the intraparticle level), attributed to structural (crystallo-
graphic) heterogeneities, demonstrating that these single
entities cannot be considered uniformly active.'®

Recent advances in the speed and/or resolution of nanopipet-
based SEPM (e.g., SICM'"*° and SECCM"**”*?) has enabled
high-fidelity synchronous topographical/electrochemical map-
ping with true nanoscale (tens of nanometers) resolution. In all
of the imaging studies highlighted above,m’”’n’59 nonuniform
electrochemical activity was identified within populations of
nominally identical NPs, alluding to structural and/or composi-
tional heterogeneities within the ensemble. Looking to the
future, applying nanometer-resolution SEPM with complemen-
tary high-resolution spectroscopy/microscopy, e.g., through the
use of TEM grid substrates in SECCM,***" will be a powerful
approach for (nano)material structure—activity determination,
which is a crucial step in rational (electro)catalyst design and
synthesis.

Single-particle reactivity mapping (at the inter- and intra-
particle levels) has also been achieved with a range of super-
resolution (vide supra) optical approaches, which imply
(electro)chemical reactivity from the “on/off” states of redox-
reporter molecules (oxidized/reduced forms switch between
“emissive” and “dark” states) and separately use supplementary
techniques to characterize morphology. For example, super-
resolution surface-enhanced Raman scattering (SERS) has been
used to probe local surface potentials on colloidal Au aggregates
labeled with Nile Blue A. Correlation of potential-dependent
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Figure 9. Single-entity (NP) electrochemical activity mapping with superresolution optical techniques. (a) SERS emission centroids (colored dots) as
a function of applied potential (all vs Ag/AgCl) (i) 0 to —0.1V, (ii) —0.3 to —0.4 V, (iii) —0.6 to —0.7 ,V and (iv) 0 to —0.7 V, from an Nile Blue A
labeled Au pentamer, overlaid on the corresponding SEM image. The emission centroids, initially located at the geometric center of the pentamer (i),
spreads out (ii) and becomes localized at two junctions at increasingly negative potential (iii), indicating spatially dependent reduction potentials (iv).
Reprinted with permission from ref 60. Copyright 2015, American Chemical Society. (b) Scatter plots (left image in (i) and (ii), each orange or blue
dot represents a single event) and 2D histograms (right image in (i) and (ii), scale bar indicates number of events) of individual single-molecule
fluorescence events, reflecting (i) hole- and (ii) electron-driven surface reactions (product is resorufin, a fluorophore) on a TiO, nanorod. (iii) SEM
image of the TiO, nanorod in (i) and (ii) after decoration with an OER catalyst (cobalt-borate). Reprinted by permission from ref 62. Copyright 2016,

Macmillan Publishers Ltd.

emission centroids with morphological information from SEM
revealed that there were discrete locations, typically situated at
NP—aggregate junction regions, associated with the reporter
molecules that were most difficult to reduce/easiest to oxidize.
In other words, at high potentials, when all Nile Blue A
molecules are in the emissive (oxidized) state, the emission
centroid is initially located at the geometric center of the AuNP-
aggregate (Figure 9a-i), before spreading out (Figure 9a-ii) and
becoming localized at specific junctions (Figure 9a-iii) at
increasingly negative potentials. From this, it was hypothesized
that reporter molecules at certain locations experience site-
specific electrochemical environments (Figure 9a-iv) or
location-dependent redox potentials.”

Super-resolution single-molecule fluorescence microscopy
has been employed for (electro)chemical imaging, e.g., for
mapping spatiotemporal fluctuations in single-molecule catalysis
events on Sb-doped TiO, nanorods, where the middle of the
nanorod was shown to be more active initially for OER
photocatalysis, before deactivating (but sometimes recovering in
a “self-healing” mechanism), causing the two ends of the rod to
dominate the overall activity in the time-integrated response,
despite lower intrinsic activity.”’ The same technique has also
been used to probe intraparticle photoactivity on pristine and
catalyst-modified single-crystal rutile TiO, nanorods supported
on ITO, under an applied potential bias. Hole- and electron-
induced surface reaction rates were shown to be strikingly
nonuniform along the surface of single nanorods, with a strong
spatial correlation between the hole (Figure 9b-i)- and electron-
induced (Figure 9b-ii) photocatalytic “hot spots”, revealed to be
structural defects or impurity sites from complementary ex situ
TEM/SEM analysis. The photocurrent associated with OER
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(i.e., photocatalytic activity for water oxidation), measured
through the ITO substrate upon local laser illumination,
revealed that the catalytically active sites coincide with the
hole- and electron-driven “hot spots” (Figures 9b-i,b-ii,
respectively), indicating that these sites effectively mediate
both oxidation and reduction reactions. The TiO, nanorods
were subsequently decorated with an OER catalyst (cobalt-
borate) through local photodeposition (Figure 9b-iii), which
enhanced hole-/electron-driven photoelectrocatalytic activity at
initially low activity sites and/or lowering the onset potential of
the OER, especially at sites with initially high onset potentials.
These two types of sites are not necessarily the same,
highlighting the challenge of engineering efficient photoanodes
with minimal amounts of catalyst, and on this basis, a block—
deposit—remove type strategy to yield optimally located
catalysts was proposed.”

Super-resolution optical approaches have revealed active “hot
spots” directly at the single-molecule level®*™®* of NPs in the
hundreds of nanometers size range, as well as enabling studies of
the time evolution of (electro)catalytic activity® and catalytic
cooperativity in real time.'’ These techniques are undoubtedly
very powerful, achieving unprecedented spatial (tens of
nanometers) and temporal (sub-microsecond) resolution, but
are restricted to the use of certain materials (i.e., plasmonic
materials in surface plasmon resonance) and probe molecules
(e.g., redox fluorophores in single-molecule fluorescence), as
well as optically transparent supports. In contrast, scanning
probe methods, such as SICM and SECCM outlined above, are
more generally applicable to any class of (electro)catalytic
system and provide synchronous topographical (morpholog-
ical) information but are generally carried under true catalytic

DOI: 10.1021/jacs.8009828
J. Am. Chem. Soc. 2019, 141, 2179-2193


http://dx.doi.org/10.1021/jacs.8b09828

Journal of the American Chemical Society

turnover conditions, rather than the single-molecule level,
making cross-correlation between temporally neighboring
catalytic events'® impossible. While significant recent advances
in this area have enabled nonuniform (electro)chemical fluxes to
be measured at the sub-100 nm level, electrochemical imaging
techniques alone generally cannot unambiguously reveal the
compositional and/or structural origin of the nonuniformity,
which must come through correlative multimicroscopy, in which
electrochemical images and movies are related to colocated
images of surface structure, chemistry, and/or electronic
properties. This versatile philosophy, highlighted and empha-
sized throughout this Perspective, needs to be adopted more
widely in the future in order to resolve the relationship between
surface structure and activity in electrochemistry and electro-
catalysis.

5. SUMMARY AND OUTLOOK

In this Perspective we have highlighted recent approaches to
studying fundamental electrochemistry and electrocatalysis,
whereby colocated information on structure and activity is
collected on commensurate scales, ranging from hundreds of
nanometers all the way down to the atomic level. Some of the
different techniques that we have discussed provide electrode
topography and activity synchronously, and although this alone
may reveal a wealth of information, there is often the need to
further employ complementary ex situ high-resolution micros-
copy/spectroscopy, which for some techniques (e.g, SECCM)
is easier to implement due to the ease of obtaining a wide field
optical view pre-/post-experiment but for others may require
sample marking to assist in the use of colocation techniques.
This correlative electrochemical multimicroscopy approach
avoids the ambiguity inherent to classical macroscopic or bulk
electrochemical techniques, where the electrochemical response
is averaged over a large population of interacting surface sites,
obscuring the nature of key elementary processes.

We have covered well-defined (single-crystal) surfaces
(section 2), structurally and/or compositionally heterogeneous
extended surfaces (section 3), and complex NP/support
ensemble-type electrodes (section 4). While each configuration
presents a unique set of challenges in terms of structure—activity
resolution, one important aspect we have emphasized
throughout is the importance of targeting the characteristic
“single entities” that make up these electrochemical interfaces, to
enable multiscale predictions that link the microscopic and
macroscopic worlds. Another important aspect borne out of
these studies is the importance of applying theory and
developing computational models/simulations to rationalize
experimental data, a combined approach that is becoming more
accessible with the availability of powerful commercial software
packages. Indeed, it is the consistency between experiment and
theory at the single-entity (nanoscopic) level that allows
macroscopic (bulk) behavior to be explained and further
predicted, enabling materials discovery and the rational design
of improved functional materials for technologically important
applications such as energy conversion and storage.

Future avenues for high-resolution structure—activity meas-
urements in electrochemistry that promise a holistic view of
electrode dynamics will include improved in situ and in
operando imaging techniques that incorporate electrochemical
microscopy alongside other forms of microscopy, the integration
of spectroscopic capability into imaging probes to enhance
chemical information, the use of “intelligent probes” that make
use of Al and machine learning, and methodologies that draw on
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the convergence in the scale of measurements and molecular
dynamics and density functional theory simulations. There is no
doubt that the techniques and technologies will continue to push
the state of the art in terms of spatiotemporal resolution,
measurement speed, and multifunctionality, enabling the
routine study of phenomena on smaller length scales: for
instance, catalytic sites at the atomic level (e.g., single-atom step
defects'") or mappin% of local electrical double-layer properties
(i, surface charge®””®). Multifunctional, spatiotemporally
resolved, and multilength scale studies inevitably generate
large volumes of data, also necessitating the development and
adoption of big data mining protocols in this field. We have only
just scratched the surface of what is possible with single-entity
electrochemistry and correlative electrochemical microscopy,
but it is important not to lose sight of the importance of “ease of
use” and “user friendliness”; future developments will also need
to make the technologies accessible to the “general user” in order
to facilitate the widespread adoption of these powerful
techniques and methodologies.
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B LIST OF SYMBOLS
Symbol Meaning

dnp diameter of nanoparticle
d, tip diameter

E potential

EY formal reduction potential
i current

j current density

Jo exchange current density
k° standard rate constant

a transfer coefficient

n overpotential

B LIST OF ABBREVIATIONS

Abbreviation Meaning

EBSD electron backscatter diffraction
FEM finite element method

GB grain boundary

HER hydrogen evolution reaction
HOPG highly oriented pyrolytic graphite
ITO indium tin oxide

NC nanocluster

NP nanoparticle
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OER oxygen evolution reaction

ORR oxygen reduction reaction

QRCE quasi-reference counter electrode

RHE reversible hydrogen electrode

RI reactive intermediate

SECCM scanning electrochemical cell microscopy
SECM scanning electrochemical microscopy

SEM scanning electron microscopy

SEPM scanning electrochemical probe microscopy
SERS surface-enhanced Raman scattering

SICM scanning ion conductance microscopy
STEM scanning transmission electron microscopy
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