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Executive Summary 

This thesis examines the feasibility of incorporating Non Destructive Testing (NDT) of rail 

surface damage by means of combining image processing with damage prediction models. 

As rail traffic and adherence to safety measures become increasingly strict on the network, 

the associated maintenance cost of rail infrastructure must be kept at a minimum. Proactive 

maintenance is crucial to maintaining the competitive advantage of rail transport. A 

considerable amount of research has been done on improving the practical tediousness 

associated with popular condition monitoring techniques in rail industry e.g. Ultrasonic, and 

Eddy current method. This thesis aims to fill the gap of yet to be explored benefit, of combining 

detection and prediction of RCF damage. This research project will contribute to the rail 

industry by simplifying maintenance operations and support decision making. 

In this thesis, a summary of existing image-based NDT and crack growth models is presented 

as a foundation on which the novel application is built. It could be said that similar research 

mainly focuses on quantifying severity of damage without predicting crack behaviour. The 

simulated results of the proposed image processing algorithm confirm superiority of local 

illumination invariant enhancement, multi-window segmentation, and cascaded feature 

extraction. The influential parameters of these methods are consistent within each image data 

set but differ across all sets. This is observed to be as a result of difference in environmental 

and reflection properties of acquired images. A sensitivity analysis of the proposed algorithm 

on data set 2 suggests a non-linear relationship between severity of damage and pixel mean 

intensity including variance.  

Taking to account fracture mechanics aspect of this thesis, the influence of crack geometry 

on growth rate and path has been established by case study of newly initiated and critically 

grown cracks. It was further established that larger cracks are observed to grow faster than 

smaller ones. In addition, the influence of track curve radius and supporting structures on 

wheel rail contact dynamics is well understood from the structural mechanic’s tests related to 
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contact forces and bending moment. These translate to increase or decrease in contact 

stresses, strains, and the propagation rate of defects. 

Unlike other predictive models, the method developed in this thesis focuses on replicating the 

actual surface condition of the rail prior to estimating the fracture parameters (using detailed 

3D Finite Element model) that dictate residual life of the rail asset. The model makes it possible 

to combine two separate maintenance activities i.e. detection and prediction without inducing 

down time of the service. 

A direct impact of this novel application is the utilisation of the actual crack boundary for 

prediction of fracture behaviour. It is insinuated that stress distribution of actual crack boundary 

differs from elliptical equivalent assumptions. 

Further work would include improving detection aspect of the novel application to avoid 

intersecting boundary coordinates, which are not readily imported into the Linear Elastic 

Fracture Mechanics (LEFM) prediction model. It is also beneficial to expand the prediction 

aspect of the research work to include influence of neighbouring cracks and fluid entrapment 

for more flexible analysis of other environmental and contact conditions. To improve on current 

work, it will be useful to conduct laboratory investigations on the influence of Image Acquisition 

System (IAS) light source in relation to illumination inequality within the captured image. Also 

fracture mechanics experimental validation can be used to assert the accuracy of the method.  

  



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

4 
 

Table of contents 

 

ACKNOWLEDGMENTS .......................................................................................................................... 1 

Executive Summary ................................................................................................................................ 2 

List of Figures .......................................................................................................................................... 7 

List of Tables ......................................................................................................................................... 10 

List of Symbols ...................................................................................................................................... 11 

List of Abbreviations .............................................................................................................................. 12 

Chapter 1 Introduction ........................................................................................................................... 14 

1.1 Overview and project brief .................................................................................................... 15 

1.1.1 Novel aspect of the research ............................................................................................ 15 

1.1.2 Aim(s), and objectives of research ....................................................................................... 15 

1.1.3 Contributions of the research to rail industry ........................................................................ 16 

1.1.4 Methodology ......................................................................................................................... 17 

1.1.5 Thesis structure .................................................................................................................... 19 

1.2 Rolling Contact Fatigue damage in rails ...................................................................................... 20 

1.3 Linear elastic fracture mechanics (LEFM) in rails ....................................................................... 24 

1.4 Chapter conclusion ...................................................................................................................... 27 

Chapter 2 Literature review ................................................................................................................... 28 

2.1 Review of rail surface inspection methods in industry ................................................................ 28 

2.1.1 Ultrasonic rail inspection ....................................................................................................... 29 

2.1.2 Eddy currents (EC) inspection of rails .................................................................................. 29 

2.1.3 Automated vision systems (AVS) for rail inspection ............................................................. 30 

2.2 Existing image processing algorithms for rail condition monitoring ............................................ 33 

2.2.1 Pre-processing ...................................................................................................................... 33 

2.2.2 Segmenting region of interest ............................................................................................... 46 

2.2.3 Feature extraction (FE) ......................................................................................................... 50 

2.3 Fatigue, initiation and propagation in rails ................................................................................... 53 

2.3.1 Crack initiation models .......................................................................................................... 54 

2.3.2 Crack propagation models in rails ........................................................................................ 57 

2.3.3 Crack branching criteria ........................................................................................................ 63 

2.4 Conclusion ................................................................................................................................... 64 

Chapter 3: Application of defect detection algorithm ............................................................................ 66 

3.1 Introduction .................................................................................................................................. 66 

3.2 Data set ....................................................................................................................................... 67 

3.2.1 Data set 1 .............................................................................................................................. 67 

3.2.2 Data set 2 .............................................................................................................................. 69 

3.2.3 Data set 3 .............................................................................................................................. 69 

3.3 Methodology ................................................................................................................................ 69 

3.3.1 Enhancement of defect region .............................................................................................. 70 

3.3.2 Segmentation of defect region .............................................................................................. 79 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

5 
 

3.3.3 Defect identification by Feature Extraction (FE) ................................................................... 83 

3.3.4 Generating geometrical statistical data of true defects ........................................................ 87 

3.4 Comparative study and analysis of data set 1 and 2 .................................................................. 89 

3.4.1 Enhancement of laboratory acquired images (data set 1) .................................................... 89 

3.4.2 Segmentation of laboratory acquired images (data set 1) .................................................. 116 

3.4.3 Feature extraction ............................................................................................................... 125 

3.4.4 Calibration ........................................................................................................................... 150 

3.4.5 Generating defect statistical ............................................................................................... 152 

3.5 Proposed image processing algorithm ...................................................................................... 157 

3.5.1 Analysis of data set 3using proposed image processing algorithm .................................... 159 

3.5.2 Analysis of data set 3 using the proposed algorithm .......................................................... 165 

3.6 Conclusion ................................................................................................................................. 169 

Chapter 4 Modelling and simulation of crack behaviour in rails .......................................................... 171 

4.1 Introduction ................................................................................................................................ 171 

4.2 Data set ..................................................................................................................................... 173 

4.2.1 Contact data ........................................................................................................................... 173 

4.2.2 Defect geometry, and location ................................................................................................ 174 

4.3 Methodology .............................................................................................................................. 174 

4.3.1 Global track model .............................................................................................................. 175 

4.3.2 Local fracture mechanics model ......................................................................................... 180 

4.4 Simulated FE (COMSOL) results and discussion ..................................................................... 191 

4.4.1 Fracture mechanics for tangent track data ......................................................................... 191 

4.4.2 Fracture mechanics for curved track data .......................................................................... 200 

4.4.3 Location sensitivity analysis for curved track data .............................................................. 207 

4.5 Conclusion ................................................................................................................................. 214 

Chapter 5 Application of the proposed technology ............................................................................. 215 

5.1 Introduction ................................................................................................................................ 215 

5.2 Application of the proposed technology .................................................................................... 216 

5.3 Simulated results and discussion .............................................................................................. 222 

5.4 Conclusion ................................................................................................................................. 238 

Chapter 6 Thesis conclusions and future work ................................................................................... 239 

6.1 Conclusions from the conceptualisation of the project (chapter one) ....................................... 239 

6.2 Conclusions from the review of existing work (chapter two) ..................................................... 239 

6.3 Conclusions from the development of image processing algorithm (chapter three) ................. 240 

6.4 Conclusions from fracture mechanics prediction (chapter four) ................................................ 240 

6.5 Conclusions from the application of the proposed technology (chapter five) ............................ 241 

Future work(s) ................................................................................................................................. 242 

References .......................................................................................................................................... 244 

Appendices ......................................................................................................................................... 261 

Appendix A: Basic filter design ........................................................................................................ 261 

A1: Low pass filter ........................................................................................................................ 261 

A2: High pass filter ....................................................................................................................... 261 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

6 
 

Appendix B: Wavelet functions ........................................................................................................ 262 

Appendix C: Image Processing Algorithm ....................................................................................... 268 

Appendix C1: Image processing data set 2 ................................................................................. 268 

Appendix C2: Image processing data set 3 ................................................................................. 271 

Appendix C3: Function definitions for enhancement ................................................................... 274 

Appendix C4: Function definition for segmentation ..................................................................... 280 

Appendix C5: Function definitions for feature extraction ............................................................. 282 

Appendix C6: Simulated results for data set 3 ............................................................................ 286 

Appendix C7: Simulated results for data set 3 ............................................................................ 301 

Appendix D: Intermediary validation of local fracture mechanics model ......................................... 331 

Appendix D1: Pure Mode-I and Mode-II SIF formulations ........................................................... 331 

Appendix D2: Mixed Mode-I and Mode-II SIF formulations ......................................................... 343 

Appendix D3: Biaxial mode-I and mode-II SIF formulations ........................................................ 345 

Appendix E: Linking MATLAB and COMSOL.................................................................................. 353 

Appendix E1: Linking NDE to fracture mechanics in rails ........................................................... 353 

Appendix E2: MATLAB function for establishing link between defect detection and prediction .. 368 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

7 
 

List of Figures 

Figure 1. 1:Crack initiation by slip and extrusion planes. (Sangrid, M.D. 2013). .................................. 21 
Figure 1. 2: The cross-section squat type crack with the long leading crack (in rolling direction) and 
the much longer trailing crack in the opposite direction (Magel, E. 2011). ........................................... 22 
Figure 1. 3: Depicts a crushed head rail defect (Magel, E. 2011)......................................................... 22 
Figure 1. 4: Depicts a variety of GCC defects (Magel, E. 2011). .......................................................... 23 
Figure 1. 5: Depicts transverse defect in rails (Magel, E. 2011). .......................................................... 23 
Figure 1. 6: Shows the tension (a), shear (b), and torsion (c) modes of fracture. (Kundu, T. 2008). ... 25 
Figure 1. 7: Shows the material response to cyclic loading (Vasic, G. 2013). ...................................... 26 
Figure 1. 8: Rail crack development (Plu, J. et al 2009). ...................................................................... 26 
Figure 2. 1: Differential probe generates differential signal only when one end of the coil is over a 
defect free region and the other is at a defected position. .................................................................... 30 
Figure 2. 2: Object detection using super pixels (Teng, Z., Liu, F., & Zhang, B., 2016) ....................... 31 
Figure 2. 3: Diagram of image analysis subsystem (Li, Q., & Ren, S. 2012) ....................................... 32 
Figure 2. 4: Types of point processing operations on images. (Singh, G,M., 2013)............................. 34 
Figure 2. 5: MATLAB piece-wise transformation function applied on the original Heavily damaged rail 
surface image (on the left), such that on the left of(a) shows 3 control points, while left of (b) shows 4 
control points, and to the left of (c) shows 8 control points; spline functions defining mapping of input 
to output intensity values. ...................................................................................................................... 37 
Figure 2. 6: Image enhancement by normalization. .............................................................................. 39 
Figure 2. 7: Output of linear averaging filter on heavily damages rail surface image. .......................... 40 
Figure 2. 8: Oder static filters applied on heavily damaged rail surface image; (a) Min filter, (b) Max 
filter, (c) Median filter. ............................................................................................................................ 41 
Figure 2. 9: Histogram equalisation applied on heavily damaged rail image. ...................................... 43 
Figure 2. 10: Block diagram for FT based filtering of images (Gonzalez, R,C., & Woods, R,E. 2005). 46 
Figure 2. 11: Shows the types of segmentation methods in literature (Kahn, W. 2013). ..................... 47 
Figure 2. 12: Shows the types of edges that can be found in an image (Senthilkumaran, N., & Rajesh, 
R. 2009)................................................................................................................................................. 48 
Figure 2. 13: Relationship between Tγ and RCF damage index. The units of the RCF damage index is 
such that for a damage index of 1, 100,000 axle passes would result in RCF initiation (Iwnicki, S. 
2009). .................................................................................................................................................... 55 
Figure 2. 14: Crack driving force concept short surface head check like cracks, often observed at the 
rail gauge corner. (Brouzoulis, J., & Ekh, M. 2012). ............................................................................. 57 
Figure 2. 15: Damage function based estimation of crack growth rate (Dirks, B., et al 2015) ............. 58 
Figure 2. 16: SIF estimation from stress fields at vicinity of crack tip. (Dahlberg, T., & Ekberg, A. 2002)
 .............................................................................................................................................................. 59 
Figure 2. 17: SIF estimation from crack tip displacement fields (Lui,L. (2008) ..................................... 60 
Figure 3. 1: Shows laboratory acquired images of data set 1. (MMU). ................................................ 68 
Figure 3. 2: Depicts the Lab-2 original image and pre-smoothing pixel intensity value distribution ..... 71 
Figure 3. 3: Depicts the Lab-2 median filtered image and post smoothing pixel intensity value 
distribution ............................................................................................................................................. 72 
Figure 3. 4: Shows the result of Linear Moving Average Filtering  (LMAF) of the original Lab-2 image.
 .............................................................................................................................................................. 74 
Figure 3. 5: Shows the simulated result for Visibility measure enhancement for Lab-2 image. ........... 75 
Figure 3. 6: Shows the result for local normalisation performed on Lab-2 image. ............................... 77 
Figure 3. 7: Shows the result of Fast Fourier transform on Lab-2 image. ............................................ 78 
Figure 3. 8: Shows the result for Automatic iterative thresholding performed on Lab-2 image. ........... 80 
Figure 3. 9: Shows the performance of Fengs thresholding on Lab-2 image. ...................................... 82 
Figure 3. 10: Shows the performance of Occurrence Global thresholding on image Lab-2. ................ 83 
Figure 3. 10: Determining morphological orientation of blob. (Mathworks,2017). ................................ 88 
Figure 3. 13: Presents simulated results for median smoothing of all laboratory acquired images Lab-1 
to Lab-4  denoted by a-d, using optimised wind size N=3. ................................................................... 91 
Figure 3. 15: Median filter response for (a) FA-H1, (b)FA- M1, and (c) FA-L1, data set 2. .................. 93 
Figure 3. 16: Presents the simulated results for LN method on data set 1. .......................................... 96 
Figure 3. 17: Presents the simulated LN results of (a) H1, (b) M1, and (c) L1. .................................... 98 
Figure 3. 20: Presents the simulated FFT results of data 1. ............................................................... 106 
Figure 3. 21: Presents the simulated FFT enhancement results of data set 2- sub set (one image from 
each distinct damage severity levels). ................................................................................................ 108 
Figure 3. 22: Presents the simulated visibility measure enhancement results of data 1. ................... 111 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

8 
 

Figure 3. 26: Presents the simulated visibility measure enhancement results of data set 2- sub set 
(one image from each distinct damage severity levels). ..................................................................... 113 
Figure 3. 27: Show the performance of Feng's, OGT, and AIT thresholding on Lab-1 image. .......... 117 
Figure 3. 28: Show the performance of Feng's, OGT, and AIT thresholding on Lab-2 image. .......... 118 
Figure 3. 29: Show the performance of Feng's, OGT, and AIT thresholding on Lab-3 image. .......... 119 
Figure 3. 33: Shows the performance of Feng's, OGT, and AIT thresholding on FA-L1 image. ........ 124 
Figure 3. 37: Shows the performance of Texture and SDHSD based feature extraction on Lab-4 
image. .................................................................................................................................................. 129 
Figure 3. 55: Shows the probabilities of true and false detection for FA-L1 image. ........................... 150 
Figure 3. 56: Shows the rail head and rail foot methods of calibrating rail damage images. ............. 151 
Figure 4. 1:  Wheel rail contact showing contact forces and contact patch (Lewis, R., & Olofsson, U. 
2009). .................................................................................................................................................. 175 
Figure 4. 2: The global track model assembly of s1002 wheel, and 60E1 rail, rail pad, sleeper, and 
ballast substructures. .......................................................................................................................... 176 
Figure 4. 3: Shows the comparison between MATLAB (a) and FE (b) contact pressure distribution 
COMSOL. ............................................................................................................................................ 178 
Figure 4. 5: Shows the block diagram of the proposed local fracture mechanics model. .................. 181 
Figure 4. 6: Inclined elliptical crack under tensile load (right), and relevant mode-I and II fracture 
modes (left) (Livieri, P., & Seagala, F. 2007). ..................................................................................... 182 
Figure 4. 7: Biaxial loading of inclined elliptical crack (Shlyannikov, V.N., Tumanov, A.V. 2011). ..... 186 
Figure 4. 42: CTS for mixed mode crack propagation analysis (Zafosnik, B., et al 2000). ................ 189 
Figure 4. 9: Comparison between FE simulated contact pressure and VAMPIRE equivalent (a) and 
COMSOL convergence plot in (b). ...................................................................................................... 192 
Figure 4. 10: Tangent track stress distribution for 0 lateral displacement of  wheel (left), Predefined 
mesh maximum size of 1mm at the contact patch (right). .................................................................. 193 
Figure 4. 11: Tangent track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate 
(d), Growth angle (e), Number of cycles to failure Nf (f). .................................................................... 196 
Figure 4. 12: Tangent track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate 
(d), Growth angle (e), Number of cycles to failure Nf (f). .................................................................... 199 
Figure 4. 40: Validation of contact pressure for low rail component of global contact model. ............ 200 
Figure 4. 14: Validation of contact pressure for high rail component of global contact model. .......... 201 
Figure 4. 15: Curved track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate 
(d), Growth angle (e), Number of cycles until failure Nf (f). ................................................................ 203 
Figure 4. 16: Curved track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate 
(d), Growth angle (e), Number of cycles until failure Nf (f). ................................................................ 206 
Figure 4. 17: Defect displaced (x-1,y-1) Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth 
rate (d), Growth angle (e), Number of cycles until failure Nf (f). ......................................................... 209 
Figure 4. 18: Shows influence of displacing crack centroid (relative to peak contact stress mm-2mm 
for track curve radius 200m (a), 650m (b), 900m (c), 1500m (d). ....................................................... 211 
Figure 4. 19: Defect displaced (x-2,y-2) Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth 
rate (d), Growth angle (e), Number of cycles until failure Nf (f). ......................................................... 213 
Figure 5. 1: Shows the randomly selected damage(s) of FA-H1 image applied to the proposed 
technology. .......................................................................................................................................... 219 
Figure 5. 2: Shows the random samples of detected defect from image H1. ..................................... 221 
Figure 5. 3: Shows the actual geometry for defect number 6 and the resulting stress distribution. ... 222 
Figure 5. 4: Shows the growth rate of actual defect geometry geometry for defect number 6. .......... 223 
Figure 5. 5: Compares the simulated propagation direction for elliptical and actual geometry for defect 
number 6.And in Figure 5.6 the residual life of the rail is observed to exponentially decay from about 
9E6 to 5.5E6 at maximum axle load of 80kN. ..................................................................................... 223 
Figure 5. 6: Compares the simulated residual life for elliptical and actual geometry for defect number 
6. ......................................................................................................................................................... 224 
Figure 5. 7: Shows the simulated stress distribution actual geometryfor defect number 7. ............... 225 
Figure 5. 8: Shows the simulated growth rate for actual geometry for defect number 7. ................... 226 
Figure 5. 9: Compares the simulated propagation direction for elliptical and actual geometry for defect 
number 7. ............................................................................................................................................ 226 
Figure 5. 10: Shows the simulated fracture mechanics behaviour actual geometry for defect number 
7. ......................................................................................................................................................... 227 
Figure 5. 11: Shows the simulated stress distribution for actual geometry for defect number 9 ........ 228 
Figure 5. 12: Shows the simulated growth rate for actual geometry for defect number 9 .................. 229 
Figure 5. 13: Shows the simulated growth path for actual geometry for defect number 9 ................. 229 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

9 
 

Figure 5. 14: Shows the simulated fracture mechanics behaviour for actual geometry for defect 
number 9 ............................................................................................................................................. 230 
Figure 5. 15: Shows the simulated stress distribution for actual geometry for defect number 13 ...... 231 
Figure 5. 16: Shows the simulated growth rate for actual geometry for defect number 13 ................ 232 
Figure 5. 17: Shows the simulated growth path for actual geometry for defect number 13 ............... 232 
Figure 5. 18: Shows the simulated fracture mechanics behaviour for actual geometry for defect 
number 13 ........................................................................................................................................... 233 
Figure 5. 19: Shows the simulated stress distribution for actual geometry for defect number 14 ...... 234 
Figure 5. 20: Shows the simulated growth rate for actual geometry for defect number 14 ................ 235 
Figure 5. 21: Shows the simulated growth path for actual geometry for defect number 14 ............... 235 
Figure 5. 22: Shows the simulated fracture mechanics for actual geometry for defect number 14 .... 236 
Figure 5. 20: Shows the syntax for extracting contact data related to 200m curve radius and details of 
a specified defect geometry. ............................................................................................................... 359 
Figure A.B 1: Fourier transform of Mayer wavelet basis function. ...................................................... 262 
Figure A.B 2: Fourier transform of Mayer wavelet function. ............................................................... 263 
Figure A.B 3: Mayer wavelet function. ................................................................................................ 264 
Figure A.B 4: Real (a) and imaginary (b) part of Morlet wavelet......................................................... 265 
Figure A.B 5: Daubeschies (a) scaling and (b) wavelet function ........................................................ 267 
 

 

 

 

 

  



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

10 
 

List of Tables 

Table 2. 1: Shows the comparison of Ideal, Butterworth and Gaussian low pass filters response on a 
heavily damaged rail image. ................................................................................................................. 44 
Table 2. 2: Shows the comparison of Ideal, Butterworth and Gaussian high pass filters response on a 
heavily damaged rail image. ................................................................................................................. 45 
Table 2. 3: Published values for  Paris Law constant R, C, and m (Zafosnik, B., et al 2000). ....... Error! 
Bookmark not defined. 
Table 3. 1: Summarises the PSNR values for data set 1 using optimal influential parameters for each 
image. .................................................................................................................................................. 114 
Table 3. 2: Summarises the PSNR values for data set 1 using optimal influential parameters for each 
image. .................................................................................................................................................. 115 
Table 3. 3: Summarises the number of segmented regions for data set 1 using optimal influential 
parameters for each image. ................................................................................................................ 116 
Table 3. 4: Summarises the number of segmented regions for data set 2 using optimal influential 
parameters for each image. ................................................................................................................ 121 
Table 3. 5: Summary of sensitivity analysis detected RCF damage to feature extraction models (F1-
F3) including the influence of the different enhancement methods. ................................................... 137 
Table 3. 6: Presents the technical details related to each stage of the proposed novel application of 
image processing algorithms on left rail images. ................................................................................ 167 
Table 3. 7: Presents the technical details related to each stage of the proposed novel application of 
image processing algorithms on right rail images. .............................................................................. 168 
Table 3. 8: Show the computational time for each algorithm. ............................................................. 169 
Table 4. 1: Tangent track calibration data for global track model. ...................................................... 173 
Table 4. 2: Curved track calibration data for global track model......................................................... 173 
Table 4. 3:Details of rail supporting structure. Vasic, G. (2013). ........................................................ 176 
Table 4. 4: Shows the numerical parameters related to residual life equation (Ravaee, R., & 
Hassani,A.  2007). ............................................................................................................................... 188 
Table 5. 1: Defect samples and their respective geometrical details.................................................. 217 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

11 
 

List of Symbols 

Symbol Description 
Δ Pixel mean intensity offset 
𝜇 Mean intensity value 

𝐼(𝑥, 𝑦) Input image 

𝑅𝑚 Image required mean 

𝑅𝑣 Image required variance 

𝑖𝑚(𝑥, 𝑦)  Windowed sample of the original 

im(x, y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   Mean intensity of the window. 

σ(x, y) Windowed standard deviation 

𝑛(𝑥, 𝑦)  Total number of data points 

𝑇𝑁(𝑥, 𝑦)  Niblack segmentation threshold 

𝑇𝑆(𝑥, 𝑦)  Savuola segmentation threshold 

𝑇𝑊(𝑥, 𝑦)  Wolf’s segmentation threshold 

𝑇 OGT and AIT threshold 

𝜃  Orientation of the gabor filter [degrees] 

𝜎 Standard deviation of shape distance 

𝑑𝑖 Defect maximum length [mm] 

𝑃(𝑥, 𝑦) Wheel-rail contact pressure [N/m^2] 

𝑃𝑚𝑎𝑥 Maximum wheel-rail contact pressure [N/m^2] 

𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 Principal contact stresses [MPa] 

𝐽𝐼, 𝐽𝐼𝐼 Pure mode-I and II J integral [N/m] 

𝐽𝑣𝑚𝐼, 𝐽𝑣𝑚𝐼𝐼 Mixed mode-I and II J-integral [N/m] 

𝐾𝐼, 𝐾𝐼𝐼 Pure mode-I and II SIF [N/m] 

𝜂 and 𝜉𝑜. Elliptical coordinate representation 

𝜎𝜃 Crack border tangential stress [MPa] 

𝜎𝑛𝑜𝑚 Nominal stress [MPa] 

𝜎𝐼, 𝜎𝐼𝐼 Biaxial mode-I and II stress [MPa] 

ℵ Load biaxiality  

𝛽 Crack inclination angle [degrees] 
𝑑𝑎

𝑑𝑁
 

Growth rate [nm/cycle] 

∆𝐾𝑒𝑞 Equivalent range SIF [N/m] 

∆𝐾𝑡ℎ Range of SIF threshold 

𝑁𝑓 Number of loading cycles  until failure 
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List of Abbreviations 

  
∆𝐾𝐼 Range of Mode-I SIF 

∆𝐾𝐼𝐼 Range of Mode-II SIF 

∆𝐾𝑒𝑞𝑣 Range of equivalent SIF 
AI Automatic Iterative algorithm 
AIT Automatic Iterative thresholding 
ANN Artificial Neural Network 
AVS Automated Vision System 
BPHEME Brightness preserving histogram equalisation 

with maximum entropy  
CDF Cumulative distribution function 
CLAHE Contrast limited adaptive histogram equalisation 
CTS Compact tension shear 
DB Deutsche Bahn 
DFT Discrete Fourier Transform 
DoT Department of Transport 
DSP Digital signal processing 
E1 Local normalisation enhancement method 
E2 Visibility measure enhancement measure 
E3 Linear moving average filter enhancement 

method  
E4 Fast Fourier Transform enhancement method 
EC Eddy currents 
EMSR Extended minimum subscribed rectangle 
EPFM Elastic plastic fracture mechanics 
EU European Union  
FA-H1 First sample of field acquired image for heavily 

damaged rail surface 
FA-L1 First sample of field acquired image for lightly 

damaged rail surface 
FA-M1 First sample of field acquired image for 

moderately damaged rail surface 
FE  Feature extraction 
FE1 Standard deviation histogram shape distance 

feature extraction method 
FE2 Gabor filter feature extraction method 
FE3 Morphological feature extraction method 
FEA Finite element analysis 
FFT Fast Fourier Transform 
FRA Federal Railroad Administration 
FT Fourier Transform 
GCC Gauge Corner Cracking 
GHE Global Histogram equalisation 
GLG Gray level grouping 
GSM Global system for mobile communication 
GSP Global positioning system 
HPF High pass filter 
IAS Image acquisition system 
ICRI International Collaboration on Rail Initiative 
Keqv Equivalent SIF 
KI Mode-I SIF 
KII  Mode-II SIF 
Lab-1 First sample of laboratory acquired image of 

damaged rail surface  
Lab-2 Second sample of laboratory acquired image of 

damaged rail surface 
Lab-3 Third sample of laboratory acquired image of 

damaged rail surface 
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Lab-4 Fourth sample of laboratory acquired image of 
damaged rail surface 

LCCD Linear charged coupled device 
LDR Light dependent resistor 
LEFM Linear elastic fracture mechanics 
LHE Local histogram equalisation 
LMAF Linear moving average filter 
LMF Linear mean filter 
LN Local normalisation 
LPF Low pass filter 
MERR Maximum energy release rate 
MLC Michelson contrast 
MSR Minimum subscribed rectangle 
MVS Machine vision system 
NDE  Non-destructive evaluation 
NDT Non-destructive testing 
NRC National Research Council-Canada 
OGT Occurrence global thresholding 
PPO Point processing operation 
PSNR Peak signal to noise ratio 
RAMS Reliability Availability Maintainability and Safety 
RCF Rolling contact fatigue 
RM Required mean 
ROC 
ROI 

Receiver operating characteristics 
Region of interest 

RSSB Rail Safety and Standards Board 
RV Required variance 
S1 Occurrence global thresholding method 
S2 Wolfs thresholding method 
S3 Automatic iterative thresholding method 
SDHSD Standard deviation of histogram shape distance 
SED Strain energy density 
SEDM Spatial domain enhancement method 
SGLG Selected gray level grouping 
SIF Stress intensity factor 
UT Ultrasonic testing 
V/T SIC Vehicle/Track Systems Interface Committee 
VM Visibility measure 
WLRM Whole Life Rail  Model 
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Chapter 1 Introduction 

A considerable amount of derailments and service disruptions in railway systems has been 

attributed to track-related issues, as discussed by Banerjee, U. (2013). The Office of Rail and 

Road in 2006 confirmed the derailment in Hatfield UK, was caused by multiple Rolling Contact 

Fatigue (RCF) cracks resulting in rail breaking as the train passed. As a result of increase in 

axle loads, vehicles primary yaw suspension stiffness, wheel-rail conicity and capacity, greater 

damage to the rail infrastructure is observed on most networks around the world. The statistics 

of rail safety in Great Britain released by the Office of Rail and Road in 2017 accounts for 687 

cases of train accidents, most of which as a result of rail defects. RCF cracks initiate in the 

surface or subsurface of rails and can propagate to cause rail failure, impacting on safety, 

maintenance and costs. The vision for Great Britain (GB) railway, as set out in the Rail 

Technical Strategy, Network Rail Limited, (2016), emphasises the need for improvements in 

condition monitoring of rail assets from current inspection methods to more automated 

procedures (‘intelligent’ and ‘self-monitoring’ systems) capable of improving the efficiency of 

maintenance planning and decisions. Rowshandel, H. Papaelias, M. Roberts, C. & Davis, C. 

(2010) highlighted the benefits of this vision including targeted risk-based maintenance and 

repair of rail infrastructure to deliver improved reliability, fewer delays, increased capacity, 

resilience, safety and all round improved performance of the railway industry. The limitations 

of manual inspection of rail defects are well understood. In fact, much earlier works of Martin, 

A. & Tosunoglu, S. (2000) also concluded that conventional rail non-destructive evaluation 

(NDE) techniques should be replaced by more reliable, efficient, and flexible systems. 

Although associated with higher complexities, there exist hybrid systems that offer more 

reliable high-speed inspection by simultaneously using two or more rail inspection methods 

(e.g. ultrasonic probes, and eddy current probes). It is therefore sensible to investigate and 

model RCF detection systems that are more intelligent and self- learning with fewer 

complexities. This PhD thesis presents a technology readiness level 1-2 report on the 

development of an intelligent image processing algorithm capable of generating statistical data 
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and automatically estimating the propagation behaviour of each detected artefact (more 

intelligently). This was achieved by a combination of spatial filtering and illumination invariant 

enhancement for pre-processing of the input image, after which segmentation of the RCF (or 

other damage types) artefacts by binary thresholding is performed in addition to morphological 

cleaning. The resulting binary image is calibrated with known dimensions of rail geometry for 

extraction of defect geometry (statistical data) for automatic incorporation within a structural 

mechanic’s model. Such an incorporated model furthers the scope of rail asset remote 

predictive maintenance in industry mainly by capitalizing on the yet to be explored benefits of 

linking NDE method(s) to prediction models for residual life estimation which supports 

optimization and planning of rail maintenance (e.g. grinding and renewal).  This research also 

studies the feasibility of adopting the proposed technology in industry by identifying the enabler 

and blocker of the application after detailed sensitivity and parametric studies of all 

components of the model.  

1.1 Overview and project brief  

1.1.1 Novel aspect of the research 

The novelty of this research work not only resides within the algorithms related to image 

processing; capable of detecting surface RCF defects, but also in the capacity of the 

application to generate geometrical information (statistical data) related to each artefact, and 

further automatically process the geometrical data in accordance with LEFM model(s) for 

prediction of defect fracture mechanics behaviour in support of rail maintenance activities. 

1.1.2 Aim(s), and objectives of research  

This research aims at developing an intelligent image processing algorithm capable of 

detecting fatigue defects from an on-board surface RCF image acquisition system (called the 

RAILSCOPE image acquisition system). The algorithm is intelligent as it generates statistical 

data such as total number of detected defects per image, the maximum length, area, 

orientation, and boundary coordinates of each defect. Such data can be used to estimate real 

time severity of damage and predict future damage including maintenance needs, thereby 
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improving predictive maintenance of rail assets in terms of flexibility, reliability, remoteness, 

safety, and overall cost. 

To achieve the above aim(s) the following intermediary objectives were set: 

 Develop image processing RCF detection algorithm (MATLAB). 

 Develop a global contact (wheel-rail) model for generating wheel-rail contact stresses 

and strains (COMSOL Multi-physics). 

 Develop LEFM surface RCF crack propagation model (MATLAB).  

 Perform field application and validation of proposed image processing algorithm 

(applied on NRC and ICRI data).  

 Perform tangent and curve track parametric study of global track model with validation 

using VAMPIRE data. 

 Link the defect detection algorithm to fracture mechanics prediction models and 

analyze the applicability of the technology in rail industry. 

1.1.3 Contributions of the research to rail industry 

Linking defect detection and prediction models attempts to contribute to rail industry, by the 

flexibility of remote automatic evaluation of rail integrity and by incorporating defect data to 

local fracture mechanics for predictive maintenance applications. The proposed method is 

anticipated to contribute to rail industry as follows:  

 

This application jointly advises the maintenance decisions, through defect detection, 

quantifying defect severity, and predicting fracture behaviour of critically damaged track 

sections within a single package/program that makes the maintenance process to be easier, 

faster and cheaper. 

 

Contrary to similar research work (in the area of crack propagation) that assumes the surface 

geometry of cracks on rails as being elliptical, this project accounts for the actual boundary 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

17 
 

coordinates of each detected defect as captured from rail image(s) thereby accounting for 

more realistic stress concentration at the crack tip(s). 

 

The ease of incorporating other contact conditions, such as influence of other crack growth 

conditions; motion of crack faces due to passing wheel, hydraulic pressure, fluid entrapment 

and squeeze film effect, pneumatic pressure etc. will offer the flexibility of analysing different 

and/or specific sites/environmental conditions.  

 

The research identifies initial values of influential parameters related enhancement, 

segmentation, and feature extraction of both field acquired and laboratory controlled image 

samples. These include local window size for spatial filtering, block size for mean intensity and 

variance for illumination invariant enhancement. The pixel intensity threshold value for binary 

segmentation of suspected defect region is identified, while the filter frequency and energy 

threshold values for Gabor/Texture based feature extraction, including Standard Deviation 

Histogram Shape Distance (SDHSD) for morphological based feature extraction is presented.  

1.1.4 Methodology 

An intelligent image processing algorithm capable of detecting and quantifying the geometrical 

features of fatigue damage from rail head images is developed. The image data set 1-3 

(detailed in section 3.2.1-3.2.3) relating to surface RCF damage on rails was obtained from 

Manchester Metropolitan University (MMU), National Research Council (NRC) Canada, and 

Collaborative project on RCF damage respectively. These images were analysed in MATLAB 

(Image processing toolbox) to firstly undergo enhancement, segmentation, morphological 

cleaning followed by defect feature extraction. In this PhD research, enhancement algorithms 

related to statistical filtering (Linear Moving Average Filter-LMAF), illumination invariant Local 

Normalisation (LN), Visibility Measure (VM), and Fast Fourier Transform (FFT) are individually 

investigated on data set 1, data set 2 and data set 3. More specific to field acquired images of 

RCF damage in rails (i.e. data set 2 and data set 3), a specific concatenation of the 
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aforementioned enhancement methods is proposed (in chapter 3) after detailed analysis of 

the Peak Signal to Noise Ratio (PSNR) of the enhanced images of each of the method 

mentioned above. 

Segmentation by binary thresholding in the form of Wolf’s algorithm, Object/Background 

Occurrence Probability approach (OGT), and an Automatic Iterative (AI) algorithm was 

investigated for fragmenting suspect defect regions from the enhanced image of all data sets. 

Although similar behaviour was observed during a comprehensive comparative study in all the 

aforementioned segmentation methods, the AI method was preferred due to its higher 

versatility across all samples compared to the others. 

As a good practice in analysing segmented images, considering the fact that it is practically 

impossible to obtain a segmented image with no false segment, a morphological cleaning step 

is included. These morphological functions ranging from fill, clean, thin, dilate, erode etc. are 

utilised before feature extraction is performed.  

The cleaned image is finally post-processed for true detection of RCF damage using either 

morphological, geometrical, or even texture features typical to defects. To this end, the 

following methods have been combined for improved defect detection; Standard Deviation 

Histogram Shape Distance (SDHSD), Geometrically Acceptable Rail Damage Feature 

Extraction and Gabor/Texture-based Feature Extraction. A concatenation of all these feature 

extraction methods are used for all data sets examined in this research. 

After successful detection of RCF defects, the geometrical properties of each detected defect 

(of specific interest is maximum length of defect, surface orientation, and boundary 

coordinates) are automatically measured using the region property function of the MATLAB 

image processing toolbox. By means of the Livelink interface, the defect geometry is 

automatically incorporated into a detailed 3-D revolved S1002 wheel and an extruded 60E1 

rail profile assembly. The assembly (detailed in chapter 4) referred to as the global contact 

model, considers structural steel material properties and is initialised using VAMPIRE contact 

data for generating the stress fields typical to wheel-rail interface subject to 80kN axle load. 
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Analytical evaluation of the J-integral is used to estimate the Stress Intensity Factor (SIF) 

values of the dominant RCF propagation modes (i.e. Mode I and Mode II). Processing the SIF 

in accordance with Paris Law and Maximum Tangential Stress (MTS) theory, the crack growth 

rate and branching direction are derived. Prior knowledge of the final crack length in relation 

to growth rate is utilised for residual life estimation.  

1.1.5 Thesis structure 

Chapter one introduces the PhD research work and establishes the specific aim(s), 

intermediary objectives, and contributions of the PhD project. An overview of the methodology 

is highlighted, including the background of RCF defects and fracture behaviour in rails. The 

chapter is concluded with an articulation of the trends, needs and significance of more 

intelligent and self-learning condition monitoring systems. 

 

Chapter two describes the current rail inspection methods in industry focusing on NDT’s. 

These methods are described in such a manner that highlights the best choice of delivering 

the aim and objectives of the PhD project. The chapter further examines initiation, fracture 

mechanism, and propagation prediction of RCF damage in rails. The discussions highlight the 

best suited model choice for linking fracture behaviour with NDT. As a conclusion the yet to 

be explored benefits of incorporation of detection and prediction model is elaborated. 

 

Chapter three introduces the details of the proposed intelligent image processing algorithm for 

detection and data generation of surface artefacts. It also demonstrates the application of the 

proposed algorithm on both field and laboratory image data. The chapter is concluded with 

the observation and findings related to performance of the proposed algorithm. 

 

Chapter four discusses the development of local fracture mechanics model, which is a 

combination of the stress concentration at the crack tip acquired from global contact model 

and the mathematical models representing tension and shear fracture mechanism (both 
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uniaxial and bi-axial loading cases). The conclusions and findings are presented after 

extensive parametric studies related to defect size, inclination angle, and track curvature.  

 

Chapter five explains the details of linking the NDT and fracture prediction models using 

LiveLink client server. The consequence of adopting the actual crack geometry for fracture 

predictions as opposed to elliptical equivalent representation is a major contribution to 

knowledge presented in this chapter. The chapter is concluded with the identification of the 

enablers and blockers of adopting this technology in industry. 

 

Chapter six presents the conclusions of the entire thesis, which serve as the basis of the 

reconditions and future works that can be explored to further improve the readiness level of 

the proposed technology.   

1.2 Rolling Contact Fatigue damage in rails 

Rail Safety and Standards Board (RSSB) Vehicle/Track System Interface Committee (V/T 

SIC) designates RCF as a major challenge in rail industry, in the sense that hasty rail 

replacement requires complex project planning, preparation, logistics difficulty, and 

unnecessary costs including service disruptions. In the UK, over 30,000 km of track is 

maintained by Network Rail, whose latest annual return report concludes that RCF is the main 

cause of rail surface and sub-surface initiated defects. These defects, isolated or continuous, 

are characterised as any failure necessitating repair or replacement for improved performance 

and conformity with Network Rail standards, Network Rail Limited, (2016). On the rail head, 

the level/severity of RCF damage especially along the rolling band is described by lengths of 

defects. Rail maintenance engineers have generally identified four distinct levels of severity 

namely- light, medium, heavy, and severe. However, in strategic points such as switches, 

crossings, stock rails, closure rails etc. is based on the frequency occurrence within the length 

of the component(s). Maintenance teams are advised to treat light and medium RCF damage 
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via cyclic inspection and periodic grinding, with no additional action required. It is only in the 

case of heavy and severe RCF that further immediate maintenance action may be required. 

In addition to severe contact conditions at the wheel-rail interface, the complex influence of 

contact geometry, vehicle suspension characteristics, traction forces and radial curving forces, 

especially after large loading cycles can be responsible for accumulated dislocations called 

Persistent Slip Bands (PSB) in the form of extrusions and intrusions as depicted in the  

Figure 1.1 below. 

 
Figure 1. 1:Crack initiation by slip and extrusion planes. (Sangrid, M.D. 2013). 

Burstow, M.C. (2006), described three modes (Mode 0, Mode 1, Mode 2) of generating RCF 

after extensive UK site specific studies related to vehicle dynamics and contact forces 

associated to these sites. Steady state forces related to curving (Mode 0) and discrete 

irregularities in track alignment especially when wheel set attempts to negotiate a piece of 

track (Mode 2) are most dominant cause of RCF on rails. More recently, Rovira, A. et al, 

(2011), explains that RCF damage is governed by the level of energy dissipated in the contact 

patch (𝑇𝛾), where a predominant cause of RCF is observed to be as a result of longitudinal 

creep force (especially if the force is in the direction of traction). For surface cracks and plastic 

deformation in rails, plastic ratcheting (which is relative to the tangential load) is said to be the 

main cause in Jones, R. Molent, L. Pitt, S. (2007).  

The different types of RCF defects have been aptly reviewed by several authors over several 

years including the recent works of Magel, E. (2011) and are summarized briefly in the 

following sections: 
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 Squats 

 As described by Wilson, A. & Kerr, M. (2012), these are surface defects initiated by RCF 

when a pair or more of leading and trailing cracks propagate in opposite directions. The cause 

of such a phenomenon has been related to the influence of high traction forces and micro-slip.  

 
Figure 1. 2: The cross-section squat type crack with the long leading crack (in rolling direction) and the 
much longer trailing crack in the opposite direction (Magel, E. 2011). 

 
 

 Gross plastic deformation 

As depicted in Figure 1.3, these defects are as a result of a considerable deterioration and 

loss of structural integrity of rail head material especially under heavy loading cycles. These 

combined, may result into vertical irregularities on the rail head that is subject to more plastic 

deformation due to impact loads from passing wheels.  

 
Figure 1. 3: Depicts a crushed head rail defect (Magel, E. 2011). 
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 Rail Gauge Corner Cracking (GCC) 

Although GCC occasionally appear on tangent rails, and rarely seen on low rails of curved 

track, such defects are caused by high wheel-rail contact stresses in addition local shear 

stresses due to slip between the wheel and rail. GCCs have been characterized 

geometrically as being fairly equally spaced along lengths of track or clustered due to track 

geometry irregularities usually for long lengths of track section.  

  
Figure 1. 4: Depicts a variety of GCC defects (Magel, E. 2011). 

 Rail Transverse defects 

Transverse cracks are initiated as a result of shells in the presence of metallurgical 

discontinuities, in the form of oxide stringers. These cracks propagate due to bending stress, 

residual stress, and thermal stress from rail contraction especially during the winter season. 

Field observations suggest such defects are the major cause of many broken rails and 

subsequent derailments if not curtailed. 

 
Figure 1. 5: Depicts transverse defect in rails (Magel, E. 2011). 
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1.3 Linear elastic fracture mechanics (LEFM) in rails  

The existence of fatigue damage on rails is mainly responsible for significantly reducing the 

useful life of the rail infrastructure in addition to safety issues. The complexities related to 

fatigue and fracture can be observed on tangent track, and but more pronounced on curved 

track sections. RCF damage is also observed in sections of track with bi-directional operation, 

including rail butt welds, and switches. These complexities (related to fatigue and fracture) 

have been attributed to a combination of highly multifaceted dynamic loading, primary and 

secondary stresses including varying environmental conditions. To accurately model useful 

life estimations of rail assets in the presence of a crack requires perfect understanding of 

Stress Intensity Factor (SIF) around the vicinity of crack tip, the critical fracture toughness of 

the material, and the applicable fatigue crack growth rate expression, and finally the initial and 

final crack size. 

Inglis in 1913 investigated the stress multiplier effect at the edge of a thin plate and established 

the relationship between the amount of stress magnification (at the crack tip) and radius of 

curvature for the crack (absolute crack size). A few decades later Griffith of the Royal Aircraft 

Establishment in England, concerned by the discrepancy between the conclusions of Inglis 

and the fact that larger cracks tend to grow faster than smaller ones furthered the investigation. 

He concluded that the amount of strain energy released must be greater than or equal to that 

required for the surface energy of the two new crack faces formed as a result of crack face 

extension. Experimental works of Irwin during the Second World War mathematically 

described the stress filed in the vicinity of the tip as a function of the applied remote stress and 

square root of crack length. Depending on the mode of fracture in consideration see Figure 

1.6 below. the SIF is said to be a numerical estimate of the magnitude of the effect of stress 

singularity at a point around the crack tip vicinity.  
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Figure 1. 6: Shows the tension (a), shear (b), and torsion (c) modes of fracture. (Kundu, T. 2008). 

Consequently, the value of SIF at which the crack extension is observed defines the beginning 

of crack propagation.  In practice Kundu, T. (2008) explains that the SIF is limited to the 

material yield stress thus a violation of the linear elasticity assumptions can be avoided by 

using Elastic-Plastic fracture mechanics (EPFM) approaches to describe fatigue and fracture 

process. However, in this write up the LEFM approach has been adopted to govern the 

behavior of the rail crack growth by assuming that the SIF is always less than material yield 

stress. Vasic, G. (2013) presented details of fatigue behaviour under cyclic loads under LEFM 

assumptions. 
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Figure 1. 7: Shows the material response to cyclic loading (Vasic, G. 2013). 

As described by Figure 1.7 above, the cyclic loading of wheels on rails causes the rail material 

to respond either as perfectly elastic or plastic. This is only true given that yield stress of the 

material is not exceeded. It is also possible for the rail material to experience elastic 

shakedown, such that initial plastic deformation occurs, after which the material hardens and 

behaves elastically onwards. This behaviour occurs when the material is loaded above elastic 

limit but under the elastic shakedown limit. When material is loaded above elastic shakedown 

limit, a closed elastic-plastic loop with no net accumulation of plastic deformation results. In 

addition, cyclic loads above this plastic shakedown limit, causes rail material to accumulate 

unidirectional plastic strain (plastic ratcheting). From this behavior of rail response to cyclic 

loading, Plu, J. et al (2009) explains that three phases of crack propagation in rails depicted in 

Figure 1.8 below. 

 

 
Figure 1. 8: Rail crack development (Plu, J. et al 2009). 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

27 
 

Phase I is mainly as a result of strain accumulation beyond critical material ductility often 

indicated by shear in material (in the direction of motion). At this phase, cracks are 

characterized by early initiation, and decrease in growth rate as crack depth increases. Such 

cracks are caused by train axle loads, including the effect of longitudinal and lateral creep 

forces at the contact patch. These cracks usually appear following grain boundary of the 

material microstructure. In the second phase (Phase II) shallow angle crack growth occurs at 

this stage with propagation angle of 100 − 200 relative to contact surface. The growth rate at 

this phase is observed to be proportional to contact stresses. There is sufficient evidence that 

the presence of fluid facilitating sliding of crack faces, increases in rate of propagation is 

observed. The final phase (Phase III) is also called the branch crack growth stage, where 

crack branching is caused by bending and residual stresses developed during rail 

manufacture. In this phase cracks branches up or down depending on the direction of the 

dominating stress. Propagation at this stage is very fast, and rapid fracture leading to rail 

breaks is possible.  

1.4 Chapter conclusion 

The specific aims and objectives of the PhD project have been discussed in detail. The chapter 

also introduced the background of the problem to be solved in this research work, which 

emphasises the positive impact of the yet to be explored benefit of incorporating detection and 

prediction models within a single process in railway condition monitoring. The fundamentals 

of RCF damage, including initiation, fracture mechanisms, and propagation behaviour are 

highlighted along with the fracture parameters that are essential in residual life estimation. An 

articulate understanding of the current industrial challenges, trends, and needs related to rail 

RCF damage detection and prediction will be discussed in the literature review presented in 

chapter two. 
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Chapter 2 Literature review 

A detailed literature review was undertaken across a number of areas with regards to  

current rail inspection methods in industry, with specific interest in existing image processing 

algorithms adopted for rail inspection. The review further identifies the existing models 

adopted for predicting RCF damage in rails. This review synthesises key concepts, findings 

and arguments outlined in earlier studies in order to identify relevant issues and establish a 

theoretical framework for the proposed novel incorporation of detection and prediction models. 

Journals, books, industrial reports, and patent publications have been used for this review.  

2.1 Review of rail surface inspection methods in industry 

It is undeniable that the future of rail maintenance for guaranteed efficiency and safety is being 

challenged on a multifaceted platform including increase in loading, capacity, frequency of 

travels and climate changes. In the past decade, several research projects sought to explore 

and develop novel techniques capable of accurately detecting defects with improved flexibility, 

speed and accuracy of tests. Such objectives necessitate detailed survey of existing rail NDT 

to provide the required insight for assessing the suitability and effectiveness of new inspection 

technology for predictive maintenance in industry as presented in Sawadisavi, S. et al (2009) 

and Edwards, J.R. et al (2009). The significance of more intelligent or even hybrid systems 

has been recommended in several EU funded projects including but not limited to CRAFT 

Project, Rail-Inspect. This persistence in improving NDTs is mainly because no single method 

is capable of providing all the required information on the condition of rail infrastructure. In 

addition, Innotrack, (2010) in its concluding technical report laments on the practical 

tediousness of controlling sensor lift off variations in contactless probe applications while 

frequent cases of wear/breakage in the case of contact sensors is not favourable. These 

complexities have encouraged an outlook of development and deployment of more intelligent 

and self-learning rail inspection systems by most rail condition monitoring service providers 

including Deutsche Bahn (DB), SGS, Depotrail, amongst others. Such intelligent and self-

learning RCM systems are capable of acquisition, processing, and generation of statistical 
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data engineered for better predictive infrastructure management and track engineer planning. 

The following conventional NDEs are elaborated with primary focus on operational principle, 

advances in the technology and possible novel applications.  

2.1.1 Ultrasonic rail inspection 

Since 1950s, ultrasonic tests (UT) have been performed on rails. The detection of defects are 

functions of amplitude and arrival time of reflected bulk waves due to the interaction of an 

electric charge with a piezo electric crystal. The method is capable of detecting both surface 

and subsurface defects by simply changing frequencies of excitation current. To-date this 

method remains one of the most popular in the U.K. Advances in technology have resulted 

into the use of portable instruments ranging from hand-held, and rollers. In Hesse, (2007) 

conventional ultrasonic contact probes are said to be most effective at detecting only 

subsurface defects at high speeds (above 75 km/hr). For contactless probes (with pre-

determined frequencies optimal to defect types based on FEA simulation), it was suggested 

in Han, S. et al (2015) as a solution to practical challenges of electromagnetically generating 

and measuring waves in rails. Kenderian S et al, (2003) proved a concept that combines laser 

generation with air-coupled detection of ultrasound as the future of ultrasonic testing.  

2.1.2 Eddy currents (EC) inspection of rails 

Eddy current (EC) methods are based on interaction between eddy current sensor’s magnetic 

fields and the homogeneity in rail steel material. Song, Z., et al (2011) concluded that surface 

roughness of rail corresponds to amplitude change in sensor field, while phase changes 

indicate surface crack. Improvements in EC NDE instruments have been significantly focused 

on the suitability of probe sensor vis-a-vis the test requirements as highlighted by most NDE 

manufacturers such as OLYMPUS. From measurements of either absolute probe (single coil), 

to that of differential probes (multi-active coil), the presence of a defect is established by either 

absolute or differential change in impedance. In a more recent publication by Lui, Z., et al 

(2013) a classical four-arm bridge with two known impedances utilised as an EC sensor such 

that the bridge differential is optimised for rail NDE using a digital lock-in amplifier algorithm 
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(for improved sensitivity of detection). The severity of sensor lift-off effect can be dynamically 

compensated by summing the signals of the detection coils. 

 
                                        
Figure 2. 1: Differential probe generates differential signal only when one end of the coil is over a defect 
free region and the other is at a defected position. 

 
Garcia-Martin, J., (2011) discusses limitations related to: indirect estimation of defect depth, 

adverse effect of sensor lift-off variation (no more than 2mm), electrical conductivity and the 

magnetic permeability of the rail, and the signal to noise ratio as among the most influential 

variables that affect the performance of EC. In spite of this observation Network Rail in the 

U.K, confidently reports an increase in RCF damage on the network based on eddy current 

measurements more than previously reported by UT method.  

2.1.3 Automated vision systems (AVS) for rail inspection  

The availability of improved Image Acquisition Systems (IAS), even customised depending on 

the nature of inspection to be performed, has enabled automated vision systems to operate at 

very high velocities (speeds up to 100km/h). The type of test is observed to influence 

inspection speed, with the slowest being wheel burn tests at speeds less than 10km/hr. The 

flexibility and remoteness of AVS has attracted more curiosity according to recent review of 

applied AVS in rail industry as highlighted in Resendiz, E. (2013). 

In this regard, Teng, Z., Lui, F., & Zhang, B. (2016) demonstrated the detection of railway track 

performed by Simple Linear Iterative Clustering (SLIC or super-pixels) based on colour 

similarity and proximity of pixels within an image. This detection algorithm is comprised of a 

weighting factor (TF-IDF) that indicates the significance (or frequency) of a particular super-

pixel within the image and in the overall data set. True detection is said to be achieved (green 
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highlight depicted in Figure 2.2) when the super-pixel in consideration is repeatedly occurring 

in the image but low within the overall image data set.      

 
Figure 2. 2: Object detection using super pixels (Teng, Z., Liu, F., & Zhang, B., 2016) 

Detection by forecasting governed by a combination of exhaustive search and jump search 

algorithms is discussed in Joy, G., Hyfa, N., Krishnan, R. (2014). In this method a window, 

exhaustively scans the image and true detection is said to coincide with the occurrence of left 

and right bolts at the same lateral axis (at the same y-coordinate). While a false detection 

occurs when the system fails to find an object in a forecasted position.  

Resendiz, E., et al (2010) considered safety regulations in detection of irregularities and defects 

in rails, and proposed a Machine Vision System (MVS) using video data, adjustable lighting 

parameters, and virtual track model calibrated camera angles. The data is processed with a 

combination of edge and texture algorithms. Somalraju, S. et al (2012) presented a Robust 

Railway Crack Detection Scheme (RRCDS) using LED-LDR MVS. This MVS uses DC motors 

for each rail roller and an Audrino microcontroller ATMEGA 328 for deciding true crack 

detection based on photovoltaic properties of LDR sensor. The location (longitude and 

latitude) of the crack is determined using a combination GSM and GPS satellite systems. Jian-

hua, Q., et al (2008) discussed the design of rail surface crack detection hardware using a 

TCD1208AP Linear Charge Coupled Device (LCCD) image sensor. The image processing 
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algorithms are executed on a DSP module based on noise elimination, edge detection, image 

segmentation and a warning system. AVS inspection of artefacts was discussed by Lui, Z., et 

al. (2010) in their publication focusing on spalling of rail head and general surface cracks. 

Algorithms comprised of algorithms related to de-noising, image feature extraction (region 

width and region position) applied in processing the acquired images of the rail. Further 

dynamic thresholding of ROI and feature matching is performed. The system is of in-service 

type with CCD line scan IAS coupled with embedded data processing system for the 

estimation of percentage of rail head wear and length of cracks on rail surface as an evaluation 

of flaw on rails. Li, Q., Ren, S. (2012) proposed an illumination invariant MLC contrast 

enhancement which offers normalised truncation of background and foreground pixels based 

on a combination of pixel intensity and local window mean values. Furthermore, Proportion 

Emphasised Maximum Entropy thresholding of discrete defects was performed by analysing 

the cumulative probability of a specific gray level, such that a normally distributed probability 

function is clearly divided into object (Po) and background (PB) probabilities. In addition, the 

threshold of segmentation is selected as the maximum total information provided by Po and 

PB respectively.  

 
Figure 2. 3: Diagram of image analysis subsystem (Li, Q., & Ren, S. 2012) 
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Enhanced inspection speed and repeatable measurements have been ensured through 

simultaneous application of vision systems with vibration-based methods for fault detection 

and track data calibration as explored in Belkhade, A. & Kathale, A. (2014).  

2.2 Existing image processing algorithms for rail condition monitoring 

This section of the thesis presents the variety of the fundamental image processing algorithms 

that have/can been/be successfully applied to rail images for condition monitoring purposes. 

The algorithms are for enhancement, segmentation, and feature extraction.   

2.2.1 Pre-processing 

Image enhancement (pre-processing) are techniques with the principal objective of improving 

interpretability or perception of information within an image to suit a specific application. There 

exists a wide variety of enhancement techniques that are broadly categorised into spatial and 

frequency domain methods adopted for dynamic range modification, noise reduction, and 

edge enhancement. The appropriateness of a particular choice is influenced by the imaging 

modality, task at hand, image resolution and illumination/reflection properties of the rail 

surface. 

2.2.1.1 Spatial domain enhancement method (SDEM) 

This enhancement method involves the direct manipulation of neighbourhood pixel values 

(both linear and non-linear) in an image for enhanced overall perception of information. Bedi, 

(2013) has described conventional SDEM as follows: 

2.2.1.1a Point processing operation (PPO)  

Also called simple intensity transformation, a variety of which are depicted in Figure 2.4 below. 

These methods often described as manipulations on the intensity of individual pixels, the 

following PPO’s have been applied in rail image processing. 
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Figure 2. 4: Types of point processing operations on images. (Singh, G,M., 2013) 

 

 Negative 

The most basic and simple PPO is the negative g(x,y) transformation, expressed as the 

variation between each pixel intensity value f(x,y) to maximum intensity L as elaborated in 

equation 2.1 below.  

 

𝑔(𝑥, 𝑦) = 𝐿 − 𝑓(𝑥, 𝑦)      (2.1) 

 Log transformation 

Log transformation entails replacing each pixel ‘𝑙’ with its logarithm as described in  

equation 2.2. For a constant value of c, with spatial coordinate ‘r’ positive, the model 

transforms a narrow range of low intensity values to wider ranges. Also, wide range of high 

intensities values are mapped to narrower ranges. The resulting image g, expands the 

values of dark pixels while compressing bright pixel intensity values. 
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𝑔 = 𝑐 × 𝑙𝑜𝑔(𝑙 + 𝑟)     (2.2) 

 Piece wise linear transformation 

The piece-wise linear transformation function enables modification of dynamic range of 

intensity values by changing the slope and intercept of user defined linear function as depicted 

in Figure 2.5. The complicated nature of optimising dynamic ranges, be it global or local is 

mainly dependent on the distribution of intensity values within the input image. 
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(b) 
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(c) 
Figure 2. 5: MATLAB piece-wise transformation function applied on the original Heavily damaged rail 
surface image (on the left), such that on the left of(a) shows 3 control points, while left of (b) shows 4 
control points, and to the left of (c) shows 8 control points; spline functions defining mapping of input to 
output intensity values. 
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2.2.1.1b Spatial (M x N neighbourhood) operation 

Most image processing applications including document binarisation, medical image analysis, 

facial, and fingerprint recognition take advantage of the improved computational speed, and 

adaptive nature of spatial enhancement. The following types of spatial operations have been 

applied for rail image processing:  

 Adaptive normalisation method 

Both global and local enhancement using normalisation is achieved by scaling and stretching 

the range of grey level values to span a desired range of grey level intensities for revealing 

more clearly the local dark or bright regions of an image. Kim, B. & Park, D. (2002) discusses 

the implementation of equation 2.3, initially applied for normalisation of fingerprint images. 

𝐺(𝑥, 𝑦) =

{
 

 𝑀𝑜 +√
𝑉𝐴𝑅0(𝐼(𝑥,𝑦)−�̂�)

2

𝑉𝐴�̂�
  𝐼(𝑥, 𝑦) > �̂�

𝑀𝑜 −√
𝑉𝐴𝑅0(𝐼(𝑥,𝑦)−�̂�)

2

𝑉𝐴�̂�
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2.3) 

Where 𝑀𝑜 and 𝑉𝐴𝑅0 are the desired mean and variance respectively while  �̂� 𝑎𝑛𝑑 𝑉𝐴�̂� 

are the computed mean and variance of input image, and can be evaluated locally (in a window 

of known size) or globally (for entire image).  

In Xie, X., & Lam, K. (2006) a normalisation method which focuses on railhead illumination 

invariant enhancement according to the formulation in equation 2.4, is observed to decrease 

in the dynamic range of the grey scale between foreground and background pixel intensity 

values.  

𝐺(𝑥, 𝑦) =
𝐹(𝑥,𝑦)−𝐸(𝑥′,𝑦′)

𝑣𝑎𝑟𝐹(𝑥′,𝑦′)
     (2.4) 

Where E(𝑥′, 𝑦′) is the mean of F(𝑥′, 𝑦′) and (𝑥′, 𝑦′) is the spatial coordinate of the local window 

W. F(x,y) is the original image intensity value at position specified by (x,y) related to the 

neighbourhood of W.  
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Figure 2. 6: Image enhancement by normalization. 

Besides the mean and variance of the input image, Lui, Y., et al (2013) explains that 

illumination invariant normalisation can be achieved using gradients in the image as weights 

in averaging operation on intensity values.  

 Spatial filtering enhancement 

Spatial filtering of images is based on kernel or mask processing of aggregates pixels which 

has been demonstrated on crack images by Zhang, W., et al (2014) such that the centre pixel 

of each neighbourhood is enhanced in relation to the pre-determined origin of the mask. 

Depending on the operation to be performed, spatial filters are broadly classified into Linear 

and Non-linear filters, and in both cases either convolution or correlation operators are utilised 

for processing an MxN kernel coefficients on an M by N image. Singh Negi, S. & Gupta, B. 

(2014) explains that linear filters are mainly used to reduce noise or produce less pixelated 

images there by preserving details. 
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𝐴 =
∑𝑓(𝑥,𝑦)

𝑛
   (2.5) 

Where f(x,y) is the pixel intensity within a specified local window, and n is the number of pixels 

in the local window.  

Weng, W. & Chen, H. (2015) explains smoothing of low gray values, to cushion the impact of 

environmental contaminants by using a cascaded combination of Linear Mean Filter (LMF), 

standard deviation based offset (for noise compensation), and image subtraction as Figure 

described in section 3.3.1.1.  

  

Figure 2. 7: Output of linear averaging filter on heavily damages rail surface image. 

Non-linear order static filters are based on ordering statistical ranking of the pixels contained 

in a kernel. The value of the centre pixel (within the mask) is replaced by the output of a 

specified statistical operation. Median, Max, and Min filters response of a heavily damaged 

rail image is depicted in Figure 2.11 below. Simulated results confirm the conclusion of 
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Gonzalez, R,C., & Woods, R,E. (2005) that the median filter is the most robust at preserving 

sharpness of the original image. 

 

(a)          (b)      (c) 

Figure 2. 8: Oder static filters applied on heavily damaged rail surface image; (a) Min filter, (b) Max filter, 
(c) Median filter. 

 Histogram processing operation 

Histogram equalisation is a well-known contrast enhancement technique achieved by altering 

the spatial histogram of an image to closely match a uniform distribution (𝑝𝑛) of equation 2.6, 

based on Cumulative distribution function (CDF). 
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𝑝𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
, 𝑛 = 0,1,2,… , 𝐿 − 1  (2.6) 

 

The histogram equalised image g(x,y) for an input image f(x,y) is expressed in equation 2.7, 

where L is the number of possible intensity values mostly 256 for gray scale images. 

𝑔(𝑥, 𝑦) = (𝐿 − 1)∑ 𝑝𝑛
𝑓(𝑥,𝑦)
𝑛=0    (2.7) 

Global Histogram Equalization (GHE) in Figure 2.9, is an example of such conventional 

enhancement, and its performance is adversely hindered by high peaks or large spatial 

variation. As a solution, Local Histogram Equalization (LHE) is proposed, which is a 

neighbourhood based approach but is concluded to induce undesirable checkerboard effects. 

In Singh, G.M., Kohli, M.S., & Diwakar, M. (2013) a Contrast Limited Adaptive Histogram 

Equalization (CLAHE) that operates on contextual region of pixels and uses bilinear 

interpolation to eliminate artificially induced checkerboard effect is presented. In the 

investigations of Wang, C., & Ye, Z. (2005) extensions of HE include Brightness Preserving 

Histogram Equalization with Maximum Entropy (BPHEME), capable of identifying a specific 

target histogram that maximizes the entropy of the image. Kuber, M., Dixit, M. (2014) 

investigates the modifications related to enhancement applications in the past decade, taking 

cognisance of novel techniques such as the Grey-level Grouping (GLG) and its extended 

version, Selective GLG (SGLG) capable of grouping and ungrouping histogram components 

with specified intensity levels. A separate research investigating the so called Multi-HE was 

presented by Menotti, D., et al (2007), and it was concluded based on uniform decomposition 

of original image into various sub-images, followed by classical HE operations yielding 

improved results. 
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Figure 2. 9: Histogram equalisation applied on heavily damaged rail image. 

 

2.2.1.2 Frequency domain enhancement  

Variations from dark to bright and back to dark grey levels (or vice versa) correspond to change 

in frequency from High to Low values which are typical to existence of either edges, noise, or 

large background objects. The advantage of this approach is that, it is not limited to integral 

multiples of fundamental frequencies applicable to only periodic signals. Also the significance 

of estimated magnitude and phase response of images provide the much needed information 

on the relative amounts and positions of varied frequencies existing in the original image 

signals. 

 Basic low and high pass filters 

Low pass filters (LPF) are typical examples of smoothing filters that have been adopted for 

robust detection algorithms in railway as presented by Javed, A., et al (2012) and even for 

inspection of surface defects as demonstrated by Lui, Z., et al (2010). The authors suggested 
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that the kernel/mask size is proportional to computational time and extent of blur in the edges. 

The transfer functions related to LPF are elaborated in Appendix A1.  

IDEAL LOWPASS 

FILTER 

BUTTERWORTH LOWPASS 

FILTER 

GUASSIAN LOWPASS FILTER 

 

  

 
Table 2. 1: Shows the comparison of Ideal, Butterworth and Gaussian low pass filters 
response on a heavily damaged rail image. 

High pass filtering (HPF) is another typical image sharpening technique and is concluded to 

suppress details of images especially in the case of kernels with positive values at origin and 

negative coefficients elsewhere Malik, Q. (2013). As depicted in Table 2.2 below, the filter 

response is observed to mostly enhance edges within an image. The transfer functions related 

to LPF are elaborated in Appendix A2.  
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  IDEAL HIGHPASS FILTER BUTTERWORTH HIGHPASS 

FILTER 

GUASSIAN HIGHPASS 

FILTER 

   

Table 2. 2: Shows the comparison of Ideal, Butterworth and Gaussian high pass filters 
response on a heavily damaged rail image. 

 Fourier Transform (FT) enhancement 

In Kumari, A.V. (2015) the author explains the power of FT transforms in terms of its ability 

to synthesize non-periodic wave forms using sinusoids with continuous range of frequencies. 

Gonzalez, R,C., & Woods, R,E. (2005) described the method as principally based on the spatial 

convolution theorem which is equivalent to the more computationally efficient spatial 

multiplication in the frequency domain as depicted in Figure 2.10.  
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Figure 2. 10: Block diagram for FT based filtering of images (Gonzalez, R,C., & Woods, R,E. 2005).  

 

Similar result has been obtained as summarised in Tables 2.1 and 2.2 with faster 

computational speed attributed to multiplication in frequency domain as opposed to time 

consuming convolution operation in the spatial domain. 

2.2.2 Segmenting region of interest 

Detection of objects of interest in image processing is mainly by partitioning the image into 

meaningful structures (number of partitions is subject to the resolution of object or region of 

interest) commonly termed as image segmentation. Zaitoun, M.N., Aqel, M.J. (2015) describes 

this process as not only classic but also hotspot in the field of image processing. The efficiency 

of segmenting object of interest is defined by the amount of connected pixels with distinct grey 

intensity values. In the absence of a unique solution to the problem of segmentation, there 

exist numerous approaches broadly categorised into region or edge based as depicted in 

Figure 2.11 below. 
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Figure 2. 11: Shows the types of segmentation methods in literature (Kahn, W. 2013). 

 

2.2.2.1 Edge based image segmentation 

In this technique, discontinuities or ending (edges) at the border of two partitions within an 

image (local variance in image intensity) is considered an edge. In Johnson, C.I. (2013) work 

of detecting and classifying a range of tramway rail surface features including other rail 

infrastructure, the author concluded that standard edge detection methods demonstrated 

inability of detecting the running band under varying circumstances.  In Figure 2.12 a and b 

below, depicts Step and Ramp edges respectively, which describe an abrupt and gradual 

change in intensity from one value on one side of the discontinuity to a different value on the 

opposite side of the discontinuity. Figure 2.12 c and d, are line and roof edges, which describe 

abrupt changes only for short distance and gradual change in longer distance respectively.  
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Figure 2. 12: Shows the types of edges that can be found in an image (Senthilkumaran, N., & Rajesh, R. 
2009) 

2.2.2.2 Theory based image segmentation 

The intuition of this method is derived from diverse fields such as fuzzy logic based algorithms. 

Kandwal, R., Kumar, A., & Bhargava, S. (2014) explain that self-supervised and unsupervised 

learning capability of Fuzzification functions and clustering techniques are of great significance 

in the successful classification of image pixels based on some similarity criteria. Novel 

extensions of the fuzzy rule segmentation technique was introduced by Kahn, W. (2013) based 

on fuzzy IF-THEN rule structure and three membership functions namely; Region pixel 

distribution, measure of region closeness, and to find the spatial relationship among pixels. 

Furthermore, dynamic adjustment of linear weights in fuzzy connectedness for segmentation 

was demonstrated in a novel DyW algorithm, with successful application to images of varied 

modalities.  

2.2.2.3 Region based segmentation 

Instead of segmentation based on abrupt changes in pixel intensity, in this approach the image 

is partitioned into regions in accordance with some predefined similarity and termination 

criteria. In the case where the region is expanded with neighbouring pixel, satisfying the 

similarity rule will result to a special region based segmentation called region growing. 
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However, it is a case of Region Splitting and Merging if the partitions are comprised of arbitrary 

unconnected regions, which are then subsequently merged or split according to a pre-defined 

condition. Typically, the split-merge condition is such that every partition is initially split into 

four branches, and regions are only merged when no further splitting is achievable, and this 

process is iterated until no further merging is possible. Johnson, C.I. (2013) presented novel 

genetic region growing algorithm for segmentation based upon a supervised random 

examination of pixels which is not limited to the adjacent neighbouring pixels only as 

elaborated in equation 2.9 below.  

∑ 𝑓(𝐼(𝑥, 𝑦)) ≥ 𝑇𝑚,𝑛
𝑥=𝑠(𝑙𝑏,𝑟𝑏),𝑦=(𝐻,𝑊)     (2.9) 

Where (lb) (rb) are left and right running band edge cue of an WxH sized image respectively. 

The comparison function of regions (f), operates on a specific pixel to be examined l(x,y) 

generated from a random sample (s). A region is considered outside the running band data if 

f returns a value greater than or equal to threshold T. 

2.2.2.4 Thresholding based segmentation 

In thresholding based segmentation, pixels are allocated to background or foreground 

category according to intensity value characteristic. Kandwal, R., Kumar, A., & Bhargava, S. 

(2014) emphasises the computational ease and power embedded in this approach especially 

in the case of images with relatively darker background compared to foreground pixels or vice 

versa. Depending on the distribution of intensity values in the image, a global or local approach 

may be preferred. 

2.2.2.4.a Global thresholding 

Global thresholding is comprised of a single threshold value (𝑇) for an entire image 𝐼(𝑥, 𝑦) as 

described in equation 2.10. Senthilkumaran, N. & Vaithegi, S. (2016) concludes that the 

popular Otsu threshold is most influenced by the class with larger variance, also best 

performance is realised for unimodal images. An improved Otsu method using weighted object 

variance for segmenting rail surface defects was presented by Yuan, X., Wu, L., & Peng, Q. 

(2015) and explains that results are better than most approaches.  
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𝑞(𝑥, 𝑦) = {
1, 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇
0, 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑇

     (2.10) 

2.2.2.4.b   Local thresholding 

Carabias, D.M. (2012) elaborates that for multi-modal images, due to poor illumination, rust 

or other environmental factors, local thresholding (formulated in equation 2.11) is dependent 

on local neighbourhood statistics such as range, variance, or surface-fitting parameters which 

are of importance to good segmentation results. 

𝑏(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑊(𝑥, 𝑦) > 𝑇𝑊(𝑥,𝑦)
0, 𝑖𝑓 𝑊(𝑥, 𝑦) ≤ 𝑇𝑊(𝑥,𝑦)

    (2.11) 

Where 𝑊(𝑥, 𝑦) is a specified neighourhood of pixels within original image 𝐼(𝑥, 𝑦). 𝑇𝑊(𝑥,𝑦) is the 

estimated threshold of each neighbourhood in consideration. 

2.2.3 Feature extraction (FE) 

Feature Extraction is a pre-requisite in any image analysis algorithm that intends to perform 

some form of detection, classification, or matching. Low level feature detection (automatic 

feature extraction without shape information) can be achieved with satisfactory results using 

thresholding (as discussed in section 2.2.2). The fact remains that a threshold value large 

enough will remove unwanted blobs, but some discontinuities reduce efficient feature 

extraction, which is not acceptable for crack detection. Existing literature suggests that 

geometrical approach is best suited for extracting feature with known shape, while statistical 

and transform methods are generally considered more robust. Zhang, W., Zhang, Z., Qi, D., 

& Liu, Y. (2014) by means of several experimental verifications related to rail images, 

concluded that the most critical factor in differentiating background (railhead) and foreground 

(defect region) include: - 

 

i) The estimated standard deviation of the distance histogram expressed in equation 

2.12, which describes the degree of irregularity of a spatial shape. Higher standard 

deviation values are realised for irrelevant objects with an irregular shape (i.e. 

heterogeneous distance distribution).  
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𝜎 = √
1

𝑁𝑏
(𝑝𝑖 − 𝜇𝑝)

2    (2.12) 

Where 𝑁𝑑𝑖 is the number of pixels with the same 𝑑𝑖 to centroid. 𝑑𝑖 is the Euclidean distance 

between a pixel and centre pixel. 𝑝𝑖 =
𝑁𝑑𝑖

𝑁𝑏
 is the histogram distance of the image. 𝑁𝑏 is the 

total number of pixels. 𝜇𝑝: is the average distance of all pixels. 

 

ii) The pixel number in most cases can be used to extract features especially in the 

case analysing false local dim regions (identified by morphological black top-hat 

transformation) such that these irrelevant objects have intensity values always less 

than those of actual defects. The statistical results indicate only about 10% of peak 

intensity values are actual defects. 

 

iii) Average gray level is useful for feature extraction especially prior to binary 

segmentation, in the case of images having the actual defect region much darker 

than local dim regions (which correspond to high gray levels on the gray scale).  

 

Feature extraction for general object detection along tracks is achievable with simple 

algorithms as demonstrated by Bhondwe, S.D., et al (2014). In the investigation of rail surface 

damage detection, Lui, Z., et al (2010) after analysing pre-processed (enhanced) images, 

proposed that the width and probability of occurrence of each blob (detected defect) can be 

used to extract spalling on rails. It was concluded that strips at the edge of the rail and grind 

marks (typical contaminants) of field acquired rail defect images are successfully removed 

using this approach. This method has been extended by Weng, W. & Chen, H. (2015) to 

include the estimated optimal segmentation threshold, thus enabling the determination of 

probable defect area through the comparison of each labelled defect area’s relative gray value 

to that of the enhanced imaged (𝐼𝑒𝑛ℎ) according weighted function described by equation 2.13. 

𝑤𝑒𝑖𝑔ℎ𝑡 = ∑
𝐼𝑒𝑛ℎ

𝑎𝑟𝑒𝑎𝑎𝑟𝑒𝑎    (2.13) 
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A threshold value is determined as a function of the threshold of defect area 𝑇ℎ𝑟 − 𝑎𝑟𝑒𝑎 and 

the gray value of defect region with threshold 𝑇ℎ𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡. And for each suspect defect area 

true detection is achieved in the case the condition of equation 2.14 is satisfied. 

 

𝑇𝑎𝑟(𝑥) = {
𝑇𝑟𝑢𝑒,    𝑖𝑓      𝑎𝑟𝑒𝑎𝑟 > 𝑇ℎ𝑟 − 𝑎𝑟𝑒𝑎   𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑇ℎ𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡

𝑓𝑎𝑙𝑠𝑒,    𝑖𝑓    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2.14) 

 

Li, Q., & Ren, S. (2012) observed that the difference in contrast between a Minimum 

Subscribed Rectangle (MSR) and the Extended Minimum Subscribed Rectangle (EMSR) 

detailed in equation 2.15-2.17 can be considered a criterion for true defect detection, in 

addition to the minimum or maximum area of defects based on railway maintenance 

standards. 

𝑀𝑆𝑅 = {𝑦1: 𝑦2 , 𝑥1: 𝑥2 }    (2.15) 

𝐸𝑀𝑆𝑅 = {𝑦1 −
ℎ

2
: 𝑦2 +

ℎ

2
 , 𝑥1: 𝑥2 }    (2.16) 

ℎ = 𝑦2 − 𝑦1     (2.17) 

Where 𝑦1, 𝑦2 and 𝑥1, 𝑥2  are low, high border coordinates in longitudinal and in transversal 

directions respectively. h denotes the extended length in the longitudinal direction. 

 

This relationship between defect area and contrast is optimised for each defect based on area 

threshold (𝑇𝑎) contrast threshold (𝑇𝑐) as described in equation 2.18 and 2.19. 

𝐴𝑟𝑒𝑎 (𝑅) ≥ 𝑇𝑎 𝑎𝑛𝑑 𝐶(𝑅) ≥ 𝑇𝑐   (2.18) 

𝐶(𝑅) =
𝜇𝐸𝑅−𝜇𝑅

𝜇𝐸𝑅
     (2.19) 

Where the area threshold 𝑇𝑎 is defined according to the specification of railway maintenance. 

𝜇𝐸𝑅 and 𝜇𝑅 are the mean intensity of gray levels of the EMSR and MSR respectively. The 

contrast threshold 𝑇𝑐 is set as 𝑇𝑐 =  0.1  in Li, Q., & Ren, S. (2012). 
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Mandriota, C., Nitti, M., Stella, E., & Distante, A. (2004) discussed the significance of Gabor 

functions as mother wavelet in texture analysis for feature extraction, highlighting the similarity 

of this method with human visual processing. It is further observed that the filter bank 

decomposition implementation of wavelet function offers improved computational speed of the 

method. In Xie, X. (2008) advances in texture based rail defect feature extraction was 

presented, and the conclusion drawn from this investigation suggests no superior method can 

be pin pointed depending on the application, even though hybrid texture analyses models are 

generally preferred in most applications.  

2.3 Fatigue, initiation and propagation in rails 

Post Second World War experimental work of George R. Irwin led to the establishment of 

purely elastic solutions for estimating energy required for fracture and this opened the gateway 

for precise modelling of fatigue life composed of initiation, stable propagation leading to final 

failure. In rail industry, rail steel response to cyclic loading (as in the case rolling contact), 

crack initiation and propagation and residual rail life estimations have been developed and 

even adopted in rail predictive maintenance through a variety of models including the Whole 

Life Rail Model. Optimised maintenance strategy through predictive modelling and simulation 

is highly prioritised by track engineers so as to curtail annual maintenance costs in European 

rail network running into the tune of 300 million Euros Brian, W. (2015). 

In a review by Ringsberg, J.W. (2001) theoretical fatigue life prediction models have been 

discussed, (of which Equivalent strain approach i.e. fatigue initiation assumed for material 

plane with maximum range of shear strain) even though failure to account for the effect of 

mean stresses from the out-of-phase non-proportional loading on the fatigue life compromises 

accuracy of prediction. A critical plane approach that account for mean stress improve 

prediction of crack initiation plane and the fatigue life as demonstrated in the model of Brown, 

M.W., & Miller, K.J. (1973) and that of Fatemi, A., Socie, D.F. (1988). However, they do not 

account for material hardening satisfactorily, which is important in rolling contacts. In the case 

of Energy based models, the product of stress and strain is a measure of material energy 
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density per load cycle, and a crack is assumed to initiate and grow in the direction of the 

largest value of the energy-density. The limitation associated with these methods is that they 

do not address specific planes on which cracks will nucleate or directions along which cracks 

will propagate. More current situation report on RCF by Viduad, M. & Zwanenburg, W. (2009) 

discusses how cracks propagate slowly in the surface plain of the rail in the same direction as 

the plastic deformation at an angle of 15º to 25º angle to the running surface of the rail at depth 

of no more than 5mm. 

2.3.1 Crack initiation models  

2.3.1.1 Whole life rail model 

In the U.K, Rail Safety and Standard Board (RSSB) have funded and managed RCF prediction 

research project leading to the development of Whole Life Rail Model (WLRM) as a tool to 

help track engineers in managing network infrastructure. Based on energy dissipated in the 

contact patch (Tγ), the wear number is estimated as a function of creep forces and 

corresponding creepages. Based on Figure 2.13, Iwnicki, S. (2009) elaborates on the fact that 

as Tγ function in equation 2.20 increases from 0 to 15 Nm/ms, no RCF damage is generated 

as there is insufficient energy to initiate RCF cracks. However, as Tγ increases from 15 to 65 

Nm/ms, the probability of RCF initiation increases, to a maximum of 10 at a Tγ value of 65 

Nm/ms.  Above this value i.e. from 65 to 175 Nm/ms, the level of energy is such that the 

dominant form of surface damage is wear (rather than crack initiation) therefore the probability 

of RCF damage decreases as wear increases. Negative values of RCF damage index 

indicating the values of Tγ greater than 175 Nm/ms, results in wear and no RCF initiation.  

 

𝐹𝛾 = 𝐹𝑥𝛾𝑥 + 𝐹𝑦𝛾𝑦 + 𝐹𝑧𝛾𝑧    (2.20) 

Where 𝐹𝛾is the Tγ, 𝐹𝑥 is the longitudinal creep force, 𝛾𝑥 is the longitudinal creepage, 𝐹𝑦is the 

lateral creep force, and 𝛾𝑦 is the lateral creepage, 𝐹𝑧is the spin creep force, and 𝛾𝑧 is the spin 

creepage.    
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Figure 2. 13: Relationship between 𝑻𝜸 and RCF damage index. The units of the RCF damage index is 

such that for a damage index of 1, 100,000 axle passes would result in RCF initiation (Iwnicki, S. 2009). 

 

In RSSB WLRM R&D report, RCF damage propensity was also defined as a function of 

damage parameter dependent on growth rate and wear rate according to equation 2.21.  

𝑅𝐶𝐹 𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 𝐶 × 𝑤𝑒𝑎𝑟 𝑟𝑎𝑡𝑒  (2.21) 

where C is a constant term to achieve the correct balance between crack growth and wear. 

 

In the absence of wear information, findings from the University of Sheffield Tyfour, W.R., 

Beynon, J.H., & Kapoor, A. (1996) suggests that the early growth of RCF crack is related to 

the amount by which the contact stress exceeds the appropriate shakedown limit. AEA 

Technology Rail studies, published in Beagles, A. E. (2002) showed that the contact 

conditions for the majority of vehicles, except on extremely tight curves, corresponds to 

damage parameter which suggests that RCF damage is as likely to occur on tangent track as 
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in most curved track, which does not agree with site observations. Failure to incorporate the 

position and area of the contact patch could give RCF propensities between 1.5 and 3 times 

greater than those calculated when such effects were included. Preliminary studies on this 

modification as presented in Beagles, M. (2002) yields equation 2.22 and 2.23 in terms of 

contact position and contact patch width. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑎𝑚𝑎𝑔𝑒 = √1 − (
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑒

𝐻𝑎𝑙𝑓 𝑤𝑖𝑑𝑡ℎ
)   (2.22) 

𝐻𝑎𝑙𝑓 𝑤𝑖𝑑𝑡ℎ = √
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑎𝑡𝑐ℎ 𝑎𝑟𝑒𝑎

𝜋×𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑖𝑡𝑦
    (2.23) 

2.3.1.2 Shakedown method 

The shakedown method utilises a plot of contact stress against traction coefficient (defined as 

the ratio of the tangential to normal forces). The material properties set the ‘shakedown limit’ 

and exceedance of this means that RCF crack initiation is likely to occur. Field experience 

suggests that RCF behaviour in the case of low traction coefficient (in the range of 0 to 0.15) 

corresponds to contact conditions below the shakedown limit thus no RCF initiated and wear 

rate is significantly meaning cracks won’t get worn out even if initiated. For moderate traction 

coefficient (ranging 0.15 to 0.3) significant contact conditions are above the shakedown limit 

and in spite of appreciation in wear rate, majority of RCF damage is within this range. High 

traction coefficient (above 0.3) contact conditions are well above the shakedown limit, but the 

wear rate is observed to dominate crack growth rate, resulting to minimum RCF damage in 

such regions. A modification of the conventional shake down fatigue damage index described 

in Dirks, B., Enblom, R., Ekberg, A., & Berg, M. (2015) is performed using equation 2.24, and 

damage is said to occur when the SI>0 occurs. 

𝑆𝐼(𝑥, 𝑦) = √𝜏𝑧𝑥(𝑥, 𝑦)
2 + 𝜏𝑧𝑦(𝑥, 𝑦)

2 − 𝑘   (2.24) 

Where k represents the is yield limit in shear, longitudinal and lateral shear stresses for each 

cell 𝜏𝑧𝑥(𝑥, 𝑦)  and 𝜏𝑧𝑦(𝑥, 𝑦) respectively. 
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2.3.2 Crack propagation models in rails 

Brouzoulis, J., & Ekh, M. (2012) presented a crack driving force (G) model derived from the 

concept of homogenous hyper-elastic material forces. As depicted in Figure 2.20, the crack 

driving force is decomposable into parallel and perpendicular components. It is shown that 

only the component parallel to the crack tip of the crack driving force is a reliable quantity that 

can be used in RCF growth prediction. 

 

Figure 2. 14: Crack driving force concept short surface head check like cracks, often 
observed at the rail gauge corner. (Brouzoulis, J., & Ekh, M. 2012). 

ℊ = ℊ𝑖𝑛𝑡 + ℊ𝑠𝑢𝑟𝑓     (2.33) 

Where ℊ𝑖𝑛𝑡represents contribution to the crack driving force from the internal Eshelby 

stresses and ℊ𝑠𝑢𝑟𝑓represents the contribution from surface tractions (e.g. contact between 

crack faces). The Elshelby stress tensor defined as  is the difference between the product 

of strain energy 𝜓 and the product of deformation gradient (F) with First Piola-Kirchoff stress 

tensor ( 𝑃). 

 

Based on the crack driving force expressed in equation 2.33, the following rate independent 

propagation law in the time domain is proposed by Brouzoulis, J., & Ekh, M. (2012). 

 

𝑑𝑎

𝑑𝑡
=

1

𝛾
〈Φ̇〉𝑒∗    (2.34) 
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Where a is crack tip position, 𝑒∗  is the specified unit direction, 𝛾 material related energy 

dissipated in creating unit crack surface, is crack driving potential,. The MacCauley 

brackets 〈∗〉 =
1

2
(∗ +| ∗ |)  were used to ensure a propagation law that is proportional to the 

range of crack driving force. 

 

Dirks, B., et al (2015) summarised in equation 2.30 to 2.32 above, such that the ratio of 

reference and actual values of fatigue damage with corresponding ratio of length or depth to 

be used in estimating crack growth rate for fatigue damage levels (as described in equation 

2.35). 

 
𝜌

𝜌𝑟
=

ℎ

ℎ𝑟
=

𝐷

𝐷𝑟
    (2.35) 

Where the surface crack length (𝜌), depth (ℎ) corresponding to fatigue damage (𝐷), and 

predefined reference is length (𝜌𝑟), depth (ℎ𝑟) and damage level (𝐷𝑟) respectively. 

 

From Figure 2.21 below, it is possible for an arbitrary surface crack length (𝜌), to be derived 

from the  depth given the angle of inclination of the crack into the railhead. 

 

Figure 2. 15: Damage function based estimation of crack growth rate (Dirks, B., et al 2015) 

 

In Failure Fatigue and Fracture of rail steel by Dalberg, T., & Ekberg, A. (2002), two popular 

parameters used to describe crack behaviour in structures are the SIF and Energy release 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

59 
 

rate (G). In the case of LEFM assumptions, the two parameters are proportional load for 

constant material property. By considering the internal strain energy, including work done by 

loading forces and moments as criteria for formation of new crack surfaces in different 

materials the energy release rate/crack extension force (G) defined in equation 2.36, as the 

ratio of change in potential energy (𝑑𝜋) and change in crack area (𝑑𝐴).  

𝐺 = −
𝑑𝜋

𝑑𝐴
     (2.36) 

Accordingly, a crack is said to grow when the G equals a critical value related to fracture 

toughness of the material. However, in this literature review, the focus is on SIF description of 

crack propagation. Assuming that SIF is an indication of the amplitude of the crack-tip 

singularity, and can be determined from stresses near the crack tip along the normal to the 

crack front as shown in Figure 2.34 then equations 2.37-2.39 are applicable.  

 

Figure 2. 16: SIF estimation from stress fields at vicinity of crack tip. (Dahlberg, T., & Ekberg, 
A. 2002) 

𝐾𝐼 = ơ𝑦𝑦√𝜋𝑎𝑓     (2.37) 

𝐾𝐼𝐼 = ơ𝑦𝑥√𝜋𝑎𝑔    (2.38) 

𝐾𝐼𝐼𝐼 = ơ𝑦𝑧√𝜋𝑎ℎ    (2.39) 

Where 𝐾𝐼, 𝐾𝐼𝐼, 𝐾𝐼𝐼𝐼 are the SIF’s due to tension, shear, and torsion fracture mechanism 

respectively. 
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The SIF can alternatively be determined using displacement correlation near the crack tip 

(points 1 and 2 on in Figure 2.35) using the mode I, and II equations elaborated in Lui, L. 

(2008)  shown in equation 2.45.   

 

Figure 2. 17: SIF estimation from crack tip displacement fields (Lui, L. (2008) 

 

𝐾𝐼 = (𝑣2 − 𝑣1)
𝐸√

2𝜋

𝑟

8(1−𝑉2)
      (2.40) 

 𝐾𝐼𝐼 = (𝑢2 − 𝑢1)
𝐸√

2𝜋

𝑟

8(1−𝑉2)
     (2.41) 

Where  𝐾𝐼, 𝐾𝐼𝐼 are the stress intensity factors, 𝑢𝑖, 𝑣𝑖  (𝑖 = 1, 2) are displacements in local 𝑥, 𝑦 

coordinate. 𝑟 is a distance of the node on the crack surface from the crack tip, 𝐸 is the Young’s 

modulus and 𝑉 is the Poisson’s coefficient. 

 

Several studies such as Beden, S.M., et al (2009), Kotsikos, G., & Grasso, M. (2011), and 

Bhalekar, B, D., & Patil, R,B. (2016) suggest that the propagation of a crack is driven by the 

stress field that develops at the vicinity of the crack tip. In rolling contact, mixed loading 

conditions are believed to be responsible for crack growth at the crack tip. Moreover, there 

exist various criteria proposed in literature for the calculation of effective mixed-mode SIF of 

which the following are highlighted in this thesis. 
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Tanaka, K. (1974) considered Mode I and II (see equation 2.42) deformation to be mutually 

exclusive with fatigue crack propagation only when sum of the absolute values of the 

displacements in a plastic strip reaches a critical value. The effective SIF with best fit with 

experimental data is defined accordingly. 

 

∆𝐾𝑒𝑓𝑓 = (∆𝐾𝐼
4 + 8∆𝐾𝐼𝐼

4)
1

4    (2.42) 

Where∆𝐾𝑒𝑓𝑓is effective SIF, ∆𝐾𝐼 is the rang mode-I SIF, ∆𝐾𝐼𝐼 is the rang mode-II SIF. 

 

Yan, X., Zhang, Z., & Du, S. (1992) regardless of experimental validation suggested using 

maximum tangential stress criterion proposed by Erdogan, F., & Sih, G.C. (1963) taking into 

account crack growth direction as described in equation 2.43. 

∆𝐾𝑒𝑓𝑓 =
1

2
cos (𝜃) × [ ∆𝐾𝐼(1 + cos(𝜃)) − 3∆𝐾𝐼𝐼 × 𝑠𝑖𝑛(𝜃) ]  (2.43) 

Where θ is the crack growth direction, ∆𝐾𝑒𝑓𝑓is effective SIF, ∆𝐾𝐼 is the range of mode-I 

SIF, ∆𝐾𝐼𝐼 is the range of mode-II SIF. 

 

The Energy release rate models discussed in Forth, S.C. (2003) calculates SIF taking into 

account Mode III loading as elaborated in equation 2.44 below. The authors further simplified 

the model by showing passion ratio (𝑣) is negligible. 

∆𝐾𝑒𝑓𝑓 = (∆𝐾𝐼
2 + ∆𝐾𝐼𝐼

2 +
1

(1−𝑣)
∆𝐾𝐼𝐼𝐼

2)
1

2   (2.44) 

Where 𝑣 is Poisson ratio, ∆𝐾𝑒𝑓𝑓is effective SIF, ∆𝐾𝐼 is the range of mode-I SIF, ∆𝐾𝐼𝐼 is the 

range of mode-II SIF, ∆𝐾𝐼𝐼𝐼 is the range of mode-III SIF 

 

Modifications made on existing fatigue growth laws utilising effective SIF to account for mixed 

mode loading (dominant in surface propagation of rail defects) has gained application in rail 

predictive maintenance modelling. Equation 2.45 shows a modified Paris law formulation 

which is convenient for cyclic loading case studies.  
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𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾𝑒𝑓𝑓)

𝑚    (2.45) 

 Where 
𝑑𝑎

𝑑𝑁
is the crack growth rate, 𝐶is a constant, ∆𝐾𝑒𝑓𝑓is effective SIF, the parameters C is 

a constant and m is the slope on the log/log plot in region II crack growth stage.  

 

Kim, J.K., & Kim, C.S. (2002) based on experimental investigations further accounted for the 

effect of stress ratio R, material constant γ, loading, and geometry as described in equation 

2.46 below. 

𝑑𝑎

𝑑𝑁
= 𝐶(

∆𝐾𝑒𝑓𝑓

(1−𝑅)1−𝛾
)𝑚    (2.46) 

𝑅 =
𝐾𝐼𝐼𝑚𝑎𝑥
𝐾𝐼𝑚𝑖𝑛

      (2.47) 

Where 
𝑑𝑎

𝑑𝑁
is the crack growth rate, 𝐶is a constant, ∆𝐾𝑒𝑓𝑓is effective SIF, m is the slope on the 

log/log plot in region II crack growth stage, 𝛾is the material parameter, 𝑅 is the ratio of max 

mode-II SIF and mode-I SIF.  

 

Forman, R.G., Kearney, V.E., & Engle, R.M. (1967) investigated the influence of crack growth 

characteristics at both low and high levels of ΔK. He concluded the relation in equation 2.48 

suggesting that at high ∆𝐾 values, as max K approaches the critical level 𝐾𝑐, an increase in 

crack growth rate is observed. 

𝑑𝑎

𝑑𝑁
=

𝐶(∆𝐾)𝑚

(1−𝑅)𝐾𝑐−∆𝐾
    (2.48) 

Where 
𝑑𝑎

𝑑𝑁
is the crack growth rate, 𝐶is a constant, ∆𝐾is effective SIF, m is the slope on the 

log/log plot in region II crack growth stage, 𝛾is the material parameter, , 𝑅 is the ratio of max 

mode-II SIF and mode-I SIF.  
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A summary of publications and their suggested 𝑅, 𝐶, and 𝑚 parameters for different rail 

materials are shown in the Table 2.3 below. 

Author R-ratio Paris law constant 

C 

Paris law constant 

m 

Kim and Kim, 2002 0.1 4.47E-9 3.13 

Elshabasy & 

Lewandowski, 2004 

0.1 - 3.50 

Elshabasy & 

Lewandowski, 2004 

0.7 - 6.20 

Skyttebol, Josefson, 

Ringsberg, 2005 

0.7-0.9 2.74EE-9 3.33 

Zaijn, Sajuri, Yusof, 

& Hanafi, 2010 

0.1 2.63E-12 3.29 

Heshmat, 2011 0.1 1.13E-11 2.17 

Kotsikos & Grasso, 

2012 

0.1 3.3E-12 2.63 

George,2012 - 3.3E-13 2.63 

Table 2. 3: Published values for  Paris Law constant R, C, and m (Zafosnik, B., et al 

2000). 

2.3.3 Crack branching criteria 

The Maximum Tangential Stress criterion (MTS) as detailed in the works of Erdogan, F., & 

Sih, G.C. (1963) used stress equations based on the assumption crack propagation occurs in 

the direction of maximum tangential stresses calculated on a circle of sufficiently small radius 

around the crack tip. The angle of crack propagation 𝜃 is in this case is defined as in equation 

2.49. 

tan (
𝜃

2
) =

−2𝐾𝐼𝐼

𝐾𝐼+√(𝐾𝐼)
2+8((𝐾𝐼𝐼)

2)
    (2.49) 
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In the case of Maximum Energy Release Rate criterion (MERR) initially proposed by Griffith, 

the intuition is that crack will grow in the direction of maximum energy release per unit 

extension (i.e. in the direction of the maximum stress intensity factor K). Helen, T.K., 

Blackburn, W.S. (1975) showed that the energy release rate may be expressed as a function 

of the J1 and J2 integrals. The corresponding angle of crack propagation is here obtained as 

in equation 2.50. 

𝜃 = arctan (
𝐽2

𝐽1
) = (

2𝐾𝐼𝐾𝐼𝐼

𝐾𝐼
2+𝐾𝐼𝐼

2)    (2.50) 

The minimum Strain Energy Density criterion (SED) Zafosnik, B., et al (2000) is another 

postulation that considers critical value of the local strain energy as a criterion to determine 

the direction of propagation as the simultaneous solution of the following equations 2.51 and 

2.52. 

[2 cos(𝜃) − (𝑘 − 1)]sin (𝜃)𝐾𝐼
2 + 2[2 cos(𝜃) − (𝑘 − 1) cos(𝜃)]𝐾𝐼𝐾𝐼𝐼 + [(𝑘 − 1 −

6cos (𝜃))sin (𝜃)]𝐾𝐼𝐼
2     (2.51)  

 

[2 cos(2𝜃) − (𝑘 − 1) cos(2𝜃)]𝐾𝐼
2 + 2[(𝑘 − 1) sin(𝜃) − 4 sin(2𝜃)]𝐾𝐼𝐾𝐼𝐼 + [(𝑘 − 1) cos(𝜃) −

6 cos(2𝜃)]𝐾𝐼𝐼
2 > 0     (2.52) 

2.4 Conclusion 

A detailed survey of existing NDTs highlighting differences between the methods in  

section 2.1, results to the conclusion that it is necessary to consider the type of data obtained 

from each NDT in order to assess the suitability of adopting a particular method for further 

incorporation to prediction models. With this understanding, not even the most widely adopted 

NDT in the U.K. network (Ultrasonic) or even the increasingly patronised Eddy currents 

technique is considered ideal for the aim of this PhD research. This survey has favoured the 

choice of automated visual inspection of rails (due to inspection speed, flexibility, adaptability 

to multiple tests, and remoteness) to demonstrate the readiness level of the proposed 

incorporated detection and prediction inspection technology. It was also deemed necessary 

to conduct a critical appraisal of the existing image processing algorithms particularly those 
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adopted in rail RCF detection, taking cognisance of the effect of  rail head non-uniform 

reflection property, rust, grind marks and scratches; the enhancement, segmentation and 

feature extraction stages of the algorithms applied within the past decade suggest the 

advantage of local approach especially in the first two stages, while morphology and/or texture 

based analysis is popular in the latter stage. The mechanisms responsible for initiating and 

propagating (including branching criterion) RCF damage have been well understood in 

literature. In this review the conclusion affirms that in the U.K, majority of RCF is initiated as a 

result of Mode-0 and Mode-2 initiation mechanism, while the dominant loading condition for 

surface propagation of cracks are the tension and shear loading cases. Further clarity based 

on field observation of the behaviour of crack propagation by RSSB, establishes the influence 

of traction, wear and entrapped fluid etc. Incorporating the defect detection algorithm with 

detailed structural mechanics models will be explored as intelligent predictive maintenance 

tool in the next chapter.    
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Chapter 3: Application of defect detection algorithm  

3.1 Introduction 

In the UK, rail RCF cracking information (as part of the outcome of the post-Hatfield incident 

investigations), via the Arup/TTCI RCF database, was prepared for Railtrack maintenance 

support. This data with other European collaborative research sources is able to provide over 

22000 track miles with data recorded for every 55 yards of track. Such information related to 

damage levels accompanied by infrastructure supporting information (such as rail age, profile, 

sleeper type etc.) are obtained through large numbers of different contractors, with inevitable 

differences in the thoroughness and method of surveying. Observations at the time of the 

investigation indicated that existing database considerably over-reported false defects 

(scratches, grind marks and rust). Increasing correlation between maintenance planning and 

such data is at the expense of accurately accounting for the location, geometry and severity 

of damage. AEA Technology Rail have made attempts to correct anomalies related to 

approximations of network annual tonnage, and incomplete data. This section of the PhD 

thesis, discusses the development of image processing algorithms presented in Appendix C, 

capable of detecting rail fatigue damage, extracting geometrical features, and supporting rail 

maintenance decision making. Three data sets, described in section 3.2 have been considered 

for this research work as detailed in Appendix C1 and Appendix C2. Modifications of recent 

rail image processing methodologies within the past decade are presented in section 3.3, the 

MATLAB algorithms related to enhancement, segmentation and feature extraction are detailed 

in Appendix C3, Appendix C4, and Appendix C5. In section 3.4, a comparative study of each 

stage of the developed algorithm(s) is presented with the simulated results depicted in 

Appendix C6. Based on the repeatability of simulated results after calibrating the image as 

shown in section 3.4.4, the suitability of a particular image processing technique is also 

assessed in terms of consistency in generated fatigue damage statistical data over multiple 

runs of the algorithm. The effectiveness of combining two or more methods at each respective 

stage of the algorithm is also considered on data set 3 as shown in the results presented in 
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Appendix C7, which supported the optimisation and automation of the final proposed algorithm 

in section 3.5. It is intended that the conclusions drawn in terms of performance and 

computational requirement discussed in section 4.5.1 and 3.6 will provide a foundation for 

remote and possibly real time predictive image based condition monitoring maintenance of rail 

infrastructure as the main contribution of this chapter of the PhD thesis.  

3.2 Data set 

Three image data sets (Data set 1, Data set 2, and Data set 3) are adopted from the different 

sources namely; Manchester Metropolitan University (MMU) U.K, National Research Council 

Canada (NRC), and International Collaborative Research Institute (ICRI) respectively, for the 

purpose of this research. These data sets are comprised of laboratory (controlled 

environment) acquired, and field acquired rail defect images as described below. 

3.2.1 Data set 1 

This is comprised of four laboratory coloured images as depicted in Figure 3.1 with samples 

Lab-1 and Lab-2 acquired with the potential of validating the generated defect data. Both 

samples are reasonably uniformly illuminated and contain random types of defects with 

spalling and fatigue damage considered in this investigation. However, it is observed that 

sample Lab-2 is heavily contaminated by rust and aging effect. While sample Lab-3 and Lab-

4 are mostly dominated by cluster of fatigue damage, and the influence of poor reflective 

property of the rail is also present. It is worth mentioning that the details of the image 

acquisition system for this data set samples are not readily available. 
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Figure 3. 1: Shows laboratory acquired images of data set 1. (MMU). 
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3.2.2 Data set 2 

The samples in Figure 3.2 were acquired via a 2 Mega pixel Rail scope image acquisition 

system (with up to 35mph inspection speed). NRC pre-classified and sampled five field 

acquired grey scale images each, for 3 distinct severities of RCF damage (identified as heavy, 

moderate, and light damaged sites). This enabled the establishment of key model parameters 

for varied severity of damage. All samples contain random types of defects, however it was 

noticeable that spalling is more common to heavily damaged samples while cluster of fatigue 

damage were persistent in moderately and lightly damaged samples. It is worth mentioning 

that no prior information with regards to geometrical data of RCF defects were provided by 

NRC.  

3.2.3 Data set 3 

Courtesy of the international collaborative research project on RCF damage, over 1000 

samples of field acquired low and high rail grey scale images have been used in this 

investigation. All samples shown in Figure 3.3 contain random types of defects; however, no 

details of the image acquisition system or severity of damage information was provided along 

with the samples. It is also worth mentioning that the samples were obtained in snow weather 

condition which was observed to influence certain parameters of the model. A sub set of 30 

images is considered in this section.  

3.3 Methodology 

The presence or absence of a defect in an image can be characterised by change in intensity 

value between neighbouring pixels. It is therefore most common to suspect local dim, or bright 

region within an image as suspect defect region. Such assumption can be modelled as 

function of mean intensity value (each pixel’s contribution to the overall brightness of the 

image) and variance of adjacent pixels. It is therefore an intuitive solution in detecting RCF 

defects to prefer local methods of processing images to ensure accurate data for supporting 

predictive rail maintenance. After a concise review of recent image processing techniques 

presented in the previous chapter, the following methods are considered. Enhancement by 
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smoothing using a median filter, and sharpening by averaging filter are adopted for preparing 

the image for normalisation. The smoothened image is processed by a normalisation function, 

which focuses on local mean and variance.  In the frequency domain, the performance of 

Local Fast Fourier Transform (FFT) is also considered in this section of the thesis. 

Segmentation by thresholding functions of intensity values, defect occurrence probability, and 

Automatic Iterative algorithm are investigated. Also, the Feature Extraction (FE) stage is 

comprised of Gabor texture analysis, Standard deviation shape histogram distance and 

establishing a criterion for geometrically unacceptable defects. MATLAB 

 3.3.1 Enhancement of defect region 

Image analysts emphasise the importance smoothing images for removal of unwanted peaks 

in intensity values prior to enhancement. However, the suitability of a particular enhancement 

technique is subject to the overall objectives of the application in consideration. To this end, 

in this thesis all images are smoothened by a median filter. Results from coins.png test image 

are presented in Figure 3.5. The Figure confirms Zhiyuan, Q., et al (2002) report that such 

statistical filters are efficient for noise reduction with improved preservation of useful detail in 

the original image. 
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Figure 3. 2: Depicts the Lab-2 original image and pre-smoothing pixel intensity value distribution 
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Figure 3. 3: Depicts the Lab-2 median filtered image and post smoothing pixel intensity value distribution 
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The median filter is preferred because each seed pixel is replaced by the median value of 

intensities around the seed as opposed to the averaging, or other statistical functions such as 

minimum or maximum value. After successful smoothing of the input image, four local 

enhancement techniques are comparatively studied and analysed using (data sets 1 and 2) 

and their respective performance is quantified by a measure of peak signal to noise ratio 

(PSNR). The mathematical models governing the different enhancement methods adopted in 

this thesis are described below. 

3.3.1.1 Linear moving average filter (LMF) 

In this method the averaging of a specified number of pixels (𝑁) around a seed value (𝑥, 𝑦) is 

performed along each strip (i.e. along rolling direction) of the image. And depending on the 

information regarding noise type and distribution of intensity values within the original image, 

a compensation mean offset (Δ) is introduced to exclude uneven grey values contamination. 

Weng, W. & Chen, H. (2015) presented the models in equations 3.1-3.4 and considered the 

influence of white noise thus assumed Δ=0.5, also suggesting the lower the value of Δ the 

more efficient noise reduction attained. 

𝐿𝑀𝐴𝐹𝑥𝑦 = ∑
𝐼𝑥𝑦

𝑁

𝑦+𝑁/2
𝑦−𝑁/2      (3.1) 

𝐼∆ = 𝐿𝑀𝐴𝐹𝑥𝑦 − ∆     (3.2) 

Where Δ value should be slightly greater than the standard deviation of 𝑁 pixels around seed 

pixel. 𝐼𝑥𝑦 is original image. N is neighbourhood of pixels along the rolling direction. 

 

Further consideration of environmental factors that challenge image processing of rail defects 

such as rust strips (usually distributed on both sides of the rail edges), are curtailed by means 

of image subtraction between 𝐼∆ (compensated image) and 𝐼𝑥𝑦 (original image) as a remedy 

for such unwanted intensity levels. 

𝐼𝑐𝑜𝑛 = 𝐼∆ − 𝐼𝑥𝑦       (3.3) 
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𝐼𝑐𝑜𝑛 could be positive, zero, or negative values which corresponds to defect free regions, 

background regions, and possible defect region respectively. And according to equation 3.4 

the final enhanced image (𝐼𝑒𝑛ℎ) is obtained as map of the LMAF grey value to a range of 0-L 

as opposed to 0 − 𝐼𝑐𝑜𝑛.  

𝐼𝑒𝑛ℎ = 𝐿 − (
𝐿𝑀𝐴𝐹𝑥𝑦×𝐿

𝐼𝑐𝑜𝑛
)     (3.4) 

 

Figure 3. 4: Shows the result of Linear Moving Average Filtering  (LMAF) of the original Lab-2 image. 

3.3.1.2 Visibility Measure (VM) enhancement 

Based on Michelson’s definition of contrast of an image, Vijaykumar, V.R., & Sangamithirai, 

S. (2015) proposed VM contrast enhancement technique defined in a similar manner to the 

working principle of the human eye (in terms of visualising objects). Furthermore, the method 
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utilises the maximum and minimum luminance of an input image (𝐼(𝑥,𝑦)) within a local window. 

In addition to the mean intensity (µ) the local visibility of the neighbourhood is derived as 

presented in equation 3.5. To ensure uniform background in the output image from this 

method, the pixel location with grey intensity value higher than the mean intensity of its 

corresponding local window is truncated according to equation 3.6.  

 

𝑉(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝜇

𝐼(𝑥,𝑦)+𝜇
     (3.5) 

𝑉𝑒𝑛ℎ = {
𝐼(𝑥,𝑦)−𝜇

𝐼(𝑥,𝑦)+𝜇
              𝑖𝑓 𝐼(𝑥, 𝑦) < 𝜇

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3.6) 

Where 𝜇 is the mean intensity of the local window in consideration 

 

Figure 3. 5: Shows the simulated result for Visibility measure enhancement for Lab-2 image. 
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3.3.1.3 Local normalisation (LN) enhancement 

Normalisation is used to force the input image to more familiar or easier to process form. This 

method is well received for poor contrast images and illumination sensitive applications. The 

concept of linear local normalisation method (see equation 3.7) focuses on minimum and 

maximum pixel intensity values. 

 

𝐼𝐿𝑁 = (𝐼 − 𝐼𝑚𝑖𝑛)
𝑛𝑒𝑤𝐼𝑚𝑎𝑥−𝑛𝑒𝑤𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
+ 𝑛𝑒𝑤𝐼𝑚𝑖𝑛    (3.7) 

Where 𝐼𝐿𝑁 is the locally normalized image.  𝐼𝑚𝑖𝑛 is the local minimum intensity value. 𝑛𝑒𝑤𝐼𝑚𝑖𝑛 

is the new minimum local intensity value. 𝑛𝑒𝑤𝐼𝑚𝑎𝑥is the new maximum local intensity value. 

 

Xie, X., & Lam, K. (2006) took into consideration mean and standard deviation intensities as 

opposed to the range utilized in equation 3.7. The objective of this modification as per equation 

3.8-3.9 is to locally establish the contribution of each pixel to a function of required mean (RM) 

and required variance (RV). This offers the solution of illumination and reflectance inequality 

across the rail head especially in field acquired samples.  

𝐿𝑁(𝑥, 𝑦) = 𝑅𝑚 + [√𝑅𝑣 × σ(x, y)]    (3.8) 

σ(x, y) =
im(x,y)−im(x,y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√
∑|im(x,y)−im(x,y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

n(x,y)

      (3.9) 

Where 𝑖𝑚(𝑥, 𝑦) is the windowed sample of the original image. im(x, y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean intensity of 

the window, σ(x, y) is the standard deviation, and 𝑛(𝑥, 𝑦) is the total number of data points. 
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Figure 3. 6: Shows the result for local normalisation performed on Lab-2 image. 

3.3.1.4 Fast Fourier Transform (FFT) enhancement  

High frequency components of acquired images are most contaminated by noise even though 

containing most detail, while the low frequency component contains the most information 

within an image. Based on this understanding the detection of damage from rail images 

requires careful extraction of both high and low frequencies. Fingerprint detection and 

recognition algorithms have demonstrated the use of Fast Fourier Transform (FFT) for 

enhancement by exclusion of unwanted frequencies. In this method the original image is 

divided into overlapping local windows and the dominant frequency of each window is 

enhanced according to equation 3.10 below. 

𝑔(𝑥, 𝑦) = 𝐹−1[𝐹(𝑢, 𝑣) × |𝐹(𝑢, 𝑣)|𝑘]    (3.10) 

Where 𝑔(𝑥, 𝑦) is the FFT enhanced image. 

For gray images the range of 𝑘 values typically 0 < 𝑘 < 1  ensures adequate preservation of 

information by amplifying low frequencies while attenuating noise levels in high frequency 

component of the original image, where 𝐹(𝑢, 𝑣) is the Fourier transform of an image 
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𝑓(𝑥, 𝑦) according to the Discrete Fourier Transform (DFT) relation in equation 3.11. Ishmael, 

S.M., (2011) further explains that better enhancement results are obtained if the magnitude of 

the FFT is squared or cubed before it is scaled by its magnitude raised to the power of 𝑘.  

 𝐹(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)exp (−2𝜋(
𝑥

𝑀
𝑢 +

𝑦

𝑁
𝑣))𝑁−1

𝑦=0
𝑀−1
𝑥=0   (3.11) 

For pixel locations u and x =1,2,3…, M-1 while v and y =1,2,3…,N-1. 

 

And the inverse DFT function is also evaluated accordingly: 

𝑓(𝑥, 𝑦) =
1

𝑀𝑁
∑ ∑ 𝐹(𝑢, 𝑣)exp (−2𝜋(

𝑢

𝑀
𝑥 +

𝑣

𝑁
𝑦))𝑁−1

𝑣=0
𝑀−1
𝑢=0    (3.12) 

For pixel locations u and x =1,2,3…, M-1 while v and y =1,2,3…,N-1. 

In Figure 3.7 below, the performance of FFT on Lab-2 image is presented, with a block size 

of 3 × 3, for the median filter and a maximum of 22 × 22  block size for the FFT function 

detailed in Appendix C3. 

 

Figure 3. 7: Shows the result of Fast Fourier transform on Lab-2 image. 
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3.3.2 Segmentation of defect region   

After successful enhancement of defect regions within an image, there may still exist some 

unwanted or peaks of intensity value that may result in false defect detection, which can be 

avoided using segmentation by thresholding functions. In this thesis local mean and standard 

deviation and occurrence probabilities are the thresholding based segmentation methods 

adopted for the purpose of sharpening the enhanced image and also for the binarisation of 

the image to enable easier and more accurate feature extraction.  

3.3.2.1 Automatic iterative threshold (AIT) 

The automatic iterative thresholding approach is based on computation of estimated mean 

intensity (𝑇𝑒𝑠𝑡) of infinite partitions of the image until a variation of less than 0.1% is achieved 

as described by the algorithm below. The value of 𝑇𝑒𝑠𝑡 is best initialized to the global mean 

intensity value of the image.  

1. Initialize estimated threshold 𝑇𝑒𝑠𝑡 approximately equal to average intensity of original 

image. 

2. Partition original image to R1 and R2 based on 𝑇𝑒𝑠𝑡. 

3. Calculate the new mean grey values µ1and µ 2 of R1,R2. 

4. Select a new estimated threshold 𝑇𝑒𝑠𝑡 =
1

2
(µ1 + µ2). 

5. Repeat steps 2-4 until the change in estimated mean value between successive 

iterations does not change by more than 0.1%.  
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Figure 3. 8: Shows the result for Automatic iterative thresholding performed on Lab-2 image. 

3.3.2.2 Combined mean and variance based segmentation 

Document binarisation introduced by Niblack, W. (1986) was based on local mean and 

variance for the segmentation of regions of interest by the relation defined in equation 3.13. 

𝑇𝑁(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) + 𝐾 × 𝑆(𝑥, 𝑦)    (3.13) 

Where 𝑇𝑁(𝑥, 𝑦) is the NIblack threshold for each local wxw window. While  𝑚(𝑥, 𝑦) and 𝑆(𝑥, 𝑦) 

are the corresponding local average intensity value and standard deviation respectively. k is 

bias constant, set as 0.5 in biomedical application of Senthilkumaran, N. & Vaithegi, S. (2016).  

 

Efficient segmentation of poorly illuminated images with foreground pixel intensity value 

tending to zero while background tends towards maximum intensity value of 255, for 8-bit 

image representation required inclusion of the dynamic range of pixel intensity values as 

demonstrated in the works of Sauvola, J. & Pietikainen, M. (2000). 

𝑇𝑆(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) × (1 − 𝑘 × (1 −
𝑆

𝑅
))    (3.14) 

 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

81 
 

Where 𝑇𝑆(𝑥, 𝑦) Savuola threshold for each local window wxw. 𝑚(𝑥, 𝑦), 𝑆(𝑥, 𝑦), and 𝑘 are as 

defined in equation 3.13, while R is the maximum value of the standard deviation of the gray 

image.  

 

For images with narrower ranges of foreground and background intensity values, Mostafa, 

A., et al (2016) explains the use of contrast normalised input image according to the 

mathematical model of Wolf in equation 3.15. 

𝑇𝑊(𝑥, 𝑦) = (1 − 𝑘) × 𝑚(𝑥, 𝑦) + 𝑘 ×
𝑆(𝑥,𝑦)

𝑅
(𝑚 −𝑀)  (3.15) 

where 𝑇𝑊(𝑥, 𝑦) Wolf’s threshold for each local window 𝑤𝑥𝑤. 𝑚(𝑥, 𝑦), 𝑆(𝑥, 𝑦), 𝑘, and R are as 

defined in equation 3.14. And M is the minimum grey value of the image. 

 

Feng, M-L., & Tan, Y-P. (2004) introduces two concentric windows; a primary window for the 

local estimation mean (m), minimum gray intensity value (M), and a secondary window for the 

estimation of standard deviation and dynamic range standard deviation (𝑆1) and (𝑆2). However, 

despite addressing the R problem in latter case, the introduction of two windows and three 

parameters (see equation 3.16) makes the approach tedious. Mahmoudi, A. & Regragui, F. 

(2009) in his research on improvement of thresholding speed, suggests that the intensity at a 

position is equal to the sum of the intensities of all the pixels located on the top-left of this 

position (integral image equivalent). 

𝑇𝐹(𝑥, 𝑦) = (1 − 𝑘1 (
𝑆1(𝑥,𝑦)

𝑆2(𝑥,𝑦)
)
𝛾
)𝑚 + 𝑘2 (

𝑆1(𝑥,𝑦)

𝑆2(𝑥,𝑦)

𝛾
) (𝑚 −𝑀) + 𝑘2 (

𝑆1(𝑥,𝑦)

𝑆2(𝑥,𝑦)

𝛾
) ×𝑀  (3.16) 

Where K1, 𝑘2, and γ are predefined constant and could be varied between [0 1]. 

M signifies the minimum scalar value within the frame window, m represents the mean vector 

value within frame window. 𝑆1 and 𝑆2 are the standard deviations of primary and secondary 

windows respectively.  
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Figure 3. 9: Shows the performance of Feng’s thresholding on Lab-2 image. 

3.3.2.3 Object and background occurrence probability based segmentation 

Zhang, W., et al (2014) exploits Occurrence Global Threshold (OGT) method which focuses 

on local dim regions identified using a black top hat transform. A threshold is selected as the 

level of intensity (ranging 0-255) which satisfies equation 3.17 defined as a function of 

background occurrence probability (𝜔0), object occurrence probability(𝜔1), background mean 

(𝜇0) and object mean (𝜇1)levels. 

𝜔0𝜔1(𝜇0 − 𝜇1)
2|𝑙=𝑇0 = max [𝜔0𝜔1(𝜇0 − 𝜇1)

2]   (3.17) 

Final threshold 𝑓𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) value is further offset by an acceleration parameter (𝑡𝑎) of which a 

suitable choice will result in removal of false defects while too high or too low a value result in 

exclusion and inclusion of pixels respectively. In this thesis 𝑡𝑎 = 0.1%× 𝑇0 for all data set 

samples. 

𝑇 = 𝑇0 + 𝑡𝑎     (3.18) 

𝑓𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦) = {
0     𝑖𝑓𝑥 ≤ 𝑇
1    𝑖𝑓 𝑥 > 𝑇 

        (3.19) 
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Where 𝑇is the segmentation threshold value of occurrence probability method.  

Figure 3.10 10 shows the performance of OGT on Lab-2 image, and it can be seen that there 

exists a good agreement compared to AIT method although the latter is not favoured due to 

the iterative nature of the approach. 

 

Figure 3. 10: Shows the performance of Occurrence Global thresholding on image Lab-2. 

3.3.3 Defect identification by Feature Extraction (FE) 

After successful segmentation of defect regions, the detection of true RCF damage is mainly 

possible by precise examination of features particular to RCF defects in rails. A variety of 

methods are explored for this purpose is this section, ranging from Gabor texture analysis, 

morphological FE, and Standard Deviation Histogram Shape Distance. 

3.3.3.1 Texture based feature extraction 

Based on the assumption that the presence or absence of a defect is defined by the texture 

energy, Illonen, J., Kamarainen, J.K., & Kalviainen, H. (2005) explored the application of a 2D 

Gabor filter, defined as the product of a Gaussian envelope and a sinusoidal wave of specified 
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frequency and orientation.  A thresholding operation is performed based on the energy of the 

extracted texture suspected to be RCF defect. As shown in equation 3.20, the sharpness along 

the minor and major axis of the Gabor filter is controlled by parameters ℵ and ℶ respectively. 

𝜑(𝑥, 𝑦; 𝑓0, 𝜃) =
𝑓0
2

𝜋ℵℶ
𝑒
−
𝑓0
2

ℶ2
𝑥′2+

𝑓0
2

ℵ2
𝑦′2
𝑒𝑗2𝜋𝑓0𝑥

′
     (3.20) 

Where 𝑓0is the maximum frequency and 𝜃 is the orientation of the gabor filter and 𝑥′ = 𝑥𝑐𝑜𝑠𝜃 +

𝑦𝑠𝑖𝑛𝜃, 𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 

The associated energy 𝐸(𝑥, 𝑦) of each texture is dependent on maximum allowable frequency 

and orientation of the Gabor filter estimated in accordance with equation 3.21 as the square 

of Gabor filter response 𝑅(𝑥, 𝑦) after convolution with the input image. 

𝐸(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)2     (3.21) 

The filter maximum frequency and orientation that corresponds to the maximum energy is 

further binarised according to the thresholding function in equation 3.22. 

𝐵(𝑥, 𝑦) = {
1,    𝑖𝑓  𝑇 > 𝐸(𝑥, 𝑦)

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3.22) 

Figure 3.11 below, shows the result of applying a Gabor filter on Lab-2 sample image. The 

filter frequency and maximum energy are set to 50Hz and 0.1 respectively for most precise 

extraction of crack feature. It is worth mentioning that equation 3.20-3.22 are locally 

implemented as functions with block size set to be the same as that of the LN method. 
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Figure 3.11: Shows the result of Texture based feature extraction on Lab-2 image. Figure 

3.3.3.2 Standard deviation of shape histogram distance 

In the works of Zhang, W., et al (2014) successful classification of crack feature was presented 

as a measure of spread within boundary coordinates of the segmented defect under 

investigation. This method proposes that distance distribution of irrelevant objects are 

heterogeneous and as a result the estimates of the standard deviation of such an irregular 

object is observed to significantly be larger than those of actual defects. For each blob 

(connected objects in a binary image) its corresponding central pixel location (centroid) can 

be estimated as described in equation 3.23. 

𝑥𝑐 =
1

𝑁𝑏
∑ 𝑥𝑖
𝑁𝑏
𝑖=1 ;  𝑦𝑐 =

1

𝑁𝑏
∑ 𝑦𝑖
𝑁𝑏
𝑖=1       (3.23) 

Where 𝑁𝑏 is he total number of boundary coordinates for each blob.And 𝑥𝑖, 𝑦𝑖 are the boundary 

coordinates for 𝑖 = 1,2,3,… ,𝑁𝑏 
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By computing the Euclidean distance between the centroid and each boundary coordinate 

(𝑑𝑖), the shape distance histogram of the blob is evaluated according to equation 3.24. 

𝑝𝑖 =
𝑁𝑑𝑖

𝑁𝑏
      (3.24) 

Where  𝑁𝑑𝑖 is the number of pixels with the same di to the centroid. 𝑝𝑖 is the corresponding 

probability. And 𝑁𝑏 is the total number of boundary coordinates of the bolb. 

The standard deviation of the shape distance histogram is evaluated according to  

equation 3.25, and the result of coins.jpg image is presented in Figure 3.8. The simulated 

results confirm that a standard deviation of less than one corresponds to an irregular shape 

while above this threshold signifies a near perfect circular blob. 

𝜎 = √
1

𝑁𝑏
(𝑝𝑖 − 𝜇𝑝)     (3.25) 

Where 𝜇𝑝 is the average of all pixel boundary pixels of the blob in consideration. 

 

Figure 3. 12: Shows the output of SDHSD feature extraction on Lab-2 image. 
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3.3.3.3 Geometrically unacceptable (true false detection) based feature 

extraction  

In Li, Q., & Ren, S. (2012), investigation of the extraction of defect based on the morphological 

features of RCF in rail has been analysed. This entails the elimination of irrelevant objects by 

considering a combination of geometrical and/or morphological features. In this thesis the 

minimum area, minimum length and orientation of the defect being investigated are used to 

establish a criterion for true detection defined in equations 3.26-3.29. 

 

FE𝐴𝑟𝑒𝑎 = {
1,   𝑖𝑓 𝐴𝑟𝑒𝑎 > 𝐴𝑟𝑒𝑎_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3.26) 

 

FE𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = {
1,   𝑖𝑓 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ! = 0𝑜, 90𝑜, 180𝑜, 360𝑜

0,                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3.27) 

 

FE𝐿𝑒𝑛𝑔𝑡ℎ = {
1,   𝑖𝑓 𝐿𝑒𝑛𝑔𝑡ℎ > 𝐿𝑒𝑛𝑔𝑡ℎ_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.28) 

 

For each defect being considered a true positive detection is only established when equation 

3.29 is stratified. 

FE𝐴𝑟𝑒𝑎 × FE𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 × FE𝐿𝑒𝑛𝑔𝑡ℎ = 1   (3.29)  

3.3.4 Generating geometrical statistical data of true defects 

Of interest to this research are some geometrical data related to each detected defect. These 

include maximum surface length, area, and orientation. The significance and application of 

such geometrical data in predictive maintenance will be explored in subsequent chapter(s) of 

the thesis. The mathematical methods related to these morphological operations responsible 

for generating geometrical statistical data are readily available in MATLAB image processing 

toolbox, and can be traced to much earlier works of Hort, T as discussed in Nixon, M., & 

Aguado, A. (2008).  
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3.3.4.1 Area 

Depending on the total number of pixels contained within each detected defect, MATLAB 

morphological ‘bwarea’ returns a scalar value that specifies the actual number of pixels in a 

particular region of interest of a binary image by weighing different patterns of pixels differently. 

3.3.4.2 Orientation 

Based on the elliptical equivalent representation of each detected defect (i.e. ellipse with the 

same second-moments as detected defect), ‘bworientation’ returns a scalar that specifies the 

angle between the horizontal x-axis and the major axis of the equivalent ellipse. Typical values 

of the ‘bworientation’ function are in the range of -90 to 90 degrees as depicted in  

Figure 3.13 below. 

 

 

Figure 3. 13: Determining morphological orientation of blob. (Mathworks,2017). 

3.3.4.3 Maximum surface length 

The maximum length of each blob is computed based on its extracted boundary coordinates 

according to equation 3.30 describing the distance between any two Cartesian coordinate 

points. 

𝑑𝑖 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)2   (3.30) 

Where N is total number of boundary co-ordinates for a defect, and 𝑖 = 1,2,3…𝑁 
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3.4 Comparative study and analysis of data set 1 and 2 

In this section, a comparative study of both field and laboratory acquired images is presented, 

highlighting the performance of each method within the enhancement, segmentation, feature 

extraction stage of image processing; based on a quantitative measure of the Peak Signal to 

Noise Ratio (PSNR) for indicating the performance of each enhancement stage. For the 

segmentation stage, consistency in number of segmented regions with validation data for lab 

acquired image samples 1 and 2 is used as indicator of best performance. A similar approach 

has been adopted in the case of feature extraction, with emphasis on the morphological details 

related to RCF defects. These morphological considerations include consistency in terms of 

irregularity in shape of RCF defects, and exclusion of false defects (geometrically false). 

3.4.1 Enhancement of laboratory acquired images (data set 1) 

3.4.1.1 Smoothing by median filtering 

The significance of smoothing an image, besides noise reduction include the actualisation of 

less pixelated image. Among the various methods of performing smoothing, the statistical 

approach is mostly preferred for replacing the intensity value of a seed pixel by a single 

intensity value commonly evaluated by the mean or median operator. The median filter has 

been adopted in this study mainly because of the following reasons; no blurring effect on 

details of the input image, faster speed compared to average or Gaussian filter equivalent, 

and easier implementation and optimisation compared to Low pass filter application for the 

same purpose. It is observed that in the case of laboratory acquired images using a local 

window of size 1 × 𝑁 (be it parallel or perpendicular to rolling direction) yields little or no 

observable differences in enhancement performance. But in the case of an 𝑁 × 𝑁 window, 

controlled samples are observed to exhibit diminishing enhancement with increasing values 

of N. For 𝑁 ranging between 2 – 5, this gives highest Peak Signal to Noise Ratio (PSNR)  

signifying improved enhancement peformance. 

Furthermore, a smooth image with better perception of details/information is obtained 

especially in the case of input images with unfirm reflection property (samples Lab-1 and  
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Lab-2 Figure 3.14 a and b). However in the case of images with poor illumination properties 

such as samples Lab-3 and Lab-4 (see Figure 3.14 c and d), a significant amount of blurring 

is observed especially within the vicinity of the of excess light reflection.  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3. 11: Presents simulated results for median smoothing of all laboratory acquired images Lab-1 to 

Lab-4  denoted by a-d, using optimised wind size N=3. 
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In the case of field acquired images, the median filter simulated results for the subset of data 

set 2 (containing one image from each distinct level of damage) is observed to respond in a 

similar manner to laboratory acquired images. For block size (𝑁 > 10), it  is observed to cause 

bluring effect which corresponds to PSNR saturation levels shown in Figure 3.15. Simulated 

results from investigating this subset suggest an optimum value of N=5 for all field acquired 

images. From the Figure below the tolerance of increasing 𝑁 on PSNR is observed to be less 

sensitive for moderately and lightly damaged rails. This can further be related to the dominant 

defect type for the image being investigated, such that clusters of fatigue damage in image 

samples (FA-M1 and FA-L1) are less sensitive to increase in block size compared to spall 

type in FA-H1. 

It is obvious that the influence of excess light reflection (at the top left corner of all samples of 

data set 2) is still persistant even after smoothing. This observation (see Figure 3.15) suggests 

that more sophisticated illumination invariant methods are required for both laboratory and 

field acquired image enhancement. 

 

(a) 
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(b) 

 

(c) 

Figure 3. 12: Median filter response for (a) FA-H1, (b)FA- M1, and (c) FA-L1, data set 2. 
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3.4.1.2 Local Normalisation (LN) 

The appropriate choice of the desired mean (RM), and variance (RV) of the output image in 

addition to optimal window size (bs_LN) are the influential parameters of the LN function 

investigated in this section of the study. The optimal values of these influential parameters are 

also observed to vary depending on the data set in consideration. In general, it was observed 

that an increase in RM corresponds to overall increase in brightness of the image while 

increasing RV corresponds to increased sharpness of edges. The window size of the of the 

LN function is initially observed to correlate with the severity of damage, that is the more 

damaged the sample is, the larger block size required for good enhancement. For each of the 

images investigated, the performance of this approach is observed to be influenced by a more 

complex interaction between dominant defect type, severity of damage, and 

presence/absence of grind marks, scratches, and rust. In the case of Lab-1, Lab-3, and Lab-

4 (all samples mostly dominated by fatigue damage like defects), a range for the mean and 

variance which provides best enhancement is observed to be RM≅ 0.9 − 1.2, and RV≅ 2.0 −

2.1 respectively. A block size ranging between N= 22 𝑎𝑛𝑑 𝑁 = 44 for all samples of data set 1 

is also established. However, an exception is in the case of Lab-2, which requires modification 

of RM and RV to 2.1 and 1.7 respectively to improve the performance of LN function on this 

sample due to the presence of rust. This modification can be justified in order to increase the 

overall brightness of the image to exclude effect of rust (dark spots) and simultaneously 

lowering the variance to avoid considering false edges. In Figure 3.16, the simulated results 

of all samples in data set 1, confirm that local dim regions correspond to suspect defect 

regions, while local bright regions correspond to rail head. 
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(a)

 

(b) 
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(c) 

(d) 

Figure 3. 13: Presents the simulated results for LN method on data set 1. 
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In the case of field acquired images, the influence of RM, RV, and N have been concluded to 

be very similar to the case of laboratory acquired images especially the relationship between 

dominant type of defect and appropriate window size (N).  However, an observable difference 

for data set 2 compared to controlled images of data set 1 is that the RM value is optimal at 0. 

This difference is considered to be as a result of the excess illumination of light at the top left 

corner of the samples in addition to rail steel reflection property for data set 2. Higher RV 

corresponds to sharper defect enhancement, with optimum values in the range of 1-2, while 

RV>5 is observed to enhance grind marks, scratches, even in regions of excess light 

illumination. In Figure 3.17, the simulated results confirm that local dim regions correspond to 

rail head, while local bright regions correspond to defect region. The illumination invariant 

nature of this method has encouraged investigating its combination with other enhancement 

methods to be discussed in subsequent sections of this thesis.   

 

(a) 
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(b)    

 

(c) 

Figure 3. 14: Presents the simulated LN results of (a) H1, (b) M1, and (c) L1. 
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3.4.1.3 Linear Moving Average Filter (LMAF) 

Employing LMAF for enhancement of laboratory acquired images, it can be seen that this 

method’s performance is strongly dependent on the spatial distribution of intensities in the 

input image and dominant type of defect. In general, the even distribution of light reflection 

across the rail head supports improved enhancement of suspect defect region in this method. 

It was also observed that for Lab-1 image, defects are enhanced as local dim regions, while 

Lab-2, Lab-3, Lab-4 result in defect regions enhanced as local bright regions. This clarifies the 

influence of rust and regions of excess light illumination in the latter samples. The block size 

of LMAF function is observed to be most influenced by the type of defect within the image 

such that all laboratory acquired images (which are dominated by fatigue cracks) can be 

effectively enhanced with a block size of no more than 32×32 window size. It is also worthy to 

note that for sufficiently large averaging window size, the computational time of the LMAF (see 

Table 3.8) method is significantly reduced to almost 50% (around 30 minutes) at the expense 

of depreciating PSNR values. Further examination of the mean intensity and variance also 

recommend that low values of RM combined with high RV results in better identification of 

defect regions in data set 1. The optimum RM and RV values for data set 1 have been 

determined by trial and error and summarised in the comparative study of section 3.4. 

Considerations of the high computational requirement of the LMAF method (see section 3.6 

for summary of recorded execution time) suggests that it is not beneficial for the intermediate 

objective of this thesis (automatic detection of RCF). The simulated results for all data set 1 

samples are presented in Figure 3.18 for a block size of N=32. The suspect defect regions are 

identified as local dim regions for Lab-1, Lab-3, Lab-4 and vice-versa for Lab-2 (due to 

increase in RM).  
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(a)

 

(b) 
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(c) 

 

(d) 

Figure 3.18: Simulated LMAF results for (a) Lab-1, (b) Lab-2, (c) Lab-3 and (d) Lab-4. 
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The LMAF approach to enhancing field acquired images is concluded to be similar to that of 

controlled samples. It is also observed that the method’s efficiency is highly correlated to the 

type of defect within the input image. Such that, damage as a result of removal of rail head 

material (spalling) is best enhanced by larger window sizes of no more than 64×64 pixel block, 

while moderately, and lightly damaged images correspond to 32×32, and 16×16 pixel block 

sizes respectively. The high computational time of the method (as detailed in section 3.6) can 

be minimised by increasing the size of the averaging window at the expense of diminishing 

PSNR values. For all images of data set 2, an RM of 0 and RV of 1 has been utilised which 

corresponds to suspect defect regions represented by local bright regions and background as 

local dim regions, as presented in Figure 3.19 below. As in the case of data set 1 the 

consideration of computational requirement has discouraged further analysis of the LMAF 

method on field acquired images. 

 

(a) 
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(b) 

 

(c) 

Figure 3.19: Simulated LMAF results for (a) FA-H1, (b)FA- M1, and (c) FA-L1. 
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3.4.1.4 FFT enhancement 

In the case of FFT enhancement of laboratory acquired images, the most influential factor is 

a combination of the appropriate window size and enhancement factor k. These influential 

parameters have been observed to be consistent for all laboratory acquired images as 

bs_FFT=2, while k=0.1. Further examination of the influence of RM and RV on the 

performance of FFT enhancement suggests that the value of k is proportional to RM of the 

input image, such that increasing the RM would require a greater k value. In Figure 3.20, the 

simulated results of input images Lab-1 to Lab-4 are initialised with RM and RV as 0.9 and 2.1 

respectively, and this consistently enhances suspect defect regions as local bright regions. 

For this method it is worthy to note that the influence of excess illumination of light on the rail 

head is also observed to cause blurring effect within such vicinities leading to possible false 

defect detection. 

 

(a) 
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(b) 

 

(c) 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

106 
 

 

(d) 

Figure 3. 15: Presents the simulated FFT results of data 1. 

In the case of FFT enhancement of field acquired images, only the block size of the frequency 

enhancement is observed to differ as a function of dominant defect type. The optimal value of 

k for all samples has been determined by trial and error as 0.1975. However, for each image, 

the appropriate widow size varies as a function of severity of damage. Considering the FA-

H1, FA-M1, and FA-L1 images are best enhanced using the FFT window size of 16, 8, 4 pixel 

block size respectively, the same enhancement factor of k=0.1975 is consistently applied for 

all samples. Further examination of the influence of RM and RV on the performance of FFT 

enhancement of field acquired images suggests that the value of k is also proportional to RM 

of the input image. That is, a higher value of RM will require a higher value of k. In Figure 3.23, 

the simulated results of input images H1, M1, and L1 are initialised with RM and RV as 0 and 

1 respectively, the output consistently enhances suspect defect regions as local bright regions. 

The sensitivity of the FFT method to type of defect present within the input image, and also 
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the severity of damage including and poor illumination property of the rail surface has 

discouraged its application for automatic enhancement of rail defect images. However, it is 

worth noting from Figure 3.21, that the influence of excess illumination of light on the rail head 

is avoided by optimising the RM and RV parameters of each image to a value of 2.1 and 0.9 

respectively. 

 

 

(a) 
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      (b) 

 

(c) 

Figure 3. 16: Presents the simulated FFT enhancement results of data set 2- sub set (one image from 
each distinct damage severity levels). 
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3.4.1.5 Visibility measure enhancement  

In the case of visibility measure enhancement technique, the most influential parameter is the 

block size of visibility function (N). And it is observed to diminish enhancement performance 

of the method with decreasing values of N regardless of severity of damage within the input 

image being investigated. The block size sensitivity analysis related to this method as depicted 

in Figure 3.24 confirms the inverse relationship between PSNR and block size N. Optimal 

values for each of the samples in data set 1 have been decided based on the minimum 

variation of PSNR values as block size increase (to saturation point). It can be seen that Lab-

1, Lab-2, Lab-3, Lab-4 optimum block size range 10-22, 18-22, 16-22, 11-22 with variations 

less than 0.001% for all samples respectively. Although it was observed that a block size of 

N≤ 22 results in 40% reduction in computation time, the upper bound 𝑁 = 22 is adopted for 

automatic defect detection of RCF in rails. To further the investigation on the influence of RM 

and RV, simulated results generally suggest that increasing values of RM within the range of 

(0.5-2) with constant RV significantly improves the elimination of background information. For 

Lab-1 it was also observed (see Figure 3.25a) that adequate enhancement of defect regions 

is attainable with RM=RV=2. While in the case of Lab-2 to Lab-4 (images with rust or excess 

light illumination), an optimum value of RM=0.9 and RV=2.1 results in better enhancement of 

suspect defect regions as depicted in Figure 3.22 b-d. 
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(a) 

 

(b) 
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(c) 

 

(d) 
Figure 3. 17: Presents the simulated visibility measure enhancement results of data 1. 
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In the case of field acquired images FA-H1, FA-M1, FA-L1 as depicted in Figure 3.23 a-c, a 

similar observation with the case of controlled samples can be established. The only 

observable difference in the output image is the opposite characterisation of suspect defect 

regions as local dim regions while background information as local bright regions. This is 

attributed to the choice of RM=0 and RV=1 for this data set as discussed in the case of LN 

method. The appropriate choice of N equals the window size of LN enhancement technique 

as discussed in the previous section. Further investigation of the influence of RM and RV on 

the performance of visibility measure enhancement suggests that RM is inversely proportional 

to PSNR values.  

 

(a) 
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(b) 

 

(c) 
Figure 3. 18: Presents the simulated visibility measure enhancement results of data set 2- sub set (one 
image from each distinct damage severity levels). 
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Table 3.1 below summarises the performance of each enhancement method based on 

estimates of peak signal to noise ratio. It can be generally concluded that visibility measure 

enhancement provides better defect region enhancement for all laboratory acquired images, 

such that an appreciation in PSNR of about 60-70% is recorded compared to median 

smoothing. While about 2%-9% improvement in enhancement performance is observed 

compared to LN method. And in comparison to FFT method, the VM method offers 10%- 20% 

improvement in enhancement performance. An exception is in the case of LMAF, which is 

observed to actually generate higher PSNR compared to visibility measure by approximately 

12% only for Lab-1 sample, while other samples (Lab-2 to Lab-4) fall short by approximately 

4%, 1%, and 0.99% respectively.  

Image Median 

filter 

(dB) 

LMAF 

enhancement 

(dB) 

Visibility 

measure 

enhancement 

(dB) 

Local 

normalisation 

enhancement 

(dB) 

FFT 

enhancement 

(dB) 

Lab-1 15.39 46.81 41.09 40.19 36.86 

Lab-2 15.22 45.91 48.20 43.99 37.14 

Lab-3 15.01 44.32 44.78 41.66 37.96 

Lab-4 15.17 45.87 46.33 43.14 36.52 

Table 3. 1: Summarises the PSNR values for data set 1 using optimal influential parameters for each 
image. 

Table 3.2 for field acquired images suggests, (as in the case of Table 3.1) that the visibility 

measure enhancement method outperforms enhancement by smoothing, LMAF, LN, and FFT 

by approximately 50%, 0.87%, 0.02%, 13.80% respectively. It can also be deduced from the 

Table that a negligible shortcoming of the visibility method (0.02%) is evident compared to the 

illumination invariant LN method. However, the inability of the LN method to enable 

quantification of its performance for some images (namely FA-H2 and FA-L1) discourages its 

sole application for automatic enhancement of rail RCF defect images. It is also worth 

mentioning that higher consistency between samples of data set 2 is observed compared to 
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data set 1. This is attributed to the consistency in acquisition conditions of the data set 2, which 

cannot be said for the controlled images of data set 1.   

Image Median filter 

enhancement  

(dB) 

LMAF 

enhancement 

(dB) 

Visibility 

measure 

enhancement 

(dB) 

Local normalisation 

enhancement 

(dB) 

FFT enhancement 

(dB) 

H1 22.01 44.47 44.86 44.87 38.67 

H2 21.95 43.19 43.51 NaN 39.37 

H3 22.25 43.86 44.35 44.37 36.83 

H4 22.47 43.76 43.95 43.97 38.23 

H5 23.00 44.41 44.83 44.85 39.49 

M1 22.67 44.45 44.34 44.36 38.45 

M2 22.37 44.36 44.25 44.28 37.11 

M3 22.82 43.52 43.41 43.43 39.02 

M4 22.66 44.14 44.03 44.11 36.61 

M5 22.04 44.42 44.31 44.34 39.55 

L1 22.10 44.81 43.88 NaN 37.73 

L2 22.43 43.16 43.24 43.28 38.46 

L3 22.77 42.11 42.19 42.20 39.39 

L4 24.18 43.71 43.79 43.81 37.82 

L5 22.55 43.52 43.60 43.64 39.72 

Table 3. 2: Summarises the PSNR values for data set 1 using optimal influential parameters for each 
image.3.4.2 Segmentation results of laboratory acquired images. 
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3.4.2 Segmentation of laboratory acquired images (data set 1) 

Segmentation by thresholding being one of the simplest methods of separating images into 

regions of interest, in preparation of better feature extraction is explored in this section of the 

thesis. The mathematical models detailed in section 3.3.2 are investigated on data set 1 and 

2, and the performance of each method is established based on the consistency of number of 

regions obtained by each method is summarized in Table 3.3 below. It is of interest that Lab-

1 and Lab-2 samples (of data set 1) with known number of defects are used as indictors of 

performance for Wolfs segmentation method, Occurrence probability segmentation method 

(OGT), and Iterative (AIT) segmentation method. The influential parameters related to the 

improvements of Wolf’s algorithm presented by Feng in equation 3.16 have been simplified 

based on recommendations of Mostafa, A., et al (2016) as k1=0.01, k2=0.5 and 𝛾 = 1. In the 

case of OGT method a corresponding primary and secondary windows size of 32×32, and 

16× 16 pixel block has been adopted as for all samples as recommended by (Zhang, W., et 

al 2014). While the AIT method is initialised to use two partitions for the iterative determination 

of mean intensity value. It is worth mentioning that using small partitions for the AIT method 

takes longer iterations to converge, even though more accurate.   

Image Feng’s 

algorithm 

 

OGT 

algorithm 

 

Automatic 

iterative 

thresholding 

Lab-1 20 7 7 

Lab-2 308 26 21 

Lab-3 449 253 231 

Lab-4 412 229 212 

Table 3. 3: Summarises the number of segmented regions for data set 1 using optimal influential 

parameters for each image. 

 

From Table 3.3 above, it can be concluded that Feng’s algorithm consistently generates much 

higher number of regions compared to OGT and AIT by almost 65%, 40%, and 40% for Lab-
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1, Lab-3, and Lab-4 samples of data set 1 respectively. This is as a result of the complex 

tuning of the three predefined constants. This short coming is most pronounced in the case of 

Lab-2 with observed excess segmented regions of about 300 blobs. AIT and OGT methods 

have recorded good agreement with no more than 16% variation compared to the validated 

number of defects of Lab-1 and Lab-2 samples. Further examination of Lab-3 and Lab-4 

suggests a variation in number of segmented regions to be no more than10%.  

 

Figure 3. 19: Show the performance of Feng's, OGT, and AIT thresholding on Lab-1 image. 
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Figure 3. 20: Show the performance of Feng's, OGT, and AIT thresholding on Lab-2 image. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

119 
 

 

Figure 3. 219: Show the performance of Feng's, OGT, and AIT thresholding on Lab-3 image. 
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Figure 3. 30: Show the performance of Feng's, OGT, and AIT thresholding on Lab-4 image. 
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Image Feng’s 

algorithm 

 

OGT 

algorithm 

 

Automatic 

iterative 

thresholding 

H1 561 49 49 

H2 874 106 115 

H3 708 90 90 

H4 1537 176 237 

H5 664 100 113 

M1 1016 99 90 

M2 1131 123 𝑁/𝐴 

M3 717 96 101 

M4 2000 124 143 

M5 614 74 70 

L1 799 125 126 

L2 1437 182 𝑁/𝐴 

L3 1081 131 156 

L4 1461 129 167 

L5 1654 148 117 

Table 3. 4: Summarises the number of segmented regions for data set 2 using optimal influential 
parameters for each image. 

 

The number of detected defects on field acquired images (subset of data set 2), has also been 

investigated as summarised in Table 3.4 above. Similar to the previous case (of controlled 

images) the complexity associated with optimising three variables of Feng’s algorithm has 

discouraged and undermined the results obtained for this method. For simplicity, the 

predetermined constants k1, k2, and 𝛾 have been initialised based on recommendations of 

Mostafa, A., et al (2016) as k1=0.01, k2=0.5 and 𝛾 = 1. Furthermore, the primary and 

secondary window size of 𝑁1 = 64 and 𝑁2 = 32  for samples FA-H1 to FA-H5. And for samples 

FA-M1 to FA-M5,𝑁1 = 45 and 𝑁2 = 22. And in the case of samples FA-L1 to FA-L5, 𝑁1 = 16 

and 𝑁2 = 8, the variation in number of segmented regions for each distinct level of damage is 

analysed. A range of 0.87-29% is observed for heavily damaged samples. While a range of 

2.06%-11.5% and 0.13%-13.8% is observed for moderately, and lightly damaged samples 

respectively. The consistency in simulated number of segmented regions for OGT and AIT 
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encourages their adoption for automatic detection of RCF. However, the latter is considered 

less accurate of the two given that inconclusive results have been realised for FA-M2 and FA-

L2. 

 

Figure 3.31: Shows the performance of Feng's, OGT, and AIT thresholding on FA-H1 image. 
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Figure 3.32: Shows the performance of Feng's, OGT, and AIT thresholding on FA-M1 image. 
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Figure 3. 3322: Shows the performance of Feng's, OGT, and AIT thresholding on FA-L1 image. 
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3.4.3 Feature extraction 

In this section of the thesis the differences in performance of shape distance histogram 

standard deviation method, morphological characteristic typical to RCF defects, and texture 

(Gabor) based feature extraction are analysed. The suitability of each method is evaluated as 

function of the number of suspect RCF features detected. Table 3.5 below, summarises the 

number of RCF defects detected by each of the aforementioned feature extraction model 

including the initialised values of influential parameters related to each method. To deepen 

the understanding of each method’s capacity to identify RCF defects, all possible 

combinations of the enhancement i.e. E1(LN), E2 (VM), E3 (LMAF), and E4 (FFT) with OGT 

segmentation (S1), and all feature extraction i.e. FE1, FE2, FE3 have been tested on Lab-1, 

Lab2, Lab3, Lab-4, FA-H1, FA-M1, and FA-L1. The influential parameters related to 

enhancement (RM, RV, Block size) for each image are also summarised in the table below. 

Furthermore, in the case of SDHSD method (FE1), a standard deviation threshold value (𝜎) 

for each image (see Table 3.5) is recorded. For Gabor method (FE2), a filter frequency of 

50Hz and energy threshold of 0.009 is adopted for all image samples. In the case of FE3, the 

range (Max_area- Min_area) of defect size (pixel unit) is also recorded. It was observed that 

the difference in number of RCF defects detected is consistent with the performance of the 

enhancement method adopted regardless of feature extraction method utilised. To this end, 

Local normalisation and Visibility measure enhancement (E1 and E2) combined with 

Occurrence global thresholding (S1) in addition to all feature extraction methods (FE1, FE2, 

and FE3) are observed to give the least variation from expected crack population for both data 

set 1 and 2. Thus these methods will be considered in section 3.5 for proposing an algorithm 

for detection of rail surface damage.  
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Figure 3.34: Shows the performance of Texture and SDHSD based feature extraction on Lab-1 image. 
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Figure 3. 35: Shows the performance of Texture and SDHSD based feature extraction on Lab-2 image. 
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Figure 3.36: Shows the performance of Texture and SDHSD based feature extraction on Lab-3 image. 
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Figure 3. 23: Shows the performance of Texture and SDHSD based feature extraction on Lab-4 image. 
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Figure 3. 38: Shows the performance of Texture and SDHSD based feature extraction on FA-H1 image. 
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Figure 3. 39: Shows the performance of Texture and SDHSD based feature extraction on FA-M1 image. 
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Figure 3. 40: Shows the performance of Texture and SDHSD based feature extraction on FA-L1 image.
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Algorithm Enhancement  

Parameters: 

Required  

mean  

RM,  

Required variance  

RV, and 

Block size 

(N) 

Feature 

extraction 

parameters 

Standard 

deviation 

(FE1) 

Frequency 

& 

energy 

threshold 

(FE2) 

Min & Max 

area (FE3) 

LAB-1 

sample 

 # 

defects 

detected 

(Expected 

crack 

population 

 =6)  

LAB-2 

Sample  

# of  

defects 

detected 

(Expected 

crack 

population 

=5) 

LAB-3 

sample  

# of  

defects 

detected 

(Expected 

crack 

population 

≅ 𝟕𝟎𝟎) 

LAB-4 

sample 

# of 

 defects 

detected 

(Expected 

crack 

population 

≅ 𝟖𝟎𝟎) 

FA-H1 

sample  

# of 

defects 

detected 

(Expected 

crack 

population 

≅ 𝟐𝟕) 

FA-M1 

sample 

 #r of 

defects 

detected 

(Expected 

crack 

population 

≅ 𝟏𝟐𝟒) 

FA- L1 

sample 

 # of 

defects 

detected 

(Expected 

crack 

population 

≅ 𝟏𝟐𝟖) 

E3,S1,FE1 Lab-1:0.9,2.1,32 

Lab-2:2.1,1.7,32 

Lab-3:0.9,2.1,32 

Lab-4:0.9,2.1,32 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1:0,1,16 

𝜎 <= 𝟓 

𝜎 <= 𝟒, 𝟓𝟎𝟎 

𝜎 <= 𝟏𝟐, 𝟎𝟎𝟎 

𝜎 <= 𝟏𝟐, 𝟎𝟎𝟎 

𝜎 <= 𝟔, 𝟎𝟎𝟎 

𝜎 <= 𝟕, 𝟎𝟎𝟎 

𝜎 <= 𝟐𝟓, 𝟎𝟎𝟎 

16 11 

 

510 454 20 153 144 

E3,S1,FE2 Lab-1:0.9,2.1,32 

Lab-2:2.1,1.7,32 

Lab-3:0.9,2.1,32 

Lab-4:0.9,2.1,32 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

13 11 

 

120 119 21 133 156 
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E3,S1,FE3 Lab-1:0.9,2.1,32 

Lab-2:2.1,1.7,32 

Lab-3:0.9,2.1,32 

Lab-4:0.9,2.1,32 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

550-2937 

600-4014 

4-150 

4-180 

200- 22565 

10-12644 

10-25765 

14 10 

 

226 314 19 148 

 

 

 

 

 

 

143 

E2,S1,FE1 Lab-1: 0.9,2.1,32 

Lab-2: 0.2,1.7,32 

Lab-3: 0.9,2.1,22 

Lab-4:0.9,2.1,22 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

 

𝜎 <= 𝟐 

𝜎 <= 𝟒 

𝜎 <= 𝟏𝟓 

𝜎 <= 𝟏𝟓 

𝜎 <= 𝟑, 𝟎𝟎𝟎 

𝜎 <= 𝟐𝟎, 𝟎𝟎𝟎 

15 8 208 276 25 128 159 

E2,S1,FE2 Lab-1:0.9,2.1,32 

Lab-2:0.2,1.7,32 

Lab-3:0.9,2.1,22 

Lab-4:0.9,2.1,22 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

 

 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

 

 

 

15 8 214 245 26 114 221 

E2,S1,FE3 Lab-1: 0.9,2.1,32 

Lab-2: 0.2,1.7,32 

Lab3: 0.9,2.1,22 

140-722 

300-2300 

90-618 

13 7 206 240 24 121 158 
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Lab-4: 0.9,2.1,22 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

 

 

85-579 

0.2e3-43006 

550-21978 

20-21978 

10-31301 

 

E1,S1,FE1 Lab-1:0.9,2.1,22 

Lab-2:0.2,1.7,32 

Lab-3:0.9,2.1,22 

Lab-4:0.9,2.1,22 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

 

𝜎 <= 𝟓 

𝜎 <= 𝟒 

𝜎 <= 𝟗𝟎 

𝜎 <= 𝟗𝟎 

𝜎 <= 𝟒𝟎𝟎 

𝜎 <= 𝟔𝟎𝟎 

𝜎 <= 𝟖𝟎𝟎 

16 11 566 566 39 134 171 

E1,S1,FE2 Lab-1:0.9,2.1,32 

Lab-2:0.9,2.1,32 

Lab-3:0.9,2.1,22 

Lab-4:0.9,2.1,22 

FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

 

 

 

14 11 488 474 44 138 138 

E1,S1,FE3 Lab-1:0.9,2.1,32 

Lab-2:0.9,2.1,32 

Lab-3:0.9,2.1,22 

Lab-4:0.9,2.1,22  

100-4944 

50-2703 

62-1962 

64-1911 

5 5 566 565 38 133 170 
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FA-H1: 0,1,64 

FA-M1: 0,1,32 

FA-L1: 0,1,16 

150-8234 

71-1501 

54-1353 

E4,S1,FE1 Lab-1: 

0.9,2.1,64,2,0.1 

Lab-2: 

0.9,2.1,64,2,0.1 

Lab-3: 

0.9,2.1,64,2,0.1 

Lab-4: 

0.9,2.1,64,2,0.1 

FA-H1: 

0.9,2.1,64,16,0.1 

FA-M1: 

0.9,2.1,32,4,0.1 

FA-L1: 

0.9,2.1,16,8,0.1 

𝜎 <= 𝟏  

𝜎 <= 𝟏 

𝜎 <= 𝟏  

𝜎 <= 𝟏 

𝜎 <= 𝟏  

𝜎 <= 𝟏 

𝜎 <= 𝟏 

12 9 3164 3164 26 

 

97 36 

E4,S1,FE2 Lab-1: 

0.9,2.1,64,2,0.1 

Lab-2: 

0.9,2.1,64,2,0.1 

Lab-3: 

0.9,2.1,64,2,0.1 

Lab-4: 

0.9,2.1,64,2,0.1 

FA-H1: 

0.9,2.1,64,16,0.1 

FA-M1: 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

50,0.009 

1358 214 2913 2913 19 96 21 
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0.9,2.1,32,4,0.1 

FA-L1: 

0.9,2.1,16,8,0.1 

E4,S1,FE3 Lab-1: 

0.9,2.1,64,2,0.1 

Lab-2: 

0.9,2.1,64,2,0.1 

Lab-3: 

0.9,2.1,64,2,0.1 

Lab-4: 

0.9,2.1,64,2,0.1 

FA-H1: 

0.9,2.1,64,16,0.1 

FA-M1: 

0.9,2.1,32,4,0.1 

FA-L1: 

0.9,2.1,16,8,0.1 

4-415 

6-185 

62-1962 

64-1911 

150-8234 

71-1501 

54-1353 

 

1204 369 2818 2818 25 96 19 

Table 3. 5: Summary of sensitivity analysis detected RCF damage to feature extraction models (F1-F3) including the influence of the different enhancement 
methods. 
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The feature extraction models differ in terms of characterisation of RCF defects in the following 

detailed manner. In the case of SDHSD method (FE1) the estimated standard deviation of the 

shape histogram (𝜎) varies depending on the enhancement methods adopted. Weng, W. & 

Chen, H. (2015) suggests 𝜎 ≤ 1. However, from Table 3.5 above, this assumption is only 

applicable in the case of FFT enhanced images. 

The performance of texture based feature extraction method (denoted by FE2 in Table 3.5) is 

mainly dependent on the appropriate choice of Gabor filter frequency and orientation 

corresponding to the maximum energy dissipated with the region of interest. For this method 

it is worth mentioning that regardless of the input image, a constant frequency of 50Hz and 

energy threshold of 0.009 is satisfactorily adopted for all samples. This observation has 

encouraged favourable application of the method for automatic RCF detection in image 

processing algorithms. As discussed in the works of Li, Q., & Ren, S. (2012) applying 

morphological criteria (denoted by FE3 in Table 3.5) for excluding false defects requires 

experienced knowledge or site data information, specifically the area, length, and orientation 

of identified damage. In this thesis, RCF defects are assumed to have a minimum length of 

1mm, and it is impossible to have perfectly vertical or horizontal orientations. For the area of 

defects, it is mainly dependent on the type of defect be it spall or fatigue damage in nature. In 

general, FE3 is concluded to be mostly influenced by the enhancement method applied and 

dominant defect type within the image being analysed. 

As an overall assessment of the performance of FE1-FE3, the variation in number of RCF 

defects detected especially in the case Lab1 and Lab2 samples, is a reasonable indicator of 

best performance for the algorithms presented in Table 3.5. Furthermore, preference is given 

to the less tedious nature of optimising threshold values related to standard deviation of shape 

distance (𝜎) and defect area threshold values. A cascaded application of two or more of the 

investigated enhancement and feature extraction methods will be explored in proposing an 

automatic RCF detection algorithm in later section of the thesis (see section 3.5). In the case 

of sample Lab-1 and Lab-2, the texture based method is observed to be susceptible to falsely 

identifying rust on the rail head as suspect RCF defects. 
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The Receiver Operating Characteristic (ROC) curve is presented as a method to analyse the 

performance of extracted rail damage by comparing the ground truth image with the feature 

extraction response traced image (for Lab-1 image with known expected crack population of 

6) as shown in Figure 3.41 below.  

 

Figure 3.41: Shows the Original image (left), extracted feature (centre) and traced image of Lab-1 image. 

 

From the plot of sensitivity against (1-specificity) in Figure 3.43 below, results obtained for 

changing the feature extraction threshold applied on Lab-1 indicates that the probability of 

incorrectly detecting a defect is less than 2% when its true detection state is negative and the 

probability of correctly detecting rail damage is approximately 98%. 
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Figure 3.42: Shows the probabilities of true and false detection for Lab-1 image. 

 

The sensitivity/specificity plot shows the true positive rate and true negative rate probabilities 

defined over a 100 sample points between minimum and maximum pixel intensity value of the 

feature extraction response image. The optimal threshold identified from the crossover in 

Figure 3.43 is approximately equal to -5.208. 

 

Figure 3. 43: Shows the cross over between the sensitivity and specificity for Lab-1 image. 
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In the case of Lab-2 depicted in Figure 3.44 below, the performance of extracted rail damage 

by comparing the ground truth image with the feature extraction response showing the traced 

image for Lab-2 (with known expected crack population of 5).  

 

Figure 3. 44: Shows the Original image (left), extracted feature (centre) and traced image of Lab-2 image. 

 

From the plot of sensitivity against (1-specificity) in Figure 3.45 below, results obtained for 

changing the applied feature extraction threshold on Lab-2 indicates that the probability of 

incorrectly detecting a defect is less than 18% when its true detection state is negative, and 

the probability of correctly detecting rail damage is approximately 72%. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

142 
 

 

Figure 3. 45: Shows the probabilities of true and false detection for Lab-2 image. 

 

The sensitivity/specificity plot confirms that these probabilities are defined over a threshold 

ranging from minimum to maximum pixel intensity value of the ground truth image and the 

optimal threshold identified from the crossover in Figure 3.46 is approximately equal to -1.725 

 

Figure 3.46: Shows the cross over between the sensitivity and specificity for Lab-2 image. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

143 
 

 

The ROC curve analysis is presented for FA-H1 image with multiple expected crack population 

as shown in the Figure 3.47 below. 

 

Figure 3.47: Shows the Original image (left), extracted feature (centre) and traced image of FA-H1 image. 
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From the plot of sensitivity against (1-specificity) in Figure 3.48 below, results obtained for 

changing the applied feature extraction threshold on FA-H1 indicates that the probability of 

incorrectly detecting a defect is less than 12% when its true detection state is negative, the 

probability of correctly detecting rail damage is approximately 88%. 

 

Figure 3.48: Shows the probabilities of true and false detection for FA-H1 image. 

The sensitivity/specificity plot confirms that these probabilities are defined over a threshold 

ranging from minimum to maximum pixel intensity value of the ground truth image and the 

optimal threshold identified from the crossover in Figure 3.49 is approximately equal to -1.208 

 

Figure 3. 49: Shows the probabilities of true and false detection for FA-H1 image. 
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In the case of FA-M1, the performance of extracted rail damage by comparing the ground truth 

image with the feature extraction response showing the traced image for FA-M1 (with multiple 

expected crack population) as shown in Figure 3.50 below. 

 

Figure 3. 50: Shows the Original image (left), extracted feature (centre) and traced image of FA-M1 image. 
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From the plot of sensitivity against (1-specificity) in Figure 3.51 below, results obtained for 

changing the applied feature extraction threshold on FA-M1 indicates that the probability of 

incorrectly detecting a defect is less than 8% when its true detection state is negative, the 

probability of correctly detecting rail damage is approximately 92%. 

 

Figure 3. 51: Shows the probabilities of true and false detection for FA-M1 image. 

 

The sensitivity/specificity plot confirms that these probabilities are defined over a threshold 

ranging from minimum to maximum pixel intensity value of the ground truth image and the 

optimal threshold identified from the crossover in Figure 3.52 is approximately equal to -32.300 
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Figure 3. 52: Shows the probabilities of true and false detection for FA-M1 image. 

 

For FA-L1, the performance of extracted rail damage by comparing the ground truth image 

with the feature extraction response showing the traced image for FA-L1 (with multiple 

expected crack population) as shown in Figure 3.53.  
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Figure 3.53: Shows the Original image (left), extracted feature (centre) and traced image of FA-L1 image. 

 

From the plot of sensitivity against (1-specificity) in Figure 3.54 below, results obtained for 

changing the applied feature extraction threshold on FA-L1 indicates that the probability of 
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incorrectly detecting a defect is less than 18% when its true detection state is negative, the 

probability of correctly detecting rail damage is approximately 82%. 

 

 

Figure 3. 54: Shows the probabilities of true and false detection for FA-L1 image. 

 

The sensitivity/specificity plot confirms that these probabilities are defined over a threshold 

ranging from minimum to maximum pixel intensity value of the ground truth image and the 

optimal threshold identified from the crossover in Figure 3.55 is approximately equal to -8.590 
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Figure 3. 24: Shows the probabilities of true and false detection for FA-L1 image. 

3.4.4 Calibration 

Further to successful feature extraction of RCF defects, it is essential that image calibration is 

performed for the purpose of generating defect statistical data that readily supports 

maintenance decision making. In this thesis, the calibration of rail defect images has been 

performed using the dimension of rail head or that of the rail foot and the performance of each 

of the approaches is investigated. It was observed as depicted in Figure 3.56 below, that using 

the dimensions of the rail head is susceptible to error due to deformation, wear, and effect of 

imaging on curved tracks at different curve radiuses. It is therefore considered more accurate 

to utilise the dimensions of the rail foot, by linear interpolation of the pixel count corresponding 

to the actual dimension of rail foot, rail head, and rail gauge to gauge width (150mm, 72mm, 

and 80mm respectively for 60E1 rail profile). A calibration factor of 0.162 has been established 

contrary to a value of 0.3 and 0.27 as suggested by using the dimension of rail head width and 

gauge to gauge width respectively. 
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Figure 3. 5625: Shows the rail head and rail foot methods of calibrating rail damage images. 
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3.4.5 Generating defect statistical  

After successful calibration of the defect images, MATLAB toolbox functions and the 

mathematical models discussed in section 3.3 were used to estimate the maximum length, 

and orientation of detected RCF defects. Figure 3.57 below shows the comparison of 

generated statistical data related to FA-H1, FA-M1, and FA-L1. These results have been 

computed for the most prominent enhancement methods, i.e. LMAF (E1) and visibility 

measure (E2). A single segmentation algorithm (OGT segmentation method) is adopted for 

this section of the thesis as S1. All feature extraction methods (FE1, FE2, FE3) are explored. 

It was observed that so long as the influential parameters (RM and RV) are kept constant 

regardless of feature extraction method, then a considerable agreement between statistical 

data is obtained for all combinations of the algorithms.  

In the case of Visibility Measure enhancement (denoted by E2 in Figure 3.57) it is observed 

in Figure 3.57, that for FA-H1 sample a variation in total number of defects of 4% is recorded. 

Considering FE1, a maximum variation of 67% in measured crack length for defect number 6 

is attributed to measurement of clustered defect which cause a spike in defect length. In Figure 

3.57b, FA-M1 sample is observed to vary in terms of number of detected defects by about 

7.7% while measured data varies by no more than 1.5% for FE1, FE2, and FE3.  In the case 

of FA-L1 sample, Figure 3.57c confirms a variation in total number of detected defects of about 

30%, while the measured data is observed to vary by no more than 55%. In-spite of the fast 

computational speed of VM method (less than 1.5 seconds as shown in Table 3.8), it can be 

concluded that this approach detects clusters due to measured crack lengths in the range of 

130-40mm.  
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(a) 

 
(b) 

 

 
(c) 

 
Figure 3. 57: Simulated geometry data for (a) H1, (b) M1, and (c) L1, using VM (E2) and Feature 

extraction (FE1-FE3). 
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Using LMAF enhancement (denoted by E1 in Figure 3.58) of FA-H1 field acquired image, as 

observed in Figure 3.58a, a variation in total number of defects of 5% is recorded, while 25% 

variation in measured statistical data for all feature extraction models (FE1 to FE3) is 

observed. In Figure 3.58b, FA-M1 sample is observed to vary by about 6.6% while measured 

data varies by no more than 0.1% for FE1, FE2, and FE3.  In the case of FA-L1 sample, 

Figure 3.58c confirms a variation in total number of detected defects of about 20%, while the 

measured data is observed to vary by no more than 55%. The improved consistency recorded 

in this method is however overshadowed by the high computational time of the LMAF method 

(see Table 3.8). Furthermore, the measured defect length below indicates detection of clusters 

(because of defect length in the range of 70-40mm), which needs further pre-processing for 

more accurate results.  

  

   (a) 

 

      (b) 
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      (c) 

 

Figure 3. 58: Simulated geometry data for (a-b) H1, (c-d) M1, and (e-f) L1. Using LMAF (E1) and Feature 
extraction (FE1-FE3). 

 
As a remedy to clustered defect detection, Figure 3.59 confirms that combining LN method 

with both VM, and LMAF (E1 and E2) and also cascading all feature extraction models 

(F1+F2+F3=FE*) improves agreement in the simulated results. The effect of this modification 

in FA-H1 as depicted in Figure 3.31a, is observed to account for 76 critically grown defects 

(surface length above 5mm) and only 3 newly initiated cracks (with surface length less than 

5mm). In the case of sample FA-M1 in Figure 3.59b, 108 critical defects, and 27 newly initiated 

cracks are recorded. And in the case of FA-L1 in Figure 3.59c, a total of about 801 defects 

are detected all considered newly initiated (less than 5mm in surface length).      

  
(a)  
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(b)  

 

 
(c)  

 
Figure 3. 59: Simulated geometry data for (a) H1, (b) M1, and (c) L1. Using (E1+LN+F1+F2+F3) and 
(E2+LN+F1+F2+F3). 
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3.5 Proposed image processing algorithm  

After detailed analysis of section 3.4, this section presents a novel application of the algorithms 

discussed in accordance to Figure 3.32. This algorithm utilises a cascade of LN method and 

Visibility measure in addition to OGT segmentation and a combination of all feature extraction 

models. The choice of LN combined with visibility measure is supported by the maximum 

amplitude of PSNR and low computational time of the method (0.53 seconds as detailed in 

Table 3.8). Also binary segmentation by occurrence probability thresholding in the form of 

OGT method is used for crack segmentation, which also offers more consistent number of 

suspect defect regions with less computational time required of no more than 0.56 seconds 

(see  

Table 3.8). It is generally recommended as a good practice for feature extraction, that a 

multiplicity of overlapping features is examined for accurate determination of RCF defects. 

After successful extraction of RCF damage the detected defects are further post-processed 

with image cleaning operations (such as fill, remove, erosion, and dilation for removal of false 

defects). The MATLAB ‘bwmorph’ command was employed to perform morphological 

operations on the resulting binary output image (image of extracted RCF defect). The input 

arguments are ‘fillgap’ (to fill small gaps in edges), ‘dilate’ (to expand local dim regions), 

‘erode’ (to shrink local bright regions), and ‘remove’ (to remove interior pixels within a suspect 

RCF defect). As reported in an initial publication of this PhD research (Sambo, B., Bevan, A., 

& Pislaru, C. 2016) the fill and remove functions are specified for filling or removing a gap as 

small as a single pixel along the edges or within a defect, while the erode and dilate function 

are set to expand or contact regions of interest by 0.9 and 0.95 respectively; which is 

equivalent to area opening. The cleaned image is further utilised for generation of geometrical 

statistical data for each RCF defect maximum length, and orientation of the defect. And the 

final stage of the proposed algorithm deals with calibration of geometrical data using the 

known rail foot dimension, as elaborated in section 3.5, a calibration factor of 0.62 is adopted 

in this application. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

158 
 

 
 
Figure 3. 60: Proposed novel application of image processing algorithm. 
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3.5.1 Analysis of data set 3using proposed image processing algorithm 

Based on the proposition in Figure 3.60, the percentile representation of geometrical data 

(surface length, area, and orientation) for data set 2 suggest that 90% of detected length of 

heavily damaged samples FA-H1 and FA-H3 have maximum surface length less than 

12mm. However, in the case of fatigue damage dominated image samples e.g. FA-H2, FA-

H4, and FA-H5, maximum crack length is less than 4mm. A similar observation is made for 

the generated area of damage with FA-H1 and FA-H3 having 90% of RCF defects with an 

area less than 40mm^2 and 28mm^2 respectively, while FA-H2, FA-H4, and FA-H5 

correspond to 90% of defects with a maximum area less than 5mm^2. In agreement with the 

understanding of crack initiation mechanism, and propagation mechanism of RCF defects, 

the measured orientation confirms a range of 87𝑜-20𝑜. 

 

 

(a) 
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(b) 

 

(c) 

Figure 3. 61: Percentile measured length (a), area (b), and orientation (c) for heavily damaged samples of 
data set 2. 
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Analysing the case of moderately damaged field acquired samples, a slightly less than 90th 

percentile value of 6mm is acquired for FA-M1, FA-M2, and FA-M5 (see Figure 3.62a), while 

sample FA-M3 and FA-M4 are observed to have 90% of detected defects with a maximum 

length of no more than 3mm. A similar observation is made in the case of generated defect 

area and as depicted in Figure 3.62b, 90th percentile of defect area is less than 8mm^2, 

8mm^2, 2mm^2, 2mm^2, and 10mm^2 for FA-M1, FA-M2, FA-M3, FA-M4, and FA-M5 

respectively. This observation is in agreement with the presence of fatigue damage defects 

for this level of damage (moderately damaged image sample) as opposed to spall dominated 

images (heavily damaged samples). Furthermore, a high level of consistency in terms of 

orientation is in agreement with the understanding of crack initiation mechanism, and 

propagation mechanism of RCF defects, and the generated orientation confirms a range of 

87𝑜-20𝑜. 

 

(a) 
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(b) 

 

(c) 

Figure 3.62: Percentile measured length (a), area (b), and orientation (c) for moderately damaged samples 

of data set 2. 
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Considering lightly damaged field acquired samples, 90% of detected defects are observed to 

have a maximum length of no more than 3mm with corresponding defect area of no more than 

3mm^2 for all samples under investigation as depicted in Figure 3.63a and b. It is however 

worth mentioning that all images of this level of damage demonstrate the highest level of 

consistency in terms of generated statistical data. Furthermore, considering the maximum 

defect length and area suggests that the dominant defect type in all samples are fatigue 

damage of shorter lengths and smaller area as compared to the other levels of damage. As in 

the previous two levels of damage a similar conclusion can be made with regards the 

orientation of RCF defect ranging 87𝑜-20𝑜 for 90% of detected defects as depicted in Figure 

3.63c.  

 

(a) 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

164 
 

         

 
 

(b) 

 

(c) 
Figure 3.6326:  Percentile measured length (a), area (b), and orientation (c) for lightly damaged samples 
of data set 2. 
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3.5.2 Analysis of data set 3 using the proposed algorithm 

Based on optimisation by trial and error, the 30 samples of data set 3 have been investigated 

using the algorithm proposed in section 3.5. The simulated results are summarised as 

depicted in Table 3.6. The following observations can be made with regards to left rail images 

of the track. For the influential parameters related to enhancement, only RM is observed to be 

significantly higher with an appreciation of approximately 25% compared to optimum values 

adopted for data set 1. Even though both data set 2 and 3 are field acquired images an 

increase of about 120% is recorded which has been attributed to the differences in 

environmental conditions (i.e. gravel background for data set 2 while snow background in data 

set 3) including variations in lighting or reflection property of rail steel. With focus on left rail 

samples, it is observed that the maximum block size of the enhancement stage is no more 

than 32×32 as opposed to 64×64 in data sets 2. It is also observed that the normalised grey 

threshold value of segmentation for data sets 1, and 2 varied by no more than 18.26% 

compared to data set 3. Further cleaning of the defect image was done with a consistent 

cleaning parameter C=0.0001, for all images in data set 3. In the feature extraction stage a 

similar observation to data set 1 and 2 has been established, with all images utilising a 

constant maximum frequency (50Hz), true defect energy threshold (E=0.009), and block size 

N equal to the block size of LN method i.e. N=32. Simulated RCF geometrical statistical data 

for samples L-4060ft, L-4063ft, L-4110ft, L-3960ft, L-4563, have been observed to contain 

some level of spalling, with 90% of these defects observed to have a maximum surface length, 

area, and orientation of 6.4mm, 7mm^2, and 87𝑜 respectively. These samples are best 

processed with a maximum block size of 32×32 pixels. While samples L-4195ft, L-4270ft, L-

3953ft, L-4103ft are observed to contain mostly fatigue damage like defects with 90th 

percentile of measured length, area, and orientation of defects observed to be no more than 

4mm, 2mm^2 and 87𝑜 respectively. These samples are best processed with a maximum block 

size of 22×22 pixels. For samples L-3948ft, L-3943ft, L-3945ft, L-3978ft, L-4025ft, L-4213ft, 

they are observed to contain mostly fatigue damage like defects with 90th percentile length, 
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area and orientation of defects no more than 2.7mm, 2mm^2 and 87𝑜 respectively. These 

samples are best processed with a maximum block size of 16×16 pixels. According to the 

number of RCF defects detected it is right to assume that heavily damaged samples contain 

less number of defects compared to moderately and lightly damaged samples respectively. 

Image Enhancement 

parameters 

Required 

mean RM, 

Required 

variance RV, 

Local 

normalisation 

window 

bs_Ln, and 

Visibility 

measure 

window 

bs_Vis 

Segmentation 

parameter 

(Normalised pixel 

intensity threshold 

value) 

Feature 

extraction 

parameter 

Filter 

frequency 

(Hz), Filter 

energy 

threshold, 

block size 

Cleaning 

parameter 

(scaling 

factor to 

determine 

size of 

blob to be 

cleaned) 

Number of 

RCF 

detected 

(With 

expected 

crack 

population 

=multiple) 

L-4060ft 1.2,1,32,32 0.3333 50,0.009,32 0.0001 
 

508 

L-4063ft 1.2,1,32,32 0.3843 50,0.009,32 0.0001 442 

L-4110ft 1.2,1,32,32 0.3373 50,0.009,32 0.0001 487 

L-4195ft 1.1,1,22,22 0.3843 50,0.009,22 0.0001 
 

731 

L-4270ft 1.1,1,22,22 0.3882 50,0.009,22 0.0001 
 

740 

L-3948ft 1.1,1,16,16 0.3843 50,0.009,16 0.0001 
 

940 

L-3953ft 1.1,2,22,22 0.4078 50,0.009,22 0.0001 
 

707 

L-3960ft 1.1,2,32,32 0.4039 50,0.009,32 0.0001 
 

470 

L-4103ft 1.1,2,22,22 0.4039 50,0.009,22 0.0001 
 

735 

L-4563 1.1,2,32,32 0.4039 50,0.009,32 0.0001 446 

L-3943 1.1,1,16,16 0.3882 50,0.009,16 0.0001 880 

L-3945 1.1,1,16,16 0.3882 50,0.009,16 0.0001 875 
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L-3978 1.1,1,16,16 0.3843 50,0.009,16 0.00007 958 

L-4025 1.1,1,16,16 0.3882 50,0.009,16 0.00007 1046 

L-4213 1.1,1,16,16 0.3843 50,0.009,16 0.00007 748 

Table 3. 6: Presents the technical details related to each stage of the proposed novel application of image 
processing algorithms on left rail images. 

 

In the case of examining the right rail equivalent image samples, Table 3.7 below suggests 

little or no spalling. Accordingly, a block size of no more than 16x16 has been adopted for all 

images in addition to RM and RV of 1.2 and 1 respectively. As in the case of left rail images, 

segmentation threshold values are observed to also vary by no more than 18% for all right rail 

images. Feature extraction has been performed as described in previous case (left rail image 

sample) using same parameters (maximum frequency of 50Hz, true defect energy threshold 

E=0.009, and block size equal to LN block size). In a similar manner to left rail image samples, 

post-processing cleaning has also been performed using parameter 0.0001. In the case of all 

right rail image samples, generated statistical data have been observed to contain 90% of 

these defects with a maximum surface length, area, and orientation of 2.7mm, 2mm^2, and 

87𝑜 respectively. 

Image Enhancement parameters 

Required mean RM, 

Required variance RV, 

Local normalisation 

window bs_Ln, and 

Visibility measure window 

bs_Vis 

Segmentation 

parameter 

(Normalised 

pixel 

intensity 

threshold 

value) 

Feature 

extraction 

parameters 

Filter 

frequency 

(Hz), Filter 

energy 

threshold, 

block size 

Cleaning 

parameter 

(scaling 

factor to 

determine 

size of 

blob to be 

cleaned) 

Number of 

RCF 

detected 

(With 

expected 

crack 

population 

=multiple) 

R-4060ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

886 

R-4063ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

906 

R-4110ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

813 

R-4195ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

905 
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R-4270ft 1.2,1,16,16 0.3843 50,0.009,16 0.0001 
 

847 

R-3948ft 1.2,1,16,16 0.3843 50,0.009,16 0.0001 
 

900 

R-3953ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

887 

R-3960ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

910 

R-4103ft 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

853 

R-4563 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

926 

R-3943 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

868 

R-3945 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

861 

R-3978 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

759 

R-4025 1.2,1,16,16 0.3882 50,0.009,16 0.0001 
 

870 

R-4213 1.2,1,16,16 0.3843 50,0.009,16 0.0001 
 

868 

Table 3. 7: Presents the technical details related to each stage of the proposed novel application of image 
processing algorithms on right rail images. 

As a holistic analysis of the simulated result (images presented in Appendix C6) for data set 

3 (both left and right rails), it can be said that the detected RCF damage (Table 3.6 and 3.7) 

is in agreement to field observations and theoretical understanding of curved track rail damage 

data. Based on the assumption that the investigated damaged samples reported in this section 

of the thesis are most probably of different curve radiuses, considerations of rail cant 

deficiency will cause the low rail to contain a higher level of damage (due to lower creep forces 

resulting to lower 𝑇𝛾 values sufficient enough to generate RCF but low enough to not wear 

these crack off). Field measurement have suggested a similar conclusion because low wear 

rates are realised in such a case. On the high rail, it is expected that higher creep forces 

resulting in higher 𝑇𝛾 will cause severe wear and possible wearing out of initiated RCF defects 

before they propagate to critical geometry. It is therefore believed that the left rail images of 

data set 3 correspond to low rail, while right images are for the high rail of a left hand curved 
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track. This is confirmed from ICRI site data details provided along with the data set 3. It is 

therefore confirmed that there is good agreement between site data and simulated results of 

this section of the thesis.  

3.6 Conclusion 

This chapter highlighted the effectiveness of using image processing algorithms for the 

automatic detection of RCF damage in rails, with emphasis on generating defect geometry 

data for rail integrity predictions. A critical requirement for automatic detection of rail damage 

is the quality of the image acquisition system. More accurate detection of cracks is attainable 

by using of image acquisition systems equipped with anti-vibration dampers (for blur free 

images) and light source deflectors/reflectors (for uniform illumination of rail surface). 

The analysis of simulated results for all data sets confirms that no single method (at each 

stage of the algorithm) is equipped to solve the challenges of true positive detection of damage 

on rails. The computational requirement of each method is recorded as shown in Table 3.8 

below. 

Method Recorded time (sec) 

Median filter 0.50 

LMAF enhancement  3600 

Local normalisation enhancement 0.56 

FFT enhancement 0.73 

Visibility measure  enhancement 1.31 

OGT segmentation 0.53 

AIT segmentation (2 initial partitions) 2.05 

Feng’s segmentation 0.52 

Texture based feature  extraction 1.20 

SDHSD feature extraction 5.52 

Morphological feature  extraction 1.04 

Table 3. 8: Show the computational time for each algorithm. 
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Rather, a key finding from this investigation reiterates the benefits of combining one or more 

methods at each distinct stage. After thorough analysis of simulated results, the significance 

of illumination invariant methods cannot be neglected. Also it was ensured that even global 

methods (such as Normalisation) are modified to local versions for improved performance. 

Critical analysis of the results obtained after applying the algorithms confirm the presence of 

undesired noise, which is attributed to the susceptibility of defining the existence of a crack as 

variation in pixel intensity. This assumption leads to the detection of grind marks, scratches, 

and rust as possible damage on rails and must be addressed using superior definition of true 

detection of damage.  Measurements from high and low rail components of data set 3, confirm 

theoretical understanding of RCF initiation, propagation, and even the competitive mechanism 

of wear and crack growth rate in curved track. Given that further investigation of the proposed 

algorithm is possible, it is therefore of interest for this research to explore (in the next chapter) 

the potential applications of the generated defect geometrical data related to each defect with 

the hope of enhancing maintenance team’s planning/decision making and predictive 

maintenance.  
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Chapter 4 Modelling and simulation of crack behaviour in rails 

4.1 Introduction 

There exist several models of crack initiation and growth in literature, a variety of which 

contribute to understanding the concept of crack initiation, propagation, and failure in rails. A 

wide range of such models have been discussed in the literature review section, which take 

into account the fundamental equilibrium, deformation, and material equations of solid 

mechanics. In line with the aim and objective(s) of this PhD research, the mathematical 

formulations governed by Hertz contact theory are the basic input for estimating the stress 

concentration at the crack tip, which is further related to the Stress Intensity Factors (SIF) of 

tensile, shear, and torsion loading cases. Using the data set detailed in section 4.2, this 

chapter discusses a finite element wheel-rail contact model; henceforth referred to as a global 

track model, utilised for generating wheel-rail contact stresses and strains responsible for 

propagating RCF damage. It is designed to accommodate a single sleeper bay with a sleeper 

distance of 600mm for realistic predictions of field observations. The global track model is 

initialised based on VAMPIRE generated contact data (these include the wheelset lateral 

displacement, vertical displacement, roll angle, and yaw angle). The simulated contact 

stresses and strains realised from the global track model are further processed using a locally 

incorporated fracture mechanics model. 

The local fracture model defined in the mathematical formulations of section 4.3 is adopted to 

estimate the dominant modes of fracture for surface initiated cracks (i.e. Mode-I and II). The 

Mode-I and II SIFs are then used to derive equivalent mixed mode SIF. This equivalent SIF in 

relation to fracture toughness of the rail steel is further processed in accordance with well-

understood growth laws for derivation of crack growth rate. The crack growth direction is 

determined based on maximum tangential stress theory and rail residual life is estimated as a 

function of the number of loading cycles until failure.  
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Other influential parameters considered in this chapter include multi-axial loading 

considerations, rail supporting structure, track curvature, defect geometry (i.e. crack size and 

orientation/inclination), and relative distance of the crack from peak contact stress. 

Due to the complexity associated with stresses generated at the contact patch the mixed mode 

loading (as opposed to pure mode I and II) is considered as the ideal replica of all wheel-rail 

contact phenomena. 

It is also important while considering fracture mechanics models to acknowledge the impact 

of rail substructure design, as concluded in (Evans, G., et al 2009); such as sleeper spacing 

and damping constants to be proportional to reaction forces, i.e. vertical displacements, and 

contact forces respectively. It is further recognised in the works of Zakeri, A.J., & Xia, H. (2008) 

that for spring stiffness, there exists an inverse proportionality with rail vertical displacement 

and negligible increase in support structure interaction (reaction) forces. 

Curved track data is of interest to this study because longitudinal and lateral slip can be related 

to the creep forces directly responsible for the propagation of RCF cracks. The simulated 

results of curve radius parametric study in section 4.4.3 confirms an inversely proportional 

relationship between curve radius and contact pressure including creep forces. 

It is also common knowledge that the initial length of a defect influences its fracture behaviour. 

In section 4.4, simulated results of newly initiated (1mm surface length) cracks and critically 

grown cracks (5mm surface length) have been used to confirm that longer cracks propagate 

faster than shorter ones under same loading conditions. The global contact model is validated 

with specialist contact dynamics software, while local fracture mechanics model is compared 

to laboratory tests by Zafosnik, B., et al (2000) in section 4.5.  
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4.2 Data set 

4.2.1 Contact data 

The global track model is a 3D assembly of a revolved and extruded s1002 wheel and 60E1 

rail profiles respectively. The profile data have been obtained via scans (on new samples) 

from a Mini-Prof measurement device. Both tangent and curved track studies are in response 

to 80KN axle load (typical of in service passenger train axle loads). 

In the case of tangent track case study, the VAMPIRE vehicle dynamics simulation package 

data summarised in Table 4.1 is used to calibrate the global track model. 

 

Lateral displacement [mm] Roll angle [mrad] 

1 -0.053 

2 -0.114 

3 -0.179 

4 -0.252 

5 -0.327 

6.5 -0.730 

Table 4. 1: Tangent track calibration data for global track model. 

In the case of curved track case study, the VAMPIRE vehicle dynamics simulation package 

data summarised in Table 4.2 is used to calibrate the global track model. The parameters of 

interest to this research include yaw angle, roll angle, vertical displacement, and lateral 

displacement of the low rail components of the track respectively. 

 

Curve  

radius 

 [m] 

Lateral  

Displacement 

 [mm] 

Roll angle  

[degrees] 

Yaw angle 

[degrees] 

Lateral 

creep force 

 [kN] 

Longitudinal 

creep force 

 [kN] 

200 -7.67 
-0.63 3.32 -15.55 

-7.50 

650 -5.93 
-0.09 3.68 -6.77 

-14.35 

900 -5.14 
-0.05 4.18 -3.99 

-12.41 

1600 -3.74 
-0.01 4.15 -1.27 

-7.81 

Table 4. 2: Curved track calibration data for global track model. 
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4.2.2 Defect geometry, and location 

The influence of the initial size of the defect under investigation is also parameterised as a 

function of crack surface length, depth, and opening. A case study of defect propagation and 

branching criteria ranging from a newly initiated crack with surface length of 1mm (initial and 

final rail crack propagation phase), to that of a critically grown defect of surface length 5mm is 

presented and analysed. The depth of each defect is determined to be equal to surface length 

based on the assumption of a unity depth-length ratio. Furthermore, a sensitivity analysis on 

the influence of the relative distance between the crack centroid and peak contact pressure is 

performed. The relative distance is defined in Cartesian coordinate system such that (x,y) 

corresponds to the coordinate of the peak contact pressure at the wheel rail interface and the 

following crack centroid locations are studied (x-0,y-0), (x-1,y-1), and (x-2,y-2).  

4.3 Methodology 

The relative motion between the wheel and rail is best described as a combination of rolling 

and sliding motion such that in the presence of an external normal load, some points may slip 

and others may stick (adhesion). Iwnicki, S. (2003) explains that it is as result of difference 

between the tangential strains of the two bodies in the adhesion region that small slip called 

creepage are realised at the wheel-rail interface. When a wheelset is subjected to 

acceleration, braking, suspension forces, or curved trajectory, creep forces are generated due 

to micro slippage in the area of contact. In addition to the normal contact force (𝑁), the creep 

forces generated within the contact patch that are of interest to this research include, 

longitudinal creep force (𝐹𝑥), and lateral creep force (𝐹𝑦). As a direct consequence of adopting 

image processing for detection of RCF damage in this study, only 𝑁, 𝐹𝑥, 𝐹𝑦 components of the 

creep forces (see Figure 4.1) are influential for surface fracture mechanics (while 𝑀𝑧 is 

neglected). 
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Figure 4. 1:  Wheel rail contact showing contact forces and contact patch (Lewis, R., & Olofsson, U. 

2009). 

4.3.1 Global track model 

To accurately implement a multibody contact model, it is necessary to introduce a parametric 

form of the geometry of the wheel and rail. This definition of the geometry is required to be 

defined in a global coordinate system since the equations of motion of the contact model are 

written with respect to global inertial frames capable of representing any spatial configuration 

of the wheel and rail. The global track Finite Element (FE) model depicted in Figure 4.2, is 

designed for the s1002 wheel and 60E1 rail profile. This FE approach is preferred in order to 

account for the initial gap/penetration that exists between the wheel and rail profiles and can 

be included. Furthermore, the contact model considers linear elastic plastic deformation 

around the vicinity of the contact patch. The inclusion of extra fine mesh divisions near the 

contact patch is made in order to improve the accuracy of estimating stress concentration at 

the crack tip. 
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Figure 4. 2: The global track model assembly of s1002 wheel, and 60E1 rail, rail pad, sleeper, and ballast 
substructures. 

The influence of including the rail substructures with technical details of spring stiffness as 

summarised in Table 4.3, is observed to lower the contact pressure by only few MPa 

(approximately 3.173 MPa). 

  

Parameter  Value 

Rail pad stiffness 

 

200E6 [N/m]  

 

Sleeper mass 314 [Kg]  

Ballast stiffness 125E6 [N/m] 

Table 4. 3:Details of rail supporting structure. Vasic, G. (2013). 

Quasi-static wheel-rail rolling contact conditions, best confined in the assumptions of steady 

state Hertzian contact theory elaborated in Ahmad, A., et al (2008) and Vasic, G. (2013) 

combined with theory of elastic deformation as discussed in Popovici, R. (2010) result in 
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equation 4.1 below. The maximum contact pressure assumed to be at the origin 𝑃(0,0)  in 

equation 4.2, for 80 kN axle load typical of passenger train is evaluated to be about 1027MPa.  

𝑃(𝑥, 𝑦) =
3

2

𝑁

𝜋𝑎𝑏
√1 − (

𝑥

𝑎
)
2

− (
𝑦

𝑏
)
2

    (4.1) 

𝑃(0,0) =
3

2
×

80,000

𝜋×6×5
= 1027

𝑁

𝑚𝑚2    (4.2) 

Where N is the normal force in contact patch, and the major and minor semi axis of contact 

ellipse are denoted by a and b. 

Figure 4.3 below highlights the difference in contact pressure distribution between inelastic 

deformations in MATLAB based on Hertz model and measured normal pressure distribution 

for new and worn profile shapes respectively. The effect of improved conformity between 

wheel and rail worn shapes is observed to case a 400MPa reduction in contact pressure. 
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Figure 4. 3: Shows the comparison Hertz model and measured contact pressure of a new and worn 

profile (Rovira, A., et al 2011). 
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Bezin. Y, (2008) extensively investigated integrated flexible track models and discusses the 

force exerted on the rail support structure. Generally, vertical force on the rail pad and ballast 

varies along the track and can be observed to be influenced by the cant deficiency. Also a 

difference of about -20% to +13% is observed between the forces predicted using constant 

and variable support stiffness.  Bezin. Y, et al (2009) emphasises the significance of using 

sufficiently long enough section of a track to investigate influence of support structure on 

contact forces, which confirms the existence of potential trend between support stiffness 

variation and changes in forces on track. In the global contact model presented in section 

4.3.1 decreasing rail pad stiffness (for tangent track) by 50% is observed to decrease 

displacement of rail proportionally with a negligible change in support interaction forces by as 

little as 2.58N, 0.541N, 3.7N in the vertical, lateral and longitudinal directions. Further 

decrease of rail support parameters to about 25% of original value in Table 4.3 is observed to 

decrease rail displacement proportionally and increase support reaction forces by 5.15N, 

1.06N, 7.5N in vertical, lateral, and longitudinal directions respectively. Also the total vertical 

displacement of the rail is observed to increase by about 100% to approximately 0.098mm 

compared to a non-supported rail section. This is attributed to appreciation in bending moment 

of the rail. 

Even though contact stresses have been extracted from FE analysis of the wheel rail contact 

model in this thesis, Srivastava, J.P., Sakar, P.K., & Ranjan, V. (2014) elaborated as 

presented in equation 4.3a to 4.3c, the analytical estimates of principal stresses as a function 

maximum contact pressure. 

 

𝜎𝑥 = −2𝜇𝑃𝑚𝑎𝑥 − (1 − 2𝜇)𝑃𝑚𝑎𝑥
𝑏

𝑎+𝑏
   (4.3a) 

𝜎𝑦 = −2𝜇𝑃𝑚𝑎𝑥 − (1 − 2𝜇)𝑃𝑚𝑎𝑥
𝑎

𝑎+𝑏
   (4.3b) 

𝜎𝑧 = −𝑃𝑚𝑎𝑥     (4.3c) 

 

Where 𝜎𝑥,𝜎𝑦, 𝜎𝑧 are principal stresses. 𝜇 is the friction coefficient. 𝑃𝑚𝑎𝑥 is the maximum contact 

pressure. a and b are the major and minor semi axis of the contact patch.  
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4.3.2 Local fracture mechanics model 

The local fracture mechanics model adopted for predicting the behaviour of cracks on rail is 

based on linear elastic fracture mechanics formulations of plane stress assumptions (i.e. 

stress distribution on thin plane containing crack). This PhD investigation focuses on tension 

(mode-I) and shear (mode-II) fracture modes mainly due to their dominance is surface RCF 

damage propagation as elaborated in Lewis, R., & Olofsson, U. (2009). Pure, mixed, and 

biaxial loading case studies have been demonstrated and presented in Appendix D1, 

Appendix D2 and Appendix D3 respectively. The method depicted in Figure 4.5, involves 

exporting the wheel rail interface stress distribution generated from the global track model. 

The stress distribution is processed to estimate KI and KII as functions of nominal stress acting 

on a finite plane containing the RCF crack. The equivalent effect of KI and KII represented as 

Keqv is estimated.  By relating Keqv to material fracture toughness of the rail steel, the growth 

rate of the defect is estimated as function of ∆Keqv. The branching direction 𝜃, is assumed to 

be same as the angle of the maximum tangential stress component. Residual life estimates 

have also been determined as functions of number of loading cycles until failure. For elliptical 

equivalent representation of RCF damage on rails, mathematical formulations of fracture 

mechanics parameters related to a variety of defect type/configuration (see section 4.4.1) have 

been presented in this section. All equations detailed in this section are functions of nominal 

stress and exclude Irwin’s modification of crack tip yielding (existence of a small plastic region 

at crack tip). Equation 4.4a and 4.4b describe purely tensile crack fracture and its 

independence on the influence of crack inclination angle, while equations 4.5 - 4.21 are also 

uniaxial formulations but are related to generic crack inclination angle of cracks on rails. For 

more realistic prediction of RCF damage behaviour in rails, bi-axial models of KI and KII as 

described in equation 4.22 are adopted in this PhD research. 
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Figure 4. 4: Shows the block diagram of the proposed local fracture mechanics model. 

It is well established in the book of Dalberg, T., & Ekberg, A. (2002) and Anderson, T.L. (2011) 

that the classical J-integral formulation can be related to SIF by a function of remote nominal 

stress, crack length and Young’s modulus as prescribed in equation 4.15a and 4.15b for pure 

Mode-I and pure Mode-II SIF respectively.  

𝐽𝐼 =
𝐾𝐼
2

𝐸′
=

𝜎𝑧∞
2𝜋𝑎

𝐸′
× 𝑓     (4.4a) 

𝐽𝐼𝐼 =
𝐾𝐼𝐼

2

𝐸′
=

𝜎𝑧𝑦∞
2𝜋𝑎

𝐸′
× 𝑔     (4.4b) 

Where 𝑓 and 𝑔 are the configuration correction factors introduced by Dalberg, T., & Ekberg, 

A. (2002) that depend upon the material and geometry, which have been concluded to be 

negligible for simple geometries. The symbol ∞ denotes remote stress far away from crack.  

 

Taking into account the case of an inclined ellipse in a wide plate under the influence of uni-

axial load represented by the nominal stress 𝜎𝑛𝑜𝑚 in Figure 4.6 below, the tangential stress 
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𝜎𝜃 along the free border of the elliptical crack geometry as reported by Livieri, P., & Seagala, 

F. (2007) can be expressed as in equation 4.5. 

 

Figure 4. 5: Inclined elliptical crack under tensile load (right), and relevant mode-I and II fracture modes 
(left) (Livieri, P., & Seagala, F. 2007). 

 

𝜎𝜃(𝛽, 𝜂, 𝜉𝑜) = 𝜎𝑛𝑜𝑚 [
𝑠𝑖𝑛ℎ2𝜉𝑜+𝑐𝑜𝑠2𝛽−𝑒

2𝜉𝑜cos 2(𝛽−𝜂)

𝑐𝑜𝑠ℎ2𝜉𝑜−𝑐𝑜𝑠2𝜂
]   (4.5) 

 

Where 𝜂 and 𝜉𝑜 are the elliptical coordinates. 𝛽 is the angle between major axis (a) and the 

load direction as depicted in Figure 4.6. 

In order to obtain analytical expression of the J integral for generic inclination angle 𝛽, it is 

useful to define symmetric and skew-symmetric components elaborated in equations 4.6a - 

4.6c below. 

 

𝜎𝜃 = 𝜎𝜃,𝐸 + 𝜎𝜃,𝑂      (4.6a) 

𝜎𝜃,𝐸 =
1

2
[𝜎𝜃(𝛽, 𝜂) + 𝜎𝜃(−𝛽, 𝜂)]    (4.6b) 
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𝜎𝜃,𝑂 =
1

2
[𝜎𝜃(𝛽, 𝜂) − 𝜎𝜃(−𝛽, 𝜂)]    (4.6c) 

 

Utilising trigonometric and hyperbolic functions in equations 4.6 – 4.11 below.  

𝑥 = 𝑎 𝑐𝑜𝑠𝜂     (4.7a) 

𝑦 = 𝑏 𝑠𝑖𝑛𝜂     (4.7b) 

 

𝑎 = 𝑐 𝑐𝑜𝑠ℎ𝜉𝑜     (4.8a) 

𝑏 = 𝑐 𝑠𝑖𝑛ℎ𝜉𝑜     (4.8b) 

𝑐 = √𝑎2 − 𝑏2     (4.8c) 

 

sinh(2𝜉𝑜) =
2𝑎𝑏

𝑐2
     (4.9a) 

cosh(2𝜉𝑜) = 1 +
2𝑏2

𝑐2
    (4.9b) 

tanh(𝜉𝑜) =
𝑏

𝑎
      (4.9c) 

 

𝑒2𝜉𝑜 =
𝑐2

(𝑎−𝑏)2
     (4.10) 

 

sin(2𝜂) =
2𝑥𝑦

𝑎𝑏
     (4.11a) 

cos(2𝜂) = 1 −
2𝑦2

𝑏2
    (4.11b) 

Where 𝑥 and 𝑦 are the equivalent Cartesian coordinate representation of 𝜂 and 𝜉𝑜. While 𝑎 is 

the major semi axis and 𝑏 is the minor semi axis of the elliptical crack. And 𝑐 is the ellipse 

eccentricity. 

The even and odd hoop stresses in equation 4.6b and 4.6c are re-arranged as a functions of 

y co-ordinate as expressed in equation 4.12a and 4.12b. 

𝜎𝜃,𝐸(𝑎, 𝑏, 𝑐, 𝑦) = 𝜎𝑛𝑜𝑚
𝑐2

(𝑎−𝑏)2
[
𝑎𝑏

𝑐2

1+
(𝑎−𝑏)2

𝑐2

𝑏2

𝑐2
+
𝑦2

𝑏2

− 1]   (4.12a) 

𝜎𝜃,𝑂(𝑎, 𝑏, 𝑐, 𝑦) = 𝜎𝑛𝑜𝑚
2𝑐2

(𝑎−𝑏)2
[
𝑦

𝑏2

√𝑏2−𝑦2

𝑏2

𝑐2
+
𝑦2

𝑏2

]    (4.12b)  

The x-y co-ordinate dependent expression in equation 4.12 is more suitably evaluated 

analytically in accordance with equation 4.13. This integral is performed along the minor axis 

(integral from point −𝑏 to 𝑏) of the V rounded shape notch (i.e. an ellipse with 𝑏 that tends 

towards 0). 
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𝐽𝑣 = ∫
𝜎𝜃

2

2𝐸′
𝑑𝑦

𝑏

−𝑏
     (4.13) 

Where 𝐽𝑣 is the J-integral of a V-shaped notch (ellipse with 𝑏 that tends towards 0). 𝑏 is the 

minor semi axis length of the elliptical notch. 𝐸′ is the Young’s modulus in the case of plane 

stress assumption. 

Taking into account equations 4.7 - 4.13, the mode-I SIF at the tip of the crack for a generic 

inclination angle 𝛽 is determined as follows. 

𝐾𝐼 = 𝜎𝑛𝑜𝑚√𝜋𝑎 × 𝑠𝑖𝑛
2(𝛽)                    (4.14a) 

 

While the mode-II SIF at the tip of the crack is estimated for generic loading angle 𝛽 by: 

𝐾𝐼𝐼 = 𝜎𝑛𝑜𝑚√𝜋𝑎 ×  sin (𝛽)cos (𝛽)    (4.14b) 

 

where: 𝜎𝑛𝑜𝑚 is nominal stress component, ,  𝐾𝐼 mode-I SIF, 𝐾𝐼𝐼 mode-II SIF, 𝐸′ is the shear 

modulus, inclination angle 𝛽, 𝑎 is crack major semi axis, 𝑏 is minor semi axis of crack, 𝑐 is 

eccentricity of crack. 

Livieri, P., & Seagala, F. (2012) modified equations 4.15 to account for mixed mode I and II 

loading case. This modification is based on the re-definition of the hoop stress in equation 4.5 

as the sum of three stress components defined as; 

 𝜎𝜃 = 𝜆1𝜎𝜃1 + 𝜆2𝜎𝜃2 + 𝜆3𝜎𝜃3    (4.15a)  

 

𝜎𝜃1 =
𝑒2𝜉𝑜

1+2
𝑎

𝑏

[
𝑠𝑖𝑛ℎ2𝜉𝑜(1+𝑒

2𝜉𝑜)

𝑐𝑜𝑠ℎ2𝜉𝑜−𝑐𝑜𝑠2𝜂
− 1]    (4.15b) 

 

𝜎𝜃2 =
2𝑎𝑏𝑒2𝜉𝑜

(𝑎=𝑏)2
[

𝑠𝑖𝑛2𝜂

𝑐𝑜𝑠ℎ2𝜉𝑜−𝑐𝑜𝑠2𝜂
]    (4.15c) 

 

Where the coefficients 𝜆1, 𝜆2, 𝜆3 (see equation 4.16) are obtained by forcing the summation of 

the right hand side of equation 4.18a to the left hand side using FE analysis.  

𝜆1 = 𝜎𝑛𝑜𝑚(1 + 2
𝑎

𝑏
)𝑠𝑖𝑛2𝛽     (4.16a) 

 

𝜆2 = 𝜎𝑛𝑜𝑚 (
(𝑎+𝑏)2

𝑎𝑏
) − 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽    (4.16b) 
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The analytical formulation of J-integral for mixed mode V rounded shape notch case is 

achieved by considering only the two components of equation 4.15a (i.e. 𝜎𝜃1, 𝜎𝜃2) that agree 

with the classic J-integral when notch tip radius of the ellipse is almost zero. The analytical 

solution for mixed mode I and II J-integral of a V rounded shape notch 𝐽𝑣𝑚𝐼 and 𝐽𝑣𝑚𝐼𝐼 are 

obtained by substituting equation 4.15b and 4.15c in equation 4.13 and the results are 

presented in equation 4.27a and 4.27b. 

 𝐽𝑣𝑚𝐼 =  
𝜆1
2

(1+2
𝑎

𝑏
)2E′

{
2a4

c(a−b)2
[
cb

a2
+ tan−1 (

c

b
)] −

4a2bc

(a−b)3
tan−1 (

c

b
) +

bc4

(a−b)4
}    (4.17a) 

 

 𝐽𝑣𝑚𝐼𝐼 =
𝜆2
2

E′
{

4a2b2𝑐

(a+b)2(a−b)2
[
1

2
tan−1 (

c

b
) −

bc

2a2
] −

4a2b4

(a+b)5/2(a−b)5/2
[
c

b
−

3

2
tan−

1
(
c

b
) +

bc

2a2
]}   (4.17b) 

 

 

Livieri, P., & Seagala, F. (2012)  further related the mixed mode I and II J-integral formulations 

(𝐽𝑣𝑚𝐼 and 𝐽𝑣𝑚𝐼𝐼) of a V rounded shape notch (ellipse with 𝑏 → 0) to the classic 𝐽𝐼 and  𝐽𝐼𝐼 

formulations of a crack, based on analysis of FE simulated results as elaborated below. 

𝐽𝐼 =
𝐾𝐼
2

𝐸′
=

𝐽𝑣𝑚𝐼
𝑏

𝑎
(
21

5𝜋
−1)+1

    (4.18a) 

𝐽𝐼𝐼 =
𝐾𝐼𝐼

2

𝐸′
=

𝐽𝑣𝑚𝐼𝐼
𝑏

𝑎
(
125

15𝜋
−1)+1

    (4.18b) 

More realistic rail fracture predictions of surface initiated RCF damage, is ensured by adopting 

multi-axial formulations of SIF. Based on Figure 4.7, biaxial tension (ℵ = 1) and/or 

compression (ℵ = −1) descriptions of KI and KII are elaborated in equations 4.19 as 

elaborated in Shlyannikov, V.N., Tumanov, A.V. (2011).  
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Figure 4. 6: Biaxial loading of inclined elliptical crack (Shlyannikov, V.N., Tumanov, A.V. 2011). 

𝐾𝐼 = 𝜎𝐼√𝜋𝐿     (4.19a)  

𝐾𝐼𝐼 = 𝜎𝐼𝐼√𝜋𝐿     (4.19b)   

𝐿 =
1

√(
𝑐𝑜𝑠𝜑

𝑐
)
2
+(

𝑠𝑖𝑛𝜑

𝑐
)
2
    (4.19c) 

𝜎𝐼 = 𝜎𝑦𝑦
𝑛(cos2α + ℵsin2α)   (4.19d) 

𝜎𝐼𝐼 = 𝜎𝑦𝑦
𝑛 ×

1−ℵ

2
(sin2α + cosφ)   (4.19e) 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

187 
 

ℵ =
𝜎𝑥𝑥

𝑛

𝜎𝑦𝑦
𝑛     (4.19f) 

Where n=1 is the adopted hardness parameter. 𝛼 is the crack inclination angle, L is crack face 

length, ℵis the bi-axial loading factor. 

For the purpose of predicting RCF surface behaviour at the wheel-rail interface, Lewis, R., & 

Olofsson, U. (2009) presented equivalent SIF formulations to account for mixed mode I and II 

fracture mechanics. This formulation detailed in equation 4.20 in collaboration with equation 

4.22, is adopted in this PhD investigation due to its close correlation with extensive biaxial 

experimental tests using fatigue specimens of normal grade rail steel cut from the rail web.  

              ∆𝐾𝑒𝑞 = √∆𝐾𝐼
2 + [

614

507
∆𝐾𝐼𝐼

3.21]
2
3.74⁄             (4.20) 

 

Where ∆𝐾𝑒𝑞 is the range of equivalent SIF. ∆𝐾𝐼 is the range in Mode-I SIF. ∆𝐾𝐼𝐼 is the range 

in Mode-II SIF 

 

Lewis, R., & Olofsson, U. (2009) extended the application of the estimated range of equivalent 

SIF (∆𝐾𝑒𝑞) to crack growth calculations based on same biaxial fatigue experiments as above. 

However, in the latter experiment the primary focus is to model the growth rate (
𝑑𝑎

𝑑𝑁
) which has 

been observed to be similar to the second phase (linear growth stage) of the well-known Paris 

growth law. This model is best described as a function of mixed mode I and II SIF including 

the influence of mixed mode  SIF threshold value (∆𝐾𝑡ℎ) as elaborated in equation 4.21 below.  

𝑑𝑎

𝑑𝑁
= 0.000507(∆𝐾𝑒𝑞

3.74 − ∆𝐾𝑡ℎ
3.74)   (4.21a) 

∆𝐾𝑡ℎ =
4√2𝐾𝐼𝐼

3(𝐾𝐼+3√𝐾𝐼
2+8𝐾𝐼𝐼

2)

(𝐾𝐼
2+12𝐾𝐼𝐼

2−𝐾𝐼√𝐾𝐼
2+8𝐾𝐼𝐼

2)
3
2

    (4.21b) 

 

The Maximum tangential stress (MTS) criterion has been adopted based on equation 4.22, 

assuming crack kink angle in the direction (𝜃) of maximum tangential stress within the vicinity 

of crack tip. 

𝑡𝑎𝑛
𝜃

2
=

−2𝐾𝐼𝐼

𝐾𝐼+√𝐾𝐼
2+8(𝐾𝐼𝐼

2)

      (4.22) 
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Ravaee, R & Hassani, A. (2007) explains that the number loading cycles until fracture for rail 

section containing a crack of known initial length is a useful tool in predictive rail maintenance. 

This application of equation 4.23 will however require accurate understanding of the critical 

crack length at which catastrophic fracture will occur. Furthermore, the amplitude of the cyclic 

stress and material constants are also significant in modelling the residual life calculation of a 

fractured rail. 

𝑁𝑓 =
|𝑎𝑓

1−𝑚/2−𝑎𝑖
1−𝑚/2|

2−𝑚

2𝑚
𝐴(∆𝜎)𝑚𝜋𝑚/2

     (4.23) 

Where ∆𝜎: amplitude of cyclic stress, 𝑎𝑖 is the initial crack length and 𝑎𝑓 is  crack final length. 

M and A are the Paris equation material constants as presented in Table 4.4. 

 

 

Material m A 

Steel 3 10−11 

Aluminium 3 10−12 

Nickel 3.3 4 × 10−12 

Titanium 5 10−11 

Table 4. 4: Shows the numerical parameters related to residual life equation (Ravaee, R., & Hassani, A.  
2007). 

 

The consistency of different crack propagation methods has long been established in earlier 

works of Richard, H.A., & Benitez, K. (1983). An inclination sensitive experimental 

investigation of crack propagation has been presented in Zafosnik, B., et al (2000). This 

experiment utilises a compact tension specimen (see Figure 4.37) alloy of aluminium, 

magnesium, and manganese (ALMgMn4.5-W32) with a Young’s modulus of 72,400MPa, 

314.5MPA tensile strength, and Poisson ratio of 1297N/mm^3/2.  
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Figure 4. 7: CTS for mixed mode crack propagation analysis (Zafosnik, B., et al 2000). 

 

The mixed mode propagation parameters of a 2.5mm crack under the influence of a static 

load of 15KN is adopted to replicate the experimental set up in the figure above. A modified 

version (by including an inclination angle of 00-900) of the block model containing defect type 

b (elliptical edge through crack as analysed in Appendix D2) is adopted for the validation of 

the fracture mechanics parameters (KI and KII). The calculated SIF on the right hand side of 

Figure 4.9 is compared to the experimental results on the left side of Figure 4.9. It can be 

observed that a variation of no more 9% is recorded, which is attributed to the fact that the 

experimental set up is not perfectly replicated in the FE model. The plot on the left in Figure, 

4.9 at 𝛽 = 680 both tensile and shear stresses are observed to be equal, up to this value, KI 

dominates KII and above it KII dominates KI. This is also the case in plot depicted on the right 

side of Figure 4.9, based on the fact that in the model of section 4.4.1, initial has an actual 

value of 𝛽 = 900as opposed to being 𝛽 = 90000, therefore, 𝛽 = 380 for KI=KII can be 

calibrated to about 580.  
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Figure 4.9: Comparison between experimentally and FE estimates of mode-I and mode-II SIF

𝟑𝟖𝟎 
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4.4 Simulated FE (COMSOL) results and discussion 

4.4.1 Fracture mechanics for tangent track data 

The quasi-static simulation of wheel-rail interface is undertaken using the COMSOL 

Multiphysics software. The geometrical properties of the rail section (600m sleeper spacing) 

adopted in this research is from widely accepted publications but also considers the 

computational requirement and speed of the model. Solid mechanics boundary condition has 

been set according to practical understanding of track model. Also a user defined extra fine 

free tetrahedral mesh is used with maximum element size of 0.9 mm at the contact patch. 

Simulated results of the global contact model (for both tangent and curved track case studies) 

is benchmarked using VAMPIRE data (see data set 1 and 2). This section of the thesis 

compares the estimates of contact pressure (including contact area for tangent track) as a 

function of lateral displacement and curve radius respectively. 

In the case of tangent track, the wheel is initially positioned at the centre line of railhead and 

an axle load of 80kN is applied on the boundaries of the wheel axle rod interface. It is assumed 

that the lateral displacement of the right wheel is changing from central position in steps of 

1mm until 6.5mm (flange contact). Both VAMPIRE and COMSOL models theoretical 

understanding dictates that the normal force at the contact patch appreciates as lateral 

displacement increases (as the wheel moves towards flange contact), due to the influence of 

contact angle which corresponds to an increase in contact forces in both models. 
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(a) 
 
 

 
 
(b) 

Figure 4. 10: Comparison between FE simulated contact pressure and VAMPIRE equivalent (a) and 

COMSOL convergence plot in (b). 
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The difference between simulated results in both models depicted in Figure 4.10a, is 

concluded to be a direct consequence of the assumptions made by these two software 

packages in the sense FE model assumes that the wheel-rail interface is of linear elastic 

material property, and also includes deformation in the contact patch. This increases the 

contact area and reduces the stresses compared to the VAMPIRE software, which assumes 

the wheel and rail material as being rigid and no deformation is included in the contact patch. 

As a result, the VAMPIRE contact pressure tends to be higher than the COMSOL data by 

about 12%. The simulated results show the influence of non-linear effects as the wheel 

approaches flange contact for lateral displacements greater than 5mm. The convergence 

analysis of the COMSOL FE simulated results as presented in Figure 4.10b confirms that more 

accurate contact pressure is attained with smaller size of node, thus a maximum mesh size of 

1𝒎𝒎𝟐 is used for all models presented in this chapter.  

 

Figure 4. 11: Tangent track stress distribution for 0 lateral displacement of wheel (left), Predefined mesh 
maximum size of 1mm at the contact patch (right). 

The simulated results of a critically grown cracks are presented in Figure 4.12, which indicate 

KI (see Figure 4.12a) has a maximum of value 125MPa at surface inclination angle β=
𝜋

3
.  An 

approximate peak value of 75MPa is observed for the case of β=
𝜋

2
 and β=

𝜋

4
. While the least 

amplitude of KI is observed to be at about 60MPa corresponds for β=
5𝜋

12
.  
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In the case of KII Figure 4.12b suggests that β=
𝜋

4
 and β=

𝜋

3
 correspond to maximum values of 

30MPa. As expected at peak axle load of 80KN, pure mode II loading case (β=
𝜋

4
) is slightly 

higher than the latter inclination angle of β=
𝜋

3
 by a few MPa. For β=

5𝜋

12
, KII equal no more than 

5MPa at maximum applied load of 80KN. As depicted in the graph, the minimum value of 

0MPa is recorded for β=
𝜋

2
 which is expected for pure mode-I fracture mechanism. 

The equivalent SIF (Keqv) depicted in Figure 4.12c is observed to behave in a similar manner 

as the estimated KI. However, the maximum values are observed to be 100MPa, 55MPa, 

50MPa, and 40MPa for β=
𝜋

3
, β=

𝜋

4
, β=

𝜋

2
, and β=

5𝜋

12
 respectively. 

The estimated growth rate in Figure 4.12d is observed to behave in a similar manner to the 

estimated equivalent SIF. Simulated results suggest a maximum value of 12,000 nm/cycle 

corresponding to a surface orientation of β=
𝜋

3
. The pure mode I and II coincident with β=

𝜋

2
 and 

β=
𝜋

4
 are observed to have a similar growth rate of 2000nm/cycle with a variation of no more 

than 1%. While the least growth rate of 1000nm/cycle is observed to correspond to a crack 

surface orientation of β=
5𝜋

12
.  

In Figure 4.12e, the growth path for β=
𝜋

2
 is in agreement with the theoretical understanding of 

no branching angle is to be experienced by the crack (in pure mode–I loading case crack 

growth path is expected to be perpendicular to inclination angle). While a maximum branching 

angle of about 350 is observed in the case of β=
𝜋

4
 (pure mode-II loading case) at maximum 

axle load of 80KN. The mixed mode loading case study of β=
5𝜋

12
 and β=

𝜋

3
 are observed to 

correspond to 220and 100 at peak axle loads of 80KN, which suggest maximum branching 

angle to be synonymous to pure mode-II loading case. 

The estimated number of loading cycles until failure is depicted in Figure 4.12f. These results 

are based on the assumption that the cyclic life of the rail is reached at crack length of 7mm 

which is assumed to be coincident with catastrophic fracture of the rail. Simulated results 

indicate no direct relationship between surface orientation and rail residual life. However, the 
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number of cycles until failure is inversely proportional to the estimated growth rate for the 

respective β in consideration. At peak axle load of 80kN the lowest residual life of the rail 

8.74E3 cycles is observed to correspond to a surface inclination angle of β=
𝜋

3
. For β=

𝜋

2
  and 

β=
𝜋

4
 (pure mode I and II loading case) a residual life of about 4.80E4 and 4.01E4 cycles is 

recorded respectively. And the highest residual life of 9.10E4 is observed to correspond to a 

surface inclination angle of β=
5𝜋

12
. This behaviour in residual life estimate is logically expected 

such that crack configurations with fast growth rates will have less residual life and vice versa.     
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(a)                                                                (b)                                                             (c) 

 

 

      (d)                                                              (e)                                                                           (f) 

Figure 4. 82: Tangent track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles to failure Nf (f). 
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Furthermore, the fracture behaviour of a newly initiated crack (with maximum surface length 

of 1mm, crack mouth opening of 0.5mm, and a depth of 2mm) is analysed for tangent track 

contact data. The simulated KI in Figure 4.13a, indicate a maximum of value 100MPa for β=
𝜋

3
. 

In the case of pure mode-I fracture mechanism (𝛽 =
𝜋

2
) a maximum value of 75MPa is recorded 

for KI. It is also observed that in the case of 𝛽 =
5𝜋

12
 KI corresponds to 60MPa. And a minimum 

KI value of about 50MPa corresponds to β=
𝜋

4
. The fact that the estimated KI of a newly initiated 

crack is observed to differ from that of a critically grown defect by approximately 25%, it is 

generally attributed to the complex interaction between contact of stress distribution and the 

size of the defect at each value of β. In the case of KII depicted in Figure 4.13b, it is observed 

that β=
𝜋

3
  correspond to a maximum value of KII of about 18MPa (as opposed to expecting the 

maximum value of KII at β=
𝜋

4
). In the case of pure mode-II loading (𝛽 =

𝜋

4
) a maximum value 

of 15MPa is recorded, which is 16% below maximum KII for all 𝛽 angles. A 5MPa KII is 

observed for the case of 𝛽 =
5𝜋

12
 at maximum applied axle load of 80KN. As depicted in the 

graph, the minimum value of 0MPa is recorded for β=
𝜋

2
 which is expected for pure mode-I 

fracture mechanism. 

The equivalent SIF Keqv depicted in Figure 4.13c is observed to behave in a similar manner 

as the estimated KI. It is observed that at peak axle load, 85MPa, 55MPa, 45MPa, and 35MPa 

is recorded for β =
𝜋

3
, β =

𝜋

2
, β =

5𝜋

12
, β =

𝜋

4
 respectively.  

The estimated growth rate in Figure 4.13d suggests that the maximum value of 7900 nm/cycle 

corresponds to a surface orientation of β =
𝜋

3
. The pure mode-I is observed to have a growth 

rate of 2000nm/cycle for β =
𝜋

2
. While β =

5𝜋

12
 and β =

𝜋

4
 propagate at no more than 

1000nm/cycle and 500nm/cycle respectively. In Figure 4.13e, the growth path for a newly 

initiated crack is observed to behave in a similar manner in relation to β as with the case of a 

critically grown crack except for the difference in amplitude. At maximum applied axle load of 
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80KN, a branching angle of 250, 150, 100, and 00 correspond to β values of 
𝜋

4
, 
𝜋

3
, 
5𝜋

12
, and 

𝜋

2
 

respectively. 

The rail residual life is depicted in Figure 4.12f, shows that at peak axle load of 80kN, for β= 

𝜋

3
 , 
𝜋

2
, 
𝜋

4
, and 

5𝜋

12
 correspond to 5.9E1, 3.2E2, 2.7E2, and 6.1E2.The simulated results indicate 

similar relationship with the case of a critically grown crack, such that highest and least 

residual life is for 75 and 60 degree inclination angle.  

.  
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(a)                                                                   (b)                                                                (c) 

 

 

 

          (d)                                                                 (e)                                                                       (f) 

Figure 4. 93: Tangent track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles to failure Nf (f). 
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4.4.2 Fracture mechanics for curved track data 

In the case of curved track section, theoretical understanding dictates that for a right hand 

curve, the low rail of a canted track is bound to experience less pressure compared to high 

rail counterpart. In this thesis, a 40mm canted right hand curve with radius ranging from 200m 

– 1600m is adopted for the validation contact pressure exerted on the low rail of the global 

contact model (under an axle load of 80kN). The FE model is designed to have the same solid 

mechanics setting as described above in section 4.4.1, and a good agreement is recorded 

compared to VAMPIRE benchmark as depicted in Figure 4.14 below.    

 

Figure 4. 110: Validation of contact pressure for low rail component of global contact model. 

The difference in assumption between the two contacting bodies is a major source of variation 

in simulated results as depicted in Figure 4.14. This is however noticed to cause a variation of 

only about 3% between FE and VAMPIRE results because of the expanded contact calibration 

parameters adopted in this case (yaw angle, and creep forces included in curved track 

analysis). A similar agreement has also been established even in the case of high rail 
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simulated contact pressure, which includes the non-linear effect of flange contact specifically 

in the 200m curve radius case study as shown in Figure 4.15 below. The simulated high rail 

contact pressure also confirms higher amplitudes of stress existing on the high rail compared 

to that of the low rail section. It is worth noting that in the case of flange contact (200m curve 

radius) Figure 4.15 confirms the non-linearity observed in the results, such that FE model 

predicts higher stress amplitude compared to VAMPIRE model.  

 

Figure 4. 15: Validation of contact pressure for high rail component of global contact model. 

This section provides details of fracture behaviour of an elliptical equivalent representation of 

rail crack under bi-axial stresses generated on a curved track section. The contact data of the 

global contact model have been validated. In a similar manner to section 4.4.1, the simulated 

results in this section are aimed at supporting predictive rail maintenance decision making. As 

such these results are case studies of typical passenger axle load (80KN), surface orientation 

of β =
𝜋

3
, with a sensitivity analysis of track curve radius. Moreover, the effect of defect size 
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(ranging from newly initiated to critically grown defect) and location is also highlighted in order 

to increase flexibility of the model towards incorporating NDT with fracture mechanics models. 

The results presented in Figure in 4.16, are for a critically grown surface crack with length 

5mm, depth of 4mm and crack mouth opening of 1mm is adopted in this section. The simulated 

KI in Figure 4.16a, indicates a maximum value of 180MPa for a track with 200m curved radius. 

It is further observed that KI (including lateral displacement) is inversely proportional to curve 

radius with 140MPa, 135MPa, and 110MPa for 650m, 900m, and 1600m respectively. In  

Figure 4.16b KII is not related to track as observed in mode-I fracture mechanism. It is however 

observed that tight and wide curved sections (200m and 1600m) have higher amplitudes of 

about 80MPa and 50MPa respectively. While the moderate curved track (650m and 900m 

radius) exhibit relatively lower amplitudes of KII in the range of 10MPa. This relationship 

between KII and curved radius is observed to be governed by the creep forces, which are high 

for 200m, 1600m and considerably lower for 650m and 900m curve radius. The equivalent 

SIF Keqv depicted in Figure 4.16c is observed to behave in a similar manner as the estimated 

KI. At peak axle load, Keqv is observed to be 100MPa, 80MPa, 80MPa, and 60MPa for 200m, 

650m, 900m, 1600m curve radius respectively. The estimated propagation rate in Figure 4.16d 

suggests a similar inverse proportionality between the growth rate and curve radius as 

observed for KI and Keqv. At peak axle load, a growth rate of 180000nm/cycle, 7500nm/cycle, 

7200nm/cycle, and 5000nm/cycle is recorded for 200m, 650m, 900m, and 1600m 

respectively. The growth direction depicted in Figure 4.16e is observed to respond in a similar 

manner to the relationship between KII and curved radius. A maximum branching angle of 

500, 300, 110, and 90 is recorded for 1600m, 200m, 900m, and 650m respectively. The 

estimated number of loading cycles until failure as depicted in Figure 4.16f, confirms the 

inversely proportional relationship between residual life and curve radius due to increased 

stresses at the wheel rail interface as curve radius decreases. At peak axle load, 8.1E7, 

1.03E9, 1.51E8, and 1.23E8 cycles are observed for 200m, 650m, 900m, 1600m curve radius 

respectively. 
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(a)                                                                       (b)                                                                        (c) 

 

 

 

    (d)                                                    (e)                                                                        (f) 

 

Figure 4. 116: Curved track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles until failure Nf (f). 
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The investigation is expanded to include the fracture behaviour of newly initiated cracks on 

curved track. The same loading, curve radius parameters are used for this analysis, while the 

crack geometry is modified to a surface length of 1mm, opening of 0.5mm, and depth of 1mm. 

The simulated KI in Figure 4.17a, indicates a maximum value of 80MPa for a track with 200m 

curved radius. It is further observed that a newly initiated crack only differs from that of a 

critically grown crack by 44% reduction in amplitude. In Figure 4.17b KII is not directly related 

to track curve radius as observed in Mode-I fracture mechanism. It is however observed that 

tight and wide curved track sections (200m and 1600m) have higher amplitudes of about 

40MPa and 25MPa respectively. While the moderate curved track (650m and 900m radius) 

exhibit relatively lower amplitudes of KII in the range of about 5MPa. As with the case of KI, 

the relationship between KII and curved radius is observed to be governed by the creep forces, 

which are high for 200m, 1600m and considerably lower for 650m and 900m curve radius. 

The equivalent SIF Keqv depicted in Figure 4.17c is observed to behave in a similar manner 

as the estimated KI. At peak axle load, Keqv is observed to have an amplitude of 45MPa, 

35MPa, 35MPa, and 30MPa for 200m, 650m, 900m, 1600m curve radius respectively. The 

estimated propagation rate in Figure 4.17d suggests a similar inverse proportionality between 

the growth rate and curve radius as observed for KI and Keqv. At peak axle load, a growth 

rate of 800nm/cycle, 350nm/cycle, 320nm/cycle, and 5000nm/cycle is recorded for 200m, 

650m, 900m, and 1600m respectively. The growth path of a newly initiated crack as depicted 

in Figure 4.17e is observed to respond in a similar manner to the relationship between KII and 

curved radius (also similar in magnitude and direction to the case of a critically grown crack). 

A maximum branching angle of 500, 300, 110, and 90 is recorded for 1600m, 200m, 900m, 

and 650m respectively. The estimated number of loading cycles until failure for a newly 

initiated crack to reach a critical length of 118mm as depicted in Figure 4.17f, confirms a similar 

inverse proportionality between residual life and curve radius (as) the case of critically grown 

crack. This observation is due to increased stresses at the wheel rail interface as curve radius 

decreases. It is however logical that for newly initiated cracks, the relatively shorter lengths of 

the crack will require longer cycles of loading to attain critical final length. At peak axle load of 
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80KN, the maximum number of loading cycles is observed to correspond to amplitudes of 

5.54E5, 7.0E6, 1.02E6, and 7.00E6 cycles for 200m, 650m, 900m, 1600m curve radius 

respectively. 
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(a)                                                                     (b)                                                                   (c) 

 

 

                                        (d)                                                                                   (e)                                                                             (f) 

 

Figure 4. 127: Curved track simulated Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles until failure Nf (f). 
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4.4.3 Location sensitivity analysis for curved track data  

The influence of changing the position of crack centroid relative to an origin that corresponds 

to the location of maximum contact pressure at the wheel rail interface is investigated in this 

section of the thesis. The simulated results of a newly initiated crack having a surface 

orientation of 𝛽 =
𝜋

3
, assumed to be under bi-axial loading, with the crack centroid further 

displaced 1mm in both lateral and longitudinal directions is presented in Figure 4.18. 

Estimated KI in Figure 4.18a is observed to have a maximum value of 80MPa at 1600m curve 

radius while about 40MPa is recorded for both 200m and 650m curve radius. The least value 

of KI is observed in the case of 900m curve radius with amplitude in the range of 10MPa. In 

Figure 4.18b, KII is observed to have the same trend as in Figure 4.18b. It is also noted that 

the tangential stresses at the crack front is highest under the influence of gravity only for 

1600m curve radius (prior to the introduction of axle load). Thus resulting to an initial value of 

KII of about 8.5MPa, this decreases to about 2.5MPa at 10KN axle load, but proportionally 

increases from about 20KN to about 7MPa at peak axle load of about 80KN. In the case 900m 

curve radius, tangential stress at the crack tip linearly increases for 0-20KN, which yields KII 

of up to 1.5MPa, after which it decays to a few MPa as axle load increases. A similar behaviour 

in KII for 650m curve radius is observed, however the amplitude of KII at the initial 0-20KN 

linear phase is observed to be almost 5MPa. The value of KII decays to a few MPa for axle 

load ranging from 20KN-65KN, above this range, KII proportionally increases to about 2.5MPa 

at peak axle load. For curve radius of 200m, initial value of KII=1.2MPa is maintained until an 

axle load of about 20KN is attained after which KII linearly increases to a maximum value of 

5MPa. The overall behaviour of KII for all the curve track data discussed is concluded to be a 

complex interaction of 3D contact parameters, shear stresses at crack front and crack centroid 

relative position within the contact patch. 

The equivalent SIF (Keqv) depicted in Figure 4.18c is observed to behave in a similar manner 

as the estimated KI, with maximum value of 40MPa, 35MPa, 30MPa, 10MPa for 16000m, 

650m, 200m, 900m curve radiuses respectively. 
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The estimated propagation rate in Figure 4.18d is observed to have a similar trend as KI and 

Keqv, such that a growth rate of 500nm/cycle, 300nm/cycle, 200nm/cycle, and 6nm/cycle is 

recorded for 1600m, 200m, 650m, and 900m curve radius respectively. 

The growth direction depicted in Figure 4.18e is noted to have a maximum branching angle of 

140, 100, 50, and 20 is recorded for 200m, 1600m, 650m, and 900m respectively.  

The estimated rail residual life depicted in Figure 4.18f, is governed by growth rate estimates, 

such that 200m, 650m, 1600m curve radius correspond to 2.56E4, 1.1E4, 9.26E3 cycles while 

900m (least growth rate) curve radius corresponds to 1.96E6 cycles. 
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(a)                                                                     (b)                                                       (c) 

 

 
           (d)                                                            (e)                                                                            (f) 
Figure 4. 138: Defect displaced (x-1,y-1) Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles until failure Nf (f).
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In general it can be said that the impact of displacing crack centroid from the origin that 

corresponds the peak contact stress (i.e. when wheel is direction over the crack being 

investigated) results in a decrease in fracture mechanics variables (namely; KI, KII, Keqv, 

da/dN, and 𝜃) which corresponds to an increase in Nf. This is mainly because of the reduction 

in tangential stresses as crack tip moves away from high stress region of the contact patch as 

shown in Figure 4.19 below. 

 

    

(a) 

       

  

    

(b)    
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(c) 

 

    

                                          (d) 

Figure 4. 149: Shows influence of displacing crack centroid (relative to peak contact stress mm-2mm for 
track curve radius 200m (a), 650m (b), 900m (c), 1500m (d). 

The simulated results depicted in Figure 4.19 are for defect centroid displacement of 2mm in 

both lateral and longitudinal directions. Estimated KI in Figure 4.20a (with no obvious 

relationship to curve radius) is observed to have a maximum value of 25MPa, 20MPa, 19MPa, 

15MPa for 650m, 200m, 900m, and 1600m curve radius.  

In the case of KII, Figure 4.20b depicts an inversely proportional relationship between KII and 

curve radius with peak values of 15MPa, 11MPa, 10Mpa and 1MPa for 200m, 650m, 900m, 

and 1600m curve radius respectively. 

The equivalent SIF (Keqv) depicted in Figure 4.20c is observed to behave in a similar manner 

as the estimated KI, with maximum value of 25MPa, 15MPa, 15MPa, 10MPa for 650m, 200m, 

900m, and 1600m curve radius respectively. 
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The estimated propagation rate in Figure 4.20d is observed to have a similar trend as KI and 

Keqv. At peak axle load of 80KN, a growth rate of 50nm/cycle, 10nm/cycle, 10nm/cycle, and 

1nm/cycle is recorded for 650m, 200m, 900m, and 1600m curve radius respectively. 

The growth direction depicted in Figure 4.20e is noted to have a similar behaviour with KII, 

with maximum branching angle (at peak load of 80KN) of 500, 400, 380, and 80 recorded for 

200m, 650m, 900m, 1600m respectively. 

The estimated rail residual life depicted in Figure 4.20f, is governed by growth rate estimates, 

such that 200m, 650m, 1600m curve radius correspond to 2.49E5, 7.23E4, 1.53E6 cycles 

while 900m (least growth rate) curve radius corresponds to 2.50E5 cycles. 
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(a)                                                           (b)                                                          (c) 

 

 

   (d)                                                                 (e)                                                                          (f) 

Figure 4. 2015: Defect displaced (x-2,y-2) Mode-I SIF (a), Mode-II SIF (b), Equivalent SIF (c), Growth rate (d), Growth angle (e), Number of cycles until failure Nf 
(f).Figure
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4.5 Conclusion 

In this study, the behaviour of crack growth on rail surface has been investigated using the FE 

analysis method for new profiles. Considerations for worn wheel and rail shapes which are 

likely to increase conformity of contact (thereby reducing the contact pressure and its 

distribution in the contact patch) should be investigated as future works. The fracture 

parameters are estimated from stresses generated by the global contact model, while the local 

fracture mechanics model is utilised for determining the growth rate, direction of propagation 

and residual life of the rail. For wheel-rail contact applications, Mode-I SIF are observed to be 

generally higher Mode-II SIF. This is in agreement with the theoretical understanding of KI 

being most vigour fracture mechanism compared to shear and torsional fracture mechanisms. 

It is also observed that KI governs the behaviour of crack propagation while KII dictates the 

growth path behaviour. Maximum growth rate for a defect is observed to be approximately 

1/10000 of the estimated KI. The crack direction is observed to vary from 20° to 47° depending 

on the initial depth of the crack. The number of cycles until failure for crack is observed to be 

inversely proportional to growth rate, which confirms a faster propagating crack will fail faster. 

In general, the F.E. analysis showed that the behaviour of the crack, generated on rail surface 

varies by the load condition (magnitude and position) and crack length (surface and mouth 

opening). A significant amount literature and field tests suggest that surface crack translates 

to increases in depth to a certain limit where a considerable decrease is observed For both 

global track model and local fracture models it is believed that the variation in the prediction 

accuracy vehicle dynamic effects due to track irregularities, and limitation of model to only 

consider quasi-static vehicle behaviour over idealised track. 
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Chapter 5 Application of the proposed technology 

5.1 Introduction 

The implication of optimal maintenance strategy for rail infrastructure cannot be over 

emphasised in the rail industry. It is because of not only the associated costs but also health 

and safety risks that more intelligent and self-monitoring (optimised) maintenance systems are 

paramount to rail industry. For a combination of the limitations related to optimisation of 

maintenance strategy and increased global patronage/dependence on rail services, it is now 

more than ever considered increasingly important to intelligently detect damage, predict 

fracture behaviour, and optimise maintenance requirements in the rail industry. For example, 

numerical methods for accurate estimation of grinding required to reduce the propensity of 

RCF to an acceptable level is well understood. However, the practical tediousness associated 

with controlling the accuracy and also the depth of material removed to a resolution of 0.1 mm 

remains a challenge. While new vehicles may influence the  rate of RCF initiation and growth 

in rails, either because they themselves are more or less damaging than those already on the 

route, or because they displace vehicles that are more or less damaging, a few assessments 

on the possibilities of improving the maintenance technology suggests including curve radii 

and traction matrix to remotely, in real time, incorporate multiple maintenance tasks within the 

same technology (such as detection, prediction, and decision making). Such intelligent, 

remote, and incorporated models are generally considered to be a function of big data. Thus 

detailed information with regards to loading, track data, vehicle characteristics, environmental 

conditions etc., are essential for the overall efficiency of this approach of rail maintenance. In 

this section of the thesis, a fully incorporated model is introduced. This automatic detection 

and prediction of rail crack, as discussed in section 5.2, is achieved by using the image 

processing based detection of RCF damage in rails, in collaboration with models for predicting 

the behaviour of the detected defects (governed by the mathematical model elaborated in 

section 3.3 and 4.3). In this section of the PhD thesis, this technology is demonstrated to be 

at an initial technology readiness level with the aid of MATLAB image processing toolbox in 
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addition to stress distribution look up matrix (as detailed in Appendix E1 and Appendix E2). 

Furthermore, the novelty of utilising actual defect boundary in comparison with elliptical 

equivalent representation of cracks is presented in section 5.3. The enablers and blockers of 

the proposed approach are explored in section 5.4 and the conclusion of the chapter is 

highlighted in section 5.5.    

5.2 Application of the proposed technology 

This section demonstrates the application of the proposed technology that links defect 

detection with prediction of RCF damage on rails. Three main indicators are adopted 

for these demonstrations which include growth rate, branching direction, and residual 

rail life. To avoid the computationally expensive requirement of using the global contact 

model, a simple block geometry is utilised for generating the stresses in response to 

80kN bi-axial loading. The FA-H1 (heavily damaged rail sample) image of data set 2 is 

processed in accordance with the algorithm presented in section 3.3, and a random 

sample of the detected defects in Table 5.1 below are selected for this demonstration. 

The tabulated data summarises the maximum surface length, orientation, elliptical 

equivalent major axis length, elliptical equivalent minor axis length, and crack location. 

The sampled defect data is considered suitable for this application because it 

encompasses both newly initiated and critically grown defects. The data also indicate 

presence of clustered defects which is typical of field measurement of RCF damage on 

rails. The demonstration also compares the fracture behaviour of the equivalent 

elliptical representation of sampled detected defect to that of the actual boundary 

coordinates representation of each defect under investigation.  
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S/N Defect  
number 

Maximum 
surface 
Length 
[mm] 

Defect  
Orientation 
[deg] 

 

Major-
axis 
Length 
[mm] 

Minor-
axis 
Length 
[mm] 

Defect 
location (x,y) 
[mm] 

1 2 5.22 86.11 5.46 1.43 (0.75,23.41) 

2 98 11.47 38.58 11.10 5.18 (9.51,129.92) 

3 97 23.47 89.33 24.83 7.81 (10.08,146.63) 

4 90 18.47 65.64 20.03 3.89 (9.25,72.36) 

5 88 27.07 86.66 26.96 11.19 (10.16,173.95) 

6 4 6.21 84.84 7.21 2.08 (0.82,34.37) 

7 41 2.67 75.40 3.06 0.65 (2.11,74.18) 

8 45 4.48 84.42 4.51 1.27 (2.69,117.57) 

9 50 5.21 87.00 5.76 0.87 (3.05,105.71) 

10 52 22.55 87.38 27.08 3.35 (4.59,29.18) 

11 59 6.33 89.30 6.88 1.49 (3.78,49.42) 

12 71 6.97 77.22 6.45 2.08 (4.68,158.43) 

13 73 6.88 64.92 7.32 1.68 (5.04,74.38) 

14 80 11.76 68.31 11.91 1.86 (6.84,118.51) 
Table 5. 1: Defect samples and their respective geometrical details. 

In Figure 5.1, the highlighted rail damage is extracted for application purposes as shown in 

Figure 5.2, each detected defect is depicted as a blob (binary image with crack region 

indicated as foreground 1 and rail head as background 0). Furthermore, the boundary 

coordinates (in pixel units) of each defect is also presented. Based on visual inspection of 

Figure 5.1, Table 5.2 below describes each of the selected defects.   

Defect ID Description 

1 Leaf on rail, surface strain, or rust.  

2 Leaf on rail, surface strain, or rust.  

3 Leaf on rail, surface strain, or rust.  

4 Grind marks or surface scratch. 

5 Indentation, e.g.  gravel in the contact. 

6 Grind marks or surface scratch. 

7 Fatigue damage. 

8 Indentation, e.g.  gravel in the contact. 

9 Spall damage. 

10 Fatigue damage. 

11 Spall or indentation defect, combined with 
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rolling contact fatigue damage. 

12 Spall defect or indentation defect, combined 

with rolling contact fatigue damage. 

13 Spall or indentation defect, combined with 

rolling contact fatigue damage. 

14 Rolling contact fatigue damage. 

Table 5. 2: Defect samples and their respective description. 

 
It is observed from Table 5.2 and Figures 5.1-5.2, that defects 1-6 described as presence of 

leaves, lubricant stain, rust marks, grind marks, and scratches; are of no interest to fracture 

mechanics prediction aspects of this research. Furthermore, these defects have intersecting 

boundary points and therefore not easily incorporable within the finite element model (due to 

meshing errors at the interesting boundary or edge). The simulated results of defect 7-14 

described as spall, fatigue or rolling contact fatigue damage are therefore discussed in detail 

in the next section of the chapter.  
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Figure 5. 1: Shows the randomly selected damage(s) of FA-H1 image applied to the proposed technology. 
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Figure 5. 2: Shows the random samples of detected defect from image H1.
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5.3 Simulated results and discussion 

In Figure 5.3, the FE response of the actual geometry of defect number 6 (as shown in 

Figure 5.2 above) to wheel rail contact stress for an axle load of 80kN is presented. The 

defect is of initial length of 6.2mm and an orientation of 840 

 

Figure 5. 3: Shows the actual geometry for defect number 6 and the resulting stress distribution. 

 
 

The actual crack geometry is observed to develop stress concentration at multiple crack tips 

which depends on the shape of the crack, as opposed to the elliptical equivalent where stress 

concentration is mostly developed at both ends of the ellipse. The estimated propagation rate 

in Figure 5.4 is observed at peak axle load of 80KN, to be approximately 620nm/cycle.  
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Figure 5. 4: Shows the growth rate of actual defect geometry for defect number 6. 

The growth path depicted in Figure 5.5 is observed to dip from 30 to almost zero before it 

increases at above 25% of applied axle load and saturate to about 50at peak axle load of 80 

kN. 

 

 

Figure 5. 5: Compares the simulated propagation direction for elliptical and actual geometry for defect 

number 6.And in Figure 5.6 the residual life of the rail is observed to exponentially decay from 
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about 7E3to 3.39E2 at maximum axle load of 80kN. 

 

 

Figure 5. 6: Compares the simulated residual life for elliptical and actual geometry for defect number 6. 

 

In Figure 5.7 the FE response of the actual geometry of defect number 7 (as shown in Figure 

5.2 above) to wheel rail contact stress for an axle load of 80kN is presented. The defect is of 

initial length of 2.6mm and an orientation of 750. 
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Figure 5. 7: Shows the simulated stress distribution actual geometry for defect number 7. 

 

The actual crack geometry is observed to develop stress concentration at multiple crack tips 

which depends on the shape of the crack, as opposed to the elliptical equivalent where stress 

concentration is mostly developed at both ends of the ellipse. The estimated propagation rate 

in Figure 5.8 is observed to at peak axle load of 80KN, to be approximately 120nm/cycle.  
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Figure 5. 8: Shows the simulated growth rate for actual geometry for defect number 7. 

 

The growth path depicted in Figure 5.9 is observed to dip from 30 to almost zero before it 

increases at above 25% of applied axle load, no saturation is observed even though 

4.80branching angle is observed at peak axle load of 80 kN. 

Figure 5. 9: Compares the simulated propagation direction for elliptical and actual geometry for defect 
number 7. 

And in Figure 5.10 the residual life of the rail is observed to exponentially decay from about 

3.97E5 to 1.64E4 at maximum axle load of 80kN. 
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Figure 5. 10: Shows the simulated fracture mechanics behaviour actual geometry for defect number 7. 

 

In Figure 5.11 the FE response of the actual geometry of defect number 7 (as shown in 

Figure 5.2 above) to wheel rail contact stress for an axle load of 80kN is presented. The 

defect is of initial length of 5.2mm and an orientation of 870. The crack is considered 

critically grown and is expected to propagate in the second phase i.e. with three distinct 

linear growth rates as described in the literature review discussed in section 2.3.2. 
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Figure 5. 11: Shows the simulated stress distribution for actual geometry for defect number 9 

 

The actual crack geometry is observed to develop stress concentration at multiple crack tips 

which depends on the shape of the crack, as opposed to the elliptical equivalent where stress 

concentration is mostly developed at both ends of the ellipse. The estimated propagation rate 

in Figure 5.12 is observed at peak axle load of 80KN, to be approximately 125nm/cycle.  
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Figure 5. 12: Shows the simulated growth rate for actual geometry for defect number 9 

 

The growth path depicted in Figure 5.13 is observed to oscillate with a peak branching angle 

of 3.80 and a trough of 0.50 at peak axle a branching angle of about 20 is recorded. 

 

Figure 5. 13: Shows the simulated growth path for actual geometry for defect number 9 

 

And in Figure 5.14 the residual life of the rail is observed to exponentially decay from about 
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1.4E4 to 2.94E3 at maximum axle load of 80kN. 

 

Figure 5. 14: Shows the simulated fracture mechanics behaviour for actual geometry for defect number 9 

 

In Figure 5.15 the FE response of the actual geometry of defect number 7 (as shown in  

Figure 5.2 above) to wheel rail contact stress for an axle load of 80kN is presented. The 

defect is of initial length of 6.8mm and an orientation of 640. 
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Figure 5. 15: Shows the simulated stress distribution for actual geometry for defect number 13 

 

The actual crack geometry is observed to develop stress concentration at multiple crack tips 

which depends on the shape of the crack, as opposed to the elliptical equivalent where stress 

concentration is mostly developed at both ends of the ellipse. The estimated propagation rate 

in Figure 5.16 is observed at peak axle load of 80KN, to be approximately 410nm/cycle.  
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Figure 5. 16: Shows the simulated growth rate for actual geometry for defect number 13 

 

The growth path depicted in Figure 5.17 is observed to be maximum of above 250at 25%-50% 

of applied axle load and a steep decrease to less than 50 and subsequently at maximum axle 

load of 80 kN the branching angle is estimated to be about 150. 

 

Figure 5. 17: Shows the simulated growth path for actual geometry for defect number 13 
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And in Figure 5.18 the residual life of the rail is observed to exponentially decay from about 

2.4E2 to 4.5E1 at maximum axle load of 80kN. 

 

Figure 5. 18: Shows the simulated fracture mechanics behaviour for actual geometry for defect number 
13 

In Figure 5.19 the FE response of the actual geometry of defect number 7 (as shown in 

Figure 5.2 above) to wheel rail contact stress for an axle load of 80kN is presented. The 

defect is of initial length of 11.7mm and an orientation of 680. 
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Figure 5. 19: Shows the simulated stress distribution for actual geometry for defect number 14 

 

The actual crack geometry is observed to develop stress concentration at multiple crack tips 

which depends on the shape of the crack, as opposed to the elliptical equivalent where stress 

concentration is mostly developed at both ends of the ellipse. The estimated propagation rate 

in Figure 5.20 is observed at peak axle load of 80KN, to be approximately 300nm/cycle.  
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Figure 5. 20: Shows the simulated growth rate for actual geometry for defect number 14 

 

The growth path depicted in Figure 5.121 is observed to be maximum of above 250at  

25%-50% of applied axle load and a steep decrease to less than 50 and subsequently at 

maximum axle load of 80 kN the branching angle is estimated to be about 150. 

 
Figure 5. 21: Shows the simulated growth path for actual geometry for defect number 14 

 

And in Figure 5.18 the residual life of the rail is observed to exponentially decay from about 
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5.10E3 to 7.58E2 at maximum axle load of 80kN. 

 

Figure 5. 22: Shows the simulated fracture mechanics for actual geometry for defect number 14 

 

The growth path of these defects are observed to vary by, 20, 300, and 200 respectively. It is 

worth mentioning that in the case of defect number 13 the growth path for actual geometry of 

the defect is higher than that of the elliptical equivalent geometry, which is attributed to the 

crack length and overall shape of this defect. As noted in Chapter 4, the residual life of all 

simulated results is governed by the growth rate and the same conclusion can be established 

in this section.  

 

5.5 Enablers and blockers of adopting the proposed technology in industry  

It is hoped that this novel application of incorporated detection and prediction models of rail 

damage will be a useful tool for maintenance purposes in industry and the following factors 

are key to the prospect of full scale implementation of the proposed technology. 

 

I. On-board and in service analysis of detection and prediction results is possible. 

II. After installation of image acquisition system, all other processes are fully automated. 

III. The flexibility of the technology supports wide range of operational conditions. 

IV. Multi-tasking nature of the application will simplify maintenance operations. 
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V. Availability of diverse image data collection and processing technologies will 

encourage adoption of the proposed method in industry. 

VI. Little or no human intervention in the method promotes safety considerations, which 

might encourage the application of the technology. 

VII. The robustness of the method allows for continuous expansion of the technology’s 

scope and intermediate objectives using bigger database or new findings. 

VIII. The ease of including measurements of other NDT methods such as eddy currents or 

MRX will enhance the self-learning capability of the technology (i.e. bench marking or 

calibration of measurements). 

IX. The overall cost of the proposed methods in the long run is highly competitive in 

relation of other methods currently used in industry 

 

In spite of all the above mentioned enablers, the proposed technology is observed to have the 

following limitations. 

I. The fracture mechanics prediction of some detected defects is not possible due to 

the presence of intersecting crack boundary. 

II. The most accurate method for generating stresses at the wheel-rail interface is 

computationally too expensive. 

III. The environmental and rail illumination properties are not easy to control and can 

affect the performance of detecting RCF damage by image processing. 

IV. The influence of track irregularities, curvature, and cant deficiency may affect 

detection and/or calibration of defect geometrical measurements. 

 

Based on the pros and cons highlighted above, it is logical to further pursue a Reliability, 

Availability, Maintainability, and Safety (RAMS) test on the proposed technology. This will 

introduce a standardisation and clearly stated procedures for the application of the method to 

ensure very low occurrence of failures with the rail network.  
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5.4 Conclusion 

This technology provides the benefit of on-line and off-line assessment of rail images. The 

assessed images will positively impact the prioritisation and planning by rail maintenance 

engineers through classification of severity of RCF damage observed on a track section and 

use of this information to predict propensity of the RCF damage to grow and eventually cause 

failure. This technology provides evidence on the need to move to a risk-based maintenance 

approach, where maintenance is scheduled based on the actual condition and predicted future 

life rather than exceeding the damage threshold limit. The method is also capable of reducing 

the number of manual track inspection and therefore less risk of injury to maintenance staff. 

Initial solutions to the major limitation of the incorporated model (high-computational time of 

the global contact model and inconclusive results for intersecting boundary coordinates of 

detected defects) have been successfully curtailed using look up tables of pre-determined 

contact stresses (or analytical estimates of contact stress) and the use of elliptical equivalent 

representation of the detected defect respectively. Further analysis and parametric studies of 

the technology will be required for developing the readiness level of the proposed technology 

in rail industry.        
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Chapter 6 Thesis conclusions and future work 

The main aim of this PhD project was to link the detection and prediction of fracture behaviour 

in rails. The aim(s) and intermediate objectives outlined in   section 1.1.2 have been achieved 

and the following conclusions were reached. 

6.1 Conclusions from the conceptualisation of the project (chapter one) 

A broad understanding of the limitations associated to state of the art technologies used for 

rail RCF damage detection and quantification will not only encourage research and 

development of novel methods but also improve the overall efficiency of maintenance 

activities. The significance of more intelligent and self-learning condition monitoring practices 

in rail industry is an important criterion for examining and discussing the suitability and 

performance of NDE techniques of interest to this research work. 

6.2 Conclusions from the review of existing work (chapter two) 

It is important to understand the differences between the existing NDTs, and the survey 

conducted in Chapter 2 suggested the necessity to consider various requirements and more 

importantly the information provided by the NDE method. This supports the decision of 

choosing the best suited NDE to be linked with fracture mechanics model. Existing 

publications suggest even the most popular Ultrasonic test and Eddy current technique are 

not preferred over novel or even hybrid systems. The prospects of linking automated visual 

inspection of rails to prediction models is highly favoured as a direct consequence of fast 

inspection speed, flexibility, and remoteness. A critical appraisal of the existing image 

processing algorithms particularly those adopted in rail RCF detection must take cognisance 

of the effect of rail head non-uniform reflection property, rust, grind marks, and scratches. The 

mechanisms responsible for initiating and propagating RCF damage in rails are well 

understood in literature. In this review the conclusion affirms that in the U.K, majority of RCF 

is initiated as a result of Mode-0 and Mode-2 initiation mechanism. While the dominant loading 

condition and resulting SIF for surface propagation are the mode I and II. RSSB, establishes 
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the influence of traction, wear, entrapped fluid, and multiple crack interaction on the behaviour 

of crack propagation.  

6.3 Conclusions from the development of image processing algorithm (chapter 

three)  

Chapter 3 provided more insight on the effectiveness in using image processing algorithm for 

the automatic detection of RCF damage in rails. From all the data set available in this research, 

it is evident that no single method for each stage of the algorithm is equipped to solve the 

challenges of true positive detection. The major finding from this chapter of the thesis is that 

variation of intensity value between neighbouring pixels is not the best method to identify RCF 

cracks, even though the best indicator of rail damage. The benefits of combining one or more 

methods depending on a wide variety of condition cannot be over emphasised. The receiver 

operating characteristics of the proposed image processing algorithm has been observed to 

deliver up to 92% true positive detection rate for laboratory acquired images and more than 

80% true positive detection for field acquired images. After thorough analysis of simulated 

results, the significance of illumination invariant methods cannot be neglected. Global 

methods that are sensitive to some of the influential parameters such as mean intensity and 

variance of neighbouring pixels were modified to local versions with improved performance 

recorded. Initial correlation between severity of damage and optimum local window size has 

been established. Even though further analysis and investigation of the proposed algorithm is 

possible, it is however in the interest of this research to explore the potential applications of 

the generated geometrical data related to each defect with the hope of enhancing 

maintenance team planning and predictive maintenance. 

6.4 Conclusions from fracture mechanics prediction (chapter four)  

In this study, the behaviour of crack growth on rail surface has been investigated by using the 

F.E. analysis and the mathematical models related to Linear Elastic Fracture Mechanics 

(LEFM). The fracture parameters are estimated from stresses generated by the global contact 

model, while the local fracture mechanics model is utilised for determining the growth rate, 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

241 
 

direction of propagation, and residual life of the rail. For wheel rail contact applications, Mode-

I SIF are observed to be generally higher Mode-II SIF. This is in agreement with the theoretical 

understanding of KI being most vigour fracture mechanism compared to shear and torsional 

fracture mechanisms. It is also observed that KI governs the behaviour of crack propagation 

while KII dictates the growth path behaviour. Maximum growth rate for a defect is observed to 

be approximately 1/10000 of the estimated KI. The crack direction is observed to vary from 

20° to 47° depending on the initial depth of the crack. The number of cycles until failure for 

crack is observed to be inversely proportional to growth rate, which confirms that a faster 

propagating crack will fail faster. In general, the F.E. analysis showed that the behaviour of 

the crack generated on rail surface varies by the load condition (magnitude and position) and 

crack length (surface and mouth opening). A significant amount of literature and field tests 

suggest that surface crack translates to increases in depth to a certain limit from where a 

considerable decrease is observed. Other influential factors such as friction, braking and 

traction are well understood and have been reported to closely relate to crack length and load. 

The absence of friction is observed to increase growth rate for a crack whose length is 3 times 

its distance to maximum contact pressure. Furthermore, the crack length at which the crack 

growth rate is maximum became shorter as the friction coefficient increased. In the case of 

braking, the crack growth rate is maximum when crack length is 3 times the crack mouth 

opening regardless of the magnitude of the braking force. While in the case of traction force, 

growth rate decreases as load position increases. For both global track model and local 

fracture models it is believed that the variation in the prediction accuracy is due to track 

irregularities, and quasi-static vehicle behaviour over idealised track. 

6.5 Conclusions from the application of the proposed technology (chapter five) 

The application of the technology confirms the flexibility of performing both on-line and off-line 

assessment of rail images. The assessed images will positively impact the prioritisation and 

planning of rail maintenance. By means of identifying and classifying severity of RCF damage 

observed on a track section, the information can be used to predict propensity of the RCF 
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damage in terms of growth and residual life. This technology provides evidence on the need 

to move to a risk modelling and risk-based maintenance approach using big data analytics, 

where maintenance is scheduled based on the actual condition and predicted future life rather 

than the exceedance of a damage threshold limit. The method is also capable of reducing the 

number of manual track inspection and therefore less risk of injury to maintenance staff. Initial 

solutions to the major limitation of the incorporated model (high computational time of the 

global contact model and inconclusive results for intersecting boundary coordinates of 

detected defects) have been successfully curtailed using look up tables of pre-determined 

contact stress (or analytical estimates of contact stress) and the use of elliptical equivalent 

representation of the detected defect respectively. More analysis and parametric studies of 

the technology will be required for developing the readiness level of the proposed technology 

in rail industry. 

Future work(s) 

The research described in this thesis has identified a number of areas of further work as 

detailed below. 

Performance of damage detection can be improved with the investigation of ways to practically 

modify reflection/refraction of the light source on the image acquisition system as opposed to 

illumination sensitive algorithms. Improvements can be made to the proposed technology with 

the introduction of an Artificial Intelligence (AI) module to interpret the features extracted by 

the image processing algorithm, and a discrimination function can be derived by clearly 

defining (for each neuron through axon/link weights) input number of attributes for known 

number of class labels. 

The use of more sophisticated crack definition such as Least square support vector machine 

classifiers could be explored for processing feature extraction data obtained within the image-

processing algorithm. 

The incorporation of big data analytics on cracking information can be used to improve defect 

feature classification and also encourage risk modelling alongside predictive maintenance of 
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rail integrity. It is highly recommended that measured worn profiles, track quality effects, and 

more information regarding vehicle-track characteristics are included in the global track model. 

This will involve considering how different vehicle-track characteristics (passenger and freight 

vehicles) influence prediction of residual life of the rail. The inclusion of actual traffic databases 

for a route might be an opportunity to refine the model for more accurate prediction of the 

stresses responsible for initiating and propagating damage in rails. More investigation and 

parametric studies could be performed to expand the look-up tables of wheel-rail contact 

stresses, contact and site data. 

Other NDE methods such as eddy current measurements could be utilised for self-learning 

and more intelligent capacity building of the incorporated model. 

Further validation of the incorporated model (proposed technology) is required to improve the 

readiness level of the technology. 
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Appendices  

Appendix A: Basic filter design 

A1: Low pass filter 

𝐷(𝑢, 𝑣) is the distance between the point (𝑢, 𝑣) and centre frequency and 𝐷0is the cut off 

frequency 

 

Ideal:      HI (u, v)  = {
1 if D(u, v) ≤  D0 

0 if D(u, v) >  D0
               

(A1.1)  

                                                                             

Butterworth:     HB (u, v)  =
1

1+[ D(u,v)/D0]
2n   

 (A1.2) 

 

Gaussian:                H𝐺(u, v)  =
𝑒−𝐷

2(𝑈,𝑉)

2𝐷0
2     

 (A1.3) 

A2: High pass filter  

𝐻𝐼(𝑢, 𝑣), 𝐻𝐵(𝑢, 𝑣), and 𝐻𝐺(𝑢, 𝑣) is the Ideal, Butterworth, and Gaussian filter transfer functions 

respectively. 

 

 

Ideal:  

                     1 − H𝐼(𝑢, 𝑣)         (A2.1) 

 

Butterworth:  

                      1 − HB(u, v)     (A2.2) 

 

Gaussian: 

                       1 − H𝐺(𝑢, 𝑣)      (A2.3)                                                               
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Appendix B: Wavelet functions 

Meyer Wavelet 

Yves Meyer presented a smooth orthonormal wavelet basis function depicted in Figure A.B1, 

by defining the Fourier transform of a scaling function described by equation B.1. 

𝜑(𝜔) = {

1                                              𝑖𝑓 |𝜔| ≤
2

3
𝜋

𝑐𝑜𝑠 [
2

3
𝑣 (

3

4𝜋
|𝜔| − 1)]   𝑖𝑓

2

3
𝜋 ≤ |𝜔| ≤

3

4

0,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (B.1) 

 

The smooth function 𝑣 satisfies the condition in equation B.2, and the additional property in 

B.3. 

 

𝑣(𝑡) = {
1,   𝑖𝑓 𝑡 ≤ 0
0, 𝑖𝑓 𝑡 ≥ 1

        (B.2) 

 
𝑣(𝑡) + 𝑣(1 − 𝑡) = 1      (B.3) 

 

 
Figure A.B 1: Fourier transform of Mayer wavelet basis function. 

 

The Mayer wavelet function can easily be derived from its Fourier transform defined in 

equation B.4 below. 

 

  Ψ(ω) = 𝑒𝑗ω/2∑ 𝜑(ω + 2π(2l + 1))𝜑(ω/2)𝐼∈𝑍    (B.4) 
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The above expression can be simplified to equation B.5 and the graphical representation is 

depicted in Figure AB.2 below. 

Ψ(ω) = 𝑒
𝑗ω

2 [𝜑(ω + 2π) + 𝜑(ω − 2π)]𝜑(ω/2)    (B.5) 

 

 
Figure A.B 2: Fourier transform of Mayer wavelet function. 

 

From the Figure above it can be concluded the wavelet function has a finite non zero 

duration (compactly supported), thus can be inversely transformed in the frequency domain 

(see Figure AB.3) since Ψ has at least k derivatives where k is finite.    
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Figure A.B 3: Mayer wavelet function. 

 

Haar Wavelet 

This is often considered the simplest wavelet function and can be derived by assuming a box 

scaling function 𝜙(𝑡) satisfying equation B.6.   

 

𝜙(𝑡) = {
1 𝑖𝑓 0 ≤ 𝑡 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (B.6) 

It is also logical to define the Haar wavelet as orthogonal to its translation and dilation as 

elaborated in equation B.7 and B.8 below. 

𝜓(𝑡) = 𝜙(2𝑡) − 𝜙(2𝑡 − 1)     (B.7) 

𝜓(𝑡) = {

1, 𝑖𝑓 0 < 𝑡 ≤ 1/2

−1, 𝑖𝑓
1

2
< 𝑡 ≤ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (B.8) 

Morlet wavelet 

It is considered the most frequently applied wavelet function partly because of the flexibility 

associated with its Fourier transform see equation B.9; best described as a shifted Gaussian 

such that 𝜓(0) = 0. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

265 
 

𝜓(𝜔) = 𝑒−(𝜔−𝜔𝑜)
2/2 − 𝑒−𝜔

2/2𝑒−𝜔𝑜
2/2   (B.9)    

The inverse Fourier transform of the equation above is presented in equation B.10 below. 

𝜓(𝑡) = (𝑒−𝑖𝜔𝑜𝑡 − 𝑒−𝜔
2/2)𝑒−𝑡

2/2    (B.10) 

The value of 𝜔𝑜 is suggested to be such that the ratio of the first peak of 𝜓 to its second peak 

is approximately ½, which corresponds to 𝜔𝑜 ≈ 5. The results to a negligable second term in 

equation B.9. The Morlet wwavelet can be considered as a modulated Gaussian waveform 

with real and imaginary parts depicted inFigure A.B4. 

   

(a)                                                                               (b) 

Figure A.B 4: Real (a) and imaginary (b) part of Morlet wavelet. 

Daubechies wavelet 

This wavelet is somehow unique given that all orthonormal wavelet basis consist of infinitely 

supported functions, however the Daubechies wavelet is an orthonormal function which is 

compactly supported by choosing a scaling function with compact support. 

 

The mathematical model for this wavelet family is derived by defining a progression {𝛼𝑘; 𝑘 ∈ 𝑍} 

satisfying the conditions in B11 - B.14 for 𝑁 ≥ 2.  
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𝛼𝑘 = 0, 𝑖𝑓 𝑘 < 0 𝑜𝑟 𝐾 > 2𝑁    (B.11) 

∑ 𝛼𝑘𝛼𝑘+2𝑚 = 𝛿𝑜𝑚∞
𝑘=−∞ , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚  (B.12) 

∑ 𝛼𝑘 = √2
∞
𝑘=−∞      (B.13) 

∑ 𝛽𝑘𝑘
𝑚 = 0∞

𝑘=−∞ , 0 ≤ 𝑚 ≤ 𝑁 − 1   (B.14) 

Where 𝛽𝑘 = (−1)
𝑘𝛼−𝑘+1, it is worth mentioning that if 𝑁 = 1, then 𝛼𝑜=𝛼1=1, which 

corresponds to the Haar transform. 

It is possible to find a scaling function 𝜑(𝑡), from the progression of {𝛼𝑘} as described by 

equation B.15 below. 

𝜑(𝑡) = ∑ 𝛼𝑘√2
∞
𝑘=−∞ 𝜑(2𝑡 − 𝑘)    (B.15) 

If 𝛽𝑘 is defined for condition B.14, equation B.16 (Daubechies wavelet function) is said to be 

compactly supported. 

Ψ(𝑡) = ∑ 𝛼𝑘√2
∞
𝑘=−∞ 𝜑(2𝑡 − 𝑘)   (B.16) 

Figure A.B5 below depicts the scaling and wavelet function of equation B.15 and B.16 

respectively. 
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(a)                                                                          (b) 

Figure A.B 5: Daubechies (a) scaling and (b) wavelet function 
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Appendix C: Image Processing Algorithm 

Appendix C1: Image processing data set 2 

 
Figure A.C1. 1: Shows heavily damaged samples of data set 2 (NRC). 
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Figure A.C1. 2: Shows moderately damaged  samples of data set 2 (NRC) 
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Figure A.C1. 3: Shows lightly damages samples of data set 2 (NRC) 
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Appendix C2: Image processing data set 3 
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Figure A.C2. 1: Shows left rail field acquired samples of data set 3. (ICRI) 
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Figure A.C2. 2: Shows right rail field acquired samples of data set 3. (ICRI) 
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Appendix C3: Function definitions for enhancement 

%%%%%%%%%%%Image processing algorithm%%%%%%%%%%%%%%% 

 

function [ Ienh,Seg,FE] = IMP_FINAL(E1,S1,F1)% Function definition  

  

  
%%%%%%%%%%%%%%%%%%%Enhancement%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
if E==1% if enhancement option is specified to 1 perform LMAF enhancement 
RM=0;% specify required mean of input image 
RV=1;% specify required variance of input image  
bsln=64; % specify LN block size 

W=64; % specify LMAF block size 
i3=NL(double(i21),RM,RV,bsln); % LN function call 

 

[ Ienh ] = LMAF( IM,W ); % LMAF function call 
Figure,imshow(Ienh); % display LMAF image (i3) 
title('Linear moving averaging filtered image'); % title of LMAF image 

  

   
elseif E==2% else if enhancement option is specified to 2 perform VM  

%enhancement 
RM=0.2; % specify required mean of input image 
RV=1.7; % specify required variance of input image  
bsln=64; % specify LN block size 
W=5; % specify VM block size  
i3=NL(double(i21),RM,RV,bsln); % LN function call 
 

 

[Ienh] = VisbMeth(i3,W); % VM function call 
Figure,imshow(Ienh); % display VM image (Ienh) 
title('Visibility measure enhanced image'); % title of VM image 

 

 
elseif E==3% else if enhancement option is specified to 3 perform LN  

%enhancement 

  
RM=0.2; % specify required mean of input image 
RV=1.7; % specify required variance of input image  
bsln=64; % specify LN block size 

  
[Ienh]=NL(double(i21),RM,RV,bsln); % LN function call 
Figure,imshow(Ienh); % display LN image (Ienh) 
title('Locally normalized image'); % title of LN image 

  
elseif E==4% else if enhancement option is specified to 4 perform FFT  

%enhancement 

 
RM=0.2; % specify required mean of input image 
RV=1.7; % specify required variance of input image  
bsln=64; % specify LN block size 
bsfft=64; % specify FFT block size 

  
i3=NL(double(i21),RM,RV,bsfft); % LN function call 

 
k=0.25;% FFT enhancement factor 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

275 
 

[Ienh]=fftenhance(i3,k,bs1f);% FFT function call 
Figure,imshow(Ienh); % display FFT image (Ienh) 
title('FFT enhanced image'); % title of FFT image 
end 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%Segmentation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

     
if S==1% if segmentation option is specified to 1 perform Wolf segmentation 
bss1=32;% Wolf block size 

 
[Seg1] = Wolf(Ienh,bss1,[],1);% Wolf function call 
Figure,imshow(Seg1);% display Wolf segmented image 
title('Wolfs thresholding algorithm');%title of Wolf segmented image 

  
elseif S==2% else if segmentation option is specified to 1 perform OGT  

%segmentation 
 

[Seg2] = OGT(double(Ienh)); % OGT function call 
Figure,imshow(Seg2); % display OGT segmented image 
title('OGT thresholding method'); %title of OGT segmented image 

  

 
elseif S==3% else if segmentation option is specified to 1 perform AIT  

%segmentation 
 

[Seg3] = AIT(Ienh,opthr(double(Ienh))); % AIT function call 
Figure,imshow(Seg3); % display AIT segmented image 
title('Automatic iterative threshold'); %title of OGT segmented image 
end 

   
%%%%%%%%%%%%%%%%%%%%%%Feature 

extraction%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
if F==1% if feature extraction option is specified to 1 perform SDHSD 

method 
 

[FE, count] = SDHSD3(Seg,FE_thresh) % SDHSD function call by specifying 

standard  

%deviation threshold 
Figure,imshow(FE1); % display SDHSD image 
title('SDHSD image'); %title of SDHSD image 

 

  
elseif F==2% else if feature extraction option is specified to 2 perform  

%Gabor method  

 
fmax=50;% filter frequency 

E=0.009;% dissipated energy threshold 

 
[FE2] = Gabor_F(Seg2,fmax,E)% Gabor function call 
Figure,imshow(FE2); % display Gabor processed image 
title('Texture based feature extraction'); % title of Gabor processed image 

  
elseif F==3% else if feature extraction option is specified to 3 perform  
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%Morphological feature extraction method 
    Max_thr_area=800;%specify maximum allowable defect area defect[mm^2] 
    Min_thr_area=300; %Specify minimum allowable defect area [mm^2] 

 
[ FE3, count ] = MORPHFEXTR(Seg,Max_thr_area,Min_thr_area) %Morphological 

feature  

%extraction 

%function call 

Figure,imshow(FE3); %display morphological feature extraction image 
title('Morphological based feature extraction'); %title of morphological 

feature  

%extraction image 
end 
end 
 

%%%%%%%%%%%%%%%%%% LMAF %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
 
function [ Ienh ] = LMAF( IM,W ) 

 
Im=im2double(IM);% double precision representation of intensity values 
[w h]=size(Im);% determine size of image 

  
for j=1:W:w%column loop window pixel intensities window wise 
for i=1:W:h %row loop window pixel intensities window wise  

     
if i+(W-1) <= h & j+(W-1) <= w %if pixel within specified window size  
    if ~isa(Im(j:j+(W-1),i:i+(W-1)),'double'), Im(j:j+(W-1),i:i+(W-1)) = 

double(Im(j:j+(W-1),i:i+(W-1))); %ensure double precision for each pixel 

location  

%within block  
    end %end if  

  
    im2=Im(j:j+(W-1),i:i+(W-1)); 
    im2=double(im2); 
    N(j:j+(W-1),2)=[j:j+(W-1)]'; %loop window pixels in new location 
          end %end if 

  

  
for jj=1:w%loop to select seed pixel 
for ii=1:h%loop to select seed pixel 

for jj2=1:W 
     if N(jj2,2)-(ceil(N(jj2,2)/2))<=1  
     a(jj2,1)=1; 
     b(jj2,1)=N(jj2,2)+ceil(N(jj2,2)/2);%end point of centralization 

      

        
    elseif N(jj2,2)+ceil(N(jj2,2)/2)>=W 
     a(jj2,1)=N(jj2,2)-(ceil(N(jj2,2)/2));%start point for centralization  

%selected pixel by N/2 and N/2+1  
    b(jj2,1)=W;%end point of centralization 

      
    else  
          a(jj2,1)=N(jj2,2)-ceil(N(jj2,2)/2);%start point for 

centralization  

%selected pixel by N/2 and 

N/2+1  
          b(jj2,1)=N(jj2,2)+ceil(N(jj2,2)/2);%end point of centralization 
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     end %end if 

     
for jj3=a(jj2,1):b(jj2,1) % loop for collecting elements to be averaged  
    LMF2= Im(jj3,ii); 
end 
LMF2=LMF2'; 
MM(jj2)=std(LMF2); 
del(jj2)=MM(jj2)*1.001; 

     
    end%end for loop 

  
LMF(jj,ii)=sum(sum(LMF2))/N(jj2,2);%averaging 

  

  
 Imdel(jj,ii)=LMF(jj,ii)-del(jj2); %perform white noise treatment by offset 

of del 
 Icon(jj,ii)=Imdel(jj,ii)-Im(jj,ii);  %obtain relative gray value image 

  

  

  
 if Icon(jj,ii)>=0 %thresholding for Icon>0=Icon while Icon<0=0 try loops 

instead? 

  
     I_LMF(jj,ii)=Icon(jj,ii); 
 else 
     I_LMF(jj,ii)=0; 
 end%end if 

  
 Ienh(jj,ii)=255-((I_LMF(jj,ii)*255)/Icon(jj,ii)); %enhanced output 

  
end%end for loop 
end%end for loop 
end%end for loop 
end%end for loop 
end %end function 
%%%%%%%%%%%%%%%%%% Visibility Measure %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Venh] = VisbMeth(i21,W) 

 
im=im2double(i3); % double precision representation of image 

 

 
[w,h] = size(im); % determine size of image  
w=floor(w/W)*W; % round step size to fit image size 
h=floor(h/W)*W; % round step size to fit image size 

 
vm=zeros(size(i21)); % initialize with zeros 

 

  

  
for i=1:W:w % loop to extract window sample 
for j=1:W:h %loop to extract window sample 

     
if i+(W-1) <= w & j+(W-1) <= h 
    if ~isa(im(i:i+(W-1),j:j+(W-1)),'double'), im(i:i+(W-1),j:j+(W-1)) = 

double(im(i:i+(W-1),j:j+(W-1)));  
    end  
    im2=im(i:i+(W-1),j:j+(W-1));%create sub image in the form of im2 
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end  
    mu= mean(im2(:)); %mean of pixel neighbourhood 

  
        vm1=im2- mu; % visibility measure equation 
        vm2=im2+ mu; % visibility measure equation 
        vm3=vm1./vm2; % visibility measure equation 

 

         
        vm(i:i+(W-1),j:j+(W-1))= vm3;% %standard deviation of pixel 

neighborhood 

    
[w1 h1]=size(vm); % size of VM determined intensities 
w1=floor(w1/W)*W; % round step size to fit image size 
h1=floor(h1/W)*W; % round step size to fit image size 

 
 for ii=1:w1% loop to fill each intensity value of the original image 
 for jj=1:h1% loop to fill each intensity value of the original image 
        if im(ii,jj)<=mu % VM function 
Venh(ii,jj)=vm(ii,jj); % final enhanced image 

  
        else 
        Venh(ii,jj)=0; % final enhanced image 

     
            end% if loop 
        end% end loop 
 end% end loop 
end% end loop 
end% end loop 

   
end % end function 

 
%%%%%%%%%%%%%% Local normalize %%%%%%%%%%%%%%%%%%%%% 

  
function n = NL(im, reqmean, reqvar,W) 

  
[w,h] = size(im); 
w=floor(w/W)*W; % round step size to fit image size 
h=floor(h/W)*W; % round step size to fit image size 
n=zeros(size(im)); % initialise output to zero 

 

  
    if ~(nargin == 1 | nargin == 4) 
       error('No of arguments must be 1 or 4'); 
    end 

     
    if nargin == 1   % Normalise 0 - 1 
    if ndims(im) == 3         % Assume colour image  
        hsv = rgb2hsv(im); 
        v = hsv(:,:,3); 
        v = v - min(v(:));    % Just normalize value component 
        v = v/max(v(:)); 
        hsv(:,:,3) = v; 
        n = hsv2rgb(hsv); 
    else                      % Assume greyscale  
        if ~isa(im,'double'), im = double(im); end 
        n = im - min(im(:)); 
        n = n/max(n(:)); 
    end 
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    else  % Normalise to desired mean and variance 

     
    if ndims(im) == 3         % colour image? 
        error('cannot normalise colour image to desired mean and 

variance'); 
    end 

     
for i=1:W:w % loop to traverse block wise  
for j=1:W:h% loop to traverse block wise 
    if i+(W-1) <= w & j+(W-1) <= h 
    if ~isa(im(i:i+(W-1),j:j+(W-1)),'double'), im(i:i+(W-1),j:j+(W-1)) = 

double(im(i:i+(W-1),j:j+(W-1))); end    
    im2=im(i:i+(W-1),j:j+(W-1)); % create sub image of the block   
    im(i:i+(W-1),j:j+(W-1)) = im(i:i+(W-1),j:j+(W-1)) - (mean(im2(:)));     
    im(i:i+(W-1),j:j+(W-1)) = im(i:i+(W-1),j:j+(W-1))/std(im2(:));      % 

set  

%block to 

%desired 

%mean and 

%standard 

%deviatio

n %value 

  
    n(i:i+(W-1),j:j+(W-1)) = reqmean + im(i:i+(W-1),j:j+(W-

1))*sqrt(reqvar); 
    end% end if 
end% end for loop 
end% end for loop 
end% end function 

 
%%%%%%%%%%%%% FFT enhancement  %%%%%%%%%%%%%%%%% 

 

function [final]=fftenhance(image,f,W) 

 
I = 255-double(image); % normalize image to 1 

  
[w,h] = size(I); % extract size of image 

 
w1=floor(w/W)*W; % round step size to fit image size 
h1=floor(h/W)*W; % round step size to fit image size 
final=zeros(size(I)); % initialize output to zero 
inner = zeros(size(I)); % initialize normalized intensity variable to zero 

to  

 

  
for i=1:W:w1% FFT block loop 
   for j=1:W:h1% FFT block loop 

 
      a=i+(W-1); % FFT block size 
      b=j+(W-1); % FFT block size 
      F=fft2( I(i:a,j:b) ); % transform image block to frequency domain 

 
      factor=abs(F).^f; % apply enhancement factor in frequency domain 

 
      block = abs(ifft2(F.*factor)); % use inverse FFT to recapture image  
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      larv=max(block(:)); 
      if larv==0 
         larv=1; 
      end; %end if 

       
      block= block./larv; 
      inner(i:a,j:b) = block; 
   end; %end loop 
end; %end loop 

  
final=inner*255; % change intensity to range 255-0 

 
final=histeq(uint8(final)); % perform histogram equalization 

end; % end function  
 

Appendix C4: Function definition for segmentation 

%%%%%%%%%%%%%%%%%%%%%% Wolf segmentation %%%%%%%%%%%%%%%%%% 

  
function [Seg1] = WOLF(im, W) 
     

    K1=1; %Wolf’s constant 
    K2=1; %Wolf’s constant 

    Gama=0.001; %Wolf’s constant 

 

Im=im2double(im);% double precision representation of intensity values 
[w h]=size(Im);% determine size of image 

  
for j=1:W:w%column loop window pixel intensities window wise 
for i=1:W:h %row loop window pixel intensities window wise  

     
if i+(W-1) <= h & j+(W-1) <= w %if pixel within specified window size  
    if ~isa(Im(j:j+(W-1),i:i+(W-1)),'double'), Im(j:j+(W-1),i:i+(W-1)) = 

double(Im(j:j+(W-1),i:i+(W-1))); %ensure double precision for each pixel 

location  

%within block  
    end %end if  

  
    im2=Im(j:j+(W-1),i:i+(W-1)); 
    im2=double(im2); % create sub image one 

     
           

m=(mean(im2(:)));% block mean intensity    

M=min(im2(:));% minimum scalar value within the block 

S1= std(im2(:)); 

%R=max(S); 

end %end if 

 

im3=Im(j:j+(W/2-1),i:i+(W/2-1)); 
    im3=double(im3); % create sub image 2 

S2= std(im3(:)); 

end %end for 

end %end for 

Twolf=(1-K1(S1/S2)^Gama)*(m+K2(S1/S2^Gama)*m-M)+K2(S1/S2)^Gama*M; %Wolf  

%threshold function 

 Seg1 = im2bw(im2, Twolf); % convert gray image to binary 

end %end function 
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%%%%%%%%%%%%%%%%%%%%%% OGT segmentation %%%%%%%%%%%%%%%%%% 

 
function [Seg2] = OGT(im, To) 
     

    Wo=count(im>To)/count(im>0); %background occurrence probability  

    W1=count(im<To)/count(im>0); %object occurrence probability 

    Uo=sum(sum(find(im<To)))/count(im<To); %background mean 

    U1=sum(sum(find(im>To)))/count(im>To); %object mean 

    Ta=0.001*To; 

 

if (Wo*W1)*(Uo-U1)^2==max(WoW1(Uo-U1^2)) 

T=To+ta; % corrected threshold 

Seg2=im2bw(im,T); % binary segmentation 

end %end if 

end %end function 

 
 
 

 

%%%%%%%%%%%%%%%%%%%%%% AIT segmentation %%%%%%%%%%%%%%%%%% 

 
function [Seg3] = AIT(im) 
    

Im=im2double(im);% double precision representation of intensity values 
[w h]=size(Im);% determine size of image 
 

col_c=floor(w/10); % corner column index 

rows_c=floor(h/10); % corner row index 

 

 

corners=[I(1:rows_c,1:col_c); I(1:rows_c,(end-col_c+1):end);... 

         I((end-rows_c+1):end,1:col_c);I((end-rows_c+1):end,(end-

col_c+1):end)]; 

       %corner pixel intensity 

 

 

T=mean(mean(corners)); % mean corner pixel intensity (initial threshold) 

 

while new_T!=T 

 

 

mean_obj=sum(sum( (I>T).*I ))/length(find(I>T)); % object mean intensity 

 

mean_backgnd=sum(sum( (I<=T).*I ))/length(find(I<=T)); % background mean  

       %intensity 

  

    new_T=(mean_obj+mean_backgnd)/2; % new threshold is calculated as the  

     %mean of the previous results. 

 

  

if(new_T==T) 

     break; % iteration starts only if the threshold has changed. 

     

  else  

     T=new_T; % optimal threshold value    

end %end if 

end %end while 

 

Seg3=im2bw=(im,T); 
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end %end function 

 

Appendix C5: Function definitions for feature extraction 

%%%%%%%%%%%%%% SDHSD %%%%%%%%%%%%%%%%%%% 

 

function [count  DL] = SDHSD3(im,FE_thresh) 

 im7=im; 
[labeledImage maxlabel2] = bwlabel(im7); %label blobs 
[nL1, minLabel, maxLabel1] = renumberregions(labeledImage);%Re-number 

regions  
[nL2, maxlabel2] = makeregionsdistinct(nL1, 8);%Ensures labeled segments is  

%distinct 
count=0; %initialize count for detected features 

  
for blobIndex=1:maxlabel2 %loop for each detected defect 
boundaries = bwboundaries(nL2==blobIndex); %extract blob boundary 
BB=cell2mat(boundaries); %save boundary coordinates in variable BB 

  

  
x = BB(:, 2); % x coordinate of boundary 
y = BB(:, 1); % y coordinate of boundary 

    

  
% center of each blob 
xc= (1/length(x))*sum(sum(x)); 
yc= (1/length(x))*sum(sum(y)); 

  

  
%modify max distance function to distance between each (xi,yi) pixel and 
%(xc,yc) 

     
    for k = 1 : length(x) 
        sq=sqrt( (x(k) - xc) .^ 2 + (y(k) - yc) .^ 2 ); 
        di(k) = ceil(sq); 

         
        Ndi=sum(di(:) == ceil(sqrt( (- xc) .^ 2 + (- yc) .^ 2 ))); 
        pi=Ndi/length(x); 
    end% for loop 

  
mudi=sum(sum(di(:)))/length(x); %average distance of all pixels 

  
stdsdh(blobIndex)= ceil(sqrt((1/length(x))*(pi-mudi)^(2))); %standard 

deviation 

  
if stdsdh(blobIndex)<=FE_thresh  
count=count+1; %increase detected defect counter 
end% for loop 

end% for function 

%%%%%%%%%%%%%% Gabor %%%%%%%%%%%%%%%%%% 

 

function [R] = Gabor_F(img,fmax,T) 

 
u=5*4;% ellipse minor axis 
v=8*4;% ellipse major axis 
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m=32;n=32; %block size 
fmax = 50;% filter maximum frequency 
gama =sqrt(0.0005);%Gabor filter lateral sharpness control parameter 
eta =sqrt(0.0005); %Gabor filter longitudinal sharpness control parameter 

 

  
for i = 1:u 
    fu = fmax/((sqrt(2))^(i-1)); 
    alpha = fu/gama; %Gabor filter lateral sharpness control parameter 
    beta = fu/eta; %Gabor filter longitudinal sharpness control parameter 

     
    for j = 1:v 

         
        tetav = ((j-1)/v)*pi; 

         
        for x = 1:m 
            for y = 1:n 

                 
 xprime = (x-((m+1)/2))*cos(tetav)+(y-((n+1)/2))*sin(tetav); %filter  

 %orientation 
 yprime = -(x-((m+1)/2))*sin(tetav)+(y-((n+1)/2))*cos(tetav); %filter  

 %orientation 
gFilter(x,y) =(fu^2/(pi*gama*eta))*exp(-

((alpha^2)*(xprime^2)+(beta^2)*(yprime^2)))*exp(1i*2*pi*fu*xprime); 

%spatial  

%filter 

representation 

     
            end% end for loop 
        end% end for loop 
    end% end for loop 
end% end for loop 

  
 D = conv2(img,gFilter,'same'); %filtration by convolution  

E=D.^(2); %magnify filtered image 

[w h]=size(D); 

   
for iii=1:h 
    for jjj=1:w 
if T>abs(E(jjj,iii))%use energy threshold for binarisation of detected 

defects 
    R(jjj,iii)=1;%object pixel 
else %mod 
    R(jjj,iii)=0;%background pixel 
end% end if 
    end% end for loop 
end% end for loop 

 

  
end% end function 

 
 
%%%%%%%%%%% Morphological feature extraction %%%%%%%%%%%%% 

 

function [ count] = MORPHFEXTR(Seg2) 

  
[m n]=size(Seg2); %size of the original image 
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[labeledImage maxlabel2] = bwlabel(Seg2); % label blob 
[nL1, minLabel, maxLabel1] = renumberregions(labeledImage);%RENUMBERREGIONS  
[nL2, maxlabel2] = makeregionsdistinct(nL1, 8);%Ensures labeled segments is  

%distinct 

 
%extract blob boundary cordinates 

boundaries = bwboundaries(labeledImage); 
numberOfBoundaries = size(boundaries, 1); 
count=0; %defect counter initialized to zero 

 
for blobIndex=1:maxlabel2%loop for each detected defect 
 Im = (nL2==blobIndex); 
  

%extract blob area and orientation 

Measurements(blobIndex) = regionprops(Im, 'Area','Orientation'); 
 Am(blobIndex) = getfield(Measurements(blobIndex), 'Area'); 
 Am(blobIndex)=Am(blobIndex)*((150/926).^2);%Calibration of detected area 
  

Om(blobIndex) = getfield(Measurements(blobIndex), 'Orientation'); 
    thisBoundary = boundaries{blobIndex}; 
    x = thisBoundary(:, 2); % x = columns. 
    y = thisBoundary(:, 1); % y = rows. 

 
% Find which two bounary points are farthest from each other. 
    maxDistance = -inf; 
    for k = 1 : length(x) 
        distances = sqrt( (x(k) - x) .^ 2 + (y(k) - y) .^ 2 ); 
        [thisMaxDistance, indexOfMaxDistance] = max(distances); 
        if thisMaxDistance > maxDistance 
            maxDistance = thisMaxDistance; 
            index1 = k; 
            index2 = indexOfMaxDistance; 
        end% end if 
    end% end for loop 

 
    DL(blobIndex)=maxDistance; % defect length 

    
% condition for true area of blob 
if ((mean(Am)-0.5*mean(Am))<Am(blobIndex)&& Am(blobIndex)<max(Am))   
   T_A_loc(blobIndex)=1; 
else  
    T_A_loc(blobIndex)=0; 
end 

  
%defect orientation must not be perfectly parallel or perpendicular 
if  (0~=Om(blobIndex) && Om(blobIndex)~=90 && Om(blobIndex)~=360) 
%      True_defect_O = (nL2==blobIndex); 
   T_O_loc(blobIndex)=1; 
else  
    T_O_loc(blobIndex)=0; 
end 

  

  
if T_O_loc(blobIndex)== T_A_loc(blobIndex)==1 
    True_defect = (nL2==blobIndex); 
 

   count=count+1; % increase counter when condition above satisfied 
    DL3(count)=DL(blobIndex)*(150/926); %calibrate defect length 
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    Om(count)=Om(blobIndex); 
end 

  
end%end fuction 

 
%Measure geometrical features of detected blob 
for i= 1:u_range  
    Im = (nL2==i); 
 Measurements(i) = regionprops(Im, 

'Area','Perimeter','Orientation','MajorAxisLength','MinorAxisLength'); 
 Am(i) = getfield(Measurements(i), 'Area'); 
 Pm(i) = getfield(Measurements(i), 'Perimeter'); 
 Om(i) = getfield(Measurements(i), 'Orientation'); 
 MajAxm(i) = getfield(Measurements(i), 'MajorAxisLength'); 
 MinrAxm(i) = getfield(Measurements(i), 'MinorAxisLength'); 

  
end 

  
 % calibration of detected geometrical data 
 DL=DL.*(150/926); 
 Am=Am.*((150/926)^2); 
 Pm=Pm.*(150/926); 
 MajAxm=MajAxm.*(150/926); 
 MinrAxm=MinrAxm.*(150/926); 

 
% percentile representation of detected data 
pp=1; 
 for p=10:10:90; 
 DL_S(pp) = prctile(DL,p); 
 Am_S(pp) = prctile(Am,p); 
 Pm_S(pp) = prctile(Pm,p); 
 Om_S(pp) = prctile(abs(Om),p); 
 MajAxm_S(pp) = prctile(MajAxm,p); 
 MinrAxm_S(pp)=prctile(MinrAxm,p); 
 pp=pp+1; 
 end 
 PL=[DL_S' Am_S' Om_S']; 
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Appendix C6: Simulated results for data set 3 

 
Figure A.C6. 1: Shows original, enhanced, extracted feature, and traced images for FA-H1. 
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Figure A.C6. 2: Shows original, enhanced, extracted feature, and traced images for FA-H2. 
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Figure A.C6. 3: Shows original, enhanced, extracted feature, and traced images for FA-H3. 
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Figure A.C6. 4: Shows original, enhanced, extracted feature, and traced images for FA-H4. 
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Figure A.C6. 5: Shows original, enhanced, extracted feature, and traced images for FA-H5. 
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Figure A.C6. 6: Shows original, enhanced, extracted feature, and traced images for FA-M1. 
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Figure A.C6. 7: Shows original, enhanced, extracted feature, and traced images for FA-M2. 
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Figure A.C6. 8: Shows original, enhanced, extracted feature, and traced images for FA-M3. 
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Figure A.C6. 9: Shows original, enhanced, extracted feature, and traced images for FA-M4. 
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Figure A.C6. 10: Shows original, enhanced, extracted feature, and traced images for FA-M5. 
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Figure A.C6. 11: Shows original, enhanced, extracted feature, and traced images for FA-L1. 
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Figure A.C6. 12: Shows original, enhanced, extracted feature, and traced images for FA-L2. 
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Figure A.C6. 13: Shows original, enhanced, extracted feature, and traced images for FA-L3. 
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Figure A.C6. 14: Shows original, enhanced, extracted feature, and traced images for FA-L4. 
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Figure A.C6. 15: Shows original, enhanced, extracted feature, and traced images for FA-L5. 
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Appendix C7: Simulated results for data set 3 

 
 
Figure A.C7. 1: Shows original, enhanced, extracted feature, and traced images for L-4060ft. 
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Figure A.C7. 2: Shows original, enhanced, extracted feature, and traced images for L-4063ft. 
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Figure A.C7. 3: Shows original, enhanced, extracted feature, and traced images for L-4110ft. 
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Figure A.C7. 4:  Shows original, enhanced, extracted feature, and traced images for L-4195ft. 
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Figure A.C7. 5:  Shows original, enhanced, extracted feature, and traced images for L-4270ft. 
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Figure A.C7. 6:  Shows original, enhanced, extracted feature, and traced images for L-3948ft. 
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Figure A.C7. 7:  Shows original, enhanced, extracted feature, and traced images for L-3953ft. 
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Figure A.C7. 8:  Shows original, enhanced, extracted feature, and traced images for L-3960ft. 
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Figure A.C7. 9:  Shows original, enhanced, extracted feature, and traced images for L-4103ft. 
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Figure A.C7. 10:  Shows original, enhanced, extracted feature, and traced images for L-4563ft. 
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Figure A.C7. 11:  Shows original, enhanced, extracted feature, and traced images for L-3945ft. 
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Figure A.C7. 12:  Shows original, enhanced, extracted feature, and traced images for L-3978ft. 
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Figure A.C7. 13:  Shows original, enhanced, extracted feature, and traced images for L-4025ft. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

314 
 

 
Figure A.C7. 14:  Shows original, enhanced, extracted feature, and traced images for L-4025ft. 
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Figure A.C7. 15:  Shows original, enhanced, extracted feature, and traced images for L-4213ft. 
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Figure A.C7. 16:  Shows original, enhanced, extracted feature, and traced images for R-4060ft. 
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Figure A.C7. 17: Shows original, enhanced, extracted feature, and traced images for R-4063ft. 
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Figure A.C7. 18: Shows original, enhanced, extracted feature, and traced images for R-4110ft. 
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Figure A.C7. 19: Shows original, enhanced, extracted feature, and traced images for R-4195ft. 
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Figure A.C7. 20: Shows original, enhanced, extracted feature, and traced images for R-4270ft. 
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Figure A.C7. 21: Shows original, enhanced, extracted feature, and traced images for R-43948ft. 
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Figure A.C7. 22: Shows original, enhanced, extracted feature, and traced images for R-3953ft. 
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Figure A.C7. 23: Shows original, enhanced, extracted feature, and traced images for R-3960ft. 
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Figure A.C7. 24: Shows original, enhanced, extracted feature, and traced images for R-4103ft. 
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Figure A.C7. 25: Shows original, enhanced, extracted feature, and traced images for R-4563ft. 
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Figure A.C7. 26: Shows original, enhanced, extracted feature, and traced images for R-3943ft. 
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Figure A.C7. 27: Shows original, enhanced, extracted feature, and traced images for R-3945ft. 
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Figure A.C7. 28: Shows original, enhanced, extracted feature, and traced images for R-3978ft. 
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Figure A.C7. 29: Shows original, enhanced, extracted feature, and traced images for R-4025ft. 
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Figure A.C7. 30:  Shows original, enhanced, extracted feature, and traced images for R-4213ft. 
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Appendix D: Intermediary validation of local fracture mechanics model   

Appendix D1: Pure Mode-I and Mode-II SIF formulations 

Pure mode I and II loading case studies are performed on a cube geometry (10 × 10 × 10 𝑚𝑚) 

containing defect types a-c. These defect types have long served as fundamental building 

blocks of fracture mechanics investigations. The choice of an appropriate defect type depends 

on the scope of the research, examples in existing literature include: 

a) Triangular edge through crack is mostly applied in the case of 2D analysis of 

rail web fracture mechanics Kotsikos, G., & Grasso, M. (2012). 

b) Elliptical edge through crack also applicable to 2D analysis of rail foot fracture 

mechanics Jeong, D., & Orringer, O. (1989) 

c) Elliptical centre crack applicable for 2D or 3D analysis of railhead fracture 

mechanics. Livieri, P., & Seagala, F. (2012). 

The FE models are independently loaded for mode I and II fracture as depicted with a 500N 

boundary and edge load in incremental steps of 50N (see Figure A.D1.1 and A.D1.2.). The 

boundary loads are applied on the cubes top and bottom plane in positive and negative z-axis 

direction respectively. While the edge load is applied on the edges parallel to the crack major 

semi-axis on the front plane of the cube. A fixed constraint is applied on the edges of the end 

plane. Such that pure Mode-I case utilises the edges parallel to the major semi-axis while the 

pure mode-II case utilises the edges parallel to the minor semi-axis. The combined effect of 

the pure mode I and II loading is established using equivalent SIF of equation 4.23. The 

outputs of SIF mathematical models in equations 4.4 and 4.14, are further used to account for 

the influence of considering only the length of the crack or also including the opening of the 

crack mouth respectively. For defect types a, b and c, the crack length is set to 5mm with an 

opening of 1mm, while depth of 10mm, 10mm and 2.5mm is adopted respectively. 
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(a)     (b)    (c) 

Figure A.D1. 1: Pure tensile fracture mechanism of edge triangular through crack (a), edge elliptical 
through crack (b), and centred elliptical thickness crack (c). 

   

(a)     (b)    (c) 

Figure A.D1. 2:  Pure shear fracture mechanism of edge triangular through crack (a), edge elliptical 
through crack (b), and centred elliptical thickness crack (c). 

Mode-I 

Mode-I 

Mode-II 

Mode-II 
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It can be seen from the FE simulated results of Figure A.D1.3 and A.D1.4 below, that the peak 

stress induced in both loading cases is dominant at the crack tip (for all crack types 

investigated).    

   

(a)                                                             (b)                                                          (c) 

Figure A.D1. 3: Shows the simulated mode-I Von Misses stress distribution for of edge triangular through 
crack (a), edge elliptical through crack (b), and centred elliptical thickness crack (c). 

  

(a)                                                             (b)                                                          (c) 

Figure A.D1. 4: Shows the simulated mode-II Von Misses stress distribution for of edge triangular 
through crack (a), edge elliptical through crack (b), and centred elliptical thickness crack (c). 
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At maximum load of 500N, defect types a-c has approximate KI values of 70MPa, 70MPa, and 

45MPa respectively. Comparing the KI derived from equation 4.4a and 4.14a in Figure A.D1.5 

suggests that a variation of no more than 4%. This variation is because of including the 

influence of crack mouth opening in equation 4.14a. It is also noticed that 5MPa depreciation 

in KI from the results of defect type a, and that of defect type b is due to the influence of crack 

tip radius difference between a triangle and an ellipse. While defect type c with similar surface 

length and mouth opening as the other two defect types is observed to have a lower KI by 

approximately 25MPa. This variation is because of the difference in depth of about 7.5mm 

compared to defect type a and b.  

At maximum load of 500N defect types a-c have approximate KII values of 57MPa, 19MPa, 

and 27MPa respectively. Comparing the KII of equations 4.4b and 4.14b, Figure A.D1.6 

suggests that including the crack mouth opening increases the value of KII by about 7MPa, 

1MPa, and 3MPa for defect type’s a-c respectively. The only difference between defect type 

a and b is the crack tip radius, which is observed to be inversely proportional to amplitude of 

KII. For defect type’s a-c under same stress amplitude, utilising same the load, is most 

sensitive to fixed constraint physics settings. Defect types a and b show a maximum variation 

in SIF of 25% when boundary fixed constraints are applied in place of the original edge fixed 

constraint. An exception is in the case of defect type c, where negligible variation is observed 

despite changes in fixed constraint settings. Other influential boundary conditions within the 

FE model include the distribution of meshing elements especially within the vicinity of the crack 

tip. By means of predefined mesh distribution (100 elements with an element ratio of 25SIF 

changes of no more than 12% is recorded. 
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Figure A.D1. 5: Shows the simulated KI for defect type  a(left), b(centre), and c(right). 

 

Figure A.D1. 6: Shows the simulated KII for defect type a (left), b(centre), and c(right).
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The Keqv for defect type a-c in Figure A.D1.7 is observed to have a maximum value of about 

70MPa, 60.5MPa, and 40MPa respectively. Finer mesh element distribution within the vicinity 

of the crack tip (100 elements with an element ration of 25), has been observed to result in a 

variation of no more than 12%. The influence of replacing boundary fixed constraint with that 

of an equivalent edge constraint corresponds to a maximum variation in the range of a few 

MPa for all defect types.  

In Figure A.D1.8, the growth behaviour observed is synonymous to rapid fracture as crack 

approaches final failure. A closer observation of the simulated results confirms the least growth 

rate (of a no more than a 10nm/cycle) within the range 0-150N of applied load for all defect 

types. However, at applied loads ranging between 200N - 250N a considerable increase of no 

less than 500nm/cycle is recorded. In this range (200N-250N) a linear-like relationship exists 

between the applied load and growth rate. Moreover, above 50% maximum applied load, a 

rapid increase of approximately 1000nm/cycle in growth rate for every 100N loading step is 

recorded. It can also be deduced that at peak loading amplitude of 500N, a growth rate of 

4900nm/cycle 3900nm/cycle and 600nm/cycle is recorded for defect type a-c respectively. 

These estimates of growth rate mean that defect type a and b propagate faster than defect 

type c. The difference of 1000nm/cycle between defect type a and b geometry, and crack tip 

radius (more pronounced defect type b and c, which is observed to have a lower KII. The 

above observations related to crack growth rate are consistent regardless of using 

mathematical models related to surface crack length only (equation 4.4) or that which includes 

the crack mouth opening as elaborated in equation 4.14. Replacing boundary with edge 

constraint corresponds to a growth rate variation in hundredths of nm/cycle for defect types a 

and b except in the case of defect type c where negligible variation is observed. 
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Figure A.D1. 7: Shows the simulated equivalent SIF (Keqv) for defect type a (left), b(centre), and c(right). 

 

Figure A.D1 8: Shows the simulated crack growth rate for defect type a (left), b(centre), and c(right).
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The propagation direction depicted in Figure A.D1.9 below, confirms that defect types a, b, 

and c have a growth path of 490, 520, and450. It is therefore reasonable to conclude that that 

under the same loading conditions regardless of the crack configuration, a variation of no more 

than 14% is attained in crack growth direction for cracks of same length and opening. It is also 

worth mentioning that a negligible variation (no more than 12%) is observed for predefined 

mesh distribution within the crack tip vicinity. While the influence of changing fixed constraint 

settings from edge to boundary condition is observed to decrease propagation direction by up 

to one fifth. The simulated results also confirm that the inclusion of crack minor semi-axis 

length in SIF estimation (using equation 4.14) to determine crack growth path results in a 

decrease in estimated direction of propagation of no more than 30. A closer observation of the 

simulated propagation direction of defect type a, suggests that a linear relationship exists 

between growth path ranging from 0𝑜 - 25𝑜 due to an applied load 0-50N. Above this 50N to 

about 300N of applied load, a constant growth path is maintained. However above 300N it is 

observed that another proportional increase in branching angle with respect to load occurs 

with an overall peak value of 49deg attained at 350N. Above this applied load a constant 

branching direction is maintained up till maximum applied load of 500N is reached. A similar 

observation is made in the case of defect type b. However, an increase of about 100 in the 

amplitude of the initial linear growth direction (in the range of 0-50N) is observed, while this 

branch angle totalling to about 350 is maintained for the second range of above 50N to 300N. 

Also for applied loads of above 300N to about 350N an increase in amplitude to about 520 is 

recorded, while above this applied load until maximum value of 500N, the branching angle is 

kept constant at 520. In the case of defect type c, a constant branching angle of less than 0.70 

is observed despite the increase in applied load. This behaviour is attributed to the depth 

configuration of the crack. In comparing the behaviour of crack growth path for defect type a-

c, it is obvious that defect type a and b propagate approximately at an angle almost 50 times 

that of defect type c. 
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In Figure A.D1.10, the simulated number of stress cycles until failure is presented and it can 

be observed that the number of loading cycle to fracture for an edge through crack regardless 

of its tip radius is 13 times lower than that of a centred elliptical thickness crack. Defect type  

a and b are observed to have same maximum residual life span of 6E5 cycles. While defect 

type c is observed to have a maximum residual life span of 8E6 cycles. The number of cycles 

for all defect types is further observed to have an inverse relationship with the applied load for 

a range of 0-200N, while above 50% of the applied load the number of cycles to fracture 

decays to almost zero, which is indicative of tendency for crack failure to occur. 
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Figure A.D1 9: Shows the simulated crack growth direction for defect type a (left), b(centre), and c(right). 

 

Figure A.D1 10: Shows the simulated number of loading cycles until failure for defect type a (left), b(centre), and c(right).
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The influence of inclining defect type ‘c’ under the influence of uniaxial tension is presented. 

Under same FE solid mechanics settings as described in section 4.4.1. It is observed in Figure 

A.D1.11 that pure mode-I fracture mechanism 𝛽 = 900 and mixed mode loading case of 𝛽 =

750have the fastest growth rate of 550nm/cycle and 545nm/cycle respectively. While pure 

mode-II loading 𝛽 = 450 and mixed mode case of 𝛽 = 600gives the least growth rate of 

50nm/cycle and 180nm/cycle respectively.  

. 

 

Figure A.D1 11:  Influence of changing inclination angle (β) on growth rate for defect type ‘c’. 

 

In Figure A.D1.12 below it is observed branching angle is inversely proportional to inclination 

angle. The maximum growth path of 550, 450, 300, and 00 is coincident with pure mode-II 

loading 𝛽 = 450, mixed mode 𝛽 = 600, 𝛽 = 750 and pure mode I case of 𝛽 = 900respectively.  
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Figure A.D1 12:  Influence of changing inclination angle (β) on growth path for defect type ‘c’. 

 
 
 
%%%% Analytical solution of SIF %%%% 

 

a=(1E-3);%length of crack 

b=0.5e-3;%opening of crack 
c=sqrt(a^(2) - b^(2));%elliptical eccentricity  

v=0.33;%Poission ratio 
Eo=209E9;%Youngs modulus 
E= Eo/(1-(v^2));%Plane stress assumption of Youngs modulus 
 

%Analytical solution for pure KI 
A=(2*a^(4))/(c*(a-b)^(2)); 
B=((c*b)/(a^(2)))+atan(c/b); 
C=((4*a^(2)*b*c)/((a-b)^(3)))*atan(c/b); 
D=(b*c^(4))/(a-b)^(4); 
Gnom3 = Gnom_v_inf; 
J_I= (( Gnom3.^(2))./E ).*(A*B-C+D); 
KI22=sqrt(abs(J_I).*E); % pure mode I SIF 

 
%Analytical solution of pure KII 
EE=(4*c^(5))/((a-b)^(4)); 
F=(0.5*atan(c/b))-((b*c)/(2*a^(2))); 
G=(4*b^(2)*c^(3))/(a-b)^(4); 
H=(c/b); 
I=((3/2)*atan(c/b)); 
J=(b*c)/(2*a^(2)); 
Gnom2 = Gnom3; 
J_II=(( Gnom2.^(2))./E ).*(EE*F-G*(H-I+J)); 
KII22=sqrt(abs(J_II).*E); % pure mode II SIF 

 

Keqv=(1E-6).*sqrt( dk1.^(2) + ( (614/507).*(dk2.^(3.21)) 

).^(2/3.74));%Equivalent SIF 
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Figure(28),hold on;plot(linspace(0,500,max((size(Keqv)))),Keqv,'y'); 
title('Equivalent SIF') 
xlabel('Load [N]') 
ylabel('Keqv [MPa]') 
hold off 

  
 for v=1:max(length(Keqv)) 
R(v)=min(Keqv(1:v))/max(Keqv(1:v)); 
R(isnan(R))=0; 
Del_K_th3(v)=max(Keqv(1:v))*((1-R(v)) ^(0.33)) ;%Threshold SIF range 
end 

  
da3=0.000507.*(Keqv.^(3.74) - ((1E-6).*Del_K_th3).^(3.74));%Crack growth 

rate 
Figure(25),hold on;plot(linspace(0,500,max((size(da3)))),da3,'y'); 
title('Crack growth rate') 
xlabel('Load [N]') 
ylabel('da/dN [nm/cycle]') 
hold off 

  
Theta22=2.*atan((-2.*KII22)./(KI22+sqrt( KI22.^(2) + 8.*(KII22.^(2)) 

)));%Crack growth path 
Figure(26),hold 

on;plot(linspace(0,80,max((size(Theta22)))),abs(rad2deg(rad2deg(Theta22))),

'y'); 
title('Propagation direction') 
xlabel('Load [N]') 
ylabel('Branching angle [degrees]') 
hold off 

  
af=5e-3;%initial crack length  
ai=2.5e-3;%Final crack length 
A=4.47*10^-9;%material constant 
m=3.3;%Paris constant 
Ps=Keqv;%Stress amplitude 

  
Nf2=(1./(A*(1.2^m).*(Ps.^m).*pi^(m/2))).* ((af.^(1-(m/2)) - ai^(1-

(m/2)))/(1-(m/2)));%Number of cycles until failure 

  
Figure(27),hold on;plot(linspace(0,500,max((size(Keqv)))),abs(Nf2),'b'); 
title('Number of loading cycles to fracture') 
xlabel('Load [N]') 
ylabel('Nf [cycles]') 
 

 

Appendix D2: Mixed Mode-I and Mode-II SIF formulations 

 
a=(1E-3);%length of crack 

b=0.5e-3;%opening of crack 
c=sqrt(a^(2) - b^(2));%elliptical eccentricity  

v=0.33;%Poission ratio 
Eo=209E9;%Youngs modulus 
E= Eo/(1-(v^2));%Plane stress assumption of Youngs modulus 
% %Mode I contribution in mixed mode loading 

  
W_I= (b/a)*( (21/(5*pi))-1 )+1;     %correction functions of ellipse under  

%tensile stress 
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L_1=Gnom.*sind(Bet)^2; 
A=(L_1.^(2)./E); 
B=(2*a^(4))/(c*(a-b)^(2)); 
C=((c*b)/a^(2) )+ atan(c/b); 
D=(a^(2)*b*c)/(a-b)^(3); 
F=(b*(c^(4)))/(a-b)^(4); 
J_I=A.*( B*C - (4*D*atan(c/b)) + F); % Analytical solution of mode–I J  

%integral 
KI22=sqrt((J_I./W_I).*E); %Mixed mode-I SIF 

  

  
% %Mode II contribution in mixed mode loading 

  
W_II= (b/a)*( (128/(15*pi))-1 )+1;  %correction functions of ellipse under  

%tensile stress 
L_2=(-sind(Bet)*cosd(Bet)).*Gnom; 
G1=(4*c^(5))/((a-b)^(4)); 
H=(0.5*atan(c/b))-((b*c)/(2*a^(2))); 
I=(4*b^(2)*c^(3))/(a-b)^(4); 
J=(c/b); 
K=((3/2)*atan(c/b)); 
L=(b*c)/(2*a^(2)); 
G=((L_2.^2)./E); 
J_II=G.*(G1*H-I*(J-K+L)); % Analytical solution of mode–II J  

%integral 

 
KII22=sqrt((J_II./W_II).*E); %mixed mode-II SIF 

 

Keqv=(1E-6).*sqrt( dk1.^(2) + ( (614/507).*(dk2.^(3.21)) 

).^(2/3.74));%Equivalent SIF 
Figure(28),hold on;plot(linspace(0,500,max((size(Keqv)))),Keqv,'y'); 
title('Equivalent SIF') 
xlabel('Load [N]') 
ylabel('Keqv [MPa]') 
hold off 

  
 for v=1:max(length(Keqv)) 
R(v)=min(Keqv(1:v))/max(Keqv(1:v)); 
R(isnan(R))=0; 
Del_K_th3(v)=max(Keqv(1:v))*((1-R(v)) ^(0.33)) ;%Threshold SIF range 
end 

  
da3=0.000507.*(Keqv.^(3.74) - ((1E-6).*Del_K_th3).^(3.74));%Crack growth 

rate 
Figure(25),hold on;plot(linspace(0,500,max((size(da3)))),da3,'y'); 
title('Crack growth rate') 
xlabel('Load [N]') 
ylabel('da/dN [nm/cycle]') 
hold off 

  
Theta22=2.*atan((-2.*KII22)./(KI22+sqrt( KI22.^(2) + 8.*(KII22.^(2)) 

)));%Crack growth path 
Figure(26),hold 

on;plot(linspace(0,80,max((size(Theta22)))),abs(rad2deg(rad2deg(Theta22))),

'y'); 
title('Propagation direction') 
xlabel('Load [N]') 
ylabel('Branching angle [degrees]') 
hold off 
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af=5e-3;%initial crack length  
ai=2.5e-3;%Final crack length 
A=4.47*10^-9;%material constant 
m=3.3;%Paris constant 
Ps=Keqv;%Stress amplitude 

  
Nf2=(1./(A*(1.2^m).*(Ps.^m).*pi^(m/2))).* ((af.^(1-(m/2)) - ai^(1-

(m/2)))/(1-(m/2)));%Number of cycles until failure 

  
Figure(27),hold on;plot(linspace(0,500,max((size(Keqv)))),abs(Nf2),'b'); 
title('Number of loading cycles to fracture') 
xlabel('Load [N]') 
ylabel('Nf [cycles]') 

Appendix D3: Biaxial mode-I and mode-II SIF formulations 

A case study of equi-tension (ℵ = 1) and equi-tension-compression (ℵ = −1) bi-axial loading 

of defect type ‘c’ is presented in this section of the thesis. The load settings in this section of 

the investigation is modified from that of section 4.4.1 to include a 500N boundary load as 

depicted in Figure A.D1.13a and A.D1.13b respectively. 

                                            

(a) (b) 

Figure A.D1 13: Bi-axial (500N) equi-tension (ℵ=1)  and equi-tension-compression (ℵ=-1) model. 

The simulated models are analysed for 𝛽 ranging from 450 to 900 and the results in Figure 

A.D1.14 indicate that KI in the case of ℵ = 1 negligibly varies from a maximum value of 

42.5MPa for all inclination angles investigated. While in the case of ℵ = −1 the peak value of 

KI ranges 40MPa to 30MPa for𝛽 equals 450-900. In Figure A.D1.14b, simulated KII in the case 

of ℵ = 1 negligibly varies from a maximum value of 42MPa to 5MPa for all inclination angles 
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investigated. While in the case of ℵ = −1 the peak value of KII ranges 40MPa to 30MPa for 𝛽 

equals 450-900. Keqv in Figure A.D1,14c is observed to negligibly vary from a maximum value 

of 40MPa. And for ℵ = −1 Keqv ranges from 37MPa to 27MPa for 𝛽 equals 450-900. The 

crack growth rate in Figure A.D1.14d is in the case of ℵ = 1 negligibly varies from a maximum 

value of 400nm/cycle. While in the case of ℵ = −1 the growth rate ranges from 300nm/cycle 

to 100nm/cycle. The growth path in Figure A.D1.14e, confirm for  ℵ = 1 that mixed mode 

loading corresponds to higher branching angles of 350, 320 for 𝛽 equals 600,750. And in the 

case of pure fracture mode loading, low branching angles of 150, and 00  for 𝛽 equals 450, and 

900 is recorded. However in the case of ℵ = −1 simulated results confirm for that mixed mode 

loading corresponds to lower branching angles of, 180, 100 for 𝛽 equals 600,750. And in the 

case of pure fracture mode-I fracture mechanism as expected a branching angle of 00 is 

recorded. 
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%%%%%%%% Biaxial loading of elliptical inclined crack %%%%%%%% 

    b=0.5e-3;% crack opening 
    ang=0; 
    c1=(5e-3)/2;%length of crack 
    a=c1; 
    l=1/sqrt( (cosd(ang)/c1)^(2) + (sind(ang)/a)^(2) );%depth of crack 
    n=1;% material hardness parameter 
    nn=(Gnom_l.^(n))./(Gnom_v.^(n));% biaxiality of load 
    Bet=45;%crack inclination angle 

  
SI_inf=(Gnom_v.^(n)).*( (cosd(Bet)^(2)) + (nn.*(sind(Bet)^(2))) );%mode-I 

Sstress component 
SII_inf=((Gnom_v).^(n)).*((1-nn)./2).*( sind(2*Bet)*cosd(ang) );%mode-II 

Sstress component 
% SIII_inf=(Gnom_v)^(n).*((1-nn)/4)*( sind(2*Bet)*sind(ang) );%mode-III 

Sstress component 

  

  
KI22=SI_inf.*sqrt(pi*l);%Mode-I SIF 
KII22=SII_inf.*sqrt(pi*l);%Mode-II SIF 
% KIII=SIII_inf.*sqrt(pi*l);%Mode-III SIF 

 
Keqv=(1E-6).*sqrt( dk1.^(2) + ( (614/507).*(dk2.^(3.21)) 

).^(2/3.74));%Equivalent SIF 
Figure(28),hold on;plot(linspace(0,500,max((size(Keqv)))),Keqv,'y'); 
title('Equivalent SIF') 
xlabel('Load [N]') 
ylabel('Keqv [MPa]') 
hold off 

  
 for v=1:max(length(Keqv)) 
R(v)=min(Keqv(1:v))/max(Keqv(1:v)); 
R(isnan(R))=0; 
Del_K_th3(v)=max(Keqv(1:v))*((1-R(v)) ^(0.33)) ;%Threshold SIF range 
end 

  
da3=0.000507.*(Keqv.^(3.74) - ((1E-6).*Del_K_th3).^(3.74));%Crack growth rate 
Figure(25),hold on;plot(linspace(0,500,max((size(da3)))),da3,'y'); 
title('Crack growth rate') 
xlabel('Load [N]') 
ylabel('da/dN [nm/cycle]') 
hold off 

  
Theta22=2.*atan((-2.*KII22)./(KI22+sqrt( KI22.^(2) + 8.*(KII22.^(2)) 

)));%Crack growth path 
Figure(26),hold 

on;plot(linspace(0,80,max((size(Theta22)))),abs(rad2deg(rad2deg(Theta22))),'y

'); 
title('Propagation direction') 
xlabel('Load [N]') 
ylabel('Branching angle [degrees]') 
hold off 

  
af=5e-3;%initial crack length  
ai=2.5e-3;%Final crack length 
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A=4.47*10^-9;%material constant 
m=3.3;%Paris constant 
Ps=Keqv;%Stress amplitude 

  
Nf2=(1./(A*(1.2^m).*(Ps.^m).*pi^(m/2))).* ((af.^(1-(m/2)) - ai^(1-(m/2)))/(1-

(m/2)));%Number of cycles until failure 

  
Figure(27),hold on;plot(linspace(0,500,max((size(Keqv)))),abs(Nf2),'b'); 
title('Number of loading cycles to fracture') 
xlabel('Load [N]') 
ylabel('Nf [cycles]') 

 

 

 

 

Appendix E: Linking MATLAB and COMSOL 

Appendix E1: Linking NDE to fracture mechanics in rails 

 

In recent times, several attempts of linking detection with prediction tools have required a 

combination of experimental testing, followed by numerical analysis, and/or model based 

prediction methods in order to enhance the performance of structural integrity assessment and 

online conditioning monitoring not only in the rail industry but in other industries also. Several links 

between field based detection and model based prediction of rail infrastructure have been 

discussed in literature of which vibration, modal analysis and magnetic flux leakage systems have 

received the most attention not only within rail research but in other fields. However, this research 

focuses on remote, detection and prediction tools for rail damage, the technology is supported by 

data related to defect geometry, and contact dynamics. The MATLAB image processing toolbox 

(defect detection platform), in collaboration with the VAMPIRE contact calibration data (defined 

as a MATLAB look-up matrix) is linked to communicate directly (in a multi-directional manner) 

with global track model (COMSOL multi physics FE software) by means of the LiveLink™ for 

MATLAB® add on. As detailed in the user guide hand book of COMSOL Multiphysics, the 

following command line when executed from MATLAB command line, automatically creates a 

replica of FE model (referred to as ‘Model2’) as a variable (called ‘model’) in MATLAB. The 
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function also creates a directory for modifying FE model parameters from MATLAB window and 

vice-versa. The interaction between the linked data is best described by Figure A.E1.1below. 

 

 

Figure A.E1. 1: Shows the interaction between VAMPIRE contact data, Image processing data, and Fracture 
mechanics prediction. 

 

To start the linking process between NDE (MATLAB image processing toolbox) and fracture 

prediction model (COMSOL multi-physics FE software) the icon in Figure A.E1.2 below is 

selected. 

 

 

Figure A.E1. 2: Shows the icon for initiating COMSOL with MATLAB. 

 

After successful launching of the linking icon above, the window depicted in Figure A.E1.3 below 
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appears with the specified listening port for establishing the link (also referred to as the client 

server) between COMSOL and MATLAB.   

 
Figure A.E1. 3: Shows the client server window with details of listening port for establishing link between 
COMSOL and MATLAB. 

 

The global track model is connected (via the client server) to MATLAB image processing toolbox 

by clicking File, on the tool bar of COMSOL Multi-physics, under Client Server, click Connect to 

Server as depicted in Figure A.E1.4 below.   
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Figure A.E1. 4:Shows the steps for connecting to client server on the COMSOL Multi-physics platform. 

This client server connection (referred to as localhost) is further secured by setting a user defined 

username and password and clicking ok, as depicted in Figure A.E1.5 below. 

 

 

Figure A.E1. 5: Shows the security settings for server connection using COMSOL Multi-physics. 
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Successful completion of the step in the figure above, would lead to opening a MATLAB window 

(automatically). It is also noticeable with a variable created in the workspace which has a directory 

of COMSOL folder in PC program file as shown in Figure A.E1.6 below. 

 

 Figure A.E1. 6: Shows the MATLAB explorer program to be adopted for communicating with COMSOL. 

 

On the MATLAB command window of the Figure above, the following syntax is used to export 

the global track model as a variable in MATLAB workspace. This synchronisation enables the 

multi-channel communication with image processing toolbox and VAMPIRE contact data (all 

MATLAB variables) with the global track model. 

 

model=ModelUtil.model('Model2'); %Establish a link between parameters of the Comsol FE  

%model to variables in MATLAB workspace.  
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Figure A.E1. 7: Shows the exported global track model as a variable in MATLAB workspace.
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It can be seen from Figure A.E1.7 above that the global track model referred to as (‘Model2’) is 

automatically exported to the MATLAB workspace as ‘model’. This enables the automatic 

calibration of contact and crack settings within the ‘Geometry node’ of the global track model. The 

calibration data and defect geometry is concatenated into a loop up table referred to as 

MATCOM_LUT. The MATCOM_LUT function returns the following data as observed in the 

MATLAB workspace window depicted in Figure A.E.18 below. 

 

 

Figure A.E1.8: Shows the syntax for extracting contact data related to 200m curve radius and details of a 
specified defect geometry. 

 

All the above parameters (with the exception of the boundary coordinates) are set within the global 

track model using parameter initialisation syntax as described below. 

 

model.param.set('a',Lo);%Change parameter in global track model 

       %from MATLAB workspace 

 

The above syntax is used as shown in Figure A.E1.9, to change the global track model parameter 

‘a’ to equal the value of MATLAB variable ‘Lo’. This approach can be used to export the lateral 

displacement, roll angle, yaw angle, axle load, maximum surface length, crack orientation, 

elliptical semi-axis length (major and minor) parameters of the proposed technology. 
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Figure A.E1. 9: Shows the automatic setting of global track model parameters from MATLAB command 
window. 

 

The result of Figure A.E1.9 above is observed to be the initialisation elliptical crack geometry as 

depicted in Figure A.E1.10 and also the contact settings of global track model as depicted in  

Figure A.E1.11 below.  
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Figure A.E1. 10: Show elliptical crack geometry settings in COMSOL software.
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Figure A.E1. 81: Shows the parameters related to contact data and defect geometry initialised from MATLAB 
command window. 

 

In the case of utilising the actual crack boundary in the geometry node of the global track model, 

the interpolation curve node is selected and the text file containing the boundary coordinates of 

the defect under investigation is specified in the file directory as depicted in Figure A.E1.12 below. 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

363 
 

 

Figure A.E1. 92: Shows the importation of the actual crack boundary coordinates. 

 

The crack geometry is moved to required offset location and further scaled to recalibrate the 

defect geometry from pixel scale unit to mm dimensions as shown in figure A.E1.13 below. 

 

 

Figure A.E1. 103: Shows the settings for defect offset and scaling to mm dimension. 
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An extrude function is used to convert the plane representation of the defect boundary into a solid 

3D crack geometry within the global track model as shown in Figure A.E1.14 below. 

 

 

Figure A.E1. 11: Shows the defect extrusion from plane geometry to 3d solid structure. 

 

A difference node is adopted to inscribe the 3D representation of the defect boundary coordinates 

within the global track model as shown in Figure A.E1.15 below.  
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Figure A.E1. 125: Shows the incision for the defect boundary within the global track model using difference 
function. 

Upon complete initialisation of the global track model as depicted in Figure A.E1.16 below, it is 

envisaged that the actual condition of rail can be analysed automatically. 

 
Figure A.E1. 13: Shows the global track model containing defects whose fracture mechanics behaviour is to 
be predicted. 

The model is set to run and the required solid mechanics expressions (COMSOL simulated 

contact stresses) are extracted for further processing. According to the mathematical methods 

elaborated in Chapter 4, the solid mechanics expression that is most relevant for the prediction 

of crack behaviour is the nominal stress (represented in the solution of the global track model as 
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'solid.PGpzZ', 'solid.PGpyY', 'solid.PGpxX' for all principal directions). Other MATLAB functions 

that can be adopted for extracting simulated results are described below. 

 mpheval, to evaluate solid mechanics expressions on all node points of a specified selection. 

  mphinterp, to evaluate expressions at arbitrary location. 

  mphglobal, to evaluate global expressions. 

  mphint2, to integrate the value of expressions on selected domains. 

 mphmax, to evaluate the maximum value of an expression. 

 mphmin, to evaluate the minimum value of an expression. 

 mphmean, to evaluate the average value of an expression. 

 

For each of the above functions the following syntax can be used to extract the specified 

expression either at a specific coordinate, boundary, or domain. 

SP = mphinterp(model,'expression','coord',[x;y;z]);%Extracting the value of  

   %an expression at a  

   %specified x,y,z   

   %coordinate 

SP = mphinterp(model,'expression','volume',domain_number); %Extracting the   

%value of  

            %an expression   

            %of a specified      

            %domain 

SP = mphinterp(model,'expression','surface',boundary_number);%Extracting    

                                                   %the value of an  

                                                   %expression at a   

                                                      %specified boundary 

 

The algorithms of image processing and fracture mechanics have been extensively analysed in 

Chapters 3 and 4 respectively. As shown in Figure A.E1.17, it is envisaged that a rail image can 

be automatically incorporated in the global contact model taking into account the actual boundary 

coordinate of the crack. The benefits of the linking NDE and prediction aspects of rail maintenance 
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are yet to be explored in rail industry. By using this geometry, more realistic stress distribution is 

achieved which in turn offer more realistic prediction of rail fracture behaviour. Furthermore, a 

considerable improvement in flexibility of rail condition monitoring, is attained such that separate 

maintenance tasks (i.e. detection and prediction) combined within a single package. This 

technology is considered more intelligent compared to similar automatic visual inspection systems 

such as patent applications of Bar-Am, M., & Yaakov, Z. (2007) which are only capable of 

forwarding detected defects to maintenance engineer stations for further processing.  

After successful implementation of an incorporated detection and prediction model, the LiveLink 

connection is disconnected from the COMSOL multi-physics tool bar by clicking File, Client 

Server, and Disconnect from Server as shown in the Figure A.E1.17 below. 

 
Figure A.E1. 147: Shows the procedure for disconnecting the COMSOL Multiphysics software from client 
server. 

 



Incorporating automated rail RCF damage detection algorithms with crack growth modelling 

368 
 

When successfully disconnected from the client server the confirmation is prompted as shown in 

Figure A.E1.18 below. 

 
Figure A.E1.18 : Shows the procedure for disconnecting the COMSOL Multi-physics software from client 
server. 

Appendix E2: MATLAB function for establishing link between defect detection and 

prediction  

 

%%%%%%%%%%%% MATCOM_LUT %%%%%%%%%%%%%%%% 
function [Lateral_displacement,Roll_angle,Yaw_angle... 

,Lateral_Creep_Force,Longitudinal_Creep_Force... 
,Crack_length,Crack_opening,Crack_orientation]... 
= MATCOM_LUT(Curve_radius)%extract contact and defect 
                          % data from look up Table  
                          %for calibration purpose 

  
Calibration_data=load('V.txt') %Load vampire contact file .txt format 

  
C_R==Curve_radius;%record curve radius  

  
for i=1:length(Calibration_data(1,:))%loop all curve radius values to find  

%specific choice 
Lateral_displacement=Calibration_data(i==C_R,2);%select value of lateral  

%displacement at specified 

%curve radius 
Roll_angle=Calibration_data(i==C_R,3);%select value of roll angle at  

%specified curve radius 
Yaw_angle=Calibration_data(i==C_R,5);%select value of yaw angle at specified  
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 %curve radius 
Lateral_Creep_Force=Calibration_data(i==C_R,7);%select value of lateral creep  

%force at specified curve %

 %radius 
Longitudinal_Creep_Force=Calibration_data(i==C_R,9);%select value of  

%longitudinal creep 

%force at specified 

%curve radius 
end % for loop 

  
  

 

%Image defect statistical data 
Crack_length=DL;%set crack length from image processing algorithm 
Crack_opening=MnrAxm;%set crack opening from image processing algorithm 
Crack_orientation=Om;%set crack orientation from image processing algorithm 
c_x=Centriod.x;%set crack centre from image processing algorithm 
c_y=Centriod.y;%set crack centre from image processing algorithm 

  
%Automatic parameter set in global track model 
model.param.set('lat_d',Lateral_displacement);%set Global track model 

parameter 
model.param.set('R_a',Roll_angle);%set Global track model parameter 
model.param.set('Y_a',Yaw_angle);%set Global track model parameter 
model.param.set('lat_cf',Lateral_Creep_Force);%set Global track model 

parameter 
model.param.set('long_cf',Longitudinal_Creep_Force);%set Global track model 

parameter 

  

  
model.param.set('c_l',Crack_length);%set Global track model parameter 
model.param.set('c_op',Crack_opening);%set Global track model parameter 
model.param.set('c_l',Crack_orientation);%set Global track model parameter 
model.param.set('c_offset_x',c_x);%set Global track model parameter 
model.param.set('c_offset_y',c_x);%set Global track model parameter 
end % function 

 
 


