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Abstract—Cloud computing is a novel paradigm which 

provides on demand, scalable and pay-as-you-use computing 

resources in a virtualized form. With cloud computing, users 

are able to access large pools of resources anywhere without 

any limitation. In order to use the provided facilities by the 

cloud in an efficient way, the management of resources is an 

undeniable fact that should be considered in different aspects. 

Among all those aspects, resource allocation has received much 

attentions. Given the fact that the cloud is heterogeneous, the 

allocation of resources has to become more sophisticated. As a 

first promising work to deal with that problem, Dominant 

Resource Fairness (DRF) has been proposed which takes into 

account dominant shares of users. Although DRF has a sort of 

desirable fairness properties, it has some limitations that have 

already been identified in the literature. Unfortunately, DRF 

and its recent developments are not intuitively fair with respect 

to various resource demands. In this paper, we propose a 

Multi-level Fair Dominant Resource Scheduling (MLF-DRS) 

algorithm as a new allocation model inspired by Max-Min 

fairness and proportionality. Unlike other works that they 

equalize dominant shares of different resource types which 

leads to starvation in the maximization of allocation for some 

users, our algorithm guarantees that each user receives the 

resources they desire for based on dominant shares. As can be 

deducted from the mathematical proofs, MLF-DRS provides a 

full utilization of resources and meets some of the desirable fair 

allocation properties and it is applicable to be used in a naïve 

extension form in the presence of multiple servers as well. 

Keywords-cloud computing; dominant resource; DRF; 

fairness; resource allocation 

 

 

I. INTRODUCTION 

Cloud computing [1] is a new technology which provides 
a wide range -and unlimited computing resources on-demand 
to users. Consequently, many organizations are adopting this 
technology in order to enhance their productivity and reduce 
costs in different sectors. This new technological trend 
abstracts the hardware and simplifies task management 
ranging from simple storage tasks to complex operations. 
Cloud computing consists of three architectural layers, 
Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS) and Application as a Service (AaaS) where each 
specific layer delivers particular aspects of cloud services. 
Virtualization [2] of resources which is done by Virtual 
Machines (VMs) is the fundamental aspect of cloud 
computing where all the resources are integrated in a 
resource pool without dealing with physical equipment, and 
it makes possible for everyone to access complex 
applications and huge amount of computing resources 
through the Internet. By considering the rapid evolution of 
the technology, cloud architectures have undergone major 
changes. There are many research directions such as resource 
management, provisioning and scheduling, VM management 
techniques and so on.  

Resource allocation [3] is one of the most important 
aspects of cloud computing and how to allocate the resources 
among different users with various demands has become a 
challenging issue in recent decade. In perspective of a 
general definition of resource allocation, when CPU is 
allocated, it doesn’t matter how much other resources are 
allocated. However, resource distribution in a datacenter is 
different and all the resources should be allocated in an 
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orchestrated way as a multi-resource allocation scheme to 
reach a fair and efficient allocation model [4].  

Fairness in resource allocation has become a challenging 
problem and it has been investigated in different fields such 
as computer networks, economics, operating systems, and 
etc. Max-min fairness as a well-established algorithm has 
been proposed in order to provide a fair allocation among 
users with various demands. Generally, fairness is 
investigated for single resource in distributed and parallel 
computing like Hadoop fair scheduler [5] where multiple 
types of resources can be required by tasks which is a 
contradiction by considering the type of the Hadoop system.  
Since, cloud is a heterogeneous environment, the fair 

allocation of resources is very important especially in a case 

that users have intensive demands over different resources. 

To overcome fairness problem in the cloud, DRF [6] as a 

generalization of Max-min fairness has been proposed. 

Although DRF has some good features in terms of fairness, 

it has some limitations especially when there are multiple 

servers. Also, DRF is not able to consume all the resources 

which contributes to the wastage of them. Additionally, 

since DRF uses progressive filling, some users may not 

achieve their desirable allocation. There are many research 

works in extension of DRF, however they are not intuitively 

fair. 
In this paper the resource allocation issues in cloud 

environments and several related algorithms were initially 
explored with emphasis on the fairness property. The most 
prominent algorithm is DRF. In this process, we found 
several drawbacks and limitations of DRF as regards to 
fairness and we proposed a new algorithm to address them. 
The rest of the paper is organized as follows. Section two 

investigates DRF algorithm in detail with its shortcomings 

and other related research works. Section three discusses 

regarding MLF-DRS with mathematical formulations and 

allocation algorithm. Section four presents evaluations using 

mathematical formulations and fairness properties met by 

MLF-DRS. Section five presents the conclusion and future 

research plans. 

II. FAIRNESS IN RESOURCE ALLOCATION 

One of the most important properties of resource 
allocation for the diverse and dynamic cloud environments is 
the fairness property. Fairness [7] can be considered as one 
of the challenging dimensions of Quality of Service (QoS) 
and an important concept in resource distribution so that 
subscribers should be happy with allocated resources. Since 
the fairness in an intuitive concept, it is difficult to define it 
as far as it is different from person to person. From the 
economic perspective, fair resource allocation is similar to a 
cake-cutting problem [8] in which the objective is to allocate 
specific parts of a cake among people. When it comes to the 
cloud and data center environment, the definition of fairness 
will be more challenging. Given that cloud environment is 
heterogeneous, users may submit their tasks consist of 
demands for different resources such as (CPU, Memory, 
Disk space and etc). Providing a fair resource allocation in 
such conditions requires defining new allocation rules and 

policies. Max-min fairness [9] is a well-known and popular 
algorithm which allocates available resources to users who 
are competing over resources. Based on max-min allocation 
policy, different resource allocation algorithms have been 
proposed to deal with the resource allocation problem. 
Initially, most of the research works have been done for 
single-resource environments such as works in [10][11] 
where there are only one type of resource such as CPU. 
However, considering that cloud environment is 
heterogeneous, multiple resources should be considered to 
provide a fair allocation [12]. Any fair resource allocation 
mechanism is subjected to have at least some important 
fairness properties [13] as followings:  

 

 Sharing Incentive: Every user subjects to better off 

resource pool so that a user cannot get more tasks 

in a resource pool which is 1/n of total resources.  

 Pareto optimality: A user will not be able to 

increase her/his allocation without decreasing other 

user's allocations. This is very promising feature 

which leads to maximum resource utilization in the 

system.   

  Envy-freeness: A user should not be jealous about 

other user's allocation. In another word, a user’s 

allocation is not tradable with another user. In 

terms of fairness definition, this allocation feature 

is counted as equity.   

 Strategy-proof: A user cannot lie about his/her 

demands. Misreporting the demands may violate 

this important property. 
 
The rest of the paper is organized as follows. Section II 

represents the related concepts in the area of fairness in 
resource allocation. Section III   discusses about the recent 
conducted works in extension of DRF. Section IV describes 
the proposed model. Section V indicates the problem 
formulation of MLF-DRS and section VI provides the 
evaluations of MLF-DRS.    

III. RELATED WORKS 

DRF which is the generalization of max-min allocation 
algorithm is the first fair allocation method in a cloud 
environment with multiple resources with emphasis on 
resource intensive tasks. In DRF, the allocation is determined 
by equalizing subscribers’ dominant shares so that the aim is 
to maximize the minimum dominant shares. As an example, 
if a system has (9 CPU, 18 GB) and user 1 requests (1 CPU, 
4 GB) and User 2 requests (3 CPU and 1 GB), dominant 
resources will be GB for user 1 and CPU for user 2. 
Dominant shares for two users can be calculated as: 1/9 VS 
4/18 (since 4/18>1/9 so GB is dominant), 3/9 VS 1/18 (since 
3/9>1/18 so the CPU is dominant). Therefore, the method 
will try to equalize dominant shares of two users, subject to 
maximize their allocation. So, the final allocation according 
to DRF will be (3 CPU, 12 GB) for user 1 and (6 CPU and 4 
GB) for user 2.  

Different works have been proposed to tackle the existing 
problems in DRF in which they have considered different 



extensions to use it in heterogeneous servers. Here we 
provide a brief description of the research works have been 
done until now based on DRF. DRFH is proposed in [14] as 
a generalization of DRF in order to apply in an environment 
with multiple servers by exploring an allocation to equalize 
each user’s global dominant share, which is defined as the 
highest ratio of any resources the user has been allocated in 
the resource pool. DRFH improves the resource utilization in 
terms of multiple servers. In [15] heterogeneous DRF 
(HDRF) which is a generalization of DRF is proposed as a 
multi-resource scheduling algorithm to avoid job starvation 
in different data centers. The experiments show that HDRF 
presents better resource utilization and throughput compared 
to DRF. In [16] Long-Term DRF (H-MRF) is proposed 
which tackles the memory-less feature of DRF and other 
similar proposed models. The mentioned method is 
appropriate for pay-as-you-use services which are not 
considered in previous works. In [17] Per Server DRF (PS-
DRF) is introduced to allocate resources more efficiently by 
considering server heterogeneity in presence of placement 
constraints. The most important feature of this algorithm is 
that it identifies dominant resource of each user based on 
Virtual Dominant Share (VDS). The proposed model 
considers important properties of fair resource allocation. In 
[18] Bottleneck-Based Fairness (BBF) is proposed which 
guarantees each user gets at least its entitlement resources 
and it also applies polynomial-time algorithm to calculate 
fair resource allocation. In [19] authors proposed a fair 
allocation model by taking into account the heterogeneous 
system and focusing on minimizing resource allocation 
costs. 

IV. PROPOSED MODEL 

According to the previous section, we highlighted the 
most important conducted research works regarding fair 
allocation so that much of their focus was on extension of 
DRF in different aspects such as cost optimization and 
commonly its application in heterogeneous servers. There 
are several problems associated with DRF and its application 
in cloud environments which can be summarized as follows: 
1) In DRF allocation, full resource utilization is a problem so 
that the system is not able to consume all of its resources. 
Therefore, it can be a violation of Service Level Agreement 
as an obligation between users and providers. So, resource 
wastage will be occurred in DRF. Additionally, the most 
important deficiency of DRF and other proposed work is 
starvation so that when they try to maximize the allocation of 
the resources, some users may not be able to maximize their 
allocation due to the equalization of dominant shares. We 
will show in continue when a user tries to maximize own 
allocation, non-dominant resources of other users gets the 
considerable proportion of resources.  

2) DRF is specifically designed for a single server. So, in 
terms of multiple servers DRF is not efficient so that a user 
may have dominant resources in different servers so that 
applying DRF in a naive extension may lead to an inefficient 
allocation. 

By taking into account the above-mentioned problems, 
we propose a Multi-Level Fair Resource Allocation and 

Scheduling Algorithm (MLF-DRS) as a generalization of 
Max-Min fairness algorithm in multi-resource cloud 
environment considering dominant shares of each user’s 
task. The allocation of resources in DRF and MLF-DRS has 
been shown in the previous section in presence of two users 
and in Table 2 with four users that are competing over two 
resources. According to the example in previous section, in 
the final allocation user 2 with dominant share on CPU has 
been allocated exactly what he/she asked for. In another 
word, the user is not able to maximize his/her allocation 
under DRF policy. As can be seen from table 1, in DRF, 
memory has not been fully utilized so that approximately 
72% of the memory has been utilized and the remaining 24% 
has been wasted. It may be tangible in a system with high 
number of users and large-scaled system configuration. 
According to this, we think that the equalization of different 
resource types may cause starvation and resource wastage in 
each resource type. Hence, we are looking to the concept of 
equalization from another perspective in a way that 
equalization is done based on each specific resource type. 
After allocating the resources based on a user’s initial 
demand vector, MLF-DRS tries to share the available 
resources equally among the dominant shares. In MLF-DRS, 
at the first level each user gets own initial demands and at the 
next stage since the objective is to maximize dominant 
shares of each user, dominant shares will be grouped in one 
set and no-dominants will be grouped in another one. At this 
level, the available resources will be divided and allocated 
equally among dominant shares subject to conditions 
mentioned in algorithm 1. For the final step, every set of 
dominant and non-dominants will get the equal amount of 
available resources. Therefore, the algorithm tries to share 
the resources in the same rate for intensive tasks until a 
resource becomes saturated. Additionally, MLF-DRS uses 
upper-bound available resources for dominants and lower-
bound of available resources for non-dominants in a way that 
the allocation is in the same rate for both sets of resources. It 
is important to note that MLF-DRS applies dynamic 
allocation policy based on the server specifications such as 
total requested resources from the users and the capacity of 
resource pool. 

A. Using MLF-DRS in Naïve Extension Form 

In order to enable MLF-DRS to be used in multiple 
servers, according to [6] we assume that every user has a 
weight on demanded resources. Given that 𝑤𝑖,𝑗 indicates the 

weight of users 𝑖  on resource 𝑗 . In that case, dominant 
resource 𝑑𝑖 can be defined as follow: 

 

𝑑𝑖 = max {
𝑠𝑖,𝑗 

𝜔𝑖,𝑗

} 

 

Where 𝑠𝑖,𝑗 represents the share of resource 𝑗 of user 𝑖. 
 

V. PROBLEM FORMULATION 

Given that there is a system with k resource types 
represented by 𝑅 = {1,2,3, … , 𝑘 } with the capacity indicated 



by C and there are n users compete over k types of resources 

with requested tasks indicated by 𝑥𝑖. Accordingly, dominant 
and non-dominant shares indicated by 

𝑑𝑖
𝑘 𝑎𝑛𝑑 𝑛𝑑𝑖

𝑘  respectively, are calculated as follows: 

       

                             𝑑𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘  

𝑥𝑖

𝐶𝑘
                                       (1) 

                             𝑛𝑑𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘  

𝑥𝑖

𝐶𝑘
                                      (2) 

 
Based on (1) and (2), dominant and non-dominant shares 

vectors are specified by 𝐷 = {𝑑1
𝑘, 𝑑2

𝑘, … , 𝑑𝑛
𝑘} 𝑎𝑛𝑑 𝐷 =

{𝑛𝑑1
𝑘, 𝑛𝑑2

𝑘, … , 𝑛𝑑𝑛
𝑘} respectively. In that case, to calculate 

the allocation for each user which is indicated by 𝑎𝑖
𝑘 , the 

following optimization problem can be applied:  
 
 

                            max(𝑑𝑖
𝑘  𝑎𝑛𝑑 𝑛𝑑𝑖

𝑘)                                (3) 

 

                               𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑ 𝑥𝑖

𝑛

𝑖=1

 ≤ 𝐶𝑘  

 

               𝑥𝑖 ≤  𝑓𝑠
𝑘  

 
 

                                     
𝑎1

𝑘

𝐶𝑘

=
𝑎2

𝑘

𝐶𝑘

= ⋯ =  
𝑎𝑛

𝑘

𝐶𝑘

  

 
 
The optimization problem in (3) is subjected to different 
conditions of requested resources by the users which have 
been specified in algorithm 1. This is note that the allocation 
is not always equal for dominant shares and based on the 
capacity of the resource pool and user requests, it can be 
different. Hence, the maximization problem in (3) is 
generally applicable when requested dominant share of each 
user is less or equal to fair share of a specific resource type 

represented by  𝑓𝑠
𝑘. 

 
Note that in Table I, if the overall system capacity consists of 
<18 CPU , 36 RAM> are distributed equally between users, 
considering the example in table 1, user 2 gets 5 units in 
which smaller than the initial demand of that user. In that 
case based on the algorithm1, the allocation will be a bit 
different for dominant shares. Sometimes all the demands of 
users on a specific resource can be dominant. In that case, 
the algorithm will be relaxed to the traditional Max-Min 
fairness algorithm.   
 

TABLE I.  RESOURCE ALLOCATION IN DRF AND MLF-DRS 

Users User 1 User 2 User 3 User 4 

Resources CPU,GB CPU, GB CPU,GB CPU,GB 

Demands 3   ,  1 5   ,  3 1   ,  5 2   ,  7 

DRF 6   ,  2 5   ,   3 3   ,  12 4   ,  14 

MLF-DRS 6.5 , 2.3 7.2  ,  4.3 1.4 , 14.7 2.9 , 14.7 

 
 

 

 

VI. EVALUATIONS 

A. Evaluations Based on Mathematical Formulations 

Since, MLF-DRS is in implementation phase, we 
evaluate using numerical analysis to compare it with DRF. 
The demanded resources are specified in table 1. According 
to formulas (1) and (2), dominant shares for user 1 and 2 are 
CPU and for user 3 and 4 is GB. Based on the results of 
Table 1, Fig.1 and Fig2, it is obvious that in MLF-DRS users 
get their desirable amount of resources whereas in DRF 
some users are not able to maximize their allocation. So, by 
looking at the table 1, one realizes that user 2 is not able to 
maximize her allocation so that user 3 with a non-dominant 
share which is in CPU is able to maximize her allocation. 
This happens in equalization process and since DRF using 
progressive filling algorithm and allocates resources in a 
constant rate, non-dominants get more resources. In another 
word, non-dominants may get satisfied with allocation at 
least based on their initial demands. Hence, it is logical to 
allocate the most proportion of resources to dominant shares. 
Also, the results in table 1, Figures 1, 2, 3 and 4 represent 
that resource utilization is improved in 100% for CPU and 
memory. 
 



         

Figure 1.  CPU allocation for MLF-DRS and DRF. 

 
Figure 2.  RAM allocation for MLF-DRS and DRF. 

 

Figure 3.  CPU utilization of MLF-DRS and DRF. 

    
Figure 4.  RAM utilization of MLF-DRS and DRF. 

B. Evaluations Based on Mathematical Formulations 

In this section we explore how MLF-DRS is able to meet 
some desirable fairness properties. 

Theorem 1 MLF-DRS satisfies envy-freeness. 
Proof: If we assume that r,r* represent cpu and ram 

intensive tasks respectively, each task in each group r,r* gets 
equal share of available resources. So, it will be 
automatically envy-free. As an example, if there are two 
tasks with dominant resources d,d* where d*>d, and by 
taking into account that the algorithm increase dominant 
resources based on user demands, the allocation of d* will be 
greater than d before saturation of the resource. In that case d 
will not be able to envy d*. 

Theorem 2 MLF-DRS meets the requirements for 
sharing incentive property. 

Proof: Given that we have two groups of tasks denoted 
by r,r*, and MLF-DRS increases the allocation of dominant 
shares of all users in each group based on the maximum 
share by proportionality, in that case, in final allocation we 
ensure that dominant resources get at least Cr/n of dominant 
share. 

Theorem 3 MLF-DRS satisfies pareto-efficient. 
Proof: Again, assuming that r,r* denote ram and cpu 

intensive tasks respectively. Any resource of a task in r,r* is 
able to increase its dominant resource without decreasing the 
allocation of other tasks. In another word, if there are two 
users i,j which are using a saturated resource r, then 
increasing the dominant share of user i would be decreasing 
the dominant share of user j. However, in every step of 
MLF-DRS algorithm by increasing the dominant resource of 
a user, another user’s dominant share is increased as well. 
So, the algorithm is pareto-efficient.  

Theorem 4 MLF-DRS meets strategy-proofeness in 
which users are not able to misreport their demands. 

Proof: Assume that a user considers demand vectors dr 
and d'r in which dr and d’r denote true and misreported 
demands respectively. Given that MLF-DRS increases 
dominant shares based on available resources in each stage, 
if a user with dr tries to manipulate the server by d’r and 
considering that the capacity constraint is taken into account 
according to formula 3, in that case the constraint will be 
violated by misreporting the true demand by any user. So, it 
is not possible for a user to misreport her demand under 
MLF-DRS allocation policy. 

 

VII. CONCLUSION AND FUTURE WORKS 

In this paper we proposed MLF-DRS as a new fair 
allocation model in multi-resource cloud environments by 
considering DRF as a first fair resource allocation algorithm 
in multi-resource cloud environments. Although DRF has 
some good fairness features, it contains some drawbacks in 
terms of efficiency. In previous sections, we showed that in 
some situations, DRF is not able to allocate resources to 
some users in a desirable way specifically when there are 
more than two users in the system. Additionally, it is not 
possible to use DRF in naive extension way in presence of 
multiple servers and therefore leads to an inefficient resource 
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allocation in this case. Hence, our proposed MLF-DRS is 
applicable in such conditions with offering full utilization of 
resources. According to the results, MLF-DRS gives 100% 
utilization of resources and guarantees that each user gets 
his/her desirable resources. Note that we are currently in the 
implementation phase of this algorithm in a cloud 
environment for one of BT’s industrial cloud application 
contexts. Also, the applicability of our proposed algorithm to 
self-adaptive and autonomic systems will be investigated as 
part of our research plans as autonomicity which is a part of 
most future industrial plans and fairness in autonomic 
systems hasn’t been explored yet in the literature. Last but 
not least, we plan to extend our work to areas of user 
experience and socio-technical modelling and investigate the 
impact of fairness algorithms in societal contexts. 
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