
MLF-DRS: A Multi-level Fair Resource Allocation Algorithm in Heterogeneous

Cloud Computing Systems

Hamed Hamzeh

Smart Technology Research Group (STRG)

Bournemouth University

Bournemouth, United Kingdom

e-mail: hamzehh@bournemouth.ac.uk

Sofia Meacham

Smart Technology Research Group

Bournemouth University

Bournemouth, United Kingdom

e-mail: smeacham@bournemouth.ac.uk

Botond Virginas

British Telecom

Ipswich, United Kingdom

e-mail: Botond.virginas@bt.com

Kashaf Khan

British Telecom

Ipswich, United Kingdom

e-mail: Kashaf.khan@bt.com

Keith Phalp

Smart Technology Research Group (STRG)

Bournemouth University

Bournemouth, United Kingdom

e-mail: kphalp@bournemouth.ac.uk

Abstract—Cloud computing is a novel paradigm which

provides on demand, scalable and pay-as-you-use computing

resources in a virtualized form. With cloud computing, users

are able to access large pools of resources anywhere without

any limitation. In order to use the provided facilities by the

cloud in an efficient way, the management of resources is an

undeniable fact that should be considered in different aspects.

Among all those aspects, resource allocation has received much

attentions. Given the fact that the cloud is heterogeneous, the

allocation of resources has to become more sophisticated. As a

first promising work to deal with that problem, Dominant

Resource Fairness (DRF) has been proposed which takes into

account dominant shares of users. Although DRF has a sort of

desirable fairness properties, it has some limitations that have

already been identified in the literature. Unfortunately, DRF

and its recent developments are not intuitively fair with respect

to various resource demands. In this paper, we propose a

Multi-level Fair Dominant Resource Scheduling (MLF-DRS)

algorithm as a new allocation model inspired by Max-Min

fairness and proportionality. Unlike other works that they

equalize dominant shares of different resource types which

leads to starvation in the maximization of allocation for some

users, our algorithm guarantees that each user receives the

resources they desire for based on dominant shares. As can be

deducted from the mathematical proofs, MLF-DRS provides a

full utilization of resources and meets some of the desirable fair

allocation properties and it is applicable to be used in a naïve

extension form in the presence of multiple servers as well.

Keywords-cloud computing; dominant resource; DRF;

fairness; resource allocation

I. INTRODUCTION

Cloud computing [1] is a new technology which provides
a wide range -and unlimited computing resources on-demand
to users. Consequently, many organizations are adopting this
technology in order to enhance their productivity and reduce
costs in different sectors. This new technological trend
abstracts the hardware and simplifies task management
ranging from simple storage tasks to complex operations.
Cloud computing consists of three architectural layers,
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Application as a Service (AaaS) where each
specific layer delivers particular aspects of cloud services.
Virtualization [2] of resources which is done by Virtual
Machines (VMs) is the fundamental aspect of cloud
computing where all the resources are integrated in a
resource pool without dealing with physical equipment, and
it makes possible for everyone to access complex
applications and huge amount of computing resources
through the Internet. By considering the rapid evolution of
the technology, cloud architectures have undergone major
changes. There are many research directions such as resource
management, provisioning and scheduling, VM management
techniques and so on.

Resource allocation [3] is one of the most important
aspects of cloud computing and how to allocate the resources
among different users with various demands has become a
challenging issue in recent decade. In perspective of a
general definition of resource allocation, when CPU is
allocated, it doesn’t matter how much other resources are
allocated. However, resource distribution in a datacenter is
different and all the resources should be allocated in an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/195262685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

orchestrated way as a multi-resource allocation scheme to
reach a fair and efficient allocation model [4].

Fairness in resource allocation has become a challenging
problem and it has been investigated in different fields such
as computer networks, economics, operating systems, and
etc. Max-min fairness as a well-established algorithm has
been proposed in order to provide a fair allocation among
users with various demands. Generally, fairness is
investigated for single resource in distributed and parallel
computing like Hadoop fair scheduler [5] where multiple
types of resources can be required by tasks which is a
contradiction by considering the type of the Hadoop system.
Since, cloud is a heterogeneous environment, the fair

allocation of resources is very important especially in a case

that users have intensive demands over different resources.

To overcome fairness problem in the cloud, DRF [6] as a

generalization of Max-min fairness has been proposed.

Although DRF has some good features in terms of fairness,

it has some limitations especially when there are multiple

servers. Also, DRF is not able to consume all the resources

which contributes to the wastage of them. Additionally,

since DRF uses progressive filling, some users may not

achieve their desirable allocation. There are many research

works in extension of DRF, however they are not intuitively

fair.
In this paper the resource allocation issues in cloud

environments and several related algorithms were initially
explored with emphasis on the fairness property. The most
prominent algorithm is DRF. In this process, we found
several drawbacks and limitations of DRF as regards to
fairness and we proposed a new algorithm to address them.
The rest of the paper is organized as follows. Section two

investigates DRF algorithm in detail with its shortcomings

and other related research works. Section three discusses

regarding MLF-DRS with mathematical formulations and

allocation algorithm. Section four presents evaluations using

mathematical formulations and fairness properties met by

MLF-DRS. Section five presents the conclusion and future

research plans.

II. FAIRNESS IN RESOURCE ALLOCATION

One of the most important properties of resource
allocation for the diverse and dynamic cloud environments is
the fairness property. Fairness [7] can be considered as one
of the challenging dimensions of Quality of Service (QoS)
and an important concept in resource distribution so that
subscribers should be happy with allocated resources. Since
the fairness in an intuitive concept, it is difficult to define it
as far as it is different from person to person. From the
economic perspective, fair resource allocation is similar to a
cake-cutting problem [8] in which the objective is to allocate
specific parts of a cake among people. When it comes to the
cloud and data center environment, the definition of fairness
will be more challenging. Given that cloud environment is
heterogeneous, users may submit their tasks consist of
demands for different resources such as (CPU, Memory,
Disk space and etc). Providing a fair resource allocation in
such conditions requires defining new allocation rules and

policies. Max-min fairness [9] is a well-known and popular
algorithm which allocates available resources to users who
are competing over resources. Based on max-min allocation
policy, different resource allocation algorithms have been
proposed to deal with the resource allocation problem.
Initially, most of the research works have been done for
single-resource environments such as works in [10][11]
where there are only one type of resource such as CPU.
However, considering that cloud environment is
heterogeneous, multiple resources should be considered to
provide a fair allocation [12]. Any fair resource allocation
mechanism is subjected to have at least some important
fairness properties [13] as followings:

 Sharing Incentive: Every user subjects to better off

resource pool so that a user cannot get more tasks

in a resource pool which is 1/n of total resources.

 Pareto optimality: A user will not be able to

increase her/his allocation without decreasing other

user's allocations. This is very promising feature

which leads to maximum resource utilization in the

system.

 Envy-freeness: A user should not be jealous about

other user's allocation. In another word, a user’s

allocation is not tradable with another user. In

terms of fairness definition, this allocation feature

is counted as equity.

 Strategy-proof: A user cannot lie about his/her

demands. Misreporting the demands may violate

this important property.

The rest of the paper is organized as follows. Section II

represents the related concepts in the area of fairness in
resource allocation. Section III discusses about the recent
conducted works in extension of DRF. Section IV describes
the proposed model. Section V indicates the problem
formulation of MLF-DRS and section VI provides the
evaluations of MLF-DRS.

III. RELATED WORKS

DRF which is the generalization of max-min allocation
algorithm is the first fair allocation method in a cloud
environment with multiple resources with emphasis on
resource intensive tasks. In DRF, the allocation is determined
by equalizing subscribers’ dominant shares so that the aim is
to maximize the minimum dominant shares. As an example,
if a system has (9 CPU, 18 GB) and user 1 requests (1 CPU,
4 GB) and User 2 requests (3 CPU and 1 GB), dominant
resources will be GB for user 1 and CPU for user 2.
Dominant shares for two users can be calculated as: 1/9 VS
4/18 (since 4/18>1/9 so GB is dominant), 3/9 VS 1/18 (since
3/9>1/18 so the CPU is dominant). Therefore, the method
will try to equalize dominant shares of two users, subject to
maximize their allocation. So, the final allocation according
to DRF will be (3 CPU, 12 GB) for user 1 and (6 CPU and 4
GB) for user 2.

Different works have been proposed to tackle the existing
problems in DRF in which they have considered different

extensions to use it in heterogeneous servers. Here we
provide a brief description of the research works have been
done until now based on DRF. DRFH is proposed in [14] as
a generalization of DRF in order to apply in an environment
with multiple servers by exploring an allocation to equalize
each user’s global dominant share, which is defined as the
highest ratio of any resources the user has been allocated in
the resource pool. DRFH improves the resource utilization in
terms of multiple servers. In [15] heterogeneous DRF
(HDRF) which is a generalization of DRF is proposed as a
multi-resource scheduling algorithm to avoid job starvation
in different data centers. The experiments show that HDRF
presents better resource utilization and throughput compared
to DRF. In [16] Long-Term DRF (H-MRF) is proposed
which tackles the memory-less feature of DRF and other
similar proposed models. The mentioned method is
appropriate for pay-as-you-use services which are not
considered in previous works. In [17] Per Server DRF (PS-
DRF) is introduced to allocate resources more efficiently by
considering server heterogeneity in presence of placement
constraints. The most important feature of this algorithm is
that it identifies dominant resource of each user based on
Virtual Dominant Share (VDS). The proposed model
considers important properties of fair resource allocation. In
[18] Bottleneck-Based Fairness (BBF) is proposed which
guarantees each user gets at least its entitlement resources
and it also applies polynomial-time algorithm to calculate
fair resource allocation. In [19] authors proposed a fair
allocation model by taking into account the heterogeneous
system and focusing on minimizing resource allocation
costs.

IV. PROPOSED MODEL

According to the previous section, we highlighted the
most important conducted research works regarding fair
allocation so that much of their focus was on extension of
DRF in different aspects such as cost optimization and
commonly its application in heterogeneous servers. There
are several problems associated with DRF and its application
in cloud environments which can be summarized as follows:
1) In DRF allocation, full resource utilization is a problem so
that the system is not able to consume all of its resources.
Therefore, it can be a violation of Service Level Agreement
as an obligation between users and providers. So, resource
wastage will be occurred in DRF. Additionally, the most
important deficiency of DRF and other proposed work is
starvation so that when they try to maximize the allocation of
the resources, some users may not be able to maximize their
allocation due to the equalization of dominant shares. We
will show in continue when a user tries to maximize own
allocation, non-dominant resources of other users gets the
considerable proportion of resources.

2) DRF is specifically designed for a single server. So, in
terms of multiple servers DRF is not efficient so that a user
may have dominant resources in different servers so that
applying DRF in a naive extension may lead to an inefficient
allocation.

By taking into account the above-mentioned problems,
we propose a Multi-Level Fair Resource Allocation and

Scheduling Algorithm (MLF-DRS) as a generalization of
Max-Min fairness algorithm in multi-resource cloud
environment considering dominant shares of each user’s
task. The allocation of resources in DRF and MLF-DRS has
been shown in the previous section in presence of two users
and in Table 2 with four users that are competing over two
resources. According to the example in previous section, in
the final allocation user 2 with dominant share on CPU has
been allocated exactly what he/she asked for. In another
word, the user is not able to maximize his/her allocation
under DRF policy. As can be seen from table 1, in DRF,
memory has not been fully utilized so that approximately
72% of the memory has been utilized and the remaining 24%
has been wasted. It may be tangible in a system with high
number of users and large-scaled system configuration.
According to this, we think that the equalization of different
resource types may cause starvation and resource wastage in
each resource type. Hence, we are looking to the concept of
equalization from another perspective in a way that
equalization is done based on each specific resource type.
After allocating the resources based on a user’s initial
demand vector, MLF-DRS tries to share the available
resources equally among the dominant shares. In MLF-DRS,
at the first level each user gets own initial demands and at the
next stage since the objective is to maximize dominant
shares of each user, dominant shares will be grouped in one
set and no-dominants will be grouped in another one. At this
level, the available resources will be divided and allocated
equally among dominant shares subject to conditions
mentioned in algorithm 1. For the final step, every set of
dominant and non-dominants will get the equal amount of
available resources. Therefore, the algorithm tries to share
the resources in the same rate for intensive tasks until a
resource becomes saturated. Additionally, MLF-DRS uses
upper-bound available resources for dominants and lower-
bound of available resources for non-dominants in a way that
the allocation is in the same rate for both sets of resources. It
is important to note that MLF-DRS applies dynamic
allocation policy based on the server specifications such as
total requested resources from the users and the capacity of
resource pool.

A. Using MLF-DRS in Naïve Extension Form

In order to enable MLF-DRS to be used in multiple
servers, according to [6] we assume that every user has a
weight on demanded resources. Given that 𝑤𝑖,𝑗 indicates the

weight of users 𝑖 on resource 𝑗 . In that case, dominant
resource 𝑑𝑖 can be defined as follow:

𝑑𝑖 = max {
𝑠𝑖,𝑗

𝜔𝑖,𝑗

}

Where 𝑠𝑖,𝑗 represents the share of resource 𝑗 of user 𝑖.

V. PROBLEM FORMULATION

Given that there is a system with k resource types
represented by 𝑅 = {1,2,3, … , 𝑘 } with the capacity indicated

by C and there are n users compete over k types of resources

with requested tasks indicated by 𝑥𝑖. Accordingly, dominant
and non-dominant shares indicated by

𝑑𝑖
𝑘 𝑎𝑛𝑑 𝑛𝑑𝑖

𝑘 respectively, are calculated as follows:

 𝑑𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘

𝑥𝑖

𝐶𝑘
 (1)

 𝑛𝑑𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘

𝑥𝑖

𝐶𝑘
 (2)

Based on (1) and (2), dominant and non-dominant shares

vectors are specified by 𝐷 = {𝑑1
𝑘, 𝑑2

𝑘, … , 𝑑𝑛
𝑘} 𝑎𝑛𝑑 𝐷 =

{𝑛𝑑1
𝑘, 𝑛𝑑2

𝑘, … , 𝑛𝑑𝑛
𝑘} respectively. In that case, to calculate

the allocation for each user which is indicated by 𝑎𝑖
𝑘 , the

following optimization problem can be applied:

 max(𝑑𝑖
𝑘 𝑎𝑛𝑑 𝑛𝑑𝑖

𝑘) (3)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖

𝑛

𝑖=1

 ≤ 𝐶𝑘

 𝑥𝑖 ≤ 𝑓𝑠
𝑘

𝑎1

𝑘

𝐶𝑘

=
𝑎2

𝑘

𝐶𝑘

= ⋯ =
𝑎𝑛

𝑘

𝐶𝑘

The optimization problem in (3) is subjected to different
conditions of requested resources by the users which have
been specified in algorithm 1. This is note that the allocation
is not always equal for dominant shares and based on the
capacity of the resource pool and user requests, it can be
different. Hence, the maximization problem in (3) is
generally applicable when requested dominant share of each
user is less or equal to fair share of a specific resource type

represented by 𝑓𝑠
𝑘.

Note that in Table I, if the overall system capacity consists of
<18 CPU , 36 RAM> are distributed equally between users,
considering the example in table 1, user 2 gets 5 units in
which smaller than the initial demand of that user. In that
case based on the algorithm1, the allocation will be a bit
different for dominant shares. Sometimes all the demands of
users on a specific resource can be dominant. In that case,
the algorithm will be relaxed to the traditional Max-Min
fairness algorithm.

TABLE I. RESOURCE ALLOCATION IN DRF AND MLF-DRS

Users User 1 User 2 User 3 User 4

Resources CPU,GB CPU, GB CPU,GB CPU,GB

Demands 3 , 1 5 , 3 1 , 5 2 , 7

DRF 6 , 2 5 , 3 3 , 12 4 , 14

MLF-DRS 6.5 , 2.3 7.2 , 4.3 1.4 , 14.7 2.9 , 14.7

VI. EVALUATIONS

A. Evaluations Based on Mathematical Formulations

Since, MLF-DRS is in implementation phase, we
evaluate using numerical analysis to compare it with DRF.
The demanded resources are specified in table 1. According
to formulas (1) and (2), dominant shares for user 1 and 2 are
CPU and for user 3 and 4 is GB. Based on the results of
Table 1, Fig.1 and Fig2, it is obvious that in MLF-DRS users
get their desirable amount of resources whereas in DRF
some users are not able to maximize their allocation. So, by
looking at the table 1, one realizes that user 2 is not able to
maximize her allocation so that user 3 with a non-dominant
share which is in CPU is able to maximize her allocation.
This happens in equalization process and since DRF using
progressive filling algorithm and allocates resources in a
constant rate, non-dominants get more resources. In another
word, non-dominants may get satisfied with allocation at
least based on their initial demands. Hence, it is logical to
allocate the most proportion of resources to dominant shares.
Also, the results in table 1, Figures 1, 2, 3 and 4 represent
that resource utilization is improved in 100% for CPU and
memory.

Figure 1. CPU allocation for MLF-DRS and DRF.

Figure 2. RAM allocation for MLF-DRS and DRF.

Figure 3. CPU utilization of MLF-DRS and DRF.

Figure 4. RAM utilization of MLF-DRS and DRF.

B. Evaluations Based on Mathematical Formulations

In this section we explore how MLF-DRS is able to meet
some desirable fairness properties.

Theorem 1 MLF-DRS satisfies envy-freeness.
Proof: If we assume that r,r* represent cpu and ram

intensive tasks respectively, each task in each group r,r* gets
equal share of available resources. So, it will be
automatically envy-free. As an example, if there are two
tasks with dominant resources d,d* where d*>d, and by
taking into account that the algorithm increase dominant
resources based on user demands, the allocation of d* will be
greater than d before saturation of the resource. In that case d
will not be able to envy d*.

Theorem 2 MLF-DRS meets the requirements for
sharing incentive property.

Proof: Given that we have two groups of tasks denoted
by r,r*, and MLF-DRS increases the allocation of dominant
shares of all users in each group based on the maximum
share by proportionality, in that case, in final allocation we
ensure that dominant resources get at least Cr/n of dominant
share.

Theorem 3 MLF-DRS satisfies pareto-efficient.
Proof: Again, assuming that r,r* denote ram and cpu

intensive tasks respectively. Any resource of a task in r,r* is
able to increase its dominant resource without decreasing the
allocation of other tasks. In another word, if there are two
users i,j which are using a saturated resource r, then
increasing the dominant share of user i would be decreasing
the dominant share of user j. However, in every step of
MLF-DRS algorithm by increasing the dominant resource of
a user, another user’s dominant share is increased as well.
So, the algorithm is pareto-efficient.

Theorem 4 MLF-DRS meets strategy-proofeness in
which users are not able to misreport their demands.

Proof: Assume that a user considers demand vectors dr
and d'r in which dr and d’r denote true and misreported
demands respectively. Given that MLF-DRS increases
dominant shares based on available resources in each stage,
if a user with dr tries to manipulate the server by d’r and
considering that the capacity constraint is taken into account
according to formula 3, in that case the constraint will be
violated by misreporting the true demand by any user. So, it
is not possible for a user to misreport her demand under
MLF-DRS allocation policy.

VII. CONCLUSION AND FUTURE WORKS

In this paper we proposed MLF-DRS as a new fair
allocation model in multi-resource cloud environments by
considering DRF as a first fair resource allocation algorithm
in multi-resource cloud environments. Although DRF has
some good fairness features, it contains some drawbacks in
terms of efficiency. In previous sections, we showed that in
some situations, DRF is not able to allocate resources to
some users in a desirable way specifically when there are
more than two users in the system. Additionally, it is not
possible to use DRF in naive extension way in presence of
multiple servers and therefore leads to an inefficient resource

0

2

4

6

8

User
1

User
2

User
3

User
4

A
m

o
u

n
t

o
f

al
lo

ca
ti

o
n

DRF

MLF-DRS

0

2

4

6

8

10

12

14

16

User 1User 2User 3User 4

A
m

o
u

n
t

o
fa

llo
ca

ti
o

n

MLF-DRS

DRF

0

5

10

15

20

25

30

35

MLF-DRS DRF

R
A

M
 U

ti
liz

at
io

n

0

5

10

15

20

MLF-DRS DRF

C
P

U
 U

ti
liz

at
io

n

allocation in this case. Hence, our proposed MLF-DRS is
applicable in such conditions with offering full utilization of
resources. According to the results, MLF-DRS gives 100%
utilization of resources and guarantees that each user gets
his/her desirable resources. Note that we are currently in the
implementation phase of this algorithm in a cloud
environment for one of BT’s industrial cloud application
contexts. Also, the applicability of our proposed algorithm to
self-adaptive and autonomic systems will be investigated as
part of our research plans as autonomicity which is a part of
most future industrial plans and fairness in autonomic
systems hasn’t been explored yet in the literature. Last but
not least, we plan to extend our work to areas of user
experience and socio-technical modelling and investigate the
impact of fairness algorithms in societal contexts.

REFERENCES

[1] S. P. Ahuja and A. C. Rolli, “Survey of the State-of-the-Art of Cloud
Computing,” International Journal of Cloud Applications and
Computing, vol. 1, no. 4, pp. 34–43, 2011.

[2] R. Buyya, C. Vecchiola, and S. T. Selvi, “Virtualization,” Mastering
Cloud Computing, pp. 71–109, 2013.

[3] P. Poullie, T. Bocek, and B. Stiller, “A Survey of the State-of-the-Art
in Fair Multi-Resource Allocations for Data Centers,” IEEE
Transactions on Network and Service Management, vol. 15, no. 1, pp.
169–183, 2018.

[4] S. Kleban and S. Clearwater, “Fair share on high performance
computing systems: what does fair really mean?,” CCGrid 2003. 3rd
IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2003. Proceedings., 2003.

[5] https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-
site/FairScheduler.html.

[6] H. Liu and B. He, “Reciprocal Resource Fairness: Towards
Cooperative Multiple-Resource Fair Sharing in IaaS Clouds,” SC14:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014.

[7] D. Wischik, “Fairness, QoS, and buffer sizing,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, p. 93, Oct. 2006.

[8] J. Marenco and T. Tetzlaff, “Envy-free division of discrete cakes,”
Electronic Notes in Discrete Mathematics, vol. 37, pp. 231–236,
2011.

[9] A. Coluccia, A. D’Alconzo, and F. Ricciato, “On the optimality of
max–min fairness in resource allocation,” annals of
telecommunications - annales des télécommunications, vol. 67, no. 1-
2, pp. 15–26, 2011.

[10] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “FRESH: Fair and
Efficient Slot Configuration and Scheduling for Hadoop Clusters,”
2014 IEEE 7th International Conference on Cloud Computing, 2014.

[11] K. Siriwong and R. Ammar, “QoS using delay-synchronized dynamic
priority scheduling,” Proceedings. Sixth IEEE Symposium on
Computers and Communications.

[12] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards Efficient Resource
Allocation for Heterogeneous Workloads in IaaS Clouds,” IEEE
Transactions on Cloud Computing, vol. 6, no. 1, pp. 264–275, Jan.
2018.

[13] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y.
Zhao, “An Efficient and Fair Multi-Resource Allocation Mechanism
for Heterogeneous Servers,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1–1, 2018.

[14] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud
computing systems with heterogeneous servers,” IEEE INFOCOM
2014 - IEEE Conference on Computer Communications, 2014.

[15] W. Wang, Y. Tan, Q. Wu, and Y. Zhang, “Multiple resources
scheduling for diverse workloads in heterogeneous datacenter,” 2015
4th International Conference on Computer Science and Network
Technology (ICCSNT), 2015.

[16] S. Tang, Z. Niu, B. He, B.-S. Lee, and C. Yu, “Long-Term Multi-
Resource Fairness for Pay-as-you Use Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 5, pp.
1147–1160, Jan. 2018.

[17] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y.
Zhao, “An Efficient and Fair Multi-Resource Allocation Mechanism
for Heterogeneous Servers,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1–1, 2018.

[18] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N.
Linial, “No justified complaints, A Bottleneck-Based Fair Resource
Allocation” Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference on - ITCS '12, 2012.

[19] K. Mukherjee, P. Dutta, G. Raravi, T. Rajasubramaniam, K.
Dasgupta, and A. Singh, “Fair Resource Allocation for
Heterogeneous Tasks,” 2015 IEEE International Parallel and
Distributed Processing Symposium, 2015.

