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Graphical Abstract 

 

 

A hierarchical hybrid nanocomposite of ultrafine ZnSe nanoparticles growing on/in 

amorphous hollow carbon nanospheres (ZnSe@HCNs) has been prepared via simple 

solution reflux and post-calcination in Ar/H2. The ZnSe nanoparticles grow on both 

sides of HCNs, thus preventing severe aggregation and stabilizing structures of 

electrodes upon cycling. When used as a promising anode for SIBs, the hybrid 

composites could manifest excellent electrochemical performance with high 

reversible capacity, long-term cyclic stability and excellent rate capability.  
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Abstract 

Sodium-ion batteries (SIBs) are considered as a promising candidate to lithium-ion batteries (LIBs) 

owing to the inexpensive and abundant sodium reserves. However, the application of anode materials 

for SIBs still confront rapid capacity fading and undesirable rate capability. Here we simultaneously 

grow ultrafine ZnSe nanoparticles on the inner walls and the outer surface of hollow carbon 

nanospheres (ZnSe@HCNs), giving a unique hierarchical hybrid nanostructure that can sustain a 

capacity of 361.9 mAh g-1 at 1 A g-1 over 1000 cycles and 266.5 mAh g-1 at 20 A g-1. Our 

investigations indicate that the sodium storage mechanism of ZnSe@HCNs electrodes is a mixture of 

alloying and conversion reactions, where ZnSe converts to Na2Se and NaZn13 through a series of 

intermediate compounds. Also, a full cell is constructed from our designed ZnSe@HCNs anode and 

Na3V2(PO4)3 cathode. It delivers a reversible discharge capacity of about 313.1 mAh g-1 after 100 

cycles at 0.5 A g-1 with high Columbic efficiency over 98.2%. The outstanding sodium storage of as-

prepared ZnSe@HCNs is attributed to the confinement of ZnSe structural changes both 

inside/outside of hollow nanospheres during the sodiation/desodiation processes. Our work offers a 

promising design to enable high-power-density electrodes for the various battery systems. 

Keywords: ZnSe; Hollow carbon spheres; Sodium-ion battery; Full cell; Anode. 

 
1. Introduction: 

Rechargeable lithium-ion batteries are now one of the most widely used power sources for 

portable electronic devices, such as mobile phone, laptop and digital camera.[1-3] LIBs are  usually 

composed of two electrodes: a graphite anode and a layered transition metal oxide (mostly cobalt-

based) cathode.[4] Both cobalt and lithium have limited supplies and their prices are expected to 

increase which raise concerns about the future market demands for LIBs.[5] Therefore, sodium-ion 

batteries have rapidly evolved as an alternative to LIBs. While SIBs share the same architecture and 

working principles with LIBs, they use low cost and more abundant raw materials which make SIBs 
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strong candidates for the next-generation large-scale electrical energy storage.[6] However, sodium 

ions possess larger molar mass and ionic radius than lithium ions, which limits the theoretical energy 

density and the rate performance of SIBs as compared with LIBs.[7-9] Therefore, it is crucial to 

explore suitable Na-host electrode materials to accommodate the reversible insertion/deinsertion of 

Na+ ions upon the continuous discharge/charge cycling, finally aiming to obtain excellent 

electrochemical performance.  

Up to now, many anode materials have also been investigated, including metallic sulfides,[10-12] 

phosphides,[13] and alloys.[14] Among them, transition metal selenides (TMSs) have received 

considerable attention due to their high initial Coulombic efficiency, excellent electric conductivity, 

and good cycling stability.[15-19] However, as illustrated in Figure 1, bulk metal selenides still suffer 

from dramatic volume variation and particles agglomeration during the repeated charge-discharge 

process, thus causing severe polarization and rapid capacity fading problems.[20-22] One popular 

strategy to decline the performance decrease is to design suitable Na-host electrodes that can 

accommodate the reversible insertion/desertion of Na+ ions upon the repeated cycling.[23, 24] The 

carbon matrix is commonly adopted to alleviate the severe volume expansion of electrode materials. 

Nevertheless, the bulk composites still face cracking during extended cycling.[25] Other researchers 

aim to construct hollow carbon materials to support nanosized TMSs, which present enhanced 

cycling performance.[26, 27] But the unnecessary inner void space significantly decreases the tap 

density and power density. Thus, designing a porous hollow carbon material to load TMSs both 

inside/outside could significantly enhance the cycling performance and power density. 

Zinc selenide (ZnSe) has a high theoretical capacity based on the alloying and conversion 

reactions.[28, 29] ZnSe is also widely used in various laser devices,[30] semiconductors,[31] and solar 

cells,[32] which may help the commercial use of it for energy storage. Several researchers have 

investigated the application of ZnSe-based electrodes for LIBs. For example, Wu and co-workers 

reported that ZnSe composite with hollow carbon could deliver a high reversible discharge capacity 
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of 1134 mAh g-1 after cycled for 500 cycles at 0.6 A g-1.[33] Qian et al explained the reason for the 

extra rising capacity by the generation and the activation of Se during the electrochemical process.[34] 

More recently, Mai and his group used ZnSe microspheres (ZnSe MSs)-CNT composite as an anode 

for SIBs, and the results indicated the possibility of delivering capacity of 387 mAh g-1 for 180 

cycles.[35] The ZnSe composite still showed aggregation problems to some extent, which is expected 

to reduce the cycle-life performance of electrodes. Therefore, it is essential to engineering a more 

robust electrode that can accommodate the structural changes in the ZnSe during the 

insertion/desertion of Na+ ions.   

In this research, we successfully developed a novel hierarchical hybrid nanocomposite of ultrafine 

ZnSe nanoparticles directly growing on the outer surface and in the inner cavity of amorphous 

hollow carbon nanospheres (ZnSe@HCNs) via a facile hydrothermal process using sulfonated 

polystyrene (SPS) hollow nanospheres as templates and high-temperature calcination. The ZnSe 

nanoparticles grow on both sides of HCNs walls for the first time (Table S1, see Supporting 

Information), thus successfully preventing the severe aggregation and ensuring the structural 

integrity of ZnSe@HCNs electrodes during cycling. Compared to the aggregated ZnSe microspheres 

(ZnSe MSs), numerous ultrafine ZnSe nanoparticles firmly anchored onto the conductive HCNs 

provided a more accessible surface to carry out high ratio surface and near-surface redox reactions. 

Therefore, the ZnSe@HCNs electrode demonstrated long-term cycle stability and high-rate 

performance. After 1000 cycles at 1.0 A g-1, the ZnSe@HCNs anodes can deliver a stable reversible 

discharge capacity of 361.9 mAh g-1 with the capacity retention of 87.0% and Coulombic efficiency 

above 99.9%. Even when cycled at a high current density of 20.0 A g-1, a discharge capacity of 266.5 

mAh g-1 could still be maintained, revealing excellent high-rate capability. Moreover, the 

subsequently assembled Na3V2(PO4)3 (NVP)//ZnSe@HCNs full-cells also give an adequate capacity 

of 313.1 mAh g-1 after 100 cycles at 0.5 A g-1. The well-designed ZnSe@HCNs hybrid anode shows 

excellent promise in sodium-ion storage. 
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2. Experimental section:  

2.1. Synthesis of hollow sulfonated polystyrene (SPS) nanospheres 

All reagents were analytical grade and used without further purification. The hollow polystyrene 

(PS) nanospheres were prepared by drying the emulsion (EPRUI Nanoparticles & Microspheres Co. 

Ltd). 35 mL of concentrated sulfuric acid and 2 g of PS were mixed at 40 oC for 12 h in an oil bath 

with vigorous stirring. Then the precipitate was collected by centrifugation and washed with ice 

water and ethanol. As a result, primrose yellow hollow SPS templates were obtained. After the 

sulfonation treatment, the SPS templates are capable of absorbing metal ions and inducing the 

growth of nanostructured metal selenides. 

2.2. Synthesis of ZnSe@HCNs 

In a typical fabrication of ZnSe@HCNs, 50 mg of SPS was firstly dispersed in 20 mL of deionised 

water by ultrasonication for 30 min to form a homogeneous suspension, followed by the addition of 

1.0 mmol of Zn(NO3)2·6H2O, 1.0 mmol of Na2SeO4·10H2O and 0.5 g of citric acid. After stirring for 

30 min, 15 mL of hydrazine hydrate (N2H4·H2O) solution (80 %) and 5 mL of ethylenediamine were 

added dropwise into the mixture. The above suspension was continuously stirred for another 30 min 

and then transferred into a Teflon-lined stainless-steel autoclave (50 mL). The autoclave was sealed 

tightly and heated at 180 °C for 24 h. After cooling to room temperature naturally, the pale brown 

precursor was centrifuged and washed thoroughly with deionized water and absolute ethanol for 

three times, respectively. The as-prepared precursor was subsequently dried in a vacuum oven at 

60 °C overnight. Finally, the precursor was sintered at 700 °C for 2h in Ar/H2 (90:10, v/v) mixing 

flow to form the final product (ZnSe@HCNs). For comparison, the aggregated ZnSe microspheres 

(MSs) were also prepared via a similar procedure only without adding SPS templates. 

2.3. Material Characterization 

The morphology and structure of the products were characterized by Field-emission scanning 

electron microscope (FESEM; JEOL JSM-6700F) and Transmission electron microscope (TEM; 
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JEOL JEM-2100F and JEM-F200) with selected-area electron diffraction pattern (SAED) function. 

Energy dispersive X-ray spectroscopy (EDX) measurements were performed on a FEI Quanta 250 

FEG SEM. The powder X-ray diffraction (XRD; Bruker AXS D8 Advance) was used to detect the 

crystallographic information of samples. Thermogravimetric analysis (Perkin-Elmer TGA 7) was 

carried out under a flow of air with a rate of 10 °C min−1 from room temperature to 700 °C. Raman 

spectroscopy was performed on a Raman spectrometer with a backscattering geometry (λ = 633 nm; 

Horiba JobinYvon, HR 800). The specific surface area and pore size of as-prepared ZnSe@HCNs 

and aggregated solid ZnSe MSs were obtained by N2 sorption measurement and BET analyser 

(ASAP 2020 PLUS HD88). The chemical compositions and valence states of resultant samples were 

investigated by X-ray photoelectron spectroscopy (XPS) measurements on ESCA Lab 250 (USA) at 

monochromatic Al K sources. 

2.4. Electrochemical measurements 

The electrochemical tests were conducted by assembling coin-type half-cells (CR2032) in an 

argon-filled glove box (Dellix, [O2]<1 ppm, [H2O]<1 ppm) with metallic sodium discs as the counter 

and reference electrodes. The working electrodes were prepared by mixing 80 wt% of electroactive 

materials (e.g. ZnSe@HCNs), 10 wt% of carbon black (Super-P-Li) and 10 wt% of polymer binder 

(sodium carboxymethylcellulose; NaCMC) in deionized water. The obtained homogeneous slurry 

was evenly pasted onto Cu foil (current collector) and dried in a vacuum oven at 100 °C overnight. 

The loading mass of active materials on the current collector is about 1.5 mg cm-2. The electrolyte in 

the cells was 1.0 M sodium trifluoromethanesulfonate (NaCF3SO3) dissolved in diethylene glycol 

dimethyl ether (DEGDME). Glass fibre filter paper was used as the separator. Cyclic voltammetry 

(CV) and electrochemical impedance spectroscopy (EIS) were carried out on CHI660D 

electrochemical workstation. Galvanostatic discharge/charge cycles were performed on a NEWARE 

battery tester in a voltage range of 0.1 to 3.0 V in a thermotank at the temperature of 28 °C.  
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  For comparison, the carbonate-based electrolytes including 1.0 M NaClO4 in propylene 

carbonate (PC) with 5 wt% fluoroethylene carbonate (FEC) and 1.0 M NaPF6 in ethylene 

carbonate/dimethyle carbonate (EC/DEC; v/v=1:1) were also used to investigate the cycle stability of 

as-prepared ZnSe@HCNs through assembling coin-type half-cells. 

To further estimate the electrochemical performance of as-prepared ZnSe@HCNs, flower-like 

Na3V2(PO4)3 (NVP) was used as cathodic materials to assemble NVP//ZnSe@HCNs full cells. 

Before the preparation of full cells, ZnSe@HCNs anodes were electrochemically activated for three 

cycles. Then NVP cathodes and activated ZnSe@HCNs anodes were paired in a weight ratio of 8:1 

with 1.0 M NaCF3SO3 in DEGDME as the electrolyte. 

3. Result and discussion:  

The fabrication process of the hierarchical hybrid ZnSe@HCNs composite is illustrated 

schematically in Figure 2A. Briefly, the hollow polystyrene (PS) nanospheres were firstly sulfonated 

by concentrated sulfuric acid to produce oxygen functional groups (-SO3H). The oxygenated groups 

could link both Zn2+ and SeO4
2- ions to the carbon spheres which act as the support backbone to 

control the nucleation and the growth of ZnSe precursor. During the nucleation process, hydrazine 

hydrate was added to satisfy a reduction atmosphere and to avoid the back oxidation of ZnSe 

precursors.[36] Ethylenediamine was also added in the hydrothermal processes to create mesoporous 

channels within the shell of the nanospheres through the pyrolysis and the formation of gases such as 

NH3 and CO2. These mesoporous channels promoted the diffusion and the permeation of Zn2+ and 

SeO4
2- ions into the internal cavity of hollow PS spheres, which led to the formation of ZnSe 

nanoparticles inside the spheres cavity.[27] Next, the precursor was calcined at 700 °C for two h with 

a ramping speed of 2 oC min-1 in Ar/H2 mixture atmosphere (90:10, v/v). The calcination process 

converted the ZnSe precursor to crystalline nanoparticles and at the same time carbonised the PS 

templates into mesoporous HCNs.  
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Field Emission Scanning Electron Microscope (FESEM) and Transmission electron microscopy 

(TEM) were used to study the morphology of PS nanospheres before and after sulfonation. As shown 

in Figure 2B and C, the sulfonated PS nanospheres still maintained the integrity of the spheres 

without noticeable distortion. The size of the nanospheres was also similar to the pure PS nanosphere 

(Figure S1, see Supporting Information), i.e. 400 nm average diameter and 50 nm shell thickness, 

indicating that the sulfonating process does not affect the structure of the nanospheres. After the 

hydrothermal reaction and the post-calcination treatment in Ar/H2, numerous fine ZnSe particles are 

uniformly anchored on the surface of the HCNs with a diameter ranging from 10 to 80 nm as shown 

in Fig. 2D and E. Interestingly, the TEM images (Figure 2F and G) and the high-angle annular dark 

field scanning transmission electron microscopy (HAADF-STEM) image (Figure 2J) of the 

ZnSe@HCNs  show that the ZnSe nanoparticles are also embedded within the internal cavity of the 

HCNs. There are no obvious aggregation or clusters of ZnSe nanoparticles can be observed by the 

TEM or FESEM images, confirming the uniform deposition of nanoparticles on and inside the 

sulfonated nanospheres. Furthermore, elemental mapping images (Figure 2K-M) further confirmed 

that the nanoparticles were growing outside and inside of the HCNs. Whereas, without the support of 

SPS templates, only aggregated solid ZnSe MSs were obtained with various diameters ranging from 

200 nm to 8 µm (Figure S2, see Supporting Information). The Energy Dispersive X-ray (EDX) 

spectroscopy results (Figure S3A, see Supporting Information) of ZnSe@HCNs detected three 

elements: Zn, Se and C in the hybrid structure, with the atomic ratio of Zn/Se close to 1:1, indicating 

the nanoparticles are ZnSe of almost the stoichiometric composition. While only Zn and Se elements 

are found in aggregated ZnSe MSs samples (Figure S3B, see Supporting Information). 

The crystallinity of the hybrid composite was investigated using X-ray diffraction (XRD), high-

resolution TEM (HRTEM) and selected area electron diffraction (SAED) techniques. Figure S4 

(Supporting Information) shows the XRD pattern of the ZnSe@HCNs and the ZnSe MSs samples. 

All the peaks can be assigned to the stilleite ZnSe crystal structure peaks (JCPDS 88-2345), 
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demonstrating the high crystallinity and purity of the composites.[37] Figure S5 (see Supporting 

Information) further discloses the corresponding refined structural model along different orientation. 

Similar to previously reported literature, the crystal structure of stilleite ZnSe is consisted by [ZnSe4] 

stacks.[38] Along the [110] direction, pyramidal [ZnSe4] units exhibit an individual vertex-sharing 

chains array to form a tunnel structure with a 2.487 Å edge length, providing adequate space to 

accommodate Na+ ions (1.02 Å) during the electrochemical process. The HRTEM image of the 

ZnSe@HCNs in Figure 2H shows an interplanar distance of 0.327 mm, corresponding to the 

dominant (111) facet. The selected area electron diffraction (SAED) pattern (Figure 2I) reveals a 

polycrystalline feature and the intense diffraction rings are readily indexed to cubic ZnSe crystalline, 

in good agreement with the above XRD results. 

Furthermore, the total carbon content was calculated from the thermogravimetric analysis (TGA) 

curves to be 23.0 wt% in the ZnSe@HCNs composites (Figure S6, see Supporting Information). The 

typical Raman spectra of ZnSe@HCNs, HCNs and aggregated ZnSe MSs are shown in Figure S7 

(see Supporting Information). The Raman spectra of ZnSe@HCNs and HCNs show two bands 

centred at 1337 and 1598 cm-1, corresponding to the disordered amorphous carbon (D band) and the 

crystalline graphitic carbon (G band), respectively. Also, two intensive Raman peaks at about 202 

and 249 cm-1 on the Raman plots of ZnSe@HCNs and aggregated ZnSe MSs can also be detected 

distinctly, which are well indexed to the representative 1LO bands of ZnSe phase. The chemical 

composition and valence states of the as-prepared ZnSe@HCNs were detected by X-ray 

photoelectron spectra (XPS) (Figure S8, see Supporting Information). The survey scan spectrum 

indicates the presence of Zn, Se and C elements (Figure S8A). The high-resolution spectrum of the 

Se 3d (Figure S8B) shows two dominant peaks located at 55.2 eV and 54.4 eV corresponding to Se 

3d3/2, and Se 3d5/2, respectively, suggesting the presence of Se2-.[39] The Zn 2p high-resolution XPS 

spectrum (Figure S8C) also demonstrates the characteristic signals of Zn 2p1/2 peak at 1045.2 eV 

and Zn 2p3/2 peak at 1022.1 eV, confirming the valence state of Zn2+.[11] The high-resolution C 1s 
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spectrum (Figure S8D) can be divided into three components: C-C peak at 284.8 eV, C-O peak at 

285.7 eV and C=O peak at 287.4 eV. The detection of carbon-oxygen bonds suggests that ZnSe 

nanoparticles are linked chemically to the carbon spheres through some oxygen functional groups. 

The pore structure and the surface area of the ZnSe@HCNs hybrid were evaluated by the N2 

adsorption/desorption analysis in Figure S9A (see Supporting Information). The distinct hysteresis 

loops between the adsorption and desorption curves of ZnSe@HCNs in the medium to high-pressure 

regions (P/P0 range 0.4-1.0) is typical for type IV isotherm.[35] The pore size distribution (Figure 

S9B) shows that the mesopores peaked at ~2.2 nm. The calculated Brunauer-Emmert-Teller (BET) 

surface area of the of the ZnSe@HCNs is 241.9 m2 g-1. This value is five times higher than the 

aggregated sample, indicating the success of synthesising a porous structure by directing and 

controlling the deposition of ZnSe nanoparticles. Such larger surface area can highly increase the 

surface and near-surface reactions of active materials during the discharge/charge process, thus 

guaranteeing the excellent electrochemical performance of the ZnSe@HCNs.[40] 

To distinguish the density difference of as-prepared ZnSe@HCNs and HCNs, we filled their 

powder in a quartz tube respectively with an inside diameter of 4 mm (Figure S10A, see Supporting 

Information). As a result, the filled length of tube (i) with 0.4 g of ZnSe@HCNs powder is about 5.4 

cm, while the filled length of tube (ii) with the same mass HCNs reaches to 6.7 cm, implying the tap 

density of ZnSe@HCNs higher than that of HCNs since the density ratio of ZnSe@HCNs to HCNs 

is around 1.24:1. Namely, the density of HCNs is highly enhanced after growing some fine ZnSe 

nanoparticles on their outer/inner surfaces. In order to further calculate the tap density of 

ZnSe@HCNs and HCNs, respectively, we pasted them on Cu foil with a diameter of 12.6 mm and 

conducted the FESEM observation to verify the thickness of active layer as shown in Figure S10B 

and S10C (see Supporting Information). And the corresponding data are listed in Table S2 (see 

Supporting Information). After calculated, the tap densities of ZnSe@HCNs and HCNs are about 

1.38 and 1.08 g cm-3, respectively. The ZnSe@HCNs possesses higher tap density than pure HCNs, 
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disclosing our fabrication strategy can improve the tap density of hollow carbon materials through 

growing fine ZnSe nanoparticles onto the outer and inner interfaces of HCNs.  

Subsequently, we investigated the electrochemical performance of the ZnSe@HCNs hybrid in 

two-electrode configurations. Figure 3A reveals the galvanostatic discharge and charge profiles of 

the ZnSe@HCNs cycled at a constant current density of 1.0 A g-1. The initial discharge and charge 

capacities are 445.6 and 410.7 mAh g-1, respectively, yielding a high initial Coulombic efficiency of 

92.2 %. The irreversible capacity loss (about 7.8%) in the first cycle is attributed to the irreversible 

decomposition of electrolyte and the formation of the solid-electrolyte interface (SEI) layer.[41] 

Similar to other metal selenides like CoSe2 and FeSe2, the initial discharge and charge profiles are far 

different from the following ones.[4, 18, 42] The formation of SEI layer is not only the irreversible 

reaction in the initial cycles, but some other side reactions resulted from the activation of the 

selenides, which make the initial sodiation and desodiation processes unstable.[43] To bring more 

insights on the electrochemical sodiation and desodiation mechanism, we further used cyclic 

voltammetry (CV) techniques. The representative CV profiles of ZnSe@HCNs recorded for the 1st, 

2nd and 5th cycles are shown in Figure S11 (see Supporting Information). In the first cathodic scan, a 

strong reduction peak at 0.30 V and a weak reduction peak at 0.92 V are observed. The 

corresponding anodic scan shows three oxidation peaks in the first cycle at 0.90 V, 1.56 and 1.92 V. 

These CV results are in good accordance with the initial discharge/charge platforms. After the first 

cycle, the ZnSe@HCNs electrodes undergo a series of complicated activation processes. Three 

discharge platforms at round 1.58, 0.94 and 0.62 V and two charge platforms at about 1.51 and 1.85 

V can be maintained after 100 cycles. Figure 3B reveals long-term cycle stability of ZnSe@HCNs. 

Benefiting from the unique hierarchical nanostructure, the ZnSe@HCNs show an excellent cycle 

stability. Even after 1000 cycles at 1.0 and 10.0 A g-1, the ZnSe@HCNs electrodes can still deliver 

high reversible discharge capacities of 361.9 and 285.9 mAh g-1, respectively, corresponding to a 

high capacity retention of 87.0% of the second cycle (for 1.0 A g-1). However, without the support of 
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HCNs, the solid ZnSe MSs anodes reveal inferior electrochemical performance. As shown in Figure 

S12A (see Supporting Information), the discharge capacity decreases sharply from 349.4 to 198.2 

mAh g-1 after 550 cycles at 1.0 A g-1. The activation process of solid ZnSe MSs electrodes need more 

than 150 discharge/charge cycles, thus leading to much sluggish voltage platform transformation 

especially on the charge branches (Figure S12B, see Supporting Information). 

  We further investigated the rate performance of the ZnSe@HCNs hybrid electrode at various 

current densities ranging from 0.2 to 20.0 A g-1. As shown in Figure 3C, the ZnSe@HCNs anodes 

provide excellent high-rate capability and stable Coulombic efficiency of about 98.7%. With the 

current density gradually increasing from 0.2 to 20.0 A g-1, the reversible discharge capacity 

decreases from 484.2 to 264.1 mAh g-1, respectively. Interestingly, once the current densities come 

back to 10.0 and 1.0 A g-1 after more than 40 cycles, the corresponding discharge capacities can be 

rapidly recovered to 340.1 and 444.5 mAh g-1, respectively. The detailed discharge/charge profiles of 

the ZnSe@HCNs at different current densities are presented in Figure S13 (see Supporting 

Information). On the other hand, the solid aggregated ZnSe MSs demonstrate poor rate performance 

with lower discharge capacity and unsteady Coulombic efficiency (Figure S14, see Supporting 

Information). To highlight the outstanding high-rate performance of the ZnSe@HCNs, the discharge 

capacities of other reported metal selenides at different current densities are summarized in Figure 

3D and Table S3 (see Supporting Information). [4, 9, 12-15, 17, 19, 22, 24, 42, 44-47] The ZnSe@HCNs hybrid 

anode demonstrates a more competitive rate capability with high reversible discharge capacity than 

reported metal selenides, particularly at higher current densities. Such higher capacity retention of 

the ZnSe@HCNs anode can be attributed to the abundant surface and near-surface reactions since 

there are numerous ultrafine ZnSe particles firmly anchored on/in the HCNs.[48-49] Also, the 

conductive and flexible HCNs backbone ensures faster electrons/ions transport, more sufficient 

electrolyte-electrode contact area and more beneficial structure buffer.[50] It should be noted that the 

capacity contribution of pure HCNs is meagre, and could be omitted when calculating the total 
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discharge capacity of the ZnSe@HCNs. As shown in Figure S15 (see Supporting Information), the 

pure HCNs can only deliver a low discharge capacity of about 18 mA g-1 at 1.0 A g-1. 

The high-rate performance of electrode materials is related to the potential pseudocapacitive 

behaviour upon the continuous discharge/charge cycling.[50] To explore the electrochemical reaction 

dynamics, we further measured the CV curves of both ZnSe@HCNs and ZnSe MSs at various scan 

rates from 0.2 to 1.0 mV s-1. The corresponding results are presented in Figure 3E and Figure S16 

(see Supporting Information). Generally, the peak current (i) and the scan rate (v) obey the following 

equations:[51]  

i = avb                                            (1) 

log (i) = b·log(v) + log (a)            (2)  

where a and b stand for the adjustable parameters, and b value is determined from the slope of log(i) 

vs. log(v) plot. The value of b gives a good indication of the determining step of the electrochemical 

process. Usually, when b is equal to 0.5, the electrochemical sodium storage reaction is controlled by 

the ionic diffusion. While when b approaches to 1.0, the sodium storage process is dominated by 

pseudocapacitance.[52] As shown in Figure 3F, the b-values (fitted slopes) of seven peaks are ranged 

between 0.7 to 1.04, suggesting a mixed process with the surface controlled pseudocapacitive 

process as the predominant mechanism on the ZnSe@HCNs. Furthermore, we have calculated the 

pseudocapacitive contribution from the equation: i = k1v + k2v
0.5, where k1v and k2v

0.5 represent the 

pseudocapacitive and ionic diffusion contributions, respectively.[4] Figure 3G shows the calculated 

pseudocapacitive contributions of ZnSe@HCNs anode gradually increase from 70.9% to 85.5% at 

the scan rates growing from 0.2 to 1.0 mV s-1. The unique design of the electrode materials plays a 

major role of minimising the diffusion limitation, particularly in the high scan rate. The open 

structure leads to the fast Na+ intercalation/extraction and durable cyclic stability, thus facilitating the 

high-rate and long-term cycle performance of as-prepared ZnSe@HCNs. For instance, the detailed 
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pseudocapacitive fraction at 1.0 mV s-1 is demonstrated in Figure 3H. This result is analogous to the 

case of other metal sulfides/selenides.[26, 53]  

In addition to the pseudocapacitance storage mechanism, there is also a possibility for slower redox 

reactions that could take place in the anode. Conversion reactions and alloying reaction are 

commonly reported for most anode materials in SIBs. These types of reactions are usually associated 

with more serious structural changes than the changes associated with the pseudocapacitive storage.  

To study the phase changes during the discharge and charge, ex-situ XRD, SAED and HRTEM were 

performed at different stages. Figure 4A presents the ex-situ XRD patterns at various 

discharge/charge stages. The typical diffraction peaks of the cubic ZnSe diminish gradually and 

disappear completely with the discharge voltage decreasing from 1.5 V to 0.1 V. In the meantime, 

the weak diffraction peaks of Zn and Na2Se can be detected when the discharge voltages attenuate to 

1.0 and 0.4 V. After fully discharged to 0.1 V, some new characteristic peaks located at 32.4°, 35.6° 

and 69.6° emerge, which can be assigned to the (420), (422) and (753) crystal planes of cubic 

NaZn13 phase (JPCDF no. 03-1008), confirming the presence of NaZn13 alloy in the final discharge 

products.[28, 29] During the subsequent charge process, the strong characteristic diffraction peaks of 

ZnSe are recovered gradually, and the diffraction peaks of Zn, Na2Se and NaZn13 vanish completely. 

Also, the intermediates were verified further by ex-situ SADE and HRTEM images. As shown in 

Figure 4C, the hierarchical hybrid structure of the ZnSe@HCNs still can be well retained when the 

fresh cell was discharged to 0.2 V. The ex-situ SADE (Figure 4D) clearly discloses the 

polycrystalline diffraction rings of (111) and (220) planes of Na2Se, (420) plane of NaZn13, and 

(101) plane of Zn. Besides, the lattice fringes of these discharge intermediates are also found in 

Figure 4E. After the tested cell was charged to 2.6 V once again (Figure 4F), the distinct structural 

changes of the ZnSe@HCNs hardly happen, confirming the robust hybrid structure of the 

ZnSe@HCNs. The ex-situ SADE (Figure 4G) and ex-situ HRTEM (Figure 4H) reveal the typical 

diffraction rings and lattice fringes of (111) and (220) planes of ZnSe, respectively, indicating the 
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main charge product is ZnSe. Therefore, based on the above results, the phase changes of the 

ZnSe@HCNs electrode materials are governed by the following equations: 

Conversion reactions: ZnSe + 2Na+ + 2e- ↔ Na2Se +Zn                 (3) 

Alloying/dealloying reaction: 13Zn + Na+ + e- ↔ NaZn13                (4) 

It should be mentioned here that detecting these phases changes does not exclude the storage via the 

pseudocapacitive process, which usually limited to the surface and do not cause severe structural 

changes. Also, from a pure kinetic point of view, the small particle size of the ZnSe in the novel open 

ZnSe@HCNs structure shorten the diffusion pathway, and hence the constant b in equations 1 and 2 

are shifted toward more diffusion independent values. The theoretical capacity calculated based on 

reactions (3) and (4) is 402.9 mAh g-1 while the recorded value for the ZnSe@HCNs reveals a higher 

capacity of 484.2 mAh g-1 at 0.2 A g-1, clearly confirming the role of the pseudocapacitive 

contribution.  

  It is well known that the electrolyte plays a significant role in determining the electrochemical 

performance of SIBs.[42] Thus, we have compared the ether-based electrolyte (1.0 M NaCF3SO3 in 

diethylene glycol dimethyl ether (DEGDME)) with two kinds of carbonate-based electrolytes; (i) 1.0 

M NaClO4 in propylene carbonate (PC) with 5 wt% fluoroethylene carbonate (FEC); and (ii) 1.0 M 

NaPF6 in ethylene carbonate/dimethyl carbonate (EC/DEC; v/v=1:1). We first carried out 

electrochemical impedance spectroscopy (EIS) measurements for half-cells using the different 

electrolytes and the ZnSe@HCNs electrodes. The ether-based electrolyte possesses the lowest 

charge-transfer resistance, thus efficiently enhancing the electrochemical reaction kinetics of the 

ZnSe@HCNs (Figure S17, see Supporting Information). Also, the contact angle measurements also 

reveal that ether-based electrolyte processes better wettability than carbonate-based electrolytes 

(Figure S18, see Supporting Information), which is expected to facilitate the reactions on the 

electrode/electrolyte interface. The electrochemical cyclic performance of the ZnSe@HCNs 

electrode in the three different electrolytes is shown in Figure S19 (see Supporting Information). As 
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expected, the cells with carbonate-based electrolytes suffer from severe capacity decay. For example, 

when using 1.0 M NaClO4 in PC with 5 wt% FEC as the electrolyte, the initial discharge capacity of 

the ZnSe@HCNs electrode was about 400 mAh g-1, and it decreased quickly to 95 mAh g-1 after 100 

cycles at 1 A g-1. The performance of the cell with 1.0 M NaPF6 in DC/DEC (v/v, 1:1) electrolyte 

showed slightly better performance, but the discharge capacity was still low after 100 cycles (170.0 

mAh g-1). Figure 5A schematically illustrates the sodiation and desodiation process of hybrid 

ZnSe@HCNs. As shown in Figure 5B, the ZnSe@HCNs still maintain their conformal hybrid 

structure even after 500 cycles at 1.0 A g-1. No apparent structural collapse or severe pulveriation can 

be observed, benefiting from the support and confinement of flexible HCNs to ultrafine ZnSe 

particles. Nevertheless, the aggregated solid ZnSe MSs suffer from serious structural collapse and 

pulverization (Figure 5C). The EIS measurements of above two samples were also conducted. The 

impedance of ZnSe MSs samples reveal an obvious increase after 500 cycles, indicating undesirable 

cycling performance (Figure 5D-E). 

  Inspired by the excellent electrochemical performance of the Na//ZnSe@HCNs half-cell, we 

further constructed sodium-ion full cells using Na3V2(PO4)3 (NVP) as the cathode. Figure 6A 

schematically illustrates the structure and composition of the NVP//ZnSe@HCNs full cells. The 

selection of NVP was based on its excellent performance in SIBs.[54] In this research, NVP 

microflowers were firstly synthesised via a hydrothermal process.[55] The phase purity of the 

prepared NVP was confirmed by XRD analysis and the morphology was investigated by SEM 

images (Figure S20, see Supporting Information). We first investigated the NVP cathode in a half-

cell, which exhibits a stable reversible discharge capacity of about 104.7 mAh g-1 after 100 cycles at 

1C (1C=117 mA g-1). Then we evaluated the performance of the NVP//ZnSe@HCNs full cells. The 

initial three galvanostatic discharge and charge voltage profiles of the full cell cycled at 0.5 A g-1 

between 0.1 and 3.0 V are displayed in Figure 6B. Remarkably, the full cell has a Coulombic 

efficiency of about 98.2% and can deliver a stable reversible discharge capacity of about 313.1 mAh 
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g-1 after 100 cycles at the current density of 0.5 A g-1 (Figure 6C), providing more evidence of the 

potential of the ZnSe@HCNs as anodes for high-performance sodium ion batteries.  

 

4. Conclusion 

  In summary, we successfully developed a novel hierarchical hybrid nanostructure of ultrafine 

ZnSe particles growing on/in hollow carbon nanospheres derived from the carbonation of SPS 

spheres (ZnSe@HCNs) as a promising anode for SIBs for the first time. In this tailored structure, the 

SPS templates can absorb ultrafine ZnSe precursor particles both on/in their surface, significantly 

inhibiting the volume expansion during the repeated sodiation and desodiation process. When used 

as anodes for SIBs in the ether-based electrolyte, the ZnSe@HCNs exhibits a high reversible 

capacity of 361.9 and 285.9 mAh g-1 at 1 and 10 A g-1 after 1000 cycles, respectively. Thanks to the 

enhanced surface and near-surface reactions along with the high pseudocapacitive behaviours of 

ZnSe@HCNs samples, a remarkable rate performance is achieved as well (264.0 mAh g-1 at 20 A g-

1). In addition, we further demonstrate that the ZnSe@HCNs could be coupled with NVP to assemble 

full batteries, which also delivers a specific discharge capacity of 313.1 mAh g-1. Above results 

provide a new strategy to construct nanosized transition-metal chalcogenides, phosphides or alloys 

with carbon matrix, revealing highly enhanced sodium ion storage.  
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Figure 1. Schematic illustration of the morphology evolutions of transition metal selenide (TMS) 

composites after many cycles. (A) Bare TMS, (B) TMS with carbon matrix, (C) TMS on hollow 

carbon nanospheres, (D) TMS on/in porous hollow carbon nanopsheres. 
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Figure 2. (A) Schematic illustration of the formation of hybrid ZnSe@HCNs; (B) FESEM and (C) 

TEM images of SPS templates; (D-E) FESEM, (F-G) TEM, (H) HRTEM, (I) SEAD images, (J) 

HAADF-STEM image and (K-M) corresponding elemental mapping images of hybrid ZnSe@HCNs. 
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Figure 3. Electrochemical performance of ZnSe@HCNs in the cut-off voltage of 0.1-3.0 V: (A) 

Charge-discharge curves at 1.0 A g-1 with different cycles, (B) Cyclic stability at 1.0  and 10.0 A g-1, 

(C) Rate capability evaluated at various current densities ranging from 0.2 to 20.0 A g-1, (D) 

Comparison of rate performance with other typical anode materials for SIBs, (E) CV profiles at 

different scan rates, (F) Corresponding log i versus log v plot at each redox peak, (G) Percent of 

pseudocapacitive contribution at different scan rates, (H) CV curve with pseudocapacitive fraction 

shown by blue region at a scan rate of 1 mV s-1. 
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Figure 4. Electrochemical reaction mechanism: (A) Ex-situ XRD analysis of the ZnSe@HCNs 

electrodes at different charge/discharge states and (B) Corresponding charge/discharge curve, (C, F) 

Ex-situ TEM, (D, G) SADE and (E, H) HRTEM of ZnSe@HCNs at different cycling states: (C-E) 

discharge to 0.2 V, (F-H) charge to 2.6 V. 
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Figure 5. (A) Schematic illustration of the sodiation process of ZnSe@HCNs. (B, C) Ex-situ images 

and (D, E) Nyquist plots of (B, D) ZnSe@HCNs and (C, E) ZnSe MSs after 500 cycles. 
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Figure 6. (A) Schematic illustration of the full sodium-ion battery with ZnSe@HCNs//NVP couple, 

(B) Charge and discharge profiles and (C) cycling performance and corresponding Coulombic 

efficiency of the full cells at 0.5 A g-1.  
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Highlights 

 

� ZnSe nanoparticles grow on both the inner walls and the outer surface 

of hollow carbon nanospheres (ZnSe@HCNs) 

� The sodium storage mechanism of ZnSe@HCNs electrodes is a 

mixture of alloying and conversion reactions. 

� A full cell constructed from the ZnSe@HCNs anode and 

Na3V2(PO4)3 cathode was demonstrated. 

� ZnSe@HCNs exhibit long-cycle and high-rate sodium storage. 

� The robust structure can accommodate the large volume and 

structural changes. 
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