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Abstract—Dynamic multiobjective optimisation has gained in-
creasing attention in recent years. Test problems are of great
importance in order to facilitate the development of advanced
algorithms that can handle dynamic environments well. However,
many of existing dynamic multiobjective test problems have not
been rigorously constructed and analysed, which may induce
some unexpected bias when they are used for algorithmic analy-
sis. In this paper, some of these biases are identified after a review
of widely used test problems. These include poor scalability of
objectives and, more importantly, problematic overemphasis of
static properties rather than dynamics making it difficult to draw
accurate conclusion about the strengths and weaknesses of the
algorithms studied. A diverse set of dynamics and features is
then highlighted that a good test suite should have. We further
develop a scalable continuous test suite, which includes a number
of dynamics or features that have been rarely considered in
literature but frequently occur in real life. It is demonstrated with
empirical studies that the proposed test suite is more challenging
to the dynamic multiobjective optimisation algorithms found in
the literature. The test suite can also test algorithms in ways that
existing test suites can not.

Index Terms—Dynamic multiobjective optimisation, scalable
test problems, dynamics, adversarial examples, Pareto front

I. INTRODUCTION

MULTIOBJECTIVE optimisation problems (MOPs) in-
volving dynamic features are reported in a variety of

real applications [7], [10], [17], [48]. This kind of problems
is known as dynamic multiobjective optimisation problems
(DMOPs). Due to their dynamic nature, the optimisation of
DMOPs is more challenging than that of static MOPs as it has
to deal with not only conflicting objectives, but also changes in
objective functions or constraints. In other words, evolutionary
algorithms (EAs) for dynamic multiobjective optimisation
must be capable of tracking the changing Pareto-optimal front
(PF) and/or Pareto-optimal set (PS) to provide a set of diverse
solutions that approximate each new PF or PS over time.

Dynamic multiobjective optimisation (DMO) has attracted
increasing research interest in recent years. Significant contri-
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butions have been made mainly toward benchmarking [10],
[20], algorithm design [5], [22], [34], [52], and real-life
application [17], [48]. Despite these, there are still a number
of open topics that need to be addressed in order to further
advance the development of the DMO research. One important
topic is how to benchmark DMO test environments properly
for algorithm analysis.

Roughly speaking, DMOPs can be regarded as a sequence
of static MOPs (static and stationary are interchangable in this
paper, both meaning unchanged states) for a while. In this
sense, DMOPs can be constructed as a dynamic version of
MOPs used in static multiobjective optimisation (SMO) [6].
For example, an MOP can be made dynamic by adding time-
dependent elements, as observed in some early DMO studies
[10], [14]. While this benchmarking strategy is of great use
to easily develop test problems, there are also some potential
limitations which need to be borne in mind. One limitation is
that the DMOPs created in this way may be highly similar to
each other and also to their static counterparts. As a result, the
DMOPs have simple and undiversified problem properties. For
example, some FDA [10] and dMOP [14] problems derived
from the static ZDT [57] test suite cannot capture (time-
varying) mixed PFs which greatly challenge algorithms [20].
A lack of diverse problem properties in benchmarks may not
provide a comprehensive analysis of algorithms.

Another limitation is that the base MOPs can be the
dominating factor for the difficulty of the resulting DMOPs
and therefore decrease the importance of dynamics. A hard-
to-solve MOP may not be a good candidate for DMOPs
[11]. This is because the critical factor that causes the failure
of algorithms to solve the DMOP is not the underlying
dynamics but rather the static properties (e.g. strong variable
dependencies) of the problem. Some DMOPs like UDF [3]
and ZJZ [52] were created based on the LZ test suite [30],
but it remains unclear, of the dynamic and static features they
involve, which is more challenging to algorithms, since LZ is
already challenging in the SMO literature [21], [54].

Having realised the above limitations that exist in DMO test
problems, Jiang and Yang [20] have proposed a new bench-
mark generator for constructing DMOPs. While focusing more
on the effect of dynamic features, the proposed benchmark
also captures a number of dynamic features that have not or
rarely been considered, such as time-varying mixed PF, mixed
type of change mode. In another recent work [11], dynamics
were intentionally outweighed over static properties when
existing MOPs are used to create dynamic scenarios regarding
modality, PF tradeoff connectivity, and PF degeneration.

Despite much effort, DMO benchmarking is still far from
satisfying. It remains unknown what characteristics are de-
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sirable for a good test suite. For example, one important
characteristic is the scalability of objectives in DMOPs. It is
observed that many real-life applications have more objectives,
and the number of objectives can be time-varying [6]. The
scalability of objectives, the nature of its dynamics, and the
balance between them are poorly studied in existing DMOPs
[4], [19]. Another important characteristic that a good test suite
should embrace is the detectability of environmental changes.
To the best knowledge of the authors, there is no test problem
whose changes cannot be detected with one re-evaluation of
a random population member. As a result, most algorithms
simply assume all changes are knowable, leading to the neglect
of this important factor in the existing literature.

In summary, although after more than a decade of research,
DMO benchmarking still face a number of issues, which are
highlighted as follows:

1) Problems are not scalable or have limited scalability.
Most constructed DMOPs have a few objectives and the
number of objectives is time independent [3], [20].

2) Static properties outweigh dynamics. For example, de-
ceptive or strong variable-linkage characteristics obscure
the importance of dynamics [3], [52].

3) Problem properties are similar and not diversified. DMO
benchmarks have similar PF/PS properties and environ-
mental changes, such as FDA [10] and dMOP [14] cases.

4) Dynamic features are very limited. Most existing bench-
marks cover a small subset of dynamics from real-
life applications, and leave unconsidered many other
dynamic features, e.g. predictability and visibility [35].

Bearing these in mind, it is not trivial to rethink what char-
acteristics contribute to a good DMO test suite. After enu-
merating and justifying a number of desirable characteristics
that a test suite should have, we are motivated develop a
new test suite for DMO. The test suite is aimed to present
characteristics linking closely to real-world applications while
addressing as many as possible the above-mentioned gaps, and
to potentially serve as adversarial counter cases [12] for testing
DMO solvers. It provides a systematic tool for algorithm
designers and practitioners to comprehensively analyse and
develop algorithms.

The rest of this paper is organised as follows. Section II
introduces related work and presents desirable features and
dynamics for DMOPs. The test suite construction process and
the resulting test suite are described in Section III. Section
IV presents experimental studies on the proposed test suite.
Section V concludes the paper.

II. RELATED WORK

A. Existing Dynamic Multiobjective Test Problems

One of the earliest test suite is FDA [10]. FDA suggested
a benchmark design methodology which considers dynamics
and multiobjectivity separately. Following this idea, five FDA
problems were made by borrowing two important test suites,
i.e. ZDT [57] and DTLZ [8], from the SMO literature, and
adding dynamics of interest to them. Since establishment, the
FDA design methodology has impacted greatly a number of
DMO benchmarking studies [3], [11], [14], [16], [17]. Unlike

FDA, Jin and Sendhoff [25] developed an open scheme of
aggregating objective functions of static problems by dynam-
ically changing weights to form a low-dimensional DMOP.
However, no well-defined DMOPs were derived from this
scheme. Guan et al. [15] studied DMOPs with objective
replacement, where some objectives may be replaced with new
objectives during the evolution. Mehnen et al. [33] argued that
the DTLZ and ZDT test suites are already challenging in their
static version, and simpler test functions are needed to analyse
the effect of dynamics in DMOPs. Hence, they suggested
the DSW functions for DMOPs. Furthermore, they proposed
a new generic scheme DTF, which is a generalised FDA
function and allows a variable scaling of the complexity of
the dynamic properties. They also added scalable and dynamic
constraints to DMOPs by moving circular obstacles in the
objective space. Recently, Helbig and Engelbrecht [16] have
made a sound investigation into the existing DMOPs used
in the literature, and have highlighted the characteristics that
an ideal DMO benchmark function suite should exhibit. In
addition to highlighting shortcomings of existing DMOPs, they
also provided several HE problems with complicated static
characteristics borrowing from the SMO literature [18], [30].
As a result, main challenges that the HE problems pose to
algorithms are static problem properties instead of dynamics.
Similarly, the recent UDF problems [3] and Zhou et al.’s work
[52] introduce complicated static variable linkages, which can
obscure the importance of dynamics.

In the meanwhile, there are several studies concentrating
on dynamic aspects of DMOPs. Huang et al. [17] proposed
some DMOPs where the number of objectives or variables can
change over time. Following this direction, Chen et al. [5]
highlighted challenges in DMOPs with a changing number
of objectives, e.g. severe diversity loss, and suggested more
DMOPs of this type. The study in [20] proposed a new
problem generator that can produce various time-dependent
PF geometries for DMOPs. It also suggested some important
dynamics, including time-varying variable linkages that cause
unbalanced diversity, and mixed types of change modes. But,
the study focused mainly on multiobjective cases and had
scalability issues, which may hinder its wide application. Gee
et al. [11] developed a number of GTA problems targeting
dynamic modality, tradeoff connectivity, and PF degeneration.
Despite great usefulness, the GTA problems limit performance
assessment of EAs to the target dynamics.

There are also studies on dynamic time-linkage problems
(DTPs) where solutions found for previous environments de-
termine the behaviour of problems for future environments
and this type of problems is very common in real applications
[35], [36]. Almost all the studies about DTPs focus mainly
on single-objective scenarios except [17]. DTPs can exhibit
various characteristics, e.g. time/prediction deception [36], and
many characteristics are not fully known. Benchmarking DTPs
can be very difficult in dynamic multiobjective scenarios and
therefore is not considered in this paper.

B. Desirable Features under Dynamic Environments

This subsection presents a number of desirable features and
dynamics that have been ignored or rarely discussed in the
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literature, although we recognise that other dynamic features
such as time-dependent variable dependencies, nonseparability
are also important under certain circumstances. Note that, the
first two features are not dynamic but specially highlighted
here due to importance in any scalable test problems.

1) Scalability: DMO test problems should be scalable to
have any number of objectives and variables.

Importance: Scalable problems are beneficial for assessing
the effect of variation in the number of objectives and vari-
ables. Similar to multiobjective benchmarks [18], this property
should be considered when building DMO test problems.

2) Shape of PF boundaries: The boundary of a M -
objective PF after max-min normalisation fully or partially
lies on the hyperplanes defined by all combination of (M−1)
axes. For example, normalised PF boundaries can be similar
to those of a unit simplex or sphere in the case of M = 3, a
regular shape commonly used for 3-objective test problems.

Importance: The shape of PF boundaries have not been well
studied, but it has recently attracted increasing attention due
to its significant effect on some algorithms [19]. The majority
of existing scalable test problems are designed such that the
PF boundary (with or without normalisation) is triangular.
However, real-world problems [13], [38] often have more
diverse PF shapes instead of triangles. Intuitively, irregular
PF boundaries affect directly solution spread of algorithms
in objective space, and therefore possibly affect objective
normalisation which is very important for solution uniformity
for certain problems. The shape of PF boundaries can also
possibly influence the computation of corner solutions used in
some objective reduction techniques when dealing with many
objectives [45].

3) Dynamic concavity-convexity: The PFs of a DMOP are
dynamically convex, linear, concave, or mixed in a series of
changes.

Importance: Concavity-convexity of DMOPs has a direct
impact on the performance of algorithms, as evidenced in
their static counterparts [18], [21]. When a DMOP changes
its concavity-convexity from one type to another due to an
environmental change, it can cause the variation of uniformity
of solutions along the PF and potentially lose diversity. As a
consequence, EAs face difficulties in uniformly redistributing
solutions along the PF or rescuing diversity loss, the latter of
which is even a big issue in many-objective cases [23].

Time-varying concavity-convexity has been discussed in a
number of biobjective DMOPs [10], [20]. However, this kind
of characteristic have not been well understood in DMOPs
with a larger or scalable number of objectives.

4) Dynamic PF connectivity: The PF has time-dependent
connectivity. At any time the PF can be simply-connected,
non-simply connected (e.g., a surface with holes), or have
several disconnected PF segments.

Importance: The connectivity of the PF manifold has a
great influence on the performance of EAs, as demonstrated in
[21]. Time-varying PF connectivity has existed in some real-
life problems [10]. In the DMO literature, most DMOPs are
constructed to have a simply-connected PF manifold. Although
there are several PF-discontinuous DMOPs, none of them
is non-simply connected. Benchmarking DMOPs with time-

dependent PF connectivity (i.e., time-varying number of PF
segments or non-simply connected PF) can help to further our
understanding of the capability of EAs.

5) Dynamic PF shapes: The overall PF shape is not fixed,
but rather diverse over time.

Importance: Changes in PF shapes over time have been
reported in many real applications. In control systems [4],
[48], the size of the PF can increase or decrease, resulting
in different PF shapes over time. This type of change is very
likely to affect solution distribution on the PF. In another study
[46], the PF varies partially subject to environmental changes.
Partial PF variations may increase the difficulty of change
detection for PF-based detection methods.

6) Dynamic modality: Objective functions can have differ-
ent modal modes (either unimodal or multimodal) over time.

Importance: Multimodal problems are generally more chal-
lenging than unimodal ones, as shown in a number of studies
of static multiobjective optimisation [8], [57]. They are an
important type of optimisation problems that arise frequently
from real-world applications. However, multimodal problems
have not been well explored in DMO. Most existing DMO
test problems are unimodal rather than multimodal, and a
few multimodal problems have either a fixed number of local
optima or a fixed location of global optima. Dynamic modality
changes problem landscapes, making DMOPs more difficult to
solve. It also helps to assess the change detection ability of
EAs if the global optima is relocated in a new environment.

7) Dynamic PF/solution favourability: From decision mak-
ers’ point of view, dynamic PF favourability relates to
time-dependent preference of some solutions, e.g. knee
points/regions [58]. From EAs’ point of view, it relates to
certain solutions that are easier to obtain than others [24],
[31] in different environments.

Importance: Dynamic PF favourability regarding knee
points is of high interest to the decision maker. This is because
most often such points are more important and dynamically
preferred. Likewise, the existence of PF favourability of so-
lutions can create imbalanced difficulties of approximation to
different PF regions. As a result, population members of EAs
are very likely to be attracted toward easily obtainable PF
regions, leaving harder PF regions under-explored or poorly
approximated [31]. This dynamic feature has been observed
in [28].

8) Time-dependent number of objectives/variables: In dy-
namic environments, DMOPs are allowed to add new or
remove some existing objectives/variables. Note that, this is
different from scalability for which the number of objectives
remains unchanged over time.

Importance: DMOPs with a time-varying number of objec-
tives/variables appear in many real-life scenarios [2], [44], but
have been rarely studied in the DMO literature. The effect of
changes in the number of objectives in regular pattern has been
recently studied in [5]. Changes in the number of variables
or objectives in irregular pattern can complicate DMOPs and
create another scenario to study dynamics.

9) Time-dependent degeneration: Most often, the PF of M -
objective problems is a (M − 1)-dimensional manifold under
Karush-Kuhn-Tucker conditions. A degenerate PF can be of
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lower dimension than (M − 1). For example, a 3-D problem
may degenerate to have a PF that is a curve or line segment.

Importance: PF-degenerate problems can raise serious chal-
lenges to some algorithms. One challenge, for example, can
be the need of effective diversity maintenance to guarantee a
uniform spread of solutions. Degeneration has been reported
in PID controller design problems [10].

10) Detectability: A DMOP can be easily or hardly de-
tectable, depending on how much environmental changes are
computationally visible to optimisers.

Importance: Detectability of DMOPs is of great importance,
but it has received little attention in the field of EMO. Almost
all existing DMO test problems are made easily detectable
for every single environmental change, and a population-based
algorithm therefore can exactly detect the change by simply
re-evaluating any one solution of population [43]. The impor-
tance of detectability has been recognised in dynamic single-
objective optimisation [41]. In DMO, failing to detect changes
that have actually occurred not only results in ineffective
tracking of the new PF, but also could mislead the search
process because nondominated solutions obtained so far may
be no longer nondominated in new environments.

11) Predictability: The location of PS can change in a
predictable or unpredictable manner over time.

Importance: The importance of the predictability of optima
has been already recognised in dynamic single-objective op-
timisation [47]. Existing DMO test problems were made to
vary PS locations in a regular and predictable pattern, e.g., the
popular FDA [10] and dMOP [14] test problems have a PS
of xi=M :n=sin(0.5πt) (n is the number of variables) at time
t. It has been found that the dynamics of PS are more likely
unpredictable and sometimes even random in many real-life
problems [37]. This gap should be addressed by investigating
DMOPs with unpredictable or random changes of PS.

III. SDP: SCALABLE DYNAMIC MULTIOBJECTIVE TEST
SUITE

A. Basic Framework

The proposed SDP test suite was constructed with compo-
nent functions, a way that has been commonly used in building
various popular multiobjective problems, such as DTLZ [8],
WFG [18], and LZ [30] test suites. Mathematically, SDP can
be described as:

Minimise (f1(x, t), . . . , fM (x, t)) (1)
with

fi=1:M (x, t) = (1 + g(x, t))µi(x, t) + ν(t) (2)
where

• µ(x, t) = (µ1, . . . , µM ) is a time-dependent function that
describes PF properties, such as geometry, degeneration.

• g(x, t) is a time-dependent function that defines PS
properties, such as optima location, modality, variable
dependency. The PF of (1) is obtained when g(x, t) = 0.

• ν(t) is a time-dependent function that allows the PF to
move away from or back to its initial location (i.e., the PF
at t = 0). In the work, ν(t) is either zero or | sin(0.5πt)|.

x = (x1, . . . , xn) ∈ Rn is the decision variable vector and
can be divided into two subvectors, i.e., the distance-related
xI = (x1, . . . , xM−1) for µ(x, t) and position-related xII =
(xM , . . . , xn) mainly for g(x, t), according to [18]. This work
constrains the search space x to lie in [0, 1]n, unless otherwise
stated. The search space can be also scaled to a bigger range.
t ∈ R is the discrete time instant. fi(x, t) is the i-th objective
value of solution x at time t.

B. Building Component Functions

In what follows, component functions g(x, t) and µ(x, t)
of (2) are built to adhere to the desirable features in Section
II-B. ν(t) is ignored as it is fairly easy to build. For example
ν(t) can be assigned zero if disregarding the shift of PF or
| sin(0.5πt)| if considering a time-varying shift.

1) Scalability and Continuous PF Geometry

These two are determined by µ(x, t) and often coupled,
and here PF convexity-concavity and boundaries shapes are
the focus of discussion. In the SMO literature, µ(x, t) was
built to be a scalable linear hypersimplex [6], [18] defined as

µlinear,i=

{
(1− xi)

∏i−1
j=1 xj if i = 1

x1 . . . xM−2xM−1 if 2≤i<M
(3)

or spherical hypersurface (the first hyperorthant) defined as

µsphere,i=

{
sin(yi)

∏i−1
j=1cos(yj) if 1≤i<M

cos(y1) . . . cos(yM−1) if i = M ,
(4)

where yi = 0.5πxi. Both of them have non-concave ge-
ometries. Such plain PF shapes are well defined and easy to
understand, but insufficient to help draw a comprehensive con-
clusion on the overall performance of any assessed algorithms.
The limitation of hypersimplex or hypersphere based PFs has
been identified recently [19]. It is also noticed that real-world
applications have more complicated and diverse PF geometries
[13], [38]. In what follows, we introduce several selected novel
PF geometries with interesting properties.

a) Product-form PF: The product of all objective values
is one. It means each objective is inversely proportional to
other objectives. The PF is defined as

µ∏
,i =

xi

M−1

√∏M
j=1,j 6=i xj

(5)

It is noticed that solutions are not uniformly distributed on the
PF (Fig. S1(a), supplementary material), implying boundary
solutions be much difficult to be found than intermediate
solutions. Note that, the overall curvature of this PF can be
adjusted by a mapping: µ → µc, where c can be a constant
(i.e, 2) or a time-varying function (e.g., | sin(t)|). The mapping
can further complicate the PF geometry and is applicable to
any scalable PF mentioned in this paper.

b) Sum-of-reciprocals PF: The sum of reciprocals of fi+
1 equals one. µ(x, t) is defined as

µ∑
,i =

{
1+t+

∑M−1
j=1,j 6=i xj

xi
if 1 ≤ i < M∑M−1

i=1
xi

1+t if i = M ,
(6)

One important feature of this PF is that corner PF points are
not located on the axes (Fig. S1(b), supplementary material),
and algorithms relying on them for objective normalisation
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can be affected. Also, the irregular shape of the boundary
poses challenges to decomposition-based algorithms [49] that
employ weight vectors, as not all weight vectors sampled from
a unit simplex pass through the PF.

c) Mixed/knee PF: The PF has both local convex and
concave regions, and sometime produce some knee points that
may be hard to approximate. A mathematical description can
be

µknee,i=


(1−xi+0.05 sin(wπxi))×∏i−1

j=1
(xj+0.05 sin(wπxj))

if 1≤i<M∏M−1
i=1 (xi + 0.05 sin(wπxi)) if i = M ,

(7)

where w is a parameter (either static or dynamic) controlling
the number of knee regions on the PF (see the illustrative PF
in Fig. S1(c), supplementary material). pi(x, t) of (7) can have
a slight adaptation

µmix,i =


xi if 1≤ i<M−1

(s+ 0.05 sin(wπs)) if i = M − 1

(1−s+0.05 sin(wπs)) if i = M ,
(8)

where s =
∑M−1
i=1 xi/(M − 1) and w = sgn(rndt −

0.5)b6| sin(0.5πt)|c (sgn(·) is the sign function and rndt
is a random value in [0,1]) is recommendation of use. This
change results in a very different PF shape, and the PF has
mixed regions and its boundary is irregularly shaped (Fig. S2,
supplementary material), which can be challenging for some
algorithms [19].

2) PF Connectivity

The PF can be simply connected (sometimes called contin-
uous), non-simply connected, or disconnected. Here, we focus
on the construction of non-simply connected and disconnected
µ(x, t).

a) Non-simply connected PF: To the best of the authors’
knowledge, there is no problem in the multiobjective literature
that has a non-simply connected PF. To bridge this gap, we
put forward a way to construct a non-simply connected PF. It
works as follows. Let µ(x, t) describes a simply connected PF,
it is multiplied by g(x, t), a function that has a value larger
than one for some x components and equals one for others.
g(x, t) deforms some regions of the PF of µ(x, t) such that
points on these regions are dominated by the other regions.
For example, the spherical PF µsphere,i can be multiplied by

gnsc = 1+

∣∣∣∣∏M−1

j=1
sin(bkt(2xj−r)cπ/2)

∣∣∣∣ , (9)

where r = 1−mod (kt, 2) and kt = b10 sin(0.5πt)c is used
to produce a changing number of holes on the PF generated
by g(x, t)µ(x, t) (Fig. S3, supplementary material).

b) Disconnected PF: Unlike non-simply connected PFs,
a disconnected PF consists of multiple disconnected PF com-
ponents. This type of PF can be generated from

µdisc1,i=


cos2(0.5πxi) if 1≤i<M∑M−1

j=1
[sin2(0.5πxj)+∑M−1

j=1
sin(0.5πxj)cos2(ktπxj)]

if i = M ,
(10)

where kt (kt=b6 sin(0.5πt)c is suggested) renders a changing
number of disconnected components (Fig. S4, supplementary

material). Alternatively, we can also construct a disconnected
PF as follows:

µdisc2,i=

{
xi if 1≤i<M
(2− s−

√
s(− sin(2.5πs))rt) if i = M ,

(11)

where s =
∑M−1
i=1 x2i /(M − 1) and rt is a time-varying

parameter impacting the PF shape, which is suggested to be
b10| sin(0.5πt)|c. Different rt settings result in various PF
characteristics (Fig. S5, supplementary material).

3) Detectability

Environmental changes of existing DMOPs are made easily
detectable within one re-evaluation of any solutions. Real-
world dynamic changes should not be so simple.

There are two ways to increase the difficulty of change
detection. One way is to change the global basin of attraction
of the previous environment into a local one of the new
environment. This can be done by defining g(x, t) as

gmulti =
1

n−M+1

∑n

i=M
min

k=1,...,5
{hk+10(10xi−yk)2}, (12)

where hk (k = 1, . . . , 5) defines 5 local minima, one of
which is global. yk defines the location of the local minima.
A recommendation is hk = k and yk = 2(k − 1). The global
optima is set to hkt = 0.5 with kt = d5rndte, at time t. Fig. S6
in the supplementary material shows deceptive changes, which
will leave undetected if detectors are in the unchanged basins
of attraction (this happens if not all population members reach
the global basin of attractions).

Another way to create a less detectable scenario is to have a
time-varying search subspace that causes objective variation.
As a result, only detectors falling within this subspace can
detect environmental changes. Let µdetect,i = µsphere,i for
i = 2, . . . ,M and its first objective µ1(x, t) be

µdetect,1=


|kt(cos(0.5πx1)−cos(0.5παt))

+ sin(0.5παt)| if x1 ≤ αt

sin(0.5πx1), otherwise
(13)

where αt ∈ (0, 1) defines a subspace [0, αt], where x1
renders dynamic variation of the M -th objective, and kt is
a parameter controlling the severity of change regarding the
PF. Environmental changes on the PF can be detected only
when detectors have its x1 smaller than αt. We recommend
the use of αt = 0.5| sin(πt)| and kt = 10 cos(2.5πt). Fig. S7
in the supplementary material illustrates the change of the PF
derived from (13).

4) PS randomness

Existing DMOPs favour prediction-based EAs, because the
PS changes in regular pattern in dynamic environments. Here,
we present a PS (distance-related variables xi) that changes
in a random manner:

x̄ti=

{
x̄t−1i +5(rndt−0.5) sin(0.5πt) if 0≤x̄i,t≤1

rndt otherwise
(14)

where rntt is a random value from [0,1) and x̄ti is the optimal
value of xi ∈ [0, 1] at time t and x̄0i = i/n is recommended.
Note that (14) can be scaled to any range restriction of xi.

5) Dynamic number of objectives/variables
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a) Dynamic number of variables: Let nt be the number
of variables at time t, the simplest way to make nt change over
time is probably to pick nt randomly from a range [nl, nu]:

nt = nl + brndt(nu − nl)c. (15)
Then the nt −M + 1 distance-related variables are used to
build g(x, t), e.g., g(x, t) =

∑nt

i=M x2i .
b) Dynamic number of objectives: Let Mt be the number

of objectives at time t, it can can be defined similarly to nt:
Mt = Ml + brndt(Mu −Ml)c, (16)

which means Mt is randomly generated from a range
[Ml,Mu]. Correspondingly, the Mt-dimensional PF can be
constructed as

µdobj,i = sin(yi)
∏i−1

k=1
cos(yk), (17)

where yk = π(xk + 1)/6 for k = 1, . . . ,Mt. Thus, the PF
always satisfies

∑Mt−1
i=1 µ2

i + 4µ2
Mt

= 1 for any Mt.
6) Degeneration

Time-varying PF degeneration can be achieved by specify-
ing first a degeneration level dt at time t, and then constructing
the dt-D PF. The following presents two degenerate examples.

a) Linear degenerate PF: This is based on the simplex-
shape PF of (3). It is defined as

µldeg,i=

{
(1 + g − yi)

∏i−1
j=1 yj if 1≤i<M ,

y1 . . . yM−2yM−1 if i = M .
(18)

with

yi =

{
xi, for 1 ≤ i ≤ dt
0.5 + xi| sin(0.5πt)|g, for dt < i ≤M − 1

where the g function is already defined in (1). It indicates that
the last M−dt objectives are positively correlated. Fig. S8(a)
(supplementary material) shows a linear degenerate PF of
M = 3 and dt = 1.

b) Spherical degenerate PF: This requires the sphere-
shape PF. It is defined as

µsdeg,i=

{
sin(yi)

∏i−1
j=1 cos(yj) if 1≤i<M ,∏M−1

j=1 cos(yi) if i = M .
(19)

with

yk =

{
0.5πxk, for 1 ≤ i ≤ dt
arccos( 0.5

√
2

1+xk| sin(0.5πt)|g ), for dt<i ≤M−1

where k = (pt+i−1) mod (M−1)+1 with pt randomly chosen
from [1,M−1]. This also results in M−dt correlated objectives
whose indices are determined by pt. Thus, the spherical
degenerate PF is more difficult than the linear one. Fig. S8(b)
(supplementary material) shows a spherical degenerate PF of
M = 3 (dt = 1 and pt = 2).
7) PF shrinkage/expansion

Another scenario we would like to consider is the shrinkage
or expansion of the PF over time. Here, we create this scenario
based on the spherical PF of (19), in which yi is defined as

yi =
π

6
Gt + (

π

2
− π

3
Gt)xi, (20)

where Gt = | sin(0.5πt)|. Fig. S9 (supplementary material)
shows the scenario of PF shrinkage over time.
8) Search favourability

Often than not, EAs favour PF regions that are easy to

approximate. It is interesting to create a dynamic scenario
where favoured PF regions change over time and investigate
its effect on EAs. Consider the following g function

gfavour =

{∑n
i=M (−0.9p2i + |pi|0.6), x ∈ Φ(x, t),

p2i , otherwise.
(21)

where pi = xi− | sin(0.5πt)| and Φ(x, t) is a time-varying
subspace for which barriers exist around the global optima.
This means the PF region corresponding to Φ(x, t) is much
unfavoured than other regions. Here, we recommend Φ(x, t)=
{x ∈ [0, 1]n | 3t−b3tc≤

∑M−1
i=1 xi ≤ 3t+0.2−b3t+0.2c}.

C. Test Suite

A total of 15 scalable dynamic problems (SDP) are in-
stanced using the above-mentioned component functions to
imitate a number of representative and well-known real-
world features. These are briefly tabulated in Table I, and a
detailed description of SDP can be found in Table S1 of the
supplementary material.

Note that, SDP uses different g functions, capturing a variety
of PS shapes. For example, there are several problems (e.g.
SDP2) for which the PS centroid and some PS regions move
in distinct directions in the event of changes (most existing
problems do not have this feature, see Fig. S10 for details).
This may be a new challenge for recently popular centroid-
based prediction algorithms [52], [55]. Prediction algorithms
may encounter difficulties when solving problems like SDP1,
since the PS varies in a random manner. The PS shapes
for all the problems could be made as complicated as LZ
problems [30], but such complexity is not, and also should
not be the main focus of DMOPs, as its existence shadows
the importance of landscape dynamics [11].

Table II provides a comparison between SDP and existing
DMOPs. For each property, ‘3’ (‘7’) represents the presence
(absence) of this property for the corresponding test suite. In
other words, environmental changes in those problems can be
detected with one re-evaluation of a random population mem-
ber. As can be seen, multimodality and variable linkages have
gained most attention, and SDP embraces a variety of rarely
studied but important characteristics. The source code of SDP
is available at http://homepages.cs.ncl.ac.uk/shouyong.jiang/.

D. Links between SDP and Applications

SDP captures a number of real-world features. Examples
include but not limited to the following applications: Elec-
tromagnetic micromirrors [38], crop growth [40], railway
rescheduling [9], dynamic subset sum [42], speed reducer
model [51], pressure vessel model [51], greenhouse control
[48], predictive control [4], weapon selection & planning
[46], PID control [10], unstable plant control [17], self-
paced learning [28], spacecraft equipment layout [27], distance
minimisation [56], job shop scheduling [44], engine calibration
[32], and water distribution systems [39].

Fig. 1 briefly shows the links between the above applications
and SDP features. Please refer to Section VIII of the supple-
mentary material for more details on how they are linked to
each other.

http://homepages.cs.ncl.ac.uk/shouyong.jiang/
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TABLE I
DEFINITION OF SDP PROBLEMS. PF AND VARIABLE RANGES CAN BE ADJUSTED BASED ON [18]. ALSO, xi ∈ xI IS REPLACED BY x

K(t)
i WHERE

K(t) = exp(10 sin(0.5πt)) IF DYNAMICS ON DIVERSITY ARE CONCERNED

Prob. Definition Prob. Definition

SDP1
fi=1:M (x, t) = (1 + g)µ∏

,i

g =
∑n
i=M+1(xi − x̄i,t)2 . x̄i,t updated by (14)

search space: 1 ≤ xi=1:M ≤ 4, 0 ≤ xi=M+1:n ≤ 1
SDP9

fi=1:M (x, t) = (1 + g ·max(0, i−M − 1))µdisc1,i +G(t)
g =

∑n
i=M (xi − 1

π
| arctan(cot(3πt2))|)2

Gt = | sin(0.5πt)|, search space: 0 ≤ xi=1:n ≤ 1

SDP2
fi=1:M−1(x, t) = (1 + g)µ∑

,i

g = sin(π
8
x1)

∑n
i=M (xi − cos(t+ 2x1))2

search space: 1 ≤ xi=1:M−1 ≤ 4,−1 ≤ xi=M :n ≤ 1
SDP10

fi=1:M (x, i) = (1 + g ·max(0, i−M − 1))µdisc2,i
g =

∑n
i=M (xi − sin(x1 + 0.5πt))2

search space: 0 ≤ xi=1:M−1 ≤ 1,−1 ≤ xi=M :n ≤ 1

SDP3
fi=1:M (x, t) = (1 + g)µknee,i yi = xi−cos(t)
kt = b5| sin(πt)|c, g =

∑n
i=M(4y2i −cos(2ktπyi) + 1)

search space: 0 ≤ xi=1:M−1 ≤ 1,−1 ≤ xi=M :n ≤ 1
SDP11 fi=1:M (x, t) = (1 + gfavour)µsphere,i

search space: 0 ≤ xi=1:n ≤ 1

SDP4
fi=1:M (x, t) = (1 + g ·max(0, i−M − 1))µmix,i
g =

∑n
i=M (xi − cos(t+ x1 + xi−1))2

search space: 0 ≤ xi=1:M−1 ≤ 1,−1 ≤ xi=M :n ≤ 1
SDP12

fi=1:M−1(x, t) = (1 + g)(1− xi)µlinear,i
g =

∑nt
i=M (xi − sin(ntt) sin(2πx1))2 . nt from (15)

search space: 0 ≤ xi=1:M−1 ≤ 1,−1 ≤ xi=M :nt ≤ 1

SDP5
fi=1:M (x, t) = (1 + g)µsphere,M−i+1 . yi from (20)
g = Gt +

∑n
i=M (xi − 0.5Gtx1)2, Gt = | sin(0.5πt)|

search space: 0 ≤ xi=1:n ≤ 1
SDP13

fi=1:Mt (x, t) = (1 + g)µdobj,i .Mt from (16)
g =

∑i=n
i=M+1 (xi − it

M+it
)2

search space: 0 ≤ xi=1:n ≤ 1

SDP6
fi=1:M (x, t) = (1 + g)µdetect,M−i+1

g =
∑n
i=M (xi − 0.5)2(1 + | cos(8πxi)|)

search space: 0 ≤ xi=1:n ≤ 1
SDP14

fi=1:M−1(x, t) = (1 + g)µldeg,i
dt = 1 + b|(M − 2) cos(0.5πt)|c, g =

∑n
i=M (xi − 0.5)2

search space: 0 ≤ xi=1:n ≤ 1

SDP7 fi=1:M (x, t) = (0.5 + gmulti)µlinear,i
search space: 0 ≤ xi=1:n ≤ 1

SDP15
fi=1:M−1(x, t) = (1 + g)iµsdeg,i
dt = rndi1t (1,M − 1), pt = rndi2t (1,M − 1) . pt for (19)
g =

∑n
i=M (xi − dt

M−1
)2 search space: 0 ≤ xi=1:n ≤ 1

SDP8 fi=1:M (x, t) = (1 + g)µsphere,M−i+1, g =
∑n
i=M (xi − sin(tx1))2 + gnsc, search space: 0 ≤ xi=1:M ≤ 1,−1 ≤ xi=M :n ≤ 1

The time t is 1
nt
b τ
τt
c, where nt, τt, τ represent the severity of change, frequency of change, and iteration counter, respectively.

rndit(a, b) generates a random integer from [a, b] at time t. sgn(·) denotes the sign function. . starts a comment.

TABLE II
COMPARISON BETWEEN SDP AND EXISTING DMO PROBLEMS

Test Suite Scalability Multi-
modality

Variable
linkage

Irregular PF
boundary

PS unpre-
dictability

Multi-
knee

Search fa-
vourability

Degen-
eration

PF con-
nectivity

dynamic
M /n

Detectability
of change Origination

SDP 3 3 3 3 3 3 3 3 s,ns,d M,n 3 new
FDA [10] 7 7 7 7 7 7 7 7 s 7 7 ZDT/DTLZ
DIMP [26] 7 7 7 7 7 7 7 7 s,d 7 7 ZDT
DSW [33] 7 7 7 7 7 7 7 7 s 7 7
dMOP [14] 7 7 7 7 7 7 7 7 s 7 7 ZDT
T [17] 3 3 7 7 7 7 7 7 s M,n 7 DTLZ
ZJZ [52] 7 7 3 7 7 7 7 7 s 7 7 FDA/LZ
HE [16] 7 3 3 7 7 7 7 7 s,d 7 7 FDA/LZ/WFG
UDF [3] 7 3 7 7 3 7 7 7 s,d 7 7 ZDT
JY [20] 7 3 3 7 7 3 7 7 s,d 7 7
GTA [11] 7 3 3 7 7 7 7 3 s,d 7 7 ZDT/DTLZ
CLY [5] 3 3 7 7 7 7 7 7 s M 7 T/DTLZ
‘s’, ‘ns’, or ‘s’ in the column of PF connectivity denote DMOPs exist having a simply-connected, non-simply connected, or disconnected PF, respectively.
‘M’ or ‘n’ in column of ‘dynamic M/n’ means DMOPs exist having a time-varying number of objectives or variables, respectively.

The benchmarks have a few limitations due to the fact that
real applications are highly complex and diverse, and there
are still a lot features that are not well characterised. Thus,
it is difficult to develop a perfect test suite that can model
and reflect well all possible real-world features. Despite that,
constructing some test scenarios based on well characterised
features is of great importance for the analysis of EAs.
The proposed SDP test suite simulates a number of real-
world features in a simplified manner from the literature. The
simplification somehow reduces realisticity but is still helpful
for understanding of strengths and weaknesses of algorithms.
Also, some of the test cases may serve as adversarial examples
for DMOP solvers.

IV. EXPERIMENTAL STUDIES

A. DMO Algorithms

Five different DMO algorithms are employed for study-
ing the proposed benchmarks, each representing a type of

EAs. They are 1) the Pareto dominace based DNSGA-II [7];
the decomposition-based MOEA/D [49]; the multipopulation
based dCOEA [14]; the population prediction based PPS [52];
(5) and the steady-generational SGEA [22]. In this paper, PPS
with regularity model [50] (PPS+RM2) and nondominated
sorting (PPS+NS) are both analysed. All the algorithms are
allowed to use 10% of the population as change detectors
in every generation. Each algorithm has a way to respond
to the detected environmental changes. To be more specific,
DNSGA-II hypermutates a portion of population members.
MOEA/D re-evaluates the population. PPS records history
search information and predicts the new location of the
PF/PS. dCOEA increases population diversity by retrieving
its memory population whereas SGEA relocates a portion of
population that have high density. More detailed information
can be referred to the original papers.

In the experiment, 2, 3 and 5 objectives were tested for
SDP1-12. The number of objectives varied from 2 to 5 for
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Fig. 1. Links between SDP features and real-world applications.

SDP13, and was fixed to 5 for SDP14-15 to simulate PF
degeneration. Since all the algorithms except MOEA/D were
originally designed for multiobjective cases, their performance
may degrade vastly for the 5-objective case, a well-recognised
issue in many-objective optimisation [23]. Here, such algo-
rithms were incorporated with the shift-based density estimator
(SDE) [29] to alleviate this scalability issue. The number of
variables (n) for all SDP instances except SDP12 was 10. For
SDP12, the lower bound nland upper bound nu were 10 and
20, respectively. The severity and frequency of change was set
to nt=10 and τt=10, respectively. All the algorithms with a
population size of 100 (note that, the same number of weight
vectors was generated for MOEA/D) were executed 30 runs
for each SDP instance. Each execution was terminated after
30τt+50 generations, where the first environmental change
occurs after 50 generations.

B. DMO Performance Measures

The paper uses the following three popular performance
measures for algorithm analysis.

1) Mean inverted Generational Distance (MIGD): MIGD
[20] is adapted from IGD [50], a static performance indicator
that measures both the convergence and diversity of solutions
found by an algorithm. The reference set consists of around
1000 uniformly sampled points from the PF.

2) Mean Hypervolume Difference (MHVD): The MHVD
[22] is a modification of the static measure HVD [53] that
computes the gap between the hypervolume of the obtained
PF and that of the true PF. The reference point for the
computation of M -dimensional hypervolume is (z1+0.5, z2+
0.5, · · · , zM+0.5), where zj is the maximum value of the j-th
objective of the true PF.

3) Mean Detection Timeliness (MDT): MDT is proposed
to measure how timely an environmental change is detected,
which is defined as:

MDT =
1

T

∑T

i=1
DTt (22)

with

DTt =

{
Evalt−1
ndτt−1 if change detected,

1 otherwise,
(23)

where Evalt is the number fitness re-evaluations to detect a
change. nd is the number of candidate detectors in every gen-
eration. The smaller DTt, the earlier a change detected. The

TABLE III
PERFORMANCE RANKING BASED ON THE MIGD MEASURE FOR SDP1-15

Alg.
SDP Avg.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rank
SGEA 3 5 2 2 2 2 2 2 1 2 4 3 2 1 3 1
MOEA/D 6 6 3 5 4 5 4 6 3 5 6 4 6 6 2 6
DNSGA-II 5 3 6 3 3 1 3 5 3 4 5 6 3 1 5 4
dCOEA 1 4 1 6 5 3 1 1 6 6 1 1 1 3 1 2
PPS+RM2 2 1 5 1 1 6 6 2 2 1 3 5 4 5 3 3
PPS+NS 4 2 4 4 6 4 5 2 5 3 2 2 5 4 6 5

earlier the change detected, the more time left for algorithms to
react to the change. This new measure is expected to facilitate
detectability analysis of some SDP problems, i.e. SDP6-7.

C. Algorithm Comparison on SDP Test Suite

Six algorithms are compared to study their strengths and
weaknesses on the proposed SDP test suite. Both MIGD and
MHVD values of these algorithms are detailed in Table S2 and
Table S3 of the supplementary material, which are roughly
consistent with each other. For simplicity, we only present in
Table III the ranking of six algorithms for each SDP problem
based on the MIGD measure. The ranking is calculated as
follows. For every SDP problem with M (M ∈ {2, 3, 5})
objectives, each algorithm is compared with the rest, according
to MIGD, using the Wilcoxon rank-sum test at the 0.05
significance level with the standard Bonferroni correction [1].
The algorithms are then ranked according to the total number
of wins over different M values. Algorithms are allowed to
have the same rank if there is a tie. This procedure applies
to all the SDP problems. Finally, the six algorithms are also
assigned a unique rank (the last column in Table III) for their
performance on average on the SDP test suite, which is done
by sorting the sum of individual ranks for each SDP problem.

The ranking table shows that SGEA, dCOEA, and
PPS+RM2 are the top three best algorithms for SDP. It
suggests that SGEA is most robust although it wins less than
dCOEA over 15 SDP problems. dCOEA is in the first place
for 8 problems but it obtains poor ranks for the other problms,
making it the second in the average ranking.

dCOEA has the best performance on SDP1 and SDP3,
showing it has good ability to track unpredictable PS moves
(SDP1) and handle time-varying multimodality (SDP3). For
SDP2, the time-dependent stretch of the PF range and variable
dependencies present a big challenge to all the algorithm
except PPS+RM2, as evidenced in Fig. 2. The outperformance
of PPS+RM2 can be probably attributed to the regularity
model (RM2), which has an advantage of cracking variable
linkages. The suspicion is also supported by the performance
difference between PPS+RM2 and PPS+NS on other SDP
cases, e.g., SDP4-5. This means RM2 sometimes may play
a more important role in the PPS+RM2 algorithm than PPS
for handling dynamics.

In addition to variable-linkage, SDP4 and SDP5 also have
dynamics on the number of local knee regions and the size of
the PF manifold, respectively. dCOEA seems more sensitive
to these dynamics and thus not an ideal solver for these
problems compared to PPS+RM2 or SGEA.
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(d) dCOEA (e) PPS+RM2 (f) PPS+NS
Fig. 2. PF approximations of six algorithms for SDP2.

SDP6-7 take into account the detectability of environmental
changes, in addition to multimodality. DNSGA-II and dCOEA
are top solvers for these two problems, respectively. It can be
also noticed that PPS+RM2 is least suited to SDP7. We use
MDT values, presented in table IV, to help us analyse the
key challenge in SDP6-7. It is clear that all the six algorithms
require multiple reevaluations for change detection. Despite
slow change detection performance, SGEA has good MIGD
values for both of the problems, implying that SGEA benefits
greatly from its change reaction mechanism. PPS+RM2 also
has relatively large MDT values, which can be an explanation
for its poor performance on SDP6. One the other hand,
PPS+RM2 detects changes promptly for SDP7, as evidenced
by very small MDT values. However, its large MIGD values
imply that PPS+RM2 struggles to track the moving global
optima in a multimodal landscape. It is worth mentioning that
SDP6-7 are specialised in testing algorithms’ detectability of
changes, a characteristic that existing test suites do not have.
Such speciality is demonstrated by the visualization of PF
approximations of SDP6-7 in Fig. S16 and Fig. S16 of the
supplementary material, from which it is clear to see that a
failure to detect changes leads to the loss of PF tracking.

The time-varying and non-simply connected PF of SDP8
influences MOEA/D most. This is due to the waste of weight
vectors in MOEA/D that pass through PF holes. Thus, SDP8
is a good adversarial example for decomposition-based DMOP
solvers.

Disconnected DMOPs are challenging. This applies espe-
cially to dCOEA for SDP9-10. For disconnected DMOPs,
algorithms may have difficulty in finding the whole discon-
nected PF segments. Taking SDP10 as an example, we plot
the PF approximations obtained by SGEA in Fig. 3, for the
first four time steps. As seen, SGEA struggles to approximate
the leftmost PF segment. There is a piece of PF segment for
f1 ∈ [0.8, 1] at t = 0, but it disappears at t=0.1 and 0.2.
Then, it is present at t = 0.3 and SGEA fails to identify
its appearance. The dynamics of this problem cause SGEA to
lose diversity when certain PF regions disappear suddenly and
appear after several environmental changes. Other optimisers

experience similar difficulties.
SDP11 has a time-varying PF segment that is difficult to

approximate. This dynamic affects considerably the perfor-
mance of MOEA/D and DNSGA-II. dCOEA is more robust
than the other algorithms for this problem. The variable-based
multipopulation in dCOEA renders a good performance of
tracking the movement of the search-unfavoured PF segment.
The multipopulation strategy in dCOEA is further shown to be
a big advantage for solving SDP12 with a changing number of
variables. PPS-based algorithms also have good performance
for these two problems.

SDP13-15 have very simple PSs and satisfy the condition
of PPS that PSs should be similar in two consecutive envi-
ronments. However, the two PPS-based algorithms show poor
performance on these problems, demonstrating that dynamics
in the number of objectives and degeneration affect greatly
PPS-based algorithms. In contrast, dCOEA and SGEA are
more suited to these kind of dynamics.

Unsurprisingly, MOEA/D performs poorly on the SDP
problems. This means that its fast convergence is no longer
an advantage in handling dynamic scenarios like SDP. While
fast convergence is desirable, it is more important to have a
sound reaction response strategy when handling DMOPs.

We display the averaged IGD evolution curves of the algo-
rithms for some selected 2-objective SDP problems in Fig. 4 to
illustrate the difficulty of the underlying dynamics. The IGD
curves and PF approximations for other SDP instances can
be found in Section IX, supplementary material. Clearly, the
plots demonstrate that the SDP problems are able to identify
the strengths and weaknesses of the algorithms.

D. Advantages of SDP Features

We empirically compare DMOPs with and without SDP
features in order to understand how advantageous SDP is over
existing test problems for testing algorithms. To do so, we
created another SDP variant, named vSDP, by deactivating
important SDP features and adding existing popular features
to the original SDP1-14 (changes detailed in Table S4 of
the supplementary material). vSDP1-14 was compared against
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TABLE IV
MEAN AND STANDARD DEVIATION VALUES OF MDT OBTAINED BY SIX ALGORITHMS FOR SDP6-7 (BEST VALUES ARE HIGHLIGHTED IN BOLDFACE)

Prob. M SGEA MOEA/D DNSGA-II dCOEA PPS+RM2 PPS+NS

SDP6
2 9.8350E-2(4.6869E-2) 6.6128E-2(2.6956E-2) 7.9680E-2(2.5718E-2) 9.6768E-2(2.8321E-2) 8.9680E-2(1.7084E-2) 5.7929E-2(2.0722E-2)
3 8.9175E-2(1.8792E-2) 5.7239E-2(1.2390E-2) 5.3316E-2(1.7277E-2) 5.2054E-2(1.1462E-2) 5.4579E-2(1.8596E-2) 5.4697E-2(1.4627E-2)
5 8.5354E-2(2.9489E-2) 3.8939E-2(1.3097E-2) 3.1279E-2(1.1426E-2) 3.7071E-2(1.6682E-2) 7.5471E-2(1.7673E-2) 3.3872E-2(8.5727E-3)

SDP7
2 3.0690E-2(2.0408E-2) 2.2896E-2(2.1634E-2) 1.2795E-2(8.5305E-3) 2.2222E-3(4.1459E-3) 1.8350E-3(4.9067E-3) 1.5825E-2(1.7273E-2)
3 3.0976E-2(2.1158E-2) 3.0741E-2(2.0845E-2) 3.9815E-2(2.5565E-2) 7.6936E-3(9.9103E-3) 2.9125E-3(2.2587E-4) 5.6869E-2(2.5704E-2)
5 3.5354E-2(2.2739E-2) 2.6364E-2(2.0363E-2) 8.9226E-4(2.2100E-3) 4.7643E-3(5.7931E-3) 2.9293E-3(7.3574E-3) 1.0943E-3(9.1315E-4)
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Fig. 3. PF approximations of SGEA for SDP10 from t = 0 to t = 0.3.
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Fig. 4. Evolution curves of averaged IGD for selected problems.
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Fig. 5. Comparison between problems with and without SDP features.

SDP1-14 based on their MIGD values obtained by three
algorithms.

Fig. 5 shows the boxplots of MIGD values for the com-
parison between some selected SDP variants (please refer to
Fig. S24 of the supplementary material for more comparisons).
As seen, the SDP features are more challenging than existing
features and they help to discriminate algorithms. For example,
the three algorithms perform similarly on existing features
in vSDP5 and vSDP9. In contrast, they obtain significantly
different results on the SDP features for the corresponding
problems. In addition, some SDP features can reveal the
sensitivity of algorithms. It is shown that DNSGA-II is highly
sensitive to unpredictability in SDP1 whereas SGEA and
MOEA/D not. MOEA/D is more robust than SGEA and
DNSG-II to PF/expansion/shrinkage captured by SDP5. Thus,
SDP has a great advantage in discriminating algorithms and
understanding the sensitivity of algorithms when used.

E. Comparison with Other Test Problems

Here, we would like to make a comparison between SDP
problems and some widely-used test problems. Three SDP
problems are chosen to compare with three FDA [10] problems
and two dMOP [14] problems, for which the number of
variables was set to the same as SDP. The comparison includes
both 2-objective and 3-objective scenarios (the MHVD metric
is reported in Table S5, supplementary material). It shows that
the SDP problems are more challenging than the FDA and
dMOP ones. The MHVD values for SDP problems are over an
order of magnitude larger than most FDA or dMOP problems.
Some algorithms that work well on existing problems experi-
ence performance deterioration when tested on SDP problems.

We noticed that some existing test suites, i.e., UDF [3]
and GTA [11], also recognise the importance of several
SDP features, including variable linkage, degeneration, and
unpredictability. Thus, we compared SDP against the test
suites with these features (settings for comparison are de-
tailed in Section XII of the supplementary material), and the
comparison is illustrated in Fig. 6. It is observed from the
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Fig. 6. Average IGD evolution curves obtained by SGEA for different predictability, variable-linkage, and degeneration schemes.

figure that the unpredictability of SDP presents more intense
changes to the algorithm SGEA than that of UDF for most
of time steps (when spikes appear). The difference is due to
that variables in SDP have different magnitudes of random
variations when an environmental change occurs, which is not
the case with UDF. In Fig. 6(b), variable linkages in SDP and
GTA induce similar impacts on SGEA. In contrast, variable
linkages in UDF seem to overwhelmingly outweigh dynamics
and therefore make it difficult to analyse the effect of the
underlying dynamics. In Fig. 6(c), SDP-based degeneration
shows more diverse dynamics variations compared to GTA.
The IGD values for GTA-based degeneration keeps increasing
after the first environmental change. A further analysis on
problem formalism reveals that degeneration in GTA occurs
very rarely, only when the PF surface becomes a curve.
It is the changing size of the PF in GTA that causes the
deterioration of SGEA over time. This GTA feature is different
from degeneration in SDP and thus is not effective to be used
for studying dynamic degeneration.

We also studied other important characteristics, i.e., spread
of solutions, time-changing concavity-convexity, and discon-
nected PF components. Comparison of SDP and existing
benchmark functions (mainly FDA [10], dMOP [14], HE [16])
is detailed in Section XII, supplementary material.
F. SDP as Adversarial Problems

SDP has another use for adversarial examples to opti-
misation solvers. It is shown in previous sections that the
existing solvers encounter vast difficulties in a number of real-
life dynamic features captured by SDP. We highlight these
features that are poorly understood in the literature: time-
dependent multimodality (SDP2-3), time-dependent knees
(SDP3-4), deceptive changes (SDP6-7), dynamics in discon-
nectivity (SDP8-10), dynamics in objective and/or variable
scalability (SDP12-13), and dynamic degeneracy (SDP14-15).
These SDP adversarial examples facilitate a tool not only to
better understand the robustness of solvers and make the right
decision on selection of solvers for problems in question, but
also to develop advanced techniques against them.

V. CONCLUSION

Dynamic multiojective optimisation has received growing
attention over the last 10 years, yet the corresponding test
environments facilitating algorithm analysis have not been
well understood. While this paper helps to provide a better
understanding of DMOPs, additional issues are identified after
a wide review of existing test problems. These issues limit the
assessment of EAs in dynamic environments.

Having realised the limitations of existing DMOPs, we
highlighted a diverse set of dynamics and features that a good
test suite should have. We also developed a SDP test suite to
include desirable dynamics that have been rarely considered
in the DMO literature but occur frequently in real life. Our
experiments showed that the SDP test suite presents different
degrees of difficulty to the algorithms tested and is able to
identify the strengths and weaknesses of these algorithms.
Furthermore, it was demonstrated that the SDP problems can
test EAs in ways that commonly used DMOPs can not. SDP
can be also used as adversarial examples for solvers.

It is expected that more advanced algorithms will be avail-
able for DMO, and a wider range of DMOPs as well. The SDP
test suite could be adjusted or modified to create appropriate
scenarios for other types or test environments, e.g. constrained
and/or noisy DMOPs.
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