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Abstract 

 

In large gravel-bed rivers bed material transport estimation is challenging since theoretically-

based formulas often fail to accurately predict sediment fluxes, and it is difficult to carry out 

field measurements. A viable alternative to direct measurement is provided by the virtual 

velocity approach representing a hybrid solution to calculate the bed material transport based 

on a theoretical framework and use of tracers. This work aims to improve the methodology 

and to assess the role of input factors through a case-study application carried out in the 

Parma River (Italy). Two tracer types and scour chains were deployed at four sections. Data 

on water level, transport processes, particle travel distances and active layers were collected 

over 17 months and 6 events. The transport that occurred during two events was calculated 

applying different configurations taking in account for several input factors (i.e. grain size, 

water stage, topography). Applying simple or more complex configurations led to significant 

differences in transport estimates: in relation to channel morphodynamics, different factors 

(e.g. variability of water level within the cross-section in multi-thread channels) play a key-

role on transport processes. Results indicate that it is crucial to collect and process field data 

developing reach-specific transport rating-curves and to combine different type of tracers for 

monitoring the clast displacement lengths. Based on the methodological improvements and 

sensitivity analysis addressed in this study, we developed a decision tree in order to design 

future applications of the virtual velocity approach for estimating the bed material load in 

different gravel-bed river contexts. 
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1 Introduction 

 

In gravel-bed alluvial rivers, episodic bed material transport is the most significant factor 

controlling a river evolution and morphodynamic processes (Ashmore, 2013; Church, 2006; 

Church & Ferguson, 2015; Ferguson, 2007). A reliable estimation of bed material transport is 

a key issue to address several questions (e.g. river morphodynamics study and flood risk 

management) but it is notoriously hard to achieve (Ferguson, 2007; Haschenburger, 2013). 

One of the most used solutions to address this issue is through theoretically-based formulas 

(e.g. Recking et al., 2012) but often the application of different relations proposed for a given 

context provides strongly incongruent estimates (Gomez & Church, 1989; López et al., 2014; 

Martin & Ham, 2005). To overcome this issue, traps and portable samplers (Bunte et al., 

2004, 2007; Helley & Smith, 1971) and indirect passive acoustic methods, like geophones, 

hydrophones (Rickenmann, 2017) and Acoustic Doppler profiling (Rennie et al., 2004a), 

have been successfully applied in different contexts (Rennie et al., 2004b, 2017; Rickenmann 

et al., 2014; Wyss et al., 2016). For defining the instantaneous flux, field measurements need 

to be carried out during transporting events, implying several issues in term of human safety 

and instrument installation during a flood in the context of wide rivers. Furthermore results 

are affected by several sources of uncertainty (Bunte et al., 2008; Vericat et al., 2006) due to 

the high sediment transport spatial (Clayton & Pitlick, 2007; Ryan & Dixon, 2007; Williams 

et al., 2015) and temporal (Hoey, 1992) variability in large rivers. For those reasons, field 

measurement techniques are more suitable for transport quantification in small streams and 

the most appropriate methods depend on the specific time-scale of interest.  
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A robust alternative for estimating event-scale bed material rate in large rivers is represented 

by the morphological approach (Ashmore & Church, 1998; Lane et al., 1995) which provides 

reasonable estimates integrated in time and space taking in account for errors (Brasington et 

al., 2003; McLean & Church, 1999; Wheaton et al., 2010) based on volumetric differencing 

techniques. Some improvements have been achieved in the challenge of making the method 

independent from specific boundary conditions, using surrogate estimates of particle path 

lengths (Kasprak et al., 2015; Pyrce & Ashmore, 2003a; Vericat et al., 2017) based on local 

morpho-types (e.g. dominant particles travel distances tie to the length scale of the bar) or 

employing tracer-particle travel distances (e.g. Papangelakis & Hassan, 2016; Pyrce & 

Ashmore, 2003b). However, the specification of transport rate from volumetric change (ΔV) 

using the diffuse sediment budgeting approach (ΔV= 𝑄𝑏𝑖𝑛
−  𝑄𝑏𝑜𝑢𝑡

) requires knowledge of a 

reference river section where the transport is known (Merz et al., 2006; Surian & Cisotto, 

2007) in order to reduce the equation unknowns from two (reach transport in- (𝑄𝑏𝑖𝑛
) and out- 

(𝑄𝑏𝑜𝑢𝑡
)) to one.  

 

Passive tracer-clasts (see Hassan & Roy, 2016) have been extensively used for sediment 

dynamics monitoring in several field studies (e.g. Bradley & Tucker, 2012; Church & 

Hassan, 1992; Haschenburger, 2013b; Hassan & Bradley, 2017; Petit, 1987; Sear, 1996; 

Thompson & Wohl, 2009). One of the most promising application concerning tracer-data is 

the development of calculation procedures to estimate bed material transport involving 

particle displacement lengths. An important parameter obtainable from tracers is the virtual 

velocity of the entrained grains, defined as the mean velocity characterizing the clasts during 

the period for which particles might be in motion (i.e. considering travel distances and 

competence period as in Ferguson and Wathen (1998) and Liébault et al. (2012)). Virtual 
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velocity is different from the actual instantaneous-velocity since, also during a "competent 

period", the coarse grains are characterized by short periods of quick movement interspersed 

with intervals of rest (Haschenburger & Church, 1998). Field measurements of virtual 

velocity have been used to estimate bed material transport in small streams (e.g. 

Haschenburger & Church, 1998; Liébault & Laronne, 2008) assuming uniform sediment 

transport for the whole section. In large gravel-bed rivers the active sediment transport 

mechanisms can change in time, at different river sections but also considering different 

locations at the same section, due to the relation between topography, water flux and local 

sediment characteristics (Haschenburger & Wilcock, 2003; Surian et al., 2009). Wilcock 

(1997) developed a useful theoretical framework that, taking in account these aspects and 

considering the local shear stress induced by the water flow on the channel-bed, seems 

appropriate to address the transport estimate at the “competent-event” time scale in wide 

rivers. Since Wilcock's framework (1997) has been applied in only few cases (e.g. Mao et al., 

2017), several methodological issues have not yet been addressed.  

 

This work applies the virtual velocity framework proposed by Wilcock (1997) through a 

tracer-based approach to estimate bed material transport in large gravel-bed rivers. We 

collected data through a two-year monitoring program in a sector of a north-Apennine river 

using different types of tracers. The research aims to assess the approach, in particular 

evaluating for the first time the significance of each factor that feeds into the calculation 

through a simplified sensitivity analysis. The specific research objectives are (i) to define a 

spatial scale (e.g. segment, reach, sub-reach) for field data collection and processing 

appropriate for the local river characteristics; (ii) to assess which tracer types are more 

suitable to provide reliable travel distances and to test the accordance of data collected from 
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different tracer types; (iii) to assess how each input factor (e.g. grain size, water stage, section 

topography) affects transport estimates and if such estimates vary significantly using different 

input factor configurations. 

 

2 Materials and Methods 

 

2.1 Study site and monitored events 

 

The study was conducted in a gravel- to cobbles-bed sector of the Parma River (Northern 

Apennines, Italy), which drains a 815 km
2
 catchment (Figure 1). The upstream boundary of 

the sector is at the closure-dam of the Marano retention basin, which retains all coarse 

sediment and so provides a zero-flux boundary condition. As a result, the channel pattern 

changes notably upstream and downstream from the dam, being respectively braided (average 

width = 340 m; braiding index = 3) and single-thread with alternate bars or wandering 

(average width = 60-160 m; braiding index = 1.2). Along the 4 km-long study sector, we 

selected four monitoring cross-sections: sections 1 and 2 (slope = 0.0051; width = 90-110 m), 

located respectively 1950 m and 2200 m downstream from Marano dam, and sections 3 and 4 

(slope = 0.0051; width = 120-140 m), located respectively 3250 m and 3400 m downstream 

from the dam (Figure 1). The study sector features (width, sediments characteristics, 

morphology) vary downstream from the dam, making possible to recognize two different 

reaches (Figure 1) characterized by internal variability at the geomorphic unit scale.  

 

The hydrological regime is seasonal with most precipitation occurring between November 

and April (Figure 2a). The mean annual flow is 11 m
3
 s

-1
. Not knowing a priori the water 
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discharge required to induce a competent bed material transporting event at the considered 

sections, we calibrated the monitoring implementation based on the fieldwork experience. 

The first field-observations (e.g. observations of morphological changes or sediment 

mobilization) allowed us to define a discharge threshold approximately equal to 35 m
3 

s
-1

 to 

identify a monitoring-significant (i.e. transporting) event. Over the 17 months of monitoring 

(January 2016 - May 2017), nine events occurred, the largest one with a recurrence interval 

of 2.1 years (peak discharge = 227 m
3
 s

-1
, Figure 2b). Pre-event installation and field 

monitoring, each one covering a single flood, were carried out only for six events, due to 

logistical issues. 

 

2.2 Estimating bed material transport through the virtual velocity approach 

 

Wilcock's (1997) approach calculates the mass and size distribution of material entrained and 

transported by flow from a unit channel area during a defined period. Three mobility 

conditions are identified: no motion, partial mobility and full mobility. Partial mobility is the 

condition in which only a fraction of the surface particles of a certain grain size are mobilized 

over a time interval (Wilcock & McArdell, 1997). The mass of material of the i-size 

entrained from a defined surface area, Mi (kg m
-2

) is given by: 

𝑀𝑖
𝑃𝑇 =  

𝑚𝑖𝐹𝑖𝑌𝑖

𝐷𝑖
2            (1) 

where mi is the mass of a single particle of size i (kg), Fi is the proportion of fraction i in the 

surface grain distribution, Di is the diameter of fraction i grains (m) and Yi is the proportion of 

surface particles of the fraction i transported in the event. The mass of a single grain of 

fraction i is calculated using the spherical approximation mi=((π/6)ρsDi
3
) where ρs is the 
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density of the grain material (kg m
-3

). When the tractive forces overcome a certain threshold 

such that Yi becomes 1, full mobility occurs. In this case, all surface particles of a certain size 

are removed (Wilcock & McArdell, 1997) and subsurface grains could be transported up to 

the thickness of the active layer (Wilcock, 1997). Equation (1) becomes: 

𝑀𝑖
𝐹𝑇 =  

𝑚𝑖𝐹𝑖𝑑𝑠

𝐷𝑖
3           (2) 

where ds is the active layer thickness (m) and Fi is now referring to the active layer.  

 

When Mi is known, to obtain the unit mass fractional transport rate (qi
u
, kg m

-1 
s

-1
) it is 

necessary to multiply the mass of entrained sediment (Mi, kg m
-2

) by the virtual velocity 

characterizing the i-size particles movement (Vi, m h
-1

): 

𝑞𝑖
𝑢 = 𝑀𝑖𝑉𝑖          (3) 

The main opportunity provided by this framework is to allow the calculation of qi
u
, referring 

to a definable portion of channel.  

  

Mobility conditions are determined by the intensity of the tractive forces locally induced by 

the flow on the streambed, expressed by the shear stress (τ, N m
-2

). We used the depth-slope 

approach (Mueller et al., 2005; Wilcock, 1993) τ = ρwghwS where ρw is the water density (kg 

m
-3

), g is the gravity acceleration (m s
-2

), hw is the water depth (m, defined for each 1-m wide 

portion of cross-section), and S is the streambed slope (in our case, it was averaged 

considering 400 m centered on each section to represent the mean slope of the entire section). 

To make τ independent from the sediment grain size, we used the conventional dimensionless 
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formulation of shear stress (τ*) considering the local median grain size (D50) applying 

equation (4): 

𝜏∗ =
𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷50
           (4) 

assuming a ρs= 2600 kg m
-3

 and using the surface D50 as in Mueller et al. (2005) and Parker 

(1990).   

 

As proposed by Mao et al. (2017), we simplified equation (1) as follows: 

𝑀𝑖
𝑃𝑇 =

𝑚𝑖𝐹𝑖𝑌

𝐷𝑖
2           (5) 

where Y is the proportion of mobilized streambed for a defined bed area and it is a proxy of 

the partial transport intensity defined like a condition of sediment mobility in which some 

surface grains remain immobile over the duration of a transport event, indicating the active 

portion of all grains on the bed surface (Haschenburger & Wilcock, 2003). Through 

equations (2), (3) and (5) we calculated values referred to a single i grain size fraction. To 

obtain the whole entrained material as a function of τ*, it is required to calculate the mass of 

entrained sediment and the fractional mass transport rate for each grain size class and then to 

sum all fractional results: 

  𝑞𝑢 = ∑ 𝑞𝑖
𝑢          (6) 

where q
u 

is the total unit mass transport rate (kg m
-1 

s
-1

) for the transported sediment.  
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2.3 Field monitoring procedures and data processing 

 

2.3.1 Topographic surveys, bed material grain size and tracers  

 

The four cross-sections were surveyed before and after each monitored event (Figure 2b) 

using a differential global positioning system (dGPS, Leica GS14, vertical accuracy ±0.02 

m). Employing aerial-photographs, sediments-vegetation field observations and elevation 

data, and using criteria reported in Mao and Surian (2010) geomorphic units (Belletti et al., 

2017; Brierley & Fryirs, 2013; Wheaton et al., 2015) recognizable along the sections were 

classified in: main channel, secondary channels, low and high bars, islands, floodplains and 

terraces (Figure 3). For each pre-event installation (Figure 2b), we selected between two and 

eight sites along each section (Figure 3) representative of each geomorphic unit surface-

sediments suitable for image grain size analysis and tracer installation (e.g. lack of fine 

sediments and herbaceous vegetation). Using an aluminum frame, we defined rectangular 

areas of 0.8 m * 0.6 m (respectively cross-stream and downstream) which were orthogonally 

photographed using a 16 megapixel digital camera. The photos were processed by the Digital 

Gravelometer software (Graham et al., 2005a, 2005b, 2010) deriving the surface grain-size 

distribution characterizing each site. Due to the camera resolution, we applied a lower 

truncation of 6 mm, comparable with that commonly used in the manual pebble count (Bunte 

& Abt, 2001; Wolman, 1954). Using the same procedure, we acquired and analyzed six 

photographs of vertical exposures visible in incised bar margins along the study sector 

(Figure 3), deriving values about the subsurface grain-size distribution (Storz-Peretz & 

Laronne, 2013). Fine material (< 6 mm) in average accounts for about 20% of sediment 

volume in the study reach for both surface and subsurface sediment. Field observations about 
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the streambed material fabric and structuring were carried out focusing on evidence of 

armoring (e.g. imbrication and grain sorting).  

 

After the photographing, the surface of the patches (0.8 m * 0.6 m) was painted using spray 

paint, i.e. each clast in the surface became a painted tracer (overall, 117 painted areas and 

about 38,000 painted clasts coarser than 6 mm were colored). This procedure avoids 

modifying the natural surface-sediment structure, and easily marks a large number of clasts 

without grain size limitations. The elevation (m a.s.l.) of each installed painted area were 

determined using the dGPS. To maximize the recovery rate we coupled painted areas with 

Passive Integrated Transponders tags (23-mm long PITs, Texas Instruments, LF Glass 

Transponder) inserted inside drilled individual-clast and detectable using an antenna if buried 

up to 0.3-0.4 m. For each pre-flood installation, we seeded between six and ten PITs for each 

painted area (898 PITs were employed during the monitoring with, on average, 150 PITs 

seeded during each event, similar to Chapuis et al., 2015), choosing clasts with sizes 

comparable with the coarser component of the local bed material (ranging from 28 to 180 

mm; 𝐷50𝑃𝐼𝑇𝑠
= 76 mm). PIT tagged clasts were placed close to the painted areas replacing 

existing clasts with similar size and shape, avoiding protrusion from the bed, in order to 

mimic the interlocking of natural surface particles (Chapuis et al., 2015). 

 

2.3.2 Section-specific water flow 

 

Information about water level are required to calculate tractive forces (equation 4). To obtain 

section-specific hydrographs we used two techniques: local pressure transducers and field 
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evidence. One pressure hydrometer (Solinst Levelogger 3001, accuracy ±0.005 m) was 

installed in the main channel at each study section (Figure 3), anchoring them at stable 

supports in hollow metal casings (Figure 3e). Knowing the pressure transducers elevation, the 

water level above it and using a barometric compensation (atmospheric data collected by a 

Solinst Barologger 3001 installed near to the study sector) it was possible to obtain a 

hydrograph referred to the specific river location with a precision of ±0.02 m and temporal 

resolution of 30 minutes. Field evidence of the maximum level reached by water during a 

flood (i.e. trash lines) in different portions of the channel (main channel and secondary 

channel banks or bar surfaces) has been collected using a dGPS after each monitored event at 

each section. Finally, data from local hydrometers and field evidence have been related with 

the corresponding discharges provided by the Marano dam gauging station (time resolution of 

30 minutes) through simple regression analysis (i.e. polynomial relationships). 

 

2.3.3 Sediment mobility  

 

The sections were surveyed immediately after the transport events. The painted areas were 

orthogonally photographed again and using the approach applied by Mao and Surian (2010) 

we described the effects of the transport. Areas could be: located above the maximum water 

stage (AWS), under no-motion (NM), partial transport (PT) (when some surface grains 

entrained and others remained immobile, independently of their size considering the bed as a 

whole, as defined by Haschenburger and Wilcock, 2003) or full transport (FT) conditions 

(referred to painted areas interested by a complete particle removal). After each monitored 

event, we searched and collected all the tracer grains that moved downstream from the 

activated study sites. For the painted particles the survey was limited to the visible grains on 
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the bed surface whereas, using an antenna, it was possible to recover also buried PITs 

(collected and stored for the following installations). Particle size (b-axes) and travelled 

distance from the center of the origin study site of each recovered tracer-grain were 

individually measured using a caliber and a tape, respectively. 

 

2.3.4 Proportion of the bed mobilized and Active layer 

 

Partial transport processes reflect on equation (5) through the Y parameter which refers to the 

proportion of mobilized bed material for a defined area, varying from 0 (no motion) to 1 (full 

transport). To quantify the extent of partial transport over the study sites we used the 

photographs collected after the events analyzing them as described by Mao et al. (2017). The 

painted residue pixels represent the proportion of not mobilized streambed surface, and Y (a 

proxy for the extent of partial transport at the painted area scale) is equal to one minus that 

value.  

 

Where locally full mobility occurs, the subsurface sediment can be mobilized due to the 

establishment of a mobile surface layer (considered in equation (2)). To collect field evidence 

about active layer thickness (erosion and sedimentation) we used scour chains and 

topographic surveys. Scour chains record the event-based maximum depth of scour or 

deposition (event active layer, as defined by Church and Haschenburger, 2017), taking in 

account also two-phases processes (Carling, 1987; Houbrechts et al., 2012). Following the 

approach used by Laronne et al. (1994), for four of the monitored-events, we installed from 

one to three chains at each section in correspondence of some selected painted areas, using 
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during the entire study period 28 chains in correspondence of painted sites (12 at sections 1-2 

and 16 at sections 3-4) (Figure 3). To extend the active layer dataset, we also employed 

topographical data measuring the post-event bed elevation in correspondence of each painted 

area where transport occurred, determining the variation in comparison with the pre-event 

elevation. Painted area elevation changes can just provide the sum of scour and fill at the 

considered point (i.e. punctual net variation), possibly leading to underestimation of the 

actual event active layer thickness in case of two-phases erosion-deposition processes, when 

compensation can occur (Lindsay & Ashmore, 2002). 

 

2.3.5 Sediment transport calculation 

 

Considering section topographies, event hydrographs and the local bed-material D50 (in 

function of geomorphic unit distribution characterizing the sections during the event), we 

calculated the τ* (equation (4)) active on the river bed for each 1 m-wide portion of cross-

sections (local τ*) with a time interval of 30 minutes (instantaneous τ*). Monitored 

parameters (mobility conditions, Y and ds) collected from all flooded painted areas were 

coupled with the maximum dimensionless shear stress (τ*max) active at the event peak on the 

specific study site, since collected data are considered as the results of the maximum acting 

tractive forces. The grain size specific virtual velocity (Vi, as defined by Wilcock, 1997) was 

calculated dividing the mean i-size fraction travel distance by the duration of transport 

determined considering the period for which the τ* locally active on the streambed was 

adequate to induce particle movement. Through regression analysis between the field 

monitored (Y and ds) or computed (mobility conditions, Vi) parameters and the τ*max, we 

defined empirical relations able to determine the parameters values in function of local and 
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instantaneous τ* active on the streambed. These relations (ds=f(τ*) and Y=f(τ*)) allowed to 

deal with the fractional transport equations (Equations (2) and (5)) and to calculate the unit 

fractional sediment transport rate (qi
u
, Equation (3)) introducing the virtual velocity empirical 

relations Vi=f(τ*, Di). Considering the local sediment grain size distribution, the total unit 

mass transport rate (q
u
) was calculated using equation (6) on each 1 m-wide portion of the 

sections with a temporal resolution of 30 minutes. Integrating the single calculated total unit 

mass transport rates over space (the cross-section extension) and time (the duration of the 

transport event), we estimated the bed material transport occurring for a specific section 

during a single transport event.  

 

2.3.6 Calculation factors and sensitivity analysis 

 

We calculated the bed material load for all channel material consisting of clasts larger than 6 

mm (b-axes). To apply the described calculation procedure it is necessary to consider some 

factors influencing the data input choices and possibly leading to relevant differences in the 

estimates. Using the obtained empirical relations and the associated uncertainties, we tested 

the method sensitivity considering four application factors, selected on the base of their 

hypothesized importance and the efforts required to measure such factors during the 

fieldwork. Calculations were carried out through seven data input configurations (Table 1) 

designed in order to evaluate the impact of single selected factors and the effects of some of 

their possible combinations. The simplest setting (configuration 1) considers a single section 

D50 for τ* calculation and an average water stage for the whole section, fixed cross-section 

topography during a transport event (i.e. the pre-event topography) and a single section-

sediment grain size distribution for the fractional transport calculation. We progressively 
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introduced application factors taking into account some aspects related to the natural 

complexity of the system: using (i) spatial variable water level along a single section 

(configuration 2) we tested the importance of the water flux at specific channel locations; 

considering (ii) local streambed D50 (configuration 3) and (iii) geomorpho-unit specific grain-

size curves (configuration 6) we evaluated the impact of the sediment characteristics on the 

tractive forces effectiveness and the importance of the fractional calculation; employing (iv) 

variable section topographies (i.e. pre-event topography which progressively changes into 

post-event topography during a single event calculation when full transport occurs) 

(configuration 4), we looked for the effect of the morphology evolution during a competent 

event. Configurations 5, 6 and 7 (the latter one taking into account all considered factors), 

allowed us to obtain new insights about the combined effects of different factors on the 

sediment flux estimates. The significance of the differences in estimates provided by different 

factors configurations have been evaluated considering the calculation uncertainties also in 

relation with the natural variability of sediment flux intensity at a given flow in a given 

section (Ashmore, 2013). 

 

3 Results 

 

3.1 Field observations 

 

3.1.1 Grain size and bed armoring 

 

Overall, 105 surface bed sediment and 6 vertical incised-bar margins (Figure 3) photographs 

(each photograph contains from 100 to 500 grains coarser than 6 mm) were collected. 
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Obtained grain size curves, divided in 11 half-psi classes (i.e. psi= -phi= log2D; D= grain 

size, mm), show a broad variability. Mean D50 and D84 were derived accordingly to different 

groupings: finally 6 different mean curves (Figure 4a) and characteristic parameters (Figure 

4b) were considered in order to describe the average surface grain size distribution according 

to section location (i.e. sections 1-2 and 3-4) and geomorphic unit (main channel, secondary 

channel and bar). Those curves show a decreasing trend in the grain size from upstream to 

downstream sections with main channel characterized by coarser material and secondary 

channels by finer material (Figure 4b). No temporal trends in grain sizes have been identified 

during the data-collecting period. Similar subsurface grain-size distributions along the entire 

study sector were obtained from the vertical photographs analysis, determining mean D50 

equal to 36 mm (Figure 4b). Field observations allowed us to recognize surficial grain 

sorting, imbrication and presence of coarser surficial grains in the upstream sections: this 

evidence of streambed armoring tend to decrease moving downstream from the dam. The 

calculated armor ratios (𝑫𝟓𝟎𝒔𝒖𝒓𝒇
/𝑫𝟓𝟎𝒔𝒖𝒃𝒔𝒖𝒓𝒇

) confirm field evidence: armor ratio ranges from 

1.56 to 2.86 (mean 1.75) in sections 1 and 2, whereas it ranges from 1.20 to 2.46 (mean 1.47) 

in sections 3 and 4. In accordance with Hassan et al. (2006), values higher and lower than 

1.50 have been respectively considered as indicative of high and moderate bed armoring for 

intermittent rivers. 

 

3.1.2 Water depth and flow intensity 

 

Data collected by hydrometers referred only to the main channel. Downstream sections are 

characterized by wandering morphology: the maximum water levels reached in the secondary 

channel for section 3 determined by the trash-line measures show that water level is not 

uniform within the section at a given water discharge, being lower in the secondary channel 
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during all the monitored events (Figure 5). We derived location-specific empirical 

relationships between local water-stages evidence (i.e. hydrometers data and maximum levels 

obtained by trash-lines) and corresponding discharge data at Marano dam through simple 

regression analysis (Figure 5). Based on local water levels (time resolution = 30 minutes) and 

grain size distribution, the local-instantaneous τ* (equation (4)) shows a broad variability, 

being higher at locations were sediments are finer and lower were bed material is coarser 

(Figure 6a, b, c). 

 

3.1.3 Assessment of the proportion of the bed entrained  

 

Considering the data derived from the painted areas under partial transport conditions, we 

related through simple regressions the calculated fraction of mobilized streambed material (Y) 

with the τ*max experienced by the study site during the event. Y tends to increase with the 

tractive forces active on the bed. Separately considering data collected from sections 1-2 and 

3-4, the best-fit regressions, characterized by different trends (Figure 7a), give logarithmic 

equations: 

Y 
1-2 

= 4.10+1.04log(τ*)          (R
2
= 0.93, SE= 0.08)          (7) 

Y 
3-4 

= 4.16+0.97log(τ*)          (R
2
= 0.82, SE= 0.11)          (8) 

Equations (7) and (8), respectively referring to upstream and downstream sections, have been 

employed to calculate the local and instantaneous proportion of activated streambed at 

section locations experiencing partial transport (Figure 6d). The standard error of regressions 

(SE) has been statistically derived as a good approximation of the 95% prediction intervals. 
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3.1.4 Estimate of the active layer thickness 

 

We related through simple regressions the maximum measurable erosion or deposition 

thickness (also in case of two-phase process) with the τ*max. Only 4 out of 28 installed event-

scour chains provided reliable estimate of the active layer thickness due to some technical 

issues (e.g. complete chain removal caused by lateral erosion or tear). Plotting chains data 

with those collected by topographic surveys (27 measurements) it turned out that the two 

techniques provided comparable results (Figure 7b). For this reason, we decided to fit jointly 

chains and elevation changes data, elaborating separately data collected from sections 1-2 and 

3-4. The best-fit regressions follow the squared-x models:  

ds
1-2

 = -0.021+40.3(τ*)
2 

         (R
2
= 0.74, SE= 0.09 m)          (9) 

ds
3-4

 = 0.011+35.7(τ*)
2 

         (R
2
= 0.83, SE= 0.06 m)          (10) 

Equation (9) and equation (10), respectively referring to upstream and downstream sections, 

have been employed to calculate the local and instantaneous mobile surface layer thickness 

(Church & Haschenburger, 2017) at section locations experiencing full transport (Figure 6e). 

 

3.1.5 Estimate of travel distances  

 

Our travel distance data refer to "unconstrained-stone conditions" since we considered the 

first displacements after tracer seeding for both employed tracers types which start from the 

bed surface. Mobilized painted clasts ranged from 2 to 170 mm in size (but we considered 

only particles coarser than 6 mm), while those with PITs ranged from 28 to 165 mm. We 

analyzed the collected data in terms of travelled distances, grain size, τ*max active on the 

source study site and tracer type (Figure 8). For low to medium τ*max (<0.04), painted 

particles displacement lengths do not show statistically significant differences with those 
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provided by PITs (Figure 8a, b, c). For high τ*max values, leading to full transport, the number 

of collected painted clasts decreases. Where some clasts were found (Figure 8d), PITs based 

distances seem to be about 35% higher. For very high values of τ*max the collected data came 

almost exclusively from PITs (Figure 8e, f). The number of tracers collected in relation to 

moderate transport conditions is around 100-300 clasts for study site predominantly coming 

from painted clasts, while for high τ* values the recovered tracers range between 6 and 40. 

Overall 4991 moved painted particles were collected. Considering the number of clasts 

colored at each painted area and the calculated study sites Y, we estimated a total value of 

about 18,000 moved painted particles from the 77 study sites interested by transport (47% of 

the colored grains). The average painted clasts recovery rate is about 28%, but, referring to 

the single study sites, it varies from 0 (intense transport, e.g. Figure 8f) to about 100% (low 

transport, e.g. Figure 8a). Overall 467 PIT tagged clasts were entrained (52% of the seeded 

PITs) and 401 were recovered both at the surface or buried (71 PITs, at a depth variable 

between few centimeters and 0.45 m, in agreement with the estimate of the active layer 

thickness). The PITs recovery rate after a single displacement is close to 100% for partial 

transport conditions and commonly more than 80% for very intense full transport conditions. 

 

3.2 Computation of parameters  

 

3.2.1 Sediment mobility: defining thresholds between mobility conditions 

 

Considering the 117 installed sites (Figure 3), 15% of them were at elevations that were not 

flooded by the monitored events, 19% experienced no motion conditions, 43% and 23% were 

in partial and full transport conditions, respectively. The collected data were analyzed 

considering the τ*max experienced by a painted area through one-way analysis of variance 
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(ANOVA), to define thresholds in terms of τ* between mobility conditions. As a first step the 

whole dataset was considered, showing that the three mobility classes were statistically 

different (p-value <0.002), but characterized by a significant overlap (Figure 9a). Then, 

considering two subsets, with data collected respectively at sections 1 and 2 (Figure 9b) and 

sections 3 and 4 (Figure 9c), we obtained strongly different classes (p-values <0.001 in both 

analyses). As the probability density functions of mobility classes are symmetrical and 

characterized by the same shape, to define the local thresholds of τ* able to induce different 

mobility conditions we used the median value between the 75
th

 percentile of the lower 

mobility class and the 25
th

 percentile of the upper mobility class distributions. Using the two 

subsets, local thresholds were defined: full transport occurs at τ* higher than 0.048 and 0.037, 

respectively for upstream and downstream sections; partial transport occurs at τ* between 

0.020 (τ*c) and 0.048 and 0.015 (τ*c) and 0.037, respectively for 1-2 and 3-4 sections. Local 

mobility thresholds have been employed to determine the processes active along sections in 

function of the τ* (Figure 6c).  

 

3.2.2 Virtual velocity 

 

Using the 30 minutes bed-acting τ* data and the defined mobility-thresholds, we were able to 

calculate the time of movement for each study site (hours). We used a combination of painted 

and PIT-tagged clasts displacement-length data to calculate mean travel distances (m) for 

each of the defined 11 particles size-classes for each site during a competent event. Virtual 

velocity (m h
-1

) was derived dividing the mean displacement length by the mobility duration, 

determined as the total time for which the τ* active on the study site was larger than that 

needed to initiate clast movement (i.e. τ* > τ*c) (local competent flow duration, e.g. as in 

Haschenburger & Church, 1998). Considering 77 sites and 11 size-classes, we would 
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potentially have had a total of 847 data relating virtual velocity to grain size and τ*max. 

Actually, for several size-classes we did not have displacement lengths: we used 268 inputs 

(127 and 141 respectively from sections 1-2 and 3-4) in order to apply multiple regression 

analysis between Vi, Di and τ*max distinguishing upstream and downstream sections data: 

Vi
1-2

= 0.64-15.07Di+44.98τ*          (R
2
= 0.49, SE= 1.27 m h

-1
, p-value < 0.05)          (11) 

Vi
3-4

= 1.76-16.65Di+32.23τ*          (R
2
= 0.48, SE= 0.78 m h

-1
, p-value < 0.05)          (12) 

Equations (11) and (12), showing that virtual velocity (mh
-1

) has direct and inverse relations 

with τ* and grains size (Di) respectively, have been employed to calculated the specific 

virtual velocity of each grain-size class moved during a transport event at a specific channel 

location and time interval. 

 

3.3 Bed material fluxes 

 

3.3.1 Temporal and spatial flux variability 

 

Considering the empirical relations between τ* and the parameters, we used Wilcock's 

equations (1997) to determine bed material transport rating curves. We applied equation (3) 

and then, using the six local surface grain size curves (Figure 4a), equation (6) to obtain six 

rating curves for the three considered geomorphic units (MC, B, SC), in the upstream (1-2) 

and downstream (3-4) sections (Figure 10). The rating curves τ*-q
u
 provide an estimation of 

local unit bed material transport (kg m
-1 

h
-1

) as a function of the local τ* active on the bed. 

The six curves start in correspondence of the τ*c and are characterized by two sub-trends 

referring to partial transport and, above the PT-FT thresholds, to full transport conditions. 

Since the measured depth of the mobilized surface layer (Figure 7b) is commonly thinner 
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than the observed armored surface depth (about 0.3-0.4 m) and due to the results obtained 

about the persistence of the armor layer during competent flows (Wilcock & DeTemple, 

2005), we considered the surface grain size distributions also for the elaboration of the full 

transport range rating-curves. Considering τ* active on the bed (Figure 6c), we determined 

the instantaneous-section bed material load as the sum of the unit bed material transports (1 

m-wide, 30 minutes) along the whole section, using τ*-q
u
 curves specific for section and 

geomorphic unit (Figure 6f). The event-section bed material load was determined as the sum 

of the instantaneous-section bed material loads calculated for the entire duration of the 

transport event.  

  

3.3.2 Uncertainties and natural variability in sediment transport 

 

Due to several sedimentological (e.g. surface material packing and structure) and 

morphodynamic (e.g. sediment supply, fluvial-unit dynamics) reasons, local-unit bed material 

load can be very different responding to a given τ* (Cudden & Hoey, 2003). The τ*-q
u
 curves 

were developed starting from empirical relations based on field data (Y, ds, Vi) collected from 

study sites located at different geomorphic units, under different morphodynamic transport-

conditions and subjected to the natural variability of local sediment mobilization mechanisms 

which ultimately produced data scattering. For these reasons, empirical equations are coupled 

with uncertainty bands determined using the standard error of regressions (see Figures 6d, 6e, 

7 and 8). Propagating the sources of uncertainty through the rule for multiplied quantities (i.e. 

adding in quadrature SEs of Y and Vi for partial transport and SEs of ds and Vi for full 

transport) for each τ* value, we determined the variability bands of the τ*-q
u
 curves (Figure 

10). Using the τ*-q
u
 curves and the variability bands, for each local and instantaneous τ* 

value considered in our calculations we determined the mean, the maximum and the 
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minimum associated q
u
 (Figure 6f). Integrating those values on the whole section, the 

corresponding instantaneous-section transport values were determined. The same operation 

allowed the calculation of the mean, maximum and minimum event-section transport values 

integrating the instantaneous-section fluxes (mean, maximum and minimum) over the 

hydrograph trend and finally to determine the variability (i.e. ±) associated with each 

estimate.  

 

3.3.3 Transport estimate using different data input configurations  

 

We tested the virtual velocity approach at two morphologically different sections (sections 1, 

sinuous with alternate bars, and 3, wandering; see Figure 3) and for two events of different 

magnitude (May 2016 - RI< 1 year and November 2016 - RI= 2.1 year; see Figure 2b). All 

calculations were carried out using rating curves derived for specific locations (i.e. sections 

1-2 and 3-4 and relative empirical relations) but they can be applied to a sediment transport 

calculation according to different input factors configurations. The estimates have been 

performed considering seven configurations (see tables 1 and 2). Starting from the simplest 

setting we applied the calculation introducing factors one at time (configurations 2, 3 and 4) 

and combining them (configurations 5, 6 and 7). The first five input settings use only two 

mean τ*-q
u 

rating curves derived considering one average grain size distribution curve for 

sections 1-2 and sections 3-4 (Figure 10c), whereas configurations 6 and 7 consider the six 

τ*-q
u
 rating curves derived for specific geomorphic units (Figures 10a and 10b).  

 

Event bed material transport estimates are presented as volume of moved material through a 

section during a competent flux with an uncertainty determined through the variability 

estimation procedure applied for each configuration. To convert the original results calculated 
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in kg to sediment volume (m
3
), we considered sediment porosity equal to 0.25 (not defined in 

the field due to the measure difficulties) as suggested for alluvial gravels by Carling and 

Reader (1982) and adopted in previous studies carried out for similar material (e.g. Martin & 

Church, 1995; Surian & Cisotto, 2007). At section 1 transport estimates vary from 64±44 m
3
 

(configuration 1) to 3±3 m
3
 (configuration 7) and from 614±158 m

3
 (configuration 1) to 

158±74 m
3 

(configuration 7) respectively for May and November 2016 events (table 2). At 

section 3, configuration 1 transport estimates (533±193 m
3
 and 1479±339 m

3
 respectively for 

May and November events) decrease significantly considering variable water level and grain 

sizes (configurations 2 and 3). Due to prevailing erosion during November event at this 

section, estimate of sediment flux increases using configuration 4. Conversely, configurations 

5 and 6 provide almost identical estimations which are notably lower than the previous ones. 

Using configuration 7, estimates are 107±54 m
3
 and 746±230 m

3
 respectively for May and 

November events. Results, including ranges, for different configurations turn out to be 

significantly different, at least considering the simplest (i.e. configuration 1) and the most 

complete input factors settings (i.e. configurations 6 and 7) with values differing by factors 

between 2 (November event, section 3) and 20 (May event, section 1).  

 

Finally, we were able to distinguish the contribution of partial transport and full transport to 

the total bed material load estimates (table 2). Ratio PT/FT depends on the event intensity 

(lower ratios for more intense events) and section morphology (lower for section 3 were the 

mobility thresholds are lower) but also by the adopted configuration: FT contribution 

decreases moving from the simplest to the more complex configurations. The estimates 

variability vary depending on the predominant transport condition that occurred during the 

considered event. For events characterized by predominant full transport contribution 
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(PT/FT<50%), uncertainty ranges around 25-40% (considering all configurations), whereas it 

increases up to 50% for calculation characterized by predominant partial transport 

contribution. 

 

4 Discussion 

 

4.1 Methodological improvements  

 

The virtual velocity approach is an estimation method based on a theoretical framework and 

substantial field-data collection. For this reason we think that it can be defined as a hybrid 

method. Bed material load is characterized by high variations in rate at local spatial scale 

(Clayton & Pitlick, 2007; Ryan & Dixon, 2007) due to differences in channel material 

characteristics, sediment supply and local hydraulics. For this reason, identifying an 

appropriate spatial scale for collecting and analyzing field-data represents a crucial point to 

apply this approach. Considering data from the Parma River, it is worth noting that all the 

field-collected parameters are characterized by non-uniformity at the study area scale. τ* 

processes thresholds are different considering the whole dataset or sub-datasets and 

statistically different empirical relations have been obtained distinguishing data collected 

from upstream and downstream sections. The two couples of cross-sections are located 

within two distinct reaches (sensu Brierley and Fryirs, 2013), different in terms of 

morphology and sediments (Figure 1). Our results suggest that the reach, which is 

homogeneous in terms of morphology and hydraulic characteristics (Grabowski et. al, 2014), 

should represent the best scale for field-data processing (i.e. definition of the empirical 

relations between τ* and the calculation parameters). Differently from Mao et al. (2017), 
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which elaborated jointly data collected at different locations, empirical relations and rating 

curves derived in this study could be considered as "reach-specific relations". We observed 

uniformity within subset of data collected from sections 1-2 (upstream reach) and sections 3-

4 (downstream reach) with a variable internal data-scattering (e.g. Figures (7) and (8)) due to 

the variability of sediment transport mechanisms at local scale. Considering this internal 

variability (described also by Ferguson, 2003), we were able to define uncertainties bands for 

empirical relations and rating curves and, ultimately, determining variability of transport 

estimates. The calculated unit bed material loads and section-fluxes can differ from the actual 

instantaneous transport, characterized by variability also under constant water discharge 

(Ashmore, 1985, 2013), but our estimates and associated uncertainties represent the mean 

transport values under determined conditions, having been derived from study sites 

experiencing various morphodynamic processes, providing reliable transport values at the 

section spatial-scale and transport-event time-scale.  

 

For the virtual velocity empirical relations, it is crucial to determine the particle displacement 

lengths. Collecting reliable grain travel distances is in turn crucial for achieving sound 

transport estimates. Most of the previous estimation studies based on the virtual velocity 

approach employed one tracer type at time (e.g. Liébault & Laronne (2008), Mao et al. 

(2017) and Milan (2013) seeded painted clasts; Haschenburger and Church (1998) seeded 

magnetically-tagged stones): for the first time, we used in combination painted clasts and PIT 

tags. Our results confirm that PITs recovery rates are high (>80%) for all mobility conditions 

(Chapuis et al., 2014), whereas painted clasts recovery is broadly variable (i.e. from 0% to 

100%) in relation with transport magnitude (in accordance with Hassan & Church, 1992, and 

Hassan & Roy, 2016). PIT data, although less in number if compared with those obtained 
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from painted clasts, can be assumed to represent the real distances traveled by grains due to 

their excellent technical performances allowing to recover also tagged clasts which, starting 

from the bed surface, are buried during the first displacement. As shown in Figure 8, for low 

mobility condition painted clasts and PITs gave similar travel distances, whereas for high 

mobility (i.e. intense full transport as in Figure 8e and 8f) only PITs provided data. Painted 

clast tracers provide a large amount of data regarding all grain sizes in response to low-

moderate transport conditions whereas PIT tags provide data, limited in number and in grain 

size, for all transport conditions giving key information about intense transport processes and 

validating painted clasts data. From these observations it is possible to conclude that jointly 

processing displacement length data collected using the two tracer types (considering only 

tracers which start from the bed surface) is both feasible and effective. 

 

4.2 Calculation parameters: comparisons with previous field studies  

For evaluating the reliability of the derived empirical relations between the calculation-

parameters and the τ*, we compared our data with those collected in other gravel-bed rivers 

using similar field techniques. The lack of independent data to control the quality of our 

estimates makes this comparison particularly useful for supporting the following transport 

estimates. Relations between τ* and Y (equations (7) and (8)) are in the same range of the 

equation obtained by Mao et al. (2017) (Figure 7a). The thickness of the active layer 

(equations (9) and (10)) is comparable with that observed in other studies (see Figure 7b), 

although at high τ* (>0.11) our relations suggest the establishment of a thicker active layer. 

Finally, the unit bed material load curves show a weaker increase with τ* than the Wilcock & 

Crowe (2003) equation whereas the rate of increase appears to be somewhat larger than in the 

study by Mao et al. (2017) for higher τ* (>0.08) (Figure 10c). The steepness of transport 
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rating curves can be variable for different field sites (Schneider et al., 2015): in our case at 

high τ* the active layer is quite thick, and this could explain the high unit-transport when the 

tractive forces acting on the bed became stronger. Considering that site-specific 

characteristics (e.g. sediments structure, armoring, fabric) control the local mobility of the 

streambed material, these comparisons support the reliability of our empirical relations and 

transport estimates.  

 

4.3 Data configurations and role of different factors 

 

In order to apply the virtual velocity approach at our real case study, differently from Mao et 

al. (2017) that used only a single configuration, several factors have been considered through 

a series of input factor configurations (table 1). As reported in table 2, starting from the 

simplest model setting, estimated bed material transport tended to decrease including factors 

leading to a more realistic description of channel processes. Comparing the simplest and the 

most complete configuration results, the obtained variations are significant also considering 

the natural variability of the transport processes expressed by the estimated uncertainties. The 

variability of the estimates induced by the adoption of different configurations at specific 

sections and for specific events (from factors of 2 to 20) is due to the local characteristics of 

the channel and to the effects induced by each application factor for different competent 

floods. This suggests that including some key factors could be crucial in order to achieve 

reliable estimates but to confirm this hypothesis it is necessary to have transport data that can 

be considered as the real flux.  
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Focusing on the single factors and considering the estimated variations obtained for different 

configurations, insights on the role played by different factors in the virtual velocity approach 

calculation have been obtained for the first time through a preliminary sensitivity analysis. 

Adopting water stages distinctly defined for specific channel units (Figure 5) produced 

significant estimate variations (up to -22%) only for section 3, located in the wandering 

downstream reach. As confirmed from our water stage monitoring results (Figures 5 and 6), 

the assumption of a section-averaged water level represents a simplification, as water levels 

at a given discharge often differ between adjacent anabranches in multi-thread channels (e.g. 

Zolezzi et al., 2006). Increasing channel morphology complexity the in-section water stage 

variability becomes a crucial parameter in order to obtain reliable estimates of τ*. Similar 

results about the impact of using width-averaged or local definition of the τ induced by the 

water flow on the transport estimates were reported also by Ferguson (2003). 

 

The significant variations (between -24% and -94%) obtained introducing geomorphic unit 

specific D50 to calculate the τ* active on the streambed lead to consider sediments grain size 

as the most important factor influencing the approach application. Fernández and Garcia 

(2017) achieved similar results by a theoretical sensitivity assessment for two sediment 

transport relations concluding that an accurate knowledge of sediment size has more impact 

on transport predictions than other input variables. The local grain size represents in fact a 

fundamental variable in the τ* calculation (equation 4). Section 1 estimates are strongly 

affected by this factor (variations up to -94%), in comparison to section 3 (variation up to -

50%). This different response may be due to the higher armoring occurring in the main 

channel in the middle-upstream part of the study sector, suggesting that high grain size 

variations at cross-section scale (e.g. between main channel and bars) can strongly influence 
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transport intensity and its estimation. Considering the high variability characterizing both 

longitudinally (Mosley & Tindale, 1985; Rice & Church, 1998; Surian, 2002) and 

transversally (Rice & Church, 2010) the streambed material grain sizes in gravel-bed rivers 

and the occurrence of armoring conditions (Hassan et al., 2006), an accurate description of 

this variable is strongly demanded. Combining water stages distinctly defined for channel 

zones and geomorphic unit specific D50 (see configuration 5 in table 2), the obtained estimate 

variations (between -56% and - 94%) confirm the crucial role of these factors.  

 

The last factor considered in this work are topographic variations occurring at a given cross-

section during a transporting event. When only partial transport occurred, section topography 

did not experience elevation changes and, therefore, estimates were not influenced by this 

factor. For events inducing full transport, the influence of this factor is strictly controlled by 

the elevation changes that occurred within the section and its positive or negative impact on 

estimates depends by the predominant erosional or depositional processes. During the 

November 2016 event both sections experienced intense full transport, but section 1 was in 

equilibrium (no change in mean section elevation, max erosion= -130 mm, max deposition= 

+85 mm) whereas section 3 underwent some incision (mean section elevation variation= -6 

mm, max erosion= -280 mm, max deposition= +155 mm). Cross-section variations led to a 

small estimate increase for section 1 (+0.5%) and to a more significant variation (+19%) for 

section 3. Such results suggest that topographic variations can affect estimates only for 

intense transport event and in reaches featuring disequilibrium conditions in sediment 

transport leading to erosion or aggradation of channel bed (Kondolf, 1997; Grant, 2012). 
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4.4 Limitations, wider implications and future perspectives for the virtual velocity approach 

Reliable field data are essential for applying the virtual velocity approach but some 

methodological issues persist in data collection. One of the most difficult variables to monitor 

remains the active layer thickness: scour chains provide few data and topographic surveys 

can lead to underestimation of the thickness due to scour and fill compensation over a single 

hydrograph (see Figure 7b). For these reasons, it would be desirable to test alternative 

solutions: some promising attempts were carried out by using sliding-balls (Nawa & Frissell, 

1993) or buried accelerometers (DeVries et al., 2001; Gendaszek et al., 2013). Haschenburger 

(1996, 2011) used the burial depth of tracers to describe the gravel vertical mixing, 

suggesting that some improvements in the active layer thickness parametrization could be 

achieved considering the buried PITs recovering depths.  

 

Tractive forces active on the streambed lead most of the transport processes considered 

through this approach. Instead of just considering local hydrographs and cross-section 

topography, more sophisticated τ* calculation could be applied using numerical hydraulic 

models (e.g. Bockelmann et al., 2004; Booker et al., 2001). To allow this calculation, digital 

terrain models and reliable hydrological data are required (Aggett & Wilson, 2009; Formann 

et al., 2007; Teng et al., 2017), coupled with detailed local grain size information. 

Considering the results recently achieved about the importance of the larger clasts in 

determining the mobility of the streambed material (MacKenzie at al., 2018), it could be 

useful to explore the use of different grain sizes instead of the commonly adopted D50 for τ* 

calculation.  

 

The clasts mobility-data considered in our work derive mainly from study sites installed in 

correspondence of bars and secondary channels due to the difficulties in installation and 



 

© 2019 American Geophysical Union. All rights reserved. 

recovery of passive tracers within channel portions submerged during low-flow conditions 

(only 11 out of 117 study sites were installed within the main channel). It is likely that our 

empirical relations could be improved obtaining a better description of sediment dynamics 

within the main channel for instance by employing active tracers as in Cassel et al. (2017).  

 

Other limitations affect the virtual velocity approach, being it a simplified hybrid estimation 

method. From our uncertainty analysis we partially considered the different morphodynamic 

processes active in the channel, but the bed morphology complexity, typical of large gravel-

bed rivers, leads to non-uniformity of particle mobility dynamics (Marti & Bezzola, 2006; 

Recking et al., 2016). Some improvements have been achieved by calculation of 

instantaneous and local τ*, but several issues persist, for instance in the calculation of the 

local competent flow duration as the above-critical τ* period (e.g. as done by Haschenburger 

and Church, 1998), considering that the grains mobility can be influenced by the complex bed 

topography during the event (Church, 2006). Improvements could be achieved adopting the 

procedure developed by Klösch and Habersack (2018) to calculate unsteady virtual velocity 

from repeated surveys of tracer positions. Another virtual velocity calculation weakness is 

due to the exclusive use of tracers starting at the bed surface, which move more easily than 

the average grains in the active layer mobilized during full transport (Vázquez-Tarrío et al., 

2018). As explained by Ferguson and Hoey (2002), if tracers are not fully mixed into the bed 

the calculated virtual velocity can be overestimated leading to full transport flux over-

estimate of high-magnitude events. Some improvements will be possible considering long 

term tracers dispersion (Haschenburger, 2013b) and relation between morphology and tracers 

mobility (Papangelakis & Hassan, 2016; Vázquez-Tarrío et al., 2018).  
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This study has shown some strengths of the virtual velocity approach: it does not require data 

collection during transport events and it can be applied to wide rivers where alternatives are 

currently poorly available. The approach is applicable through the proposed transport 

calculation procedure to a broad spectrum of large gravel-bed rivers, adaptable to specific 

case-study features using both reach-specific empirical relations and case-specific application 

factors. The estimate variability obtained from different configurations suggest that the 

approach (i.e. field monitoring, data processing and transport estimate) requires to be 

designed according to case-specific aspects, because its sensitivity to different factors varies 

depending upon reach features. Some procedures remain valid for all contexts, whereas other 

methodological aspects should be designed according to specific reach morphology, 

sediments and section stability over the time. With this in mind, we propose a decision tree 

describing the field measures and elaborations required to deal with the application factors 

which have an impact on transport estimate (Figure 11). Looking at the different 

configurations estimates for the different sections and events (Table 2), it is possible to 

observe that in some cases, considering the uncertainties, it is not essential to adopt the most 

complete configuration, since also a simpler configuration could be sufficient for taking into 

account all the case-specific key-factors. For instance, at section 1, characterized by single-

thread morphology and stable topography, only the in-section variable D50 represents a key-

factor: in fact, configurations 3 and 7 give very similar results (Table 2). On the contrary, all 

the factors (configuration 7) need to be included for a sound assessment of sediment transport 

at section 3 during the November 2017 event. The field monitoring and data elaboration 

efforts strongly depend by the adopted input factor configuration. For this reason we reported 

the simplest required configuration to be adopted for some river contexts in the decision tree 

(Figure 11).  
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5 Conclusions 

 

It is widely accepted that using formulas for estimating bed material transport can led to 

calculation errors (e.g. Barry et al, 2004; Fernández & Garcia, 2017) and other techniques are 

currently poorly available for large gravel-bed rivers (the morphological approach represents 

the only exception, although its application has some constrains). The virtual velocity 

approach provides an alternative to trapping techniques (difficult to employ in wide complex 

rivers) that incorporates some key factors of channel morphology and processes and it is 

strongly based on field data. Developing robust and widely applicable transport-estimate 

approaches based on tracers could provide benefits also in the perspective of integrating their 

data with 3D change detection approaches (e.g. morphological method based on digital 

elevation models) to advance the work further (Vericat et al., 2017).  

This work aimed to assess the virtual velocity approach, evaluating the significance of factors 

that feed in the transport calculation through a sensitivity analysis. The main conclusions 

from this study are: 

 

1. We highlighted some crucial issues of the monitoring activity in order to derive sound 

relationships between a set of calculation parameters and the leading variables. 

Adopting appropriate spatial scales for data collection and processing (i.e. reaches for 

empirical relationships and geomorphic units for grain size definition) and the jointly 

use of painted particles and PITs are two fundamental monitoring strategies. 

2. Using simple data input configurations or more complex ones may lead to significant 

differences in transport estimates. On the other hand, in relation to channel 

morphodynamics, different factors play a key-role on transport processes. The 

proposed “decision tree” can be considered as a first attempt towards a more effective 
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use of the virtual velocity approach to estimate bed material load in a broad spectrum 

of large gravel-bed rivers.  

3. We considered the natural transport processes variability evaluating the estimate 

uncertainties from field-data distributions. Future efforts should be addressed to 

consider more in detail the complex morphodynamics of large gravel-bed rivers, 

including a more realistic unsteady virtual velocity calculation and the influence of 

local morphology on tracers mobility trying also to expand the sensitivity analysis. 
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Table 1. The seven input factors configurations adopted for the bed material load estimation. 

 

 

 

Input factors 

configuration 

Spatial variable 

(in-section) water 

level 

Geomorpho-unit 

specific D50 for τ* 

calculation 

Geomorpho-unit 

specific grain size curve 

for q
u
- τ* relations 

Changing section 

topography during 

a transport event 

Configuration 1 No No No No 

Configuration 2 Yes No No No 

Configuration 3 No Yes No No 

Configuration 4 No No No Yes 

Configuration 5 Yes Yes No No 

Configuration 6 Yes Yes Yes No 

Configuration 7 Yes Yes Yes Yes 
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Table 2. Bed material flux estimates obtained using seven configurations of the virtual 

velocity approach. Estimate variability and partial transport contribution are reported. Bold 

numbers refer to the most complete configurations applicable for the specific calculation, 

whereas underlined numbers refer to the simplest configurations that could be appropriate to 

estimate the transport for the specific section and event (see also Figure 11). 

 

 May 2016 event November 2016 event 

 Input factors configuration  

Section Section 

1 3 1 3 

Conf. 

1 

Water level: section averaged 

Grain size: averaged 

Event-section topography: constant 

qbed
tot (m3) 64 533 614 1479 

Variability ±44 ±189 ±158 ±339 

% PT 72% 59% 6% 10% 

Conf. 

2 

Water level: spatial variable in section 

Grain size: averaged 

Event-section topography: constant 

qbed
tot (m3) 64 449 614 1154 

Variability ±44 ±157 ±158 ±266 

% PT 72% 59% 6% 10% 

Conf. 

3 

Water level: section averaged 

Grain size: variable (D50
unit→τ*) 

Event-section topography: constant 

qbed
tot (m3) 4 256 160 1130 

Variability ±3 ±96 ±72 ±267 

% PT 100% 65% 14% 10% 

Conf. 

4 

Water level: section averaged 

Grain size: averaged 

Event-section topography:              

changing in time 

qbed
tot (m3) 64 

No Data 

617 1761 

Variability ±44 ±160 ±448 

% PT 72% 5% 8% 

Conf. 

5 

Water level: spatial variable in section 

Grain size: variable (D50
unit→τ*) 

Event-section topography: constant 

qbed
tot (m3) 4 114 160 650 

Variability ±3 ±45 ±72 ±178 

% PT 100% 85% 14% 13% 

Conf. 

6 

Water level: spatial variable in section 

Grain size: variable (D50
unit→τ*; qu- τ*) 

Event-section topography: constant 

qbed
tot (m3) 3 107 156 653 

Variability ±3 ±54 ±73 ±186 

% PT 100% 84% 13% 13% 

Conf. 

7 

Water level: spatial variable in section 

Grain size: variable (D50
unit→τ*; qu- τ*) 

Event-section topography:              

changing in time 

qbed
tot (m3) 3 

No Data 

158 746 

Variability ±3 ±74 ±230 

% PT 100% 13% 19% 
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Figure 1. Location of the Parma River and monitored cross-sections positions within the 

study sector.  
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Figure 2. Hydrographs during the last 11 years (a) and during the monitoring period (b). In 

(b), the vertical arrows point out the six monitored events. The timing of the acquired cross-

sections topographies, the pre-event installations and the post-event monitoring are plotted in 

(b). 
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Figure 3. Aerial photographs (April 2016) of the study sections areas and the two cross-

sections (section 1 (a); section 3 (b)) considered for the transport calculations. Geomorphic 

units are shown (MC: main channel; SC: secondary channel; LB: low bar; HB: high bar; FP: 

floodplain; T: terrace). Cross-sections (section 1 (c); section 3 (d)): black continuous lines 

identify the May-event and the November pre-event topography while dotted lines refer to 

the post-November 2016 event topography. Hydrometers (installation example is provided 

(e)), study sites (i.e. painted areas), scour chains and vertical photographs positions are 

plotted as well.  
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Figure 4. The surface grain size distribution curves truncated at 6 mm (a) and the study sites 

D50 and D84 box plot (b) of the channel surface and subsurface sediments. Surface sediments 

were divided in six groups according to location and geomorphic unit (MC: main channel; 

SC: secondary channel; B: bar). In the plot (b), boxes ends represent the 25
th

 and 75
th

 

percentiles, whiskers ends are the 10
th

 and 90
th

 percentiles, crosses and lines respectively 

indicate the mean and the median D50 values, diamonds indicates the mean D84 values. 
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Figure 5. The maximum water level (i.e. water stage at the deepest point of the considered 

section or section-part. MC: main channel; SC: secondary channel) as a function of 

discharge. Data are distinct based on location (section 1 and section 3). The three final 

relationships adopted to determine the instantaneous local water stages (hw) from water 

discharge data (qw) are plotted as well. Trash line elevations have an error of ±0.02 m due to 

instrumental accuracy. 
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Figure 6. Example of input data (section topography, a, b), instantaneous and local 

calculation of parameters involved in the estimation (c, d, e) (uncertainty bands derive from 

the standard errors reported in Figure 7) and instantaneous-local and section estimated 

transport (f). Three time intervals of the May event at section 3 are considered. Lines in lower 

plots refer to values calculated from the derived empirical relations applying configuration 6. 

Pre-event topography is considered: the five study sites installed before May event are plotted 

in the section scheme and the punctual field monitored parameters (Y, ds) are indicated with 

diamonds.  
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Figure 7. Measured proportion of mobilized streambed (a) and mobile surface layer 

thickness (b) as a function of τ*. Data are divided on the base of location (sections 1-2 in 

black and 3-4 in blue) and type of survey. Obtained regression relations are plotted with their 

uncertainty bands (SE). For comparison, in (a) the relation between proportion of mobilized 

streambed and τ* obtained by Mao et al. (2017) considering their whole dataset is plotted as 

well. In (b) the relations between mobile surface layer thickness and τ* obtained by Mao et 

al. (2017) and the data collected by Wilcock et al. (1996) and by DeVries (2002) are plotted 

as well. 
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Figure 8. Ranges of tracers displacement lengths. Six study sites characterized by different 

maximum τ* and mobility conditions are shown. Data are divided in grain size classes. Boxes 

and small squares refer to painted clasts while triangles to PITs. Question marks mean that no 

tracers were found for a specific size class. Knowing the number of PIT tags installed and 

entrained at each site, it is possible to report the number of PITs moved but not recovered (i.e. 

PIT lost).  



 

© 2019 American Geophysical Union. All rights reserved. 

 

Figure 9. Ranges of the maximum τ* acting over the painted areas inducing different 

sediment mobility conditions (NM: no motion; PT: partial transport; FT: full transport). 

Boxes ends represent the 25
th

 and 75
th

 percentiles while whiskers ends are the 10
th

 and 90
th

 

percentiles. Crosses indicate the mean values and lines indicate the median values. Plot (a) 

refers to the whole dataset, plot (b) to sections 1-2 and plot (c) to sections 3-4. The thresholds 

between different mobility conditions (dashed lines) vary considering the three analyzed 

datasets. Critical shear stress (τ*c) refers to the passage from NM to PT condition.  
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Figure 10. Section and morphological-unit specific sediment transport rating-curves obtained 

from virtual velocity approach application as a function of the τ*. (a) refers to sections 1-2 

and (b) refers to sections 3-4, and each line-type refers to a specific geomorphic unit (MC: 

main channel; SC: secondary channel; B: bar). Each curve has its variability band but for 

graphical reasons they are shown together for sections 1-2 and 3-4 curves. In (c) are reported 

the two mean τ*-q
u
 relations for both sites (derived considering one average grain size 

distribution curve for sections 1-2 and for sections 3-4). Rating curves resulting from 

Wilcock and Crowe (2003) formula (W&C) (i.e. considering a specific mean grain size 

distribution curve for sections 1-2 and for sections 3-4) and rating curve obtained by Mao et 

al. (2017) are plotted in (c).  
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Figure 11. Decision tree for using the virtual velocity approach in different gravel-bed river 

contexts. Reach morphology and sediment characteristics usually can be assumed constant 

for the entire study-period, while section topography dynamics depends by both the reach 

equilibrium conditions and the intensity of the specific competent event. Most influencing 

application factors, required measures and simplest adequate configurations are reported for 

specific cases. Examples from this work are shown as well. 

 


