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Aprobabilistic-based control optimizationmethod is developed for aeroservoelastic systems
with parameter uncertainties. Genetic algorithms are used to find optimal feedback control
gains that simultaneously assign a mean flutter speed andmaximize a defined worst-case speed.
In the proposed approach, a surrogatemodel of the flutter speed response surface is constructed
so that the critical flutter speed is represented in terms of the uncertain parameters. The sur-
rogate model is created in two ways: 1) by linearization of the response surface using local
sensitivities, and 2) by a polynomial chaos expansion. The surrogate model is then sampled to
find the worst-case flutter speed, which is defined probabilistically by the inverse cumulative
distribution function. The method is applied to a three-degree-of-freedom aeroservoelastic
system that uses an unsteady, two-dimensional potential flow and explicitly contains the con-
trol and actuator dynamics. Case studies with uncertainty in the pitch and plunge stiffness
parameters are presented. It is demonstrated that the control gains have a strong influence on
the shape of the response surface and that it is possible to control not only the expectation, but
also the variance of the flutter speed.

I. Nomenclature

A = state matrix
ai = polynomial chaos expansion coefficients
Ca = aerodynamic-equivalent damping matrix
Cc = control-equivalent damping matrix
Cs = structural damping matrix
f = velocity feedback gain vector
fa = aerodynamic force vector
fc = control force vector
F−1 = inverse cumulative distribution function
g = position feedback gain vector
h = plunge displacement
Ka = aerodynamic-equivalent stiffness matrix
Kc = control-equivalent stiffness matrix
Ks = structural stiffness matrix
kd = derivative gain of PID
kh = plunge stiffness
ki = integral gain of PID
kp = proportional gain of PID
kt = torque constant
kα = pitch stiffness
L = aerodynamic lift
Ma = aerodynamic-equivalent mass matrix
Mc = control-equivalent mass matrix
Ms = structural mass matrix
Mα = aerodynamic moment about the pitch
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Mβ = aerodynamic moment about the control surface
Nc = integral matrix
q = vector of degrees-of-freedom
Tβ = control torque
u = control current
v = freestream speed
x = state vector
α = pitch angle
β = control surface deflection
βd = desired control surface deflection
ζ = random parameter
φ = aerodynamic state vector
φL,R = left and right eigenvectors of the state matrix
Ψ = orthogonal function

II. Introduction

The use of active control to suppress aeroelastic flutter is a now well-established technique that has been applied
successfully numerically and in a multitude of experimental systems [1]. With a suitable choice of control law, it is

possible to favorably modify aeroelastic modes in terms of frequency and damping such that either: 1) the flutter speed
is increased, or 2) the flutter mechanism is mitigated entirely [2]. Usually, active control requires accurate modelling
of the system under study. This is difficult in aeroservoelastic systems, however, since there often exists uncertainty
in the structural and aerodynamic parameters [3]. Such uncertainties may arise from variable operating conditions,
structural or material degradation, and manufacturing variability. As a consequence, aeroservoelastic systems may
exhibit uncertain flutter boundaries [4].

Typically, the abovementioned problem is addressed using robust control techniques such as µ-synthesis [5]. In these
approaches, uncertain parameters are modelled as bounded sets and are represented by a linear fractional transformation
to a nominal system. A controller is then chosen so that the system is guaranteed to be stable within the ranges of the
uncertain parameters. Literature in this field is extensive and a detailed survey may be found in the review by Yuting
and Chao [6]. Although such techniques are simple to implement, they can lead to overly-conservative controllers if the
chosen parameter bounds are not selected well [7, 8].

In recent years, it has been proposed that uncertainty quantification (UQ) techniques should be applied to aeroelastic
systems [9–11]. The advantage of UQ is that probabilistic information from the sources of uncertainty can be exploited
to predict the likelihood of flutter or other aeroelastic phenomena. In this way, servo-structural systems may be
optimized subject to reliability based-constraints and without the need to define arbitrary parameters bounds [12]. A
probabilistic-based optimization was considered by Manan and Cooper [13], who used a particle swarm approach
to optimize the layup orientation of a composite wing with an uncertain laminae thickness and Young’s modulus.
The probability of flutter was assessed using a combination of polynomial chaos (PC) expansions and Monte-Carlo
simulations. Likewise, Scarth and Cooper [14] used Gaussian process surrogate models to estimate the probability of
failure of a composite plate and used reliability-based design to reduce the probability of failure and increase the stability
margin. Similar work was also considered by Stanford and Beran [15], but with uncertainty in the panel boundary
conditions. Petit and Grandhi [16] performed a reliability-based weight optimization of a wing structure subject to gust
response and aileron effectiveness constraints.

Although there have been several studies on the optimization of deterministic aeroservoelastic systems [17], little
work has been done on the application of UQ techniques to optimize aeroservoelastic systems with uncertainties.

In this study, UQ and global optimization techniques are coupled to design an active flutter suppression system for a
three-degree-of-freedom aeroservoelastic system with parameter uncertainties. In the proposed approach, the mean
flutter speed is assigned and the variability is reduced by iteratively updating the gains of a feedback control law. The
flutter speed variability is assessed probabilistically by Monte-Carlo simulation of the flutter speed response surface. To
reduce the optimization’s computational time, the response surface is approximated by a surrogate model, which is
constructed using local sensitivities or polynomial chaos expansions.

The remainder of this paper is divided as follows. In Section III a simple deterministic aeroservoelastic system is
modelled. This is used as a basis on which to test the proposed method later in the paper. Next, Section IV discusses
the effect of uncertainty on the flutter speed. The flutter speed is illustrated as a hypersurface that is a function of the
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random parameters and the gains in the control law. It is shown how a surrogate model of the hypersurface can be
constructed using either local sensitivities or a polynomial chaos expansion. Section V discusses the optimization
framework used to minimize the flutter speed variability. Finally, the method is tested in the form of case studies in
Section VI and conclusions are drawn in Section VII.

III. Deterministic Aeroservoelastic System

A. Numerical Modelling

1. Aeroelastic Model
Consider the aeroelastic system shown schematically in Fig. 1. The position is fully described by the vector of

degrees-of-freedom q = (h α β)T, where h is the plunge displacement (positive downwards), α is the pitch angle
(positive clockwise), and β is the control surface deflection (positive clockwise). Under the assumption that the system
is linear, the structural equations of motion are

Ms Üq + Cs Ûq +Ksq = fa + fc (1)

where Ms,Cs,Ks ∈ R3×3 are the structural mass, damping and stiffness matrices respectively; fa =
(
−L Mα Mβ

)T

is the aerodynamic force vector; and fc =
(
0 0 Tβ

)T is the control force vector, which contains the torque used to
assign a desired control surface deflection. More detailed expressions for the vectors and matrices described above and
hereinafter may be found in Appendix A.

h

kα
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kh
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Aerodynamic
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2bab

cb
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Fig. 1 Pitch-plunge aeroelastic system with a trailing-edge control surface.

In this study, an unsteady, two-dimensional, inviscid aerodynamic model is employed, which is based on the work of
Theodorsen [18]. Under this assumption, the aerodynamic force vector is written as

fa = −Ma Üq − vCa Ûq − v2Kaq + fa,circ(t) (2)

where Ma,Ca,Ka ∈ R3×3 are aerodynamic equivalent mass, damping and stiffness matrices respectively; v is the velocity
of the freestream; and fa,circ(t) ∈ R3 is the time-variant aerodynamic force. The rightmost term in Eq. (2) arises from
the circulation in the aerodynamics. Using Jones’ approximation [19], the circulatory term can be replaced by

fa,circ(t) = vaST
c (v)φ +

1
2
v2acT1 q +

1
2
vacT2 Ûq (3)

where a, c1, c2 ∈ R3; and Sc,φ ∈ R2. The vector φ is the aerodynamic state vector, which obeys the evolutionary
equation

Ûφ = SA(v)φ + vSBcT1 q + SBcT2 Ûq (4)

where SA ∈ R2×2, and SB ∈ R2. By combining Eqs. (1), (2) and (3), the coupled aeroelastic equations of motion are

(Ms +Ma) Üq +
(
Cs + vCa −

1
2
vacT2

)
Ûq +

(
Ks + vKa −

1
2
v2acT1

)
q = vaScφ + fc (5)
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2. Aeroservoelastic Model
Commonly, the control surface deflection is modelled as an input variable [20] or approximated as a second-order

system that has a desired control surface deflection as its input [21]. Whilst these approaches are advantageous in that
they do not require an explicit expression for the control torque Tβ , they approximate or mitigate the dynamic of the
controller itself [22]. In this work, the trailing-edge control surface is actuated by a DC motor that is operated by a
proportional-integral-derivative (PID) controller. This is represented in block diagram form in Fig. 2.

β

βd +

-

u Tβ

PID DC Motor

Fig. 2 Block diagram of the inner control loop.

Assuming an ideal motor, a current input yields a proportional torque output and thus

Tβ = ktu (6)

where kt is the torque constant of the motor, and u is the control current. The current output from the PID is related to
the desired and instantaneous control surface deflection by

u = kp (βd − β) + kd
( Ûβd − Ûβ) + ki

∫
(βd − β) dt (7)

where kp, ki and kd are the proportional, integral and derivative gains of the PID respectively; and βd is the desired
control surface deflection. Note that, in practice, the output from the PID may be a voltage. In this case, there is a driver
between the PID and motor that serves as a gain to transform the voltage to a current.

Suppose that a feedback controller is used so that

βd = fT Ûq + gTq (8)

Using Eqs. (6), (7) and (8), the total control force vector can be written in the form

fc = −Mc Üq − Cc Ûq −Kcq − Nc

∫
qdt (9)

where Mc,Cc,Kc ∈ R3×3 are the control equivalent mass, damping and stiffness matrices respectively; and Nc ∈ R3×3

is the matrix arising from the integral term in the PID.
With expressions for the structural, aerodynamic and control equations derived, it is now possible to write the

aeroservoelastic system in autonomous state-space form. Choosing x =
(∫

qdt q Ûq φ
)T

as the state vector and
using Eqs. (4), (5) and (9), it can be shown that

Ûx =


03×3 I3×3 03×3 03×2

03×3 03×3 I3×3 03×2

−M−1
t Nc −M−1

t Kt (v) −M−1
t Ct (v) vM−1

t aSc

03×3 vSBcT1 SBcT2 SA(v)


x = A(v, f, g)x (10)

The coupled structural, aerodynamic and control system is shown in block diagram form in Fig. 3.

B. Deterministic Flutter Condition
The state matrix A is a function of both the freestream speed and the feedback control gains. As a consequence,

its eigenvalues are variable with respect to these quantities, i.e. λ = λ(v, f, g). By definition, the flutter speed is the
freestream speed at which the system becomes unstable. By defining the function

G(λ(v, f, g)) = max
i
(Re(λi(v, f, g))) (11)

where λi is the ith eigenvalue of the state matrix A, the flutter condition is
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Fig. 3 Coupled structural, aerodynamic and control systems.

G(λ(v f , f, g)) = 0 (12)

where v f is the flutter speed. The physical interpretation of Eq. (12) is that the system is marginally stable when one of
the eigenvalues lies on the imaginary axis in the complex plane.

IV. Uncertain Flutter Boundary

A. Flutter Speed Variability
Suppose that the system described in Section III-A has uncertainty in p parameters. The state matrix of Eq. (10)

becomes a function of p random variables and thus the uncertain aeroservoelastic system is governed by

Ûx = A(v, {ζi}pi=1, f, g)x (13)

where ζi is the set of uncertain parameters. Using the same procedure of Section III-B, the new flutter condition is

G(λ(v f , {ζi}pi=1, f, g)) = 0 (14)

and hence the flutter speed becomes a random variable.
When the control gains f and g are fixed, the flutter speed becomes a function of only the random parameters. In this

case, the flutter speed is visualized as a p dimensional hypersurface. A typical example of this is shown in Fig. 4(a) for
the case of two parameters. The mean flutter speed corresponds to the point shown in red and the height difference
between this point and all other points in the surface corresponds to the flutter speed variability. When the control gains

vf

ζ1

ζ2

vf

(a) Initial control gains.

vf

ζ1

ζ2

vf

(b) Modified control gains.

Fig. 4 Flutter surface for two random parameters.
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are changed, the shape of the surface is modified. Fig. 4(b) shows an example of this effect, again for the case of two
parameters. Most notably, the curvature is altered and therefore so too is the variability of the flutter speed.

In some cases, it is possible to modify the control gains so that the mean flutter speed remains constant. This means
that there exists multiple sets of control gains that achieve the same mean flutter speed but with different levels of
variability with respect to the random parameters. It is hypothesized, therefore, that optimal control gains that minimize
the variability of the flutter speed can be selected even though the mean flutter speed remains constant.

In order to evaluate the variability of the flutter speed probabilistically, Monte Carlo simulation (MCS) is used.
Performing MCS on Eq. (14) directly is computationally expensive given the need to compute eigenvalues of the state
matrix and iteratively update the freestream speed to find the flutter speed. Instead, it is more efficient to sample a
surrogate model.

B. Approximation of the Flutter Boundary using Local Sensitivities
The simplest way in which to form a surrogate model of the flutter hypersurface is to linearize it about the mean

random parameters. In this way,

v f ≈ vn +

p∑
i=1

∂v f

∂ζi
(ζi − ζ̄i) (15)

As shown by Beran and Stanford [9], the partial derivatives in Eq. (15) are related to the state matrix by

∂v f

∂ζi
= −Re

[(
φ†L

∂A
∂ζi

φR

)
/
(
φ†LφR

)]
/Re

[(
φ†L

∂A
∂v

φR

)
/
(
φ†LφR

)]
(16)

where φL, φR are the left and right eigenvectors of the state matrix corresponding to the unstable eigenvalue at flutter,
and † denotes the Hermitian transpose operator. When the surface is linearized, the mean flutter speed corresponds to
the surface height at the mean parameter values, i.e.

vn = v̄ f (17)

The advantages of using local sensitivities to represent the flutter boundary are that: 1) analytical expressions for
the sensitivities are available and thus are simple to compute, and 2) the simplicity of the resulting surface permits
efficient sampling to obtain probabilistic information of the flutter speed quickly. The problem, however, is that the
linear approximation works well only when the second and higher-order derivatives of the true flutter surface are small
across the region of interest. Extrapolating the linear approximation far from the average flutter speed may result in a
large degree of error between the true and estimated flutter speed.

C. Approximation of the Flutter Boundary using a Polynomial Chaos Expansion
To overcome the limitations of linearizing the flutter boundary, a higher-order approximation may be used. One

approach is to use a polynomial chaos (PC) expansion, which expresses the flutter speed as the sum of weighted functions
that are orthogonal to each other. Written mathematically,

v f =

∞∑
i=0

aiΨi

(
{ζi}pi=1

)
(18)

where ai are weighting constants and Ψi are the multidimensional orthogonal functions. When the parameters ζi follow
a standard normal distribution, the orthogonal functions are the multidimensional Hermite polynomials [23]. For
computational implementation, the expansion is truncated to the first N terms and thus

v f ≈
N∑
i=0

aiΨi

(
{ζi}pi=1

)
(19)

As Eldred [24] explains, there are two distinct ways to extract the coefficients of the expansion; intrusive and
non-intrusive methods. In this work, a non-intrusive method is used, where the true flutter surface is sampled and the
coefficients in the surrogate are found by least squares estimation. The mean flutter speed may be evaluated simply from
the first coefficient of the expansion,
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v̄ f = a0 (20)

The significant advantage of using PC expansions over local sensitivities is that the approximated flutter boundary is
not limited to first-order. In theory, the error between the approximated and actual flutter boundary should be less as it is
able to capture nonlinear behavior. The problem with this approach, however, is that sampling from the true flutter
boundary is required to obtain the expansion coefficients and thus the computational time is increased.

V. Control Optimization
In deterministic aeroservoelastic systems, the control gains are selected so that the flutter speed is increased subject

to the limits of the controller. However, when uncertainties are present, the controller must increase the flutter speed at
minimal cost to its variability. Here, a global optimization approach is used to solve this problem, which is cast as

minimize
f,g

fvariability(f, g)

subject to v̄ f = v f ,desired

gi(f, g) i = 1, 2, ..., n

(21)

where fvariability is a function that evaluates the variability of the flutter speed, v f ,desired is the desired mean flutter speed,
and gi are controller constraints. Typically, the controller constraints are based on the maximum deflection angle of the
control surface and the maximum control torque.

In the probabilistic approach, the variability function is defined as

fvariability(f, g) = F−1(p), p ∈ [0, 1] (22)

where F−1 is the inverse cumulative distribution function of the flutter speed and p is the worst-case probability, which
is chosen.

An overview of the proposed method is shown in Fig 5.
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Pre-optimization

Optimization

Select a desired mean flutter speed and establish the controller constraints.1

2 Choose an initial set of control gains for optimization.

3 Create a surrogate model of the flutter surface.

4 Sample the flutter surface.

5 Evaluate the worst-case flutter speed.

Local sensitivities Polynomial chaos expansion

Local sensitivities Polynomial chaos expansion

6 Update the control gains.

p

vf,worst-case

Fig. 5 Method overview.
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VI. Numerical Example
Here, the proposed method is tested numerically on a three-degree-of-freedom aeroservoelastic system with nominal

parameters as given in Appendix B. The pitch and plunge stiffness values are the uncertain parameters and are assumed
normally distributed with a coefficient of variation of 5%.

A. Inactive Controller
When the high-level controller is inactive, i.e. f = g = 0, the control surface deflection is held at zero degrees

and is independent of the position and velocity of the pitch and plunge degrees-of-freedom. In this case, the mean
flutter speed is 15.01 m/s. The variability of the flutter speed, which arises from the uncertain stiffness values, is shown
diagrammatically in Fig. 6. The terms z1 and z2 correspond to the normalized plunge and pitch stiffness parameters
respectively, i.e.

z1 =
kh − E [kh]√

Var [kh]
, z2 =

kα − E [kα]√
Var [kα]

(a) (b)

Fig. 6 Flutter speed variability with zero gains.

When a surrogate model of the flutter surface is created using local sensitivities, as in Eq. (15), the percentage
error between the true and approximated surface is low, as shown in Fig. 7(a). This is because the true flutter surface
is closely linear and therefore the approximation serves well. Likewise, a third-order PC expansion surrogate model,
constructed by 40 Latin Hypercube samples, yields very little discrepancy between the true and estimated flutter speeds,
as illustrated in Fig. 7(b). As expected, the PC expansion errors are lower across the ranges investigated as it is able to
capture the slight nonlinear behavior in the flutter surface.

Figure 8 shows a comparison of the flutter speed cumulative distribution function (CDF) found from Monte-Carlo
simulation of Eq. (14) directly and by sampling of the two surrogate models. In all three cases, 100,000 samples are
used. The discrepancy between the three distributions is very low. Indeed, the flutter speed corresponding to the 1%
worst-case varies only by 0.01 m/s.

B. Active Controller
Now, the high-level controller is switched on and the gains are selected such that: 1) the mean flutter speed is

increased to 18.0 m/s, 2) the maximum control surface deflection is less than 10 degrees, and 3) the required motor
torque is no greater than 15.4 mN m. The maximum torque is selected based on a typical value for a control surface
of the size considered in these examples. Three cases are presented that demonstrate how the choice of control gains
significantly affects the variability of the flutter speed.
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(a) Local sensitivities. (b) PC expansion.

Fig. 7 Percentage error between the true and approximated flutter surface.
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Fig. 8 Flutter speed CDF with zero control gains.
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1. Case 1: Sub-optimal Choice of Control Gains
Suppose that the control gains f = [0.0265,−0.1, 0]T and g = [−4,−1.5, 0]T are selected, without consideration of

the flutter speed variability, so that the constraints are satisfied. Note that the third term in each gain vector is zero since
only feedback from the pitch and plunge is used. With the control gains applied, Fig. 9 shows the new, modified flutter
surface. As required by the constraints, the mean flutter speed is now 18 m/s. However, the variability of the flutter
speed has also changed.

(a) (b)

Fig. 9 Flutter speed variability (case 1).

Due to the larger curvature of the true flutter surface, it is anticipated that the approximation using local sensitivities
will only work in the region close to the expected flutter speed. This is confirmed by Fig. 10(a), which shows the
percentage error between the true and estimated flutter speed. Crucially, the lower flutter speeds have a maximum
percentage error of approximately 18%. This means that estimation of the probabilistic worst-case flutter speed will
likely be inaccurate. When a PC expansion is used to approximate the flutter surface, the maximum error is reduced
by approximately 75%, as shown in Fig. 10(b). Moreover, the largest error corresponds to the point where the flutter
velocity is highest and therefore it is unlikely that this will affect the calculation of the worst-case flutter speed.

(a) Local sensitivities (b) PC expansion

Fig. 10 Percentage error between the true and approximated flutter surface (case 1).

Figure 11 shows a comparison of the CDF of the flutter speed by direct MCS and by sampling of the two surrogate
models. Close to the mean flutter speed, the distributions vary little. However, at the extreme values, there is a
discrepancy between the distributions. At a 1% worst-case flutter speed, the difference is approximately 0.9 m/s (6 %).
Given the closeness of the PC expansion and direct MCS results, the 1% worst-case speed is taken as 14.6 m/s.
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Fig. 11 Flutter speed CDF (case 1).

This case highlights the limitations of using local sensitivities to estimate the flutter surface and its corresponding
worst-case flutter speed. In general, there is no guarantee that the flutter surface is closely linear and therefore PC
expansions produces a more accurate representation of the flutter surface compared with local sensitivities.

Although local sensitivities can lead to poor estimates of the worst-case flutter speed, they may still give a loose
indication to the flutter speed variability and therefore could be used in an optimization framework. This will be tested
in the following case.

2. Case 2: Optimization using Local Sensitivities
Here, the optimization framework described in Sec. V is used to optimally select the control gains such that the worst-

case flutter speed is as large as possible. The flutter surface is approximated using local sensitivities and the Differential
Evolution algorithm by Storn and Price [25] is used to perform global optimization subject to the aforementioned
constraints. The optimal control gains are found to be f = [0.2701,−0.1, 0]T and g = [−2.571,−0.643, 0]T . The
variability of the flutter speed is shown in Fig. 12 and the 1% worst-case flutter speed is computed as 15.4 m/s. By
comparison with the results of case 1, the worst-case speed is higher and thus the variability of the flutter speed about its
mean (18.0 m/s) is lower, as was required.

(a) (b)

Fig. 12 Flutter speed variability (case 2).

The error between the true and estimated flutter speeds is shown in Fig. 13. In this case, the linear approximation of
the flutter surface works well. It should be noted, however, that there is no guarantee that the linear approximation works
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well during the optimization process. As has already been shown, the control gains significantly affect the degree of
nonlinearity in the flutter surface and therefore there may be iterations where the linear approximation yields erroneous
worst-case flutter speeds. As a result, there is no assurance that the sensitivities-based optimization produces the best
solution possible.

Fig. 13 Percentage error between the true and approximated flutter surface (case 2).

3. Case 3: Optimization using a PC expansion
Finally, the optimization is performed again but using a PC expansion as a surrogate of the flutter surface.

Using the same optimization settings as before, the new optimal control gains are f = [−0.1805, 0.0058, 0]T and
g = [1.28,−1.286, 0]T . The resulting flutter surface for these new gains is shown in Fig. 14.

(a) (b)

Fig. 14 Flutter speed variability (case 3).

The new flutter surface is considerably different to that of case 2. Firstly, the variability of the flutter speed is
significantly less. The new 1% worst-case flutter speed is 17.4 m/s. In addition, the shape of the surface is now highly
nonlinear. This suggests that the PC expansion optimization is able to exploit nonlinearities in the flutter surface, which
local sensitivities are unable to do. The error between the true and estimated flutter speed is shown in Fig. 15. In this
case, the approximation serves well.

4. Comparison
A comparison of the results from the above three cases are given in Table 1 and the corresponding CDFs are

shown in Fig. 16. As shown, it is possible to assign a mean flutter speed using different sets of feedback control gains.
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Fig. 15 Percentage error between the true and approximated flutter surface (case 3).

However, these values significantly influence the variability of the flutter speed. Indeed, the worst-case flutter speed can
be increased from 14.7 m/s to 17.4 m/s (18%) by means of optimization.
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Fig. 16 Comparison of flutter speed CDF with different control gains,

Table 1 Worst-case flutter speed for each optimization case.

Case Worst-case flutter speed (m/s)
1 14.7
2 15.4
3 17.4

Figure 17 shows the variability of the pitch and plunge poles with the freestream velocity as the different control
gains are applied. The bounds correspond to the extremities between ±2.5 standard deviations of the random parameters.
Note that the pole corresponding to the controller is at a much higher frequency and therefore is not shown. In the
inactive controller case, case 1, and case 2, the parameter variability keeps the overall shape of the pole paths relatively
unchanged. In case 3, the shape changes considerably and suggests, as mentioned previously, that the control gains are
exploiting a nonlinearity in the flutter speed response surface.
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(a) Inactive controller. (b) Case 1.

(c) Case 2. (d) Case 3.

Fig. 17 Unstable pole paths with different control gains between ±2.5 standard deviations of the random
parameters.
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VII. Conclusions
A global optimization technique for aeroservoelastic systems with parameter uncertainty has been developed. The

mean flutter speed was assigned by means of feedback control acting through a trailing-edge control surface. It was
shown that different combinations of control gains achieved the same mean speed but with various levels of flutter speed
variability. As a result, it was hypothesized that an optimization approach could be used to find the optimum set of
control gains that both assigned a mean speed and minimized its variability. In the proposed method, the variability
was assessed probabilistically by first sampling the uncertain flutter hypersurface and then by constructing the inverse
cumulative density function of the flutter speed. The worst-case flutter speed was then extracted based on the probability
that the flutter speed was less than or equal to a chosen value. For reasons of computational efficiency, a surrogate model
of the hypersurface was constructed using either local sensitivities or a polynomial chaos expansion. Although the local
sensitivities approximation successfully increased the worst-case flutter speed, it did not achieve as good of a solution as
that with a polynomial chaos expansion approximation. This is because the local sensitives were unable to capture
nonlinear behavior in the hypersurface and consequently led to large errors between the true and estimated flutter speed.

Appendices

A. Detailed Matrix and Vector Expressions

1. Structural Matrices

Ms =


M Sα Sβ
Sα Iα Iβ + b(c − a)Sβ
Sβ Iβ + b(c − a)Sβ Iβ

 , Cs =


ch 0 0
0 cα 0
0 0 cβ

 , Ks =


kh 0 0
0 kα 0
0 0 kβ


2. Aerodynamic Matrices

Ma = ρsT


πb2 −πb3a −b3T1sC
−πb3a πb4( 18 + a2) −b4(T7 + (c − a)T1)sC
−b3T1sC 2b4T13sC − b4

π T3sC

 ,
Ca = ρsT


0 πb2 −b2T4sC
0 πb3( 12 − a) −b3(T8 − T1 + (c − a)T4 − T11

2 )sC
0 −b3(2T9 + T1 + ( 12 − a)T4)sC − b3

2πT11T4sC

 ,
Ka = ρsT


0 0 0
0 0 b2(T4 + T10)sC
0 0 b2

π (T5 − T4T10)sC

 ,
a = ρsT


−2πb

2πb2( 12 + a)
−b2T12sC

 , c1 =


0
1
T10
π

 , c2 =


1

b( 12 − a)
b

2πT11


SA =

[
−0.3455

(
v
b

)
−0.01365

(
v
b

)2

1 0

]
, SB =

[
1
0

]
, ST

C =
[
0.1082

(
v
b

)
0.006825

(
v
b

)2
]
,

The terms Tx are the Theodorsen coefficients described in [18].
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3. Control Matrices

Mc = −kmkdefT

Cc = −kmkpefT − kmkde
(
gT − eT

)
Kc = −kmkiefT − kmkpe

(
gT − eT

)
Nc = −kmkie

(
gT − eT

)
eT =

[
1 0 0

]
(23)

4. Total Matrices

Mt =Ms +Ma +Mc, Ct = Cs + Ca + Cc −
1
2

acT2 , Kt = Ks +Ka +Kc −
1
2

acT1

B. Nominal Parameters

Table 2 Nominal parameters for the aeroservoelastic system

Parameter Value Unit
M 11.142 kg
Iα 0.0278 kg m2

Iβ 5.65 × 10−5 kg m2

Sα 0.158 kg m
Sβ 1.42 × 10−3 kg m
kh 3510 N m−1

kα 27.347 N rad−1

kβ 0 N rad−1

ch 7.66 N s m−1

cα 0.017 N s rad−1

cβ 0 N s rad−1

ρ 1.225 kg m−3

b 0.15 m
a -0.32 −
c 0.6 −
sT 1.2 m
sC 0.25 −
kt 0.273 mN m A−1

kp 5 −
ki 0 −
kd 0.01 −
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