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Gaussian process classification using posterior
linearisation

Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä

Abstract—This paper proposes a new algorithm for Gaussian
process classification based on posterior linearisation (PL). In PL,
a Gaussian approximation to the posterior density is obtained
iteratively using the best possible linearisation of the conditional
mean of the labels and accounting for the linearisation error. PL
has some theoretical advantages over expectation propagation
(EP): all calculated covariance matrices are positive definite
and there is a local convergence theorem. In experimental data,
PL has better performance than EP with the noisy threshold
likelihood and the parallel implementation of the algorithms.

Index Terms—Gaussian process classification, posterior lineari-
sation, Bayesian inference.

I. INTRODUCTION

Classification is an important problem with a large num-
ber of applications, for example, in handwriting and speech
recognition, and medical diagnosis [1]. In (supervised) classi-
fication, a set of training data points with their corresponding
classes are available to learn the underlying structure of the
problem. Based on this information, the objective is to infer
the classes of new data points. This classification problem can
be posed using Gaussian processes (GPs) [2]–[8].

In binary GP classification, it is assumed that there is a latent
function, distributed as a GP [2], whose value at a certain data
point is related to the probability that this data point belongs
to one class. The GP prior has some hyperparameters that can
be marginalised out [9], or estimated by maximising the log
marginal likelihood [2]. Then, for the estimated hyperparam-
eters, we compute the posterior distribution over the latent
function evaluated at the training data points, which in turn
allows us to predict the classes for new data points.

The main difficulties in GP classification are the approxima-
tions of the posterior and the log marginal likelihood. Markov
chain Monte Carlo algorithms [10] can provide very accurate
approximations, but they usually have a high computational
burden. This is the reason why there is interest in using com-
putationally efficient approximations. We proceed to review
two of such approximations in the literature, though other
approaches exists [11]–[13].

One possibility is to use the Laplace approximation [2].
A drawback of the Laplace approximation is that it cannot
handle likelihood functions in which the gradient is zero
almost everywhere, such as the noisy threshold likelihood [4].
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Expectation propagation (EP) [14] can be used with all like-
lihood functions and often outperforms Laplace approximation
in GP classification [15]–[17]. EP is an iterative algorithm
in which, at each iteration, a Gaussian approximation to the
likelihood for one data point is reapproximated. In order to
do this, we first remove the considered approximated likeli-
hood from the posterior approximation, which results in the
“cavity” distribution. Then, we use the true likelihood and the
cavity distribution to provide a new Gaussian approximation
to the likelihood by performing moment matching. EP has
two drawbacks that are relevant to this paper: 1) the cavity
distributions can have negative-definite covariance matrices
with possibly large negative eigenvalues that are not due to
numerical errors [1], [18], and 2) there is no convergence proof
in the literature that indicates conditions of convergence [2]. In
order to deal with 1), simple, ad-hoc solutions are sometimes
used, for example, processing the likelihoods in a different
order to see if this resolves the issue, or arbitrarily setting the
negative-definite covariance to a predefined positive-definite
matrix [18]. More robust EP algorithms, such as damped EP
or double loop algorithms, also require pragmatic solutions to
avoid negative-definite covariance matrices [19].

This paper proposes an algorithm for GP classification
based on posterior linearisation (PL) [20], [21]. In PL, we
compute a Gaussian approximation to the posterior distribution
by linearising the conditional mean of each label, in the
region where the posterior lies, and by setting the conditional
covariance to a value that accounts for the linearisation error.
Importantly, the selection of the linearisation parameters is
done in an optimal way by minimising the mean square error
of the linearisation. This optimal linearisation is given by
statistical linear regression (SLR) [22] of the conditional mean
with respect to the posterior.

In practice, PL is implemented by an iterative procedure, in
which we can process the likelihoods sequentially or in par-
allel. PL has some advantages compared to EP: 1) PL always
provides positive-definite covariance matrices, so ad-hoc fixes
are not necessary, and 2) there is a local convergence proof
[21] that indicates sufficient local conditions of convergence.
The proposed algorithm also includes a method to approximate
the marginal likelihood for estimating the hyperparameters. In
the analysed experimental data, EP and PL have comparable
performance in terms of classification errors except in the
parallel implementations for the noisy threshold likelihood,
where PL provides lower errors.
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II. PROBLEM FORMULATION

We consider a set D = {(x1, y1) , ..., (xn, yn)}, which
contains n data points x = (x1, ...,xn), with xi ∈ Rnx , where
nx is the dimension of each data point, and their binary labels
y = (y1, ..., yn), with yi ∈ {−1, 1}. In binary classification,
given this set, we are interested in predicting the binary labels
y? = (y?1 , ..., y

?
m) for m new data points x? = (x?1, ...,x

?
m)

[2]. We proceed to explain how this problem is formulated
using GPs.

It is assumed that the label yi of a data point xi only depends
on the value of a latent real-valued function evaluated at xi,
fi = f (xi). Then, there are several widely-used models for
the probability mass function p (yi|fi), for example, the probit,
logit, and noisy threshold, whose respective p (yi|fi) are [4]

p (yi|fi) = Φ (yifi) , (1)
p (yi = 1|fi) = 1/ (1 + exp (−fi)) , (2)

p (yi|fi) = ε+ (1− 2ε)H (yifi) , (3)

where Φ (z) =
∫ z
−∞N (x; 0, 1) dx, N (·;x, P ) is the Gaussian

density with mean x and covariance P , ε ∈ (0, 1), and
H (z) = 1 if z > 0 , and H (z) = 0 otherwise.

It is further assumed that function f (·) is distributed accord-
ing to a zero-mean Gaussian process with a given covariance
function kθ (·, ·), where θ ∈ Rnθ is a vector that contains
all the hyperparameters. As a result, the prior density of
f = [f1, ..., fn]

> becomes

p (f |x, θ) = N (f ; 0,K) , (4)

where K is an n × n covariance matrix such that Kij =
kθ (xi,xj). The posterior of f is

p (f |D; θ) =

[
n∏
i=1

p (yi|fi)

]
p (f |x; θ) /p (D; θ) , (5)

where the marginal likelihood is

p (D; θ) =

∫ [ n∏
i=1

p (yi|fi)

]
p (f |x; θ) df . (6)

The hyperparameters θ are usually not known and are often
estimated by maximising (6) [2]. Once we have estimated
θ, the posterior over f? = f (x?) = [f?1 , ..., f

?
m]
>, which

considers new data points, is computed as

p (f?|D,x?; θ) =

∫
p (f?|D, θ,x?, f) p (f |D; θ) df . (7)

Finally, all information about the class labels for the new
data points is given by the distribution of y? given D, x? and
θ, which can be written as

p (y?|D,x?; θ) =

∫ [ m∏
i=1

p (y?i |f?i )

]
p (f?|D,x?; θ) df?. (8)

Based on this distribution, we can predict the class labels,
which is our main objective, for example, by computing their
expected value [2]. Unfortunately, none of the densities of
interest, (5)-(8), has a closed-form expression, so approxima-
tions are necessary. As in the Laplace and EP methods, in this
paper, we consider Gaussian approximations of (5) and (7).

A. Enabling approximation
We obtain a Gaussian approximation to the posterior by

approximating the conditional mean E [yi|fi] as an affine
function and the conditional variance C [yi|fi] as a constant

E [yi|fi] ≈ Aifi + bi, C [yi|fi] ≈ Ωi, (9)

where Ai ∈ R, bi ∈ R, and Ωi > 0, and the conditional
moments E [yi|fi] and C [yi|fi] are taken with respect to
p (yi|fi), which is a discrete distribution.

Under approximation (9), the linear mean square error
(LMMSE) estimate u of f and its mean square error matrix
W are available in closed-form [23]

u = KA>
(
AKA> + Ω

)−1
(y − b) , (10)

W = K−KA>
(
AKA> + Ω

)−1
AK, (11)

where A = diag ([A1, ..., An]), b = [b1, ..., bn]
> and Ω =

diag ([Ω1, ...,Ωn]). Then, the posterior (5) is approximated
as Gaussian with mean u and covariance matrix W, which
implies that the posterior of f?, see (7), is Gaussian with mean
u? and covariance matrix W?

u? = (K?)
>

A>
(
AKA> + Ω

)−1
(y − b) , (12)

W? = K?? − (K?)
>

A>
(
AKA> + Ω

)−1
AK∗, (13)

where K? and K?? are n×m and m×m matrices such that
K?
ij = kθ

(
xi,x

?
j

)
and K?∗

ij = kθ
(
x?i ,x

?
j

)
.

The quality of the approximations of the posterior moments
(10)-(13) only depends on the choice of Ai, bi,Ωi for i =
1, ..., n, so it is of utmost importance to select them properly.

III. POSTERIOR LINEARISATION OF GPS

In this section, we first explain SLR using conditional
moments in Section III-A. Then, we explain iterated posterior
linearisation in Section III-B. We propose a method for ap-
proximating the marginal likelihood in Section III-C. Finally,
a discussion of the algorithm is provided in Section III-D.

A. Statistical linear regression of conditional moments
With SLR, we can optimally linearise E [yi|fi] in a mean

square error sense to make approximation (9). In addition,
SLR provides us with the linearisation error, which is used
to approximate C [yi|fi] as a constant, as required in (9). The
SLR linearisation parameters are denoted as

(
A+
i , b

+
i ,Ω

+
i

)
and

we proceed to explain how to obtain them.
In SLR of random variables [21], we are given a density

p (·) on variable fi, whose first two moments are fi and Pi, and
the conditional moments E [yi|fi] and C [yi|fi], which describe
the relation between yi and fi. Parameters Ai and bi are then
selected by minimising the mean square error over random
variables yi and fi

Efi,yi

[
(yi −Aifi − bi)2

]
= Efi

[
(E [yi|fi]−Aifi − bi)2

]
+ Efi [C [yi|fi]] , (14)

where we have highlighted the expectations that are taken with
respect to variables fi and yi. Therefore,(

A+
i , b

+
i

)
= arg min

Ai,bi

Efi

[
(E [yi|fi]−Aifi − bi)2

]
.



In SLR, the parameter Ω+
i is the resulting mean square error

in (14) for the optimal values A+
i and b+i so

Ω+
i = Efi

[(
E [yi|fi]−A+

i fi − b
+
i

)2]
+ Efi [C [yi|fi]] .

In other words, SLR makes the best affine fit of the conditional
mean E [yi|fi] in the region indicated by p (·), the density of
fi, and sets C [yi|fi] as the corresponding mean square error.
The resulting

(
A+
i , b

+
i ,Ω

+
i

)
is given by [21]

A+
i = Cfi [fi,E [yi|fi]] /Pi, b+i = Efi [E [yi|fi]]−A+

i fi,
(15)

Ω+
i = Cfi [E [yi|fi]] + Efi [C [yi|fi]]−

(
A+
i

)2
Pi, (16)

where Cfi [·] denotes both the variance and covariance with
respect to fi. We can then obtain

(
A+
i , b

+
i ,Ω

+
i

)
in terms of

moments of E [yi|fi] and C [yi|fi] with respect to density p (·).
Expressions of these moments for the likelihoods (1)-(3) are
given in the supplementary material.

B. Iterated posterior linearisation

This section explains how to use SLR to make approxi-
mations (9) in an optimal fashion. If we did not know the
labels y1, ..., yn, the best approximation of the conditional
moments would be given by SLR with respect to the prior,
which is given by (4), as this density indicates the region
where fi lies. However, we know these labels, and the insight
of posterior linearisation [20] is that, given these labels, the
best linearisation (Ai, bi), in a mean square error sense, and
the resulting mean square error Ωi are given by SLR with
respect to the posterior.

Direct application of posterior linearisation is not useful as
we need to know the posterior to select (A,b,Ω), which is
used to calculate the posterior. Nevertheless, posterior lineari-
sation can be approximated by using iterated SLRs, giving
rise to iterated posterior linearisation. That is, as we do not
know the posterior, we perform SLR with respect to the best
available approximation of the posterior. At the end of each
iteration, we expect to obtain an improved approximation of
the posterior, which is used to compute an improved SLR
at the next iteration. The steps of the parallel version of the
algorithm are:

1) Set j = 1 and uj = 0, Wj = K.
2) For i = 1, ..., n, compute

(
Aji , b

j
i ,Ω

j
i

)
using SLR with

respect to the ith marginal of a Gaussian with moments(
uj ,Wj

)
, see (15)-(16).

3) With the current linearisation,
(
Aji , b

j
i ,Ω

j
i

)
for

i = 1, ..., n, compute the new posterior moments(
uj+1,Wj+1

)
using (10) and (11), where only the

values of (A,b,Ω) change.
4) Set j = j+ 1 and repeat from step 2 for a fixed number

of iterations or until some convergence criterion is met.
It is important to notice that in the aforementioned algorithm,
we first relinearise all likelihoods and then compute the
posterior with the current linearisation. This is beneficial from
a computational point of view because the linearisations can be
done in parallel and we only perform one update per iteration.

Nevertheless, it is also possible to recompute the posterior
after relinearising a single likelihood. In GP classification, K
can be close to singular so we have adapted the numerically
stable implementations of Laplace and EP algorithms in [2]
to our PL implementations.

C. Marginal likelihood approximation

In this section, we propose the use of sigma-
point/quadrature rules to approximate the marginal likelihood,
which is given by (6). Importantly, we select the quadrature
points with respect to the posterior approximation, as this
density has its mass in the region where the integrand is high.
We therefore write (6) as

p (D; θ) = p̂ (D; θ)

∫ [ n∏
i=1

p (yi|fi)
p̂ (yi|fi)

]

×
[
∏n
i=1 p̂ (yi|fi)]N (f ; 0,K)

p̂ (D; θ)
df , (17)

where p̂ (D; θ) = N
(
y; b,AKA> + Ω

)
and p̂ (yi|fi) =

N (yi;Aifi + bi,Ωi) i = 1, ..., n. Consequently, the marginal
likelihood can be seen as p̂ (D; θ) times a correction factor
that depends on the similarity between p (yi|fi) and p̂ (yi|fi)
in the region indicated by the posterior density.

There are some drawbacks when integrating with re-
spect to the joint density of f using sigma-points/quadrature
rules. First, accurate and computationally efficient integration
in high-dimensional spaces is more difficult than in low-
dimensional spaces. Second, sigma-point/quadrature rules re-
quire the Cholesky decomposition of the covariance matrix and
this covariance can be ill-conditioned in GP classification [2],
so it is not always possible to compute it. We therefore discard
correlations in the posterior for approximating the correction
factor in (17) such that

p (D; θ) ≈ p̂ (D; θ)

n∏
i=1

∫ [
p (yi|fi)
p̂ (yi|fi)

]
N (fi;ui,Wi) dfi,

(18)

where ui and Wi represent the posterior mean and variance
of fi, which are obtained from (10) and (11).

In short, in order to compute (18), we compute the pos-
terior moments, u and W, and the resulting SLR parame-
ters (A,b,Ω), which are required in p̂ (D; θ) and p̂ (yi|fi).
Accurate approximation of (17) is quite important as it is
used to estimate the hyperparameters θ. Without an accurate
estimation of θ, the results of a GP classifier are poor, as the
GP does not model the training data properly. The results in
Section IV indicate that approximation (18) is accurate for
classification purposes.

D. Discussion

The iterated SLRs of PL can be done in parallel for each
likelihood and sequentially. We can also combine both types of
linearisation approaches, for example, by performing several
updates sequentially and then in parallel. Importantly, the main
benefit of PL compared to EP is that all involved densities in
PL have positive-definite covariance matrices. This is ensured



by the fact that Ω is positive definite by definition. Numerical
inaccuracies could render a negative-definite Ω but this would
be easy to address, as its eigenvalues would be close to zero.
Another option is to use square root solutions [24].

As EP, iterated PL is not ensured to converge in general.
Nevertheless, there is a local convergence proof, which is
given in [21, Thm. 2], that states sufficient conditions for
convergence.

IV. EXPERIMENTAL RESULTS

This section assesses Laplace, EP, and PL, in their parallel
and sequential forms, in six real-world data sets from [25]. One
additional synthetic example that analyses a case where EP
fails is provided in the supplementary material. In particular,
we consider the data sets: breast cancer (9, 699), crab gender
(6, 200), glass chemical (9, 214), ionosphere (33, 351), thyroid
(5,215) and housing (13,506), where the number of attributes
(dimension of data points) and data points in each data set
are given in parentheses. For the last two data sets, the groups
for binary classification are formed as in [4]. Data points have
been normalised to have zero mean and an identity covariance
matrix [15]. We use ten-fold cross-validation [2] to compute
the average classification error.

We use the covariance function [10]

kθ (xi, xj) = σ2
1 exp

(
− 1

2`2
‖xi − xj‖2

)
+ σ2

2δ [i− j] ,

where δ [·] denotes the Kronecker delta, σ2
2 is set to 0.1, the

hyperparameters θ =
(
σ2
1 , `
)
, and xi 6= xj for i 6= j. EP and

Laplace have been implemented as indicated in [2].
We report results for all the likelihoods in (1)-(3). The

integrations that do not admit closed-form expressions are ap-
proximated using a Gauss-Hermite quadrature of order 10. We
first estimate the hyperparameters θ by maximising (6) using
the BFGS Quasi-Newton algorithm implemented in Matlab
function fminunc. The optimisation method is run on variable
ln (θ) with initial point

(
lnσ2

1 , ln `
)

= (ln (10) , ln (1)). Then,
we approximate the posterior (5) as Gaussian and, finally, we
compute the expected value of (8) to predict the label for each
test data point. We consider 10 iterations for EP and PL. If
the variance of a likelihood approximation is negative for EP,
it is set to a small positive number to avoid negative-definite
covariance matrices, as suggested in [18].

The resulting average classification errors for each data set
and averaged over all data sets (Ave.) are shown in Table I,
where Prob., Log., and NT stand for probit, logit, and noisy
threshold. PEP and SEP refer to parallel and sequential EP,
and PPL and SPL to parallel and sequential PL. The cases
where the classification error is considerably high are bolded.
In general, sequential algorithms work better than parallel
algorithms, though, as we will analyse, with an increase in the
computational burden. In fact, SEP and SPL show comparable
results. The highest differences among the methods appear
with the noisy threshold likelihood and the parallel implemen-
tations. In this case, PPL works well but PEP provides high
errors in four out of six experiments. The reason is that EP
returns negative-definite covariance matrices for this likelihood
and the fixes do not make PEP attain a low error. Laplace does

Table I: Average classification errors for real data sets.

Like. Alg. Can. Crab Glass Ionos. Thy. Hous. Ave.

Prob.

L 0.051 0.050 0.067 0.108 0.061 0.069 0.067
PEP 0.034 0.045 0.067 0.088 0.062 0.064 0.057
SEP 0.034 0.045 0.067 0.088 0.062 0.064 0.057
PPL 0.037 0.035 0.076 0.083 0.071 0.069 0.059
SPL 0.034 0.045 0.067 0.091 0.057 0.069 0.058

Log.

L 0.036 0.045 0.071 0.105 0.057 0.067 0.061
PEP 0.251 0.045 0.071 0.083 0.062 0.070 0.127
SEP 0.034 0.045 0.067 0.083 0.062 0.070 0.057
PPL 0.039 0.040 0.071 0.088 0.071 0.067 0.060
SPL 0.034 0.045 0.067 0.083 0.057 0.067 0.056

NT

L - - - - - - -
PEP 0.202 0.085 0.071 0.384 0.454 0.124 0.214
SEP 0.034 0.045 0.067 0.086 0.062 0.069 0.058
PPL 0.043 0.025 0.081 0.091 0.062 0.058 0.058
SPL 0.034 0.035 0.067 0.091 0.057 0.070 0.057

not work with this likelihood, as the gradient of the likelihood
is zero.

For the logit model, PEP provides a high error in the cancer
data set. This is a numerical error that can be solved by using
a Gauss-Hermite quadrature rule of order 32, which increases
the computational load. In contrast, PPL is able to work well
in this data set with the Gauss-Hermite quadrature rule of
order 10. The sequential processing of the data for EP and
PL work well in this data set. In the rest of the experiments,
EP, PL and Laplace provide comparable results, though there
are slight differences in the errors. Importantly, parallel PL is
more robust than parallel EP, as errors are not markedly high
in any of the data sets. We think this is a relevant, practical
advantage of PL over EP.

Finally, we provide the average computational times of our
Matlab implementations (probit model and crab data set),
as a indication of their computational complexities, though
running times depend on the data set. With an Intel Core
Xenon processor, we have: 0.4 s (Laplace), 0.7 s (PEP), 6.1
s (SEP), 0.8 s (PPL), and 5.5 s (SPL). Laplace is the fastest
algorithm. PEP is slightly faster than PPL, as its optimisation
requires a slightly fewer number of iterations to converge,
although PEP has robustness problems for the noisy threshold
likelihood. Sequential algorithms are slower, but they usually
perform better than parallel algorithms. In this case, SPL is
marginally faster than SEP and both methods have comparable
performance.

V. CONCLUSIONS

We have proposed a novel method for classification us-
ing Gaussian processes based on posterior linearisation. The
proposed algorithm consists of performing iterated statistical
linear regressions with respect to the current approximation to
the posterior. An important benefit compared to expectation
propagation is that the proposed method does not provide
negative-definite covariance matrices by construction, which
implies that it does not need ad-hoc procedures to solve the
resulting problems. In addition, posterior linearisation has a
local convergence theorem. In the experimental results, PL
and EP have comparable performance except in the parallel
implementations with the noisy threshold likelihood where PL
performs better than EP.
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Supplementary material of
“Gaussian process classification
using posterior linearisation”

In this supplementary material, we first provide the expres-
sions for the moments required in SLR for the probit, logit,
and noisy-threshold likelihood. We then analyse a synthetic
example where EP, without ad-hoc fixes, fails.

SLR FOR PROBIT, LOGIT AND NOISY-THRESHOLD
LIKELIHOODS

In this section, we provide the expressions for the SLR
moments required in (15)-(16) for the probit, logit, and noisy-
threshold likelihoods. For the probit model, we have

Efi [E [yi|fi]] = 2α−1, Cfi [E [yi|fi]]+Efi [C [yi|fi]] = 1−α2,

Cfi [fi,E [yi|fi]] =
2Pi√
1 + Pi

N
(

f i√
1 + Pi

; 0, 1

)
,

where α = Φ
(
f i/
√

1 + Pi
)
. We have used Eq. (3.84) in [2]

to obtain the last expression.
For the noisy threshold model, we have

Efi [E [yi|fi]] = 2β − 1,

Cfi [E [yi|fi]] + Efi [C [yi|fi]] = 1− β2,

Cfi [fi,E [yi|fi]] = 2 (1− 2ε)
√
Pi

×N
(
f i√
Pi

; 0, 1

)
,

where β =
[
1− Φ

(
f i/
√
Pi
)]
ε+ (1− ε) Φ

(
f i/
√
Pi
)
.

For the logit model, the conditional moments are

E [yi|fi] =
1− exp (−fi)
1 + exp (−fi)

, C [yi|fi] = 1−
(

1− exp (−fi)
1 + exp (−fi)

)2

.

The integrals Efi [·] and Cfi [·] of these moments that are
required in (15)-(16) do not have closed-form expressions,
but they can be approximated using Gaussian quadrature
rules/sigma-points [26], [27].

SYNTHETIC EXAMPLE WHERE EP FAILS

We consider a Gaussian prior over (f1, f2) with mean
(−0.5,−3) and unit variances for both variables with correla-
tion 0.8. We also consider the noisy threshold likelihood, see
(3), with ε = 0.01, y1 = 1, and y2 = 1.

We run EP first on the first variable and then on the second
variable. After the first round of updates, the cavity distribution
over f1 has a variance of -117.9, which stops the EP iterations.
If we process the measurements in the other order, we face
the same problem. In this case, the variance of the cavity
distribution over f1 is -14.3. If we run EP in parallel [28],
after the second update, the cavity distribution over f1 also
has a variance of -117.9. These negative variances are not due
to numerical errors, they are the result of the EP iterations. In
particular, the problematic part is the variance of the second
variable, which increases after its update, so the likelihood
approximation has a negative-definite variance. This creates
problems at the next step of the iteration [19].
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Figure 1: Contour plot of the posterior (Section V). PL posterior
approximation: mean (red-cross) and the 3-σ ellipse (red line). Blue
crosses represent the sequence of means of parallel PL. The PL solution
matches the mode with highest density: EP does not provide a solution.

We show the contour plot of the posterior, which has been
obtained using a fine grid of points, and the PL solution in
Figure 1(a). Both parallel and sequential implementations of
PL converge to the same solution and they match the mode
of the posterior with highest density, which is a reasonable
Gaussian approximation to a bimodal density. In the figure,
we can also see the sequence of posterior means provided by
the parallel PL iterations. In 6 iterations, the algorithm gets
quite close to the fixed point. Laplace approximation would
not change the prior as the gradient of the likelihood is zero
almost everywhere. This example demonstrates that this type
of situation can be satisfactorily handled with PL, but not with
EP, without fixes, and Laplace methods.


