g'd UNIVERSITY OF

& LIVERPOOL

A NOVEL VARIABLE SELECTION
METHOD FOR CLASSIFICATION WITH
APPLICATION TO SINGLE NUCLEOTIDE
POLYMORPHISM DATA

Thesis submitted in accordance with the requirements of the
University of Liverpool

for the degree of

Doctor of Philosophy

in

Biostatistics

by

Nazatulshima Hassan

September 2018



DECLARATION

I declare that the thesis has been composed by myself and that the work has not
been submitted for any other degree or professional qualification. I confirm that
appropriate credit has been given within this thesis where reference has been

made to the work of others.

Nazatulshima Hassan

This research was carried out in the Department of Biostatistics, in the
Institute of Translational Medicine, at the University of Liverpool,
United Kingdom.



TABLE OF CONTENTS

ABSTRACT . viii

MANUSCRIPT AND COMMUNICATIONS ....ouiiiiiiiiiiiiiiiiiiiiiiiiiiiii xi

ACKNOWLEDGEMENTS ..., xiii

ABBREVIATIONS ... XV

STATISTICAL SYMBOLS AND NOTATIONS.....oiiiiiiiiiiiiiiiiiiiiii xvii

LIST OF TABLES ..o Xix

LIST OF FIGURES ... .ot xxiii
CHAPTERS

1. INTRODUCGTION ..ottt 1

1.1 Single nucleotide polymorphism (SNP) data..........ccooceieiiiinninn. 2

1.2 Variable selection for classification ..............ccccooiiiiiiin... 3

1.3 Signal-to-noise ratio.........c...iiiiiiiiiiiiiiiiii 5

1.4 Logistic regression as the framework....................cooo 7

1.5 Combining SNP and longitudinal clinical data.......................c....... 8

1.6 MOTIVATIONS ettt 9

1.7 Aims of thesis.......ccooooiiii 10

1.8 Structure of the thesis ...........ccccoiiiii . 10

2. LITERATURE REVIEW ...t 13

2.1 Introduction ..o 13

2.2 Overview of SNP data ......coooeeeiiiiiiiiiii e, 15

2.2.1 Genome-wide association study ............ccooooiiiiiiiii, 16

2.2.2 Single nucleotide polymorphism ............ccccooeeiiiiiiiiiiiiinn, 16

2.2.3 Statistical challenges ...........ccooooiiiiii 18

1l



2.3 MeEthOAS oo 20

2.3.1 Literature search..........cccooooiiiiiiiiiiii e 20
2.3.2 Simulated dataset ..., 21
2.3.3 Sample and genotyping QC........ccooiiiiiiiiiiiiiii e 21
2.3.4 Data Pruning .........ooeeeviiiiiiiiiiiie e 22

2.4 Summary of variable selection methods for classification ............... 23
2.4.1 Filter methods ... 24
2.4.2 Wrapper methods ........ccoooeiiiiiii 33
2.4.3 Embedded methods............cciiiiiiiiii 36

2.5 Classification ...........oooiiiiiiii e 38
2.6 Concluding remarks.........cooooiiiiiiiiiiiiiie e 49
3. METHODS .. 52
3.1 INtrOdUCHION Loeeiiiii e 52
3.2 Selection of the most informative SNPs..............ccoc 55
3.2.1 Proposed tSNR and the variable selection algorithm............ 55
3.2.2 The WOrKflow ......ouuiiiiiiiii e 61
3.2.2.1 Univariable selection ...............ccooooiiiiiiii, 62

3.2.2.2 Multivariable selection ...............ccoooiiiiiiiiiinn. 63

3.2.3 Statistical concepts related to tSNR...............ooooooiil 69

3.3 Combining longitudinal clinical and SNP data.......................o...... 72
3.3.1 Overview of Longitudinal Discriminant Analysis (LoDA)..... 74

3.4 Concluding remarks..........cooiiiiiiiiiiiiiii e 81
4. SIMULATION STUDY oiiiiiiieeeeeeee e 82
4.1 IntrodUCtion ....oo..oiiiiii e 82
4.2 Aims of simulation study ...........coooiiiiiiiii 83

iv



4.3 Data generating mechanism ................ccooooiiiiin 83

4.4 Methods ooniiiii e 84
4.5 ReSUIES oiiii i 89
4.5.1 Univariable ranking using filter metric tSNR......................... 89

4.5.2 Comparing classification performance between penalised logistic
regression (PLR) and stepwise logistic regression (SLR)....... 92

4.5.3 Strategy 1: Multivariable ranking using tSNR (cumulative tSNR

TANKINE ).+t 94
4.5.4 Strategy 2: Model selection using tSNR. ...........coooeiiiinnn. 99
4.6 Concluding remarks ............oooiiiiiiiiiiiiiiieei e 101

5. CLINICAL APPLICATIONS:

tSNR as Variable Selection Method for Classification ............c......oooooe. 103
5.1 INtroduCtion .....coooiiiiiiiii 103

5.2 Methods oo 106
5.2.1 The EpiPGX dataset..........ccooiiiiiiiiiiiii 106

5.2.2 Sample and genotyping QC.........coooiiiiiiiiiiiiiiii 107

0.2.3 Data PrUNING ...ooovniiiiiiiiie e 108

5.2.4 Univariable SNPs ranking using tSNR .................l 109

5.2.5 Multivariable approach of SNPs ranking and model selection

for classification .......oovoviiiiii 110
B3 ReSULES oo 116
5.3.1 Univariable SNPs ranking using tSNR, ..............ccccinn. 116

5.3.2 Multivariable approach of SNPs ranking and model selection
for classification ...........coooiiiiiiiiiiiiie e 120

5.4 Concluding remarks ............oocooiiiiiiiiiiii e, 128



6. CLINICAL APPLICATIONS:

Combining Longitudinal Clinical and SNP Data for Classification........... 131
6.1 INtrodUCtion .....cooiiiiiiiiiii e 131
6.1.1 Challenges of SANAD dataset and motivation................... 133

6.2 Methods ..ooooiiiii 134
6.2.1 The SANAD dataset .......coooeiiiiiiiiiiiiiii e 135

6.2.2 Phenotype definition .........ccoooooooiiiiii . 136

6.2.3 Overview of the SNPs selection process and classification .. 137
6.2.4 Classification with LoDA ..., 140
6.2.6 Jointly modelling SNPs with longitudinal clinical markers . 143
6.3 RESULES ..o 145
6.3.1 Selection of the most informative SNPs using tSNR. ......... 146

6.3.2 Jointly modelling SNPs with longitudinal clinical markers . 152

6.4 Concluding remarks..........oooiiiiiiiiiiiiiiii e 156

7. DISCUSSION e 158
7.1 Introduction ......o..ooiiiiiii e 158

7.2 Discussion of thesis results ..., 160

7.2.1 Implications of literature review .............coccveeeiiiieeiiinnnnnnn. 160

7.2.2 Implications of methodology .........ccccoooviiiiiiiiin. 161

7.2.3 Implications of simulation study ..........ccccooooiiiii... 162

7.2.4 Implications of the clinical findings: tSNR as variable selection
method for classification ...............coooeiiiiiiiiiiie 163

7.2.5 Implications of the clinical findings: Combining longitudinal

clinical and SNP data for classification.........ccccoeovevineninn.. 165
.3 LAMIbATIONS ot 166
7.4 Recommendation for practice .............ccoooiiiiiiiiiiiiiiiiii 167

vi



7.5 Further perspective .......o.ooviiiiiiiiiiii e 168

7.6 Concluding remarks ............coooiiiiiiiiiiiii e 170
REFERENCES ... oo i 171
APPENDICES . ...t 184

AL R COAES i 184

vii



ABSTRACT

A Novel Variable Selection Method for Classification with
Application to Single Nucleotide Polymorphism Data
by

Nazatulshima Hassan

Introduction and Aims: In recent years, there has been a growing interest in
studying genetic data so as to answer specific medical questions; for example,
indicative biomarkers that can accurately predict (classify) outcomes (e.g.
healthy and disease or different categories of patients’ response to treatment).
In genome-wide data analysis, a typical procedure is to use a variable selection
approach, often univariable, where the primary aim is to select the most
important genetic variants, particularly Single Nucleotide Polymorphisms
(SNPs), associated with an outcome of interest. This thesis proposes a novel
variable selection method by considering the multivariate nature of the genetic
data. The aim of this thesis is threefold: (i) to develop a quantitative variable
selection method for classification which can be used in the multivariate setting,
computationally inexpensive and easy to understand and to apply, (ii) to propose
a multi-step approach that selects SNPs and evaluates the classification
performance of the resulting models in a cross-validation framework, and (iii) to
jointly model the longitudinal clinical and SNP data for classification using the

Standard and New Antiepileptic Drugs (SANAD) dataset.
Methods: A literature search was conducted to study the different approaches
of variable selection and their relationship with classification performance. A

novel variable selection method, tSNR within a logistic regression framework
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was developed to select the most informative SNPs. In addition, a multi-step
framework that involved univariable and multivariable selection in a cross-
validation setting was proposed. Then, the filter metric tSNR and the multi-step
framework were assessed using simulated datasets. The methods were further
examined using an epilepsy pharmacogenomics dataset (EpiPGX) in which the
phenotype of interest is the remission from seizures status after receiving first
well-tolerated antiepileptic drugs (AEDs). A second epilepsy dataset from the
SANAD trial was used as the validation dataset. Within the SANAD dataset,
the longitudinal clinical and SNP data were jointly modelled using a longitudinal
discriminant analysis (LoDA) approach with multivariate generalised linear
mixed model (MGLMM). The classification performance was measured by
calculating the probability of correct classification (PCC) and area under the
receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity,

positive predictive value (PPV) and negative predictive value (NPV).

Results: The literature review suggested the need for variable selection
methods, which could potentially aid better classification accuracy. In the
simulation study, the univariable tSNR ranking was able to capture the causal
SNPs in the top ten ranked SNPs. In addition, within the proposed framework,
the results using simulated datasets suggested that the classification performance
using SNPs selected by cumulative tSNR, (multivariate) are better than the SNPs
based on univariable tSNR ranking. The results were further confirmed using
the real clinical datasets. The addition of SNP data to the longitudinal model
based on clinical data improved the mean prediction time at which patients who
will not achieve remission from seizures within five years of commencing
treatment are identified. However, it did not provide an improvement to the

classification performance.
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Conclusions:

The developed approach using a tSNR filter metric proved to be effective in
ranking and selecting subset of SNPs that are associated with the outcome of
interest. The SNPs selected by tSNR were shown to give good classification
accuracy. Also, by jointly modelling the longitudinal clinical data and SNP data
(selected using tSNR) in a longitudinal model the prediction time at which

patients can be classified was improved.
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Chapter 1

Introduction

This thesis seeks to address the need for variable selection in classification (i.e.
discriminate samples or individuals between two or more groups) within the
context of genetic data analysis using single nucleotide polymorphisms (SNPs).
The current chapter provides an introduction to the basic concept of variable
selection for classification, discusses the needs for the variable selection and the

general view of how this has been so far approached by the research community.

Variable selection for classification can be seen as a problem to choose the
variables that carry the most information about the outcome of interest (i.e.
signal) while having reasonably high precision (i.e. low variance) so in other

words, as the problem of maximising the signal-to-noise ratio (SNR). Therefore,



this chapter will introduce this SNR, concept by defining the main terminology

mainly taken from engineering and the related concepts from statistics.

Another important concept is classification. This chapter will briefly describe
logistic regression as the classification method. In addition, the method of

combining SNP and longitudinal clinical data for classification will be discussed.

1.1 Single nucleotide polymorphism data

In this section, the SNP data is defined and introduced. A rich resource of genetic
information is provided by single nucleotide polymorphisms (SNPs), which
located along the chromosomes where the genetic code tends to vary from one
person to another by just a single base [1]. Generally, our DNA sequence is
formed from four nucleotide bases namely, Adenine (A), Thymine (T), Guanine
(G) and Cytosine (C). The polymorphism appears when for example, at a certain
base, the majority of individuals may hold the ‘G’ nucleotide, whereas some will

hold ‘T’ nucleotide.

The SNPs information are collected for each individual. SNPs represent only one
type of genetic data and can be thought of as categorical variables typically
showing three levels called genotypes (e.g. AA, AT, TT) [3]. In this thesis, the
focus lies on analysing the genetic data consisting of categorical SNPs with
binary phenotypes (only two possible outcomes e.g. “Yes” or “No”, “0” or “17).

From here on, this type of data will be referred to SNP data.

As an example, an extract of SNP data is shown in Table 1.1. The
“PHENOTYPE” column labels the phenotype groups (e.g. cases coded as “1”

and controls coded as “0” for binary outcomes). The extended columns to the



right belong to the SNPs. For instance, column “rs2821984 G” is a SNP with
G as the minor allele (i.e. less common allele at a SNP). Hence, with C as the
major allele (i.e. the most common allele at a SNP), the SNP can have three
possible genotypes CC, CG and GG. In this thesis (unless stated otherwise), the
data is coded either 0, 1 or 2 for the additive model which represents the count

of the minor allele.

Table 1.1: Extract of SNP dataset as an example.

ID SEX PHENOTYPE 1s2821984 G 1rs2837900_A ... 1s333600_ G
1 1 1 2 0 0
2 2 1 1 1 2
3 1 1 1 0 2
4 2 1 1 1 0
5 1 0 2 2 1
6 1 0 0 2 1
7 2 0 0 1 1

1.2 Variable selection for classification in genetic

studies

Analysis of genetic data using SNPs has become an important area of research
due to its association with complex diseases and different reactions to
medications and treatments [4]. SNP datasets are often very large consisting of
millions or hundreds of thousands of SNPs and are high-dimensional. High-
dimensional data refers to the case when the number of variables, p (i.e. the

number of SNPs) is much greater than the number of samples (or individuals), n

(p > n).

Over the years, many statistical and machine learning methods have been
applied to SNP data for classification. Such classification aims to assign each

sample correctly to the group it belongs to while using all the SNP data. For

(W8]



example, in the situation of binary phenotypes, one is either interested to classify
the samples into cases (e.g. disease, negative response to treatment) or controls
(e.g. healthy, positive response to treatment). The machine learning method
however do not do variable selection, instead they find a best approach to use
all the SNP data to discriminate patients. Such an approach does not allow to
reduce the dimensionality of the data and extra caution should be taken towards

validation.

However, there are biological arguments that only a subset of SNPs is linked to
the phenotype of interest. Then a subset of SNPs is investigated for association
with the phenotype which normally leads to model building for classification.
From an analysis point of view, selecting the most informative SNPs and best
model is best cast as a statistical problem of variable and model selection [5, 6].
Hence, dealing with the high-dimensionality and very large number of variables
in SNP data, raises the needs for feasible, computationally non-complex and
flexible variable selection methods or frameworks that can aid in achieving good
classification accuracy. Due to the challenge in dealing with high-dimensional

data, research in this direction continues.

Variable selection is important in several ways; (i) to reduce the computational
time and space required to run specific algorithms, (ii) to improve the
performance of classifiers, i.e., by removing the noisy or irrelevant variables and
by reducing the likelihood of overfitting to noisy data, and (iii) to identify which
variables may be relevant to a specific response (i.e. to identify which SNPs
associate with the phenotype) [7]. In this respect, three main variable selection
methods for classification, namely, filter, wrapper and embedded are widely

discussed in the literature. Many studies have reviewed these approaches in the



context of genetic studies (see for example, Guyon and Elisseeff (2003) [8], Saeys
et al. (2007) [9], Schwender et al. (2008) [3] and Hira and Gillies (2015) [10]) and

a detailed review of this literature is presented in Chapter 2 (Literature Review).

The importance of variable selection is significant as in most cases it helps to
increase classification accuracy. With that in mind, the three methods of variable
selection are considered in the development of a novel variable selection method
and a modelling framework to analyse SNP data. In this thesis, the hypothesis
is that good classification accuracies may be achieved by selecting SNPs that
carry high signal as compared to noise (i.e. high signal-to-noise ratio).
Furthermore, the main contributions of this thesis in variable selection for
classification are threefold: i) development of a novel filter metric tSNR, which is
based on the signal-to-noise ratio, ii) application of the method in both
univariable and multivariate settings, and iii) investigation of the contribution
of variables selected by tSNR on classification accuracy when combined with

longitudinal clinical data.

1.3 Signal-to-noise ratio

In science and engineering, the signal-to-noise ratio (SNR) is a measure that
compares the level of a desired signal to the level of background noise [11]. In
the context of magnetic resonance imaging (MRI), SNR is conceptualised by
comparing the signal of MRI image to the background noise of the image.
Statistically, in the binary outcomes scenario, SNR of a variable is defined as
the ratio of the difference in mean between the two groups over the standard
deviation from the two groups [12]. In genetic studies, the t-test is a commonly
used variable selection method that applies the SNR concept to identify the most

informative genes. In their paper, Mishra and Sahu [13] applied the SNR ranking
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generated from t-tests to select the most informative genes for cancer

classification.

As we know, the t-test is applied to compare two groups of continuous data (e.g.
microarray data). However, in their study, Zhou et al. [14-16] have proposed to
modify the t-test to fit categorical SNP data. The three values of SNPs are
transformed into binary form which allows the calculation of mean and standard
deviation in each group. The t-scores are then used to rank the SNPs from the

highest to the lowest values.

On the other hand, generalised SNR was recently proposed by Czanner et al.
[17] within the context of generalised linear models (GLM) in the recording of
single neurons. In the paper, generalised SNR was not introduced as the variable
selection method per se, but rather as a measure of system fidelity in neural
spiking activity. Hence, following this notion, this thesis generalises SNR
specifically to work with the binary outcomes and categorical SNPs in SNP
datasets. The generalised SNR is applied in the logistic regression framework due
to its ability to deal with a categorical outcome. The proposed generalised SNR
(from here on will be referred as tSNR) is used as the ranking measure for SNPs.
The tSNR is further extended to enable its application as a model selection
criterion. A detailed description of the developed method, tSNR is presented in

Chapter 3 (Methods).

In this thesis, the direct application of SNR to SNP datasets is challenging for
several reasons. First, the number of SNPs can be extremely large (typically half
a million) and the effect of SNPs on the phenotype are often small to modest, so

the SNR of each SNP is low [18]. Second, it is not possible to consider all SNPs



to develop a model (i.e. filtering method is required). Third, due to a large
number of SNPs, a stopping criterion should be developed and imposed on the
maximum number of SNPs that can be included in the final model. Fourth, since
this method is built outside of the classification algorithm (i.e. it is a filter
method), the performance of the variable selection might be independent to the
choice of classifier. Hence, it is crucial to select a good classifier that can produce
good classification performance. Fifth, misclassification tends to be much higher

for binary outcomes than continuous outcomes [18].

1.4 Logistic regression as the framework

Logistic regression (LR) is a classical approach that can be used to test for
associations between SNPs and a specific phenotype. This is due to its ability to
deal with categorical outcomes or specifically binary outcomes that this thesis is
concerned with. The popularity of LR is that it is widely available in most
statistical packages and the application of the method is well accepted in many

fields [19].

In this thesis, LR is not only used as the framework for the filter metric tSNR,
but also as the classification method to assign the samples (or individuals) to
their respective phenotype group. In terms of the proposed univariable filter
metric tSNR, the deviances (null and residual) from logistic regression are used
to calculate the tSNR value. The null deviance from the LR model shows how
well the response variable is predicted using only the intercept. Meanwhile, the
residual deviance tells how well the response is predicted with inclusion of one

SNP.



In the classification problem, LR measures the relationship between the outcome
(cases usually coded as ‘1") and one or more independent variables, by estimating
probabilities using its underlying logistic function. These probabilities (which take
values between 0 and 1) are then transformed into either 0 or 1 (binary outcomes)
according to the probability threshold specified. In this thesis, multiple logistic
regression and penalised logistic regression are used with the usual threshold 0.5

is applied.

1.5 Combining SNP and longitudinal clinical
data

Apart from variable selection, this thesis also focuses on jointly modelling SNP
data and longitudinal clinical data, which could potentially improve the
classification performance. Genetic studies have shown that SNPs have become
essential variables to consider for predicting an individual’s belonging to a
particular class of complex diseases and different reactions to medications and
treatments [4, 20]. The outcome usually is influenced by both the genetics

information and interaction between clinical and environmental variables.

In general, clinical data are often available, and their predictive value is well-
validated in the literature [21]. Often, the clinical data are collected once for
each patient (cross-sectional). This may be a feasible approach when the
diagnosis of a patient is of interest. However, if the effect of therapy or any time-
dependent response is of interest, then it is more appropriate to include the

longitudinal profiles as well [22].

Predicting the risk of individuals to develop a disease or have a particular

response to treatment given their genetic sequence (e.g. SNPs) is a desirable



goal, yet the current ability to make such predictions is relatively poor on its
own [23]. One explanation is in the complexity of the data structure; spatial,
high-dimensional and categorical. Secondly, the challenge lies on how to best
combine the SNP data and longitudinal clinical data. In this thesis, the proposal
to jointly model the SNP data (which is cross-sectional) and longitudinal clinical
data for the purpose of classification will be discussed in Chapter 6 (Combining

SNP Data and Longitudinal Clinical Data).

1.6 Motivations

This thesis is mainly motivated by the fact that variable selection is important
when dealing with high-dimensional genetic data. On one hand, variable
selection is important to researchers who aim to improve classification
performance (or prediction accuracy). On the other hand, variable selection is
needed to understand the relationships within the dataset. This is because there
are datasets with many variables of which their relationship with the outcome
of interest is not known by the experts in the field. Thus, any improvement in
this area can represent an important advancement in genetic association studies,

with implications to other fields.

In addition, variable selection has been a challenge for researchers of genetic
studies due to its computational complexity. As the capacity of the computer
and other technologies (e.g. genotyping technologies) increases, the
dimensionality of the collected data also becomes higher. However, analysing the
large number of variables in the multivariate analysis is challenging. Hence, it is
important that a proper framework for variable selection and model selection in

analysing the data is proposed.



1.7 Aims of thesis

The aim of this thesis is threefold:

(i) To develop a quantitative variable selection method for classification that
satisfies several criteria; (i) it can be easily extended to multivariate
applications, (ii) it is computationally inexpensive, and (iii) it is easy to
understand and to apply.

(ii) To propose a multi-step approach that selects SNPs and evaluates the
classification performance of the corresponding models in a cross-
validation framework.

(iii)  To jointly model the longitudinal clinical and SNP data for classification

using the SANAD dataset.

1.8 Structure of the thesis

This section describes the thesis structure. A detailed literature search that has
been undertaken is discussed in Chapter 2. In the literature review, three main
variable selection approaches that are used in genetic data analysis namely, filter,
wrapper and embedded are described. The gaps in the current literature are
discussed which leads to the proposal of a novel variable selection method in

Chapter 3.

The methods chapter (Chapter 3) is divided into two main areas; i) variable
selection method for classification, and ii) assessment of the classification
performance in longitudinal discrimination problems. The existing filter or
ranking measure is first described. The concept of signal-to-noise ratio, which
functions to capture the signal of a single variable, is discussed. An extension of

the metric called tSNR, which can be used in the multivariate setting, is
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explained. The proposal to jointly model the longitudinal clinical and SNP data
using Longitudinal Discriminant Analysis (LoDA) is described at the end of the
chapter. For each application, the classification performance is measured to

evaluate the efficacy of the model.

The utility of tSNR is shown using simulated datasets in Chapter 4. Ten
replicates of SNP datasets are simulated using HAPGEN v2.0 [24] software by
setting different objectives. The performance of the filter metric tSNR is
measured based on its ability to capture causal SNPs. Furthermore, the
classification performance is compared using different classification methods (e.g.

penalised logistic regression and stepwise logistic regression).

Chapter 5 focuses on the application of tSNR to a real clinical scenario, the
Epilepsy Pharmacogenomics (EpiPGX) study which comprises of two cohorts.
In this chapter, the phenotype of interest is defined as the remission status of
patients after receiving first well-tolerated antiepileptic drug (AED). The
analysis includes the selection of the most informative SNPs by applying
univariable and multivariate approaches to the first cohort from the EPiPGX
dataset (development set). The results gathered from the development set are

then evaluated on the second cohort of the dataset (validation set).

The application using tSNR. is further continued in Chapter 6 on the SANAD
dataset. In this study, the interest is to identify patients who will not achieve
remission from seizures within five years of commencing treatment diagnosis.
Patients who achieve a continuous 12-month period free from seizures within
five years of diagnosis are regarded as being in “remission,” whereas patients

who do not are referred to as “refractory” [25]. In this chapter, the SNPs selected

11



by tSNR are jointly modelled with longitudinal clinical data as explained in the

methods chapter.

The thesis is concluded in Chapter 7 which highlights the conclusions from the

analyses together with recommendations for its use. Also, the limitations are

discussed and further work is suggested.
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Chapter 2

Literature Review:

Variable Selection Methods for
Classification with Application to
SNP Data

2.1 Introduction

Analysis of genetic data has become increasingly popular for studying complex
human disease. The studies examine the associations between single nucleotide
polymorphisms (SNPs) and the complex human diseases and different reactions
to medications and treatments [4, 26]. The information from hundreds or
thousands of individuals with their health status (e.g. healthy or affected) or
treatment response (e.g. positive or negative response to treatment) are collected.
Each individual is then genotyped at millions of SNPs. Although, there are also
continuous or time-to-event outcomes, in this thesis the focus lies on the genetic

data with binary phenotypes.
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The availability of SNP datasets attracted the interest of researchers due to their
ability to identify patterns of data that vary systematically between individuals
with different phenotype groups [27]. For instance, in a breast cancer study [28]
of a series of individuals who were diagnosed with breast cancer, a higher
frequency of a particular SNP allele or genotype can be observed as compared
to healthy people. In disease specific studies, the SNP which correlates with the
outcome is called “disease SNP”. However, in this study, the pharmacogenetics
data is also utilised of which the outcome of interest is person’s response to
medication. Hence, for easier explanation, from here onwards this particular SNP
will be referred to as the causal SNP (i.e. the SNP that increases the risk of a

specific outcome of interest).

Classification is an important problem and it often relates to a situation where
the aim is to predict whether an individual belongs to a certain phenotype group
or class. The process of classification can be based on a supervised learning
process where, in order to assign the individual to a group, information from
individuals who already belong to a specific group is used. However, the analysis
of SNP datasets is complicated due to the large variable space, which poses
computational time complexity and low accuracy [4]. The challenge of using SNP
datasets is that SNPs have only three possible levels, commonly denoted as AA,
AB and BB, which gives a SNP dataset a different structure from one containing
continuous variables [29]. This extreme sparsity of coverage for discrete variables

is a challenge when assessing the relationships between SNPs and the phenotype.

When applied to SNP datasets, variable selection methods can play a crucial

role in classification. Not only do they aim to solve the problem of high

dimensionality, they also aim to reduce computation time due to data complexity
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and to achieve good levels in classification accuracy [4]. There is research on
variable selection and classification methods with application to SNP datasets
(3, 4, 30, 31]. These publications have highlighted that identifying the variables
that offer a good level of discrimination and selecting an appropriate
classification method is equally important. However, it is important to note that

there is no universal, optimal classification method that fits every dataset [4].

This chapter provides an overview of variable selection methods in the context

of classification with specific applications to SNP datasets. The objective of this

review is twofold:

(i) To describe the background of existing variable selection methods for
classification in this area.

(ii) To explore the applications of several classification methods to SNP

datasets (focusing on binary phenotype).

This chapter is organised as follows. Section 2.2 gives the overview of genetic
data and the statistical challenges which arise in the analysis of high-dimensional
data. Then, description of the simulated dataset used for this chapter is given in
Section 2.3. In Section 2.4, the variable selection methods are summarised and
the application of each method is shown using the simulated dataset. Afterwards,
several classification methods that are well-known in dealing with SNP data are

explained in Section 2.5. The chapter is concluded in Section 2.6.

2.2 Overview of SNP data

In this thesis, the focus lies on SNP data from Genome-wide Association Studies

(GWAS) not on data with targeted gene (i.e. candidate genes association studies)



which is often smaller. Therefore, in this section, the concept of GWAS is

introduced as well as the statistical challenges related to it.

2.2.1 Genome-wide association studies

The main objective of Genome-wide Association Studies (GWAS) is to test the
relationship between the genetic variants along the genome and a specific
phenotype [32]. GWAS are widely used to investigate genetic association with
complex diseases such as cancer, type II diabetes and epilepsy. Nowadays, the
studies are also extended to the area of pharmacogenetics where the main aim is
to find the association between genetic variants and response to treatment, in

terms of either efficacy or toxicity [33].

Specifically, GWAS use SNPs as genetic markers, as they are easy to type and
abundant in the human genome [34]. With the currently applied technologies, a
large number of SNPs, sometimes in excess of one million are investigated within

a single study.

2.2.2 Single nucleotide polymorphisms

Whilst the majority of the human DNA sequence is identical between
individuals, some locations along the genome differ from one individual to the
next in terms of the nucleotide held at that location. As introduced in Chapter
1 (Introduction), our DNA sequence is formed from four nucleotide bases namely;
Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). The polymorphism
appears when for example, at a certain location, the majority of individuals may
hold the ‘T nucleotide, whereas some will hold the ‘G’ nucleotide (as illustrated
in Figure 2.1). The different possible nucleotides at the location are known as

‘alleles’. If the variant allele occurs in at least 1% of the population it is known
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as a Single Nucleotide Polymorphism (SNP)[35, 36]. SNPs occur every 100 to

300 bases along the 3-billion-base human genome.

Typically, there can be three categories of genotype at a SNP. For example, SNP
with major allele A and minor allele T can have three possible genotypes AA,
AT and TT. The genotypes can be summarised in a 2x3 contingency table of
the genotype counts for each phenotype (see Table 2.1). Essentially, in an
association study, under the null hypothesis of no association with the disease,
the genotype frequencies are expected to be approximately the same across
phenotype groups (e.g. cases and controls groups) [37]. As a result, a test of
association is given by a simple y? test for independence of the rows and columns

of the contingency table.

Table 2.1: Contingency table of genotype counts.

Genot
CROWPSE | AA | AT | TT
Phenotype
Group 1 my1 | Myp | My3
Group 2 m21 mzz m23

Some diseases (Mendelian diseases) are caused by variation within a single gene,

meanwhile for complex diseases and traits, several genetic variants,

environmental factors and their interactions are often at play [38]. The goals of

the analysis of the association between genetic data and phenotype can therefore

be summarised as follows [38]:

(i) To identify interaction between two or more SNPs (i.e. SNP-SNP
interactions) or interaction between SNP and environmental factors
whose distribution differ substantially between phenotype groups.

(i)  To find SNPs that show a coherent pattern.
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(iii)  To classify new observations (i.e. patients) into their respective phenotype

group based on the SNPs information.

2.2.3 Statistical challenges

Here, the statistical challenges that arise from the perspective of variable
selection for classification are discussed. The statistical challenges for analysing
SNP data are described in detail in Liang and Kelemen (2008) [39]. In GWAS,
researchers often have to analyse high-dimensional datasets, where the number
of variables, p is much greater than samples, (p > n). Specifically, SNP datasets
may consist of hundreds of thousands or even over a million SNPs that are
assessed per individual [34]. From there, models are developed to classify samples
(or individuals) to their specific phenotype. Normally, a modelling method (e.g.
least squares regression) tries to fit a complex model with a large number of
variables as perfectly as it can. However, this situation leads to overfitting which
essentially means the model follows the error, or noise too closely [40]. Overfitting
has become the main issue when discussing high-dimensional datasets due to the
concern of inaccurate estimates of outcome on new observations that were not

part of the modelling process [40-42].

Typically in GWAS, many of the SNPs will be highly correlated which can
reduce the power of the identification of small to moderate genetic effects for
complex phenotypes. The condition known as Linkage Disequilibrium (LD)
occurs when SNPs are dependent on each other [34]. Certain statistical measures

(e.g. D" or R?) are widely applied to investigate the correlation between SNPs.

As we know, the SNP data is categorical with only three possible levels, AA, AT

and TT. The interchangeable values from one level to the other brings a different
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meaning entirely (i.e. each level represents 0, 1 or 2 copies of minor allele for
additive model). This gives a SNP dataset an entirely different structure than
the one containing continuous variables. If plotted, the categorical values will lie
on the edges and vertices of a high-dimensional hypercube rather than on a
subset of a continuous space [29]. Hence, the extreme sparsity of coverage for
discrete variable suggests intuitively that it may be more difficult to discover

relationships.

Reproducibility has become a major issue in genetic association studies for
complex phenotypes [8, 39, 43]. This problem is observed in a situation when a
set. of SNPs show highly significant associations with a phenotype group of
interest through one method, while not showing these associations when using a
different method. In a different situation, the SNPs may be significant in one
dataset with a number of samples but show totally different results when tested

on different samples with similar SNPs (external validation).

Moreover, due to the low prior probability of causality for each SNP in the
genome and the large number of SNPs being tested, rigorous thresholds of
statistical significance are needed for genetics association studies in order to ward
off a deluge of false positive outcomes. Reducing the number of false positives,
while maintaining acceptable power, is often required in biological or biomarker
discovery applications since follow-up experiments can be costly and laborious
[41]. In statistical hypothesis testing, the aim is to reject the null hypothesis
when it is very unlikely (to a certain degree) that the null hypothesis is true.
The threshold varies by study, but the conventional threshold in GWAS relates
to p-values less than 5x10® to be statistically significant (i.e. genome-wide

significance) [44]. The threshold is based on the estimated number of
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independent tests in the genome if all common SNPs in HapMap are tested with

direct genotyping or imputation [120,155].

Realising the need to overcome these challenges, the development of statistical
and computational algorithms for variable selection of large genetic datasets has
become a key area of research. Thus, in the next section the discussion includes
available variable selection methods for classification with specific application to
SNP data and how these methods could address some of the said statistical

challenges, if not all.

2.3 Methods

This section provides the descriptions of methods used in this chapter. A
literature search is done in order to provide detailed explanations of existing
variable selection and classification methods in the genetic studies. To provide
better understanding of each method, the method is applied on a simulated

dataset.

2.3.1 Literature search

The literature search for relevant studies is undertaken through the MEDLINE
(Ovid) database. The literature search applies the following terms:
"classification" combined with ‘'variable selection" and 'single nucleotide
polymorphism". The search is limited to English language publications between
2005 to 2015. In the initial search, 795 relevant titles for variable selection and
classification with specific applications to SNP data were identified. From the
795 articles, 108 were included based on their title and abstract. However, further
studies are identified and included if related by examining the reference lists of

all the included articles.
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2.3.2 Simulated dataset

The methods are applied to a simulated dataset to give better overview of each
method. The data simulation is done using genome-wide simulation software,
HAPGEN v2.0 [24] with HapMap3 CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection) as the reference panel.
Essentially, the data are simulated with similar allele frequencies and linkage
disequilibrium structure to the reference panel. The simulated dataset consists
of 1,000 cases and 1,000 controls with 116,415 SNPs on chromosome 1. In order
to see each method’s ability to capture the most important SNPs, five causal
SNPs are assumed under a log-additive model with high odds ratio [45] as

follows:

Table 2.2: The details of causal SNPs which are simulated under a log-additive

model with high odds ratio.

SNP Base-pair Risk Heterozygote Homozygote
Position allele disease risk disease risk
rs966321 4215064 1 3.00 5.25
rs914717 156952983 1 2.20 3.00
rs12046196 228881820 1 5.25 10.25
1
1

rs1130193 200252354 10.25 28.50
rs10888878 55015907 15.25 28.50

2.3.3 Sample and genotyping QC

Sample and genotyping quality control (QC) is undertaken as standard data pre-
processing procedure using an open-source whole genome association analysis
toolset, PLINK 1.9 [46]. Applying standard QC procedures to each SNP, this
number is first reduced to 96,697 after applying GWAS thresholds based on
minor allele frequency (MAF), SNP genotyping rate and test Hardy-Weinberg

Equilibrium (HWE). The screening on MAF only includes the SNPs with MAF
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>0.01. Low MAF SNPs could be more susceptible to genotyping errors and their
association signals are less robust [47]. For SNP genotyping rate only SNPs with
<10% missing genotypes are included. Further, SNPs that are extremely
deviated from HWE (p-value <10°) are removed. In principle, a population is in
HWE when there is a fixed relationship between allele and genotype frequencies
over generations [34]. Hence, deviations from this relationship suggests that there
may be quality problems in the genotyping procedure. At the same time, all
2,000 samples passed the standard QC procedure (based on rate of missingness,

duplication of samples, relatedness and heterozygosity).

2.3.4 Data pruning

Linkage Disequilibrium (LD) pruning is an important quality assurance step for
GWAS analysis. Some tests for association will obtain better results if the
markers used are not in LD with each other [48]. LD is defined as an association
in the alleles present at each of two sites on a genome [35]. Therefore, the pruning
option is undertaken to reduce or eliminate the SNPs that is in approximate LD
with each other which intuitively can help minimising the computational
complexity. Also, it may help focusing on more signals and allow more region of

potential interest.

The pruning option (150 50 0.90) is implemented using PLINK 1.9 [46] software.
For this method, all pairs of SNPs within a window of 150 SNPs, 50 SNPs are
compared with each other to measure their pairwise LD. If any pair of SNPs
within the window are in LD greater than R”threshold of 0.9, the first SNP in
the pair will be inactivated (pruned). The window and step options (150 and 50
accordingly) are chosen to speed up the pruning process. Meanwhile, the

threshold of 0.9 (higher threshold) is chosen to avoid reducing too many SNPs
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during the pruning process. In general, the lower the selected threshold, the more
SNPs will be pruned [48]. After applying the LD pruning, the simulated data

consists of 50,178 SNPs.

2.4 Summary of variable selection methods for

SNP data

In this section, the variable selection methods for SNP data are summarised. To
provide a clearer view of each method, the discussion includes some examples by
using the simulated dataset. Variable selection methods are commonly used to
select relevant variables for model construction. In terms of classification,
variable selection is an important process to identify variables that can be used
to accurately classify individuals (e.g. assigning individuals to their respective
phenotype group). In recent years, data can offer a comprehensive picture of the
complexity of biological systems at different levels and there has been a growing
interest to answer specific biological questions (e.g. which SNPs caused the
disease and which SNPs relate to the individuals’ response to treatment) [49]. In
genetic association studies, there is an emerging need to develop strategies for
selecting sets of SNPs likely to be relevant to phenotype group of interest so that

poor performance of classifiers can be avoided [50, 51].

In the context of classification, three types of variable selection methods which
are frequently discussed are filter, wrapper and embedded [3, 7-10, 52]. These
papers on bioinformatics discussed the variable selection methods in detail with
a few selected algorithms listed in each method. The discussions are broad which
include applications that are not limited to SNP data. In this review, the

discussion is limited to the variable selection methods for classification using
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SNP data and whether the methods are addressing the challenges that we have
discussed in the previous section (Section 2.2.3). Figure 2.1 illustrates the three

categories of variable selection methods.

SNP Data
Filter Wrapper Embedded
v v v
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Ranking the Generate a Generate a
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Figure 2.1: Workflow of variable selection methods for classification; filter, wrapper

and embedded [53].

2.4.1 Filter methods

Filter methods identify the relevant SNPs by eliminating the uninformative
SNPs. Filter methods are known to be fast, scalable (i.e. computationally
efficient since it may involve one SNP at a time) and independent of the classifier
[9, 39, 54]. A typical procedure for a filter method is using a conventional p-value
approach (e.g. Pearson Chi-squared and Fisher Exact tests). The SNPs are
ranked by the lowest to the highest p-value to represent the importance of each
SNP in relation to the phenotype group. Filter methods are considered as pre-

processing steps since they are independent of the choice of classifiers [8]. This
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is a particular advantage of filter methods because the chosen SNPs might

perform differently from one classifier to another.

Another advantage of filter methods is that they are computationally inexpensive
and easy to implement. However, most proposed filter methods are univariable.
This means that each variable is considered separately, thereby ignoring
correlation structures among SNPs, which may lead to worse classification and
prediction performance when compared to other types of variable selection
methods [39]. SNPs might be non-significant when analysed on their own, but
may become significant when analysed in combination with other SNPs (due to
their interaction). In order to overcome the problem of ignoring variable
dependencies, a number of multivariate filter methods [4, 5, 23, 55] have been

proposed, aimed to some degree, at the incorporation of variable dependencies.

Logistic regression is a classical approach to test for association between SNPs
and phenotype in genetic association studies due to its ability to deal with
categorical outcome. The general model of logistic regression that an individual

has a particular disease can be written as,

eBotBiXi

1 + ePotBiXi (2.1)

Pr(Y = 1|X) =

where B, is the intercept, meanwhile ; represents the coefficient for each of the
SNP, X; fitted in the logistic regression model. The coefficient is defined as the
additive increase in the log of the odd ratios resulting from a one-unit increase
in X;. The values of X;,i =1,2,...,p can be represented by different values
depending on the genetic mode of inheritance assumed. The different possible

values are specified in Table 2.3.



Table 2.3: Genotype coding (values of X;) according to genetic model.

AA | AT | TT
Recessive model 0 0 1
Dominant model 0 1 1

Additive model 0 1 2

Codominant model
Variable 1 0 1 0
Variable 2 0 0

A nominal p-value can be calculated for all SNPs i, i =1,2,...,p. Although
usually applied as a univariable filter method, equation (2.1) can also be easily
extended to a multivariate setting. The SNPs will go through a ranking
procedure that allow the selection of a subset of SNPs to be used in the following
step (i.e. classification). One may select some limited number of SNPs regardless
of their overall significance [56]. For instance, one may select the SNPs with the

top 1% or 5% of p-values.

For illustration, the logistic regression analysis is performed on the 50,178 SNPs
using the --logistic function in PLINK 1.9 [46]. The output mainly contains the
odds ratio, coefficient t-statistics and asymptotic p-value for t-statistics of each
SNP. The associated p-values of the SNPs are shown in the Manhattan plot
(Figure 2.2). The plot shows —logi of the p-value for each SNP against its
position in chromosome 1. The five simulated causal SNPs which reached

genome-wide significance, are highlighted in green.

26



Manhattan Plot for Chromosome 1

80

60 —

~logra(p)

40 —

20

0 50000 100000 150000 200000 250000

Chromosome 1 position (Mb)

Figure 2.2: Manhattan plot for 50,178 SNPs for chromosome 1.

The horizontal red line and blue line represent the genome-wide significance
threshold of p-value < 5 x 107 and suggestive line significance threshold of p-
value < 5 x 107 accordingly. Next, the corresponding p-values are sorted
increasingly and regard SNPs at the beginning of the list as the most significant

ones.

The ranking of the top 20 SNPs are shown in Table 2.4. Indeed, the simulated
causal SNPs are listed among the top 20 SNPs (those highlighted in bold font).
Subsequently, the top SNPs may be used for developing the model for
classification. The new sample will then be assigned to a specific phenotype group
given the genotype values of the SNPs used in the classification model. The
results for classification performance using logistic regression will be presented

in Section 2.5.
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Table 2.4: Top 20 SNPs based on p-values from logistic regression model. The

simulated causal SNPs are highlighted in bold font.

1 2 3 4 5 6
rs10888878 rs1130193 12286202 rs10920304 rs2819362 rs3820439
1.18 x 107%  1.31 x 1007 2.08 x 107%  2.90x 10 1.24 x 107 1.19 x 107*

7 8 9 10 11 12

rs966321 rs2270001 rs12046196 rs1180964 rs2411738 rs2819365

440 x 1031 1.57 x 10*  2.01 x 107 2.16 x 10 1.30 x 10  7.65 x 10°%
13 14 15 16 17 18

rs2735784 rs2270003 rs2527848 rs2819360 rs9427715 rs914717

6.10 x 107" 2,93 x 107 593 x 10°* 6.14 x 10% 895 x 10%  6.40 x 10°*
19 20

rs2511200 rs4950760

1.92 x 107 2.61 x 107

In contrast to logistic regression which can be applied directly to the categorical
SNP data, Modified t-test and F-statistics apply mean approximation of the SNP
data. The nominal values of the genotypes are transformed into a set of vectors
to calculate the mean. These methods were introduced by Zhou and Wang (2007)
[14]. Similar to other filter methods, the study suggests that before proceeding
with a classification procedure, it would be best to undergo a variable selection
procedure in order to produce good classification results. The study first ranks
each SNP using a ranking measure. Then from the ranking list, different SNP
subsets are formed by sequentially choosing different numbers of SNPs (e.g. 5,

10, 50, 100, 500) with top ranking values.

Each of the subsets is then used in a classifier. The study chooses Support Vector
Machine (SVM) which apply the information from the subset of SNPs to classify
the samples (i.e. patients) into their respective groups. SVM is chosen due to its
attractive features, such as effectively avoiding overfitting and can accommodate

large feature spaces and fast [14]. Further usage of SVM is explained in Section
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2.5 Classification. The classification performance is measured using sensitivity,
specificity and probability of correct classification. The best subset of SNPs is

later determined based on the highest values of classification measures.

The t-score is defined for SNP i to be the greatest t-score for all phenotype

groups, g = 0,1 (0 for controls and 1 for cases) for SNP i:

t; = max

)?ig and )?l- are two row vectors indicating the mean of i-th SNP in the g-th

phenotype group and the mean for all groups. X ig — X i| denotes the Euclidean

distance of the two vectors. In this equation, the categorical values of 0, 1 and 2
of each SNP are transformed into a vector of three dimensions, i.e., 0 = )_()i(l) =

{1,0,0}, 1= X? = {0,1,03,0 = X = {0,0,1}.

Here, )?l-j refers to the vector of the i-th SNP of the j-th sample; N is the total
number of samples in all phenotype groups; ng is the number of samples in the
particular phenotype group, g and S; is the within-group standard deviation.
The mean difference in the formula indicates the dispersion of the mean of
phenotype group of interest from the mean of all phenotype groups. The t-score

is calculated for each SNP which indicates a signal that a specific SNP carries.
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Among the total of p SNPs, the higher the value of the t-score means the more

informative the SNP is.

Using one of the simulated causal SNPs, rs10888878 as an example, Table 2.5
shows the transformation done for each nominal value of the SNP which allows

t-score to be calculated.

Table 2.5: Calculation of t-score for SNP i, rs10888878 with 2,000 samples.

Transformation of
nominal SNP value into

vector
J) PHENOTYPE Genotype Additive AA AT TT
1 1 AT 1 0 1 0
2 1 AT 1 0 1 0
3 1 AA 0 1 0 0
4 1 AT 1 0 1 0
5 1 AA 0 1 0 0
1000 1 TT 2 0 0 1
n, = 1000 X, 0457 0529  0.014
1001 0 AA 0 1 0 0
1002 0 AA 0 1 0 0
1003 0 AA 0 1 0 0
1004 0 AT 1 0 1 0
1005 0 AT 1 0 1 0
2000 0 AA 0 1 0 0
1y = 1000 X, 0933 0065 0.002
N = 2000 X 0.695 0.297  0.008

From here, the within group standard deviation, S; is calculated for each SNP.
Then all the values are plugged into equation (2.2) which will produce two values
of t-scores (one for each phenotype group). Table 2.6 shows the t-scores of 20
SNPs in descending order. Similar with the p-value ranking, the t-score ranking

managed to capture the five causal SNPs within the top 20 SNPs ranking.
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Table 2.6: Top 20 SNPs based on t-scores from modified t-test. The simulated causal

SNPs are highlighted in bold font.

1 2 3 4 5 6
rs10888878 1rs2286202 rs1130193 1rs12046196 rs2270001 rs1180964
15.21 11.30 8.52 7.71 7.70 6.71
7 8 9 10 11 12
rs3820439 rs10920304  rs2270003 rs914717 rs2819362 rs2819365
5.92 5.87 5.43 5.21 5.09 4.70
13 14 15 16 17 18
rs966321 rs2511200 rs2411738 rs2527848 rs12023371  rs16849483
4.69 4.62 4.47 4.46 4.31 4.12
19 20
rs2735784  rs10489842
4.08 3.97

F -statistics applies the similar concept of ranking measure as the modified t-test.
Assuming there are two phenotype groups for a given dataset and each SNP

contains two alleles, the F-statistics (Fg) value is calculated as

Var,
st = - ;—l (2‘5)
1
a= Z ag (2.6)
g=0
N2
_ (ag —a
Var, = 5 (2.7)

where a and t are the two alleles’ frequencies, respectively, in each group; a and
t are the mean frequencies of the two alleles across groups; Var, refers to the
variance of one allele and a, is designated as the frequency of one allele for the
g-th group. Principally, SNPs with larger F;; values are more significant and will

be on top of the rank. The F-statistic involves calculating two single alleles A
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and T which can be represented as 0 and 1 respectively. Table 2.7 shows the

transformation and the calculation done by using SNP rs10888878 as an example.

Table 2.7: Calculation of F; values for SNP i, rs10888878 with 2,000 samples.

Transformation of nominal

SNP value into vector

J PHENOTYPE Genotype SNP i Allele 1 Allele 2
1 1 AT 1 0 1
2 1 AT 1 0 1
3 1 AA 0 0 0
4 1 AT 1 0 1
) 1 AA 0 0 0
1000 1 TT 2 1 1

a, =14 t, = 543
1001 0 AA 0 0 0
1002 0 AA 0 0 0
1003 0 AA 0 0 0
1004 0 AT 1 0 1
1005 0 AT 1 0 1
2000 0 AA 0 0 0

a =2 to = 67

N = 2000 a=16 t =610

From here, Var, is calculated for each SNP. Then, all the values gathered are

plugged into equation (2.7). Similar to the modified t-test the SNPs are ranked

in descending order. Table 2.8 shows the results of F-statistics for top 20 SNPs.

Compared to logistic regression and modified t-test ranking, F-statistics can only

capture one simulated causal SNP within the top 20 ranking.
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Table 2.8: Top 20 SNPs based on F,; from F-statistics. The simulated causal SNPs

are highlighted in bold font.

1 2 3 4 5 6
rs1130193 rs7540530 rs2795275 rs11117808 rs832521 rs17556883
306.30 294.55 294.31 294.29 293.44 292.46
7 3 9 10 11 12
rs1326005 rs11590608 rs338466 rs7522034  rs11576909  rs3942955
292.14 291.73 291.52 290.89 290.81 290.46
13 14 15 16 17 18
rs4614251 rs560426 rs17348602 rs10799593  rs11163752  rs696859
290.44 290.25 290.08 290.05 290.01 289.97
19 20
rs2093765 rs4951338
289.96 289.96

The filter methods that have been discussed earlier are usually done for each
SNP (univariable) i.e. the statistic is calculated for each SNP. However, they are
easily extended to multivariable (multiple independent variables) selection by
considering a subset of SNPs at a time. Unlike the univariable approach which
analyse a SNP at a time, the multivariable approach takes into account the
correlation between SNPs. This advantage of the multivariable approach may

contribute to an increment in the classification accuracy [23, 57].

2.4.2 Wrapper methods

The classical examples for wrapping in which the classification method itself is
used to select the predictors are backward elimination, forward and stepwise
selection in linear regression [3]. The wrapper methods enhance the filter methods
by wrapping around a particular learning algorithm that can assess the selected
subsets of variables in terms of the estimated classification errors and then build

the final classifier [9].
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The forward selection starts with one variable and incrementally adds more
variables in the model [7]. Every time a variable is added, the contribution of
the variable to the model is evaluated (e.g. classification measures). The
optimum subset of variables may be determined by observing any increment of

the classification accuracy.

The backward elimination method begins with a model that includes all variables
[58]. The method then eliminates variables one by one until a subset of variables
show a significant contribution to the model. For example, the elimination rule

can be based on a classification measure with specific cut-off value.

Similar to forward selection, stepwise selection starts with one variable. However,
the variables that are already in the model do not necessarily remain [59].
Variables are added and removed depending on their contribution to the
classification performance. However, it is important to note that both backward
elimination and stepwise selection methods are only computationally feasible
when the number of variables are small [7]. For example, Park and Hastie (2007)
[60] applied a stepwise selection only after penalised logistic regression was
carried out. Here, the classification method is the logistic regression itself.
Stepwise selection is applied to further reduce the number of SNPs selected by

the penalised logistic regression.

In the wrapper approach, every time a subset of SNPs is introduced to the
classifier, classification measures are calculated. This process will help to reduce
the number of variables which may improve the classification accuracy. The
evaluation of a specific subset of variables is obtained by training and testing a

specific model, tailoring this approach to a specific classification algorithm.
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Wrapper methods tend to perform better in this setup. However, it also leads to
a big disadvantage of the wrapper method, that is the computational inefficiency

which is more apparent as the number of variables grows [10].

As an example, we apply stepwise logistic regression (SLR) for wrapper method.
Since it is computationally expensive to include all the SNPs at one time, a
subset of top 100 SNPs is selected based on the ranking gathered by logistic
regression earlier. Akaike Information Criterion (AIC) is implemented as the
decision measure to either retain or remove each SNP during the modelling

process.

Cross-validation is applied by dividing the samples into training and test sets.
80% of the samples belong to the training data and the remaining 20% to the
test data. The process is repeated 100 times from which the values of mean and
standard deviation are calculated. Further explanation on classification
performance will be described in Section 2.5. The analysis is done using the
‘step’ function in statistical software, R [61]. The final model, which consists of
26 SNPs from the subset of 100 SNPs, is determined based on the highest
accuracy of classifying between cases and controls patients. The list of the 26

SNPs selected by SLR is shown in Table 2.9.



Table 2.9: The 26 SNPs selected by stepwise logistic regression (SLR). The simulated

causal SNPs are highlighted in bold font.

No SNPs No SNPs No SNPs
1 rs10888878 11 rs926247 21 rs2095769
2 rs1130193 12 rs927888 22 rs1028543
3 rs12046196 13 rs4915919 23 rs12023371
4 rs966321 14 rs4927134 24 rs6656470
5 rs914717 15 rs2286202 25 rs7534558
6 rs6429449 16 rs12118215 26 rs3737599
7 rsd661077 17 rs1180964
8 rs12731187 18 rs2527848
9 rs771132 19 rs11206502

10 rs10915476 20 rs2564856

2.4.3 Embedded methods

Embedded methods work by embedding a variable selection method inside the
classifier. For example, penalisation is the most common approach in this
technique [51, 60, 62, 63]. Embedded methods have the advantage that they
include the interaction with the classification model, while at the same time

being far less computationally intensive than wrapper methods.

Penalised logistic regression (PLR) is known as an extension of simple logistic
regression which applies penalisation to reduce the number of SNPs and later
classifies the phenotype groups [3, 4]. Penalisation methods allow the building of
more powerful models with a large number of variables in the model. In high-
dimensional data analysis, it is possible to fit all p variables in one model using
a technique that constrains or regularises the coefficient estimates towards zero
[40]. The two renowned methods for shrinking the regression coefficients towards
zero are ridge regression and the least absolute shrinkage and selection operator

(lasso) methods [64].
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Park and Hastie (2007) [60] proposed to maximise the log-likelihood of the simple
logistic regression model (2.1). The log-likelihood is maximised using ridge
regression which uses L, norm as the penalty of the coefficients which minimise

the following equation:

A
L(Bor B, ) = =1(Bo B) +5 11BI3 (28)

where [ indicates the binomial log-likelihood and 4 is a positive constant. The
tuning parameter 4 controls the strength of the penalty which will shrink the 8
towards zero. The glmnet function in R applies cross-validation to select the
value of A. The cross-validation error is computed over a grid of 1 values [40].
The tuning parameter is selected based on the smallest cross-validation error. In
ridge regression, |||, denotes L, norm which is defined as ||B]|5 = 2?:131'2- In
penalisation, the norm measures the distance of f from zero. The study
highlights that with L, penalisation, none of the coefficients is set to zero which
will include all SNPs in the final model. Therefore, stepwise selection is
implemented to reduce the number of SNPs in the model which will then improve

the classification accuracy and interpretability.

Similar to the wrapper approach, the top 100 SNPs based on the p-value ranking
are utilised for PLR. The method is able to reduce the number of SNPs used in
the model to five with all simulated causal SNPs included (rs10888878,

rs1130193, rs12046196, rs966321 and rs914717).
Wu et al. (2009) [65] overcome the disadvantage of L, penalisation, and reduce
further the number of SNPs by implementing a lasso based on the L; norm in

their PLR method. Lasso is a shrinkage technique which will shrink the
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coefficient estimates towards zero or exactly to zero. The L; norm is defined as
1811, where [|B]l; = ?=1|ﬁi| which can replace the penalty in equation (2.8).
The study concludes that lasso penalised regression is easily capable of

identifying important SNPs in highly correlated data.

2.5 Classification

This section summarises the classification methods which are usually done after
the variable selection procedure. Supervised learning is now a well-received
approach in statistics, where a specific algorithm is trained on a training samples
(training data) with a set of variables and known outcome from which we can
build a classifier. The primary aim is for the classifier to perform well not only
on the training data but also on test data that are not used to train the classifier

[40].

The quality of classification can be assessed using the well-known receiver
operating characteristics (ROC) methodology and calculating the area under the
ROC curve (AUC) [23, 31, 66]. The AUC can be thought of as the probability
that a classifier will correctly predict the phenotype group the sample belongs
to. The greater the AUC, the better is the performance of the classifier. Besides
AUC, Probability of Correct Classification (PCC), sensitivity, specificity,
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are also
usually presented to evaluate the performance of specific classifiers. The six
classification measures will be reported in this thesis. A detailed description of

each measure will be discussed in the next chapter.

One of the possible setups to undertake classification is the following. Assuming

we are using the SNPs selected using different variable selection methods
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presented earlier. The main objective is to explore the effect of variable selection
towards classification accuracy. We assume that there is a relationship between
SNPs selected and the performance of classification accuracy. Cross-validation is
applied by dividing the samples into training and test sets. 80% of the samples
belong to the training data and the remaining 20% to the test data. The
procedure is repeated 100 times from which the values of mean and standard
deviation of the classification measures will be calculated. Figure 2.3 illustrates
the classification strategy implemented on different subset of SNPs selected by

filter, wrapper and embedded methods using the simulated dataset.

Subset of SNPs
1. Filter: Logistic regression (LR), Modified t-test and
F-statistics (Fi) (a model with top 20 SNPs)
2. Wrapper: Stepwise logistic regression (SLR)

(| Traming T (a model with 26 SNPs)
3. Embedded: Penalised logistic regression (PLR) (a
splits
v
] Test Classification

Figure 2.3: Classification strategy with SNPs selected by filter, wrapper and

embedded methods.

In GWAS, the few classification methods mainly follow two methodological
frameworks; logistic regression and Bayesian principle [67]. In the first
framework, SNPs are modelled as discrete variables (e.g. additive, recessive).
Meanwhile in the second framework, SNPs are modelled as ternary categorical
variables and no assumptions are usually made on pre-specified genetic models.
In what follows, the results of classification performance using logistic regression

are compared with those using the Bayesian principle with a Naive Bayes
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classifier. Later, other classification methods that usually apply the Bayesian

principle for example KNN, SVM and CART are discussed.

For categorical outcome, Naive Bayes classification is often used. The word
“naive” means that the variables are independent of each other and conditional
on the same outcome [68]. The Bayes’ theorem states that the probability of

Y = g, given the observed SNP, X = x:

Pr(Y =g)xPr(X =x|Y =g)
Pr(X =x)

PrY =g|lX=x)= (2.9)

where Pr(Y = g) represents the overall or prior probability that a given sample,
j is associated with the g-th category of the phenotype group and Pr(X = x)
denotes the probability of the sample to have genotype x (e.g. 0,1 or 2 for
additive model). Pr(X = x|Y = g) is the density function of X for a sample that
comes from the g-th group. Essentially, the learning algorithm in the classifier
builds a probabilistic model of the variables and uses that model to predict the

classification of a new sample.

Other than classification, the Bayes approach can also be utilised to rank
variables from which the top-ranked will most likely contain the most
informative variables for prediction of the underlying phenotype group [49].
Several studies [31, 69-78] have suggested the usage of Bayes classifier as a
classification method with specific application to SNP datasets. Table 2.10 shows
the classification performance of both logistic regression and Naive Bayes
classifiers within the simulated dataset, following different variable selection
methods shown in the previous section (Section 2.4). The Naive Bayes

classification is performed using the ‘naivebayes’ package in R [79].
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Table 2.10: Classification performance of logistic regression and Naive Bayes.

Variable selection Logistic Regression Naive Bayes
methods PCC AUC Sens Spec PCC AUC Sens  Spec
LR 0.82 0.82  0.80 0.84 0.80 0.80 0.78 0.81
t-test 0.82 0.82 0.81 0.84 079 0.79 0.77 0.81
Fst 0.68 0.68  0.72 0.63 0.68 0.69 0.77 0.59
SLR 0.84 0.84 0.82 0.86 078 0.79 0.73 0.83
PLR 0.83 0.83  0.83 0.82 0.80 0.80 0.7 0.86

Note: Sens = Sensitivity;, Spec = Specificity

In real data, the conditional probability of the Y given X is unknown, therefore,
computing Bayes classifier is impossible. Many approaches attempt to estimate
the conditional distribution of Y given X, and then classify a given sample to the
phenotype group with highest estimated probability [40]. k-Nearest Neighbour
(KNN) is one such method and is famous for its simplicity and effectiveness.
Schwender et al. (2004) [30] describe in detail the application of KNN to SNP
dataset and compares it with other classification methods (e.g. bagging, CART
and Random Forest). It shows KNN performs slightly better, with a smaller

misclassification rate.

The principle of the KNN algorithm is to classify a given sample to the
phenotype class based on highest estimate probability [4]. In GWAS, the
classifier uses training samples with known outcomes and SNP genotypes to
predict responses in an independent dataset of samples (test dataset) [80]. Given
a positive integer K and genotype from test data, x,, the KNN classifier first
identifies the K points in the training dataset that are closest to x,, represented
by Ny. It then estimates the conditional probability for phenotype group g as

the fraction of points in whose response values equal to g:

Pr(Y = glX = x,) = %ZJ-ENO I(y; = g). (2.10)
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Then, KNN classifies the test observation, xy to the phenotype group with the
largest probability. The performance of KNN crucially depends on how the
distance between the test observation and its closest neighbours is measured.
Normally, the closest neighbours are measured by a distance function, for
example, FEuclidean, Manhattan or Minkowski for continuous variables, or
Hamming for categorical variables. To visualise the three different scenarios (K =
1,3,5) KNN is applied on the simulated dataset using ‘class’ package in R [82].
Afterwards, classification measures are calculated. The results improve slightly
when increasing the K = 1 to K = 3 and later K = 5. But, increasing the value
of K further results in no further improvement. Table 2.11 shows the
classification performance using KNN with highest recorded value by K = 5, for

different variable selection methods.

Table 2.11: Classification performance of KNN using K = 3,5.

Variable selection K=3 K=5
methods PCC AUC Sens Spec PCC AUC Sens Spec
LR 0.77 0.78 0.74 0.81 0.79 0.79 0.75 0.83
t-test 0.77 0.77 0.72 0.82 0.78 0.78 0.73 0.83
Fg 0.60 0.60 0.58 0.62 0.61 0.61 0.59 0.63
SLR 076 0.77 0.73 080 0.78 0.78 0.73  0.83
PLR 0.82 0.82 0.79 0.85 0.82 0.82 0.79 0.85

Note: Sens = Sensitivity; Spec = Specificity

Another well-known classifier which could be applied to SNP data is Support
Vector Machine (SVM). The idea behind SVM is to construct an optimal
separating hyperplane (or simply a straight line in a two-dimensional setting)
between two groups. Here, optimal means that the distance of the hyperplane to

the closest point of either group is maximised [30].
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SVM can be defined as a concept in statistics and computer science for a set of
related supervised learning methods that analyse data and recognise patterns,
used for linear classification and regression analysis [84]. Often, the classification
analysis through SVM is done after the variable selection procedure takes place
[30, 85]. When SVM classifies, it separates a given set of binary-labeled training
data with a hyperplane that is maximally distant from the point of each set [86].
For cases in which no linear separation is possible, SVM can work using kernel
functions (radial or polynomial), which automatically follows a non-linear

decision boundary in the input space.

In the simplest SVM case of two-dimensional setting, a hyperplane is defined by

the equation,

Bo + B1X1 + BX, =0 (2.11)

for parameters By, B; and B, at any X = (X;,X,)T. As mentioned earlier, a two-
dimensional setting is simply a straight line as shown in Figure 2.6. Therefore,

in a p-dimensional setting the hyperplane can be easily extended to

Bo + B1X1 + B2 Xy + -+ BpXy, =0 (2.12)
Like most classifiers, SVM is developed based on training data that will correctly
classify the test observation. Suppose a hyperplane (2.12) that separates the

training data perfectly according to their phenotype groups exists, in two

phenotype groups y; € {0,1}, a hyperplane has the following properties

Bo + B1Xj1 + BoXjo + -+ BpXp > M ify; =1 (2.13)
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and

Bo + B1Xj1 + BoXjz + -+ BpXpy <M ify; =0 (2.14)

for all samples j=1,2,..,n. M represents the margin of the hyperplane.
Naturally, a test observation is assigned to a phenotype group depending on
which side of the hyperplane it lies, either (2.13) or (2.14). We now apply the
SVM on the simulated dataset using the ‘e1071’ package in R [87]. Firstly, the
SVM is fitted to the training dataset with the subset of the SNPs according to
the variable selection methods. Here, we assume the data are following the non-
linear decision boundaries (kernel=radial) and determine the value M through
cross-validation (cost=1). Then, SVM will compute the scores based on
equations (2.13) and (2.14) to classify the new samples (test data) into one group
or the other. Table 2.12 shows the classification performance of SVM on the

simulated dataset, for different variable selection methods.

Table 2.12: Classification performance of SVM.

Variable selecti
A SECON pee AUC Sensitivity - Specificity

methods
LR 082  0.82 0.78 0.86
t-test 082  0.82 0.78 0.86
Ft 0.69  0.70 0.81 0.56
Stepwise 0.82 0.82 0.81 0.84
PLR 0.82 0.82 0.79 0.85

Tree-based methods algorithm was first published by Morgan and Sonquist in
1963 [156]. Since then, with applications in machine learning and engineering
fields, tree-based methods have become attractive tools for classification. Several
studies [88-91] apply tree-based methods to SNP data to identify informative
SNPs, detect the interaction between SNPs or improve the classification

accuracy of phenotype groups. The tree-based method involves stratifying and

44



segmenting the variables space into a number of simple regions [40]. The splitting

method in the analysis mirrors the tree, hence the name tree-based method.

In mid 1980s, Breiman, Friedman, Olshen and Stoned introduced one of the well-
known tree-based methods is Classification and Regression Tree (CART)[40].
The decision trees in CART include; (1) Classification Trees which are used
when the target variable is categorical and the tree is used to identify the class
within which a target variable would likely fall into; meanwhile (2) Regression
Trees which are applicable when the target variable is continuous and the tree
is used to predict its value. A few recursive algorithms of CART are previously

discussed [35, 92].

Given binary phenotype groups g where g = 0,1 and a p-dimensional vector X;
containing the values of the p SNPs X3, X5, ..., X, for each sample j, j = 1,2, ..., n.
For simplicity, let X; be the most predictive SNP and the set of all samples
denoted as €. The samples are first divided into €; and Qp where both are the
left and right subset groups of € respectively. The samples are divided based on
the value of SNP, X; which in additive model represented is by a three-level

factor variable 0, 1 and 2. The three possible splits are given by,

(9 if X; € (0)
)= {92 if X; €(1,2)
@) = {QL if X; €(0,1)
Qg if X; € (2) (2.15)
_(Qif X;€(0,2)
(3)_{92 if X; € (1)

Similarly, in the next step the most predictive SNP of Y = g in each subsets is

determined. For instance, X, is the most predictive SNP of Q; and X3 is the



most predictive SNP of Qg. Again the split will follow the three possible ways

as given in (2.15).

One important note to be considered is the measure to split the samples into
their respective groups. This measure is commonly referred to as Bayes error,
minimum error or misclassification cost [35]. Another commonly used measure is

the Gini index [35], also called the nearest neighbour error which is defined as,

i(Q) = 2Pro(1 — Prg) (2.16)

where Prq is the probability of being case, conditional on belonging to €. For
illustration, we apply the classification tree model to the top SNPs using package
‘rpart’ in R [93]. Figure 2.4 shows the tree structure constructed using the top
five SNPs in the model. It is shown that only two SNPs (rs10888878 and
rs1130193) are important in classifying the phenotype groups.

0 r510888878=a 1,2
T

0 rs1130193=a 1.2

1 rs1130193=b 2

0 1

Figure 2.4: Tree structure with top five SNPs rs10888878, rs1130193, rs2286202,

rs10920304 and rs2819362.

Based on the output, the splitting starts from rs1088878. The samples with

genotype equal to 1 or 2, will be classified as cases (Y = 1). Meanwhile, those
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with genotype 0 will go to the left side of the split. Then, further splitting will
follow the second important SNP, rs1130193. The samples with genotype 0 will
be classified as controls (Y = 0), otherwise the samples are assigned to the split
on the right side. Finally, the samples that have genotype 1 for rs1130193 will

be assigned in controls group and genotype 2 into cases group.

Similar to our previous analysis, we repeat the analysis for the other subset of
SNPs according to the variable selection methods and classify the samples on

the test set. The following table shows the results of the classification using
CART.

Table 2.13: Classification performance of CART.

Variable selecti
atable selectlon o+ AUC Sensitivity = Specificity

methods
LR 0.80 0.81 0.79 0.82
t-test 0.80 0.81 0.78 0.82
Fg 0.70 0.75 0.93 0.47
Stepwise 0.80  0.80 0.78 0.82
PLR 0.80 0.81 0.78 0.83

The advantages of CART can be summarised in threefold; i) the method is not
constrained by distributional assumptions, ii) CART has reasonable precision to
find complex interactions, and iii) the method allows inclusion of all potential
predictors into the model (including continuous variables) [90]. However, CART
generally does not have the same level of predictive accuracy as some of the
other regression and classification approaches (e.g. SVM and logistic regression).
A few tree-based methods have been introduced to improve on this, such as
boosting, bagging and random forests [40]. All these methods have the same

basic concept as CART with extension in certain parts of the algorithms.

47



To summarise, Table 2.14 show the overall performance of each classifier
according to different variable selection methods and classification measures.

Table 2.14: Summary of classification performance for different variable selection

methods and classifiers.

(a) Probability of Correct Classification (PCC)

Variable
selection Logisti.c Naive KNN SVM CART
methods Regression Bayes (K =5)
LR 0.82 0.80 0.79 0.82 0.80
t-test 0.82 0.79 0.78 0.82 0.80
Fy; 0.68 0.68 0.61 0.69 0.70
SLR 0.84 0.78 0.78 0.82 0.80
PLR 0.83 0.80 0.82 0.82 0.80
(b) Area Under the (ROC) Curve (AUC)
Variable Logistic Naive KNN
selection . SVM CART
Regression Bayes (K =5)
methods
LR 0.82 0.80 0.79 0.82 0.81
t-test 0.82 0.79 0.78 0.82 0.81
Fy 0.68 0.69 0.61 0.70 0.75
SLR 0.84 0.79 0.78 0.82 0.80
PLR 0.83 0.80 0.82 0.82 0.81
(¢) Sensitivity
Variable Lo .
selection | _ O8ISHC Naive KNN SVM CART
methods Regression Bayes (K =5)
LR 0.80 0.78 0.75 0.78 0.79
t-test 0.81 0.77 0.73 0.78 0.78
Fg; 0.72 0.77 0.59 0.81 0.93
SLR 0.82 0.73 0.73 0.81 0.78
PLR 0.83 0.74 0.79 0.79 0.78
(d) Specificity
Variable L. .
selection LOngt{C Naive KNN SVM CART
Regression Bayes (K =5)
methods
LR 0.84 0.81 0.83 0.86 0.82
t-test 0.84 0.81 0.83 0.86 0.82
Fg 0.63 0.59 0.63 0.56 0.47
SLR 0.86 0.83 0.83 0.84 0.82
PLR 0.82 0.86 0.85 0.85 0.83
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2.6 Concluding remarks

In this chapter, the possible ways of using variable selection methods and several
classifiers were reviewed by showing examples using a simulated SNP dataset. The
review was focusing on categorical SNP data with binary outcomes. The main
challenge in dealing with SNP data is its high dimensionality feature. Hence, in
order to reduce the dimensionality of the SNP data, variable selection step is
undertaken. The variable selection is not only important to reduce the
dimensionality of the data but is believed to aid in improving the classification

performance as reported by other studies.

In this review, three variable selection methods that are common in genetic data
analysis, namely filter, wrapper and embedded were summarised. Each method
was applied to a simulated SNP dataset with five causal SNPs. By using the
simulated dataset, each variable selection method was investigated on its ability
to capture the causal SNPs. Also, different subsets of SNPs were analysed with

different classifiers and their classification accuracies were compared.

In the filter method, logistic regression, modified t-test and F-statistics were
discussed. Essentially, the filter method selects the most informative SNPs, which
later serve as the attributes for the classifier. Intuitively, a good set of SNPs with
a specific genotype pattern will allow us to predict the phenotype group to which
a sample belongs [94]. Logistic regression and modified t-test successfully selected
five simulated causal SNPs. Meanwhile, F-statistics was not able to capture all
causal SNPs. In terms of classification performance, the results when using the
subsets of SNPs selected by logistic regression and modified t-test were
comparable with wrapper and embedded methods. However, it is important to

note that filter method is not only restricted to univariable approaches. Hence, it
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was mentioned by Saeys et al. [9] that the utility of the filter method as a

multivariable selection algorithm is promising, and should be further explored.

Unlike the filter method, the wrapper method can be applied to analyse data in
the multivariable selection approach. The wrapper method enhances the filter
method through use of variable selection procedures by implementing forward,
backward or stepwise selection. These methods are commonly used in GWAS
because one SNP might not be significant by itself but shows different result when
added with other SNPs. However, as we know with a large number of SNPs to be
considered at one time, computational complexity issue will arise. Hence, the
wrapper approach is normally applied on a smaller subset of SNPs to evaluate the
classification performance. In this review, we applied stepwise logistic regression
on a subset of top 100 SNPs. The method successfully selected the five causal
SNPs and the highest classification accuracy of 84% was recorded with logistic

regression as the classifier.

Another route for variable selection for classification within a SNP dataset is by
using an embedded method. This method requires an insertion of a penalty into
the classifier. Essentially, the penalty is expected to turn all the coefficients of
unimportant SNPs to zero [60]. Similar to the wrapper method, we feel that this
method would be computationally burdensome due to the consideration of all
SNPs at the initial stage of analysis. Hence, penalised logistic regression was
applied to a subset of 100 SNPs from the overall dataset. In the final model, only

the five causal SNPs were included.

To conclude, high hopes are associated with the concept of personalised medicine

in which the patients are stratified according to disease status or response to



treatment, leading to patient-specific diagnosis and therapy [3]. This chapter helps
to emphasize the importance of variable selection for classification. The results
using the simulated dataset suggested that it is important to select the most
informative SNPs as it can aid to classification performance. Statistically, an ideal
variable selection method would make use the SNP data as much as possible, easy

to apply and interpret. It also would require less computational burden.



Chapter 3
Methods

3.1 Introduction

In recent years, the advent of technologies such as microarray, proteomics, and
next-generation sequencing have enabled the collection of large datasets [49].
Specifically, in GWAS, thousands or millions of SNPs are being measured on
individuals of which the number is much smaller. The situation is referred as high-
dimensional problem, also called the p » n problem [95]. One solution to tackle
this problem is to reduce the dimensionality by doing variable selection, which
allows the optimal subset of SNPs associated with the phenotype being selected.
In the context of classification, implementing a variable selection procedure could
aid better classification performance, i.e., assigning samples or individuals to their

respective phenotype groups accurately.



As previously discussed in Chapter 2 (Literature Review), three main methods
exist, namely, filter, wrapper and embedded methods, which vary with respect to
computational complexity or contribution to classification performance. Typically,
SNPs are identified individually using univariable analysis methods. However, in
reality, the SNPs may be correlated with one another or other environmental
variables. Therefore, there is an argument to employ a multivariable approach to
variable selection (i.e. to take into account all variables in a single analysis rather
than sequentially investigating one variable at a time). The common approach in
statistical model-building is to include or exclude the variables based on certain
criteria (e.g. AIC, Bayesian Information Criteria (BIC) or R?) [59]. This procedure
is done until the most parsimonious model, which can describe the outcome well,

is produced.

There is no universally optimal variable selection method that fits well with every
type of data [4]. However, this thesis is concerned with developing a variable
selection method that can reduce computational burden and help in improving
the classification performance with specific focus on SNP datasets with a binary
outcome. With this purpose in mind, the focus lies on filter-type variable selection
methods that employ simple yet multivariable metrics of a signal. Specifically, the
aim is to study and develop further the generalised signal-to-noise ratio (SNR)

within the framework of logistic regression with specific application to SNP data.

Generalised SNR was recently proposed by Czanner et al. [17] within the context
of generalised linear models (GLM) in the recording of single neurons. In the
paper, generalised SNR was not introduced as the variable selection method per

se, but rather as a measure of system fidelity in neural spiking activity. This thesis



generalises SNR specifically to SNP datasets by using logistic regression as the

framework.

In this thesis, the direct application of SNR to SNP datasets is challenging for
several reasons. First, the number of SNPs can be extremely large, the effect of
SNPs on the phenotype tend to be small to modest, so the SNR of each SNP is
low [18]. Second, it is not possible to apply SNR directly to all variables (SNP
data is often large with more than 100,000 SNPs for each chromosome). Third,
due to a large number of SNPs, a stopping criterion should be developed and
imposed on the maximum number of SNPs that should be included in the final
model. Fourth, since this method is built outside of the classification algorithm
(i.e. it is a filter method), the performance of the variable selection might be
independent with the choice of classifier. Hence, it is crucial to select a good
classifier that can produce good classification performance. Fifth, misclassification

tends to be much higher for binary outcomes than continuous outcomes [18].

Apart from focusing on variable selection, this thesis also focuses on jointly
modelling SNP data and clinical information, which could potentially improve the
classification performance. As we know, the clinical data are often available, and
their predictive value is well-validated in the literature [21]. Often, the clinical
data is collected once for each patient (cross-sectional). This may be a feasible
approach for the most common case where the diagnosis of a patient is of interest.
However, if the effect of therapy or any time-dependent response is of interest,
then it is more appropriate to include the longitudinal profiles as well [22]. Hence,
the proposal is to jointly model the longitudinal as well as the cross-sectional data.
This chapter describes the existing methods of variable selection as well as the

methods proposed in this thesis. Section 3.2 presents the proposed variable



selection method, tSNR. The motivation and how the method works in both
univariable and multivariable scenarios are discussed, followed by the existing
statistical concepts related to tSNR. Then, the proposal to jointly model the

longitudinal clinical and SNP data is elaborated on in Section 3.3. Table 3.1

summarises the structure of the chapter.

Table 3.1: Structure of the chapter.

Methods of variabl
Objectives Type of data (eSN(;sS) Zeltz i‘:i:n ¢ Classification
To select e SNP data o Filter-metric
the most ) tSNR and the L .
, , (cross-sectional; . Logistic regression
informative ; ical) algorithm
categorica
SNPs & (Section 3.2.1,
3.2.2,3.2.3) Joint modelling of
e Penalised logistic longitudinal clinical
e C(linical data regression (lasso) and SNP data
. (longitudinal; count, | e Stepwise logistic using MGLMM
Combining . . . .
. binary, continuous) regression (Section 3.3)
clinical and . s
e SNP data e Other statistical Longitudinal
SNP data , L
(cross-sectional, concepts (BIC, Discriminant
categorical) AIC, R?) Analysis (LoDA)
(Section 3.2.4) (Section 3.3)

Note: Multivariate Generalised Linear Mixed Model (MGLMM)

3.2 Selection of the most informative SNPs

3.2.1 Proposed tSNR and the variable selection algorithm

In science and technology, signal-to-noise ratio (SNR) is a measure that compares
the level of the desired signal to the level of background noise [11]. A higher value
of SNR means a better model, since there is more useful information (the signal)

than there is unwanted data (the noise) [96]. Generally, SNR is defined as

ot
ot




SNR = Usignal

(3.1)

Gnoise

where aszl-gnal is the variance of a signal that describes how one variable (i.e.
independent) is related to another variable (i.e. dependent) [97]. Meanwhile, 6,%;ce
is the variance of noise which is essentially the standard error (of the difference),
which quantifies the sampling variability and thereby the statistical uncertainty

of the comparison measure.

In the context of variable selection in GWAS, the t-test is a well-known statistical
test that applies the SNR concept. In other words, it is a signal-to-noise ratio.
The t-test is often applied in a situation in which the maximisation of distance or
difference between two population means is needed. The variable is chosen or
considered important if there is significant evidence (e.g. based on p-value) that
the variable is associated with the outcome of interest. These studies [14-16, 98,
99] apply the t-test approach as a variable selection method to GWAS data. For
example, Hotelling’s T? and modified t-test are applied as a ranking measure to

microarray (continuous) and SNP (categorical) data accordingly.

Since the focus of this thesis is categorical SNP data, it is essential to discuss the
modified t-test at a greater length in this chapter. As discussed in Chapter 2
(Literature Review), Zhou et al. [14-16] have proposed to modify the t-test to fit
categorical SNP data. The proposal extended the t-statistic algorithm to rank the
p SNPs for all phenotype groups, G. That is, the t-score of SNP X; (i = 1,2, ..., p)

is calculated as the greatest t-score for all phenotype groups:



t; = max

)?ig and )?i are row vectors and represent the mean of the i-th SNP in the g-th

phenotype group and the mean of the i-th SNP for all groups, respectively.

X ig — X i| denotes the Euclidean distance of the two vectors. In this equation, the

categorical variable with three levels (0, 1 and 2) for each SNP are transformed

into a 3-dimensional variable vector (0 = )?i(l) ={1,0,0}, 1> )?i(z) ={0,1,0},0 =

M, = 1+1 3.3
9" Iny N (3.3)

St =——- ()?ij _)?ig) ()?ij _)?ig)T (3.4)

X® =1{0,0,1}). Also,

L

where )?l- j refers to the vector of the i-th SNP of the j-th sample (or individual); N
is the total number of samples in all phenotype groups; ng is the number of
samples in the particular phenotype group, g and S; is the within-group standard
deviation. The difference in means in equation (3.2) indicates the dispersion of the
mean of the phenotype group of interest from the mean of all phenotype groups.
The t-score is calculated for each SNP, which relates to the signal that a specific
SNP carries. Among the total of p SNPs, the higher the value of the t-score means

the more informative the SNP is.

The t-score (ranking) is limited in the way it considers the SNPs one at a time
(univariable). As we know, the need to consider the SNPs in a multivariable

setting is important (i.e. presented in a model). Hence, the SNR concept proposed



by Czanner et al. [17], (which is similar to the concept of the t-statistic) is more
approriate since it was extended to the generalised linear model (GLM) systems.
GLM is an established statistical framework for performing regression analyses,
which uses deviance to measure the lack of fit between model and data. GLM
makes it possible to perform regression analyses to relate observations from any
model in the exponential family to a set of variables. This family includes well-
known probability models such as the Gaussian, Bernoulli, Binomial, Poisson,

Gamma and inverse Gaussian.

To introduce the definition of SNR for GLM models, let us assume that for a
given link function g() the expected value of Y given X can be expressed as
g(E(Y|X)) = X1P1 + X, B, where X, f; is the component of mean unrelated to the
signal and X,f, is the mean that is related to the signal. The partitions X =
[X1,X5], B = (B, B2)T, where X; is a n X p; matrix of non-signal variables, X, is
a n X p, matrix of signal variables, B; is a p; X 1 vector of non-signal coefficients

and 5, is a p, X 1 vector of signal coefficients. Now, p; + p, = p.

Further, the deviance in GLM, also called the log-likelihood (ratio) statistic,
provides a way of assessing the goodness of fit for a proposed model (or model of
interest) by comparing it with a more general model with the maximum number
of parameters that can be estimated, which is called the saturated model [100].
Suppose Bmay denote the maximum likelihood of the saturated model. The
likelihood function for the saturated model evaluated at B, is given by
L(ﬁmax|y). Let £ denote the maximum likelihood estimate of 8 which represents
the proposed model and L(ﬁly) be the likelihood corresponding to the proposed
model. Hence, the deviance is a measure of a distance between the proposed model

and the saturated model, given by,



L(Bly)

Dev(y,X,B) = —2log— (3.5)
L(Brmax|y)
Then, the SNR estimates for GLM is the ratio of deviance defined as,
___ Dev ,X,A — Dev ,X,A
SNE = (y 1 51) (y 5) (3.6)

Dev(y, X, )

where the numerator gives the reduction in the deviance due to the signal X, B,
when controlling for the effect of the non-signal component X; B;. Here, B; and
B are the maximum likelihood estimates obtained from the two separate fits of
the models respectively to Y. Meanwhile, the denominator is the variability in Y

due to noise.

To define the SNR for the SNP data it can be noted that, it is a common approach
to fit the logistic regression model to test for association between SNPs and binary
phenotype. Similar to the concept explained earlier, to measure the signal or
strength of information a SNP carries, the proposal is to generalise the definition
(3.5) in a logistic regression framework. Assume there is a null model which only
contains an intercept, B, and a saturated model with only one SNP, X; with
coefficient B;. By using the analogy in (3.6), here the numerator gives the

reduction in the deviance due to the signal of X;0;.

As we know, with logistic regression, more than one SNP, X; (i = 1,2, ...,p) can
be added into the model with each of the SNPs coded as 0, 1 and 2 (additive
model which represents the number of minor alleles held). Hence, the following
SNR measure, referred to as tSNR, is proposed as the generalisation of (3.6) in the

logistic regression framework. The estimation is given by,



Dev(y, Bo) — Dev(y, X, i)
Dev(y' Xi' Bl)

tSNR; = (3.7)

where Dev(y, ,[?0) is the null deviance of the null model showing how well the
response variable is predicted by a model that includes only the intercept, Bo.
Meanwhile, Dev(y, X, ﬁ’l) refers to the deviance of the fitted model which includes
the intercept, B, and the estimated coefficient, f; associated with each SNP,

Xi (l = 1,2, ,p)

The adjusted tSNR

As discussed in their paper, Czanner et al. [17] the GLM SNR estimator (3.6), is
biased. The bias arises because the SNR numerator always gives positive
estimates. The situation is still acceptable when the model considers one variable
at a time (univariable approach). However, the value of the numerator will keep

increasing with inclusion of more variables (multivariable) causing a positive bias.

Therefore, the proposal was to use Mittlbck and Waldhér to obtain a bias-
corrected SNR estimator [17]. By adapting the same notion, in (3.7) the difference
in the deviance in the numerator and the deviance in the denominator is corrected

by the number of the coefficients in the corresponding models,

Dev(y, ﬁo) — Dev(y, Xi,ﬁi) +dy—d;
Dev(y,Xi,,[?i) + di

tSNR adjusted = (3.8)

where d is the number of coefficients in the null model, and therefore is equal to

one, meanwhile d; is the number of coefficients in the fitted model. From now on,
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equation (3.7) will be used as a univariable filter metric, meanwhile equation (3.8)

will be utilised as the criterion for multivariable model selection.

3.2.2 The workflow

By using tSNR as the main filter metric for the variable or model selection, there
is a need to propose a workflow on how to select the most informative SNPs.
There are a few criteria to be considered when deciding on the workflow of variable
selection; i) univariable or multivariable selection, ii) cross-validation, and iii)
evaluation of classification performance. Hence, in this section the methods

involved in the workflow (Figure 3.1) are described.

Univariable SNPs ranking
using tSNR

|

Cross-validation into training and
test sets, k splits

I

Fit PLR to a subset of top ranked
SNPs using training sets

'

Strategyl Strategy 2
SNPs ranking based on Model selection (a subset of
cumulative tSNR SNPs) based on tSNR
Evaluate classification Evaluate classification
performance using test sets performance using test sets

Figure 3.1: Diagram of model building pipeline including (i) univariable tSNR as
preselection process; (ii) splits of sample into training and test sets; (iii) model building
using penalised logistic regression (PLR); (iv) strategies to select a small subset of

SNPs; and (v) model evaluation using test sets.
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3.2.2.1 Univariable variable selection

The most common summary measure of inference regarding a single SNP in
GWAS is the p-value [101]. The measure is obtained based on univariable
statistical tests (e.g. logistic regression, chi-squared). This univariable analysis can
be seen as a preprocessing step to infer the association between a single variable
and the outcome of interest. In the filter method approach, the variables are often
ranked from the most important to the least important variable, where importance
is measured by the value of the statistical test (e.g. chi-squared’s p-value,
Pearson’s correlation coefficient). Dealing with a large number of SNPs, the
univariable analysis is necessary to filter out the unimportant SNPs before further

analysis.

In this thesis, the proposal is to apply tSNR as the univariable selection as a pre-
processing step. The larger the tSNR, value means that the SNP carries a higher
signal in explaining the outcome, and therefore, the more important the SNP is.
For this univariable ranking, it can be shown that the ranking produced by tSNR
is identical to the ranking produced by p-value from the chi-squared test. The
equality is due to the numerator of equation (3.6) being simply the test statistics
with a chi-squared distribution with degrees of freedom equal to the difference
between the intercept and the number of coefficients estimated. The chi-squared

test is widely applied to measure the association between categorical variables

102

Table 3.2 shows the ranking results produced by tSNR and chi-squared test using
a simple simulated dataset. The dataset was simulated with one binary outcome
with equal proportion and three SNPs with three different proportions for the

genotypes 0, 1 and 2. The specified proportions for each SNP are given by (0.5,
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0.3, 0.2), (0.35, 0.35, 0.3) and (0.6, 0.3, 0.1) accordingly. The proportions for first
and third SNPs are chosen to represent the causal SNPs, meanwhile no effect for

the second SNP. The analysis is done using the ‘glm’ function in R [61].

Table 3.2: Ranking comparison between tSNR and p-value of chi-squared statistics.

Null Residual SNR . Chi-squared
SNPs , ) tSNR . df  Pr (>chi) )
deviance deviance ranking ranking
SNP 1 138.63 123.93  0.1186 2 1 8.101e-05 2
SNP 2 138.63 137.82  0.0059 3 1 0.658 3
SNP 3 138.63 107.83  0.2856 1 1 1.493e-06 1

While in some scenarios the tSNR and chi-squared test give identical results
(Table 3.2), there are scenarios where the chi-squared test cannot be applied. The
chi-squared test can only be applied to nested models and on the same set of
patients. On the other hand, tSNR can be used even if set of patients differ
between two models or when there are missing values in the observations for some
patients. Furthermore, tSNR can be used in the scenario to compare two non-
nested models. The standardisation imposed from the ratio of the deviance making
it unrestricted from the number of patients used. Therefore, in this situation tSNR
is more useful as it can be interpreted in both nested and non-nested scenarios.
The definition and explanation of nested models will be discussed further in the

following section.

3.2.2.2 Multivariate variable selection

Here, the multivariable selection methods are discussed. The methods can be used
for the implementation of the multivariable part of the algorithm in Figure 3.1

above. It assumes that a set of variables have been already pre-selected.
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Penalised logistic regression (PLR)

After going through the filtering process, a subset of SNPs will be used in the
modelling process in which the importance of the SNPs will be evaluated once
again. The difference between variable selection at this stage and univariable
selection discussed earlier, is how the SNPs are assessed. By using multivariable
selection, a subset of SNPs are evaluated together (i.e. the correlations between
SNPs are considered). In this thesis, penalised logistic regression (PLR) with lasso
penalty is applied for the multivariable selection analysis. PLR is chosen due to
its ability to deal with large number of SNPs and works well with categorical

variables [60, 65, 103].

Let Y represent the outcome variable and assume that there are p SNPs, X; (i =
1,2,..,p) coded as 0, 1 or 2 (additive). Each sample may belong to one of G
phenotype groups represented by g =20,1,...,G —1. For a binary phenotype
where G = 2, g = 1 denotes the cases group (e.g. disease, not achieved remission),
meanhwile g = 0 denotes the controls group (e.g. healthy, achieved remission).
The probability that the j—th sample (j = 1,2, ...,n) belong to group g = 1 with i-

th SNP is given by Pr(Yj = 1|Xl-) and can be written as,

oBo+XlBi

pr(Y,=1lX,))=nj = ———
(5 =1]x) =m = ——
or (3.9)

1

PT(Y) :0|X1) = 1—7'[]' :W

where X;; is the observation for i-th SNP for j-th patient. The coefficient vector

0 = (Bo, By e ﬁp)T is usually estimated by maximising the log-likelihood [65]
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n
L(©) = ) [¥ log mj + (1= ¥))log(1 - )] (3.10)
j=1
Lasso penalty is subtracted from the log-likelihood as follows:

p
9(6) = L(6) =2 ) || (3.11)
i=1

Note that the intercept B, is ignored in the lasso penalty, /12?=1|ﬁi|. The tuning
parameter A controls the strength of the penalty which will shrink the £; towards
zero. Hence, this procedure will help to further reduce the number of SNPs used
during the modelling and later classification process. The PLR with lasso penalty

is implemented using ‘glmnet’ package in R [104].

Stepwise logistic regression (SLR)

In addition to PLR, stepwise logistic regression is used as comparison in Chapter
4 (Simulation Study). The stepwise selection applies both forward selection and
backward elimination of the variables. The addition and deletion of each variable
is considered using either AIC or BIC. The stepwise selection is attractive since it

keeps evaluating the model each time variable is added or eliminated.

Cross-validation

To explore the problem of over fitting, cross-validation with k splits is applied.
For this thesis, the split is set for 100. By training and testing the model
containing selected variables on different subsets of the data the strength of
prediction for classification can be evaluated [105]. As shown in Figure 3.1, the
data is split into a training set (80% or 70% of the data) and a test set (20% or

30% of the data) with which the classification is done. The data is split k times



which will produce k different models for the training set and k classification
values (e.g. AUC, sensitivity, specificity) using the test set. From here, two
strategies will be followed to choose the best model among the k models produced

by the split.

Strategy 1: Multivariable ranking using tSNR (cumulative tSNR
ranking)

Strategy 1 mainly ranks the SNPs based on the cumulative tSNR for each SNP.

Firstly, the tSNR is calculated for each model which is fitted with cross-validation

procedure. Then, the tSNR, value for each model is multiplied by each of the SNPs

present within the model. The tSNR which is considered as the weight for each

SNP, w; is the summation of the tSNR across the k models,

100
w; = Z SNR (3.12)
k=1

The SNPs are ranked from the highest cumulative tSNR to the lowest. The total
number of SNPs to be selected is determined by the adjusted tSNR. The inclusion
of SNPs in the model is halted when there is no increment in adjusted tSNR.
Intuitively, the decreasing of the value of tSNR when a new variable is introduced
in the model indicates less signal as compared to noise that the new variable

carries.

Strategy 2: Model selection using tSNR

By using the k splits, k different models which differ in terms of samples included
as well as SNPs selected are produced. These models are considered non-nested,
i.e., two models are non-nested, either partially or strictly, if one model cannot be

reduced to the other model by imposing a set of restrictions on the coefficients, f;
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[106]. Therefore, a model selection criterion is needed to select the best model. As
mentioned earlier, one of the advantages of tSNR is that it can be used to compare
the non-nested models. Hence, by implementing the idea, the fitted PLR models
(using the training sets) are ranked based on the highest tSNR to the lowest tSNR,
values. The SNPs that correspond to the highest ranked model are selected for

the next step.

Binary classification

In this thesis, we are focusing on the binary classification using logistic regression
as the main classifier. In the classification problem, logistic regression measures
the relationship between the outcome (cases coded as ‘1’ or the outcome of interest)
and the one or more independent variables, by estimating probabilities using its
underlying logistic function. These probabilities (between 0 and 1) are then
transformed into either 0 or 1 (binary outcomes) according to the probability

threshold specified (usually 0.5).

Commonly, the results for binary classification can be summarised in the two by

two table as shown in Table 3.3.

Table 3.3: Binary classification table.

Classification outcome

Controls coded as Cases coded as
60? ‘13
Controls coded as True Negative False Positive
True ‘0’ (TN) (FP)
status Cases coded as False Negative True Positive
‘1’ (FN) (TP)

There are six performance measures that are discussed in this thesis, namely, the
Area Under the receiver operating characteristic (ROC) Curve (AUC), the

probability of correct classification (PCC), sensitivity, specificity, positive
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predictive value (PPV) and negative predictive value (NPV). The ROC curve is
a technique that has been widely used to assess classification accuracy. For a given
cutoff value of a variable or a subset of variables, the sensitivity and the specificity
are employed to quantitatively evaluate the classification performance [107]. By
varying the cutoff values, the resulting plot of sensitivity against 1-specificity is a
ROC curve. Then the Area Under the ROC Curve (AUC) is calculated as a
measure to summarise the overall classification accuracy of a ROC curve.
Although the AUC was originally developed for comparing distinct diagnostic
tests or biomarkers, it has increasingly been adopted for use in evaluating the
incremental effect of an additional biomarker in predicting a binary event via a

regression model [108].

The percentage of patients who have the medical condition and correctly classified
as cases (true positive) is called sensitivity, whereas the percentage of patients
correctly classified as controls (true negative) whom not having medical condition

is called specificity [109]. Hence, the sensitivity and specificity are given by,

TN
TN+FP

Sensitivity = Specificity = (3.13)

TP+FN
The accuracy or PCC can be expressed as a sum of true positive and true negative

over the total samples (or patients),

PCC = TP+ TN (3.14)
" TP+ FN+TN +FP '

Meanwhile, PPV can be defined as the probability that a patient who correctly

classified as case (true positive) really has the medical condition and the NPV is
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the probability of a patient who is correctly classified as control (true negative)
does not has the medical condition.
TP TN

NPV =
TP+FP TN+FN

PPV =

(3.15)

3.2.3 Statistical concepts related to tSNR

In this section, the relationship between tSNR and other statistical concepts is
discussed. This will help to understand the properties of tSNR and its potential
use in future studies and research. The discussion includes its relationship to the

AIC, BIC and generalised R?.

The selection of the most informative SNPs is equivalent to the selection of the
best model which later is assumed to produce good classification performance
[110]. Hence, certain model selection criterion is needed. In this thesis, there are
two situations of model selection that need to be considered; nested models and
non-nested models. For nested models, the model selection is needed when forward
selection method is applied in Strategy 1. Meanwhile, non-nested models are
generated when PLR is applied in which k different models are produced through
cross-validation (Strategy 2). Therefore, model selection criterion that can deal

with both nested and non-nested models will be discussed.

The well-known model selection criteria such as AIC, BIC and generalised R? are
discussed. The discussion includes brief introduction of each method and its
relationship with tSNR. AIC provides a method for assessing the quality of the
proposed model through comparison of related models (nested). In GLM, AIC can

be written as
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AIC = Dev(y, X;, ;) + 2d; (3.16)

where d; is the bias-correction term representing the number of coefficients in the
model. In theory, to compare between two nested models, the model with the
smaller value of AIC should be selected. AIC can be used to compare between two
nested models, however, it is not interpretable on its own. Given the same models
as a comparison, it can easily be shown that AIC has a negative relationship with

tSNR. Equation (3.7) can also be written as follows:

tm—m_l

B DQV(y,Xi,Bi) (317)

Then, by rewriting the definition of AIC in equation (3.16), the relationship

between tSNR and AIC is given by,

—_—_ Dev(y,Bo)
BNR = e = 2d;

-1 (3.18)
which means that a reduction in the value of AIC will be linked to an increase in
tSNR. Therefore, in the situation of nested models comparison, the decision of

model selection using either of these two methods are expected to be similar.

The second most used model selection method is the BIC. The difference between
AIC and BIC is that BIC generally places a heavier penalty on models with many
variables [40]. By referring to equation (3.19), BIC is more stringent in a way that
the penalty increases when the sample size (i.e. the number of independent
observations), n is getting larger. In this case, BIC tends to select more

parsimonious models than AIC [110].
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BIC = Dev(y, X, ;) + d log(n) (3.19)

Similar to AIC, tSNR can be shown to have a negative relationship with BIC. By
inserting the definition of BIC in equation (3.19) into equation (3.17), the tSNR

estimator is given by,

Dev(y, [?0)

SR = -
ts BIC — d log(n)

(3.20)

Generalised R?is another popular approach for selecting among a set of models
that contain a different number of variables. Unlike AIC and BIC, the higher
value of R”indicates a better model. The generalised R” in logistic regression is
different from the R?in ordinary least square approach. The common generalised
R? that is used in logistic regression is McFadden’s which is written as follows

[111]:

_ Dev(y, Xi'ﬁi)

R?>=1 ~
Dev(y,ﬁo)

(3.21)

From equation (3.21) it can be seen that the numerator is similar to the numerator
of tSNR which follows approximately the chi-squared distribution with degrees of
freedom equal to the difference between the intercept and the number of
coefficients estimated. However, R” will always increase with the number of

variables added, hence might not be useful from a clinical perspective.
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3.3 Combining longitudinal clinical and SNP

data for classification

GWAS leveraging cross-sectional phenotypic data has been a useful approach to
identifying SNPs that influence the quantitative risk factors relates to the outcome
of interest, however the use of cross sectional data does not provide insight into
how such risk factors develop over time [112]. Longitudinal studies help in
identification of risk profiles of susceptible individuals before prognosis onset. For
example, the study about children with focal epilepsy [113] has shown the disorder
has a genetic basis and is also age-dependent which suggests the need of having

the genetic (cross-section) and longitudinal data.

In biomedical research, the question of the added predictive value of considering
molecular data (e.g. SNPs, microarray, RNA) jointly with clinical variables is an
open area of research [21]. In certain disease studies (e.g. asthma, type-2 diabetes),
clinical variables have been extensively investigated and validated in previous
studies. However, the SNPs, which are usually high-dimensional and categorical
are often not as well-established. Therefore, it is useful to see how SNP data can
improve the classification performance of a conventional model with clinical

variables.

The approach to jointly model the clinical and SNP data can be advantageous
since the clinical variables are often available and have well-validated predictive
ability [114]. This situation allows the focus to be only on the added predictive
value of SNP data. Statnikov et al. (2007) [115] show the -classification
performance of a model with only SNP data, a model which consists of only clinical
data and a model with the combination of SNP and clinical data. The data consists

of 50 esophageal squamous cell carcinoma patients and 50 controls with 11,542
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SNPs. In addition, five clinical variables are recorded. In their study, the
classification performance improves slightly using the model with the combination

of both types of data.

Frequent clinical interest is in being able to classify patients into various groups
corresponding to their prognosis, based on the evolution of variables observed over
time. In general, Boulesteix and Sauerbrei (2011) [21] and De Bin et al. (2014)[114]
proposed the strategy to combine the clinical and omics data. By adapting similar
strategy, we propose to jointly model the longitudinal clinical and SNP data for

classification.

Stage 1: SNPs selection using tSNR and
SNPs classification with PLR

glt a.ge12i Classification analysis using
e MGLMM and LoDA
SNPs

Figure 3.2: Stages proposed involved in combining the longitudinal clinical and

SNP data for classification.

Figure 3.2 shows the proposed strategy to combine the longitudinal clinical and
SNP data. The strategy includes two stages and in each stage the classification
performance is evaluated. By evaluating the classification performance, the added

predictive value of SNP data to the longitudinal clinical data can be examined.

Firstly, the filter metric tSNR which has been discussed in Section 3.2.1 is applied
to select the most informative SNPs. Apart from the SNPs selection, the
classification performance is also evaluated at this stage. The approach at this

stage allows only a few selected SNPs to be utilised in combination with
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longitudinal clinical data. Often, in GWAS only few SNPs are selected which helps

in clinical implementation and interpretation.

In the second stage, the approach in which to jointly model the longitudinal
clinical and SNP data is discussed. Here, the SNPs are referring to the SNPs that
are chosen previously in Stage 1. Due to the longitudinal and cross-sectional
nature of the data, the multivariate mixed-effects model needs to be considered.
Hence, the analysis of the data using a joint model will follow the work conducted
by Hughes et al. [25, 116]. Their research presents a flexible and dynamic (time-
dependent) discriminant analysis approach in which multiple variables of various
types are jointly modelled for classification purposes by the multivariate
generalised linear mixed model. Here the types of variables included i) are of
multivariate and longitudinal nature, ii) have a complex correlation structure, (iii)
are of varying types of data (e.g. continuous, counts or binary) and, (iv) have

different time points at which clinical variables are measured.

By considering the nature of the data, the clinical variables are jointly modelled
for classification purposes by the multivariate generalised linear mixed model
(MGLMM) [25,116]. These longitudinal models are subsequently used in the
dynamic longitudinal discriminant analysis (LoDA) to predict the probability of

an individual belonging to a specific group [25, 116].

3.3.1 Overview of Longitudinal Discriminant Analysis
(LoDA)

Moultivariate generalised linear mixed model (MGLMM)
MGLMM is used to model the longitudinal clinical data, as well as SNP data in

Stage 2 (Figure 3.2). The model coefficients generated are subsequently used
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within the LoDA procedure [116]. MGLMMs are well-known due to their ability

to accommodate the complex nature of datasets.

The following notations were previously defined [25, 116, 117] but there are slight
adjustments made, to be consistent throughout this thesis. The aim is to predict,
which G phenotype groups a patient is likely to belong to, at a given time point.
This is done using information collected at baseline and over time up to that time
point. For binary phenotype where G =2, g = 1 denotes the cases group (e.g.
disease, not achieved remission), meanhwile g = 0 denotes the controls group (e.g.
healthy, achieved remission), which is only observed at time T. Assume that for
each patient, measurements are made on R =1 biomarkers at times t, =
(tr,l' e tr,nr), trg < <tpp.,7”=1..,R. Here, R is the number of longitudinal
biomarkers in which the type can be binary, continuous or count. For each marker,
these longitudinal observations for a particular patient are denoted as Y, =
(Yr,l' ...,Yr,nr). All information is collected for a patient up until some time t <
T to predict the future group, g, to which the patient belongs. The prediction is
based on the information gathered about the patient at time t and also all previous

data for that patient.

The MGLMMs are fitted to the longitudinal data separately according to the
phenotype group (either g = 0 or g = 1). The expected value (transformed by an
appropriate link function) for the j-th longitudinal observation (j = 1, ...,n,) for
the r-th marker (r = 1,...,R) (denoted Y, ;) is assumed to follow a distribution
from an exponential family (e.g. normal, Poisson, Bernoulli) with a dispersion
parameter @y is given by,

(e HE(Y, b, 9)} =xTia) +28 b, T=1,.,Rj=1.,n. (322



In (3.22), h;y'is a known link function used in the GLMM for the r-th marker

9 and z7

. T are

(e.g. logit for Bernoulli responses, log for Poisson variables), x

covariate vectors used in a model for group g derived from the information on the
visit times.

Further, ay are unknown regression coefficients (fixed effects) related to the model
for the r-th marker in the group g. It is assumed that a particular subject is
characterised by values of a latent random effects vector b = (b4, ..., bg) which
accounts for possible correlation between repeated observations of the same
marker and also different markers on the same patient. Typically, the random-
effects vector is assumed to jointly follow a normal distribution. However, Hughes
et al. (2016) [116] proposed to consider different normal mixtures in different

groups to allow additional flexibility. That is, they assume

Q9
b, g~ Z wi MVYN (ud, DY), (3.23)
q=1

where MVN (u, D) stands for a multivariate normal distribution with the mean
vector u and a covariance matrix D. The mixture distributions are weighted by a
factor wy, (g =1,...,Q) of which the number of mixture components, Q9 is

initially to be known. This multivariate normal distribution has a density denoted

as ¢(;; u, D).

To fit this MGLMM, the fixed effects regression coefficients from (3.22) need to
be estimated. The estimation is denoted as Y9:= (a‘lg,...,ag, 0J, ...,(Z)g) and

additionally mixture related parameters denoted 09: =

76



(wg,ﬂlg,...,ygg,]])‘lg,...,]D‘gg). In this thesis, the model with only longitudinal

markers in equation (3.22) will be referred as the reference model.

Jointly modelling SNPs with the longitudinal clinical markers

In this thesis, the proposal is to jointly model the SNP data with the longitudinal
clinical markers using two different approaches. First, a multivariate model where
each longitudinal biomarker (including SNPs), Y, is modelled using a mixed-effects
model. In this first approach, the SNP marker is denoted as Ysyp, (i = 1,2, ...p)

to distinguish it from the longitudinal markers.

The model requires Ygyp, to be represented by a vector of binary variables
(Yswp,, and Ysyp,,) that represent the presence of an allele. Also, it is noted that
the genotype of a SNP is constant over time [3], hence the SNP will only be coded
for each patient on the first visit. For illustration purpose, assume there is one
SNP marker, Ysyp, and three samples (individuals) with different visits at which
the other biomarkers are measured. Table 3.4 shows the transformation of the

additive SNP data to binary variables.

Table 3.4: The transformation of additive components of SNP data to binary

variables.
Original Coding in
Sample Visits coding (additive) joint model
Ysnp, Ysnp,, Ysnp,,

1 1 0 0 0
1 2 0 NA NA
1 3 0 NA NA
1 4 0 NA NA

2 2 0 1
2 NA NA
2 3 NA NA
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2 NA NA
5 NA NA

3 1 1 0
2 1 NA NA

3 1 NA NA

At this point, each longitudinal marker and the SNP are modelled in each
phenotype group using the same set of covariates, x . Unlike the longitudinal
clinical markers, the SNP markers were assumed to be independent of both other
SNPs and the longitudinal markers. With the additional SNP data as the marker,

equation (3.22) can be rewritten as,

hHE(Y b g)} = xSl +2z05b,,  T=1,.,Rj=1..,n 3:24)

hSNP {E(Y:ng ]lg)} - XSNPljagNP ) l = 1, ...,p,j = 1, ...,nSNPi ‘
For the second approach, the SNPs are added as fixed effect covariates. Similar
to the reference model, only the longitudinal markers are jointly modelled using a
mixed effects model. However, when adding SNP data as the fixed effects to

explain the longitudinal evolution of the R longitudinal markers, the covariates

information containing the SNP data in equation (3.22) can be written as, x;q,]T- =
( rg]T,XSg;P g XSQJP 1) By using this approach, the additive component of each

SNP needs to be transformed to the binary variables. By using the same example
in the previous table (Table 3.4), Table 3.5 shows the transformation of the SNP

data when modelled as fixed effects covariates.
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Table 3.5: The transformation of additive components of SNP data to binary

variables.
Coding as
. Original fixed effect
Sample Visits ) o .
coding (additive) covariates
X§qNP11J XﬁgNPu,j
1 1 0 0 0
1 2 0 0 0
1 3 0 0 0
1 4 0 0 0
2 1 2 0 1
2 2 2 0 1
2 3 2 0 1
2 4 2 0 1
2 ) 2 0 1
3 1 1 1 0
3 2 1 1 0
1 1

Group probabilities for individual patients

Now, the model parameters Y9 and 69 estimated from the MGLMM in each
group, can be used to classify a new sample based on their longitudinal history
and SNP data. Bayes theorem is applied to calculate the probability of a sample
belonging to group g given their longitudinal and covariate data and the model

parameters from the MGLMMs fit to samples of known status [117].

ngf gmnew

Prg,new =S 729~ 0,..,6 -1, (3.25)

g=0 ”gfg,new

where f denotes the predictive density of the observed markers given the group
and model parameters. The prior probabilities of belonging to each group are

denoted by my; = Pr(g),g = 0,...,G — 1. In a Bayesian setting, f; new is estimated
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as the mean of the posterior predictive density estimated from X samples from a

Markov Chain Monte Carlo (MCMC) scheme [118].

Prediction methods to specify the predictive density, fgnew

There are three different ways to specify the predictive density fgnew considered
as mentioned in Hughes et al. (2018) [117]. The three approaches, namely,
marginal, conditional and random effects have different focus in predicting the
status of the outcome. The marginal approach is the most common approach used
in LoDA. The new sample (indvidual) is assigned to their specific group to which
their longitudinal profiles Y, = (ynew_l,...,yneW,R) lie closest. Here, fgnew is
taken as the marginal density of Y., . The group membership probabilities are
evaluated at each draw of the MCMC procedure and approximate group

membership probabilities are calculated as the average across all samples.

For conditional approach, fg new is taken as the conditional density of Yy, . Here,
the prediction is based on the patient-specific evolution of markers over time,
overlooking any error in the variability of the sample’s estimated random effects.
Similar to the marginal approach, the conditional group membership probabilities
are calculated as the average across all samples in the MCMC procedure. Finally,
the random effects prediction focuses on the sample-specific evolution of the
longitudinal markers. Here, fg ne is taken to be the density of the random effects
evaluated at the sample and group-specific estimate of the random effect given
the marker data. With the MCMC-based Bayesian inference, the estimators of the

group probabilities are used for classification.
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Classification rules

The sample can now be classified into their specific group by using either the three
approaches discussed above. For each approach, the sample is assigned to the
group (either g = 0 or g = 1 for binary phenotype) with the largest probability
(i.e. cut off probability of 0.5). Another approach would be to classify a sample
into a group only if the probability of belonging to that group is greater than a
chosen cut off, ¢ [25, 116, 117]. The cut off is chosen through the ROC curve of
which the best results of classification can be shown (i.e. the closest point to the

top left corner).

3.4 Concluding remarks

In this chapter, the methods involved in achieving two main aims were discussed.
First, the notations and development of novel filter metric tSNR was explained.
The method was proposed not only as univariable variable selection method but
also can be used in the multivariable analysis as the model selection criterion.
Detailed framework of the application of variable selection and the approach to

evaluate the classification performance was shown in Figure 3.1.

Then, the method to jointly model the longitudinal clinical and SNP data was
elaborated. Here, detailed description of the modelling approach towards

classification using Longitudinal Discriminant Analysis (LoDA) was provided.
In the next chapter, the application of filter metric tSNR will be shown in the

simulated datasets, which includes the evaluation of classification performance in

both univariable and multivariable settings.
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Chapter 4
Simulation Study

4.1 Introduction

This chapter describes the experimental results using simulated datasets. The
simulated datasets are useful to evaluate the performance of the proposed
method. Normally different settings (e.g. different sample sizes, thresholds,
distributions) are determined to carry out specific goal. Having simulated data
allows one to evaluate whether a methodology can detect known effects and
known associations or group differences [119]. Hence, in this chapter SNP
datasets are simulated to evaluate the performance of the novel filter metric,

tSNR defined in equation (3.7) (Section 3.2.1).
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The datasets are simulated based on the International HapMap Project data as
the reference panel [120]. The goal of the project is to map and understand the
patterns of common genetic diversity in the human genome in order to accelerate
the search for the genetic causes of human disease [121]. Fundamentally, each
dataset acquires similar allele frequencies and linkage disequilibrium (LD)
structure as the reference panel. Normally, the data is simulated under the null
hypothesis with no causal SNPs determined. However, for this study, our
datasets are simulated under the alternative hypothesis of which few causal SNPs
are specified. The reason is to verify whether tSNR is able to capture the causal

SNPs as the informative SNPs during the ranking procedure.

The following section includes the aims of the simulation study (Section 4.2).
The data generating mechanism is explained in Section 4.3. Then, in Section 4.4,
the methods used for the simulation study are discussed. The results gathered
according to the aims are presented in Section 4.5. The chapter is concluded in

Section 4.6.

4.2 Aims for simulation study

The aim of the simulation study is threefold: (i) to investigate whether tSNR
can capture the causal SNPs as the top SNPs using univariable tSNR ranking,
(i) to explore the tSNR ranking in the multivariable setting, (iii) to evaluate

the classification performance in both univariable and multivariable settings.

4.3 Data generating mechanism

The simulation is done using HAPGEN v2.0 [24] software using HapMap3 CEU

(Utah residents with Northern and Western European ancestry from the CEPH
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collection) as the reference panel. The data is simulated with similar allele
frequencies and linkage disequilibrium structure as the reference panel. The
simulation generates data for 500 cases (coded as ‘1’) and 500 controls (coded as
‘0”) with 116,415 SNPs on chromosome 1 (ten replicates). The simulation process
took 200 to 300 seconds for each replicate on a 3.2 GHz processor PC. However,
due to longer process of sample and genotyping QC as well as data pruning, only
ten replicates of simulated data are considered. Also, from previous study, Uh et
al. (2007) [154], ten replicates of simulated data were able to identify causal
SNPs and evaluate classification performance. Two causal SNPs are simulated

using a log-additive model as follows:

Table 4.1: The details of the causal SNPs.

SNP BP Risk Heterozygote Homozygote locus
allele disease risk  disease risk index

rs914717 156952983 1 2.20 3.00 66880
rs1130193 200252354 1 5.00 8.30 89466

4.4 Methods

Sample and genotyping QC

Sample and genotyping QC is undertaken as standard data pre-processing
procedure. The number of SNPs on chromosome 1 is reduced after applying
GWAS QC thresholds based on minor allele frequency (MAF), SNP genotyping
rate and test Hardy-Weinberg Equilibrium (HWE) (see Table 4.2). The
screening on MAF only includes the SNPs with MAF >0.01. Low MAF SNPs
could be more susceptible to genotyping errors and their association signals are
less robust [47]. For SNP genotyping rate only SNPs with <10% missing
genotypes are included. Further, SNPs that are extremely deviated from HWE

(p-value <10°) are removed. At the same time, all 1,000 samples passed the
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standard QC procedures (based on rate of missingness, duplication of samples,

relatedness and heterozygosity).

Data pruning

The pruning and quality check is done using PLINK software [46]. Similar to
Chapter 2 (Literature Review), in this simulation study, the pruning option is
undertaken to reduce or eliminate the SNPs that are in approximate LD with
each other. The action intuitively can help minimising the computational
complexity. Also, it may help focusing on more signals and allow more region of

potential interest.

The LD pruning option (150 50 0.9) is applied. For this method, all pairs of
SNPs within a window of 150 SNPs, 50 SNPs are compared with each other to
measure their pairwise LD. If any pair of SNPs within the window is in LD
greater than the R?threshold of 0.9, the first SNP in the pair will be inactivated
(pruned). Table 4.2 shows the number of SNPs after QC procedure and pruning

option are undertaken.

Table 4.2: Number of SNPs after QC and pruning for each replicate (originally there

are 116,415 SNPs in each replicate).

Replicate  Number of SNPs Number of SNPs

after QC after pruning
1 96,755 50,047
2 96,887 50,095
3 96,917 50,024
4 96,839 49,989
5 96,632 50,010
6 96,858 50,185
7 96,889 50,133
8 96,829 50,212
9 96,834 50,031
10 96,856 50,037
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Univariable ranking using tSNR

The variable selection method, filter metric tSNR (equation 3.7, Section 3.2.1)
is used to rank the SNPs in each replicate. As mentioned in Chapter 3 (Methods)
the tSNR works within the logistic regression framework. The data for each SNP
is fitted in a logistic regression model of which the null and residual deviances
are produced. From there, the tSNR is calculated for each SNP. The analysis is
implemented using R function ‘glm’ [61]. Then, the SNPs are ranked from the
highest to the lowest tSNR. Whether tSNR can capture the causal SNPs as the
top ranked SNPs is investigated. The workflow of analysis, starting from the

univariable tSNR ranking is shown in Figure 4.1 below.

Univariable SNPs ranking
using tSNR

}

Cross-validation into training and
test sets, k splits

I

Fit PLR and SLR to a subset of top
ranked SNPs using training sets

!
' v

Strategy 1 Strategy 2
SNPs ranking based on Model selection (a subset of
cumulative tSNR SNPs) based on tSNR
! |
Evaluate classification Evaluate classification
performance using test sets performance using test sets

Figure 4.1: Diagram of model building pipeline including (i) univariable tSNR as
preselection process; (ii) splits of sample into training and test sets (internal cross-
validation); (iii) model building using PLR or SLR; (iv) strategies to select a small

subset of SNPs; and (v) model evaluation using test sets.
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After the univariable tSNR ranking, a subset of top ranked SNPs (e.g. 100, 200,
300) are selected for the subsequent analysis. Here, the data is divided into
training and test sets for 100 times. Particularly in this simulation study, the
multivariable selection techniques, penalised logistic regression (PLR) and
stepwise logistic regression (SLR) are applied on the training sets. The
performance of the two methods are compared. From there, two strategies are
proposed to select a subset of SNPs for classification. Strategy 1 mainly ranks
the SNPs based on cumulative tSNR, (equation 3.12, Section 3.2.2.2). Meanwhile,
with Strategy 2, the best model among the non-nested models is selected based
on the highest tSNR. Lastly, the classification performance is evaluated on the

test sets.

Multivariable selection

The main objective of this thesis is to analyse the SNPs in the multivariable
setting. It is deem important to consider the SNPs collectively rather than
individually since each SNP might show a different effect when analysed together
with other SNPs. In this simulation study, two multivariable selection
approaches are compared for model building, namely, penalised logistic

regression (PLR) and stepwise logistic regression (SLR).

Penalised Logistic Regression (PLR)

In this thesis, penalised logistic regression (PLR) with lasso penalty is applied
for the multivariable selection. PLR is chosen due to its ability to deal with large
number of SNPs and works well with categorical variables [60, 65, 103]. PLR
applies the embedded approach of variable selection. The penalisation (e.g. Lasso

or Ridge) acts as the variable selection method which helps in reducing the
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number of SNPs used during the modelling and later classification process. The

PLR with lasso penalty is implemented using R function ‘glmnet’ [104].

Stepwise Logistic Regression (SLR)

In addition to PLR, SLR is applied to compare the performance between the
two methods. The stepwise selection applies both forward selection and
backward elimination of the variables. The addition and deletion of each variable
is considered using either AIC or BIC. The stepwise selection is attractive since
it keeps evaluating the model each time variable is added or eliminated. Park
and Hastie (2007) [60] applied the stepwise selection following variable selection
using PLR with ridge penalty. They used stepwise selection to further reduce
the number of variables in the model. The SLR with AIC as the model selection

criterion is implemented using R function ‘step’ [61].

Cross-validation

Cross-validation is an important strategy to evaluate the performance of a
certain method (e.g. variable selection method). The main idea behind cross-
validation is to split data, once or several times of which part of the data (the
training set) is used for training the method and the remaining part (the test
set) is used for estimating the performance (e.g. error rate, Area under the ROC
Curve (AUC)) [122]. Therefore, the cross-validation is an important step that
will be considered throughout this thesis. In this simulation study, the data is
split into 80% training set (800 samples) and 20% test set (200 samples). The
process is repeated for 100 times which produces 100 training and test sets
accordingly. The multivariable selection is done using the training sets.

Meanwhile, the classification performance is evaluated on the test sets.
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Classification performance

As discussed in Section 3.2.2.2, this thesis is focusing on the binary classification
using logistic regression as the main classifier. In the classification problem,
logistic regression measures the relationship between the outcome (cases coded
as ‘1’ or the outcome of interest) and the one or more independent variables, by
estimating probabilities using its underlying logistic function. These probabilities
(between 0 and 1) are then transformed into either 0 or 1 (binary outcomes)
according to the probability threshold specified (usually 0.5). In this chapter, six
performance measures that are presented, namely, the Area Under the receiver
operating characteristic (ROC) Curve (AUC), the probability of correct
classification (PCC), sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV).

4.5 Results

In this section, the results from the simulation study are presented. Each analysis
is carried out with specific aim that relates to the variable selection method,

filter metric tSNR and the workflow presented earlier (Figure 4.1).

4.5.1 Univariable ranking using filter metric tSNR

Here, the SNPs ranking is presented based on the univariable tSNR ranking.
The tSNR is calculated for each SNP in each replication using the pruned
datasets. The SNPs are ranked from the highest to the lowest tSNR. Table 4.3
shows the ranking of top 10 SNPs for each replicate. The causal SNPs are
highlighted in bold. It can be shown that tSNR is able to rank the causal SNPs

as the top ranking SNPs using the simulated datasets.
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Table 4.3: The univariable tSNR ranking (top 10 SNPs) for the 10 replicates.

The causal SNPs rs1130193 and rs914717 are highlighted in bold in each replicate.

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5

Rank SNPs tSNR SNPs tSNR SNPs tSNR SNPs tSNR SNPs tSNR
1 rs1130193 0.1071 rs1130193 0.1058 rs1130193 0.1025 rs1130193 0.0976 rs1130193 0.0864
2 rs4950760 0.0612 rs10920304 0.0531 rs12756809 0.0756 rs10920304 0.0455 rs10920304 0.0455
3 rs10920304 0.0597 rs4630172 0.0428 rs10920304 0.0562 rs3820439 0.0430 rs914717 0.0415
4 r$2819362 0.0504 rs2819362 0.0403 rs2511200 0.0478 rs2819362 0.0386 rs2511200 0.0391
5 rs12731187 0.0404 rs4950760 0.0365 rs914717 0.0456 rs432335 0.0317 rs12731187 0.0349
6 rs914717 0.0337 rs914717 0.0307 rs4630172 0.0423 rs914717 0.0290 rs4950760 0.0333
7 rs7516412 0.0319 rs2511200 0.0288 rs2819362 0.0347 rs10489843 0.0273 rs2819365 0.0306
8 rs2511200 0.0304 rs6658647 0.0287 rs6658647 0.0331 rs2511200 0.0265 rs2819362 0.0297
9 rs2735784 0.0255 rs9427715 0.0280 rs10489842 0.0317 rs16849483 0.0246 rs9427715 0.0278
10 rs12023371 0.0237 rs16849483 0.0271 rs10489843 0.0268 rs4950802 0.0226 rs12747653 0.0250

Rank Replicate 6 Replicate 7 Replicate 8 Replicate 9 Replicate 10

SNPs tSNR SNPs tSNR SNPs tSNR SNPs tSNR SNPs tSNR
1 rs1130193 0.0790 rs1130193 0.1016 rs1130193 0.1006 rs1130193 0.1078 rs1130193 0.1074
2 rs4950760 0.0443 rs10920304 0.0704 rs10920304 0.0564 rs10920304 0.0607 rs10920304 0.0557
3 rs2819362 0.0411 rs2819362 0.0540 rs914717 0.0527 rs2819362 0.0520 rs4950760 0.0510
4 rs10920304 0.0399 rs9427715 0.0313 rs2511200 0.0496 rs2511200 0.0320 r$2819362 0.0461
5 rs7516412 0.0376 rs4630172 0.0308 rs4950760 0.0470 rs7516412 0.0317 rs2511200 0.0423
6 rs914717 0.0246 rs914717 0.0276 rs7516412 0.0467 rs914717 0.0305 rs914717 0.0365
7 rs857705 0.0241 rs2511200 0.0268 rs2819362 0.0464 rs10489843 0.0282 6658647 0.0354
8 rs6658647 0.0236 rs2735784 0.0259 rs6658647 0.0381 rs2735784 0.0279 rs4630172 0.0354
9 rs2735784 0.0231 rs2819360 0.0232 rs2735784 0.0375 rs6658647 0.0263 rs12731187 0.0290
10 rs2819360 0.0221 rs4950760 0.0218 rs12747653 0.0375 rs16849483 0.0253 rs10489843 0.0265
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In order to see the relationship between the univariable ranking and the
classification performance, the data from Replicate 1 is used for the analysis.
The data is divided into training (80%) and test sets (20%). The process is
repeated for 100 times. The SNP is added one by one into the logistic regression
model based on the univariable tSNR ranking using the training sets. In each
addition of SNP, the classification performance is measured on the test sets.
Figure 4.2 shows the classification performance (mean) of top 200 SNPs based

on the univariable tSNR ranking.
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Figure 4.2: The classification performance based on the univariable tSNR
ranking for Replicate 1.

As we know, the first SNP is the causal SNP, rs1130193 which was specified as
highly informative. Overall, from Figure 4.2 the classification performance ranges
between 60% and 80% and remains constant towards the end. Although the
simulated causal SNPs are already in the model after six SNPs, the classification
performance keeps increasing even the additional SNPs are assumed not relevant.

This is because, when simulating the data from a whole chromosome, there are
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some SNPs that may be informative by chance. The effect of each simulated
SNP is influenced by several factors, namely, sample size, effect size, allele
frequency and LD to the causal SNP [24]. Hence, it explains the increasing trend

of the classification performance shown in Figure 4.2.

4.5.2 Comparing  classification  performance between
penalised logistic regression (PLR) and stepwise

logistic regression (SLR)

Based on the workflow proposed in Figure 4.1, PLR is chosen as the classification
method following the univariable ranking. The variable selection within PLR is
done using Lasso penalty in order to shrink the coefficients of uninformative
variables to zero. On the other hand, SLR is a well-known modelling approach
in many fields. The stepwise procedure applies the model selection criterion such

as AIC to include or eliminate the variables.

Given the different variable selection approaches in both methods, it will be
useful to compare the performance between the two methods. Here, the
classification performance using PLR and SLR is compared using the simulated
dataset (Replicate 1). The analysis is done in the cross-validation setting by
dividing the data into training (80%) and test (20%) sets. The splitting is
repeated 100 times. It is important to note, for this comparison, the data is
trained only on one training set in order to produce only one model. However,

the classification performance is evaluated using all 100 test sets.

The analysis of PLR and SLR are done using the ‘glmnet’ and ‘step’ functions
in R accordingly. The results for both methods are presented in Table 4.4. The

initial number of SNPs indicates the number of top SNPs based on the
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univariable tSNR ranking in Replicate 1. Then, after applying the variable
selection method, these SNPs are reduced to a certain number (refer to column
‘Number of SNPs selected’). The classification performance is presented as the
average values of PCC, AUC, sensitivity, specificity, PPV and NPV over the

100 test sets.

Table 4.4: The classification performance for PLR and SLR using the SNP data
from Replicate 1.

Penalised Logistic Regression (PLR)

Initial Time Number of
number (sec) SNPs PCC AUC Sens Spec PPV NPV
of SNPs selected

100 1.83 67 80.97 81.13 83.16 78.78 79.77 82.48
200 3.01 136 89.49 89.55 90.58 88.39 88.69 90.40
500 4.76 252 95.80 95.84 96.74 94.86 94.99 96.68
1000 4.77 357 95.08 95.13 96.38 93.77 93.98 96.29
2000 6.77 370 93.02 93.12 95.05 90.98 91.41 94.83
3000 10.06 358 92.26 92.33 93.82 90.69 91.05 93.62
4000 11.79 237 87.60 87.66 88.57 86.62 86.94 88.38
5000 15.13 22 69.53 69.67 66.46 72.59 70.87 68.47

Note: sec = seconds, Sens = Sensitivity, Spec = Specificity

Stepwise Logistic Regression (SLR)

Initial Time Number of

number  (sec) SNPs PCC AUC Sens Spec PPV NPV
of SNPs selected
100 42.10 46 80.31 80.33 79.10 81.55 &81.00 79.67
200 729.79 102 89.86 89.85 90.27 89.48 89.48 90.20

Note: sec = seconds, Sens = Sensitivity, Spec = Specificity

From the table, it can be shown that computationally, PLR is less complex as
compared to SLR based on the time (in seconds) recorded. In terms of the
number of SNPs selected, SLR tends to select much lower number of SNPs as
compared to PLR (for the first 200 SNPs). However, better classification
performance is shown when using PLR in most of the scenarios presented above.

Additionally, it is important to note that, the stepwise procedure flagged a
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warning message of failed convergence after 500 SNPs were supplied into the
model. In general, generalised linear models (GLMs) are fit by maximising the
log-likelihood function, where the resultant maximum is referred to as the
maximum likelihood estimate (MLE) [123]. Failed convergence occurs whenever
the maximising process fails to find the MLE. Thus, based on the results using
the simulated dataset presented above, PLR is more reliable when dealing with

high-dimensional data as compared to SLR.

4.5.3 Strategy 1: Multivariable ranking using tSNR
(cumulative tSNR ranking)

One of the important aspect considered in this thesis is cross-validation. Cross-
validation is important to avoid an overoptimistic result when an algorithm is
trained and evaluated on the same data [122]. With cross-validation, the data is
divided into training set for model building and test set for classification. The
process is then repeated multiple times (e.g. 5, 10, 100 or 1000). Normally, a
specific model with predetermined number of variables is used. However, variable

selection needs to be carried out here before a model is finalised.

As a result, with multiple number of training sets, different number of models
(subsets of SNPs) are produced. In this thesis, two strategies are proposed.
Strategy 1 mainly ranks the SNPs based on the cumulative tSNR for each SNP.
Firstly, the tSNR is calculated for each model based on the 100 split. Then, the
tSNR value of each model is multiplied to each of the SNPs presents within the
model. The accumulated tSNR of each SNP will then determine the tSNR weight
it carries. The SNPs are then ranked based on their cumulative tSNR across 100
models. Usai et al. [124] applied a somewhat similar strategy but by using

frequencies of each SNP appeared in multiple training sets.
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The ranking of top 10 SNPs using the cumulative tSNR ranking for the ten
replicates is shown in Table 4.5. It can be shown that the ranking within the top
10 SNPs changes (compared to Table 4.3). In Replicates 1, 2, 5, 6, 7 and 8, the
simulated causal SNPs are ranked higher than the univariable ranking. However,
in the other four replicates the SNP rs914717 is not captured as the top ten
ranked SNPs. This is expected due to the average odds ratio simulated for the
SNP of which other SNPs might hold similar odds ratio as well. In addition, with
simulated data, the SNPs may be informative when put in the model jointly,

but may be less informative in some cases.
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Table 4.5: The cumulative tSNR ranking (top 10 SNPs) for the 10 replicates.
The causal SNPs rs1130193 and rs914717 are highlighted in bold in each replicate.

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5
Rank SNPs Cumulative SNPs Cumulative SNPs Cumulative SNPs Cumulative SNPs Cumulative

tSNR tSNR tSNR tSNR tSNR
1 rs1130193 34.21 rs1130193 26.57 rs1130193 31.65 rs1130193 19.83 rs1130193 10.92
2 rs914717 34.21 rs2151158 26.23 rs2511200 31.65 rs432335 19.83 rs914717 10.92
3 rs7530949 32.99 rs10913887 25.42 rs12410250 27.09 rs10489843 15.24 rs12744678 3.22
4 rs1128400 27.59 rs1339411 23.37 rs12409786 25.49 rs11579514 12.47 rs1324659 2.84
5 rs11803397 26.48 rs914717 23.25 rs4845803 24.28 rs2279127 12.14 rs6671643 2.26
6 rs10493765 25.68 rs2686226 20.78 rs644690 23.88 rs973742 11.50 rs12046563 2.15
7 rs41451049 23.73 rs11582767 20.06 rs12045948 23.76 rs12068503 10.46 rs623229 2.08
8 rs7539051 23.50 186658647 18.41 rs17112247 22.67 rs482542 9.82 rs6685614 2.06
9 rs2800804 23.04 rs2796077 16.74 rs12026094 22.23 rs4846778 9.69 rs6704463 1.89
10 rs2494606 22.89 rs17443748 15.84 rs16849342 20.53 rs6541199 9.66 r$2352039 1.89

Replicate 6 Replicate 7 Replicate 8 Replicate 9 Replicate 10
Rank SNPs Cumulative SNPs Cumulative SNPs Cumulative SNPs Cumulative SNPs Cumulative

tSNR tSNR tSNR tSNR tSNR
1 rs1130193 22.75 rs1130193 34.98 rs1130193 29.89 rs1130193 17.57 rs1130193 30.55
2 rs17047242 19.56 rs1570089 33.54 rs914717 29.89 rs2511200 15.66 rs2511200 30.55
3 rs914717 19.52 rs914717 32.84 rs1570565 23.17 rs1201157 12.99 rs12085891 26.60
4 rs4650146 18.28 182820477 30.54 rs10888744 22.31 rs12747653 12.12 rs16836808 26.44
5 rs4950760 16.51 rs12037907 29.35 rs670318 21.75 rs4847196 10.32 rs2119192 24.24
6 rs1341467 16.08 rs10919407 28.58 rs650755 20.54 rs6704394 9.45 rs4970934 23.05
7 rs6660884 14.77 rs11161686 28.48 rs10798056 20.17 rs17124643 9.38 rs2483688 21.74
8 rs6686126 14.43 rs41431546 26.18 rs6661325 19.42 17514221 8.63 86658647 21.45
9 rs16857312 14.43 rs2982464 26.05 rs2025582 17.66 rs10494795 8.38 rs7547731 20.73
10 rs6658647 14.28 rs284113 25.31 rs12091463 17.65 rs1406859 8.29 rs6677274 20.37
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Similar to the univariable ranking earlier, the relationship between the
cumulative tSNR ranking and the classification performance is investigated. The
data from Replicate 1 is used for the analysis. The data is divided into training
(80%) and test (20%) sets. The SNP is added one by one into the logistic
regression model based on the cumulative tSNR ranking using the training sets.
In each addition of SNP, the classification performance is measured on the test
sets. The process is repeated for 100 times. Figure 4.3 shows the classification

performance of top 200 SNPs based on the cumulative tSNR ranking.
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Figure 4.3: The classification performance based on the cumulative tSNR,
ranking for Replicate 1.

From Figure 4.3 it can be seen that there is an improvement in classification
accuracies when using the cumulative tSNR ranking as compared to the
univariable ranking (Figure 4.2). For example, the PCC reaches 70% at 8-th
SNP and 80% at 45-th SNP when using the cumulative tSNR ranking. However,
with the univariable tSNR ranking the SNP reaches 70% at 40-th SNP and still

below 80% at 200-th SNP.
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Stopping criterion

By using the forward selection procedure in Strategy 1, the final number of SNPs
to be in the model needs to be determined. In this thesis, the proposal is to use
the adjusted tSNR. in equation 3.8 (Section 3.2.1) to determine the number of
SNPs to be included in the model. Hence, as an extension to Figure 4.3, the
relationship between the classification performance and adjusted tSNR is
investigated. Figure 4.4 shows the adjusted tSNR of top 200 SNPs based on the

cumulative tSNR ranking .
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Figure 4.4: The adjusted tSNR against the number of top 200 SNPs (based on
cumulative tSNR ranking) for Replicate 1.

It can be seen that the tSNR values keep increasing as the number of SNPs
increases. Nevertheless, after 140 SNPs the tSNR values fluctuate indicating the
inclusion of the SNP may or may not be informative to the model. Hence, further
investigation of the specific SNP can be carried out. Finally, after 154 SNPs the
tSNR values show a constant pattern of decreasing which shows the additional

SNPs bring less signal as compared to noise. The drop is likely due to the
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adjustment related to the number of variables included in the model which is
adapted in the adjusted tSNR formula (previously shown in Equation 3.8).
Hence, the suggestion is to use the model with 154 SNPs as the final model for

classification and to further investigate the SNPs consist in the model.

4.5.4 Strategy 2: Model selection using tSNR

Strategy 2 applies tSNR to select the best model among the 100 models that are
produced based on the 100 splits. The tSNR is calculated for each model and
from there each model is ranked based on the highest to the lowest tSNR values.
Table 4.6 summarises the classification performance for the best model selected
in each replicate. On average, the classification performance is satisfactory with

more than 80% in each measure.

99



Table 4.6: Summary of the classification performance (mean and standard deviation) of the model selected by tSNR based on the 100

splits.

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5

Number of SNPs in

the selected model 189 17 194 201 170
Classification Standard Standard Standard Standard Standard
Mean Lo Mean Lo Mean Lo Mean Lo Mean Lo
performance deviation deviation deviation deviation deviation
pPCC 85.39 0.03 83.34 0.04 85.85 0.03 86.37 0.03 84.54 0.03
AUC 85.45 0.03 83.39 0.04 85.97 0.03 86.44 0.03 84.66 0.03
Sensitivity 85.60 0.04 83.41 0.04 87.91 0.04 85.73 0.04 86.24 0.04
Specificity 85.18 0.04 83.27 0.05 83.78 0.04 87.01 0.04 82.84 0.04
PPV 85.32 0.04 83.37 0.04 84.50 0.04 86.88 0.04 83.50 0.04
NPV 85.58 0.03 83.42 0.04 87.44 0.04 86.00 0.04 85.82 0.04

Replicate 6

Replicate 7

Replicate 8

Replicate 9

Replicate 10

Number of SNPs in

the selected model 195 184 192 189 187
Classification Standard Standard Standard Standard Standard
Mean Lo Mean Lo Mean Lo Mean Lo Mean Lo
performance deviation deviation deviation deviation deviation
pCC 84.55 0.04 85.53 0.03 86.42 0.04 86.37 0.03 84.09 0.03
AUC 84.63 0.04 85.60 0.03 86.49 0.04 86.43 0.03 84.23 0.03
Sensitivity 85.77 0.04 84.50 0.04 86.88 0.04 87.13 0.04 86.36 0.04
Specificity 83.33 0.04 86.56 0.04 85.96 0.04 85.61 0.04 81.82 0.04
PPV 83.80 0.04 86.31 0.04 86.17 0.04 85.87 0.03 82.70 0.04
NPV 85.47 0.04 84.90 0.04 86.81 0.04 87.00 0.04 85.76 0.04
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4.6 Concluding remarks

In this simulation study, a novel filter metric approach, tSNR is studied. Ten
replicates of SNP datasets with binary outcomes were simulated including two
causal SNPs. The univariable ranking using tSNR was applied to the datasets of
which the ranking of the causal SNPs were observed. The results show that tSNR

was able to capture the causal SNPs within the top ten ranked SNPs.

To date, the existing published work on SNPs selection has been focusing on
univariable approach. One of the aims of this thesis is to analyse the SNP data
in the multivariable setting. Following Figure 4.1 shown above, the PLR was
proposed as a multivariable modelling method. The performance between PLR
and SLR was compared. The results demonstrated that PLR outperformed the
SLR in terms of computing time and its ability to work with high-dimensional

data.

Further, following the application of PLR in the cross-validation setting (100
splits), multiple models with different subsets of SNPs were produced. Hence,
two strategies were proposed in order to select a subset of SNPs. In Strategy 1,
the SNPs are ranked based on the tSNR weighting calculated for each model.
The weighting were accumulated across the 100 models. The new ranking is
called cumulative tSNR ranking. The multivariable ranking shows different
ranks when compared to the univariable tSNR ranking. The cumulative tSNR
ranking managed to rank the two causal SNPs higher than the univariable
ranking in six of the ten replicates. In addition, the classification performance
was improved when including the SNPs based on the cumulative tSNR ranking

as compared to the univariable tSNR ranking.
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Then in Strategy 2, the best subset of SNPs was selected based on the tSNR
value of the model. As mentioned in Chapter 3 (Methods), the tSNR is useful to
compare the non-nested models. Hence, by applying the knowledge, the best
model was determined based on the highest tSNR among the 100 non-nested
models produced by the splitting for cross-validation. The classification
performance in the ten replicates is promising with more than 80% for all

measures.

From the results shown above, we are confident that the filter metric tSNR and
the model building pipeline shown in Figure 4.1 can be applied to real datasets.
In the next chapter, the methods will be applied to the datasets from Epilepsy
Pharmacogenomics (EpiPGX) and Standard and New Antiepileptic Drugs

(SANAD) studies.
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Chapter 5

Clinical Applications:

tSINR as Variable Selection
Method for Classification

5.1 Introduction

Over the years, the interest to study GWAS has grown, and the number of SNPs
genotyped has subsequently increased significantly. The objective of a GWAS is
twofold; i) to identify the subset of SNPs that best explains the heredity
component of the outcome of interest (e.g. disease status or response to
treatment), and ii) to generate a rule for classifying patients into their phenotype
groups (e.g. healthy or disease, positive or negative response to treatment for
binary outcome instance), given their genetic profile and possibly other clinical
variables [67, 125]. However, the tasks of variable selection and classification

when dealing with a large number of SNPs is challenging.
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Normally, GWAS data analyse one SNP at a time by linear or logistic regression
[18, 126]. The resulting p-values are then used to rank the SNPs and to select
those with a p-value smaller than a pre-specified significance level. However,
there are at least two strong reasons for considering all the SNPs or at least a
large subset of them simultaneously. First, the marginal effects of SNPs (i.e. the
effect of each SNP on the outcome when it is considered alone) may be quite
different when the joint effects of multiple SNPs, and therefore their correlation,
is taken into account. Second, the predictive power of a single SNP alone can be

low.

However, fitting a large number of variables altogether in any regression model
may cause instability and overfitting. These problems can be mitigated using
penalisation methods, which shrink the coefficients of the regression model
towards zero; the extent of shrinkage is controlled by a penalisation parameter

(e.g. Lasso, Ridge)[127].

As discussed in Chapter 3 (Methods), a novel variable selection method, tSNR
is proposed to select the most informative SNPs. The univariable filter metric
tSNR is adopted in a logistic regression framework to measure the signal-to-noise
ratio of a variable when added to a model which involves just a constant. The
tSNR is used to rank the SNPs which enable only a subset of informative SNPs
to be analysed. This step is important to reduce the complexity of the dataset

as well as the computational burden.
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The objectives of this chapter are:

(i) To explore the tSNR method (equation 3.7, Section 3.2.1) on the real
datasets. The methodology is illustrated using two GWAS datasets of
patients with epilepsy, where the aim is to identify patients who will not
achieve remission of seizures on their first well-tolerated antiepileptic drug
(AED).

(ii) To propose a specific workflow to analyse the SNPs by considering
multivariable approach. The building of the workflow considers the
following; i) univariable or multivariable selection, ii) cross-validation,

and iii) evaluation of classification performance.

The datasets that are used here consist of both clinical and genetic information
of patients from the Epilepsy Pharmacogenomics (EpiPGX) consortium [128],
which includes datasets contributed from several different epilepsy cohorts. The
first dataset, or development set, consists of 1,655 patients from the RCSI/Irish,
UCL/London, Brussels, EKUT/Tubingen, Glasgow, DoH/ReJuMEC and
Melbourne cohorts within EpiPGX. Meanwhile, the second dataset or validation
set belongs to 818 patients from the Standard and New Antiepileptic Drugs

(SANAD) study cohort [129, 130] also within EpiPGX.

In what follows, a description of each dataset and methods of variable selection
are described in Section 5.2. Then, the results from the analysis are presented in

Section 5.3. The concluding remarks can be found in Section 5.4.



5.2 Methods

In this section, a detailed description of the datasets and the quality control
(QC) process involved are described. The methods used in this chapter are briefly
discussed (see Chapter 3 (Methods), for comprehensive description of the

methods).

5.2.1 The EpiPGX dataset

It is well known that genetic factors play a role in AED response [131]. The
purpose of the EpiPGX consortium study is to identify genome-based predictive
biomarkers for use in routine clinical practice to personalise treatment of epilepsy
with existing AEDs [128]. The work within EpiPGX study is broken down into
work packages (WPs). Specifically, the datasets that are utilised in this chapter
are those used for work package 2 (WP02). WP02 involves the study of several
pharmacogenomic phenotypes of interest, including failure of the first AED. The
patients in this study had been followed-up prospectively from initial diagnosis
and treatment initiation until specific reaction associated with their first well-

tolerated AED is shown [128].

Only patients with complete phenotype status are considered for analysis, 1,515
patients from the development set and 639 patients from the validation set. The
first dataset will be used for variable selection and to develop the model whilst
the second dataset will be utilised to externally validate the model generated
from the first dataset. The reason for this is that most reports evaluating
prediction models focus on the issue of internal validity, leaving the important

issue of external validity behind [132]. The external validation is applied with
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the aims to address the accuracy of a model in patients from a different but

plausibly related population.

Phenotype definition

In this study, the phenotype (i.e. dependent variable) is defined as the remission
status (seizure-free) of patients after receiving first well-tolerated AED within a
5-year follow-up period. The phenotype for each patient is coded as ‘1’ if they
did not achieve remission after receiving first well-tolerated AED, whilst the
phenotype is coded as ‘0’ if they were observed to achieve remission. Figure 5.1

summarises the two datasets within the EpiPGX consortium.

EpiPGX
v \ 4
Development set
Cohort: RCSI/Irish, UCL/London, Validation set
Brussels, EKUT /Tubingen, Glasgow, Cohort: SANAD
DoH/ReJuMEC, Melbourne (n=639)
(n=1,515) 370 coded as ‘0’, 269 coded as ‘1’

850 coded as ‘07, 665 coded as ‘1’ 38,000,817 SNPs before QC

35,194,467 SNPs before QC

Figure 5.1: Summary of the two datasets; 1) Development set for variable selection

and model development, and 2) Validation set for external validation.

5.2.2 Sample and genotyping QC

Development set
The preparation of genotype data follows a standard quality assurance
procedure. Initially, the genotype data consists of 35,194,467 SNPs across 22

chromosomes. Applying standard QC procedures to each SNP, this number is
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first reduced to 6,175,331 after applying GWAS thresholds based on minor allele
frequency (MAF), SNP genotyping rate and Hardy-Weinberg Equilibrium
(HWE). The screening on MAF only includes the SNPs with MAF >0.01. Low
MAF SNPs could be more susceptible to genotyping errors and their association
signals are less robust [47]. For SNP genotyping rate only SNPs with <10%
missing genotypes are included. SNPs that are extremely deviated from HWE
are usually removed. Hence, setting the threshold of p-value <10 implies only
one SNP per million be removed when HWE holds. At the same time, all samples
passed the standard QC procedure (e.g. inspection for missingness, duplicates or
related samples and heterozygosity) of which 1,515 samples were included for

further analysis.

Validation set

The external validation is important to make sure the findings can be replicated
on ‘unseen’ data (a different set of patients). The validation set also undergoes
similar genotype QC as the development set. Initially, the genotype data consists
of 38,000,817 SNPs across 22 chromosomes. This number is reduced to 7,459,851
after applying SNP QC thresholds based on minor allele frequency (including
SNPs with MAF > 0.01), SNP genotyping rate (including SNPs with missing
genotype rate <10% missing genotypes for the SNP) and for a test for Hardy-
Weinberg Equilibrium (including only those with HWE p-value > 10°). Similar
to the development set, all samples passed the standard sample QC procedures.

Hence, 639 samples were included for further analysis.

5.2.3 Data pruning

Linkage Disequilibrium (LD) pruning is an important quality assurance step for

GWAS analysis to reduce the complexity of data. In this thesis, data pruning is
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undertaken to reduce the number of SNPs by eliminating the SNPs that are in
high LD with each other. It has been shown that some analyses for association
obtain better results if the markers used are not in LD with each other [48]. LD
refers to the non-random association of alleles at two or more loci in a general
population [133]. Therefore, the pruning option is undertaken to reduce or
eliminate the SNPs that is in approximate LD with each other thus intuitively

reducing the complexity of data.

For both development and validation sets, the pruning option (150 50 0.90) is
implemented using PLINK [46] software. For this method, consider a window of
150 SNPs, 50 SNPs are compared with each other to measure their pairwise LD.
If any pair of SNPs within the window is in LD greater than the R*threshold of
0.9, the first SNP in the pair will be inactivated (pruned). Shift the window 150
SNPs forward and repeat the procedure. After applying the LD pruning, the
SNPs in the development and validation sets are reduced to 1,437,725 SNPs and

1,814,949 SNPs accordingly.

Then, in order to make sure that both datasets have similar characteristics, only
overlapping SNPs between development and validation sets are considered for
further analysis. This action assures that the SNPs selected using the
development set are definitely present for validation purposes. The selection of

overlapping SNPs brings to the final number of 1,084,548 SNPs in each dataset.

5.2.4 Univariable SNPs ranking using tSNR

Univariable ranking of the SNPs is first performed to reduce the number of SNPs
that is analysed during the multivariable approach. This step is important to

make sure that only the potentially informative SNPs are considered for further
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analysis. The selection of a subset of SNPs will help to reduce the computational

burden when dealing with multiple variables in the subsequent step.

By using the pruned dataset, the tSNR value is calculated based upon the
residual deviance of a SNP presence in the logistic regression model, for each
SNP, X;,i =1,2,..,p (taking values of 0, 1 or 2 according to the number of
minor alleles present). The SNP is coded as such throughout this thesis (unless

stated otherwise) assuming additive mode of inheritance.

To recall, the tSNR; estimate is given by,

Dev(y, ﬁo) — Dev(y, Xl-,,@i)
Dev(y' Xil ﬁl)

tSNR; = (5.1)

where Dev(y, 30) is the null deviance of the null model showing how well the
response variable is predicted by a model that includes only the intercept, fBo.
Meanwhile, Dev(y,Xl-, 31) refers to the deviance of the fitted model which
includes the intercept, By and the estimated coefficient, f; associated with the i-

th SNP, X; (i = 1,2, ..., p).

5.2.5 Multivariable approach of SNPs ranking and model

selection for classification

Following the univariable tSNR ranking, a subset of top 5,000 SNPs are chosen
for the multivariable analysis. Zhou and Wang (2007) [14, 15] has taken similar
approach by choosing a maximum of 1,000 SNPs, following a univariable ranking
measure across four million SNPs. Figure 5.2 shows the diagram of model

building pipeline as discussed in Chapter 3 (Methods).
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Univariable SNPs ranking
using tSNR

|

Cross-validation into training and

test sets, k splits

v

Fit PLR to a subset of top ranked
SNPs using training sets

y
v v

Strategy 1

Strategy 2
SNPs ranking based on
cumulative tSNR

Model selection (a subset of
SNPs) based on tSNR

\ 4

Evaluate classification
performance using test sets and
validation set

Evaluate classification
performance using test sets and
validation set

Figure 5.2: Diagram of model building pipeline including (i) univariable tSNR as
preselection process; (ii) splits of sample into training and test sets (internal cross-
validation); (iii) model building using penalised logistic regression (PLR); (iv)
strategies to select a small subset of SNPs; and (v) model evaluation using test sets

and validation set (external validation).

Briefly, after the univariable SNPs selection, the subset of SNPs are used for
PLR model. Due to the few splits during cross-validation step, two strategies are
proposed to select the final predictive model. Finally, the -classification
performance using the chosen model in each strategy is evaluated internally and

externally.
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Cross-validation

A cross-validation is also the part of the pipeline shown in Figure 5.2 and it is
undertaken to assess the results of the analysis on independent sets. By training
and testing the model containing selected variables on different subsets of the
data, the strength of prediction for classification can be evaluated [105]. The
development set is randomly stratified into training (80% of patients n = 1,212)
and test (20% of patients n = 303) datasets. The dataset is split k times (i.e.
100 splits) which will then produce 100 different models [134]. In each split, the
model (PLR) is fitted to the training set. The classification performance is then

evaluated on the test sets.

Penalised Logistic Regression (PLR)

Using the training set, PLR is fitted to a subset of 5,000 SNPs using the R
CRAN packages ‘glmnet’ [135]. PLR is useful to consider a subset of SNPs
simultaneously. The penalisation method, least absolute shrinkage and selection
operator (lasso) is applied to reduce the number of SNPs. Lasso works as the
variable selection method imposed in the regression models by shrinking the least
informative variables’ coefficient to zero. The lasso is computationally feasible in

dealing with a large number of SNPs simultaneously.

Since the PLR is performed within a cross-validation framework, a final subset
of SNPs need to be determined. For that reason, two strategies are analysed and
proposed to decide the final subset of SNPs. The strategies apply the tSNR

metric as the variable or model selection criterion as detailed below.
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Strategy 1: Multivariable ranking using tSNR (cumulative tSNR
ranking)

Strategy 1 mainly ranks the SNPs based on the cumulative tSNR for each SNP.

Firstly, the tSNR is calculated for each model based on the 100 split. Then, the

tSNR value of each model is multiplied to each of the SNPs presents within the

model. The weight for each SNP, w; is the summation of the tSNR across the k

models,

100
w; = Z {SNR (5.2)
k=1

The following Table 5.1 illustrates the calculation of cumulative tSNR :

Table 5.1: Calculation of cumulative tSNR for three SNPs (X;, X, and X3).

. SNPs selected by PLR tSNR value of Rl SR @t Gle
Splits, k . . model to each SNP
within each split the model
Xy X2 X3
X1+ X5 + X5 1.223 1.223 | 1.223 | 1.223
X1 1.012 1.012
X1+ X 1.530 1.530 | 1.530

100 Xo+ X3 1.683 1.683 | 1.683

Cumulative tSNR for each SNP, w; W, ) w3

The SNPs are then ranked from the highest cumulative tSNR. to the lowest. The
SNPs are then added to the logistic model one by one of which the classification
performance is evaluated. For prediction accuracy and interpretability, only a

small subset of SNPs is preferred [60].
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In Strategy 1, the final model is determined when there is no increment in the

adjusted tSNR value which is given by,

Dev(y, [?0) — Dev(y, Xi,[?i) +dy—d;

tSNR adjusted = =
Dev(y,Xi,ﬁi) + di

(5.3)

where d, is the number of coefficients in the null model, and therefore is equal

to one, meanwhile d; is the number of coefficients in the fitted model.

Strategy 2: Model selection using tSNR

A second strategy for multivariable SNPs selection is based on comparison of
PLR models containing multiple SNPs (Figure 5.2). The comparison is formally
done via the tSNR values. Briefly, first by using the k splits, k different models
which differ in terms of samples included as well as SNPs selected are produced.
These models are considered non-nested, i.e., two models are non-nested, either
partially or strictly, if one model cannot be reduced to the other model by
imposing a set of restrictions on the coefficients, B; [106]. Therefore, a model
selection criterion is needed to select the best model. As mentioned in Chapter
3 (Methods), one of the advantages of tSNR is that it can be used to compare
the non-nested models. Hence, by implementing the idea, the fitted PLR models
are ranked based on the highest tSNR to the lowest tSNR values. The SNPs
that correspond to the highest ranked model are selected for the evaluation of

classification performance.

Classification performance
Novel aspects of the analysis includes the use of multivariable logistic regression
that examines the contribution of SNPs collectively rather than individually

[136]. In the classification problem, logistic regression measures the relationship
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between the outcome (patients who will not achieve remission after first AED
coded as ‘1’) and the SNPs, by estimating probabilities using its underlying
logistic function. These probabilities (between 0 and 1) are then transformed into
either 0 or 1 according to the probability threshold specified, 0.5. In this chapter,
the mean and standard deviation of six performance measures over 100 splits are
presented. The performance measures are the Area Under the receiver operating
characteristic (ROC) Curve (AUC), the probability of correct classification
(PCC), sensitivity, specificity, positive predictive value (PPV) and negative

predictive value (NPV).

External validation

As shown in Figure 5.2, other than the internal cross-validation (i.e. splitting
into training and test sets from the same dataset), external validation approach
is applied to further validate the results gathered from the analysis using the
development set. Here, the dataset from the SANAD cohort is used as the
validation set. The univariable ranking procedure is also done on the validation
set to investigate any overlapping informative SNPs that appear in both
datasets. The SNPs ranking is then compared with the ranking gathered using
the development set. Further, the model (involving a subset of SNPs) that is
fitted by both Strategy 1 and 2 using the development set is then validated on

the validation set accordingly.



5.3 Results

In this section, the results using the proposed methods (from Section 5.2) are
discussed. The first part of the analysis includes the univariable tSNR ranking
of the development and validation sets. Subsequently, a subset of SNPs from the
development set undergoes further reduction before model fitting with smaller
number of SNPs. The classification performance using the selected model is then
evaluated on the test set from the development set (internal cross-validation) as

well as the validation set (external validation).

5.3.1 Univariable SNPs ranking using tSNR

The tSNR is calculated for each SNP in both datasets (1,084,548 SNPs in each
dataset). The SNPs are ranked from the highest to the lowest tSNR values. For

example, Table 5.2 shows the top 20 SNPs for development and validation sets.

Table 5.2: The top 20 SNPs based on univariable tSNR ranking for development set

and validation set.

Rank Development set Validation set

Chr SNP tSNR Chr SNP tSNR
1 19 rs148854414 0.01446 2 rs113868955 0.03052
2 2 rsb8251972 0.01262 1 rs72708783 0.02971
3 9 rs117807448 0.01104 19 chr19.38803597.D  0.02965
4 9 rs149080038 0.01090 7 rs111299697 0.02680
5 2 rs62191927 0.01080 7 chr7.12536115.1 0.02619
6 7 rs35288464 0.01066 3 rs73024364 0.02586
7 5 rs115058790 0.01059 1 1579346791 0.02582
8 12 ¢hr12.32523962.1  0.01043 11 rs1774520 0.02484
9 9 rs872374 0.01025 9 rs10405527 0.02451
10 13 rs112771492 0.01023 3 rs73119100 0.02392
11 14 rs12887826 0.01023 16 rs9934340 0.02321
12 20 rs2025046 0.01013 9 chr9.10535674.D  0.02317
13 9 rs869382 0.01009 8 chr8.42378487.D  0.02301
14 2 rs16851377 0.01005 9 rs10738164 0.02270
15 21 rs77386304 0.00990 12 rs117383211 0.02245
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Development set

Validation set

Rank
r SNP tSNR Chr SNP tSNR
16 11 rs770584 0.00980 2 rs58251972 0.02241
17 18 rs17515325 0.00978 3 rs76979971 0.02223
18 13 rs140166961 0.00977 7 rs56322358 0.02152
19 18 rs59784013 0.00977 18 rs117380254 0.02142
20 17 rs6502867 0.00976 14 rs74621727 0.02142

Within the top 20 SNPs, only one SNP rs58251972 on chromosome 2 appears in

both datasets. Figure 5.3 (a) and (b) show the zoomed in plots of this SNP

(purple diamond) and those surrounding it in the development and validation

sets accordingly. The y-axis represents the —logi transformed p-value of each

SNP and the z-axis represents its genomic position. As proven in Chapter 3

(Methods), the tSNR and p-value show identical ranking hence the usage of p-

values in both plots. SNP rs58251972 resides in gene SNED1. From the database

of Single Nucleotide Polymorphisms (dbSNP) [137], SNED1 (Sushi, Nidogen And

EGF Like Domains 1) is a Protein Coding gene and the diseases associated with

SNED1 include Cortical Thymoma.
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Figure 5.3: Regional plots for SNP rs58251972 that appears in (a) Development set
and (b) Validation set based on the univariable tSNR ranking.
Note: The plots are created with LocusZoom (version 1.1) with linkage disequilibrium

(LD) data taken from the 1000 Genomes Project, HG19, March, 2012.

At this point, it will be useful to see the classification performance in both
datasets using the univariable tSNR ranking. Figure 5.4 (a) and (b) show the

classification performance using logistic regression for development and
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validation sets accordingly. The plots are drawn by adding one SNP at a time
based on their univariable ranking (top 50 SNPs). The classification performance
is comparatively good in both datasets which at some points could reach more
than 80% accuracy. However, it can be observed that the values will keep
increasing every time a new SNP is introduced in the model. The situation can

be due to the overfitting issue.
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Figure 5.4: Classification performance (mean) of the top SNPs selected by

univariable tSNR ranking for (a) Development set and (b) Validation set.

Hence, the classification procedure will be impractical due to large number of
SNPs. Further reduction of the SNPs is required to resolve the high-
dimensionality and overfitting issues. Though, the univariable ranking is still
useful to lessen the computational complexity by selecting a subset of top-ranked

SNPs to be utilised in the multivariable analysis.
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5.3.2 Multivariable approach of SNPs ranking and model

selection for classification

The analysis starts with a subset of top 5,000 SNPs from the development set
which are ranked in section 5.3.1. The subset of SNPs is then modelled using
PLR and cross-validation based on 100 splits (training sets). There are two
important settings that need to be determined when using R CRAN packages
‘glmnet’; i) the number of maximum variables ever to be nonzero in the model,
dfmaz, and ii) the complexity parameter, A. To minimise the number of variables,
dfmazx is set to 200 and for each split, the minimum Ais chosen through an

internal cross-validation (default 10-folds).

The 100 splits (which generate 100 training and test sets) produces 100 different
models of which the tSNR value is calculated for each model. Here, Strategy 1

and Strategy 2 is applied to select the final subset of SNPs for classification.

Strategy 1: Multivariable ranking using tSNR (cumulative tSNR
ranking)

Following Strategy 1, each of the SNPs will be assigned a weighting based on

the tSNR value calculated for each model it belongs to. The accumulated tSNR

of each SNP will then determine the tSNR, weight it carries. The SNPs are then

ranked based on their cumulative tSNR. For illustration, Table 5.3 shows the

top 20 SNPs based on the cumulative tSNR ranking.
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Table 5.3: The top 20 SNPs based on cumulative tSNR ranking from the

development set.

Rank  Chr Base‘z-l.)air SNP Cumulative

position tSNR

1 19 10527666 rs148854414 24.1875
2 2 241978231 rsh8251972 23.9526
3 9 134642577 rs869382 21.9703
4 21 46487635 rs77386304 20.8868
5 14 101117587 rs12887826 20.3452
6 7 11477000 rs35288464 19.3331
7 12 32523962 chr12.32523962.1 19.2856
8 20 19856187 rs2025046 19.0655
9 18 11695551 rs17515325 18.7487
10 18 46265448 rsb9784013 18.7470
11 13 48778115 rs140166961 18.3232
12 17 5420328 rs6502867 17.0284
13 12 116773835 rs12423990 16.8446
14 16 64616524 rs112557806 16.7252
15 2 214889035 rs62191927 16.6525
16 48454553 rs80160664 16.4822
17 9 90136937 rs872374 16.3989
18 18 3725553 rs7235163 15.9781
19 19 58830709 rsh6725489 15.7411
20 9 135672707 rs117807448 15.4306

From the ranking, the top two SNPs rs148854414 and rs58251972 are similar
with the SNPs recorded by the univariable tSNR ranking for the development
set. In particular, rs148854414 resides in gene PDE4A. Though there is no
specific evidence from past research that relates the SNP to epilepsy, the gene is
believed to be associated with the neurological disease, Parkinson [138]. The
study involved 12 patients with Parkinson disease and 12 healthy individuals
with no history of neurological or psychiatric disorders. The findings suggested
that the loss of PDE4 expression in the stratio-thalamo-cortical circuit,
associated with deficits of spatial working memory in patients with Parkinson

disease.
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Another SNP to highlight within the top 20 SNPs is rs17515325 which resides
in gene GNAL. The protein encoded within the gene is widely expressed in the
central nervous system [139]. Mutations in this gene have been associated with
dystonia 25 and this gene is located in a susceptibility region for bipolar disorder
and schizophrenia. Dystonia is defined as hyperkinetic movement disorders,
characterised by involuntary sustained muscle contractions affecting one or more
sites of the body, which lead to twisting and repetitive movements or abnormal
postures of the affected body part [140]. There are past research that reported

the association between dystonia and seizure or epilepsy [140, 141].
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Figure 5.5: Classification performance (mean) of the top SNPs selected by

cumulative tSNR ranking from the development set.

As a comparison for classification performance based on univariable ranking
(Figure 5.4 (a)), Figure 5.5 shows the classification performance of the top-
ranked SNPs that were selected based on the cumulative tSNR ranking using
the development set. The classification performance is slightly better than the

top-ranked SNPs that were selected based on univariable tSNR ranking. By
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using the cumulative tSNR ranking, the PCC and AUC achieved 70% at 22
SNPs. Meanwhile, the PCC and AUC achieved 70% at 29 SNPs when using

univariable tSNR ranking (Figure 5.4).

From the cumulative tSNR ranking, it is important to determine the number of
SNPs to be selected for classification. The proposal is to evaluate the number of
top SNPs selected by adjusted tSNR (from equation (5.3)). Similar to other
model selection criteria (e.g. AIC, BIC) the value of adjusted tSNR can
determine when the inclusion of variable into the model can be stopped. In this
case, the decreasing value of adjusted tSNR tells that the extra variable to be
included in the model has less signal as compared to noise. Figure 5.6 (a) shows
the classification performance against the number of top SNPs based on the
cumulative tSNR ranking. Separately, Figure 5.6 (b) illustrates the pattern of

adjusted tSNR following the inclusion of each top SNPs.
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set against (a) Classification performance (mean) and (b) Adjusted tSNR (mean).
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As shown in Figure 5.6 (b) there is a slight drop of adjusted tSNR after 187
SNPs. While there is an increment in adjusted tSNR after the descent, the
classification accuracies remain constant afterwards. Hence, from the pattern
shown in Figure 5.6, the final model containing 187 top SNPs based on the
cumulative tSNR ranking is selected. The summary of classification performance
of the top SNPs is shown in Table 5.4. The classification performance is

satisfactory with average more than 80% in each measure.

Table 5.4: Summary of the classification performance (mean and standard deviation)

of top 187 SNPs using the development set.

Classification Standard
Mean L.

performance deviation
PCC 84.86 0.02
AUC 84.71 0.02
Sensitivity 82.46 0.03
Specificity 86.75 0.03
PPV 83.04 0.03
NPV 86.39 0.02

Strategy 2: Model selection using tSNR

Strategy 2 applies tSNR to select the best model among the 100 models that are
produced based on the 100 splits. The tSNR is calculated for each model and
from there each model is ranked based on the highest to the lowest tSNR values.

Figure 5.7 illustrates the distribution of tSNR across the 100 models.
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To highlight a few, Table 5.5 shows the information gathered for each model.

Based on the ranking, the model with the highest tSNR consists of 189 SNPs.

The lowest ranked model is among the 12 models that consist less than two

SNPs in each model, hence the low tSNR.

Table 5.5: The summary of models (100 models based on the 100 splits) ranked from

the highest to lowest tSNR.

Model No of
Rank SNPs tSNR
no. SNPs
1 35 rs72640613, rs11120890, rs35622037, 189 0.3190
chrl.17702979.D, rs144278461, ... , rs76081526 '
rs72640613, chr1.17702979.D, rs35730900,
2 93 189 0.3112
rs11263857, rs4246520, ... , rs78851025
rs79346791, rs2236055, rs399628, rs11211072,
3 16 203 0.3097
rs35619352, ... , rs2284093
100 34 rs4773561 1 0.0000

By using the selected model (ranked first) from the PLR, the classification

performance is calculated on the test sets. The classification performance is

presented as mean and standard deviation of PCC, AUC, sensitivity, specificity,

NPV and PPV based on the 100 splits.

Table 5.6: Summary of the classification performance using PLR

on the development set (the first ranked model).

Classification
performance can
PCC 81.29
AUC 83.31
Sensitivity 65.48
Specificity 93.66
PPV 88.94
NPV 77.67

Standard

deviation

0.03
0.03
0.05
0.02
0.04
0.03
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From Table 5.6 it can be observed that classification accuracies are adequate
with average of 80% accuracies. However, it is noted that the sensitivity value
of 65.48%. is quite low. This may be due to the imbalance sample size between

the two phenotype groups.

External validation

The two strategies applied earlier provide the alternative on how to select the
best subset of SNPs for classification. The models are validated using an internal
cross-validation approach by splitting the dataset into training and test sets.
However, to avoid optimistic assessments of the models, further validation
approach (i.e. external validation) is needed [142]. To assess whether the
approach for classification that is presented in Figure 5.2 is acceptable, the
validation set (SANAD cohort) is used to validate the models selected by both

Strategy 1 and 2.

The final model used by Strategy 1 and 2 are fitted on the validation set. The
classification performance is measured by PCC, AUC, sensitivity, specificity,
NPV and PPV. The classification performance using the validation set is
summarised in Table 5.7. The classification performance increased significantly
using the model selected using Strategy 1 (multiple logistic regression).
Meanwhile, the classification performance was slightly increased when using the
model selected using Strategy 2 (PLR). It is important to note that the sample
size in the validation set is much lower (n = 639) than the development set
(n = 1,515). Hence, with 187 and 189 SNPs (SNPs selected by Strategy 1 and
Strategy 2 accordingly) used in the model, the smaller number of samples might

influence the results presented below.
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Table 5.7: Summary of the classification performance on the validation set (external

validation) using models selected by Strategy 1 (187 SNPs) and Strategy 2 (189

SNPs).
Classification
Strategy 1 Strategy 2

performance
PCC 94.59 82.78
AUC 94.52 84.14
Sensitivity 93.12 68.40
Specificity 95.67 93.24
PPV 94.00 88.04
NPV 95.04 80.23

5.4 Concluding remarks

As shown in this chapter, the tSNR variable selection can be advantageous to
reduce the dimensionality of the data and to help reduce the computational
complexity. It also leads to improving the classification accuracy rate of a
classifier. Particularly in this study, the variable selection method tSNR is
applied on the EpiPGX and SANAD datasets. The roles of tSNR in this study
are twofold; i) as a filter metric to select the most informative SNPs by using

univariable ranking, and ii) as a model selection criterion for non-nested models.

The filter approach is known due to its ability to select the variables which are
most important for classification and so reduce the number of dimensions
necessary for classification [7]. The desired effect of this is to speed up algorithms
and to make the subsequent analysis more effective by only focusing on the most
relevant variables in the dataset. Hence, by using the filter metric tSNR as the
variable selection method, the classification performance shown in this chapter

was adequate (more than 70%) when either internally or externally validated.
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In the multivariable setting, two strategies were proposed to select the best
model. Strategy 1 applies the similar strategy as the univariable ranking by using
the cumulative tSNR as the ranking measure. The cumulative tSNR ranking is
superior as compared to the univariable ranking as the SNPs are considered
together during the modelling process by PLR. This method has shown better
classification performance in which the PCC achieved 70% at 22 SNPs as

compared to 29 SNPs in the univariable setting.

Meanwhile, Strategy 2 was applied to compare the non-nested models that were
produced by the cross-validation approach. The models were ranked from the
highest to the lowest tSNR. The higher the value of tSNR indicates the model
shows higher signal than the noise. From the result, the -classification
performance shown was adequate with average of 80% accuracies. This analysis
confirms the advantage of PLR since it not only able to reduce the number of

variables but also give good classification accuracy.

Although the accuracy of prediction can be improved substantially using the
multivariable approach, the number of SNPs selected is still large and may be
difficult to interpret. However, from the pharmacogenomic point of view, dealing
with hundreds of SNPs compared to the initial more than a million SNPs allows
researchers to focus on fewer SNPs that can be informative for personalising
treatment. Also it is still important to include a large number of SNPs in a

predictive model to capture the most genetic variance [143].

An important strength of this study is the fact that it is validated in a different
cohort of patients (i.e. external validation). The method proposed is internally

and externally validated which helps in confirming the results. However, the
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sample size used for external validation is half of the development set. This
scenario may lead to differences in model performance. Therefore, a further
research with larger samples in validation dataset is needed. In addition, it will

be useful to see how our methods work in other disease scenarios.
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Chapter 6

Clinical Applications:
Combining Longitudinal Clinical
and SNP Data for Classification

6.1 Introduction

Genetic studies have shown that Single Nucleotide Polymorphisms (SNPs) have
become essential variables to predict individual’s belonging to a particular class
of complex diseases and different reactions to medications and treatments [4, 20].
The outcome usually is not only influenced by the genetics information, but may
be from the interaction with clinical and environmental variables. Statnikov et
al. (2007) [115] show the classification performance of a model with only genetic
data, a model which consists of only clinical data and a model with the
combination of genetic and clinical data. The data consists of 50 esophageal
squamous cell carcinoma patients and 50 controls all genotyped at 11,542 SNPs.

In addition, five clinical variables are recorded. In their study, the area under
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the ROC curve (AUC) obtained when using only genetic data in the model is
0.51 and 0.60 for only clinical data. The classification performance improves

slightly to 0.62 using the model with the combination of both types of data.

Predicting the risk of individuals to develop a disease or have a particular
response to treatment given their genetic sequence (e.g. SNPs) is a desirable
goal, yet the current ability to make such predictions is relatively poor on its
own [23]. One explanation is in the complexity of the data structure; spatial,
high-dimensional and categorical. Secondly, the challenge lies on how to best

combine the clinical and SNP data.

In certain disease studies (e.g. epilepsy, asthma, type-2 diabetes), the
discriminatory (predictive or diagnostic) strength of clinical variables such as
sex, age, time to treatment are often extensively investigated as potential
predictors and well-validated [21]. However, the question on added predictive
value of genetic data given the availability of classical clinical variables, has long

been under-considered in the bioinformatics literature [21].

Hence, in this chapter, the analysis revolves around combining longitudinal

clinical and SNP data for classification. The objective of this chapter is twofold:

(i) To select the most informative SNPs using tSNR.

(ii))  To jointly model the longitudinal clinical and SNP data for the purpose
of classification. The data will be jointly modelled via a longitudinal
discriminant analysis approach with multivariate generalised linear mixed

models and the classification performance will be evaluated.

132



6.1.1 Challenges of SANAD dataset and motivation

SANAD is a dataset generated from an unblinded randomised controlled trial in
hospital-based outpatient clinics in the UK [129, 130]. The study aimed to assess
the efficacy of antiepileptic drugs on patients with different types of seizures
with regards to longer-term outcome, quality of life, and health economic

outcomes. In the study, two treatment arms were used (Table 6.1).

Table 6.1: Summary of SANAD study in arm A and arm B.

Arm Antiepileptic Drugs No of Outcomes
(AED) Patients
Arm Carbamezapine, 1,721 (standard Time to treatment
A Gabapentine, Lamotrigine, treatment: failure and time to
Oxcarbazepine, Topiramate Carbamezapine) 1-year remission
Arm Valproate, Lamotrigine, 716 (standard Time to treatment
B Topiramate treatment: Valproate) | failure and time to
1-year remission

Epilepsy is a neurological disorder which causes repeated seizures. Seizures are
physical findings or changes in behaviour that occur after an episode of abnormal
electrical activity in the brain. In the UK, epilepsy is estimated to affect more
than 500,000 people [144]. The causes underlying the development of epilepsy
are not well understood. In some cases, genetic factors are clearly evident as the

cause of epilepsy [145]. However, in other cases the cause is not easily identified.

The efficacy of the treatment in SANAD has been studied via survival models,
with most previous work concentrating on clinical variables as the predictive
variables [129, 130, 146, 147]. Using the SANAD dataset, Speed et al. [148]
reported the first GWAS which represents a comprehensive analysis of genetic
effects on the prognosis of newly treated epilepsy. Meanwhile, Hughes et al. [25,

116] developed a discriminant analysis approach to predict whether a new
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patient would either achieve remission or would not achieve remission within
five years of commencing treatment. A patient is defined as being in remission
if they had continuous 12-month period without any seizures within five years

from diagnosis.

In this chapter, the group of patients not achieving remission is referred as the
refractory group. The prediction is made based on their baseline characteristics
as well as longitudinally gathered biomarkers information (e.g. whether a patient
had seizures or not since their last visit, total number of seizures since their last
visit and the number of adverse events experienced since the last visit). To the
best of our knowledge, the existing approaches use either SNP data or
longitudinal clinical data, but not both. Therefore, we propose a multivariate
approach that incorporate both type of data as an extension of the work by

Hughes et al. [25, 116].

This chapter is organised as follows. The multivariate approach is discussed in
Section 6.2. Then, in Section 6.3 detailed results and discussions from the
analysis are presented. In this chapter, the classification performance is measured
by calculating the probability of correct classification (PCC), area under the
ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV). Also, the prediction time at which patients are
correctly classified as refractory is also presented. Then, the chapter is concluded

in Section 6.4.

6.2 Methods

In this section, a detailed description of the dataset will be given and summary

of the methods that will be used to analyse the dataset will be discussed.
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6.2.1 The SANAD dataset

Particularly in this study, the SANAD dataset can be divided into two categories
of data. The first dataset consists of longitudinal clinical data of 1,752 patients.

The dataset was used in previous studies by Hughes et al. [25, 116] which

undertook the selection procedure as shown in Figure 6.1.

Assessed for
Eligibility

Excluded

No consent

(n=190)

Allocated
(n=2,437)

r

Arm A
Randomised
(n=1721)

Arm B
Randomised
(n=716)

Excluded
e Not epilepsy (n=44)
e No seizure data (n=36)

e Not observed for long
enough (n=424)

e Lost to follow up
(n=24)

Excluded

enough (n=121)
e Lost to follow up
(n=10)

e Not epilepsy (n=14)
e No seizure data (n=12)
L e Not observed for long

e Achieve remission within 5
years of diagnosis (n=1,055)

e No remission achieved within
5 years of diagnosis (n=138)

e Achieve remission within 5
years of diagnosis (n=522)

e No remission achieved within

5 years of diagnosis (n=37)

Figure 6.1: Patients selection criteria for SANAD dataset with longitudinal

information [149].




Meanwhile, the second dataset consists of genotype data (SNPs) of 818 patients
within the SANAD dataset. For this study, only patients with complete
information of longitudinal clinical information, SNP data and phenotype status
are considered. In order to achieve that, both datasets are merged which resulted
in 573 patients are chosen in the final dataset. Figure 6.2 shows the summary of
the merged dataset that contains longitudinal clinical information, SNP data

and phenotype status.

SANAD

v \ 4

Longitudinal data SNP data
(n=1,752) (n=818)

\ 4

Merged dataset with complete phenotype status (n=>573)
7,459,851 SNPs (after QC) and ~42 clinical variables
Phenotype: remission status within 5 years of commencing treatment (490
patients achieved remission and 83 patients did not achieved

remission/refractory)

Figure 6.2: Merged dataset that contains 573 patients with longitudinal clinical

information, SNP data and phenotype status.

6.2.2 Phenotype definition

In this study, the interest is to identify patient who will not achieve remission
within five years of commencing treatment diagnosis. The phenotype for each
patient is coded as ‘1’ if they did not achieve remission (refractory/disease
group), whilst the phenotype is coded as ‘0’ if they were observed to achieve

remission within five years of diagnosis (healthy group).
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6.2.3 Overview of the SNPs selection process and

classification

The analysis of the SANAD dataset will follow the workflow presented in Figure
6.3 below which has been discussed in Section 3.3. Frequent clinical interest is
in being able to classify patients into various groups defined based on their future
clinical status, based on the evolution of variables observed over time. This
chapter is focusing on the approach to jointly model the longitudinal clinical and
SNP data from the SANAD dataset in order to identify patients who will achieve
a 12-months remission within five years of diagnosis. In general, Boulesteix and
Sauerbrei (2011) [21] and De Bin et al. (2014)[114] proposed the strategy to

combine the clinical and omics data.

Stage 1: SNPs selection using tSNR and
SNPs classification using PLR
St'age 2 Classification analysis using MGLMM
Clinical +
and LoDA
SNPs

Figure 6.3: Stages proposed involved in combining the longitudinal clinical and

SNP data for classification.

Here, the strategy is modified to fit the longitudinal clinical and SNP data
accordingly. Figure 6.3 shows the proposed strategy to combine the longitudinal
clinical and SNP data. The strategy includes two stages in which the

classification performance is evaluated in each stage.

In Stage 1, the variable selection process will go through the proposed approach

as shown in Figure 6.4. The approach follows the workflow presented in Section
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3.2.2. However, for the strategies proposed in multivariable analysis, only
Strategy 1 (cumulative tSNR ranking) is included. This is because, the main
concern in this chapter is to select only the top ranked SNPs which will be
utilised in Stage 2. Firstly, the univariable filter metric tSNR is applied to rank

the SNPs and a subset of 5,000 SNPs is selected.

Univariable SNPs ranking
using tSNR

v

Cross-validation into training and
test sets, k splits

Y

Fit PLR to a subset of top ranked
SNPs using training sets

Y

SNPs ranking based on
cumulative tSNR

Add SNP one by one into logistic
model based on ranking

v

Evaluate classification

performance using test sets

Figure 6.4: Diagram of model building pipeline including (i) univariable tSNR as
pre-selection process; (ii) splits of sample into training and test sets; (iii) model
building using PLR; (iv) strategy to select a small subset of SNPs; and (v) model

evaluation using test sets.

From here, the process is contained within cross-validation structure of which
70% of the data is randomly chosen into the training set and the remaining 30%

as test set. The split is repeated 100 times which will produce 100 training and
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test sets accordingly. The model building steps are performed in each training
set and the classification performance is performed using the test sets. The
penalised logistic regression (PLR) is implemented using the ‘glmnet’ function
in R. However, at this point the number of SNPs in each model is still large.
Hence, the cumulative tSNR is proposed to further rank and select a smaller
subset of SNPs. Here, the adjusted tSNR is used as a stopping criterion on how
many number of SNPs to be included in the final model. The classification
performance is measured using PCC, AUC, sensitivity, specificity, PPV and

NPV.

In Stage 2, the longitudinal clinical data and SNP data are jointly modelled. At
this stage, the process will follow the work conducted by Hughes et al. [25, 116].
The work considered the complexities of the data which include; i) their
multivariate and longitudinal nature, ii) their complex correlation structure, iii)
the varying types of data (e.g. continuous, counts, binary, categorical) and, iv)
different clinical variables are measured at different time points for the same
patient (and also across patient). By taking these complexities into account, the
longitudinal clinical and SNP data are jointly modelled for classification purposes
by the multivariate generalised linear mixed model (MGLMM). These
longitudinal models are subsequently used in the dynamic longitudinal
discriminant analysis (LoDA) to predict the probability of belonging to a specific

group.

From now on, the model with only longitudinal clinical data is referred as the

reference model. Few additional models (combination of clinical and SNPs) will

be evaluated and compared with the reference model.
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6.2.4 Classification with LoDA

This section will be discussing the method covered in Section 3.3 when applied
to SANAD data. The analysis starts with a reference model which consists of
multiple outcomes (longitudinal biomarkers) for the SANAD study [116]. These
correlated outcomes were longitudinally measured comprised of whether or not
the patient experienced seizures since the last clinic visit (logistic model), total
numbers of seizures since the last clinic visit under the transformation log(1 +
total seizures) (Gaussian model) and the numbers of adverse events experienced
since the previous clinic visit (log-Poisson model). Figure 6.5 shows the change

over time (days) for a sample of 20 patients for each longitudinal biomarker.
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Figure 6.5: Longitudinal profiles whether patient had seizures, log(1+total seizures)
and the number of adverse events for patients from Remission group (first row) and
the Refractory group (second row). Solid bold lines show LOESS smoothed profiles

calculated using data from all patients.
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The MGLMMs are fitted to the longitudinal data separately according to the
phenotype group. The fitting of MGLMMs is done using the ‘mixAK’ package in
R [157]. The expected value (transformed by an appropriate link function) for
the j-th longitudinal observation (j = 1, ...,n,) for the r-th marker (r = 1, ..., R)
(denoted Y;. ;) is assumed to follow, given g (0 or 1 according to the phenotype
group) and given b, a distribution from an exponential family (e.g. normal,

Poisson, Bernoulli) with a dispersion parameter @7 is given by,
hYE(Y b, U =g)} =xial +28b, v=1,.,Rj=1,..n  (6.1)

Two models with the structure described by equation (6.1) are modelled, one for
each prognostic group (remission and refractory). For each of these models, the
three longitudinal biomarkers R = 3 are considered to predict whether a patient
achieved remission after five years of commencing treatment. The following

illustrates the expansion of equation 6.1 according to the prognostic group.

Refractory
E(Yy|b,U = 1) = hi*(x{af + 277 b,)
E(Yy;|b,U =1) = h3* (x5 ay + 25 b,)
E(Ys;|b,U =1) = h3*(x§ af + 25 bs)
Remission
E(Yy|b,U = 0) = hi*(x{af + 277 b,)
E(Y,;|b,U = 0) = h;* (x5 af +z5:b,)

E(Ys,|b,U = 0) = h3*(x§ af + 25 b;)

Each of these three longitudinal biomarkers is modelled for each prognostic group

g

involving a set of fixed effects, x gt

1) time since last visit, 2) time since
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diagnosis, 3) age at diagnosis, 4) epilepsy type, 5) sex, and 6) randomisation
period. With respect to the random effects structure, the multivariate model for

each prognostic group contains random intercepts. This means Zf I 1 and a

three-dimensional random effects vector b = (by, by, b3)T (random intercepts for

the three markers) is involved.

Once the two multivariate models are derived, they can be used to allocate a
new patient into group its belongs to. Bayes theorem is applied to calculate the
probability of a patient belonging to group g given their longitudinal and
covariate data and the model parameters from the MGLMMs fit to patients of

known status.

g fe
Prynew = — IO g=0,..,6-1, (6.2)

g;é T[gfg,new
where f denotes the predictive density of the observed markers given the group
and model parameters. The prior probabilities of belonging to each group are
denoted by my; =Pr(g),g=0,..,6—1. In a Bayesian setting, fynew is
estimated as the mean of the posterior predictive density estimated from N
samples from a Markov Chain Monte Carlo (MCMC) scheme [118]. Here, an R
package ‘coda’ [158] is used to evaluate the convergence of MCMC simulation.
For illustration of implemented convergence check, the estimated
autocorrelations and traceplots for deviance, fixed effects vector a; and

dispersion parameter @7 are appended in section Appendices. The convergence

check is done using a subset of samples for each prognostic groups.

As discussed in Section 3.3, the predictive density fgqew can be specified by
either marginal, conditional or random effects approach. By using the marginal
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approach, the new patient is assigned to their specific group to which their
longitudinal profiles Y,,,, = (J’new,p ...,yneW‘R) lie closest [116, 118]. Here, fy new
is taken as the marginal density of Y,,,,,. Meanwhile, for conditional and random
effects prediction, it is necessary to represent the new patient also by the values
(unobservable) of the random effect vector bype, for which assumed joint

distribution, given the group allocation.

The allocation of patient into either the refractory or remission group is defined
as follows. Consider the first visit for each patient. If the estimated probability
of being in the refractory group is greater than a chosen cut off, ¢, then the
patient will be assigned to the refractory group and stop predicting for this
patient. If the probability is lower than c, proceed to the next visit, and the
patient remains under observation, repeating the process until either the patient

has been grouped as refractory or all their visits have been used.

The classification performance is then measured using AUC, PCC, sensitivity,
specificity, PPV and NPV. The cross-validation method is applied in which 70%
of the data is randomly chosen for training set and the remaining 30% to test
the classification accuracy. The process is repeated 100 times. For each split of
data into training and test sets, the classification performance measures are

calculated and the values are then averaged across the 100 splits.

6.2.5 Jointly modelling SNPs with longitudinal clinical

markers

This section explains the way in which the SNP data are included in the
MGLMM model. Two approaches are followed: (i) to jointly model the SNPs

and the longitudinal markers, Y., and (ii) to add the SNPs as additional fixed
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effects variables, X, when modelling the longitudinal markers. For each
approach, two top SNPs that were chosen by univariable tSNR ranking and
cumulative tSNR ranking accordingly, will be jointly modelled with the
longitudinal clinical markers. Since, the idea is to investigate the added
predictive value of the SNPs, we focus on the top two SNPs of which ranked

based on their importance.

With approach (i), the top two SNPs, represented by Ysyp, and Ysyp,, are added
to the model together with the longitudinal markers. Although, the SNP is not
a longitudinal marker, it can be modelled as constant across all visits for each

patient using the model below:

1{E(Yr1|b g)} = ng J +ZgTb r=1,.,R,j=1,..,n,

. . (6.3)
hgnp. {E(YSNPl]|g)} xszvpl]agzvpl i=1,.,pJj=1 .., ngp,

On the other hand, with approach (ii), the top two SNPs, coded as
Xsnp, and Xgyp,, are added to the model as fixed effects. However, when adding
SNP data as the fixed effects to explain the longitudinal evolution of the R
longitudinal markers, the covariates information containing the SNP data in

equation (6.1) can be written as, x‘r??:( f]T,XgJP e nggp ]) Table 6.2

illustrates the coding for one SNP when jointly modelled with the longitudinal

clinical markers and as the fixed effects.
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Table 6.2: The coding for SNP when jointly modelled with longitudinal clinical

markers and as fixed effects (using rs680730 as an example for patients id 34, 1266

and 1268).

Rem Original Coding as Coding as

ID Visits Coding (additive) Ysnp; Xsnp;

status
rs680730 Ysnp,, | Ysnp,, | Xsnp,, | Xsnp,,

34 | 1999-04-12 0 0 0 0 0 0
34 | 1999-07-12 0 0 NA NA 0 0
34 | 1999-10-04 0 0 NA NA 0 0
34 | 2000-03-13 0 0 NA NA 0 0
34 | 2000-05-26 0 0 NA NA 0 0
34 | 2000-08-21 0 0 NA NA 0 0
34 | 2001-02-02 0 0 NA NA 0 0
34 | 2001-05-25 0 0 NA NA 0 0
34 | 2002-03-19 0 0 NA NA 0 0
34 | 2003-01-30 0 0 NA NA 0 0
1266 | 2002-10-16 1 2 0 1 0 1
1266 | 2003-01-23 1 2 NA NA 0 1
1266 | 2003-05-08 1 2 NA NA 0 1
1266 | 2003-11-06 1 2 NA NA 0 1
1266 | 2004-07-01 1 2 NA NA 0 1
1268 | 2002-11-21 1 1 1 0 1 0
1268 | 2003-02-21 1 1 NA NA 1 0
1268 | 2003-05-21 1 1 NA NA 1 0

6.3 Results

This section presents the results of the methodology discussed in Section 6.2.3
to Section 6.2.5 when applied to the SANAD dataset (Section 6.2.1). As
described earlier, the following research tasks are addressed: (i) to select the most
informative SNPs using tSNR, and (ii) to jointly model the longitudinal clinical
and SNP data. The aim is to develop a predictive model that allows to identify
patients that will not achieve remission after five years of commencing treatment
(refractory). Within each analysis, the classification performance is evaluated

which allows the inspection of the added predictive value of the SNPs.
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6.3.1 Selection of the most informative SNPs using tSNR

The first objective is to apply the filter metric tSNR, (equation 3.7, Section 3.2.1)
to the SANAD dataset and select the most informative SNPs to be jointly
modelled with the longitudinal clinical variables in the following section. By
using the ranking measure, the most informative SNPs may aid better

classification accuracies.

Sample and genotyping QC

Initially, the genotype data consists of 38,000,817 SNPs across 22 chromosomes.
Similar to the previous chapters, standard SNP QC procedures are applied to
each SNP. This number is first reduced to 7,459,851 after filtering based on
minor allele frequency (MAF), SNP genotyping rate and test Hardy-Weinberg
Equilibrium (HWE). The screening on MAF only includes the SNPs with MAF
>(0.01. Low MAF SNPs could be more susceptible to genotyping errors and their
association signals are less robust [47]. For SNP genotyping rate only SNPs with
<10% missing genotypes are included. Further, SNPs that are extremely
deviated from HWE (p-value <10°) are removed. At the same time, all 573
samples passed the standard sample QC procedure (based on rate of missingness,

duplication of samples, relatedness and heterozygosity).

Data Pruning

The pruning option (150 50 0.90) is implemented using PLINK [46] software.
For this method, consider a window of 150 SNPs, calculate the LD between each
pair of SNPs in the window. If any pair of SNPs within the window are in LD
greater than R? threshold of 0.9, the first SNP in the pair will be inactivated

(pruned). Shift the window 150 SNPs forward and repeat the procedure. After
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applying the LD pruning to the SANAD dataset, the SNPs in the dataset are

reduced to 1,816,214 SNPs.

Univariable ranking using tSNR

Using the pruned dataset, univariable tSNR is calculated for each of the
1,816,214 SNPs. The SNPs are ranked based on the highest to the lowest tSNR.
Table 6.3 shows an extract of the ranking (top 20 SNPs) which indicates the
name, chromosome and tSNR value of each SNP. The first ranked SNP, rs680730
resides in gene DSCAMLI1 which is involved in neuronal differentiation. It has
been linked to neuronal disorders such as Gilles de la Tourette and Jacobsen

syndromes [150].

Table 6.3: The list of top 20 SNPs based on univariable tSNR ranking.

Rank chr rs BaS(?—[.)alr tSNR
position
1 11 rs680730 117475233 0.0541
2 8 chr8.80678532.D 80678532 0.0512
3 13 rs17085098 70026654 0.0511
4 10 rs7908691 97686064 0.0510
5 20 rs75097987 62611904 0.0507
6 8 rs11785119 4244283 0.0507
7 1 rs115685211 156001168 0.0503
8 7 rs13227274 95695805 0.0502
9 8 rs2285266 17080623 0.0497
10 3 rs11714754 16434903 0.0496
11 2 rs62143849 68225099 0.0488
12 18 rs147294858 71489889 0.0486
13 4 rs151039268 65193598 0.0485
14 4 chr4.65098663.D 65098663 0.0481
15 10 rs4406763 97563394 0.0474
16 3 rs1093947 155693990 0.0469
17 1 rs61825964 218108423 0.0463
18 8 rs62497331 17059056 0.0458
19 3 1862236347 16460617 0.0451
20 2 rsl7725471 52892813 0.0447
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Multivariable ranking using cumulative tSNR

In order to find the best predictive SNP the ranking based on cumulative tSNR,
(Figure 6.4) is applied. It ranks the SNPs based on the multivariable model
produced by PLR. The analysis starts off with a subset of top 5,000 SNPs which
are selected from the univariable tSNR. Then PLR is fitted on the 70% of the
dataset in order to select the most informative SNPs. The remaining 30% of the
data will be used to evaluate the classification performance. The splitting

procedure is repeated for 100 times.

In the workflow (Figure 6.4), the tSNR is calculated for each model produced by
PLR (100 models due to the 100 splits). The tSNR value for each model is then
serves as the weighting for each SNP within the model. Then, the sum of
weighting for each SNP across 100 models is produced. Now, a ranking of the
SNPs based on the cumulative tSNR can be produced. The ranking is then used
to determine the SNPs that will be jointly modelled with the longitudinal clinical

variables.

The ranking of the cumulative tSNR (top 20 SNPs) is shown in Table 6.4. From
the ranking, rs115685211 from chromosome 1 is found to be the most informative
SNP based on the cumulative tSNR ranking. The SNP resides in gene called
BGLAP. BGLAP is a protein coding gene mainly associated with diseases
like Osteitis Fibrosa and Glucocorticoid-Induced Osteoporosis [151]. Meanwhile,
the second top ranked SNP, rs75097987 exists within gene PRPF6 which has

been associated with disease retinitis pigmentosa [152].
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Table 6.4: The list of top 20 SNPs based on cumulative tSNR, ranking.

Rank chr rs BaS(?—[.)alr tSNR
position
1 1 rs115685211 156001168  4805.517
2 20 rs75097987 62611904  4550.501
3 1 rs61825539 229791727  4472.484
4 2 rs62143849 68225099 4146.340
> 19 rs117795722 22050297 3857.903
6 rs186948829 157867510  3677.574
7 chr2.80014517.D 80014517  3603.490
8 12 rs11061883 1741282 3339.295
9 6 rs116770746 32598268 3269.336
10 3 rs147906012 151142271  3263.983
11 9 rs148836393 74614961 3210.241
12 12 rs7956369 23853906 3203.066
13 8 rs111776025 126410966  3009.624
14 3 rs77748476 4946359 3005.977
15 4 chr4.65098663.D 65098663 3004.736
16 8 rs11785119 4244283 2955.329
17 4 chr4.25508711.1 25508711 2915.395
18 2 rs150553138 88296647  2874.237
19 1 rs138862060 53168108 2807.607
20 11 rs74766182 86923572 2671.426

The classification performance on the remission status of the patients is
evaluated. The SNP is added into the logistic regression model one by one based
on the ranking. The values of PCC, AUC, sensitivity, specificity, PPV and NPV
are recorded every time a new SNP is entering the model. The inclusion of the
SNPs is stopped when there is very small or no added improvement in any of
the classification measures. For now, the classification performance of top 150

SNPs is shown in Figure 6.5.
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Figure 6.6: Classification performance (mean) of the top SNPs ranked by cumulative
tSNR.
The values of PCC and AUC are ranging from 70% to 90%. It is important to
note that after 50 SNPs the classification performance tends to increase every
time a new SNP is added into the model. Although, there is a slight drop
observed for sensitivity and PPV towards the end. Dealing with SNP data which
is high-dimensional can be challenging in the context of prediction or
classification. The results are often affected by over-fitting in which a model with
too many variables begins to describe the random error (e.g. noise) rather than
the underlying relationships between variables. An over-fitted model will produce

erroneously high, or even perfect classification, which is misleading.

In order to investigate the extent of possible overfitting, adjusted tSNR is
calculated (averaged over 100 splits). To visualise the scenario, Figure 6.6 shows
the adjusted tSNR (in red) on top of the classification performance of the top

150 SNPs. It can be shown that there is no increment of adjusted tSNR after 50
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SNPs which indicates possible overfitting of the data when more SNPs are added

to the model afterwards.
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Figure 6.7: Classification performance (mean) of the top SNPs selected by

cumulative tSNR ranking against adjusted tSNR.

To summarise, when considering adjusted tSNR as a stopping criterion (i.e. how
many SNPs to retain in the model), the classification performance with 50 SNPs

is shown in Table 6.5.

Table 6.5: Summary of the classification performance based on the cumulative tSNR

by using adjusted tSNR as a stopping criterion (50 SNPs).

Classification Standard

performance can deviation
PCC 0.93 0.02
AUC 0.86 0.05
Sensitivity 0.72 0.10
Specificity 0.96 0.02
PPV 0.77 0.09
NPV 0.95 0.02
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6.3.2 Jointly modelling SNPs with longitudinal clinical data

In the previous section, SNPs are ordered by their predictive importance (Section
6.3.1). Here, their inclusion into the longitudinal modelling is considered. This
section will show the results obtained when the longitudinal clinical data and
SNP data are jointly modelled. The interest lies on how this combination of data
can aid the classification performance of when using the longitudinal clinical data

alone.

First, only longitudinal clinical data (R = 3) are fitted using MGLMM as the
reference model. The classification is then done applying LoDA (Section 6.2.4).
Table 6.6 shows the classification performance of the reference model. Here, three
prediction approaches namely; marginal, conditional and random effects are
considered. The results are consistent with the results presented in Hughes et al.
[116] in which the marginal prediction approach shows the best classification

performance as compared to the other two approaches.

Table 6.6: Summary of the classification performance of LoDA for each marginal,

conditional and random effects approaches for reference model.

Marginal Conditional Random
effects

Cutoff 0.82 0.41 0.17

Sensitivity 0.85 0.90 0.90

Specificity 0.92 0.88 0.88

PCC 0.92 0.88 0.89

AUC 0.97 0.95 0.94

PPV 0.67 0.57 0.58

NPV 0.99 0.98 0.98
Mean lead time (days) 692 782 891
Mean prediction time (days) 845 755 643

Lead time is defined as the time, before clinical classification can be confirmed,

of which the LoDA can correctly predict a patient as belonging to the refractory
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group. For the marginal prediction approach, the mean lead time is 692 days.
This indicates that the patients who will not achieve remission from seizures
(refractory) can be identified almost two years before they are clinically
confirmed as such. The duration of two years is good which allows the clinicians
to consider different forms of treatment, so that the patients do not have to

continue with any treatment that is not suitable for them [116].

Meanwhile, prediction time is the average time since diagnosis at which patients
are correctly identified as belonging to refractory group [116]. The mean
prediction time, is 845 days for the marginal prediction approach, which denotes
that the patients are correctly identified as being refractory approximately two

years and three months after diagnosis.

The reference model with only longitudinal markers is used for comparison with
other models where SNPs are added. In this analysis, the SNPs are selected by
univariable tSNR ranking and cumulative tSNR ranking (multivariable). Often
in Genome-wide Association Studies (GWAS), only few SNPs are concluded to
be associated with the phenotype [148]. For this study only two SNPs (first and
second top SNPs) are chosen to be modelled with the longitudinal clinical data

in order to explore differences in classification accuracy.

The improvement in classification when two SNPs (selected using univariable
selection from Table 6.3) are added is summarised in Table 6.7. It shows the
classification performance when the clinical variables are jointly modelled with
the SNPs. The SNPs rs680730 and chr8.80678532.D are the top two SNPs from
the univariable tSNR ranking. Firstly, the SNPs are included into the model as

the additional fixed effects, Xgyp, and Xgyp, accordingly. Secondly, the SNPs are
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jointly modelled with the longitudinal markers, coded as Ygyp, and

Ysnp, accordingly.

Table 6.7: Comparison of the models based on 70%-30% cross-validation with 100

splits. (The SNPs added based on univariable tSNR ranking)

SNPs as SNPs in
Reference fixed effects joint model
SO T Xffv’;” TG Ty Y:fv’f :
Cutoff 0.82 0.80 0.84 0.86 0.82 0.80 0.81
Sensitivity 0.95 0.95 0.95 0.94 0.96 0.96 0.96
Specificity 0.92 092 091 0.90 0.92 0.92 0.92
pPCC 0.92 092 0.91 0.91 0.93 0.92 0.93
AUC 0.97 0.97  0.96 0.96 0.97 0.97 0.97
PPV 0.67 0.67 0.64 0.64 0.68 0.67 0.68
NPV 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Mean lead
time 692 687 765 767 700 745 729
(days)
Mean
prediction
_ 845 849 773 770 840 794 811
time
(days)

From the table it can be seen that there is no improvement in the classification
performance when the SNPs are added as the fixed effects. However, there is a
slight improvement (e.g. PCC and PPV) when adding the first-ranked SNP,
15680730 independently (column Ygyp ) as well as in combination with the

second-ranked SNP, chr8.80678532.D (column Ysyp, + Ysup, ).

There is very little and no improvement in mean lead time when modelling the
SNPs as fixed effects or jointly modelled with the longitudinal biomarkers. For
example, when adding both SNPs as fixed effects (column Xgyp, + Xsyp,) the

mean lead time (i.e., the time to correctly predict a patient as belonging to the
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refractory group) is only longer by 75 days. Similarly, the mean prediction time
at which patients are correctly identified as belonging to the refractory group is

75 days sooner than the reference model.

Table 6.8: Comparison of the models based on 70%-30% cross-validation with 100

splits. (The SNPs added are based on cumulative tSNR ranking)

SNPs as SNPs in
Reference fixed effects joint model
model XsNp, XSNP, + x:::l Yone,  Ysnp, + szsvlz\:l
Cutoff 0.82 0.86 0.94 0.93 0.80 0.81 0.81
Sensitivity 0.95 0.94 0.93 0.93 096 0.96 0.95
Specificity 0.92 0.86 0.83 0.81 0.92 0.92 0.92
PCC 0.92 0.87 0.85 0.83 0.92 0.93 0.93
AUC 0.97 093 091 0.89 0.97 0.97 0.97
PPV 0.67 0.60  0.60 0.54 0.68 0.69 0.69
NPV 0.99 0.99 0.98 0.98 0.99 0.99 0.99
Mean lead
time 692 747 747 760 732 728 748
(days)
Mean
prediction o 790 791 777 808 811 791
time
(days)

The improvement in classification of two SNPs which were selected using
multivariable analysis (from Table 6.4) is summarised in Table 6.8. It presents
the classification performance of the joint model between the longitudinal clinical
data and the SNPs selected using weighting tSNR ranking. The SNPs are the
top two SNPs rs115685211 (Xgyp, and Ygyp, ) and 1s75097987 (Xgyp, and Ysyp,)
selected by the cumulative tSNR ranking. Similar to Table 6.7, there is no
improvement when adding the SNPs as fixed effects. However, there is a slight

improvement (e.g. sensitivity, PCC and PPV) when jointly modelled the SNPs



with the longitudinal markers either individually (columns Ysyp, and Ysyp,) or

together (column Ygyp, + Ysyp,) as compared to the reference model.

Further in Table 6.8, adding both SNPs (Ygyp, and Ysyp,) chosen by cumulative
tSNR ranking has substantially improved the mean lead time from 692 to 748
days. The mean lead time 748 days indicates that the patients who will not
achieve remission from seizures (refractory) can be identified two years before
they are clinically observed as such. The time gain allows the clinicians to
consider different treatments for the patients. The mean prediction time is
positively reduced to 791 days as compared to the reference model. This means
that the model with the addition two SNPs as the longitudinal markers can
predict the patients belonging to the refractory group approximately two years

and two months earlier than waiting for five years to determine their status.

From the results, the SNPs selected by cumulative tSNR contribute positively

in evaluating the classification performance.

6.4 Concluding remarks

In this chapter, two objectives were tackled. Firstly, the variable selection
method, filter metric tSNR was applied to select the most informative SNPs and
the classification performance of the most informative set of SNPs was
investigated. Secondly, the added predictive value of the selected SNPs when

jointly modelled with longitudinal clinical data was explored.

From the SNPs selection procedure, two highest-ranked SNPs were chosen from
each univariable tSNR ranking and cumulative tSNR ranking. Two different
SNPs were chosen by each method. Building a predicting model with only two
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SNPs may not be practical due to low classification performance. Hence, the
proposal was to jointly model the SNPs and the longitudinal clinical data which
was often well-validated and known to produce good classification accuracy.

Although the reference model (with only clinical variables) showed good
classification accuracy, adding the SNPs as longitudinal markers improved the
mean lead time and the mean prediction time of the patients significantly. The
results also suggested that the model with SNPs chosen based on cumulative
tSNR ranking provided better results as compared to the univariable tSNR

ranking.
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Chapter 7

Discussion

7.1 Introduction

The classification using single nucleotide polymorphism (SNP) data mainly aims
to assign each sample (or individual) correctly to the group it belongs to. For
example, in the situation of binary phenotypes, one is either interested to classify
the samples into cases (e.g. disease, negative response to treatment) or controls
(e.g. healthy, positive response to treatment). However, dealing with the high-
dimensional problem of SNP data is challenging as it may cause overfitting and
be computationally expensive. Hence, a typical procedure is to use a variable
selection approach, often univariable, where the primary aim is to select the most
important SNPs associated with an outcome of interest. Although the

univariable approach is computationally inexpensive, it assumes complete
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independence of SNPs [5]. Therefore, multivariable selection has gained lots of
interest due to its ability to consider the correlation between SNPs which may

contribute to an increment in the classification accuracy [23, 57].

There were three main objectives set out in Chapter 1 which were to be
investigated in this thesis. The first objective was to develop a novel variable
selection method for classification by considering the multivariable nature of
SNP data. The second objective was to propose a framework for multivariable
selection. The final objective was to jointly model the SNP data and longitudinal

clinical data for classification.

In Chapter 2, a detailed review of the variable selection methods for classification
using SNP data was undertaken. Following this review, a novel variable selection
method, tSNR was proposed in Chapter 3. In addition, a multi-step framework
that involved univariable and multivariable selection in a cross-validation setting
was proposed. How to combine the SNP and longitudinal clinical data with the

aim to improve classification performance was also explored in this chapter.

The filter metric tSNR and the proposed framework were studied using simulated
datasets in Chapter 4. In Chapter 5 the methods were applied to a dataset from
Epilepsy Pharmacogenomics (EpiPGX) study. Then, in Chapter 6, the method
involved in combining the SNP and longitudinal clinical data were evaluated

using the Standard and New Antiepileptic Drugs (SANAD) dataset.

In this chapter, the main contributions of this thesis presented from Chapter 2
to Chapter 6 are highlighted and general conclusions from the findings are

discussed (Section 7.2). Then, the limitations are listed in Section 7.3. In order
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to help researchers to benefit from this study, recommendations for practice are
given in Section 7.4. Then, further works related to variable selection and
classification are discussed in Section 7.5. Finally, the chapter is concluded in

Section 7.6.

7.2 Discussion of thesis results

In this section, the results and key points from each chapter are summarised.

7.2.1 Implications of the literature review

The literature review was undertaken by reviewing papers related to variable
selection for classification with specific application to categorical SNP data and
binary phenotypes. In the literature review, a simple example using a simulated
dataset was used to help explain the various variable selection and classification
methods. Based on the review five main statistical challenges were identified
(Section 2.3 in Chapter 2): high-dimensional data, high correlation between
SNPs, categorical type of data, reproducibility issue, and determining the
thresholds of SNPs selection. These challenges were then addressed in the
subsequent chapters by developing the novel variable selection and model

building framework.

Variable selection methods based on a univariable filter metric have been widely
used during the preselection process to reduce the high-dimensionality of SNP
data. Due to the multivariable nature of the data, SNPs selection (i.e. ranking)
multivariable selection processes are also considered in the literature [9]. Hence,
from the literature review, an ideal variable selection method would be able to
perform not only in a univariable and multivariable setting. It is also ideal for

the method to address some of the said statistical challenges mentioned above.
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In terms of a specific method reviewed, logistic regression was not only performed
well as a variable selection method (i.e. ability to select the simulated five causal
SNPs), and also performed as well as other classifiers (e.g. SVM). In addition,
with the knowledge that the underlying algorithm of logistic regression is well-
known and widely accepted by researchers, the method was applied as the

framework in developing a novel variable selection method in this thesis.

7.2.2 Implications of the proposed methodology

Following the literature review, a novel filter metric based on signal-to-noise
ratio (SNR), tSNR was proposed. The SNR estimator proposed by Czanner et
al. [17] was extended so that it can be applied within the framework of SNP
data analysis. SNR is a measure that compares the level of desired signal to the
level of background noise [11]. SNR is a well-known measure of fidelity in
physical systems, for examples, audio and image processing [17]. Although, the
idea of using SNR for variable selection in Genome-wide Association Study
(GWAS) has been presented in the literature (e.g. t-test, Hotelling T?), these
previous methods require the data in continuous form (e.g. gene expression data)

[98)].

The tSNR filter metric does not only work in the univariable setting. This thesis
explored tSNR in the multivariable setting, (for the purpose of model selection).
It was shown that the tSNR has a negative relationship with AIC and BIC, while
a positive relationship with generalised R’. These three model selection criteria
are long established. Their general rule is to compare models involving the same
set of patients and fully nested models. However, their ability to compare
between non-nested models is still debatable. On the other hand, tSNR can be

used for both nested and non-nested models, and across different sets of patients
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which is one of the main advantages. Particularly in this thesis, tSNR is applied
to compare several models (non-nested) which are produced with the

implementation of cross-validation in penalised logistic regression (PLR) usage.

The workflow introduced in this thesis is useful when the researcher is interested
in investigating the effect of specific variables and not just the mere classification
or prediction problem. The tSNR algorithm itself can be interpreted as the
process of finding the set of SNPs that carries the greatest signal compared to

noise in relation to the considered phenotype.

In addition, in order to improve the classification accuracy the approach to
jointly model the SNP data and longitudinal clinical data was proposed. The
variables were jointly modelled for classification purposes using the multivariate
generalised linear mixed model (MGLMM). These longitudinal models were
subsequently used in the dynamic longitudinal discriminant analysis (LoDA) to

predict the probability of an individual belonging to a specific group.

7.2.3 Implications of the simulation study

In this simulation study analysis, the statistical properties of the novel filter
metric approach, tSNR were studied. The performance of tSNR was measured
by its ability to capture the causal SNPs which were predetermined in the
simulated datasets, and tSNR was able to capture the causal SNPs in the top

ten ranked SNPs using the simulated datasets.

Further, we tested the ability of multivariable modelling approaches such as
PLR and stepwise logistic regression (SLR) to further reduce the number of

SNPs (after the univariable ranking). It was found that PLR is more stable and
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faster when applied to a large number of SNPs compared to SLR. Since, we
required a large number of SNPs to be considered after the univariable ranking,

PLR was chosen as the method in the multivariable setting.

The classification performance between univariable tSNR and cumulative tSNR
ranking were compared in the simulated scenario. The results suggested that the
classification performance wusing SNPs selected by cumulative tSNR
(multivariable) was better than the classification performance using SNPs based
on univariable tSNR ranking. Specifically, in our multivariable approach
(cumulative ranking), PLR incorporated the classifier while selecting the SNPs
(i.e. embedded method). Hence, the multivariable approach can offer better
classification performance compared to when analysing the SNPs one at a time

(univariable).

7.2.4 Implications of the clinical findings: tSNR as variable

selection for classification

The methodology proposed in this thesis was illustrated using two SNP datasets
of patients with epilepsy, where the aim was to identify patients who will not
achieve remission of seizures on first well tolerated antiepileptic drugs (AEDs).
The datasets consists of clinical and genetic information of patients in the

EpiPGX study.

As shown in Chapter 5, the tSNR variable selection can be advantageous to
reduce the dimensionality of the data and to help reduce the computational
complexity. It leads to improving the classification accuracy of the classifier. The

roles of tSNR in this study were twofold; i) as a filter metric to select the most
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informative SNPs by using the univariable ranking, and ii) as selection criterion

for the non-nested models to derive the model (combination of SNPs).

The filter approach is known as the pre-processing step to rank and select the
most informative SNPs which eventually reduce the number of dimensions
necessary for classification. The desired effect of this is to speed up algorithms
and to make the subsequent analysis more effective by only focusing on the most
relevant variables in the dataset. Hence, by using the filter metric tSNR as the
variable selection method, fewer SNPs were analysed in the subsequent analysis
with the knowledge that only informative SNPs (with assumption most of the

noisy SNPs were eliminated) were selected for subsequent analysis.

In the multivariable setting, two strategies were proposed to select the best
model. Strategy 1 applies a similar strategy as the univariable ranking by using
the cumulative tSNR as the ranking measure. The cumulative tSNR ranking is
superior compared to the univariable ranking as the SNPs are considered
together during the modelling process by PLR. The PCC achieved 70% accuracy
with a subset of 22 SNPs when using the cumulative tSNR ranking compared to

29 SNPs when univariable tSNR ranking was used.

Meanwhile, Strategy 2 was applied to compare the non-nested models that were
produced by the cross-validation approach. The models were ranked from the
highest to the lowest tSNR. From the result, the classification performance
shown was adequate with an average of 80% accuracy. This analysis confirms
the advantage of PLR since it not only enables to reduce the number of variables

but leads to better classification accuracy.
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Another important factor considered in this chapter was external validation. The
models selected by Strategy 1 and Strategy 2 were externally validated. The
classification performance increased significantly using the model chosen by
Strategy 1. Meanwhile, a slight increment was observed for the model chosen by
Strategy 2. However, the sample sizes in the external validation dataset were
much lower than the development set which might influence high classification

performance using model chosen by Strategy 1.

7.2.5 Implications of the clinical findings: combining SNP

and longitudinal clinical data for classification

In Chapter 6, two objectives were considered. Firstly, the variable selection
method, filter metric tSNR was applied to select the most informative SNPs and
the classification performance of the most informative set of SNPs was
investigated. Secondly, the added predictive value of the selected SNPs when
jointly modelled with longitudinal clinical data was explored. The methods were
applied to the SANAD dataset. In this study, the interest is to identify patient
who will not achieve remission from seizures within five years of commencing
treatment diagnosis. Patients who achieve a continuous 12-month period free
from seizures within 5 years of diagnosis are regarded as being in “remission,”

whereas patients who do not are referred to as “refractory” [25].

The two highest-ranked SNPs were chosen from each univariable tSNR ranking
and cumulative tSNR ranking. Two different SNPs were chosen by each method.
The aim was to jointly model the SNPs and the longitudinal clinical data, which

was known to produce good classification accuracy.



Although the reference model (with only clinical variables) showed good
classification accuracy, adding the SNPs as longitudinal markers improved the
mean lead time (i.e. the time required to correctly predict a patient as belonging
to the refractory group) and, therefore also improved the mean prediction time
(i.e. average time since diagnosis at which patients are correctly identified as
belonging to refractory group) of the patients significantly. The early prediction
allows the clinicians to consider different type of treatments since the initial
treatment may not be suitable for the patients. Consequently, the patients do
not have to endure any side effects due to unsuitable treatment. The results also
suggested that the model with SNPs chosen based on cumulative tSNR ranking
provided better results compared to the univariable tSNR ranking. As mentioned
in Section 7.2.3 above, when developing the cumulative tSNR ranking, a large
amount of SNPs are considered simultaneously using PLR which incorporates
correlations among SNPs. Hence, this consideration which resulted in a different
ranking of SNPs compared to the univariable tSNR ranking may have affected

the classification performance positively.

7.3 Limitations

There are a few areas for improvement and optimisation in our approach. Firstly,
in this thesis due to the large number of SNPs only the top ranked SNPs are
chosen for the next analysis (forward selection). It is known that stepwise and
backward selection are much preferred as they consider all variables from the
start. The approaches only work if the number of variables is not too large.
However, if the number of variables is large (ten thousand or more), it is not
practical to start a backward or stepwise selection [153]. The forward selection

procedure is feasible because in many classification problems a small number of
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variables will be enough for plausible classification. Hence, with forward

selection, it is not required to wait until all variables are added into the model.

Secondly, computer memory limitation was experienced with the statistical
programming language R when trying to loop the variable selection using PLR
with 5,000 SNPs. The number of loops or splits was set to 100 due to memory
limitation. Although more splits are needed, the number of splits is still
acceptable in reporting the average classification performance [134]. In a future
study it may be interesting to consider more SNPs (more than 5,000) and more
splits of cross-validation. This may not be possible on a Windows PC but it is

possible to increase the memory that R uses by running the program on a Linux

PC.

Thirdly, another potential limitation lies when jointly modelling the longitudinal
clinical and SNP data. In the dataset used, the reference model with only
longitudinal clinical data already demonstrated high classification accuracy,
which left only a small room for improvement. Thus, the improvement for
classification performance after adding the SNP data was up to one percent for
the classification measures. In future studies in which clinical data show lower
accuracy there may be an opportunity for the SNPs to improve predictive

accuracy to a greater extent.

7.4 Recommendation for practice

Based on the results presented in this thesis, the novel filter metric tSNR may
be employed for genetic research. However, a couple of recommendations should
be considered when applying the filter metric. First, when applying the penalised

logistic regression (PLR) using ‘glmnet’ [135], values for A and dfmaz should be
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considered. In PLR, A is a constant to adjust the amount of the coefficient
shrinkage. It can be manually specified or automatically using the built in cross-
validation method within the package. Meanwhile, the dfmax determines the
number of maximum variables to be non-zero in the model. Depending on the
number of variables at the beginning, it is advisable for researchers to try
multiple values of dfmaz (e.g. 50, 100, 200) and study how the classification
accuracies differ and then choose the value of dfmax that gives the highest

accuracy.

The second recommendation for practice includes the stopping criterion
involving adjusted tSNR. Depending on the interval (number of top ranked SNPs
selected), the local or global maximum of the adjusted tSNR can be observed.
In this situation, it is advisable to select the global maximum of adjusted tSNR

to determine the final model.

7.5 Further perspective

Based on the results presented in this thesis, some topics are noteworthy for
further exploration. First, some studies (particularly in machine learning) have
considered bag of variables (i.e. clustering the variables according to their
similarities) as the initial step when selecting a subset of variables from the
original large dataset [127]. The action allows a bigger subset of variables
considered at the pre-selection stage. Hence, it will be useful to consider a bigger
subset of SNPs for multivariable analysis (e.g. PLR). However, few things need
to be considered when submitting a large number of variables to a model; (i)
whether the model will capture the informative SNPs or whether they might be
missed due to the large number of variables considered, and (ii) the

computational complexity involved. Subsequently, it will be interesting to
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compare the performance of the proposed filter method, tSNR and other

multivariable filter methods.

Second, normally when calculating the univariable p-value for each SNP the
value is produced only once (without resampling). Hence, it is desirable to
investigate the univariable tSNR ranking based on a bootstrapping technique.
The bootstrapping technique is believed to help in producing a robust
prioritisation of the SNPs which then enhance the SNPs ranking for classification
[23]. Dealing with a large number of SNPs, the bootstrapping process might take
a while. However, with high throughput computing, the univariable analysis is
feasible since the system allows applications to run on over multiple computers

which eventually reduces the time needed for certain analysis.

Third, stopping criteria in the model selection is another important area of
research to be further explored. Although, adjusted tSNR is suggested as the
stopping criterion when adding the variables based on ranking, the number of
variables in the model is still large. It is worth to investigate further when
imposing a more stringent penalisation for variable selection. For example, in
AIC the penalisation is done with the coefficients multiplied by two, meanwhile
in BIC the penalisation is done using log which is quite stringent. Hence, it will
be interesting to impose a higher adjustment within the adjusted tSNR, which

may aid in selecting a more parsimonious model.

Fourth, while this thesis is focusing on categorical SNP data with binary

outcomes, it will be useful to see the application of tSNR filter metric using SNP

data with continuous or time-to-event outcomes. Also, it will be interesting to
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evaluate the performance of filter metric tSNR on continuous genetic data (e.g.

microarray) which are known to be more flexible compared to categorical data.

7.6 Concluding remarks

Large scale simultaneous SNP selection is a statistically and computationally
challenging task [5]. To this end, a novel filter metric based on signal-to-noise
ratio, tSNR is introduced. From the results presented in this thesis, it can be
concluded that, our proposed variable selection method, tSNR statistic and the
multivariable modelling framework towards classification are all promising tools
for applications to SNP data. The main advantage of the implementations using
filter metric tSNR within the framework lies in its simplicity. The analysis is
quick and the underlying framework of logistic regression is well-known,

implemented in all statistical software and widely accepted.

In addition, the tools can be used to select the top ranked SNPs which can be
jointly modelled with longitudinal clinical data. In order to improve the
classification performance, we provide the methods to best combine the two type
of data. In our clinical application, the combination improved the classification

performance (specifically the prediction time).
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APPENDICES

1.0 Data QC and pruning using PLINK

foriin “seq 1 22"; do echo "plink --bfile /ph-users/shima/SANAD_PLINK/chr$i --geno 0.10
--maf 0.01 --hwe 0.000001 --noweb --make-bed --out /ph-
users/shima/SANAD_QC/chr$i.snps" > /ph-tmp/shima/script$i.sh; gsub /ph-
tmp/shima/script$i.sh; done

foriin “seq 122°; do echo "plink --bfile /ph-users/shima/SANAD_QC/chr$i.snps --indep-
pairwise 150 50 0.9 --allow-no-sex --noweb --out /ph-
users/shima/SANAD_PRUNEQ.9/chr$i " > /ph-tmp/shima/script$i.sh; gsub /ph-
tmp/shima/script$i.sh; done

2.0 Data simulation using HAPGEN v2.0

hapgen2_submit -h CEU.chr1.hap -I hapmap3.r2.b36.chrl.legend -m
genetic_map_chrl_combined_b36.txt -0 chrl_repl -n 500 500 -dI 156952983 1 2.2 3.0
200252354 15.08.3

3.0 R Codes

3.1 Univariable tSNR

args <- commandArgs(trailingOnly=TRUE)
input_file <- args[1]
output_file <- args[2]

chr <- read.table(input_file, header=TRUE)

chr$PHENOTYPE [ chr$PHENOTYPE==1] <- @
chr$PHENOTYPE[ chr$PHENOTYPE==2] <- 1
chr$PHENOTYPE <- as.numeric(as.character(chr$PHENOTYPE))

names(chr) <- sub('_\\d+$', '', names(chr))

SNPs <- names(chr)[7:ncol(chr)]

SNPsMatrix <- chr[,is.element(names(chr),SNPs)]
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xfunction <- function(Geno)

{

glm.snp <- glm(PHENOTYPE~Geno, family=binomial, data=chr)
null <- glm.snp$null.deviance

residual <- glm.snp$deviance

SNR <-((null-residual)/residual)

return(SNR)

}

result <- apply(SNPsMatrix,2,xfunction)
write.table(result,output_file)

3.2 PLR with cross-validation

library(plyr)
library(glmnet)
library(Matrix)

#Create 100 training and 100 test datasets (80%-20% or 70%-30%)

first _seed <- 3009

x_train <- list()
y_train <- list()
x_test <- list()
y_test <- list()

PCC <- matrix(NA, nrow=100, ncol=100)

AUC <- matrix(NA, nrow=100, ncol=100)
Sensitivity <- matrix(NA, nrow=100, ncol=100)
Specificity <- matrix(NA, nrow=100, ncol=100)
PPV <- matrix(NA, nrow=100, ncol=100)

NPV <- matrix(NA, nrow=100, ncol=100)

tSNR <- matrix(NA, nrow=100, ncol=1)

cv <- list()
glmnet mod <- list()



for (i in 1:100)
{

cat("count=",i,"\n")

first_seed <- first_seed+i

smp_size <- 0.8

train <- ddply(data, .(PHENOTYPE), function(.,seed) {
set.seed(seed); .[sample(l:nrow(.), trunc(nrow(.) *
smp_size)), ] }, seed = first_seed)

test <- ddply(minusID, .(PHENOTYPE), function(.,seed) {

*

set.seed(seed); .[-sample(1:nrow(.), trunc(nrow(.)

smp_size)), ] }, seed = first_seed)

x_train[[i]] <- sparse.model.matrix(PHENOTYPE~.,train)[,-1]
y_train[[i]] <- as.numeric(train$PHENOTYPE)

x_test[[i]] <- sparse.model.matrix(PHENOTYPE~.,test)[,-1]
y test[[i]] <- as.numeric(test$PHENOTYPE)

cv[[i]] <- cv.glmnet(x_train[[i]],y_train[[i]], dfmax=200,
family="binomial")

glmnet _mod[[i]] <- glmnet(x_train[[i]],y_train[[i]],
alpha=1, dfmax=200, lambda=cv[[i]]$1lambda.min,
family="binomial")

null <- glmnet_mod[[i]]$nulldev

residual <- deviance(glmnet_mod[[i]])

SNR <-((null-residual)/residual)

tSNR[i,] <- c(SNR)

}

for(i in 1:100)

{
for(j in 1:100)

{
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glm.probs <-
predict(glmnet_mod[[i]],x_test[[j]],lambda=cv[[i]]$lambda.
min, type="response")

glm.pred <- rep("0",nrow(glm.probs))

glm.pred[glm.probs>.5] <- "1

rightPred <- glm.pred == y_test[[j]]
t <- table(glm.pred,y test[[j]1])
auc <- auc(as.numeric(glm.pred),y_test[[j]])

pcc <- sum(rightPred)/nrow(glm.probs)

totalpos <- sum(y_test[[]j]]==1)

totalneg <- sum(y_test[[]j]]==0)

truepos <- sum((y_test[[]j]]==1)*(glm.pred==1))
trueneg <- sum((y_test[[]j]]==0)*(glm.pred==0))
predpos <- sum(glm.pred==1)

predneg <- sum(glm.pred==0)

sens <- truepos/totalpos
spec <- trueneg/totalneg
ppv <- truepos/predpos

npv <- trueneg/predneg

PCC[i,j] <- c(pcc)

AUC[i,j] <- c(auc)
Sensitivity[i,j] <- c(sens)
Specificity[i,j] <- c(spec)
PPV[i,j] <- c(ppv)

NPV[i,j] <- c(npv)

}

}

3.3 Calculating cumulative tSNR

mtrx <- data.frame(variable=rep(0,5000))

rownames (mtrx) <- colnames(data[,2:5001])
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variable <- NULL

for (i in 1:100)

{

variable[i] <- as.data.frame(as.matrix(glmnet_mod[[i]]$beta))
mtrx[,i] = variable[i]

}

mtrx[mtrx > 0] <- 1

mtrx[mtrx < 0] <- 1

colsum <- colSums (mtrx, na.rm = FALSE, dims = 1)
names(tSNR)[1] <- paste("variable")

tr_mtrx <- t(mtrx)

tr_tSNR <- t(tSNR)

multiply mtrx <- sweep(tr_mtrx,MARGIN=1,tr_tSNR, *")
sum <- colSums(multiply mtrx)

list <- head(sort(sum, decreasing=TRUE),5000)

convert <- data.frame(rs = names(list), weightage = 1list)

rownames (convert) <- NULL

3.4 Classification performance measures

library(matrixStats)

#repeat for AUC, Sensitivity, Specificity, PPV, NPV
sd_PCC <- transform(PCC, SD=rowSds(PPV, na.rm=TRUE))
mean_PCC <- rowMeans(PCC, na.rm = TRUE)

3.5 Graph for classification performance for univariable or

cumulative tSNNR ranking

##plot the first axis for PCC, AUC, Sensitivity, Specificity, PPV,
NPV
par(mar=c(5,5,4,4)+.1)
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plot(Accuracy$SNP, Accuracy$PCC_mean, ylim=c(0,1.0), cex.lab=1.2,
xlab="Number of SNPs in the model based on cumulative tSNR
ranking", cex.axis=1.2, ylab="Classification performance",
type='b', col="blue", lwd=3, pch=16)
lines(Accuracy$SNP,Accuracy$AUC_mean,type="'b"',pch=16,
col="darkolivegreen2')
lines(Accuracy$SNP,Accuracy$Sens_mean, type='b', pch=16,
col="magenta')

lines(Accuracy$SNP,Accuracy$Spec_mean, type='b', pch=16,
col="brown') lines(Accuracy$SNP,Accuracy$NPV_mean, type='b',
pch=16, col="purple') lines(Accuracy$SNP,Accuracy$PPV_mean,
type='b', pch=16, col='orange')

legend(50,0.12,c("PCC", "AUC", "NPV",
"PPV","Sensitivity","Specificity"), ncol=3, cex=1.0,

col=c("blue","darkolivegreen2", "purple", "orange", "magenta"”, "brown")

,bty = "o", pch=c(16,16,16,16,16,16))

#To include axis on the right for adjusted tSNR

par(new = T)

with(Accuracy, plot(SNP, tSNR_adj, pch=16, axes=F, xlab=NA,
ylab=NA, ylim=c(0,6), col="red", col.axis="red", type="0"))
axis(side = 4, col="red", col.axis="red", cex.axis=1.2)

mtext(side = 4, line = 3, 'Adjusted tSNR', cex=1.2)

3.6 MGLMM

library(mixAK)
load("observationsSANAD@.dat"

mod@< -GLMM_MCMC (y=SANAD_OTrain[,c("ltotsez", "NumAdv", "seizures")],
dist=c("gaussian","poisson(log)","binomial(logit)"),
id=SANAD_OTrain[,"id"],
x=1ist(ltotsez=SANAD OTrain[,c("Time_ LFU","time","Age.x","type","se
x","randP")],NumAdv=SANAD_OTrain[,c("Time_LFU","time","Age.x","type
","sex","randP")],seizures=SANAD OTrain[,c("Time_ LFU","time","Age.x

", "type","sex","randP") 1),
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z=list(1ltotsez="empty",NumAdv="empty",seizures="empty"),
random.intercept = c(ltotsez=TRUE,NumAdv=TRUE,seizures = TRUE),
prior.b=1ist(Kmax=1),

NMCMC=c (burn = 5000, keep=10000,thin=10, info=500),

PED=FALSE)

mod1<-GLMM_MCMC(y =
SANAD_1Train[,c("ltotsez","NumAdv","seizures")],
dist=c("gaussian","poisson(log)","binomial(logit)"),

id=SANAD 1Train[,"id"],

x=list(ltotsez=SANAD_ 1Train[,c("Time_LFU","time","Age.x","type","se
x","randP")],NumAdv=SANAD 1Train[,c("Time_LFU","time","Age.x","type
","sex","randP") ], seizures=SANAD_1Train[,c("Time_LFU","time", "Age.x
", "type","sex","randP")]),
z=1list(ltotsez="empty",NumAdv="empty",seizures="empty"),
random.intercept = c(ltotsez=TRUE,NumAdv=TRUE,seizures = TRUE),

prior.b = list(Kmax = 1),

NMCMC = c(burn = 5000, keep = 10000, thin = 10, info = 500),
PED=FALSE)

3.7 Convergence diagnostics check

##Check autocorrelation

library("coda")

DevChains <- mcmc.list(mcmc(mod@$Deviance))
autocorr(DevChains)

tracePlots(mod®, param

"Deviance")

tracePlots(mod@, param = "alpha")

tracePlots(modl, param

"sigma_eps")
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Table on estimated autocorrelations in the MCMC of the model deviances for each of

the diagnostic groups (using a subset of samples).

Achieved
remission

Refractory

Lag 0

1.000000000

1.000000000

Lag 1

0.235788416

0.241577584

Lag 5

0.115316631

0.083228046

Lag 10

0.060002877

0.045431298

Lag 50

0.007749035

0.006682352

Traceplots of the model deviance
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Traceplots of the dispersion parameters (Z);?
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