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Abstract 

Paracetamol (APAP) overdose is a major medical problem in the UK and the leading cause of 

drug-induced liver injury (DILI) and acute liver failure. It is involved in 48% of poisoning 

admissions to hospital resulting in at least 200 deaths per year. Stratification of risk and the use 

of N-acetyl-cysteine (NAC) antidote therapy is sub-optimal and based on a timed determination 

of plasma APAP concentration. The current assessment of drug-induced liver injury or 

dysfunction in clinical practice is through liver function tests (LFT) obtained from a blood 

sample. These tests include serum concentration of total bilirubin (TBL), activity assessment 

of liver enzymes (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine 

aminotransferase (ALT)) and coagulation profile. However, the change in these enzymes’ 

activity is not specific to DILI and changes are confounded with different diseases of the liver 

such as viral hepatitis, fatty liver disease and liver cancer.  

Novel mechanistic biomarkers have been demonstrated to provide added value for the early 

prediction of APAP-induced hepatotoxicity. These biomarkers are more specific to activity 

within the liver, such as Glutamate Dehydrogenase (GLDH) which reflects mitochondrial 

dysfunction, Keratin-18 (K18) as a monitor for apoptotic-necrotic dynamics, high mobility 

group box-1 (HMGB1) that increases as a result of immune inflammatory system activation 

and lastly, serum microRNA (miR-122), which is a highly liver-specific mRNA.  

The primary objective of this thesis is to translate these novel biomarkers from mouse animal 

models into human models, and then to assess their potential use in clinical practice via 

simulation, examining the sensitivity of these biomarkers and their effectiveness in detecting 

liver injury. Population Pharmacokinetic and Pharmacodynamic (Pop-PKPD) modelling of the 

available data can enable greater understanding of APAP-induced liver injury and newly 

identified biomarkers, and was applied to estimate mean population PK parameters of APAP 

and PD parameters of each biomarker, taking into account inter and intra subject variability.  

The final population PK model for APAP following overdose is a one-compartment disposition 

model with first-order absorption, with an exponential residual error model, and alcoholism as 

a categorical covariate on CL, with alcoholic patients having a 14% increase in APAP clearance 

compared to non-alcoholic patients. The sequential combined effect compartment/indirect 

response model for PKPD models was implemented to describe the time course effect of APAP 

overdose on current and novel biomarkers. In the BIOPAR study, measured biomarker levels 



 

iii 

in most patients tended to fall within normal ranges, with time-courses relatively flat in shape, 

and the PKPD models yielded parameter estimates reflecting these trends in the data. 

These parameters estimate were used to simulate the individual time course of effect quantified 

by each biomarker post-dose administration with a richer sampling timecourse than feasible 

clinically. PKPD parameters and simulated biomarker levels at various timepoints were 

explored with an ROC analysis to characterise their potential to predict DILI outcome as 

assessed by ALT, and hence their potential utility in a clinical setting. It showed good potential 

predictivity for HMGB1 and AK18 biomarkers measured at any timepoint across a 72h 

timecourse following overdose. 
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Chapter 1. Introduction for Paracetamol Overdose and Drug-

Induced Liver Injury 

The drug name “paracetamol” known as acetaminophen in the US, derives from its chemical 

name acetyl-para-aminophenol (APAP). APAP has a place on the world health organisation 

(WHO) analgesic ladder because it has use on all three steps of pain treatment intensity. It 

works as a weak analgesic for moderate pain especially in conjunction with nonsteroidal 

analgesic drugs (NSAID) or co-analgesics such as caffeine. In persistent or increasing pain, 

APAP can be effectively combined with additional weak analgesia such as tramadol or even 

analgesics of opioid strength [1].  

 

However, APAP is also commonly known for being the most frequent cause of drug-induced 

liver injury (DILI) by intentional or accidental overdose [2]. Acute single overdose is defined 

as ingestion of >4 g (or >75 mg/kg) in a period of <1 hour (Toxbase 2016). In the USA in 2014, 

about 67,187 cases of APAP overdose were recorded, with 996 (1.5%) cases considered of 

major toxicity and 108 (10.8%) cases leading to death [3]. In the UK, more than 100,000 

patients visited the emergency department in 2014 with APAP overdose, half of them being 

admitted to hospital [4], and 196 cases resulted in death in 2017 [5]. Scientists and clinical 

researchers have put further recent efforts into the study of APAP overdose to predict liver 

injury by using biomarkers, improve antidote treatment to minimise hospitalisation and avoid 

developing liver failure, and ultimately to increase survival rate [6].  

 

1.1. The Evolution of APAP 

APAP was first synthesised by Morse in Germany in 1878. One year later, Von Mering was 

the first to use it clinically as an antipyretic treatment[7]. In 1948, Brodie and Axelrod 

discovered that APAP had active hepatic metabolism and was safe to use as an analgesic 

treatment [8]. Tylenol Elixir for children was the first brand introduced by McNeil Laboratories 

in 1955 in the USA [9]. The following year, APAP was introduced to the UK market by 

Frederick Stearns & Co as the brand Panadol [10], it was available only by prescription at that 

time and became available over the counter but became available over the counter and as a 
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generic in the 1960s with 30 million packs containing APAP sold in the UK every year [13]. 

The maximum recommended therapeutic dose of APAP is four grams per 24 hours, which is 1 

g every 6 hours in adult [11]. . 

 

APAP is safe and effective at therapeutic doses but has serious consequences through both 

accidental and intentional overdose [14], particularly hepatotoxicity. Accidental APAP 

overdose is often seen in patients with poorly controlled pain, and where there is the use of 

multiple paracetamol-containing medications [15], both of which are risk factors and are 

common in the elder population. 

 

1.2. Pharmacology Review for APAP 

1.2.1. Pharmacokinetics 

1.2.1.1. Absorption and distribution 

The therapeutic dose of APAP is 1g per dose with maximum daily dose 4g. After oral ingestion 

of regular tablets, APAP is rapidly absorbed by the GI tract, and the absorption occurs through 

passive diffusion. The bioavailability of APAP is about 85% to 95% with maximum plasma 

concentration of APAP occurring within approximately 45 minutes after ingestion at a range 

between 8-32 mg/L. By 6 hours later, plasma concentration typically ranges from 1-4 mg/L 

[16].  

 

APAP is widely distributed in most of the body fluids except fat and it can pass through the 

blood-brain barrier and placenta within 30 minutes of ingestion [17]. The estimated typical 

volume of distribution (Vd) is 0.95 L/kg [16]. 
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1.2.1.2. Metabolism and excretion 

Extensive studies on the metabolism of APAP in the body exist and the liver plays a critical 

role in its metabolic pathways. Figure 1-1 shows the three main pathways for APAP 

metabolism. Approximately 55-60% is metabolised via phase II glucuronidation, 20-30% via 

phase II sulfation [18], and the rest via phase I specific enzyme reactions, which occur via 

isoenzymes of CYP 450 (CYP2E1 and CYP3A4) to form a toxic molecule of N-acetyl p-

benzoquinone imine (NAPQI). This toxic product is detoxified through conjugation with 

glutathione (GSH) [19]. APAP metabolites are then excreted in the urine in the form of 

glucuronide, sulphate, mercapturate, cysteine conjugate. Some studies illustrate that NAPQI 

might also be reduced by NAD(P)H: quinone oxidoreductase 1 (NQO1) back into paracetamol 

[20]. Only 2-5% of a therapeutic dose is excreted unchanged in urine [21]. 

 

 

Figure 1-1: Three main pathways for APAP metabolism in Liver. 
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1.2.2. Pharmacodynamics 

APAP has been in clinical use for over half a century and the main therapeutic effects are 

analgesia and antipyresis similar to non-steroidal anti-inflammatory drugs (NSAIDs). Because 

of a lack of an obvious anti-inflammatory component, APAP was not considered as a member 

of the NSAIDs family, however it has been loosely grouped together with these drugs for their 

shared similar effects and common usage. The precise mechanisms of the analgesic and 

antipyretic effects of APAP are still unclear. 

 

Despite this, a few studies have suggested that APAP has a mild anti-inflammatory effect and 

acts as a weak inhibitor of the synthesis of prostaglandins (PGs) by inhibition of cyclo-

oxygenase I and II (COXI and COXII) enzymes [22]. COX-I is constitutively expressed in 

normal tissues and cells such as the gastrointestinal tract, platelets and kidney. It plays a minor 

role in housekeeping functions such as gastric epithelial cytoprotection and maintaining 

homeostatic pathways [23]. COX-II is induced by cytokines in inflammatory cells at localized 

sites of injury and it increases sensitivity of pain [24]. 

 

Some studies suggest that APAP has both an anti-nociceptive effect (i.e. the action of blocking 

the detection of a painful stimulus) on the central nervous system (CNS) [25], and also a 

hypothermic effect by inhibiting COX-III selectively in the CNS and lowering PGE2 levels 

[26]. Another study suggests the mechanism for analgesic effects of APAP may be via the 

inhibition of nitric oxide generation, and resultant effects on either N-methyl- D-aspartate 

(NMDA) or substance P [27].  

 

1.3. APAP Toxicology and Drug-Induced Liver Injury Biomarkers 

The first report of APAP toxicity in human was in 1966 [28]. It is the most common drug used 

in deliberate self-harm in the UK [29]. APAP overdose is the most prevalent cause of fulminant 

hepatic failure and liver transplantation in the UK and the US [30]. In UK, it is involved in 

48% of poisoning admissions to hospital, and approximately 70,000-100,000 APAP poisoning 
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cases occur per annum in Britain [31]. These cases lead to at least 200 deaths per year, however, 

in general, the mortality rate in Scotland shown to be twice as high as England and Wales [32]. 

Subsequent legislation restricting APAP pack sizes in September 1998 (for sale at general 

outlets) to a maximum of 16 tablets of 500mg (8g total) [33] was shown to reduce mortality 

and morbidity following APAP overdose in England and Wales [34].  

 

1.3.1. Mechanism of APAP Hepatotoxicity 

The toxic product of NAPQI formation from a therapeutic dose of APAP is immediately 

conjugated with hepatic GSH, which de-toxifies it, with the adduct excreted via the kidneys. 

Following overdose, the rate and quantity of formation of NAPQI  exceeds then leads to 

saturate  the conjugation and sulfation metabolism pathways and GSH depletion occurs [14].  

 

The mechanisms of APAP-induced liver injury involve the toxic metabolite product (NAPQI) 

and damage and liver injury occurs in three main ways (Figure 1-2) [35] : mitochondrial 

damage, cell death by necrosis and apoptosis, and inflammatory immune response. 

 

 

Figure 1-2: Mechanism of APAP-induced liver injury 
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1.3.1.1. Drug-induced mitochondria damage 

The mitochondria play a central role in DILI. NAPQI causes mitochondrial dysfunction, 

associated inflammatory response and induction of cell death [36]. Animal studies have shown 

that NAPQI covalently binds to cellular proteins in mitochondria [37] leading to induction of 

oxidant stress in mitochondria and formation of peroxynitrite [38]. This reactive entity leads to 

damage of deoxyribonucleic acid (DNA) and activates c-Jun N-terminal kinase (JNK), 

resulting in its phosphorylation and translocation to the mitochondria, which amplifies the 

oxidant stress [39]. Subsequently, inhibition of respiration, depletion of adenosine triphosphate 

(ATP) and a decrease in membrane potential occur [40]. This process releases a variety of 

proteins from the mitochondria such as apoptosis-inducing factors cytochrome C and 

endonuclease G (the latter of which can cause nuclear DNA fragmentation) [36].  

 

1.3.1.2. Drug-induced apoptosis 

Apoptosis is programed cell death, which is induced by one of either; intrinsic (i.e. extracellular 

stimuli) or extrinsic (i.e. chemical stress) pathways [41]. This can occur for example with 

immune-mediated injury, destroying hepatocytes by way of e.g. tumor necrosis factor (TNF) 

and the Fas pathways [35]. Other studies established that apoptosis can be driven probably 

more due to ATP depletion [42] and/or the cessation of ATP synthesis as well, leading to the 

release of mitochondrial intermembrane proteins such as cytochrome c which trigger apoptotic 

cell death [43]. 

 

The histological appearance of apoptosis is characterised by cell shrinkage, plasma membrane 

blebbing (i.e bulging or protrusion of the plasma membrane of a cell), chromatin condensation, 

DNA fragmentation and apoptotic body formation [44]. Caspases (i.e. cysteine-aspartate 

proteases) unique to the apoptotic pathway, are activated as part of the process which act as 

both initiators and effectors of cell death [45]. 
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A clinical observational study, found that hepatic cell apoptosis was seen in the early stages of 

APAP induced liver injury with ATP levels that were not completely depleted, and serum levels 

of apoptosis-associated markers (caspase-cleaved keratin_18) were associated with poor 

outcomes [46]. The severity and progression of liver injury are further determined by the 

inflammatory immune response and the balance between the protective and toxic signalling 

processes of the cells elaborated in this response [47].  

 

1.3.1.3. Drug-induced necrosis 

Cell death during DILI can also be necrotic, where this is accidental or uncontrollable cell 

death. The necrotic cell is characterised by nuclear breakdown, mitochondria and organelle 

swelling, release of cell contents and enzymes, and uncontrolled plasma membrane blebbing 

[43], the mechanisms are still not well understood [48].  

 

The extent to which apoptotic cell death vs. necrosis contributes to the development of APAP 

hepatotoxicity is however controversial. For example the release of cytochrome C from the 

mitochondria, and DNA fragmentation are characteristic of apoptotic cell death [40], but some 

researchers have demonstrated that none of those factors are necessarily specific for apoptosis, 

with no evidence of those factors alone directly leading to caspase activation [49].  

 

1.3.1.4. Immune response for liver injury 

Some studies have suggested the stressed, dying and dead hepatocyte cells release signals that 

stimulate and activate an innate immune response in  the liver [50] produced by Kupffer cells, 

monocytes, neutrophils, and lymphocytes [51].These cells release cytokines and mediators 

such as tumour necrosis factor (TNF-α), interleukin 1β (IL-1β) and interferon (IFN-γ) [52] as 

part of an inflammatory response. The innate immune system is the first response to acute liver 

injury [53]. APAP itself is a small molecule that is unlikely to evoke the immune response, but 

an immune response can be evoked with the formation of its larger adducts [53]. However, 

there is disagreement between studies as to the exact role of each of the cell types and mediators 
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in DILI. Generally, the mechanistic details of APAP induced liver injury have yet to be entirely 

determined [36]. 

 

1.4. Clinical Assessment of APAP Overdose 

Clinically, acute APAP overdose is associated with three main stages. The first stage takes 

approximately 24 hours and is implicated by non-specific gastrointestinal (GI) symptoms, for 

example, nausea, vomiting and abdominal pain, with insignificant elevation in serum liver 

enzyme concentrations. The second stage takes about 24-72 hours, includes a few clinical 

symptoms such as vomiting and abdominal pain, and elevation of serum liver enzymes 

concentrations. The last stage develops in 72-96 hours post-ingestion, and the outcomes vary 

from full recovery to death, which is based on the severity of liver damage [54].  

 

Peak serum concentrations after therapeutic doses of APAP do not usually exceed 130μmol/L 

(20 mg/L) [56], the elevation above this is an indication of overdose. N-Acetylcysteine (NAC) 

is standard treatment for the liver toxicity effects of APAP overdose. NAC acts to replenish 

glutathione levels in the liver which will be depleted by NAPQI production, preventing 

accumulation of NAPQI and its toxic effects. The decision for treatment with N-Acetylcysteine 

(NAC) based on blood APAP concentration typically uses the Rumack-Matthew nomogram 

[55] (Left-Figure 1-3). This nomogram is used to guide the treatment of acute paracetamol 

overdose provided time since overdose is known and uses information on high risk factors such 

as alcoholism, malnutrition, liver disease etc.  

 

In 2012, the UK revised the management of APAP overdose following the death of poisoned 

patients who were considered not to be at significant risk [56] .The revised guidelines indicate 

that all APAP overdose patients, regardless of risk factor-should be treated with NAC (Right-

Figure 1-3) [57]. This nomogram assessment technique is only applied four hours after APAP 

overdose to ensure the full extent of the poisoning is understood after absorption. However, 

only approximately 10% of patients present to the emergency department soon after APAP 

overdose with the majority attending later than 12 hours [58]. Whilst the reported time of 
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overdose has a known associated error, the treatment is still based on this time. Importantly, 

neither the dose of APAP or liver function tests (LFTs) are considered when making the NAC 

treatment decision, when if they were a more precise, individualised treatment would be 

possible based on the severity of overdose and effects on liver function. 

 

 

Figure 1-3: Rumack-Matthew nomogram. 

LEFT: Rumack-Matthew nomogram is based on high risk patients. The cut-off of NAC giving for high risk 

patient is 100mg/l of APAP concentration at 4h post APAP ingestion and the cut off of NAC giving for non-

high risk patient is 200mg/l of APAP concentration at 4h post APAP ingestion. 

RIGHT: Revise Rumack-Matthew nomogram. The cut-off of NAC giving for NAC is 100mg/l of APAP 

concentration at 4h post APAP for all patients. 

 

 

1.4.1. Current Biomarkers to Assess DILI 

The current assessment of drug-induced liver injury or dysfunction in clinical practice uses 

standard blood sample LFTs to quantify biomarkers to assess the degree of liver damage. These 

tests include the serum concentration of total bilirubin (TBL), coagulation profile and the 

activity assessment of the enzymes alkaline phosphatase (ALP), aspartate aminotransferase 

(AST), and alanine aminotransferase (ALT) [59] with these enzyme activities expressed as 

ratios to the upper limits of normal (ULN). A standard method of allocating cases is given 

through the assessment of the normalised ratio of ALT to ALP activity, quoted as an R value. 

R<2 is considered for cholestatic liver injury, while >5 is considered as hepatocellular injury 

[60].  
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More specifically for APAP-induced liver toxicity the elevation of AST and ALT serum 

concentrations to >1000 U/L is typically seen, as also are abnormal results of other LFTs [14], 

with ALT being the more specific indicator for hepatocyte damage and thus the current gold 

standard diagnostic and monitoring biomarker for APAP induced liver injury. Dear and 

colleagues have added liver synthetic dysfunction, reflected in thrombin levels and blood 

coagulation time, and summarised as the international normalised ratio (INR) for assessment 

of liver damage. An INR >1.5 on top of ALT >100 is considered as reflecting liver toxicity as 

well [61].  

 

Even though the LFT blood tests can provide some evidence of the extent of the liver damage, 

and their utility has been qualified by decades of clinical experience, there are still limitations 

for using liver enzymes as biomarkers because changes in those enzymes’ activities are not 

specific for DILI and may generate false positive results. LFT enzymes such as ALT can 

change with different disease conditions of the liver such as viral hepatitis, fatty liver disease 

and liver cancer [62]. They may also alter with a non-hepatic disease e.g. ALP may elevate 

with hypothyroidism or bone disease [63] while ALT and AST increase with myocardial 

disease [64] or muscle damage due to heavy exercise [65]. A combined approach of ALT and 

INR represents the current standard for diagnosis of DILI. 

 

1.4.2. Novel Biomarkers to Assess DILI 

Despite the limitations, LFT blood tests can provide some evidence of the extent of liver 

damage, and any novel biomarker must therefore surpass or provide added value to be a better 

indicator of prognosis at presentation and during treatment. Consequently, there have been 

recent pre-clinical and clinical studies that identify and validate biomarkers that show improved 

sensitivity and hepatic specificity to assist of DILI [66]. These biomarkers may guide clinicians 

to identify a patient who has low or high-risk of acute liver injury (ALI) who requires a lower 

or higher treatment dose (of e.g NAC) or even no treatment at all. 
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Antoine et al. (2013) identified the utility of some novel biomarkers based on the mechanism 

of DILI. These novel biomarkers include; Glutamate Dehydrogenase (GLDH) to identify 

mitochondrial dysfunction, Keratin-18 (K18) for monitoring apoptotic-necrotic dynamics, high 

mobility group box-1 (HMGB1) to monitor activation of the immune inflammatory system, 

and lastly, serum micro-ribonucleic acid (miRNA) (miR-122), which is a highly liver-specific 

mRNA. Figure 1-4 illustrates pre-clinical and clinical investigations for the utility of novel 

biomarkers to define the mechanistic basis of APAP induced liver injury, and each biomarker 

is considered in greater detail below. The biomarkers are indicated in order of their most 

relevant time to release in serum during the time-course of DILI/hepatotoxicity according to 

Antoine et al.. These novel biomarkers would potentially be more sensitive and specific for 

identifying acute liver injury and more productive for assessing the severity of the injury [67]. 

 

 

 

Figure 1-4: The utility of a novel biomarkers to define the mechanistic basis of APAP-induced liver injury 

Reproduced from [67]. 
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1.4.2.1. miR-122 

miRNA are small molecules typically around 22 nucleotides long; they do not code for protein 

and are usually involved in post-transcription gene product regulation [68]. The release of 

miRNA into extracellular space and circulation can be an expression of a physiological process 

(e.g. cell to cell communication) or indicative of liver injury [69].  

 

miRNAs are widely expressed and appear to be highly organ specific. miR-122 is the most 

abundant hepatic miRNA representing 75% of expression, and this marker is highly liver 

specific [70]. The potential circulation of miR-122 was first reported in a mouse model after 

APAP overdose [71]. In a clinical study, patients that developedALI (who had APAP overdose) 

had around 100-fold higher serum levels of miR-122 than patients without ALI [72].  

 

1.4.2.2. HMGB1 

HMGB1 is a chromatin-binding protein released by cells undergoing necrosis [73]. It is 

stimulated by the innate immune response and passively released as a cytokine [74]. In APAP 

overdose mouse models it has been demonstrated that the circulation of HMGB1 is correlated 

with onset of necrosis, confirming HMGB1 as a potential indicator in the cell death process 

[75].  

 

There is further evidence in mouse models that HMGB1 is a mechanism based biomarker and 

also acts as a mediator of APAP hepatotoxicity, as administering anti-HMGB1 antibodies 

reduced liver injury in a mouse model [42] and this might have potential for further 

development as a therapeutic candidate for DILI.  

 

In clinical evaluation, total HMGB1 is correlated strongly with ALT activity and prothrombin 

time in patients with APAP-induced liver injury and the prognostic utility of elevation 

acetylated HMGB1 associated with poor prognosis and outcome [76] .  
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1.4.2.3. GLDH 

GLDH is an enzyme present in matrix-rich mitochondria of the liver and is a key enzyme in 

amino acid oxidation [77]. In addition to the liver, GLDH is expressed in the brain and excreted 

directly into cerebro-spinal fluid (CSF) [78], and expressed in kidney where it is excreted into 

tubular lumen rather than into blood circulation [79]. Its presence in serum is considered a 

relatively liver-specific marker and an indicator of leakage of mitochondria contents into 

circulation associated with liver damage [80].  

 

A rat model study indicated GLDH increased up to 10-fold after liver injury, and clinically, (in 

cases with DILI) serum GLDH was shown to be increased, highlighting its potential as a 

translational biomarker [81]. However, there still remains some indecision as to whether 

measurement of GLDH could be valuable in distinguishing benign elevations in ALT from 

those that portent severe DILI potential [82]. 

 

1.4.2.4. Keratin-18 

Keratins are intermediate filament proteins that are expressed by epithelial cells and are 

responsible for cell structure, differentiation and apoptosis [83]. K-18 is a form of keratin, 

which is exclusively expressed in liver (representing 5% of total hepatic protein) and other 

digestive epithelial cells [84]. There are two forms of K-18: fragmented caspase-cleaved (C 

K18, commonly referred to an AK-18 for “Apoptosis-related K-18”) which represents the 

apoptotic cell death mechanism, and full length (FL K18, commonly referred to a NK-18 for 

“Necrosis-related K-18”), representing necrosis. These had been identified previously as novel 

biomarkers, potentially more sensitive in DILI [85], and have been used in clinical situations 

for therapeutic drug monitoring (TDM) of chemotherapy [86], and also for quantification of 

apoptosis during liver disorders such as hepatitis [87].  
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Previously, in a mouse model, increases in both AK-18 and NK-18 were reported after APAP 

overdose [75]. A group of clinical researchers confirmed the circulating levels of both cleaved 

and full length K-18 after APAP overdose could be correlated with the poor outcome (i.e. death 

or liver transplant) [46]. Recent evidence also suggested that modelling the ratio between AK-

18 and NK-18 may provide an important tool to help risk prediction of liver injury safety sign 

during clinical trial [88]. 

 

1.4.2.5. Reference interval values for novel biomarkers.  

The reference intervals for the novel biomarkers have been identified from a cross-sectional 

study that involved 200 healthy volunteers and each individual subject across an intensive 24h 

sampling period [61]. The data are expressed as 2.5th, 50th and 97.5th quantile each with a 90 

% CI (confidence interval).  

 

Table 1-1: Reference intervals for biomarkers of DILI 

Biomarkers 
2.5th quantile 

(90 % CI) 
50th quantile 

(90 % CI) 

97.5th quantile 
(90 % CI) 

miR-122 
(let-7d normalised) 

0.17 (0.00 – 0.22) 0.95 (0.71 – 1.21) 6.40 (4.32 – Inf) 

HMGB1 (ng/ml) 0.22 (0.17 – 0.32) 1.24 (1.16 – 1.29) 2.34 (2.23 - 2.42) 

FL K18 (U/l) 114 (102 - 126) 248 (225 - 268) 475 (456 - 488) 

CC K18 (U/l) 57 (53 - 60) 132 (122 - 142) 272 (256 - 291) 

GLDH (U/l) 0.46 (0.30 – 0.56) 1.40 (1.30 – 1.46) 27 (26 - 30) 
CI is a confidence interval 

 

1.5. Objectives and Aims 

1.5.1. Overall Objective 

The primary objective of this thesis is to transfer or link the bench science regarding novel 

biomarkers of DILI into clinical practice by use of an applied population pharmacokinetics and 

pharmacodynamics approach. Such methods will be applied to biomarker and APAP exposure 

datasets obtained from the BIOPAR clinical trial that ran from November 2010 to October 
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2014 in ten different UK centres, and will be used to develop and test a rational approach to 

estimate the time course of effects and biomarkers that can predict liver injury.  

 

1.5.2. Specific Aims  

1. To build population pharmacokinetics (Pop-PK) models using exposure data following 

APAP overdose in a UK population to estimate mean population PK parameters such 

as clearance and volume of distribution and quantify and assess their variability. This 

will allow examination of the differences in exposure and PK parameters between 

therapeutic doses and overdoses of paracetamol, an area yet to be fully explored in 

current publications. 

2. To build population pharmacokinetic-pharmacodynamic (Pop-PKPD) models using 

biomarker data following paracetamol overdose to estimate PKPD parameters that 

characterise the effect of paracetamol overdose on current and novel biomarkers of liver 

function.  

3. To simulate profiles for all novel biomarkers under the dosing of the BIOPAR dataset 

using the Pop-PKPD model parameter estimates and compare with the ALT profile (as 

the gold standard for liver injury) to identify potential earlier prediction of liver injury 

with different biomarkers.  

4. To simulate profiles for all novel biomarkers under different dosing regimens and 

clinical scenarios to illustrate potential changes in the profile of biomarker effect.  

5. To use Receiver Operating Characteristic ROC analyses for prediction of liver injury 

as defined categorically by peak ALT status using simulated biomarker levels at various 

timepoints and PKPD model parameter values. This will allow assessment of the best 

potential timepoint for diagnosis of APAP induced liver injury and indicate the 

potential value in the PKPD modelling approach.   
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Chapter 2. Pharmacometric Methods  

2.1. Background 

Pharmacometrics is the quantitative study of interactions between a drug therapy and the 

subject it is administered to, where “drug therapy” means to use artificial or sometimes natural 

agents that may change a physiological or biochemical body process. This in turn will hopefully 

be useful to prevent or cure disease, however, if a drug is used inappropriately, it can be harmful 

to the body. The effects of a drug are underpinned by the drug exposure and response. The drug 

exposure is determined by the drug administration, which includes dose, frequency and route 

of administration and the pharmacokinetics (PK) of the drug. Administration must be selected 

carefully, with consideration of drug PK, to optimise the drug effect and at the same time 

minimise harmful drug effects. The response refers to the biological changes induced by the 

drug, and this response could be either a beneficial or an adverse effect. The quantitative study 

of drug response driven by drug exposure is referred to as a drug’s pharmacodynamics (PD).  

 

A mathematical PK model describes the processes after drug administration that give rise to 

the time course of drug concentrations in the body. A PD model describes the relationship 

between drug effect and drug concentration given inherent biological response. Figure 2-1 

shows a simple schematic description of PK and PD [89]. 

 

 

 

Figure 2-1: Schematic description of Pharmacokinetics/Pharmacodynamics  

(a) pharmacokinetics (PK) and (b) pharmacodynamics (PD) where C is a drug concentration. 
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PK and PD models share concentration as a common element. These two kinds of models can 

be combined therefore in PKPD modelling to describe the time course of the dose-effect 

relationship after any drug administration (Figure 2-2) [90]. 

 

 

Figure 2-2: Diagram description of the combination between PK and PD link together dose, 

concentration and drug effect. 

 

Understanding the dose-effect relationship of PK and PD following a therapeutic dose is the 

primary goal in clinical pharmacology. The concepts of clinical pharmacology can be used to 

design individual dose regimens to minimise adverse effects and optimise therapeutic response; 

optimising the dose regimen includes the choice of the right dose and dosing interval. 

 

2.1.1. Pharmacokinetics 

PK is the study of how a drug enters, distributes and leaves the body, and can be considered 

via four fundamental processes: absorption, distribution, metabolism and excretion (ADME) 

(Figure 2-3). An understanding of how each of these processes may differ between individuals 

needs to be accounted for in the design of an optimal dosing regimen for treatment [91]. 
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Figure 2-3: The process of drug ADME.  

An ingested drug undergoes absorption by passing through gastrointestinal membrane then through the liver 

before reaching systemic circulation. Once it reaches the circulation, it distributes to the tissue, including the site 

of action. Drug simultaneously undergoes metabolism and/or excretion, and this occurs primarily in the liver 

and kidney. Reproduced from [91]. 

 

 

From a therapeutic viewpoint, the most critical factor for achieving the desired drug action is 

the time course of drug concentration at the site of action. A PK model provides a mathematical 

representation of this and relates the independent variables such as time and dose to the 

dependent variable, plasma concentration, using pharmacokinetic parameters such as clearance 

(CL) and volume of distribution (Vd). PK typically studies the time course of drug 

concentration in the body simplified as a set of compartments [92] [93] where drug transfers 

from one compartment to another. The central compartment represents blood/plasma and other 

rapidly equilibrating tissues, receiving an input of drug either from an absorption process (often 

modelled as a first-order process from a depot compartment) or via a direct dose (e.g. 

intravenous bolus or infusion dosing (IV)). Peripheral compartments may be needed to describe 

further distributional processes as necessary with each compartment having its own Vd to scale 

the amount of drug contained to an observed concentration [94]. 
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Compartments need not be directly physiological e.g. if the drug distributes rapidly out into 

and back from the entire body the PK could be described with a single compartment. However, 

if the drug returns more slowly after distribution into peripheral tissues one or more peripheral 

compartments connected to the central compartment may be needed to describe the PK time-

course in a two, three (etc.) compartment models. These peripheral compartments can be 

considered to represent physiological tissue compartments with similar distributional 

characteristics that have been lumped together.  

 

The equations below are examples of PK models for the central (i.e. plasma) compartment for 

simple one compartment disposition under different modes of administration. Equation 2-1 for 

an IV bolus,     Equation 2-3 for a zero order IV infusion and Equation 2-3 for a first-order oral 

absorption process, which is itself governed by the absorption rate constant (Ka). Elimination 

half-life (t1/2) is another commonly discussed parameter and refers to the time required for the 

plasma concentration to decrease by one-half and is derived from CL and Vd (Equation 2-4). 

 

C(t) = Dose*e-(CL/Vd)*t     Equation 2-1 

C(t) = Rate/CL * (1-e-(CL/Vd)* t)      Equation 2-2 

C(t) = Dose*(Ka/Vd)*(Ka-(CL/Vd)) *[(e-(CL/Vd)*t)- e-Ka*t]     Equation 2-3 

t1/2 = 0.693/( CL/V)       Equation 2-4 

 

In the majority of cases, overall drug exposure (typically defined as the area under the curve 

(AUC) of the measured concentration-time profile (AUCconc) increases or decreases 

proportionally with the dose administered and this is called linear pharmacokinetics [95]. 

However, there are some drugs where exposures are disproportional to the drug dosage and 

this phenomenon is called non-linear pharmacokinetics [96].  
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PK models can be used to help physicians to deal with the drug phenomena of linear or non-

linear pharmacokinetics. However, the time-course and magnitude of drug effect cannot 

necessarily be predicted by the concentration time-course and the concept of clinical 

pharmacodynamics is needed to describe the relationship between drug concentration and 

effect.  

 

2.1.2. Pharmacodynamics 

2.1.2.1. Direct effect model  

PD models describe drug effects as a mathematical relationship between drug concentration 

and the drug’s potency and efficacy.  

 

Equation 2-5 is a simple direct effect Emax PD model that relates effect (E) to concentration 

(C) via E0 (baseline effect in absence of a drug), EC50 (drug concentration producing half 

maximal effect, a measure of potency or sensitivity at the site of action) and Emax (the 

maximum response) parameters, Figure 2-4 (left) illustrates a typical profile shape for this 

model, with E0 equal to zero and Emax equal to 100 [97]. The full Hill equation, or sigmoid 

Emax model, integrates a further parameter, γ, which describes the sigmoidicity the 

concentration–effect relationship which alters the potential shape of the Emax model profile 

(e.g. Figure 2-4 (right), with γ > 1) (Equation 2-5and Equation 2-6). 

 

 

   E = E0 +(Emax * C) / (EC50 + C) Equation 2-5 

   E = E0 + (Emax * C γ) / (EC50 
γ + C γ) Equation 2-6 
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Figure 2-4: The relationship between drug response and drug concentration. 

LEFT: Direct effect Emax concentration–effect relationship. 

RIGHT: Sigmoid Emax over a much wider log concentration scale, with γ >1. 

Reproduced from [97]. 

 

 

Although commonly used in many cases, especially as saturation of effect with increasing 

concentration is common physiologically (and representative of e.g. biological binding site 

driven processes) the sigmoid Emax model does not necessarily apply to all concentration-

effect data. When experimental data does not fit with the model, the result of using the sigmoid 

Emax model can lead to misleading conclusions about the Emax and EC50 parameters. Some 

datasets are consistent therefore with less complicated models, such as exponential (Equation 

2-7) or linear (Equation 2-8) equations; so in these cases, the concept of Emax and EC50 

relationships is not provided [98]. 

 

E = m * Ce Equation 2-7 

E = m * C Equation 2-8 

Where m is the slope of concentration-effect curve and e is an exponent.  

 

2.1.2.2. Effect compartment model 

In some case studies such as psychopharmacology, pharmacokinetic-pharmacodynamic 

(PKPD) modelling becomes further complicated when drug concentrations measured in serum 
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or plasma do not reflect the concentration at the site of action or effect [98]. For example, the 

relationship between concentration and time in the PK of lorazepam in plasma was 

appropriately modelled with a two-compartment model, however studies on the effect of 

lorazepam on electroencephalogram (EEG) suggested a delay in equilibration of lorazepam 

between plasma and the site of PD action in the brain [99], therefore, the distribution of 

lorazepam to its site of action might represent a rate-limiting process. The drug site of action 

is often referred to as the biophase, as represented first by Furchgott [100]. 

 

The addition of a hypothetical effect compartment is one concept used to describe this delay 

and this mathematical approach was demonstrated by Sheiner and colleagues [101]. The effect 

compartment model is an additional compartment driven from the central compartment of a 

PK disposition model by a first order rate constant parameter (Ke0) that governs the delay 

process.  

 

Outlined below are the differential equations to describe an effect compartment PD model 

combined with a one compartment PK model with oral dosing, where Equation 2-9 describes 

the gut dosing depot amount, Equation 2-10 the central compartment plasma concentration (Cp) 

after oral dose, and Equation 2-11 the theoretical effect compartment concentration (Ce).  

 

dDepot/dt = -Ka * Depot                     Equation 2-9 

 

dCp/dt = Ka*Depot/Vd – Kel * Cp Equation 2-10 

 

dCe /dt = Ke0*Cp –Ke0*Ce   Equation 2-11 

 

 

The initial condition for the Depot compartment amount is D x F, where D is drug (e.g. APAP) 

dose amount and F the bioavailability, which is the fraction that reaches systemic circulation 

intact. Cp is the concentration of drug in the central (plasma) compartment of the 



Chapter 2 - Pharmacometric methods 

 

25 

pharmacokinetic model with Ka as the apparent first-order absorption rate constant for input 

flow from the depot and Kel is the elimination rate constant given by clearance divided by 

volume of distribution. 

 

Ce is the theoretical concentration of the drug in the effect compartment with Ke0 as a rate 

constant that links between the PK model and the effect compartment, which can be considered 

to represent a delay/activation/deactivation process from the driving PK concentration. The 

theoretical effect compartment is not part of the formal mass balance PK model of the drug and 

does not contribute to the model of the drug PK disposition (hence why it may be called a 

“theoretical concentration”). However it can often be thought of as representing the delay of 

drug distribution into the biophase, or site of action, and could be more formally considered as 

a “theoretical concentration that is the direct input to the PD model of drug effect”. It can also 

be imagined to represent the delay of receptor activation or other drug effect processes (e.g. 

protein expression).  

 

Other PKPD models may be able to use the true PK mass balance model for a peripheral PK 

distribution (or tissue) compartment as the direct input to a PD model of drug effect, however 

this is not considered an effect compartment model, as here a “true” concentration is being used 

as the driver of PD effect so this is instead a form of direct effect PKPD model. The relation 

between the theoretical effect compartment of the drug concentration (Ce) and observed effect 

can then described by whichever PD model may be appropriate e.g. a sigmoid Emax equation 

(Equation 2-5). 

 

Figure 2-5 shows a representation of the resultant pharmacokinetic-pharmacodynamic model 

for the lorazepam study. 
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Figure 2-5: Schematic representation of the pharmacokinetic-pharmacodynamic model for lorazepam. 

Lorazepam has a two compartment PK model, with reversible distribution to/from a peripheral compartment, 

and first-order elimination (clearance) from the central compartment (rate constant: Ke). Plasma was assumed to 

equilibrate with and then leave with a hypothetical effect site according to a first order rate constant (Ke0). Link 

models (exponential and linear) for PD effect are then driven by effect site hypothetical concentration. 

Reproduced from [102]. 

 

 

2.1.2.3. Indirect response model 

Indirect response PD models were developed to characterize drugs that act by indirect 

mechanisms such as inhibition or stimulation of the production or dissipation of factors 

resulting in the measured effect [103] and a general form of this model was demonstrated by 

Sheiner and Verotta [104]. Indirect response models are useful where a further delay, lag or 

onset process needs to be described as part of the PD response, and also where a PD response 

represents a perturbation from, and potential return to, a baseline physiological value. 

 

The indirect effect model describes the rate of change of the response variable as a balance 

between its apparent rate of “production” and its rate of “removal” (Equation 2-12) 

 

   dR/dt = Kin – Kout * R Equation 2-12 
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Dayneka and colleagues were the first to formally propose four basic variations of the indirect 

response model [105] regarding where and how drug effect may be implemented. These are: 

Inhibition of production, Inhibition of removal, Stimulation of production and stimulation of 

removal. 

 

The inhibition variants often use the following inhibitory factor as a function of drug 

concentration, I(C) (Equation 2-13) which is a variant of the previously described Emax model 

(Equation 2-5). 

 

   I(C) = 1 – (Emax * Cp) / (EC50 + Cp) Equation 2-13 

 

The stimulation variants use a stimulatory factor as a function of drug concentration S(C) 

(Equation 2-14).  

 

   S(C) = 1 + (Emax * Cp) / (EC50 + Cp) Equation 2-14 

 

The four indirect response model variants (Equation 2-15, Equation 2-16, Equation 2-17 

andEquation 2-18) are then defined by the following differential equations according to where 

the inhibitory or stimulatory factors are incorporated: 

 

   dR/dt = Kin * I(C) – Kout * R Equation 2-15 

 

   dR/dt = Kin –Kout * I(C) * R Equation 2-16 
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   dR/dt = Kin * S(C) – Kout * R Equation 2-17 

 

   dR/dt = Kin – Kout * S(C) * R Equation 2-18 

 

2.2. Population Modelling Approaches 

During the last four decades, the concept of combined PKPD modelling has been extended 

further with its application in a population approach. Population Pharmacokinetics (Pop-PK) 

is the study of the variability of drug concentrations amongst individuals when standard dose 

regimens have been administered [106]. The primary goal of population pharmacokinetic 

modelling is to quantitatively assess pharmacokinetic model parameters, their sources of 

variability, and their effects on exposures by applying population analysis approaches to PK 

data [107]. Population PKPD (Pop-PKPD) modelling seeks to do a similar form of analysis, 

but to deliver an understanding of the corresponding pharmacological/therapeutic response 

with a description of the variability of individual drug response from the mean response across 

the population. 

 

The understanding derived from a Pop-PK/Pop-PKPD analysis regarding the quantitative 

relationship between drug input patterns, patient characteristics, drug disposition and response 

is key to identify sources of variability, and these relationships can influence understanding of 

drug safety and efficacy. Such understanding can also help improve the process of drug 

development by implementing more informative designs and analyses and should be part of 

general good therapeutic practice [115].  

 

There are potential factors that can cause variability in exposure and response, altering dose-

concentration-effect relationships from individual to individual. Type of factors include:  

 patient features: e.g. body weight, surface area, race, sex, and age;  

 pathophysiological features: e.g. hepatic or renal impairment and specific diseases;  
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 environmental factors: e.g. smoking, diet, and exposure to pollutants;  

 genomic factors impacting drug-drug interactions or via hepatic metabolism: e.g. 

polymorphic cytochrome P450 isoforms of varying abundance from individual to 

individual, such as CYP2D6, and CYP2C19 [114].  

 

By incorporating information from data obtained from clinical monitoring of these patient-

specific factors and characteristics as covariates in a Pop-PKPD model, we can consider their 

effects and can allow for these patient characteristics to have an associated effect on ADME or 

efficacy parameters [108]. This understanding can play an important role in direct patient care 

in providing quantitative or semi-quantitative guidelines for individualising and/or optimising 

dosing therapies, which may be considered a key aspect of personalised or stratified medicine. 

Pop-PK models can also be applied in therapeutic drug monitoring, designing dosing guidelines 

for drug labelling, and in comparing the effect of competing  dosing regimens on clinical trial 

outcomes [116][117]. 

 

Currently, the Pop-PK/Pop-PKPD field has a significant number of methods and techniques 

for analysis of preclinical and clinical data, as well as for clinical design optimisation, with the 

development of specific mathematical methods and software packages. Historically however, 

Pop-PK as an approach began with the pioneering work of Sheiner and his colleagues in 1972 

[109] who developed the NONMEM software package in applying the population approach to 

PK data. These methods were improved throughout the 1970s [106] and then in 1980s, as Pop-

PK became more widespread in use due its application to improve TDM and the drug 

development process [110]. In February 1999, the US Food and Drug Administration (FDA) 

published a ‘Guidance for Industry: Population Pharmacokinetics’ that provided mechanisms 

for Pop-PK analysis and outlined its role in drug development. This guidance illustrates when 

to perform and how to design and execute a Pop-PK study, how to analyse the data, what kind 

of model validation procedures are available and how to write a documentation report.  
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A Pop-PK analysis is different compared to traditional pharmacokinetic analysis methodology, 

which usually involves studying large numbers of homogenous patients to assess the PK of a 

drug in relevant populations, using data analysis methods such as statistical moments, sums of 

exponential modelling, as well as compartmental approaches and physiologically based PK 

modelling. The fundamental approach of population pharmacokinetics is not to homogenise 

and/or standardise the patients from which the data is collected, but to deliberately apply a 

population analysis approach that describes and accounts for variability in the data thus 

allowing the use of relevant information from all patients that is descriptive of those in whom 

the drug may be used clinically [111]. Studying a population enables analysis of the variability 

in PK and PD that occurs within and between patients, which should be identified, explained 

and quantified for all potential sources. Pop-PK model development will typically involve an 

initial phase where criteria and rationale for the choice of model are set, and the steps taken to 

build the model are outlined, that will involve exploratory data analysis where statistical and 

graphical procedures are used to uncover patterns and features in the population data [113]. 

Subsequent model validation is where the objective is to examine if the model reasonably 

describes the data and produces a good fit [107]. 

 

Pop-PKPD analysis uses multistage hierarchical models, where the PK or PKPD mathematical 

model parameter values of any individual patient will vary from the expected population values 

because of inter-individual variability (IIV) [111] and possibly because of within-subject 

variability (WSV) in parameters. WSV could arise, for example, from systematic errors in drug 

dosing, or sampling or concentration measurement variation in samples from the same 

individual but taken or analysed from separate clinical visits. WSV reflects a random change 

in a patient’s PK parameter values at different times [112] where these random variations can 

also arise because the mathematical model being applied to the data could be an 

oversimplification of reality [113]. Population approaches can be used to parameterise IIV and 

identify if potential sources of variability can make a proportion of IIV predictable via 

covariates in some way, and identify the non-predictable proportion of IIV (which is thus 

apparently random). For example, using weight as covariate could account for a predictable 

component of IIV and thus predict a proportion of overall parameter variability. Predictable 

variability is most commonly better understood for drug elimination processes and often uses 
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subject factors such as weight, renal function, and co- medications as covariates to help account 

for IIV. Non-predictable variability is usually larger than the predictable variability explicable 

in some way by covariates [119]. 

 

Population modelling approaches seek to define population distributions to describe IIV. Data 

(e.g. drug concentrations, biomarkers) are collected from the specific population who have 

taken a drug. The drug’s behaviour (PK, PD or both) is described by a (typically nonlinear) 

mathematical model dependent on an unknown subject-specific parameter vector (θ), which 

varies between subjects to take into account the variability of the drug response in the 

population. This population variability in PK/PKPD response (based on clinical data) is 

determined by the population parameter distribution function F(θ). The distribution F describes 

the variability of parameter values across the population and provides estimates of their means 

and confidence intervals (CI) [106]. The variation in these parameter values among the 

population is then translated by the mathematical PK or PKPD model into variability in 

observed response. 

 

Population analysis methods can be classified into nonparametric and parametric methods 

according to the assumptions made regarding the F(θ) distribution [107] and each classification 

can be sub-divided into maximum likelihood or Bayesian approaches [108]. In the next 

sections, different population analysis methods will be reviewed with focus given to the 

methods applied in this thesis. 

 

2.2.1. Nonparametric Methods 

Nonparametric methods are not based on parameterised families of probability distributions; 

and include descriptive statistics, statistical models, inference and statistical tests. These 

methods make no (or very limited) assumptions about the shape of the F(θ) parameter 

distributions across the population; sometimes even being referred to as distribution-free 

methods. This approach can make predictions more robust in the sense that they do not depend 

on whether or not the underlying distribution is normal or of any other specific type [109]. 
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Therefore, they may be preferable when the assumptions required for parametric methods are 

not valid and should be considered especially with sparse data [110]. Non-parametric methods 

estimate the entire joint F(θ) distribution from the data directly, and are useful when the data 

are strongly non-normal or resistant to transformation. Hence, they can be useful for dealing 

with unexpected outlying observations that might be problematic with the parametric approach 

[111] and may consequently detect possible subpopulations within data (e.g. fast and slow 

metabolism) as a set of mixture models and are sensitive detectors of bimodality [112]. 

Additionally, non-parametric methods are useful in the analysis of ordered categorical data in 

which assignation of scores to individual categories may be inappropriate, for example, in 

analysing alcohol consumption data where directly used categories include never, a few times 

per day, weeks etc [111]. Two of the more powerful nonparametric methods that can give 

mathematical model parameter estimates from raw data are non-parametric maximum 

likelihood (NPML) and nonparametric estimation-maximisation (NPEM). These can be 

applied to patient care to optimise dose regimens for therapeutic effect [113].  

 

The main problem with nonparametric methods are that parameter distributions across a 

population often do not have a continuous and smooth shape particularly in relatively small 

population datasets [114] which can lead to difficulty in characterising multiple sources of 

variability [108]. Also, they may lack power compared with other forms of analysis, and this 

may be a concern if the sample size is small or if the assumptions of a corresponding parametric 

method such as normality of data do hold [110]. Also although using nonparametric methods 

may be used to estimate parameter values to describe data, it is less straightforward to define 

confidence intervals associated with these estimates when using this approach [111]. 

 

2.2.2. Parametric Methods  

Parametric methods are based on the assumption that the F(θ) distribution being applied to 

describe population data across individuals is a defined, parameterised probability distribution. 

These distributions are defined principally by a measure of their central tendency such as mean, 

median, mode combined with a measure of their spread, often standard deviation (SD), that 

broadly describes the dispersion of this central tendency [115]. Parametric methods assume 

https://en.wikipedia.org/wiki/Probability_distribution
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that all random quantities are from known families of probability distributions and this known 

functional form defines the relationship between observed responses across a population and 

input variables [116]. 

 

A significant strength of a parametric approach is the ability to separate or partition IIV, WSV 

and residual error. However, a major weakness is in only obtaining a point estimate for 

parameter values with some associated standard error. This form of parameter estimate may 

not be the best reflection of the potential uncertainty or variability in a parameter value, which 

for example in a PK or PKPD modelling scenario might lead to an unrealistic prediction or 

simulation of concentration or response. Furthermore, some argue this method lacks a desirable 

property of mathematical consistency [117], and also the assumption of the distributional shape 

inherent to parametric methods can be inaccurate for some PK parameters [108]. 

 

Various parametric approaches exist for use in Pop-PK and Pop-PKPD modelling, including: 

the Naïve Average Data (NAD) approach, Naïve Pooled Data Approach (NPD) two stage 

approaches (such as standard two stage (STS) and global two stage (GTS)) [118], Bayesian 

hierarchical approaches, and the nonlinear mixed-effect approach (NLME), of which the latter 

is most widely used. An NLME model can quantify and describe inter-individual 

PKPDvariability without neglecting potential difficulties associated with data (e.g. missing or 

sparse data), which is a more reliable approach that is appropriate for the data in this thesis 

because of the limitation of the dataset (section 3.2.4) compared to NAD, NPD etc. 

 

2.2.2.1. The Nonlinear Mixed-Effect Model Approach (NLME). 

NLME was first introduced for application to PK data by Sheiner and co-workers [119]. The 

main goal of this approach is to model the relationship between a set of independent input 

variables to some dependent variables as in any regression analysis. In the case of a Pop-PK 

model, the dependent variable is concentration, and independent variables would be dose, time 

and possibly some specific individual covariates such as age and weight. A Pop-PD model 

provides the relationship of dose and concentration to some pharmacodynamic effect [120, 
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121]. An NLME approach considers the data as a study sample with the analysis providing for 

estimation of the distribution of model parameters across the study population, defining their 

potential relationship to covariates and characterising IIV, WSV and residual error. Analysis 

can even be performed in a worst case scenario of a single datapoint per patient and data need 

not follow any specific consistent sampling schedule [122].  

 

The parameters of an NLME model are divided into two groups: fixed and random effect 

parameters [123, 124]. Fixed effects parameters describe the central tendency of parameter 

values for the whole population, providing average estimates of pharmacokinetic parameters 

or the effects of covariates on them. Random effects parameters are used to describe the 

variability between and within individuals in the population, i.e. IIV in parameter values from 

the population mean values, WSV and residual error/variability composed of measurement of 

errors, model misspecification, and intra-individual variability [125]. Despite not formally 

being a true Bayesian approach the parameterised NLME model-based approach can also still 

allow the inclusion of prior information via specialised methodologies, thus enhancing 

understanding and statistical power.  

 

In PKPD models the model relationship translating model parameter values into the response 

variable is usually a nonlinear one [126]. Most nonlinear mixed-effects modelling methods 

estimate the parameter values with a maximum likelihood approach [127], where an objective 

function is defined that measures the goodness of fit of a particular model and parameter values 

to a dataset. The global space of potential values for the parameters is searched to optimise the 

objective function value giving the parameter values that best fit the data (depending on how 

the objective function is defined this typically involves searching to minimise its value). 

 

However, it is difficult to calculate the likelihood function for most PK models because of the 

nonlinear relationship between random effects parameters for interindividual variability and 

possibly residual variability as well. Therefore, to deal with these problems, various forms of 

likelihood function approximation methods have had to be developed and implemented in the 
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NONMEM software package as described previously in the literature [128, 129]. These include 

the first-order method (FO), first-order conditional estimation (FOCE) and Laplacian method 

(LM). 

 

The FO approach uses a linearization of the model in the random effects by using a first-order 

Taylor series expansion taking into account random effect variables. The advantage of the FO 

approach is that this “approximate likelihood” is available in a closed form solution. Standard 

errors for the parameters are obtained from the Fisher information matrix assuming the 

approximation is exact, and this method is suitable for initial estimation [116]. Compared with 

the STS approach the FO approach provides better parameter estimation when increased 

residual error leads to increased bias when using the STS approach [130]. However, the FO 

approach leads to deterioration in residual error estimation [131]. On the other hand, one 

compartment model experimental datasets showed similar results in population mean and 

variance estimates with FO, GTS and Bayesian hierarchical modelling approaches [132]. The 

main significant drawback to the FO approximation however, is deriving biased parameter 

estimations especially when the distribution of inter-individual variability is specified 

incorrectly [133].  

 

The First-Order Conditional Estimation (FOCE) and the Laplacian Methods [134] are two 

alternative maximum likelihood estimation methods implemented to reduce bias estimation 

when the inter-individual variability is an increasing concern. FOCE uses a first-order Taylor 

series expansion around the conditional estimates of the differences between the population 

and the individual parameters (inter-individual random effects), then population, fixed effects 

parameters and random-effects parameters are estimated at each iteration step [135]. This 

estimation involves an iterative generalised least-squares type algorithm [122]. The more 

advanced, modified FOCE with Interaction (FOCEI) method additionally allows the 

dependence of random deviations between the individual predictions and the observed 

measurements to be accounted for in the model fitting. 
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Chapter 3. Population Pharmacokinetic Analysis of APAP 

following Overdose in U.K Population 

3.1. Introduction 

Despite the safety and efficacy of APAP at therapeutic dose, evidence presented in section 1.1 

suggests that it is the most common cause of drug induced liver injury through overdose [2]. 

APAP is a widely used medication present in preparations that can be either prescription or 

non-prescription medications and also used in thousands of over-the-counter (OTC) products. 

For prescription medication, it can be combined with morphine to provide very effective 

analgesia for intense pain while minimising the potential for unwanted side effects of using 

opiates such as respiratory depression [136]. Non-prescription APAP, is indicated for pain, 

fever and symptoms associated with colds, flu, and allergies. It is considered a safe medication 

when dosed as directed with the recommended dose of APAP being 4 g (or 75 mg/kg) in 24 

hours for an adult patient. Perhaps because of its ease of availability, APAP is one of the most 

frequently used drugs in intentional overdoses that are associated with drug-induced liver 

injury [137]. Overdose can occur after single acute ingestion of a significant amount of APAP 

or repeated ingestion of an amount exceeding recommended dosage. Acute single overdose is 

defined as ingestion of >4 g (or >75 mg/kg) in a period of <1 hour [138]. 

 

The primary objective in this chapter was to describe the pharmacokinetic profile of APAP in 

a UK group of overdose patients, to support PKPD modelling of DILI biomarker data as part 

of a sequential, two stage PKPD analysis. It was also of particular interest to find out how much 

the PK parameters following overdose dose of APAP are changed compared to patients 

receiving a therapeutic dose and a key secondary objective was also to identify changes in the 

PK parameters of CL and Vd as a function of measured covariates.  
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3.2. Materials and Methods 

3.2.1. Subjects  

Subjects were selected from the BIOPAR NHS portfolio prospective study as previously 

described [61]. The study was carried out as part of the Biomarkers of Paracetamol 

Hepatotoxicity Clinical Trial, run from November 2010 to October 2014 in ten different UK 

centres: Royal Blackburn Hospital, Furness General Hospital, Newcastle Hospitals NHS 

Foundation Trust, Poole Hospital, Royal Bournemouth & Christchurch Hospitals, Royal 

Devon & Exeter Hospital, Royal Liverpool & Broadgreen University Hospital NHS Trust, 

South Devon Healthcare NHS Foundation Trust, St. Helens & Knowsley Teaching Hospitals 

NHS Trust and University Hospitals of Morecambe Bay. The local ethics committee 

prospectively approved the study and all patients engaged in the study were required to give 

written informed consent. Patient information sheets and consent forms were submitted for 

review and approved by the North West Centre of Research Ethics Committee.  

 

The inclusion criteria for this trial were: patients to be 18 years old or over, the subject being 

willing to take part, diagnosis of paracetamol overdose (as defined by > 4g taken in 24 hours) 

and written informed consent obtained. Exclusion criteria were: patient unwilling to take apart, 

and/or unable to consent and the subject being not suitable to participate in the study in the 

opinion of the investigator. 

 

Patients were recruited over a period of 3 years, all patients who enrolled with APAP overdose 

were treated with N-acetylcysteine and each patient was followed up for a maximum of six 

months following discharge from the hospital 

 

3.2.2. Sample Collection, Measurement and Storage 

Two 10 mL blood samples were required at time of presentation, or 4 hours after estimated 

paracetamol overdose, before administration of N-acetylcysteine. A further blood sample was 
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drawn at 12-18 hours after the first, and then followed by samples at 9.30am each day of 

hospitalisation of the patient. Samples were used to measure APAP plasma concentration and 

liver injury biomarkers that included the current standards (ALT and INR). 

 

The first sample was collected in a Lithium/heparin coated vacuette collection tube (for plasma) 

then stored at 4˚C upto 72hr before the occurrence of significant haemolysis, and the second 

sample onwards collected in plain vacuette collection tubes (for serum). Samples were stored 

at -800C until analysis. 

 

Patients with liver damage (as evidenced by raised transaminases and/or abnormal clotting) 

were kept in hospital until liver tests showed consistent signs of improvement. These patients 

had regular monitoring of liver function; in these patients, blood samples were collected every 

48 hours (2 x 10mL of blood for proteomic analysis together with a urine sample) up to a 

maximum of 2 weeks post-admission.  

 

3.2.3. APAP Measurement 

APAP was extracted as described previously [139] from plasma using a liquid-liquid method 

with acidified methanol [26] adding 10 µg APAP-d4 (APAP-d4) and 10 µg APAP-SUL-d3 as 

internal standards and vortex mixed into 10 µl plasma with 0.8 mL methanol. 

 

The analysis was carried out by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) all reagents were purchased from Fisher Scientific, UK. APAP concentration was 

quantified using a high-performance liquid chromatographic assay, the separation was 

achieved by using an Aria CTC auto-sampler, and Allegros pump on an ACE Excel 2 SuperC18 

column. The wavelength of detection was fixed at 244 nm on a Waters 486 Absorbance 

Detector (Waters Ltd, Elstree, UK) to quantify the analyses. 
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3.2.4. Dataset Limitations and Caveats 

It should be noted at this point that there are various limitations with this dataset including a 

lack of access to the original source databases to address some specific queries regarding e.g. 

patient monitoring, ethnicity, and time of NAC dosing. The dataset was an uncontrolled cohort, 

in the sense that it was observed directly in genuine overdose patients and therefore had no 

control regarding (over)dose levels or controlled monitoring of time of ingestion. This led to a 

dataset subject to a high degree of noise, and with a large degree of uncertainty regarding actual 

dose times and dose levels, which would have to be accepted as declared (in the absence of any 

other information) despite potentially being incorrect. 

 

Because of these limitations, spare dataset and the lack of published references covering PKPD 

modelling of the novel biomarkers being examined, a parametric NLME population modelling 

approach implemented in NONMEM was chosen as the most appropriate for the various PK 

and PKPD modelling work in this thesis, having the potential to adapt or account for 

deficiencies in the dataset better than other approaches.  

 

3.2.5. Population Pharmacokinetic Models 

A Nonlinear mixed effects (NLME) approach implemented in NONMEM was used for all 

population pharmacokinetic analyses. As outlined in Chapter 2 (2.2.2.1) and two estimation 

methods were used for parameter estimation: first-order conditional estimation method (FOCE) 

and first-order conditional estimation with interaction method (FOCEI).  

 

3.2.6. NLME Structural and Statistical Model Development 

The population model in the NLME approach is typically divided into three hierarchical sub-

models. These sub-models are: structural sub-model, statistical sub-model and covariate sub-

model. The figure below shows a schematic outline of this form of population pharmacokinetic 

model (Figure 3-1). 
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Figure 3-1 - Schematic outline of a Population Pharmacokinetics model. 

 

 

3.2.6.1. Structural sub-model 

The first step in a population pharmacokinetics analysis is to build the structural sub-model. 

This model is characterised by fixed effects parameters that would describe the central 

tendency of the data, measured in the absence of covariates. These fixed effects parameters are 

often considered “population mean parameters” that describe the PK profile over time in a 

typical individual (Equation 3-1).  

 

  Fpop,j = ƒ (θ, Xj) Equation 3-1 

 

 

where ƒ is a mathematical PK model function, describing the relationship between a given 

vector of independent variables (Xj) such as time and dose, and the jth response of a typical 
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individual according to a vector of fixed effect model parameters θ (coded as THETA in 

NONMEM) containing values such as e.g. typical clearance and typical volume distribution. 

  

During exploratory data analysis, one and two compartment models with first-order absorption 

were fitted to APAP data in NONMEM to determine the best structural model, and a two-

compartment structural model was not well supported by the data (poor precision of parameter 

estimates), this is consistent with the sparseness and degree of noise in the data. PK models 

were parameterised in terms of clearance and volume of distribution using the TRANS2 option 

of PREDPP subroutines supplied in NONMEM. ADVAN2 ‘one-compartment model with 

first-order absorption’ was used [140].  

 

3.2.6.2. Statistical sub-model 

This sub-model seeks to describe and quantify the variability in response between and within 

patients, and any residual variability, by the estimation of random effects parameters. The 

random effects parameters are represented in a variance-covariance matrix. Three types of 

variability are typically characterised in this sub-model: variability among individuals which 

is quantified by the interindividual variability (IIV), variability within individuals between 

occasions which is quantified by the within subject variability (WSV) and residual variability 

(RV), also commonly called residual error, which is due to non-measurable and uncontrollable 

factors such as uncertainty in measurements or inaccuracy in dosing amount [141].  

 

IIV describes how individual’s parameter values in the PK model are different from each other. 

In the analyses in this thesis, IIV was modelled as an exponential random effect to make sure 

all individual parameters are strictly positive (  Equation 3-2) which is coded in NONMEM as  

Equation 3-3. This is broadly equivalent to the parameters having a log-normal distribution 

across the population of individuals. 
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 θi = θpop * exp(ηi)   Equation 3-2 

 

θi = TVθ* EXP (ETA (1))   Equation 3-3 

 

where θi represents the PK model parameter value θ for the individual i, and θpop and TVθ are 

the fixed effect, “typical value” of that parameter for the population. ηi (coded as ETA) denotes 

the interindividual-difference between θi and θpop and is drawn from a normal distribution with 

mean of zero and variance ω2, which is estimated by NONMEM as a random effects parameter 

(coded as OMEGA).  

 

Extending Equation 3-1, we define the individual response for a given set of independent 

variable values (time, dose etc.) in  Equation 3-4: 

 

Fij  = ƒ (θi, Xij)         Equation 3-4 

 

Residual variability/error is the variability that remains unexplained by the model thus far and 

may rise from random errors in dosing and sampling of patients, from data being collected over 

an extended period, or analytic assay variability.  

 

Four different types of residual error models were used in the analyses. These models were 

additive ( Equation 3-5), proportional (Equation 3-6), exponential ( Equation 3-7) and 

combined additive and proportional (          Equation 3-8). 

 

Yij = Fij + εij  

 

       Equation 3-5 
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Yij = Fij * (1 + εij)          Equation 3-6 

 

Yij = Fij * exp(εij)          Equation 3-7 

 

Yij = Fij * (1 + ε1ij) + ε2ij             Equation 3-8 

 

where Yij and Fij represent the jth observed and model-predicted concentrations for the ith 

individual, respectively. εij is the residual random error for individual i and observation j and 

is drawn from an independent normal distribution with a mean of zero and a variance of σ2, 

which estimated by NONMEM as a random effects parameter (coded as SIGMA). 

 

The equations above are coded in NONMEM as follows (Equation 3-9, Equation 3-10, 

Equation 3-11 and     Equation 3-12); 

 

Y = F * EPS(1) Equation 3-9 

 

Y = F *(1+EPS(1)) Equation 3-10 

 

Y = F *EXP(EPS(1)) Equation 3-11 

 

Y = F * (1+EPS(1)) + EPS(2)     Equation 3-12 
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3.2.6.3. Covariate model 

Once the base model (structural model plus statistical model) is identified, then the influence 

of the subject-specific covariates on PK parameters can be assessed. Two kinds of covariates 

were assessed in the data available: continuous and categorical [142]. The continuous 

covariates examined included age and total body weight, while categorical covariates (some 

simply binary) included sex, alcohol consumption, INR and LFT.  

 

Covariate model selection is based on physiological rationale, clinical relevance and statistical 

significance and is assessed by including the value of a covariate in the calculation of the typical 

value of a structural model parameter in the overall model (i.e. at the level of the fixed effects). 

Initial characterisation of a covariate relationship can be done visually with a graphical analysis 

plotting individual model parameter estimates (θi from above) versus covariate values in those 

individuals. 

 

Physiological effects of clinical significance can be quantified by a covariate model for 

example  a percentage change in the typical value of a parameter in question for patients of one 

categorical covariate value vs. another can be estimated (e.g. CL in male vs. female patients). 

Incorporation of the covariate in the model should give a reduction in estimates of IIV and 

residual error as previously non-predictable variability is now being “explained” by the 

covariate information; potentially there should also be an improvement in the precision of 

parameter estimates. 

 

The statistical significance of the inclusion of a covariate in a model is based on the change in 

objective function value (OFV). The OFV is a global measure of the goodness of fit of the 

model to the data that calculates the differences between the observed and predicted values of 

the dependent variable in question (for example with PK data, the observed drug concentration 

and the concentration predicted by the model). 
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There are various different types of objective function and examples include: Ordinary Least 

Squares (OLS); Weighted Least Squares (WLS); Penalized weighted least squares (PWLS), 

Iteratively reweighted least squares (IRLS) and Extended Least Squares (ELS) [143]. 

NONMEM computes an ELS objective function, which it iteratively minimises by searching 

the parameter space of the model parameter values to derive a set of parameter values that best 

describe the data. This OFV is a form of maximum likelihood model fitting and the NONMEM 

objective function is equivalent to -2 x log-likelihood. 

 

The OFV is described by a chi-squared distribution. Therefore, a statistically significant 

(α=0.05) difference in OFV indicating improved fit to the data is given by a drop of 3.84 for 

one extra degree of freedom provided by one additional model parameter added compared to 

the nested base model, (based on χ2
α=0.05,υ=1). This is equivalent to a likelihood ratio test to 

choose between two (mathematically nested) models as to which best fits the data based on the 

minimum value of the objective function. 

 

Covariates are added to a model stepwise, one at a time, observing the change in OFV, retaining 

the covariate associated with the greatest fall in OFV until no further falls of 3.84 or more are 

given. Backwards elimination may then be carried out where covariates are removed from the 

“draft” final model one at a time looking for a more stringent degree of statistical significance 

(e.g. χ2
α=0.01,υ=1, critical value = 6.64) in order for them to be retained.  

 

The clinical relevance and utility of a covariate in clinical practice may also be more important 

than a statistically significant change in OFV [144]. By this criterion, for a categorical 

covariate, a minimum 20% change in the affected model parameter in individuals of one 

covariate category vs. another must exist for the covariate to be considered clinically 

significant. Reduction in the magnitude of IIV in the parameter of interest (despite a potentially 

small change in OFV) is also a consideration as we may choose to reduce unexplained 

variability in the model by using the information in the covariate. 
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3.2.6.3.1. Continuous covariates 

The effect of a continuous covariate such as age and weight is often expressed relative to its 

median. The most common functional forms for covariate relationships are linear (Equation 

3-13), power (Equation 3-14) and exponential (Equation 3-15) as following equations; 

 

TVθ= θ + θcov * (COV-COVmedian) Equation 3-13 

 

TVθ= θ * (COV/COVmedian) 
θcov Equation 3-14 

 

TVθ= θ *EXP (θcov *(COV-COVmedian)) Equation 3-15 

 

Where TVθ represents the population value of parameter θ for a specific covariate value (COV) 

(e.g. the typical value of clearance for individuals of a specific weight), and θ is the population 

value of the parameter for those individuals having a covariate value equal to the median value 

(COVmedian) as for these individuals COV - COVmedian = 0 or COV/COVmedian = 1. θcov 

represents the fractional change in the population parameter value as a result of the covariate 

effect. 

 

The equations above are coded in NONMEM as follows for linear (Equation 3-16), power 

(Equation 3-17) and exponential (Equation 3-18) covariate relationships; 

 

TVθ=THETA(1)*THETA(2)*(COV-COVmedian)  

θ= TVθ *EXP(ETA(1))  

 

Equation 3-16 
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TVθ=THETA(1)* (COV/COVmedian)** THETA(2)  

θ=TVθ*EXP(ETA(1))  

 

Equation 3-17 

 

TVθ=THETA(1)*EXP(THETA(2)*(COV-COVmedian)) 

θ=TVθ*EXP(ETA(1))  

 

Equation 3-18 

 

TVθ is a typical value  parameter with the median value of covariate (COVmedian). θ is a 

parameter estimate, ETA(1) is a difference between individual and population of the parameter 

estimate. THETA(2) is a factor describing the influence of covariate (COV). 

 

3.2.6.3.2. Binary and categorical covariates 

A binary covariate model was used for gender, INR and alcoholism categories (Equation 3-19) 

and was coded in NONMEM as Equation 3-20 where the covariate category for a given 

individual is described in the data file with a dummy variable value of 1 or 0. 

 

TVθ= θj * θcov 
COV Equation 3-19 

 

TVθ=THETA(1)*THETA(2)**COV Equation 3-20 

 

If the categorical covariate model has n discrete values where n is greater than or equal to 3 

(e.g, for ALT status in this dataset) (n-1) dummy variable values must be used in the dataset. 

For example, ALT used two dummy variables, the first dummy is 1 for ALT >100 and < 1000 

and otherwise 0, the second dummy being 1 if ALT > 1000 and otherwise set as 0 ( Equation 

3-21) and coded as (  Equation 3-22). Individuals will either be COV1 = 0 and COV2 = 0 (for 
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those <100), COV1 = 1 and COV2 = 0 (for those >100 and < 1000) or COV1 = 0 and COV2 

= 1 for those >1000.  

 

TVθ= θj * θcov1 
COV1

* θcov2 
COV2        Equation 3-21 

 

TVθ=THETA(1)*THETA(2)**COV1* THETA(3)**COV2   Equation 3-22 

 

3.2.7. Dealing with Outliers 

Outlier data are any observations that are unexpectedly different from other values. Outliers 

and error are not synonymous however, and a value lying distinctly separate to a body of other 

data points (often when visualised graphically) could arise from error, chance, or may reflect 

general variation and represent a ‘true’ difference. Careful examination of a dataset can suggest 

the likelihood of an outlier being an inaccurate value and assists whether or not the outlier 

could instead be plausibly due to genuine biological variation. 

 

The Z score (also known as a standard score) was used to exclude outlier data. The Z score is 

given by Z = (mean - value) / SD, and quantifies how many standard deviations a value is from 

the mean. With the data in this thesis, datapoints with Z-scores outside the range of +/- 2 

standard deviations from the mean of all the observed data values were judged outliers and 

were thus candidates for exclusion from analysis [145]. 

 

3.2.8. Model Validation 

Model evaluation methods aim to assess the developed model for its fitness or quality in 

describing the data. Model evaluation centres on graphical inspection plots (goodness of fit 

plots or diagnostic plots) and assessment of the precision of model parameter estimates. 

Diagnostic plots were created in R version (3.4.1). With plots providing visual inspection of 
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the following: how well the model population and individual predicted concentrations (PRED 

and IPRE) match the observed data, conditional weighted residuals (CWRES) versus 

population predictions (PRED) and versus time, clear identification of statistical outliers in the 

raw data, and identification of covariate relationships. 

 

Once a final model was selected, robustness and precision of parameter estimates was 

evaluated using the nonparametric bootstrap approach carried out using the Perl Speaks 

NONMEM (PsN) toolbox [128]. This form of bootstrap is a resampling method which was 

first presented by Efron in the late 1970s for assessment of bias and precision [146]. The 

method involves repeated random sampling with replacement from the input population data 

file to create bootstrap datasets that are then fitted with the final mathematical model. The 95%  

confidence interval (CI) for parameter estimates was calculated from percentiles (2.5th, 50th, 

and 97.5th) of the empirical distribution of the estimated parameters from 1000 bootstrap 

datasets run.  

 

A visual predictive check (VPC) is a simulation-based diagnostic for all model components in 

a population approach, mixed effects model with its origin in the posterior predictive check 

(PPC) [147]. A VPC graphically compares the observations of a dataset with the prediction 

interval generated by repeated simulations (typically n = 1000) of the dataset and its variability 

based on the final fixed and random effects parameter estimates of the model fitting. Observed 

data was plotted overlaid with 5th, 50th and 95th percentiles of the simulation data to allow visual 

assessment of how the modelled fit describes the data and its variability. 
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3.3. Results 

3.3.1. Data 

202 patients were recruited in the BIOPAR clinical trial. Data from 94 of these patients with 

non-staggered acute APAP overdose (i.e. a single ingestion overdose event) were then taken 

forward for this analysis. The demographic data for all subjects are summarised in Table 3-1. 

For the model-building process missing individual data were replaced by the median value of 

the study population, which is a standard method when <10% of data is missing [148]. For 

weight, there were 7 patients  (7.4% of the study population) where this was required. The 

median dose of APAP ingested was 32g (range 8-140g). 225 APAP plasma samples were 

measured for concentrations and the median APAP plasma concentration at first presentation 

was 33mg/L (range 2-500 mg/L). Histograms of age and weight across the individuals in the 

dataset are shown in Figure 3-1. 

 

Table 3-1: Summary statistics of BIOPAR patients’ characteristics. 

Weight (kg)  
   Mean (SD) 71.5 (19.6) 

   Median 66.68 

   Min, max 35, 171.4 

Age (years)  

   Mean (SD) 12.4 (14.5) 

   Median 29 

   Min, max 18, 81 

Gender  
 Female n (%) 48 (51%) 

 Male n (%)  46 (49%) 

Chronic Alcoholism   

 Yes n (%) 

 No n (%)                                             

 49 (52%) 

 45 (48%) 

ALT  

<100 (n)   87 

>100 (n)   7 

INR  

<1.5 (n)   90 

>1.5 (n)   4 
                                                      (SD) Standard Deviation 

                                                      (n) Number of patients 
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Figure 3-2: Histograms of age and weight. 

Distribution of weight and age in dataset patients’ age. The distribution of weight is approximately normal, with 

a bell-shaped curve over the data, the distribution of age appears to be bimodal and therefore is not 

approximately normal. 

 

 

3.3.2. Base Model 

For the development of the base population model the development dataset (Table 3-1), which 

included 225 plasma concentration values of APAP, was analysed. After a numerous run for 

NUNMEM, the data was best described by a one compartment, first-order kinetics oral 

absorption structural model, with exponential residual error as a base model that showed the 

most appropriate fit to the data (see model evaluation in 3.3.2.1). This model was implemented 

in NONMEM using the ADVAN2 subroutine and the FOCEI estimation method. The model 

was parameterised with absorption rate constant (Ka), apparent oral clearance (CL) and 

apparent volume of distribution (Vd). Inter-individual variability was implemented on CL only, 

therefore the IIV of V was fixed as zero.  

 

Ka could not be well estimated with this dataset as the absorption phase for APAP is very rapid, 

and was not sampled or characterised in the timecourse of the data. The value for Ka was 

therefore fixed based on a literature value for a population mean Ka. Different values were 

tested to examine the sensitivity of Ka including 4.57h-1 [148], 2.04h-1  [149] and 1.03 h-1  
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[150]. The best fit for basic structure model was given by fixing the absorption rate to a value 

of 4.57h-1.  

 

The mean population estimation results are summarised in Table 3-2 and for CL and V were 

10.2 mg/L 11.4% RSE and 133L 12.6%RSE, respectively. IIV of CL was 44.7% coefficient 

variation (CV). Residual variability was implemented with exponential error and was estimated 

as 122% CV. The OFV for this base model was 1752. 

 

Table 3-2: Population mean estimates of pharmacokinetic Base model parameters 

Model Parameter Unit Estimate RSE% Bootstrapa  95% CIb 

Fixed Effects      

CL (L/h) 10.2 11 10.1 (7.9-12.4) 

Vd (L) 133 12 130.01 (100-165) 

Ka (fixed) (h) 4.57 -  - 

Random Effect      
cIIV-CL (%CVd) 43.7 26 43.7 (41.3-46.1) 

Residual Error 

OFV 

(%CV) 122 

1752 

28.8 122 970.7-164.3) 

aobtained from 681 bootstrap runs; bias = (based model estimate – bootstrap median). 
bCI is Confidence Interval.  
cIIV is inter-individual variability. 
dCV is a coefficient variation.  

 

 

3.3.2.1. Base model evaluation 

Goodness-of-fit of the PK model was assessed by a graphical approach. The plots of observed 

PK concentrations vs. population and individual PK model predictions (Figure 3-3) indicate 

that the model predicted PK concentration levels agreed reasonably with observed values. 

However there is minimal improvement in closeness to the line of unity when comparing the 

observed vs. population predicted (PRED) values plot with the  observed vs. individual 

predicted (IPRED) values plot. This combined with the high estimate of residual variability 

(SIGMA) suggests the population model is not accounting for interindividual variability 

particularly well via the random effect parameter on CL. This is likely to be due to the 
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previously mentioned limitations with the dataset regarding the true nature of the patient dosing 

records.  

 

The plots of CWRES vs. time or population predicted values Figure 3-4 show relatively 

acceptable random scatter around zero across their ranges up to 50h suggesting minimal bias 

or trends in the residual error model to this point, but potentially some degree of systematic 

model overprediction after this point. CWRES values greater than 4 were considered statistical 

outliers. 

 

A VPC was generated from 1000 simulations of the dataset population based on the population 

model parameter estimates. The 90% prediction intervals and medians in the VPC are in good 

agreement with the observed data indicating acceptable predictive performance of the model 

(Figure 3-5). Standard errors, confidence intervals and bias for parameter estimates were 

calculated from 681 successful bootstrap runs with these results also summarised in Table 3-2. 

 

  

Figure 3-3: Goodness of fit plots for population PK base model for APAP. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED)   

Line of unity (black) in both plots for illustration. 
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Figure 3-4: Residual scatter plots for population PK base model for APAP. 

 LEFT: conditional weighted residuals (CWRES) versus population APAP concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus time. 

 

 

 

Figure 3-5: Visual predictive check plots for the base Pop_PK model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

Population APAP Concentration mg/L Prediction Time (h) 
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3.3.3. Covariate Screening 

Initial evaluation of covariate effects was done by examining potential relationships between 

the empirical Bayes estimates (EBEs) of individual subject model parameter values and the 

values of covariates in those individuals.  

 

Correlation plots of continuous covariates of weight and age vs. CL are presented in Figure 3-6 

for visual evaluation of any potential covariate effect. There is little change in clearance shown 

with increasing weight and age with CL; indicated by non-significant correlations -0.18 

(t93=0.15, p=0.8) and -0.13 (t93= -1, p=0.21) respectively. 

 

 

Figure 3-6: Scatter plots for the covariates: weight (WT) and age.  

LEFT: Scatter plots for WT on CL, the red line is a fit line with slope=0.1. 

RIGHT: Scatter plots for age on CL, red line is a fit line with slope= -1.04.  
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Box and whisker plots were used for visual evaluation of categorical covariates gender, INR, 

ALT and chronic alcoholism as potential effects on the Clearance PK parameter. For visual 

clarity, individuals with outlier parameter estimates were not plotted (n=9). Figure 3-7 indicates 

that values of CL in male vs. female are potentially not significantly different across the two 

groups. This was confirmed with a t-test, where the p-value examining the difference between 

the mean of the two groups was (t93=-0.63, p=0.53). 

  

 

Figure 3-7: Box plot for clearance categorized by gender 
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Patient INR and ALT serum levels at admission time were categorised based on Dear et al. 

(2018) [61] as indicating normal function, impaired function, severely impaired and liver 

toxicity according to the following criteria  (Table 3-3)  

 

Table 3-3: Categorisation of Liver injury by LFT AND INR test value  
ALT (units/L) INR No. Patients 

normal  <100 - 87 

Impaired 100< ALT <1000 - 5 

severely impaired  100< ALT <1000 >1.5 0 

liver toxicity >1000 n/a 2 

 

No patients met the severe liver impairment criterion according to both ALT and INR, so these 

criteria could be reduced to definition by ALT alone was based on Table 3-4 and Table 3-5. 

 

 Table 3-4: Categorisation of Liver injury by ALT LFT test value  
ALT (IU/L) No. Patients 

normal  <100 87 

Impaired 100< ALT <1000 5 

liver toxicity >1000 2 

 

Patient liver function can also be categorised according to INR function alone [148] where test 

values indicate normal or impaired function or liver toxicity according to the following criteria: 

 

Table 3-5: Categorisation of Liver injury by INR LFT test value  
INR No. Patients 

normal  <1.5 90 

impaired >1.5 4 

 

Figure 3-8 presents individual CL parameter values categorized by INR function. There is some 

visual indication that there may be a significant decrease in mean CL in patients with impaired 

liver function as measured by INR, approximately 25% reduced compared to the CL values in 
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the normal liver function sub-population. A t-test comparing the mean CL in the two categories 

returned a p-value was (t93=-1.9, p=0.15). However, because the number of patients is minimal, 

with only four patients in the impaired liver function category according to INR, out of 94, this 

relationship should be treated with caution. 

 

Figure 3-8: Box plot for clearance categorized by INR 

 

 

Figure 3-9 shows the relationship of liver impairment and liver toxicity, as categorized by ALT 

liver function test value to CL in this dataset. Visual inspection indicates a slight decreas in CL 

in the presence of liver impairment, but increas in clearance in patients with liver toxicity. 

Given the low numbers in both the impaired and liver toxicity categories however, these trends 

may be artefactual and mechanistically inconsistent with each other.  
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Figure 3-9: The Boxplot shows the relation between ALT (liver impairment function and liver toxicity) on 

CL.  

 

Figure 3-10 shows individual CL parameter estimates categorized according to chronic 

alcoholism status. A 13% increase in mean CL is seen in patients with chronic alcoholism 

compared to those without, and this difference was shown to be significant via a t-test (t93=1.5, 

p=0.04).  
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Figure 3-10: the boxplot shows the relation between chronic alcoholic patients on CL. 

 

 

3.3.3.1. Covariate model runs in NONMEM 

Table 3-6 shows a summary of the change in OFV under covariate models that were assessed, 

where various continuous and categorical covariates were analysed for their effects on 

clearance. No significant falls in OFV were seen for the continuous covariates weight and age. 

 

For the categorical covariate for liver function based on INR (Table 3-3), NONMEM 

consistently estimated a covariate effect where liver impairment patients (INR >1.5) had a 

potentially lower typical CL. However, although this might make sense mechanistically, 
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because of the small number (4) of liver function impaired patients in this category in the 

dataset this inference is not reliable. 

  

NONMEM consistently estimated covariate effects where (ALT>100) liver impairment 

patients had a lower typical CL, and surprisingly (ALT>1000) liver toxicity patients had higher 

typical CL. The latter result does not make sense for any clinically relevant explanation; again 

however, these results are likely to be unreliable given the low n-numbers in both the impaired 

(4 patients) and liver toxicity (2 patients) categories as measured by ALT and may be 

artefactual and mechanistically inconsistent with each other and as such would take forward 

for the final PK model. 

 

Table 3-6: Summary of univariate analyses to determine the impact of covariates on APAP overdose on 

Clearance 

 
Univariate 

Covariate relationship Equation OFV ΔOFV θCL l/h 

No covariates (Base 

model) 
TVCL= θCL 1752  10.2 

Weight on CL TVCL= θCL + θ2(Weight) * (Weight -66.68)    

Weight on CL TVCL= θCL * (Weight / 66.68) θ2( Weight) 1753 1 10.2 

Weight on CL 
TVCL= θCL *EXP (θ2(Weight) *( Weight -

66.68)) 
1752 0 10.2 

Age on CL TVCL= θCL+ θcov * (Age- Age median)    

Age on CL TVCL= θCL* (Age / Age median) θ(Age)    

Age on CL TVCL= θCL*EXP (θAge *( Age - Age median)) 1750 -2 9.3 

Sex on CL TVCL= θCL*θSEX**SEX 2219 467 0.005 

INR on CL TVCL= θCL* θINR**INR 1730 -22 11.4 

ALT on CL TVCL= θCL* θLFTI**LFTI* θLFTII**LFTII 1744 -8 13 

Alcoholism on CL TVCL= θCL* θALC**ALC 1743 -9 9.1 
CL is a clearance 
CLTV is a typical value for the clearance 

θ is Theta. 

INR is international normalised ratio for assessment liver injury. 

ALT is alanine aminotransferase 
LFT is liver function test 

 

3.3.4. Final Population PK Model  

The final population PK model for APAP following overdose is a one-compartment disposition 

model with first-order absorption, with an exponential residual error model, and alcoholism as 

a categorical covariate on CL– this categorical covariate effect being the only one having 
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statistical and clinical significance, having some mechanistic rationale and having sufficient n-

numbers per category to be considered trustworthy. The final model parameter estimates are 

summarised below (Table 3-7). 

 

Diagnostic plots Figure 3-11 and Figure 3-12 indicated acceptable goodness of fit given the 

limitations of the dataset (see discussion in section 3.4). Figure 3-13 presents 90% prediction 

intervals and medians in the VPC are in good agreement with the observed data indicating 

acceptable predictive performance of the model. 

 

Standard errors, confidence intervals and bias for parameter estimates were calculated from 

535 successful bootstrap runs with these results also summarised Table 3-7. For the fixed-

effects parameters, the bootstrap medians were very similar to the final NONMEM parameter 

estimates with the original dataset, and the relative bias for CL and Vd parameters 0.8% and 

7% for the alcohol covariate. The bootstrap medians for the random-effects parameters were 

also in the same range of the original values with only small relative bias 0.01%.  

 

Table 3-7 Population mean estimates of pharmacokinetic model parameters 

Model Parameter Unit Base 

Model 

Final 

Model 

RSE

% 

Bootstrapa 

Median 

Biasa Relative 

Bias %a 

95% 

CIb 

Fixed Effects         

CL (L/h) 10.2 9.14 11 9.06 0.08 0.8 6-13.5 

Vd (L) 133 122 12 123 1 0.8 67-218 

Ka (fixed) (h) 4.57 4.57 - - -  - 

Covariate influence         

CL_Chronic Alcoholic   0.13 - 0.14 0.01 7 0.01-0.7 

Random Effect         

IIV-CLc (%CVd) 43 44 26 44 0 0 17-62 

Residual Error (%CV) 122 117.4 9 117.2 0.02 0.01 77-158 

aobtained from 535 bootstrap runs; bias = (final model estimate – bootstrap median); 

relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
bCI is Confidence Interval.  
cIIV-CL is inter-individual variability of clearance. 
dCV is a coefficient variation.  
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Figure 3-11: Goodness of fit plots for population PK final model for APAP. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED) 

Line of unity (black) in both plots for illustration. 

   

Figure 3-12: Residual scatter plots for population PK final model for APAP. 

 LEFT: conditional weighted residuals (CWRES) versus population APAP concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus Time. 

 

The VPC indicates that the description of the data by the final structural model was accurate 

and precise with the 225 observed datapoints laying acceptably within 95% prediction interval 

of the model.  

Population APAP Concentration mg/L Prediction Time (h) 
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Figure 3-13: Visual predictive check plots for the final Pop_PK model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 
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3.4. Discussion 

In reviewing the literature, no data was found describing the Pop-PK of APAP following 

overdose in UK patients, and the present study was designed to address this gap in knowledge. 

Earlier PK studies that involved oral dose of APAP reported a one compartment disposition 

model to be most appropriate [148], and this was confirmed in the analysis of the BIOPAR 

APAP overdose dataset where again a one compartment model (with first order absorption 

kinetics) was chosen as the best fit for the data, however with the slight caution of the dataset 

being limited to a relatively small number of patients and sparsely sampled.  

 

The estimate of population CL in the present study (9.14 L/h) is nearly half that previously 

reported for APAP by Forrest and colleagues [151] following therapeutic dose in adults (18.9-

23.1 L/h). However, the value of Vd obtained in our study (122 L) is higher than the value 

reported by Levy [16] following therapeutic dose (66 L).  

 

The current study found that the IIV of CL (expressed as a CV%) was 44%. Explanatory 

covariates of age, weight, INR, ALT and alcoholism status were investigated as to their 

potential to explain or predict part of the IIV on CL. This study did not find the continuous 

covariates of age and weight to have a significant effect on CL. On the other hand, alcoholism 

status did show a significant effect on CL, increasing the CL by approximately 14% in 

alcoholics. This finding supports previous research, as alcoholism has been shown to increase 

CYP2E1 expression, which is responsible for APAP metabolism. Thus, in theory, alcoholics 

could remove total APAP quicker, but have a higher exposure to APAP metabolites compared 

to non-alcoholics [152].  

 

The main weakness of this study is the failure to adequately assess the effect of patients having 

liver injury (as measured with LFT values of ALT>100 and INR>1.5) on their clearances of 

APAP. No category of patients with liver injury showed significantly different APAP CL to 

the rest of the population despite a plausible mechanistic basis for there to be some form of 
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detectable difference. A likely explanation is that the dataset was insufficiently sized and as a 

result only 4 out 94 patients had increased INR and 7 out 94 had increased ALT reducing the 

possibility of detecting the effect.  

 

It is also interesting to note that the residual error estimate (under an exponential residual error 

model) is high at 117.4%. The main contributor to this error is likely to be inaccurate recording 

of dosing/ingestion time and amount. This key limitation to the dataset is also likely to account 

for the relatively poor accounting of IIV via the random effect on CL as shown visually in 

Figure 3-11 by the lack of improvement for the plot of Observed vs. Individual prediction 

compared to Observed vs Population prediction (in terms of their closeness of their trends to 

unity). When dose level and dose time are uncertain or inaccurate it is perhaps not unsurprising 

that IIV could not be adequately partitioned from the non-predictable residual error.  With this 

in mind, potential future analysis might need to provide another method to account for 

uncertainty in dose and dose-time (see Chapter 6).  

 

The results of this chapter however remain important to provide the basis for the development 

of PopPKPD models using a sequential approach (specifically making use of Empirical Bayes 

Estimates (EBE) of individual patient PK parameter estimates) to describe the effects of APAP 

overdose as measured by liver injury biomarkers as will be covered in the next chapter.  
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Chapter 4. Population Pharmacokinetic/Pharmacodynamic 

Analysis of APAP Overdose in UK Population 

4.1. Introduction 

APAP overdose is considered a major medical problem in the UK and the leading cause of 

drug induced liver injury and acute liver failure [2]. Stratification of risk and the need for N-

acetyl-cysteine (NAC) antidote therapy is sub-optimal and based on a timed plasma APAP 

concentration based upon a nomogram treatment line approach [153]. Alanine 

aminotransferase activity in serum (ALT) is widely used clinically to assess liver injury [154]. 

However, this biomarker is insufficient and lacks sensitivity and specificity [155]. Mechanistic 

biomarkers have been demonstrated to provide added value for the early prediction of APAP-

induced hepatotoxicity [81]. Such biomarkers include: microRNA-122, HMGB1, apoptosis K-

18, necrosis K-18 and GLDH. Recent evidence from clinical and preclinical studies have 

defined the development of a panel approach to determine the likelihood of liver injury, and 

provide earlier detection and mechanistic understanding of prognostic information of liver 

injury [156]. 

 

Further information or investigation is needed to explore the pharmacodynamic response for 

these novel biomarkers. PKPD modelling is an important part of such work and allows 

estimation and prediction of clinically relevant PKPD parameters to quantify and demonstrate 

the dose-concentration-response relationship. When clarified, this relationship can provide, 

characterise and predict information regarding the level of biomarker response followed by 

ingestion of APAP overdose. 

  

The aim of this chapter is to build population PKPD models to describe those biomarkers 

predicting or influenced by liver injury followed by APAP overdose, with a specific aim to 

detect the earliest biomarkers released following APAP overdose. Implementing these models 

with data in a population approach allows prediction of individual parameters from otherwise 
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sparse and/or noisy data to identify relationships between biomarker measurements and the risk 

of patients suffering DILI at early hospital presentation.  

 

4.2. Methods 

4.2.1. Subjects, Sample Collection and Storage 

Subjects employed in this PKPD model were recruited in the BIOPAR NHS portfolio 

prospective clinical trial and were the same cohort used to develop the PK model in the previous 

chapter (see section 3.2.1). Moreover, sample collection and storage were described earlier in 

section (3.2.2).  

 

4.2.2. Biomarkers Measurement 

Six biomarkers were measured and used for PKPD modelling. These biomarkers were 

microRNA-122, HMGB1, K-18 (i.e. apoptosis K-18 and necrosis K-18), GLDH and ALT. 

 

4.2.2.1. microRNA-122 Measurement 

microRNA-122 (miR-122) was initially extracted and purified using the commercially 

available miRNeasy kit for miR-122 followed by an RNeasy MinElute Cleanup Kit which was 

previously described by Lewis and colleagues [72]. 40 µg of serum was added to 200 μl 

nuclease-free water and mixed with 700 μl of QIAzol reagent. It was incubated for 5 min before 

the addition of 140 μl chloroform followed by centrifugation at 12,000 g at 4 oC for 15 min, 

taking 350 μl of the aqueous supernatant into fresh microtubes for the QIAcube (Qiagen) to 

carry out further extraction and purification automatically. 

 

miRNAs were quantified by using a TaqMan miRNA quantitative reverse transcriptase–

polymerase chain reaction (qRT–PCR) assay according to the protocol of the manufacturer 
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[157]. Briefly, the small RNA was reverse transcribed using specific stem-loop reverse 

transcription (RT) primers; approximately 10 ng total RNA was used for first-strand cDNA 

synthesis using specific primers with let7 gene expression was used as a control group. Real-

time PCR amplification was carried out with a gene-specific forwarded primer and a reverse 

primer, along with a probe, in an ABI Prizm 7500 PCR machine.  

 

4.2.2.2. HMGB1 Measurement 

HMGB1 serum concentration was determined in undiluted serum using an HMGB1 enzyme-

linked immunosorbent assay (ELISA) kit, according to the guidelines of the manufacturer 

[158]. The assay procedure takes two days for measurement. First day: 10 μl of both standards, 

positive control and serum samples were added to the appropriate duplicate wells of a 96-well 

plate followed by 100 μl of sample diluent to every well. The plate was sealed, gently shaken 

and subsequently incubated at 37 oC for 20 - 24 h.  

 

Second day: wash solution was produced by adding 100 ml wash buffer to 400 ml distilled 

water (5x dilution) and each well was washed five times with 400 μl/well and the plate dried 

manually. 100 μl of the enzyme conjugate solution was then added followed by sealing the 

plate and incubation at 25 C for 2 hrs. The plate was then washed again followed by addition 

of substrate solutions A and B mixed in equal parts, adding 100 μl of this substrate solution 

mix to each well, followed by incubation in darkness and at room temperature for a further 30 

min, then added of 100 μl of stop solution. Five minutes later, the plate was read at 450 nm 

using a Varioskan Flash machine [159] to assess colour intensity for HMGB1 measurement. 

The lower limit of quantification (LLQ) was 0.1 ng/ml. 

 

4.2.2.3. K-18 Measurement 

Quantitative detection of apoptosis K-18 biomarker was determined by using ELISA assays 

for epithelial keratin M30 (apoptosense) [160], and necrosis K1-8 biomarker by epithelial 
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keratin M65 (EpiDeath) [161] according to the manufacturer’s guidelines. The M30 antibody 

specifically binds caspase-cleaved keratin 18 but does not bind the un-cleaved form, and M65 

is used for determination of total cell death in the study of epithelial cells. 

  

25 μl of standards, controls (low and high) and serum samples were mixed into 96-well plates 

in appropriate duplicate wells. 75 μl of the conjugate solution was then added to every well and 

the plate sealed and incubated for 2 hrs (M65) or 4 hrs (M30) on a plate shaker at 600 rpm. 

Then the plate was washed out manually with 250 μl wash solution per well and the plate dried. 

200 μl of substrate solution was then added to each well and the plate was incubated in darkness 

at room temperature for 20 min. After the incubation period, 50 μl of stop solution was added 

and the plate was shaken. Lastly, after 5 - 30 min the absorbance at 450 nm was read using a 

Varioskan Flash machine [159]. 

 

4.2.2.4. GLDH Measurement 

Glutamate dehydrogenase (GLDH) activity was measured by using a kinetic assay in a 96-well 

plate format. Briefly, to each well was added: 150 l 75 mM triethanolamine and ammonium 

sulfate buffer, 5 l 11 mM NADH, 20 l 14.2 mM ADP and 60 l serum (or diluted 

serum). Plate contents were mixed and incubated at 37C for 15 minutes. The reaction was 

initiated by addition of 65l of 45 M -ketoglutaric acid. The contents of the well were mixed, 

and the change in absorbance (340nm) was measured over 5 minutes. The rate of fall in 

E340/min was converted to International Units per litre (U/l). 

 

4.2.2.5. ALT Measurement  

Serum Alanine transaminase (ALT) was measured with a photometric kinetic assay, by using 

InfinityTM ALT (GPT) Liquid Stable Reagent according to the guidelines of the manufacturer 

[162]. 30 μl of sample was loaded in duplicate into 96-well plates. Then mixed with 300 μl of 

ALT reagent per well to each sample before assaying on a Varioskan Flash machine [159].  
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There is a series of reactions involved in the assay system leading to a reduction of pyruvate to 

L-lactate with lactate dehydrogenase as a result of the oxidisation of NADH to NAD. The 

oxidation of NADH leads to a decrease in absorbance at 340 nm, and ALT activity is therefore 

assayed by calculating the maximum rate of change in this absorbance over multiple readings. 

 

4.2.3. Population Pharmacokinetics Pharmacodynamics Models 

Mechanism-based pharmacokinetic-pharmacodynamic modelling (PKPD) aims to predict 

exposure-response relationships, especially in vivo, and can also be used to characterise the 

interaction of drug effect with disease processes or progression [163]. The concept of 

mechanism-based modelling of PKPD is enhanced in often novel dimensions by the selection, 

evaluation and validation of biomarkers with strong emphasis on mechanistic rationale [164]. 

Biomarkers in this context are defined as the means to quantify a relationship between drug 

exposure and effect. In 2005, Danhof and colleagues classified seven main types of biomarker 

based on mechanism and location (Table 4-1). In this thesis, types 4 was used to quantify the 

APAP dose-concentration-response relationship and thus eventually to provide information for 

prediction of the level of acute liver injury given a certain level of APAP dose.  

 

Table 4-1: The Mechanistic Classification of Biomarkers[165] 

Type 0: Genotype or Phenotype 

Type 1: Concentration of drug or metabolite 

Type 2: Target occupancy 

Type 3: Target activation 

Type 4: Physiological measure or laboratory test 

Type 5: Disease Processes 

Type 6: Clinical Scales 

 

Population PKPD modelling uses statistical models to describe observations of concentrations 

and effects and their variability but may also give some insight into the underlying biological 

process. Variability in plasma concentrations between-subjects also often tends to be lower 

than in effects and a Pop-PKPD approach can allow the characterisation of both sources of 

variability. 
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4.2.4. NLME Structural and Statistical Model Development 

After a dose of APAP, changes in concentration and effect will occur over time, and a basic 

PKPD model using a direct effect between plasma concentration and the observed 

biomarker/effect/outcome may be unable to explain the concentration-effect relationship due 

to delays in response. 

 

This phenomenon has been shown previously for APAP where a PD model for the 

concentration effect relationship of APAP (and hence its dose-response) was described by Gibb 

and Anderson [166] for outcome biomarkers such as pain score and temperature following a 

therapeutic dose. It was shown in a plot of effect vs. concentration with observations labelled 

in chronological order that a hysteresis loop was present, resulting from a delay in effect. A 

hypothetical effect compartment model was thus used in their PKPD analysis.  

 

The effect compartment model as described previously (section 2.1.2.2) is one theoretical 

concept to overcome the issue of delay in response from a given driving PK concentration,  and 

describes a compartment offset by a delay/activation/deactivation parameter (Ke0) from the 

driving PK concentration compartment(Figure 4-1). 
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Figure 4-1: Schematic description of effect compartment model 

 

 

It was initially assumed that given an effect compartment model was shown to be sufficient to 

describe a therapeutic APAP dose effect by Gibb and Anderson that the same model could be 

applied to data following overdose in this thesis. However, preliminary analysis of the 

biomarker data using this form of PKPD model found that applying the approach of Gibb and 

Anderson was not appropriate. Despite various attempts adjusting various NONMEM options 

(e.g. initial parameter estimates, estimation method, significant figures of the estimation, type 

of ODE solver, etc.) no analytical runs for the biomarker data using this model were successful 

– consistently failing to minimise successfully and give parameter estimates. There are several 

potential reasons for this including: 
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 The much higher APAP doses (i.e. overdose above 4g of single acute doe) in this data 

compared to the data of Gibb et al. with the resultant higher modelled PK concentrations 

giving a potential PD response to a different order of magnitude to the previous data. 

 That the BIOPAR biomarker data was of target effect biomarkers as opposed to the 

outcome biomarkers (e.g. reduction in fever, pain score) used by Gibb and Anderson 

which may have a qualitatively different behaviour in terms of noise, influence by other 

physiological factors etc. 

 That the time course of effect of the biomarkers in this dataset was more clearly 

described as a deviation from, followed by a return to, baseline which may have been 

less easily described or parameterised with solely an effect compartment model. 

 

Preliminary analytical efforts then moved on to applying an indirect response model to the 

biomarker data (section 2.1.2.3) however these attempts also failed to fit the data, likely for 

similar reasons to the effect compartment model. As a result, an approach was adopted where 

an indirect response model was combined in sequence with the effect compartment model to 

sufficiently account for the apparent delays in response and the nature of the data describing 

APAP overdose effects in the data being analysed. 

 

4.2.4.1. Sequential effect compartment / indirect response model 

As previously described (section 2.1.2.3) indirect response PD models were developed to 

describe drug effects where pharmacological actions occur by indirect mechanisms such as 

inhibition or stimulation of the production or dissipation of factors resulting in the measured 

effect. They have been previously implemented in sequence with a delay/effect compartment, 

for example in the work of Cleton et al. [167].  

 

The sequential effect compartment/indirect response PKPD model for APAP is described by 

four compartments. These compartments are gut, central, effect and response. Figure 4-3: The 



Chapter 4 –Population Pharmacokinetic /Pharmacodynamic Analysis of APAP Overdose in 

U.K Population 

 

77 

descriptive assumption of compartment models location related to APAP metabolism.Figure 

4-3 below represents these four compartments. Gut and central compartments are the one-

compartment oral PK disposition model for APAP, the effect and indirect response 

compartments are the PD model to describe APAP effects.  

 
 

Figure 4-2: First Order Kinetic Combined with Effect Compartment followed by Indirect Response 

 

 

The ordinary differential equations for gut, central, effect and response compartments in the 

schematic are outlined below in, Equation 4-1, Equation 4-2, Equation 4-3, Equation 4-4 and 

Equation 4-5, respectively. Cp is the plasma concentration, and Kel is the first order elimination 

rate constant of the drug equal to Clearance divided by Volume of distribution. E is the 

magnitude of the effect driven by the Effect compartment concentration which is a function of 

the effect compartment “concentration” (Ce) using the previously described Emax model 
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(Equation 2-5). This drug effect magnitude then acts on the Kout “dissipation” parameter of 

the indirect response model (i.e. the form of indirect response model in Equation 2-16). The 

value of the response compartment is then used to model the observed drug 

response/effect/biomarker data. 

 

dDepot/dt = -Ka * Depot                                                      Equation 4-1 

 

dCp/dt = Ka*Depot/V – Kel * Cp                                Equation 4-2 

 

dCe/dt = Ke0 * Cp– Ke0 * Ce                Equation 4-3 

 

E =     (Emax*Ce)/(EC50+Ce)                Equation 4-4 

 

dResponse/dt = Kin-Kout*(1-E)* Response                     Equation 4-5 

 

During preliminary analyses model fitting attempts were made using the other forms of indirect 

response PD models, with drug effect manifested as stimulation or inhibition of Kin or Kout. 

(i.e. exploration of alternate versions of Equation 4-5 based on the alternate forms of indirect 

response model as outlined in 2.1.2.3). However, these efforts failed to minimise successfully 

in fitting the data and Equation 4-5 was the final form used for the BIOPAR data analysis.  

 

When drug concentration equals zero, E = 0 and then  Equation 4-7 becomes Equation 4-6. 

 

dResponse/dt = Kin – Kout * Response       Equation 4-6 

  

 

When the drug concentration equals zero then response is presumed to be at its steady state 

value E0, with its rate of change assumed to be zero. Equation 4-6 can then be manipulated via 
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Equation 4-7 and Equation 4-8 into Equation 4-9. In the absence of drug therefore the steady 

state value of the response is given by Kin/Kout, and this can be used as the baseline, initial 

condition at time = 0, for the response being modelled, when no drug is present in the system.  

 

0 = Kin – Kout * Response      Equation 4-7 

 

Kout * Response = Kin       Equation 4-8 

 

Response = Kin / Kout = E0 (at steady state)       Equation 4-9 

 

It should also be noted that a half-life for observed biomarker response can be given by 

Equation 4-10:  

 

T1/2 Response = ln(2) / Kout              Equation 4-10 

 

Further, the trapezoid method was used to calculate AUCbiomarkers. Equation 4-11 

AUCbiomarker = (Tb – Ta) *(Cb + Ca)/2                Equation 4-11 

 

 

Figure 4-3 shows how the sequential effect compartment/indirect response model could be 

rationalised mechanistically with the metabolism of APAP into NAPQI that is then detoxified 

with glutathione [168]. The increased production of NAPQI under overdose leads to APAP 

adduct production, toxic effects and changes in the observed biomarkers [169]. These effects 

would require an extra process and delay to be modelled that would not occur following a 

therapeutic APAP dose, which may explain the need for the addition of an indirect response 

model in sequence to an effect compartment for these biomarkers, as opposed to the outcome 

biomarkers previously modelled for APAP effect under therapeutic doses.  
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Figure 4-3: The descriptive assumption of compartment models location related to APAP metabolism. 

 

 

4.2.5. NLME analysis of APAP overdose biomarker data 

Analysis of the APAP overdose biomarker data was carried out with a population approach in 

NONMEM as for the APAP PK concentration data in chapter 3. The method and approach is 

largely as previously described, including the approach taken with outlier data points. As for 

the final PK an exponential residual error model was applied with the data for each biomarker.  

 

The PKPD structural models were implemented in NONMEM as differential equations using 

the general differential equation solvers of either ADVAN 6, 8 or 13 of the NONMEM 

PREDPP subroutines library. The same differential equation model solver subroutine was not 

applicable for the analysis of all the different biomarker: ADVAN 6, which uses a general non-

stiff numerical ordinary differential equation solver, was unable to minimise successfully with 

some analyses and for these the alternative stiff differential equation solvers in ADVAN 8 or 



Chapter 4 –Population Pharmacokinetic /Pharmacodynamic Analysis of APAP Overdose in 

U.K Population 

 

81 

13 were used as necessary. In addition, for reasons of stability, the initial condition of the 

response (E0, Equation 4-12) was estimated as a parameter in NONMEM and then Kout 

calculated for the PD differential equation model using E0 combined with the estimate of Kin 

as per Equation 4-12.  

 

The PKPD data analysis was performed sequentially, where the pharmacokinetic parameters 

were first estimated in the subject population with the previously specified PK model (section 

3.2.5) for APAP overdose. Then the PD model for the biomarker was fitted to the population 

biomarker data, having fixed each individual subject’s PK parameters to their individual 

estimates from the first-stage population PK fitting. Pop-PKPD models therefore allow the 

incorporation of PK variability, but are then able to include further characterisation of 

variability in effect.  

 

With the final model fitting to the data in place, individual pharmacokinetic and 

pharmacodynamic parameter estimates for each patient obtained from the final Pop-PKPD 

model were used to simulate rich time-courses of APAP concentrations and biomarkers over 

384 hours to give a precise description of the time course of effect to reach the true expected 

peak value. This description can give an indication of the potential value of the biomarkers in 

early detection of liver injury and a modelled estimate of the peak value and the time it occurs 

for those biomarkers. 
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4.3. Results 

4.3.1. Data 

Demographic data was as described previously in (Section 3.3.1). As described previously the 

median APAP ingestion in the overdose patients was 32g (range 8-140g), the median time 

delay between the time of APAP ingestion and a first blood sample was approximately 5 h 

(range 2-72h). Table 4-2 below presents a breakdown of the serum levels of ALT and novel 

biomarkers, as measured upon admission to hospital, and number of patients within each 

category.  

 

Table 4-2: Clinical Biomarkers Measurements at the First Presentation to the Hospital. 

Biomarkers 

Admission Serum 

Level (Median, 

Range) 

No. of Patients within the 

average values** (%) 

No. of Patients  above average 

values (%) 

 

ALT 

20 IU/L 

(9-1790) 

78 (83%) 

< 50 IU/L 

16 (17%) 

> 50 IU/L 

 

HMGB1 

1.1 ng/ml 

(0.17-47) 

75 (79%) 

< 2.4 ng/ml 

19 (21%) 

> 2.4 ng/ml 

 

miR-122 

0.3 6 Let-7d 

normalized 

(0.1-5337) 

77 (82%) 

< 6 Let-7d normalized 

17 (18%) 

> 6 Let-7d normalized 

 

GLDH 

16 IU/L 

(5-9389) 

78 (83%) 

<30 IU/L 

16 (17%) 

> 30 IU/L 

 

Apoptosis K-18 

199 IU/L 

(108-8941) 

70 (74%) 

< 291 IU/L 

24 (26%) 

> 291 IU/L 

 

Necrosis K-18 

321 IU/L 

(112-12547) 

21 (19%) 

<197 IU/L 

73 

(81%) >197 IU/L 

IU - International Unit 
**Average value see Table 1-1 

 

4.3.2. HMGB1 PKPD Analysis 

218 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the HMGB1 biomarker with a minimum of 2 samples at different time points per patient. 

Parameter estimates of the Pop-PKPD model fit to the HMGB1 biomarker data using the 
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ADVAN13 subroutine are summarised in Table 4-3. The population mean estimate for E0 

(baseline of observed HMGB1) was 1.14 ng/ml, which is within the normal range of human 

HMGB1 activity (0.17 – 2.42 ng/ml). The maximum predicted response after APAP overdose 

(as given by Emax) was an inhibition of 102% in the Kout dissipation parameter of the indirect 

effect PD model. The estimated IIV for each structural model parameter, as well as the residual 

error component of the model, was high and likely reflects the noisy and sparse nature of the 

data where there was significant variability between patients in response to APAP induced liver 

injury.  

 

Table 4-3: Population Mean Estimates of HMGB1 Pharmacodynamic Model Parameters 

Model Parameter Unit Final 

Model 

RSE%a Bootstrapb 

Median 

Biasb Relative 

Bias%b 

95% CIc 

Fixed Effects        

KE0 (h) 0.5 10 0.5 0 0 0.3-0.7 

KIN (h) 0.001 0.68 0.001 0 0 0.0006-0.003 

E0 (U/L) 1.14 46 1.12 0.02 2.04 0.99-1.29 

EMAX (%) 102 49 100 2 2.8 58-310 

EC50 (mg/l) 0.32 59 1.02 0.7 1.4 0.15-0.45 

Random Effect        

IIVd_KE0 (%CVe) 26 33 24 9 -10 20-47 

IIVd_KIN (%CVe) 30 0.74 30 0 0 2-38 

IIVd_E0 (%CVe) 70 38 70 0 0 47-77 

IIVd_EMAX (%CVe) 28 39 24 4 14 2-31 

IIVd_EC50 (%CVe) 10 3.9 70 0 0 4-14 

Residual Error (%CVd) 50 23 50 0 0 45-55 
aRSE; relative standard error = (standard error/final estimation)*100 
bobtained from 374 bootstrap runs; bias = (final model estimate – bootstrap median); 
relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation.  
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4.3.2.1. Model evaluation 

Goodness-of-fit of the HMGB1 PKPD model was assessed by a graphical approach (Figure 

4-4). The plot of observed biomarker values vs. individual PKPD model predictions indicates 

that the model predicted biomarker levels agreed satisfactorily with observed concentrations. 

However, the plot of observed biomarker values vs. population PKPD model predictions looks 

more unusual, but this can be attributed to the small range in the individual PK parameter 

estimates for each subject in this dataset (i.e. because this is a 2-stage analysis, the population 

predictions shown in this plot reflect the population fixed effects PD estimates, combined with 

a small range in individual PK parameter values). The plots of CWRES vs. time or individual 

predicted values are randomly scattered around zero across their ranges suggesting minimal 

bias or trends in the residual error model (Figure 4-5). 

  

A VPC of how the final HMGB1 Pop-PKPD model predicts the observed HMGB1 biomarker 

values was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-6). 

  

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised inTable 4-3) were reasonably close to those 

gained from the final NONMEM minimisation (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 
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Figure 4-4: Goodness of fit plots for population PKPD base model for HMGB1. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED)  

Line of unity (black) in both plots for illustration. 

 

 

 

 

Figure 4-5: Residual scatter plots for population PKPD base model for HMGB1. 

 LEFT: conditional weighted residuals (CWRES) versus individual HMGB1 concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus Time 

 

R2 = 0.657 
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Figure 4-6: Visual predictive check plots for the final HMGB1 Pop_PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively 

 

 

4.3.2.2. HMGB1 peak response and predicted half-life 

Below is a summary of observed and predicted time of peak response (Tmax),  peak response 

and half-life estimate for the HMGB1 biomarker (Table 4-4): 

 

Table 4-4: Peak and time of HMGB1 response after APAP overdose and half life 

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

HMGB1 Observed Model Observed Model  

 169 128 10 3.5 940 
*Half-life (h1/2)=In(2)/Kout 
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4.3.2.3. Covariate effects on HMGB1 PD model. 

Figure 4-7 and Figure 4-8 display scatter plots for continuous covariates of weight and age vs 

individual subject estimates (posthoc and empirical Bayes estimates) of the HMGB1 PD model 

parameters. No major covariate effects for age or weight appear to be indicated for HMGB1 

PD model parameters in these plots.  

 

Figure 4-9 and Figure 4-10 contain boxplots of individual subject estimates of HMGB1 PD 

model parameters stratified according to categorical pairwise covariates of gender and 

alcoholism status to indicate these potential group/categorical effects on the PD model 

parameters. Table 4-5summarises the statistical significance and the mean differences for the 

pairwise categorical covariate effects on the HMGB1 PD model parameters. 

 

There are statistically significant differences between Male vs. Female and Alcoholic vs. Non-

Alcoholic for some PD model parameters. However, even though the difference may show 

statistical significance, the differences in the means of the two categorised groups is always 

very small, i.e. a fractional difference with a small dynamic change according to category. 

Therefore, neither categorical covariate effect (gender or alcoholism) on any of the HMGB1 

PD model parameters needs to be accounted for and can be excluded from further analyses of 

this data.  

 

Table 4-5: t-test statistical analysis for categorical covariate effects on HMGB1 biomarker PD parameters 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
0.0001 0.002 0.038 0.002 -0.0001 -0.009 0.001 -0.39 0.001 0.0001 

P value 0.012 0.32 0.54 0.3 0.00007 0.013 0.73 0.003 0.55 0.42 

Underline denotes p<0.05 and therefore significant 
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Figure 4-7: Scatter plots for age covariate relationship with HMGB1 dynamic parameters. 
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Figure 4-8: Scatter plots for weight covariate relationship with HMGB1 dynamic parameters. 
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Figure 4-9: Boxplots of HMGB1 pharmacodynamic model parameters categorized by gender. 
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Figure 4-10: Boxplots of HMGB1 pharmacodynamic model parameters categorized by alcoholism Status. 
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4.3.3. miR-122 PKPD Analysis 

229 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the miR-122 biomarker. Parameter estimates of the Pop-PKPD model fit to the miR-122 

biomarker data using the ADVAN13 subroutine are summarised in Table 4-6. The population 

mean estimate for E0 (baseline of observed miR-122) was 0.57 Let-7dnormalized, which is 

within the normal range of miR-122 activity (0.17 – 6 Let-7dnormalized). The maximum 

predicted response after APAP overdose (as given by Emax) was an inhibition of 36% in the 

Kout dissipation parameter of the indirect effect PD model. The estimated IIV for each 

structural model parameter, as well as the residual error component of the model, was high and 

likely reflects the noisy and sparse nature of the data where there was significant variability 

between patients in response to APAP induced liver injury.  

 

Table 4-6: Population Mean Estimates of miR-122 Pharmacodynamic Model Parameters 

Model 

Parameter 

Unit Final 

Model 

RSE%a Bootstrapb 

Median 

Biasb Relative 

Bias %b 

95% CIc 

Fixed Effects        
KE0 (h) 0.01 78 0.01 0 0 0.007-0.03 

KIN (h) 0.1 90 0.09 0.01 10 0.06-0.24 

E0 (Let-

7dnormalized) 

0.57 26 0.52 0.05 8 0.2-0.7 

EMAX (%) 36 27 33 3 8 12-72 

EC50 (mg/L) 1.81 34 1.71 0.1 5 0.6-3.1 

Random Effect        

IIVd_KE0 (%CVe) 14 45 14 0 0 7-17 

IIVd_KIN (%CVe) 14 50 14 0 0 9-20 

IIVd_E0 (%CVe) 130 25 133 -3 -2 85-175 

IIVd_EMAX (%CVe) 89 55 95 6 6 44-134 

IIVd_EC50 (%CVe) 45 30 45 0 0 17-70 

Residual Error (%CVe) 89 10 89 0 0 28-132 

aRES; relative standard error = (standard error/final estimation)*100 
bobtained from 302 bootstrap runs; bias = (final model estimate – bootstrap median); 

relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation.  
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4.3.3.1. Model evaluation 

Goodness-of-fit of the miR-122 PKPD model was assessed by a graphical approach (Figure 

4-11). The plot of observed biomarker values vs. individual PKPD model predictions indicates 

that the model predicted biomarker levels did not agree ideally with observed biomarker 

concentrations, however this fitting represents the best that was achievable with this data. The 

plot of observed biomarker values vs. population PKPD model predictions looks more unusual, 

but again this can be attributed to the small range in the individual PK parameter estimates for 

each subject in this dataset (i.e. because this is a 2-stage analysis, the population predictions 

shown in this plot reflect the population fixed effects PD estimates, combined with a small 

range in individual PK parameter values). The plot of CWRES vs. time shows a random scatter 

around zero across its range, while CWRES vs. individual predicted values shows a random 

scatter around zero for lower concentrations, but a trend for positive residuals at higher levels 

of the biomarker suggesting some degree of under prediction by the model fitting at these 

higher levels, but overall relatively acceptable bias or trends in the residual error model (Figure 

4-12). The residual pattern and nature of the model fit may also reflect the relative lack of 

samples with high biomarker concentrations in the dataset meaning there is less information in 

the data in order for the fitting to describe them well.  

 

A VPC of how the final miR-122 Pop-PKPD model predicts the observed miR-122 biomarker 

values was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-13).  

 

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised in Table 4-6) were reasonably close to those 

gained from the final NONMEM minimisation, (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 
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Figure 4-11: Goodness of fit plots for population PKPD base model for miR-122. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED)  

Line of unity (black) in both plots for illustration. 

 

 

Figure 4-12: Residual scatter plots for population PKPD base model for miR-122. 

LEFT: conditional weighted residuals (CWRES) versus individual miR-122 concentration prediction 

RIGHT: conditional weighted residuals (CWRES) versus time. 

 

 

 

R2=0.64 
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Figure 4-13: Visual predictive check plots for the final miR-122 Pop-PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

4.3.3.2. miR-122 peak response and predicted half-life 

Below is a summary of observed and predicted Tmax and peak response for the miR-122 

biomarker (Table 4-7): 

Table 4-7: Peak and time of miR-122 response after APAP overdose and half-life. 

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

miR-122 Observed Model Observed Model 
121 

 144 70 110 25 
*Half-life (h1/2)=In(2)/Kout 
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4.3.3.3. Covariate effects on miR-122 PD model. 

Figure 4-14 and Figure 4-15 display scatter plots for continuous covariates of weight and age 

vs individual subject estimates (posthoc and empirical Bayes estimates) of the miR-122 PD 

model parameters. No major covariate effects for age or weight appear to be indicated for miR-

122 PD model parameters in these plots.  

 

Figure 4-16 and Figure 4-17 contain boxplots of individual subject estimates of miR-122 PD 

model parameters stratified according to categorical pairwise covariates of gender and 

alcoholism status to indicate these potential group/categorical effects on the PD model 

parameters . Table 4-8 summarises the statistical significance and the mean differences for the 

pairwise categorical covariate effects on the miR-122 PD model parameters. 

 

There are statistically significant differences between Male vs. Female and Alcoholic vs. Non-

Alcoholic for some PD model parameters. However, even though the difference may show 

statistical significance, the differences in the means of the two categorised groups is always 

very small, i.e. a fractional difference with a small dynamic change according to category. In 

conclusion, neither categorical covariate effect (gender or alcoholism) on any of the miR-122 

PD model parameters needs to be accounted for and can be excluded from further analyses of 

this data.  

 

Table 4-8: T. test statistical analysis for categorical covariate effects on miR-122 biomarker PD 

parameters 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
0.0003 -0.0009 -0.07 -0.03 0.001 -0.0001 0.00005 -0.96 -0.03 0.001 

P value 0.006 0.0003 0.7 0.23 0.37 0.61 0.83 0.01 0.41 0.14 

Underline denotes p<0.05 and therefore significant 
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Figure 4-14: Scatter plots for age covariate relationship with miR-122 dynamic parameters. 
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Figure 4-15: Scatter plots for weight covariate relationship with miR-122 dynamic parameters. 
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Figure 4-16: Boxplots of miR-122 pharmacodynamic model parameters categorized by gender. 
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Figure 4-17: Boxplots of miR-122 pharmacodynamic model parameters categorized by Alcoholism Status. 

 

  



Chapter 4 –Population Pharmacokinetic /Pharmacodynamic Analysis of APAP Overdose in 

U.K Population 

 

101 

4.3.4. GLDH PKPD Analysis 

208 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the GLDH biomarker with a minimum of 2 samples at different time points per patient. 

Parameter estimates of the Pop-PKPD model fit to the GLDH biomarker data using the 

ADVAN 13 subroutine are summarised in (Table 4-9). The population mean estimate for E0 

(baseline of observed GLDH) was 15.1 U/L, which is within the normal range of human GLDH 

activity (0.3-30 U/L). The maximum predicted response after APAP overdose (as given by 

Emax) was an inhibiton of 105% in the Kout dissipation parameter of the indirect effect PD 

model. The estimated IIV for each structural model parameter, as well as the residual error 

component of the model, was high and likely reflects the noisy and sparse nature of the data 

where there was significant variability between patients in response to APAP induced liver 

injury.  

 

Table 4-9: Population Mean Estimates of GLDH Pharmacodynamic Model Parameters 

Model Parameter Unit PD 

Estimation 

RSEa% Bootstrapb 

Median 

Biasb Relative 

Bias%b 

95% CIc 

Fixed Effects        
KE0 (h) 0.06 50 0.051 0.009 15 0.04-0.08 

KIN (h) 0.05 63 0.04 0.01 20 0.008-0.06 

E0 (U/l) 15.1 7.6 14.4 0.6 4 12-16 

EMAX (%) 105 54 101 4 3.8 75-135 

EC50 (mg/l) 0.53 49 0.5 0.03 6 0.1-0.99 

Random Effect        

IIVd_KE0 (%CVe) 88 51 97 -9 -10 20-154 

IIVd_KIN (%CVe) 56 43 61 -5 -8 12-100 

IIVd_E0 (%CVe) 88 49 71 17 19 24-152 

IIVd_EMAX (%CVe) 32 53 37 -5 -15 10-54 

IIVd_EC50 (%CVe) 33 42 32 1 3 8-58 

Residual Error (%CVe) 46 14.9 45 1 2 31-54 

aRSE; relative standard error = (standard error/final estimation)*100 
bobtained from 463 bootstrap runs; bias = (final model estimate – bootstrap median); 
relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation 
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4.3.4.1. Model evaluation 

Goodness-of-fit of the GLDH PKPD model was assessed by a graphical approach (Figure 

4-25). The plot of observed biomarker values vs. individual PKPD model predictions indicates 

that the model predicted biomarker levels agreed well with observed concentrations. Once 

again however, the plot of observed biomarker values vs. population PKPD model predictions 

looks unusual, but can be attributed to the small range in the individual PK parameter estimates 

for each subject in this dataset combined with this being a sequential PK-PD analysis. The plots 

of CWRES vs. time or individual predicted values are randomly scattered around zero across 

their ranges suggesting minimal bias or trends in the residual error model (Figure 4-19).  

 

A VPC of how the final GLDH Pop-PKPD model predicts the observed GLDH biomarker 

values was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-20).  

 

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised in Table 4-9) were reasonably close to those 

gained from the final NONMEM minimisation, (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 
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Figure 4-18: Goodness of fit plots for population PKPD base model for GLDH. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED)  

Line of unity (black) in both plots for illustration. 

 

 

Figure 4-19: Residual scatter plots for population PKPD base model for GLDH. 

 LEFT: conditional weighted residuals (CWRES) versus individual GLDH concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus time. 

 

 

 

 

R2=0.363 
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Figure 4-20: Visual predictive check plots for the final GLDH Pop-PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

4.3.4.2. GLDH peak response and predicted half-life 

Below is a summary of observed and predicted Tmax, peak response and the half-life estimate 

for the GLDH biomarker (Table 4-10): 

 

Table 4-10: Peak and time of GLDH response after APAP overdose and half-life. 

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

GLDH Observed Model Observed Model 
560 

 143 177 1556 507 
*Half-life (h1/2)=In(2)/Kout 
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4.3.4.3. Covariate effects on GLDH PD model. 

Figure 4-21 and Figure 4-22 display scatter plots for continuous covariates of weight and age 

vs individual subject estimates (posthoc and empirical Bayes estimates) of the GLDH PD 

model parameters. No major covariate effects for age or weight appear to be indicated for 

GLDH PD model parameters in these plots.  

 

Figure 4-23 and Figure 4-24 contain boxplots of individual subject estimates of GLDH PD 

model parameters stratified according to categorical pairwise covariates of gender and 

alcoholism status to indicate these potential group/categorical effects on the PD model 

parameters .Table 4-11 summarises the statistical significance and the mean differences for the 

pairwise categorical covariate effects on the GLDH PD model parameters. 

 

There are some statistically significant differences between Male vs. Female and Alcoholic vs. 

Non-Alcoholic for some PD model parameters. However, even though the difference may 

show statistical significance, the differences in the means of the two categorised groups is 

always very small, i.e. a fractional difference with a small dynamic change according to 

category. Broadly therefore it can be concluded that neither categorical covariate effect (gender 

or alcoholism) on any of the GLDH PD model parameters needs to be accounted for and can 

be excluded from further analyses of this data.  

 

Table 4-11: T. test statistical analysis for categorical covariate effects on GLDH biomarker PD 

parameters. 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
-0.002 0.009 0.008 0.005 0.00003 -0.0003 -0.04 -0.18 0.52 0.00001 

P value 0.009 0.58 0.68 0.38 0.007 0.1 0.001 0.03 0.001 0.1 

Underline denotes p<0.05 and therefore significant 
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Figure 4-21: Scatter plots for age covariate relationship with GLDH dynamic parameters. 
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Figure 4-22: Scatter plots for weight covariate relationship with GLDH dynamic parameters. 
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Figure 4-23: Boxplots of GLDH pharmacodynamic model parameters categorized by gender. 
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Figure 4-24: Boxplots of for GLDH pharmacodynamic model parameters categorized by Alcoholism 

Status. 
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4.3.5. Apoptosis K-18 PKPD Analysis 

210 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the Apoptosis K-18 (AK-18) biomarker with minimum of 2 samples at different time points 

per patient. Parameter estimates of the Pop-PKPD model fit to the AK-18 biomarker data using 

the ADVAN 8 subroutine are summarised in (Table 4-12). The population mean estimate for 

E0 (baseline of observed AK-18) was 197 U/L, which is within the normal range of human 

AK-18 activity (57-197 U/L). The maximum predicted response after APAP overdose (as given 

by Emax) was an inhibition of 96% in the Kout dissipation parameter of the indirect effect PD 

model. The estimated IIV for each structural model parameter, as well as the residual error 

component of the model, was high and likely reflects the noisy and sparse nature of the data 

where there was significant variability between patients in response to APAP induced liver 

injury.  

 

Table 4-12: Population Mean Estimates of Apoptosis K-18 Pharmacodynamic Model Parameters 

Model Parameter Unit Final 

Model 

RES% Bootstrapa 

Median 

Biasa Relative 

Bias%a 

95% CIb 

Fixed Effects        
KE0 (h) 0.08 21 0.08 0 0 0.07-0.09 

KIN (h) 0.01 68 0.01 0 0 0.007-0.019 

E0 (mg/l) 197 2.8 197 0 0 188-208 

EMAX (%) 96 12 93 3 3 76-107 

EC50 (U/l) 4.6 15 4.4 0.2 4 3.5-5 

Random Effect        

IIV_KE0 (%CVd) 62 82 64 -2 3 54-70 

IIV_KIN (%CVd) 62 58 62 0 0 54-70 

IIV_E0 (%CVd) 26 24 26 0 0 20-32 

IIV_EMAX (%CVd) 42 72 42 0 0 38-46 

IIV_EC50 (%CVd) 92 9.5 92 0 0 86-98 

Residual Error (%CVd) 28 16 28 0 0 24-31 

aRSE; relative standard error = (standard error/final estimation)*100 
bobtained from 320 bootstrap runs; bias = (final model estimate – bootstrap median); 
relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation 
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4.3.5.1. Model evaluation 

Goodness-of-fit of the AK-18 PKPD model was assessed by a graphical approach (Figure 

4-25). The plot of observed biomarker values vs. individual PKPD model predictions indicates 

that the model predicted biomarker levels agreed well with observed concentrations. As for the 

previous biomarker analyses the more unusual plot of observed biomarker values vs. 

population PKPD model predictions can potentially be attributed to the small range in the 

individual PK parameter estimates for each subject in this dataset. The plot of CWRES vs. time 

shows an acceptable random scatter around zero across its range, while CWRES vs. individual 

predicted values shows a random scatter around zero for lower concentrations of the biomarker, 

but a trend for positive residuals at higher levels of the biomarker. As for miR-122 this suggests 

some degree of underprediction by the model fitting at these higher biomarker levels, which in 

turn may be due to the relative lack of samples with these high biomarker levels in the dataset, 

but an overall relatively acceptable degree of bias and systematic trends in the residual error 

model (Figure 4-26). 

  

A VPC of how the final AK-18 Pop-PKPD model predicts the observed AK-18 biomarker 

values was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-27). There is some indication perhaps that inter-

individual variability has been overestimated in this fitting, but not drastically so and it appears 

otherwise a reasonable description of the dataset. 

 

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised in Table 4-12) were reasonably close to those 

gained from the final NONMEM minimisation, (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 

  



Chapter 4 –Population Pharmacokinetic /Pharmacodynamic Analysis of APAP Overdose in 

U.K Population 

 

112 

 

 

Figure 4-25: Goodness of fit plots for population PKPD base model for AK-18. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED) 

Line of unity (black) in both plots for illustration. 

 

 

 

Figure 4-26: Residual scatter plots for population PKPD base model for AK-18. 

 LEFT: conditional weighted residuals (CWRES) versus individual AK-18 concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus Time 

 

 

R2=0.46 
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Figure 4-27: Visual predictive check plots for the final AK-18 Pop-PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

4.3.5.2. AK-18 peak response and predicted half-life 

Table 4-13 is a summary of observed and predicted Tmax, peak response and half-life for the 

AK-18 biomarker. 

 

 

Table 4-13: Peak and time of AK-18 response after APAP overdose and half-life. 

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

AK-18 Observed Model Observed Model 
28310 

 170 194 571 461 
*Half-life (h1/2)=In(2)/Kout 
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4.3.5.3. Covariate effects on AK-18 PD model. 

Figure 4-28 and Figure 4-29 display scatter plots for continuous covariates of weight and age 

vs individual subject estimates (posthoc and empirical Bayes estimates) of the AK-18 PD 

model parameters. No major covariate effects for age or weight appear to be indicated for AK-

18 PD model parameters in these plots.  

 

Figure 4-30 and Figure 4-31 contain boxplots of individual subject estimates of AK-18 PD 

model parameters stratified according to categorical pairwise covariates of gender and 

alcoholism status to indicate these potential group/categorical effects on the PD model 

parameters. Table 4-14 summarises the statistical significance and the mean differences for the 

pairwise categorical covariate effects on the AK-18 PD model parameters. 

 

There are statistically significant differences between Male vs. Female and Alcoholic vs. Non-

Alcoholic for some PD model parameters. However, even though the difference may show 

some statistical significance, the differences in the means of the two categorised groups is 

always very small, i.e. a fractional difference with a small dynamic change according to 

category. Broadly therefore it can be concluded that neither categorical covariate effect (gender 

or alcoholism) on any of the AK-18 PD model parameters needs to be accounted for and can 

be excluded from further analyses of this data.  

 

Table 4-14: T. test statistical analysis for categorical covariate effects on AK-18 biomarker PD 

parameters 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
-0.0001 -0.001 0.05 0.0003 -0.0002 -0.0005 0.0003 -0.13 0.0002 -0.0001 

P value 0.28 0.04 0.14 0.04 0.02 0.06 0.26 0.01 0.27 0.07 

Underline denotes p<0.05 and therefore significant 
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Figure 4-28: Scatter plots for age covariate relationship with AK-18 dynamic parameters. 
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Figure 4-29: Scatter plots for weight covariate relationship with AK-18 dynamic parameters. 
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Figure 4-30: Boxplots of AK-18 pharmacodynamic model parameters categorized by gender 
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Figure 4-31: Boxplots of AK-18 pharmacodynamic model parameters categorized by alcoholism Status. 
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4.3.6. Necrosis K-18 PKPD Analysis 

210 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the Necrosis K-18 (NK-18) biomarker with minimum of 2 samples at different time points per 

patient. Parameter estimates of the Pop-PKPD model fit to the AK-18 biomarker data using the 

ADVAN 13 subroutine are summarised in (Table 4-15). The population mean estimate for E0 

(baseline of observed NK-18) was 198 U/L, which is within the normal range of human NK-

18activity (57-199 U/L). The maximum predicted response after APAP overdose (as given by 

Emax) was an inhibition of 239% in the Kout dissipation parameter of the indirect effect PD 

model. The estimated IIV for each structural model parameter, as well as the residual error 

component of the model, was high and likely reflects the noisy and sparse nature of the data 

where there was significant variability between patients in response to APAP induced liver 

injury.  

 

Table 4-15: Population Mean Estimates of Necrosis K-18 Pharmacodynamic Model Parameters. 

Model Parameter Unit Final 

Model 

RES%a Bootstrapb 

Median 

Biasb Relative 

Bias%b 

95% CIc 

Fixed Effects        
KE0 (h) 0.26 38 0.31 -0.05 -19 0.19-0.33 

KIN (h) 0.54 48 0.46 0.08 14 0.4-0.68 

E0 (U/l) 198 9 198 0 0 160-230 

EMAX (%) 239 17.4 218 21 8 161-280 

EC50 (mg/l) 2.13 37 2.5 -0.37 17 1.9-2.36 

Random Effect        

IIVd_KE0 (%CVe) 20 22 17 3 15 5-35 

IIVd_KIN (%CVe) 62 50 62 0 0 10-114 

IIVd_E0 (%CVe) 28 24 28 0 0 14-33 

IIVd_EMAX (%CVe) 8 54 8 0 0 3-13 

IIVd_EC50 (%CVe) 6 27 7 -1 -16 5-7 

Residual Error (%CVe) 33 15 33 0 0 28-38 

aRES; relative standard error = (standard error/final estimation)*100 
bobtained from 320 bootstrap runs; bias = (final model estimate – bootstrap median); 
relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation. 
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4.3.6.1. Model evaluation 

Goodness-of-fit of the NK-18 PKPD model was assessed by a graphical approach (Figure 

4-32). The plot of observed biomarker values vs. individual PKPD model predictions indicates 

that the model predicted biomarker levels agreed well with observed concentrations. As 

previously the more unusual pattern of the plot of observed biomarker values vs. population 

PKPD model predictions can be attributed to the small range in the individual PK parameter 

estimates for each subject. It should also be noted that the relative range of the observed and 

predicted values for this biomarker is smaller compared with other biomarkers in the BIOPAR 

dataset, which allows these diagnostic plots for this fitting to be more “zoomed in” than for the 

other biomarkers while still reflecting the entirety of the data. The plots of CWRES vs. time or 

individual predicted values show an acceptable random scatter around zero across their ranges 

suggesting minimal bias or trends in the residual error model (Figure 4-33).  

 

A VPC of how the final NK-18 Pop-PKPD model predicts the observed NK-18 biomarker 

values was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-34). There is some indication again as for the AK-

18 biomarker, perhaps that inter-individual variability has been overestimated in this fitting, 

but not drastically so and it appears otherwise a reasonable description of the dataset. 

 

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised in Table 4-15) were reasonably close to those 

gained from the final NONMEM minimisation, (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 
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Figure 4-32: Goodness of fit plots for population PKPD base model for NK-18. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED) (DV) of NK-18 

Line of unity (black) in both plots for illustration. 

 

 

Figure 4-33: Residual scatter plots for population PKPD base model for NK-18. 

 LEFT: conditional weighted residuals (CWRES) versus population HMGB1 concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus Time 

 

 

 

 

R2=0.620
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Figure 4-34: Visual predictive check plots for the final NK-18 Pop_PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

4.3.6.2. NK-18 peak response and predicted half-life 

Table 4-16 is a summary of observed and predicted Tmax, peak response and half-life 

estimation for the NK-18 biomarker. 

 

Table 4-16: Peak and time of NK-18 response after APAP overdose and half-life. 

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

NK-18 Observed Model Observed Model 
824 

 158 94 1466 726 
*Half-life (h1/2)=In(2)/Kout 
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4.3.6.3. Covariate effects on NK-18 PD model. 

Figure 4-35 and Figure 4-36 display scatter plots for continuous covariates of weight and age 

vs individual subject estimates (posthoc and empirical Bayes estimates) of the NK-18 PD 

model parameters. No major covariate effects for age or weight appear to be indicated for NK-

18 PD model parameters in these plots. 

  

Figure 4-37 and Figure 4-38 contain boxplots of individual subject estimates of NK-18 PD 

model parameters stratified according to categorical pairwise covariates of gender and 

alcoholism status to indicate these potential group/categorical effects on the PD model 

parameters. Table 4-17 summarises the statistical significance and the mean differences for the 

pairwise categorical covariate effects on the NK-18 PD model parameters. 

 

There are statistically significant differences between Male vs. Female and Alcoholic vs. Non-

Alcoholic for some PD model parameters. In these cases however, even though the difference 

may show some statistical significance, the differences in the means of the two categorised 

groups is always very small, i.e. a fractional difference with a small dynamic change according 

to category. Broadly therefore it can be concluded that neither categorical covariate effect 

(gender or alcoholism) on any of the NK-18 PD model parameters needs to be accounted for 

and can be excluded from further analyses of this data.  

 

Table 4-17: T. test statistical analysis for categorical covariate effects on NK-18 biomarker PD 

parameters 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
-0.001 0.001 0.02 0.001 -0.0001 0.0002 0.001 0.02 0.001 0.00002 

P value 0.001 0.228 0.48 0.22 0.008 0.23 0.1 0.51 0.15 0.688 

Underline denotes p<0.05 and therefore significant 
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Figure 4-35: Scatter plots for age covariate relationship with NK-18 dynamic parameters. 
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Figure 4-36: Scatter plots for weight covariate relationship with NK-18 dynamic parameters. 
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Figure 4-37: Boxplots of NK-18 pharmacodynamic model parameters categorized by gender 
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Figure 4-38: Boxplots of NK-18 pharmacodynamic model parameters categorized by alcoholism Status. 
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4.3.7. ALT PKPD Analysis 

255 serum blood samples collected from 94 subjects were available for Pop-PKPD analysis for 

the ALT biomarker with minimum of 2 samples at different time points per patient. Parameter 

estimates of the Pop-PKPD model fit to the ALT biomarker data using the ADVAN 8 

subroutine are summarised in (Table 4-18). The population mean estimate for E0 (baseline of 

observed ALT) was 34.2 IU/L, which is within the normal range of human ALT activity (5-40 

IU/L). The maximum predicted response after APAP overdose (as given by Emax) was an 

inhibition of 42% in the Kout dissipation parameter of the indirect effect PD model. The 

estimated IIV for each structural model parameter, as well as the residual error component of 

the model, was high and likely reflects the noisy and sparse nature of the data where there was 

significant variability between patients in response to APAP induced liver injury.  

 

Table 4-18: Population Mean Estimates of ALT Pharmacodynamic Model Parameters 

Model Parameter Unit PD 

Estimation 

RSE%a Bootstrapb 

Median 

Biasb Relative 

Bias%b 

95% CIc 

Fixed Effects        
KE0 (h) 0.09 35.6 0.08 0.01 -18 0.03-0.14 

KIN (h) 0.05 61 0.06 -1 -20.4 0.01-0.09 

E0 (U/L) 34.2 20 24 10 27 14.5-54 

EMAX (%) 42 39 51 -9 -21 12-72 

EC50 (mg/L) 4.3 34 3.9 0.4 8.2 1.9-6.7 

Random Effect        

IIVd_KE0 (%CVe) 63 50 70 8 -25 40-75 

IIVd_KIN (%CVe) 63 48 71 -8 -25 31-88 

IIVd_E0 (%CVe) 76 40 70 6 -9 44-96 

IIVd_EMAX (%CVe) 42 27 44 -2 -9 30-54 

IIVd_EC50 (%CVe) 93 45 94 -1 -2.2 44-142 

Residual Error (%CVe) 68 56 60 8 11 35-101 

aRSE; relative standard error = (standard error/final estimation)*100 
bobtained from 350 bootstrap runs; bias = (final model estimate – bootstrap median); 

relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate). 
cCI is Confidence Interval.  
dIIV is inter-individual variability of clearance. 
eCV is a coefficient variation.  
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4.3.7.1. Model evaluation 

Goodness-of-fit of the ALT PKPD model was assessed by a graphical approach (Figure 4-39). 

The plot of observed biomarker values vs. individual PKPD model predictions indicates that 

the model predictions of biomarker levels should be accepted with caution, but do represent 

the best that was achievable with the dataset. As for the other biomarkers in the dataset the plot 

of observed biomarker values vs. population PKPD model predictions looks more unusual, but 

could be attributable to the small range in the individual PK parameter estimates for each 

subject. The plot of CWRES vs. individual predicted values is approximately randomly 

scattered around zero across its range suggesting acceptable bias in the residual error model, 

though there are “runs” of positive and negative residuals at several points across the range of 

biomarker concentrations (both low and high levels). There may also be some indication of 

systematic overprediction suggested by the CWRES vs. time plot (Figure 4-40). The ALT 

model fitting included here however gave relatively acceptable other diagnostic plots was 

therefore settled on as the best that could be achieved with the data at hand after numerous 

attempts. 

 

A VPC of how the final ALT Pop-PKPD model predicts the observed ALT biomarker values 

was produced from 1000 simulated replicates of the study dataset using the population 

estimates of the model parameters and their variabilities. Observations mainly lie within the 

90% prediction interval and the extremes of the 90% prediction interval reflect the 5th and 95th 

percentiles of the observed data (Figure 4-41). The central tendency of the VPC prediction 

interval (median) appears to lie somewhat above the central tendency of the observed data, 

reflecting again some degree of overprediction in the model fitting. There is also some 

indication that inter-individual variability has been overestimated in this fitting, but as for 

previous biomarkers not drastically and it appears otherwise a reasonable description of the 

dataset variability is given with the parameter estimates in question. 

 

A non-parametric bootstrap was also used to evaluate the model and as internal validation for 

the fitting. The bootstrap estimates (summarised in Table 4-18) were reasonably close to those 
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gained from the final NONMEM minimisation, (within 10% difference) with the estimates 

contained within the 95% confidence intervals gained from bootstrap suggesting that the fitting 

is reliable. 

 

 

Figure 4-39: Goodness of fit plots for population PKPD base model for ALT. 

 LEFT: observed concentration (DV) vs. individual prediction (IPRE)  

RIGHT: observed concentration (DV) vs. population prediction (PRED)  

Line of unity (black) in both plots for illustration. 

 

 

Figure 4-40: Residual scatter plots for population PKPD base model for ALT. 

 LEFT: conditional weighted residuals (CWRES) versus individual ALT concentration prediction  

RIGHT: conditional weighted residuals (CWRES) versus time 
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Figure 4-41: Visual predictive check plots for the final ALT Pop_PKPD model. 

Dashed red lines represent the 5th, median and 95th percentiles of 1000 simulated datasets, respectively. 

 

 

4.3.7.2. ALT peak response and predicted half-life 

Table 4-19 is a summary of observed and predicted Tmax, peak response and half-life 

estimation for the ALT biomarker:  

 

Table 4-19: Peak of ALT response after APAP overdose and time to response and half life  

 Time of Peak Response(h) Peak Response (IU/l) Half Life (h)* 

ALT Observed Model Observed Model 
3015 

 172 119 4142 399 
*Half-life (h1/2)=In(2)/Kout 
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4.3.7.3. Covariate effects on ALT PD model. 

Figure 4-42 and Figure 4-43 are scatter plots for continuous covariates of weight and age vs 

individual subject estimates (i.e. posthoc, empirical Bayes estimates) of ALT PD model 

parameters. No covariate effects for age or weight appear to be indicated for ALT PD model 

parameters in these plots.  

 

Figure 4-44 and Figure 4-45 contain boxplots of individual subject estimates of ALT PD model 

parameters stratified according to categorical pairwise covariates of gender and alcoholism 

status to indicate their potential group/categorical effects on the PD model parameters. Table 

4-20 summarises the statistical significance and the mean differences for the pairwise 

categorical covariate effects on the ALT PD model parameters. 

 

There are statistically significant differences between Male vs. Female and Alcoholic vs. Non-

Alcoholic for some PD model parameters. In these cases however, even though the difference 

may show some statistical significance, the differences in the means of the two categorised 

groups is always very small, i.e. a fractional difference with a small dynamic change according 

to category. Broadly therefore it can be concluded that neither categorical covariate effect 

(gender or alcoholism) on any of the ALT PD model parameters needs to be accounted for and 

can be excluded from further analyses of this data.  

 

Table 4-20: T. test statistical analysis for categorical covariate effects on ALT biomarker PD parameters. 

Covariates Alcoholism Status Gender 

Parameters Ke0 Kin E0 Emax EC50 Ke0 Kin E0 Emax EC50 

Difference 

in means 
0.00041 0.002 0.02 -0.004 -0.001 -0.0002 0.0001 -0.02 0.0001 -0.0001 

P value 0.0012 0.0007 0.11 0.0013 0.00001 0.0006 0.9 0.11 0.68 0.86 

Underline denotes p<0.05 and therefore significant 
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Figure 4-42: Scatter plots for age covariate relationship with ALT dynamic parameters. 
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Figure 4-43: Scatter plots for weight covariate relationship with NK-18 dynamic parameters. 
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Figure 4-44: Boxplots of for ALT pharmacodynamic model parameters categorized by gender 
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Figure 4-45: Boxplots of for ALT pharmacodynamic model parameters categorized by alcoholism Status  
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4.4. Discussion  

In this chapter, PD parameters have been derived to describe the time-course profiles of various 

novel biomarkers for liver injury following APAP overdose, using a combined effect 

compartment/indirect response PKPD model. 

  

The combined effect compartment/indirect response model was hypothesized to be needed to 

describe the observed delay between plasma concentrations and liver toxicity effect (governed 

via the Ke0 parameter) as well as the rate-limited processes controlling the pharmacological 

response of liver injury described by the indirect effect model component, and particularly its 

Kout parameter (inhibition of the Kout process being where drug effect was manifested in the 

model, using an inhibitory Emax relationship). 

  

APAP-induced liver toxicity is understood to occur when liver glutathione (GSH) is depleted 

by 80-90% [170]. The combined effect compartment/indirect response PKPD model has some 

potential mechanistic rationale for this physiological scenario, where the effect compartment 

sub-model characterizes the observed delay between APAP concentration and biomarker 

effects at certain dose levels of APAP due to GSH depletion. While the indirect effect 

component of the model can then account for the metabolism and effects of the toxic product 

of APAP metabolism (NAPQI), as reflected by the biomarkers. 

 

A summary comparison of the population PD parameter estimates for all the biomarkers is 

given below in Table 4-21. The Emax/EC50 ratio is included as an indicator for the efficiency 

or sensitivity of APAP in inhibiting the Kout indirect effect model parameter. The sensitivity 

index indicates the sensitivity response of biomarkers for APAP overdose and is calculated as 

relative peak response/time of peak response. 
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Table 4-21: Summary of the comparison PD biomarkers. 

 
Emax 

% 

EC50 

mg/l 

Emax

/EC50 

E0 

h-1 

Half

-

life* 

Ke0 

h-1 

Model 

Time of 

Peak 

Response
a 

(h) 

Model 

Peak 

Response 

Model 

relative 

peak 

responseb 

Sensitivity 

Indexc 

 

HMGB1 

ng/ml 
102 0.32 3.19 1.14 940 0.5 128 35 2970 23.2 

Mir-122 
Let-

7dnormalized 
36 1.81 0.20 0.57 121 0.01 70 25 4285 61.2 

GLDH 
U/L 

105 0.53 1.98 15.1 560 0.06 177 507 3257 18.4 

AK-18 
U/L 

96 4.5 0.21 197 
283

10 
0.08 194 461 134 0.69 

NK-18 
U/L 

239 2.3 1.04 198 824 0.26 94 726 266 2.8 

ALT 
U/L 

42 4.3 0.10 34.2 
301

5 
0.09 119 399 1066 8.9 

aHalf-life=ln(2)/kout 
bModel relative peak response = (model peak response-E0)/E0 *100 
cSensitivity index = relative peak response/time of peak response 

 

The inhibitory Emax effect of APAP on the Kout parameter was highest for the NK-18 

biomarker and was estimated as greater than 100% for this biomarker, with model fitting 

attempts where this Emax was bounded to be less than or equal to 100% not giving a good 

description of the NK-18 dataset. Considering Equation 4-5, an Emax >100% would change 

the sign of the Kout driven dissipation process, i.e. “flipping” the process when the drug effect 

was of sufficient magnitude, giving in effect two production processes to increase the observed 

indirect effect response in a form of positive feedback (Figure 4-46). However, NK-18 is a less 

sensitive index for APAP overdose response compare with other biomarkers.  

 

miR-122 has the highest sensitivity index compared with other biomarkers in response of 

APAP overdose. The inhibitory Emax effect of APAP on Kout is lowest for the miR-122 

biomarker, which also has the shortest half-life and the shortest Tmax to reach its peak effect. 

Further, the peak effect appears quickest and with highest magnitude relative to baseline 

compared with other biomarkers. These results agree with the findings of other studies in which 

miR-122 has been considered more sensitive than ALT as a biomarker of liver injury (i.e. it is 

released faster than ALT after APAP overdose) [71].  
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Figure 4-46:Sequential effect compartment/indirect effect model – illustration of potential positive 

feedback if Emax >100 for Kout dissipation process of indirect effect 

 

 

Based on the ratio of Emax to EC50, HMGB1 response may potentially be the most sensitive 

to APAP levels. This is combined with a comparatively small Ke0, however only simulations 

can reveal whether these parameters will translate to HMGB1 having the earliest detection 

point above its normal clinical range as an indicator of potential liver injury.  

 

Previously, K-18 biomarkers of both necrosis and apoptosis types were also identified as more 

sensitive than ALT in predicting liver injury [171]. The AK-18 biomarker has the longest mean 

half-life compared with the others in this study (as calculated from the Kout parameter). This 

long biomarker half-life is potentially consistent with characteristics of apoptosis (i.e. 

programmed cell death) where AK-18 is activated and goes on to act as both an initiator and 
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effector of cell death after liver injury. The long half-life may also be indicative of longer-term 

liver injury, which may be recoverable or permanent, and which may not be reflected in the 

behaviour of other biomarkers.  

 

ALT has long been considered as the gold standard for clinical evaluation of liver injury. The 

PKPD models of ALT results need to be interpreted with caution, due to the wide variability 

between patients. The relatively poor fitting of the ALT data in this study compared with the 

other biomarkers further justifies the use of novel biomarkers to predict subsequent liver injury.  

 

Further work in the next chapter will use the parameter estimates calculated in this chapter to 

investigate various scenarios and assess the relative abilities of the various biomarkers to 

predict liver injury outcome.  
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Chapter 5. Simulation and Exploration of Novel Biomarkers in 

APAP induced Liver Injury Introduction 

5.1. Introduction 

The novel biomarkers HMGB1, miR-122, GLDH, NK-18 and AK-18 have been indicated as 

predictive biomarkers for DILI in animal models [172]. Recently, the potential prediction of 

DILI using these biomarkers has become of wider interest meaning significant investment and 

progress has been made in this area [173]. Even though a recent study has shown the sensitivity 

and specificity of these biomarkers in human [61], using the biomarkers to predict DILI in 

humans has still remained difficult because of inter-individual variability (IIV). In the previous 

chapters 3 and 4, a PKPD dataset of these novel biomarkers following an APAP overdose 

(where liver injury was recorded in a proportion of the patients) has been modelled with a 

population approach, with specific consideration of the IIV (i.e. to attempt to quantify and 

explain the IIV in the data, as well as its other trends and relationships) to facilitate its use in 

predictions. 

 

Using the Pop-PKPD model parameters estimates from the PKPD models fitted thus far, a 

simulation approach will be used in this chapter to investigate the wider implications of the 

data and to assess the early prediction ability of these novel biomarkers after APAP overdose. 

The overall aim will be to define particular clinical scenarios for which novel biomarkers after 

APAP overdose could serve as combined tests or replace existing diagnostic approaches (e.g. 

ALT) that predict liver injury with greater sensitivity and/or specificity [156].  

 

5.1.1. Receiver Operating Characteristic (ROC) Analysis 

The growing need for rigorous evaluation of novel biomarkers in medical practice has 

encouraged the development and characterization of statistical methods for assessing 

diagnostic accuracy of biomarkers and the receiver operating characteristic (ROC) is 

considered a robust algorithm for this assessment [174]. It is a widely used method and well-
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known in engineering applications to evaluate the performance of binary classification models. 

It originated in the early 1950s and the first application was in radar signals to detect enemy 

airplanes during World War II, and was also used in psychological experiments to determine 

the relationship between properties of physical stimuli and the attributes of psychological 

experience. 

During the last four decades, ROC analysis has been applied extensively for evaluating the 

accuracy of medical diagnostic systems.[174]. The biomarkers falls into 5 major categorise, 

which are: diagnostic, prognostic, predictive, monitoring and exposure. ROC can be especially 

useful to novel biomarkers for DILI prediction as it can visualise the unbiased trade-off 

between sensitivity (i.e. the ability of the biomarker to identify the toxicity when it occurs) and 

specificity (i.e. the ability of biomarker to identify the individual is not have toxicity).  

 

ROC analysis is based on the concept of a “separator” variable where the frequencies of a 

positive or negative diagnosis (or categorisation into one group or another, according to the 

values of the test in question) will change with alteration in the cut-off or criterion. For 

example, a particular cut-off value will be derived for a biomarker level, at a particular 

timepoint to determine a prognosis of DILI or not. This can be compared vs. the true eventual 

outcome to see if the biomarker at that cut-off value has correctly diagnosed the patient for 

DILI or not. The result will therefore be one of either: a true/false positive, or true/false negative 

(Table 5-1).  

 

The hypothesis of an ROC analysis plot therefore is to display a signal to noise ratio, identifying  

a true positive fraction (TPF) that is a correct signal from diagnostic test (known as 

“sensitivity”) and a false positive fraction (FPF) known as “specificity” at various threshold 

cut-off values of a diagnostic test. Applied specifically to the DILI example, the fraction of 

patients with actual DILI (as measured by peak ALT) correctly also diagnosed as such (using 

a threshold) by their biomarker level represent a the true positive, while patients without actual 

DILI whose biomarker level using that threshold says that they do have DILI represent a false 

positive [176].   
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On an ROC plot showing TPF vs. FPF (e.g. Figure 5-1(right)) the red diagonal line is 

corresponds to a test that predicts outcome as positive or negative no better than chance. The 

greater the discriminatory capacity of a diagnostic test the more its ROC curve will be located 

to the upper left-hand corner of “ROC space” in this plot, showing the best possible sensitivity 

for the lowest loss in specificity. If two points from the curve were to be examined in detail, a 

point further down to the left represents low sensitivity and higher specificity while a point on 

the curve as it moves up and to the right shows high sensitivity and low specificity. The ROC 

graphical curve is particularly useful to compare between two or more diagnostic tests which 

may show different gain/loss in sensitivity vs. specificity (Figure 5-1(left)).  

 

There are many advantages for ROC curve analysis compared with other methods for assessing 

diagnostic accuracy [177]. It visually represents diagnostic accuracy by plotting sensitivity and 

specificity at multiple threshold points and therefore can also provide a direct and visual 

comparison of two or more tests on a single set of axes. A key property of ROC analysis also 

is that the accuracy indices derived from the method, are not changed by fluctuations caused 

by the use of illogically chosen decision criteria or cut-offs [178]. 

 

Table 5-1: Classification of ROC table 

Test score Has DILI Does not have DILI  

Positive True Positive Fraction 

(TPF) 

False Positive Fraction 

(FPF) 
PPV 

TPF/(TPF+FPF) 

Negative False Negative Fraction 

(FNF) 

True Negative Fraction 

(TNF) 
NPV 

TNF/(TNF+FNF) 

 Sensitivity  

TPF/(TPF+FNF) 
Specificity 

TNF/(TNF+FPF) 

 

PPV is positive predictive value. 

NPV is a negative predictive value. 
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.  

Figure 5-1: Concept and interpretation of ROC Curve Reproduced from [174]. 

Left: ROC curves of two diagnostic tasks for two tests A and B. 

Right: ROC curve derived from two overlapping distributions. 

 

The area under the ROC curve (ROC-AUC) is widely used as a summary measure of the 

accuracy of a test as determined by ROC analysis, providing a useful combined measure of 

sensitivity and specificity with which to assess the validity of a diagnostic test. It can also be 

used for statistical testing to evaluate or determine whether two ROC curves are significantly 

different. An ROC curve can have AUC values between 0.0 and 1.0., with an AUC of 1 

characterising perfect discrimination of outcome by the predictor in that test. Specifically for 

the APAP DILI example this would represent perfect diagnosis between patients with DILI 

and patients without DILI (as defined by peak ALT in this instance) according to their 

classification by their novel biomarker level 

 

Dear et al. [61] conducted an ROC analysis for the biomarkers under investigation in this thesis 

using a subset of the BIOPAR trial data, that considered the observation at time of presentation 

(i.e. investigating the predictive accuracy of biomarker levels at this single timepoint for DILI). 

In this chapter, this form of ROC analysis will be extended to identify the sensitivity and 

specificity of the biomarkers across a series of timepoints, simulating the biomarker levels at 

required timepoints as necessary using the prior Pop-PKPD modelled fit to the BIOPAR 

dataset.  
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In summary, the aims of this chapter will be to simulate profiles for the novel biomarkers under 

the dosing of the BIOPAR dataset using the Pop-PKPD model parameter estimates and 

compare with the simulated profile of ALT to identify alternative biomarkers with the ability 

to predict liver injury sooner and more accurately than ALT. Secondly, to simulate profiles for 

the novel biomarkers under different dosing regimens and clinical scenarios to illustrate 

potential changes of the profile of biomarker effect. And finally, to produce ROC analyses for 

prediction of liver injury as defined categorically by peak ALT status (i.e. prediction of the 

outcomes of the 94 patients in BIOPAR) using both simulated biomarker levels at specific 

timepoints, and individual patient PKPD model parameter estimates.  
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5.2. Methods 

Prediction of the phases within the network of biomarkers in response to liver injury resulting 

from APAP overdose was achieved using time course effect simulation for each biomarker. An 

ROC analysis was used to assess the sensitivity and specificity of each biomarker at various 

timepoints to predict the optimal time point for DILI prediction. Data from patients recruited 

in the BIOPAR clinical trial and the previous model fittings described in chapters 3 and 4 were 

used in these analyses. Simulations were performed using both R 3.4.4 and NONMEM, and 

the pROC package [175]was used for ROC analysis. 

 

5.2.1. Simulation of Typical Patient and Population Biomarker Timecourse Effect 

Profiles  

The Pop-PKPD parameter estimates obtained from the final Pop-PKPD biomarker models (see 

Chapter 4) were used to simulate rich time-courses of APAP concentrations and biomarkers 

over 72 hours to give precise descriptions of the time courses of effect. These simulation 

profiles can give an indication of the potential value of the biomarkers in early detection of 

liver injury by comparison with the ALT profile (i.e. the baseline for liver injury) and 

examining which biomarkers show the earliest and/or largest relative deviation from normal 

range following APAP overdose. Simulations were carried out in R using the mean dose in the 

BIOPAR trial (33g) and also included “typical patient” profiles derived from the fixed 

effect/population mean model parameter values and also 1000 “trial/population simulation” 

profiles generated using the random effects parameters for interindividual variability to show 

the modelled variability in the biomarker levels across the population. (This trial/population 

simulation will be illustrated on plots as a shaded prediction interval area). 

 

5.2.2. Simulation of Different Clinical Scenarios  

Simulation of profiles for all novel biomarkers under different dosing regimens, dose levels 

and clinical scenarios (e.g. dosing patterns with multiple staggered doses and/or different 

dosing intervals) were also conducted to illustrate potential changes of the profile of biomarker 
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effect. For clarity these simulations were performed for a “typical patient” only, using the fixed 

effects PKPD parameter values from the model fittings in chapter 3 and 4. Different single dose 

levels were investigated: 8, 16, 32 and 64 g (based on the allowed amount of APAP sold once 

per visit at retail stores). It was also of interest to investigate different dosing patterns for 

comparison with the profiles resulting from a single dose. Many potential dosing patterns could 

be investigated, but a cumulative dose of 64g staggered as 4 ingestions of 16g (i.e. 2 retail 

packs) at 2h intervals was deemed a realistic reflection of a real-life scenario of staggered 

dosing as defined according to the British Medical Journal [176].  

  

5.2.3. Simulation of Individual Patient Timecourse Effect Profile and ROC Analysis 

As previously discussed, ROC analysis is used to quantify how accurately medical diagnostic 

tests such as biomarker levels can discriminate between (typically) two patient or outcome 

states [177]. ROC was used in this chapter on the basis of patients being categorised according 

to peak ALT level into two classes: "liver injured" and "non-liver injured". Patients were 

considered to have liver injury if they had a peak ALT level > 100 U/L (at any time point) and 

non- liver injured if they had ALT level < 100 U/L at all observations. 

  

A ROC analysis was carried out for biomarker levels at each timepoint of a biomarker’s 

simulated time course. ROC-AUC was calculated at each time point as well as the threshold 

value that evoked the optimal combination of sensitivity and specificity at that timepoint. ROC-

AUC can therefore be observed over the biomarker timecourse to identify the best potential 

timepoint for liver injury prediction, and illustrate any change in predictive capacity over the 

timecourse. In this work individual biomarker levels were simulated and ROC analyses 

conducted at 2h intervals across a 72h timecourse following APAP overdose (this first 72h 

interval representing the time of greatest interest regarding early diagnosis of DILI).  

 

ROC analyses can also be performed on individual patient PKPDmodel parameter estimate 

values (CL, Ke0. Kin, Kout, E0, Emax, EC50, biomarker-AUC and t1/2) to assess the 
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predictivity of these parameters for DILI, although the clinical applicability of these parameters 

as a practical diagnostic tool is limited because in most circumstance an entire dataset would 

need to be analysed in order for them to be estimated. 
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5.3. Results 

5.3.1.  Simulation Results for Typical Patient and Population Biomarker Timecourse 

Effect Profiles. 

The simulations of timecourses for novel biomarkers of DILI generally showed flat profile 

shapes over 72h that did not deviate beyond the normal range of levels for the biomarkers, as 

shown in Figure 5-3, Figure 5-5, Figure 5-7 and Figure 5-9, with the normal ranges shown in 

Table 5-2 below. This is consistent with the dynamic range and time course of observations in 

the raw biomarker data used for PKPD modelling shown in chapter 4.  

 

 

Table 5-2: Normal range for novel biomarkers 

Biomarkers 
2.5th quantile 

 
50th quantile 

 

97.5th quantile 
 

miR-122 

(let-7d normalised) 
0.17  0.95  6.40 

HMGB1 (ng/ml) 0.22  1.24  2.34 

FL K18 (U/l) 114  248 475 

CC K18 (U/l) 57  132  272  

GLDH (U/l) 0.46  1.40  27  

 

The simulation for NK-18 however shows an increase for this biomarker beyond its normal 

range of 57-197 U/L to >200 U/L by 4h and continuing to increase over a 72h periodFigure 

5-11. The ALT profile over 72h is similarly flat and within its normal range as for the other 

biomarkers.  
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5.3.1.1. HMGB1 

 

Figure 5-2: Simulation of typical HMGB1 profile (blue line) with prediction interval from n = 1000 

population simulation (blue shaded). 

 

 

Figure 5-3: As figure 5-2, overlaid with simulation of typical ALT profile (red line) with prediction 

interval from n = 1000 population simulation (red shaded). 
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5.3.1.2. GLDH 

 

Figure 5-4: Simulation of typical GLDH profile (blue line) with prediction interval from n = 1000 

population simulation (blue shaded). 

 

Figure 5-5: As figure 5-4, overlaid with simulation of typical ALT profile (red line) with prediction 

interval from n = 1000 population simulation (red shaded). 
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5.3.1.3. miR-122 

 

Figure 5-6: Simulation of typical miR-122 profile (blue line) with prediction interval from n = 1000 

population simulation (blue shaded). 

 

 

Figure 5-7: As figure 5-6, overlaid with simulation of typical ALT profile (red line) with prediction 

interval from n = 1000 population simulation (red shaded). 
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5.3.1.4. AK-18 

 

Figure 5-8: Simulation of typical AK-18 profile (blue line) with prediction interval from n = 1000 

population simulation (blue shaded). 

 

 

Figure 5-9: As figure 5-8, overlaid with simulation of typical ALT profile (red line) with prediction 

interval from n = 1000 population simulation (red shaded). 
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5.3.1.5. NK-18 

 

Figure 5-10: Simulation of typical NK-18 profile (blue line) with prediction interval from n = 1000 

population simulation (blue shaded). 

 

 

Figure 5-11: As figure 5-10, overlaid with simulation of typical ALT profile (red line) with prediction 

interval from n = 1000 population simulation (red shaded). 
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5.3.2. Simulation Results for Different Doses 

Simulation of biomarker profiles over a time course of 72 hours following different doses of 

APAP (8 g – 64 g) for a typical patient indicated that the release and accumulation of NK-18 

biomarker shows a dose dependent increase with higher doses of APAP (Figure 5-16). The 

profiles of other biomarkers appear dose independent and remained approximately constant 

over the 72h time course and within their normal ranges (Figure 5-12, Figure 5-13, Figure 5-14 

and Figure 5-15).  

  

5.3.2.1. HMGB1 

 

 

Figure 5-12: Effect Time-course simulations of HMGB1 at different doses of APAP. 

Comparison of the time-course effect profile of HMGB1 (blue line) and ALT (red line) for a typical patient at 

different doses. 
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Figure 5-13: Time-course effect simulation of miR-122 at different doses. 

Comparison of the time-course effect profile of miR-122 (blue line) and ALT (red line) in a typical patient at 

different dose. 
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5.3.2.2. GLDH 

 

Figure 5-14: Time-course effect simulation of GLDH at different doses. 

Comparison of the time-course effect profile of GLDH (blue line) and ALT (red line) in a typical patient at 

different dose. 
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5.3.2.3. AK-18 

 

Figure 5-15: Time-course effect simulation of AK-18 at different doses. 

Comparison of the time-course effect profile of AK-18 (blue line) and ALT (red line) in a typical patient at 

different dose. 
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5.3.2.4. NK-18 

 

Figure 5-16: Time-course effect simulation of NK-18 at different doses. 

Comparison of the time-course effect profile of NK-18 (blue line) and ALT (red line) in a typical patient at 

different dose. 
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5.3.3. Simulation Results for Staggered Doses 

Simulation results for a typical patient obtained from a staggered dosing regimen (Figure 5-17, 

Figure 5-18)were in concordance for the other biomarkers (albeit not remarkable) with the 

results from single dosing for the NK-18 biomarker.  

 

  

 

Figure 5-17: Comparison of effect timecourses between staggered and single doses of APAP for HMGB1 

and miR-122 biomarkers 

The dose applied for these simulations was 64g 
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Figure 5-18: Comparison of effect timecourses between staggered and single doses of APAP for GLDH, 

AK-18 and NK-18 biomarkers 

The dose applied for these simulations was 64g 
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5.3.4. ROC –AUC Results for Novel Biomarkers 

In the ROC-AUC analysis, ROC-AUC for GLDH and miR-122 increases from its initial value 

at time zero, plateauing at 20 hours and 5 hours, respectively (Figure 5-19), with the ROC-

AUC for GLDH increasing slightly again from 65 to 70 hours. The ROC-AUC for HMGB1, 

AK-18 and NK-18 levels did not change over the investigated time course of 72 hours (Figure 

5-19), being close to 1 throughout the time course for both HMGB1 and AK-18. 

 

Figure 5-19: ROC-AUC for novel biomarkers across a rich timepoint profile. 

The black line for HMGB1, red line for miR-122, blue line for GLDH, orange line for AK-18 and green line for 

NK-18. 
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5.3.5. ROC Analysis for Novel Biomarkers PKPD Parameter Estimates 

An ROC-AUC close to 1 indicates the parameter in question is a potentially accurate predictor 

of DILI. Statistical significance was tested vs. a null hypothesis of the ROC-AUC being equal 

to 0.5 (which indicates the accuracy of the predictor is no better than random chance) with 

statistical significance considered at a P-value < 0.05. 

 

5.3.5.1. ROC Analysis for pharmacokinetic parameters 

Table 5-3: Clearance-ROC statistical analysis for pharmacokinetic parameters. 

Parameters ROC-AUC P-value Specificity Sensitivity 

Cl 0.67 0.9 0.8 0.5 
 

 

5.3.5.2. ROC Analysis for pharmacodynamic parameters 

5.3.5.2.1. HMGB1 

Table 5-4: HMGB1-ROC statistical analysis for pharmacodynamic parameters.  

Parameters ROC-AUC P-value Specificity Sensitivity 

Ke0 0.69 0.99 0.85 0.4375 

Kin 0.75 0.000791 0.62 0.875 

Kout 0.90 1 0.92 0.9375 

Emax 0.81 < 0.0001 0.64 0.875 

EC50 0.33 0.99 0.012 1 

E0 0.96 < 0.0001 0.91 1 

AUCBiomarker 0.97 < 0.0001 0.91 1 

t1/2 0.90 < 0.0001 0.92 0.937 
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5.3.5.2.2. miR-122 

Table 5-5: miR-122-ROC statistical analysis for the pharmacodynamic parameters. 

Parameters ROC-AUC P-value Specificity Sensitivity 

Ke0 0.68 0.01 0.41 0.93 

Kin 0.63 0.95 1 0.37 

Kout 0.93 1 0.87 0.93 

Emax 0.85 < 0.0001 0.83 0.75 

EC50 0.84 0.99 0.65 0.93 

E0 0.89 < 0.0001 0.87 0.87 

AUCBiomarker 0.97 < 0.0001 0.97 0.87 

t1/2 0.93 < 0.0001 0.87 0.93 

 

5.3.5.2.3. GLDH 

Table 5-6: GLDH-ROC statistical analysis for the pharmacodynamic parameters. 

Parameters ROC-AUC P-value Specificity Sensitivity 

Ke0 0.64 0.96 0.96 0.43 

Kin 0.68 0.01 0.57 0.81 

Kout 0.67 0.98 0.98 0.56 

Emax 0.88 < 0.0001 0.98 0.68 

EC50 0.74 0.99 0.52 0.87 

E0 0.75 0.0006 0.66 0.81 

AUCBiomarker 0.97 < 0.0001 0.97 0.87 

t1/2 0.67 0.013 0.98 0.56 

 

5.3.5.2.4. AK-18 

Table 5-7: AK-18-ROC statistical analysis for the pharmacodynamic parameters. 

Parmeters ROC-AUC P-value Specificity Sensitivity 

Ke0 0.53 0.33 0.78 0.56 

Kin 0.79 0.0001 0.93 0.62 

Kout 0.97 1 0.88 1 

Emax 0.76 0.0004 0.89 0.62 

EC50 0.80 0.99 0.93 0.75 

E0 0.97 < 0.0001 0.89 1 

AUCBiomarker 0.97 < 0.0001 0.89 1 

t1/2 0.97 < 0.0001 0.88 1 
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5.3.5.2.5. NK-18 

Table 5-8: NK-18-ROC statistical analysis for the pharmacodynamic parameters. 

Parameters ROC-AUC P-value Specificity Sensitivity 

Ke0 0.77 0.99 0.89 0.625 

Kin 0.86 < 0.0001 0.93 0.68 

Kout 0.97 1 0.93 1 

Emax 0.87 < 0.0001 0.92 0.75 

EC50 0.73 0.001 0.92 0.62 

E0 0.97 < 0.0001 0.93 1 

AUCBiomarker 0.97 < 0.0001 0.94 1 

t1/2 0.97 < 0.0001 0.93 1 
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5.4. Discussion 

A primary aim of this chapter was to explore which novel biomarker could potentially be the 

earliest to detect liver injury post APAP overdose and additionally to investigate the change in 

time course effect profile for each biomarker at different doses and dosing frequency. 

 

The simulations of the different biomarker time course effect profiles suggest that NK-18 is 

the only biomarker among those investigated in this study to show a clearly detectable, dynamic 

response above its normal range, on a 72h timescale (that may in turn be indicative of liver 

injury). This is particularly illustrated in Figure 5-11 which shows that compared to the gold 

standard biomarker ALT, NK-18 levels start to increase above normal range < 4h post APAP 

overdose ingestion, whereas ALT levels remain constant and within the normal range over 72h. 

These simulations clarify and are consistent with a visual examination of the raw data used for 

the modelling (reference the VPCs for NK-18 and ALT in chapter 4).  

 

Furthermore NK-18 was also the only biomarker to show dose dependent changes in its levels 

under simulations with different doses of APAP. Simulations also showed that a 64g dose 

whether given as a single dose or staggered as 4 doses at 2h intervals gave similar levels of 

NK-18. For all the other biomarkers, simulations showed no dose dependent changes in levels 

and again no changes between a staggered vs. a non-staggered regimen.  

 

In general, in the BIOPAR study dataset biomarker levels in most patients over a 72h interval 

tended to fall within normal ranges, with timecourses relatively flat in shape, except those for 

NK-18. This is despite all the patients having overdosed and there being a wide range of dose 

levels (from 8g to ~150g, typical dose (mean) 33g) among them i.e. the data for biomarkers 

except NK-18 is flat and within normal range for most patients irrespective of whether they 

took a high, typical or low overdose. In retrospect it is not surprising therefore that the modelled 

fits to the data for most of the biomarkers describe flat profiles with little dose dependence in 

response. It could be speculated that this may be partially due to the protective effect of NAC 
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antidote treatment (i.e. needs further investigation), which all patients in BIOPAR received 

soon after admission, in controlling liver damage (and most of the resultant biomarker levels). 

While also bearing in mind that the BIOPAR study used an uncontrolled cohort (in terms of 

control and accurate recording of dose level and time), leading to a noisy uncontrolled dataset, 

with a large degree of uncertainty regarding actual dose times and dose levels (e.g. at its most 

simple, there was often a relatively high degree of uncertainty that a high dose, for example, 

might give a high biomarker response at a given time) which is also reflected in the high 

residual errors in the model fittings.  

 

As will be discussed further in chapter 6, greater insight could have been derived if analysis of 

an APAP overdose dataset in patients not treated with NAC could have been examined in 

tandem as part of this thesis, to observe biomarker responses in absence of the potential 

protective effect of NAC. The reasons why NK-18 should behave differently however, being 

the only biomarker to show a response beyond its normal range (and furthermore a dose 

dependent one) remains uncertain, but may indicate a more fundamental mechanistic 

interaction (or lack of interaction) with the protective effects of NAC, and may suggest it has 

better potential sensitivity as a biomarker of DILI in certain circumstances.  

 

In the ROC analysis of PKPD model parameters (Figure 5-19), the resultant increase in NK-

18 post APAP overdose is reflected in the high Emax and Kout values, which would lead to 

higher NK-18 accumulation. The inhibitory Emax on this “dissipation” process for NK-18 was 

unusual in being > 100% suggesting a potential positive feedback effect leading to two 

production processes for this response (see Section 4.2.4.1, and section 4.4). This was also 

despite the data not being well described with an indirect-response model component where 

drug effect stimulated the underlying first order production process rather than modifying the 

dissipation process. None of the other modelled biomarker responses gave PD parameters of 

this magnitude and nature. 
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ROC analysis of the various biomarkers suggests that HMGB1, AK-18 and NK-18 are accurate 

predictors of liver injury across all the investigated timepoints across a 72h interval post 

overdose as indicated by each of these biomarkers showing an ROC-AUC close to 1 for all 

timepoints through 72h.  

 

miR-122 shows an improvement in its ROC-AUC from 0.87 at 0h to 0.90 by 5h and continues 

to rise in value to 0.93 by 72h, which suggests that later timepoints for this biomarker are more 

predictive for this biomarker. 

 

GLDH also shows improvement in its ROC-AUC over 72h, with a plateau in overall prediction 

quality after 20h, however GLDH is apparently the least predictive of all the biomarkers 

examined (maximum ROC-AUC of 0.89). 

 

Regarding the prediction of DILI outcome using PKPD model parameters, pharmacokinetic 

clearance of APAP (CL, reflecting dose normalised exposure) was not shown to be statistically 

significant. Among the pharmacodynamic parameter estimates, the AUC-biomarker was the 

best parameter prediction for HMGB1, miR-122 and GLDH.  

 

Clinical application of these biomarkers to identify and stratify APAP overdose patients as to 

whether they have liver injury or not could be promising, yet, needs further investigation. 

Caution must be taken with the ROC analysis given the limitations of the BIOPAR dataset in 

this context i.e. its uncertainties regarding both patient dose levels and dose times, and that 

most of the observed biomarkers were within their normal ranges. The resultant individual 

patient model fits, parameter estimates and simulations from this data will carry forward these 

uncertainties and errors which in turn will propagate into the ROC analysis. Therefore, 

although a particular biomarker in this analysis may have a ROC-AUC close to one for its 

levels throughout its 72h timecourse, and/or for one or more of its summary PKPD model 
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parameters (e.g. AK-18, HMGB1) this should not be interpreted as a clear, unambiguously 

significant result regarding it’s potential clinical utility. Rather, the relatively poor underlying 

data should be a major consideration and the findings here regarded as more of an initial 

indication of their potential use either diagnostically, or even perhaps in personalisation of 

treatment (e.g. dose of NAC antidote therapy).  

 

Further caveats should also be noted regarding the ROC analysis itself, for example when we 

analyse a biomarker in this manner, consideration is effectively given regarding the incidence 

(new finding) and prevalence (present finding) of the effect. In the case of idiosyncratic DILI 

where the outcome event is relatively rare an ROC analysis might not as effectively judge the 

diagnostic utility of a biomarker. This is shown particularly in the BIOPAR dataset where only 

16  had ALT >100  IU and had consider clinical DILI compared with 78 who had ALT <100 

and were not clinical DILI.  
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Chapter 6. Conclusions and Further Directions 

This thesis is focused on developing pharmacometrics and statistical methods that can be 

applied to novel biomarker data to predict early detection of liver injury in patients with APAP 

overdose. 

 

The previous chapters have explored different methods used in approaching this research and in 

this conclusion chapter, a brief overview about the research and the results will be provided with 

emphasis on the potential limitations that were faced during analysis. Where applicable, 

recommendations for how to replicate the approaches taken will be made as references for future 

research. Finally, potential future work is discussed where the research of this thesis could be 

extended. 

 

6.1. Overview  

APAP is a widely used over-the-counter (OTC) medication and APAP overdose is a major 

medical problem in the UK and one of the leading causes of drug induced liver injury and acute 

liver failure [2]. Stratification of risk and the need for N-acetyl-cysteine (NAC) antidote 

therapy is sub-optimal and based on a timed plasma APAP concentration. NAC therapy is 

extremely effective but its protective effects decline substantially if dosed 8 hours after an 

APAP overdose ingestion. NAC protects the liver and other tissues (e.g. kidney) by 

maintaining or restoring glutathione (GTH) levels, and by acting as alternate substrate for 

NAPQI metabolism to allow NAPQI to be converted into inactive metabolite [178]. 

 

Liver dysfunction from APAP toxicity is initially identified and monitored by evaluating 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT) [179], with both 

biomarkers being widely assayed in routine hospital laboratories at relatively low cost. In 

clinical research ALT is the more commonly discussed biomarker, and serum ALT 

concentration of > 100 IU/L is defined as indicating liver injury whereas a value 1000 IU/L is 

defined to indicate hepatotoxicity e.g. after APAP overdose[180]. Both biomarkers however 

lack sensitivity and specificity to detect DILI post APAP overdose especially for example as 
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ALT levels could also be elevated in other hepatic and non-hepatic conditions in addition to 

DILI [63] [64]. 

 

Mechanistic biomarkers have been demonstrated to provide added value for the early 

prediction of APAP-induced hepatotoxicity [81]. Biomarkers of this type include HMGB1, 

miR-122, GLDH, AK-18 and NK-18 These biomarkers can be quantified at the earliest 

possible time point following admission to hospital and their potential sensitivity to make a 

decision regarding early exclusion of liver injury could reduce hospital occupation or unwanted 

adverse reactions such as skin rash from unnecessary NAC treatment.  

 

Despite the large quantity of research on APAP overdose, its treatment and its biomarkers there 

is still insufficient information about patient safety, treatment and prediction/ prognosis for 

patient outcome. Treatment decisions are predominantly based on dose of APAP and a timed 

serum APAP concentration, however, patients’ clinical stress often leads to an incomplete 

history regarding the amount and time of an APAP overdose that could lead to potential 

overtreatment in some patients with what is a potentially harmful antidote with serious side 

effects (e.g. nausea, vomiting and skin rash), or perhaps more seriously a lack of treatment 

when it is actually needed.  

 

Population pharmacokinetic/pharmacodynamic (Pop-PKPD) approaches have been developed 

to bridge the gap between laboratory and clinic using computational models. In this thesis, Pop-

PKPD was deployed to fit mathematical models to novel clinical biomarker data from the 

BIOPAR trial for liver injury prediction post APAP overdose. Findings from this analysis could 

help with stratifying patients in terms of liver injury, with potential useful clinical application 

in individualisation of patient antidote therapy. 

 

In Chapter 3, a Pop-PK model was developed to estimate patient pharmacokinetic parameters, 

such as clearance and volume of distribution. A one compartment model with first order 

absorption with an exponential residual error model was chosen as the most appropriate model 

for the data fitting. The effects of the covariates (weight, age, gender, alcoholism and liver 
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injury biomarkers; ALT and INR) were evaluated in the final model. Only alcoholism status 

was a significant covariate, with alcoholic patients having a 14% increase in APAP clearance 

compared to non-alcoholic patients. It was also an important finding from this dataset that the 

typical APAP clearance following an overdose is lower (by approximately 50%) than that seen 

following a therapeutic dose, which could potentially be due to liver injury or the transient 

insult of the APAP overdose itself.  

 

In chapter 4, a sequential PKPD modelling approach was taken with the novel DILI biomarker 

data, using a combined effect compartment/indirect effect model that was implemented to 

describe the time course effect of APAP overdose on current and novel biomarkers, with an 

initial aim of this approach being to help in early prediction of liver injury. In the BIOPAR 

study, measured biomarker levels in most patients tended to fall within normal ranges, with 

time-courses relatively flat in shape, and the PKPD models yielded parameter estimates 

reflecting these trends in the data. This flat shape could be due to the protective effect of NAC 

which was administered to patients soon upon their admission to hospital. Only the NK-18 

biomarker showed dynamic deviation above its normal range suggesting its potential greater 

sensitivity as a diagnostic tool for DILI following overdose.  

 

Further steps were taken using parameter estimates from this analysis in Chapter-5 (section 

5.3.1) for simulation of clinical scenarios to investigate early detection of DILI after an APAP 

overdose liver insult, using novel biomarkers. In addition an ROC analysis was used (section 

5.3.5) to investigate the ability of various indices from these analyses and simulations to predict 

DILI in a patient as defined by their having a peak ALT >100 U/L. The ROC analysis for 

biomarker levels simulated at various timepoints showed good potential predictivity for 

HMGB1 and AK18 biomarkers measured at any timepoint across a 72h timecourse following 

overdose. When analysing individual PKPD model parameters, Biomarker AUC generally 

showed the best ability to predict DILI, and perhaps surprisingly APAP-CL (reflecting APAP 

PK exposure) did not show very good predictive capacity. This may reflect a greater degree of 

variability in the liver PD response to overdose and may also be reflected in the lack of clear 

dose-response observed and simulated for the biomarker responses. This assessment of the 

potential utility of these biomarkers must however be considered with the caveat of the quality 

of the dataset and model fittings on which they were based.  
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6.2. Limitations and Recommendations for future research in DILI with 

novel biomarkers 

The approaches taken in this work represent a toxicological application of pharmacometrics, 

which might be defined as “Population pharmacotoxicology”. Due to ethical issues (e.g. that 

we cannot give a toxic dose to any person who will enrol into a controlled study, the critical 

psychological status for patients that overdose) the data for this form of analysis is inherently 

uncontrolled and limited, which will limit this analytical approach in general. Analysis would 

be assisted by more appropriate control data with rich sampling and n-numbers, where there 

was control over dose time and dose level. However even if it existed this control data would 

only ever be available at a therapeutic dose, which may limit how it would assist analysis of 

data at a toxic dose. 

        

There are various limitations that should be acknowledged with the work in this thesis. For 

example it should be noted that the developed Pop-PK model is hindered by the large degree 

of uncertainty regarding actual dose times and dose levels of APAP, combined with the sparse 

and uncontrolled sampling schedule. There was also no information available regarding details 

of other parallel treatments for overdose e.g. administration of single dose activated charcoal 

(SDAC), or use and timing of stomach pumping both of which could potentially have marked 

influence on PK and PD profiles. The data has been modelled based on the information given 

however, so errors in this dosing record are likely to explain the high residual error of the model 

and the relatively poor accounting of interindividual variability by the other random effects 

components of the model fits to each set of biomarker data. To remedy these issues would 

require a better controlled study that would precisely collect patients’ samples at defined 

timepoints, however, controlling the dose-level administered would not be possible in an 

overdose scenario dataset. 

  

In general it was also the case that almost no covariate effects were identified in this PKPD 

analysis – the only significant covariate effect of potential clinical significance was a PK effect 

of alcoholism status on CL. No significant covariate effects were identified in the biomarker 

PKPD analysis: for example no clear covariate relationships were identified between PD 

parameters describing liver injury as assessed by biomarkers and APAP clearance/exposure in 



Chapter 6 –Conclusion and Further Direction 

176 

this dataset, or alcoholism status. This was perhaps due to the dataset homogeneity (i.e. all 

patients were overdose patients and all received NAC antidote therapy) and the relatively small 

number of patients in the dataset (i.e. insufficient statistical power to identify potential 

covariate effects). 

 

A further limitation of this study is the lack of control groups to provide context and comparison 

for the data from the overdose patients. A dataset in patients receiving a therapeutic dose would, 

for example, provide a better characterization of potential dose-response of the biomarkers, 

and also the parameters of the effect compartment component of the overall combined PD 

model (as previously demonstrated in the analysis of Gibb and Anderson.[166]). Further, a 

control/comparison dataset with patients not receiving NAC treatment would afford the ability 

to compare the difference in biomarker responses, and potentially differences in PK and APAP 

exposure, in the absence of NAC. This could for example help to identify if a clearer and more 

dynamic biomarker response over time could be seen with biomarkers other than NK-18. 

Beyond assessing diagnostic biomarkers of DILI, Pop-PK/PKPD modelling of the form 

described in this thesis has the potential to help with NAC antidote dose personalisation. 

Initially this could use the understanding of the Pop-PK of APAP itself to individualise the 

NAC dose according to APAP exposure (e.g. with precedent based on the work of Duffull 2013 

[181] where the total dose of APAP was shown to predict if NAC treatment was required). 

 

This form of recommendation could be refined if it was extended by inclusion of PKPD 

analysis of DILI biomarker data to identify relationships between NAC therapy and biomarker 

responses. Further refinement still would be gained if GTH and NAPQI levels could be 

quantified and modelled in parallel with APAP exposure and DILI biomarker data. 

Quantification of GTH would potentially allow a more mechanistic PKPD relationship to be 

characterised for the biomarker responses, perhaps incorporating consideration of the NAPQI 

intermediate as part of the model. Obviously, however, a much better controlled and higher 

quality PKPD dataset than that available from the BIOPAR trial, observing PK and PD at 

varying doses (or even presence/absence) of NAC  would be required to develop such 

approaches.  
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If a more detailed form of analysis such as this could be achieved however, the NAC dose 

individualisation itself would be able to make use of techniques developed for target 

concentration intervention (TCI), a long established strategy for individualised therapy [182] 

where the fundamental knowledge provided by combination PKPD models to describe the time 

course for drug response can be useful. TCI is a rational approach to achieve a desired clinical 

outcome based on drug effect and concentration observations to select the best dose to achieve 

the therapeutic effect [183] and is an expansion of the knowledge of therapeutic drug 

monitoring (TDM) [184].  

 

The target concentration provides a balance between therapeutic effects and adverse effects 

(e.g. adverse effects for NAC treatment include nausea, vomiting and skin rash). TCI is 

different from therapeutic drug monitoring (TDM) in that TCI aims for a single target 

concentration while TDM aims for a range of concentrations in a “therapeutic window”. A 

single target might be expected to have a better balance between the drug beneficial and adverse 

effects, while a TDM derived concentration range may be less than optimal with more 

noticeable adverse effects at the top end of the concentration range. Pop-PD models describe 

concentration effect relationships rather than to identify a clinical endpoint or target effect (TE) 

[185]. The target concentration (TC) can be predicted from the Emax PD model if the TE is 

known by using Equation 6-1. 

 

TC = (C50 * TE)/(Emax –TE) Equation 6-1 

 

This TE method was applied previously for theophylline in treatment of asthma, with TE based 

on the peak expiratory flow rate (PEFR) as the clinical endpoint [186]. However,  here it would 

be applied to NAC dosing based on a PKPD understanding of its interactions and effects on 

the biomarkers of DILI, making specific use of PKPD model parameter estimates to tailor 

dosing  (loading, maintenance infusions etc.) according to standard PK equations.  

 

Biomarker PKPD analysis of the form used in this work could also be implemented with data 

on a long timecourse (should this become available) to then make use of methods described by 



Chapter 6 –Conclusion and Further Direction 

178 

Holford  for disease progression modelling which could be implemented to stratify liver injured 

patients into three groups; liver injury recovered, liver transplant and dead on a longer timescale 

[187]. The disease progression refers to the time course of the changes in the disease under the 

influence of an ingested drug (in this case overdosed APAP). Disease status refers then to any 

quantifiable variable to describe disease at a particular point in time; it can also be defined as a 

clinical outcome such as survival or symptoms, or be measured with a biomarker which can be 

used by clinicians as diagnostic or prognostic variables. 

    

The TCI and disease progression modelling methodologies therefore have potential for 

application to individualization of therapy following APAP overdose and prediction of long 

term liver injury outcome. However, a large investment in future research to characterize the 

PKPD of NAC therapy itself will be required, i.e. quantifying biomarker responses following 

APAP administration (or insult) but with varying treatment doses of NAC antidote therapy, 

and ideally with additional quantification of GTH and NAPQI for greater mechanistic 

understanding. 

 

If such datasets could be obtained they would require analysis by the PKPD methods described 

and applied in this thesis for the BIOPAR trial, yielding similar forms of results but with a 

focus on the effect of antidote treatment. If sufficiently characterized by this analytical process, 

the findings from this future work could be used in both TCI and disease progression modelling 

frameworks to specify the most beneficial dosing regimen(s) for NAC antidote therapy, 

balancing therapeutic effects and the likelihood of a good outcome, with safety and side effects. 

TCI models become useful in clinical situations by providing methods that are accessible, 

include checks for accurate input of patient data, and provide output in the form of proposed 

doses and dosing intervals potentially as well as plots of predicted concentrations in relation to 

the target concentration. The potential benefit of TCI methods are therefore that the desired 

therapeutic targets can be reached by using a more straightforward calculation of dose with less 

potential error, combined with the convenience of a web tool or software that is easy to access 

for use anywhere with internet access.  
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The approaches outlined in this thesis therefore could be used in the future with overdose 

patients presenting at hospital with a suspected APAP overdose to determine their probability 

of DILI. Identifying if the liver is healthy in DILI could minimise patient stays in hospital, 

prevent adverse effects and save money  by identifying patients who do not need to be treated, 

in addition follow up could be reduced and better opportunities given for others who genuinely 

need treatment to stay at hospital. 
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