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Abstract 
 

Little is known about the early interactions that occur between respiratory syncytial virus 
(RSV) infected airway epithelium and NK cells. This includes airway epithelial cell (AEC) 
surface expression of IL-15/IL-15Rα complex, which could be a potent inducer of NK cell 
activation via trans-presentation. The work here describes the hypothesis that AECs after 
infection can activate NK cells which in turn influence immune and inflammatory responses 
including AEC activity. 

Human bronchial epithelium cell line, BEAS-2B, and human nasal airway epithelial cells 
(HNAECs) were used in vitro to characterise the expression of IL-12, IL-15, IL-18 and IL-15Rα 
during RSV infection. IL-12 protein was not expressed. RSV infection significantly increased 
expression of cell surface IL-15Rα on BEAS-2B cells and HNAECs. BEAS-2B cells also expressed 
cell surface IL-15 indicating complex expression. IL-15 protein was only detected in infected 
BEAS-2B cell culture supernatants and not HNAECs. Soluble IL-18 protein was only expressed 
by HNAECs and significantly increased with infection. The RSV infected airway epithelium has 
the potential to activate NK cells with IL-15 signalling predominantly occurring through the 
IL-15/IL-15Rα complex. 

A co-culture model was then established to examine AEC-NK cell interaction. Co-culture of 
peripheral blood NK cells with RSV infected BEAS-2B cells or HNAECs increased expression of 
IFN-γ from NK cells. IFN-γ expression was dependent on direct cell-to-cell contact with 
infected BEAS-2B cells. To further characterise AEC-NK cell interactions and how this may 
influence the wider inflammatory response to RSV, expression of AEC-derived CXCL9, 
CXCL10, CXCL11, TARC and BAFF during co-culture was characterised. CXCL10 was 
significantly increased from infected AEC-NK cell co-cultures compared to those without NK 
cells. BAFF mRNA was significantly increased in BEAS-2B cell-NK cell co-cultures however, 
soluble protein remained the same. Treatment of non-infected BEAS-2B cells with IFN-γ 
significantly increased cell surface expression of IL-15 and IL-15Rα and this response was not 
observed after infection. NK cells co-cultured with Th2 cytokine pre-treated and infected 
BEAS-2B cells had significantly increased IFN-γ expression compared to those from co-
cultures with no cytokine or IFN-γ treatment pre-treatment.  

Nasopharyngeal aspirates from RSV and rhinovirus (RV) infected infants were analysed for 
IL-15, IL-15/IL-15Rα complex and IL-18 to add in vivo relevance to the in vitro findings. IL-15 
and IL-18 protein levels were significantly higher in NPAs from RSV infected infants who 
required oxygen treatment compared to those who did not. IL-15 and IL-18 were significantly 
higher in NPAs from those with RV infection compared to RSV. 

Collectively, the in vivo relevance of these findings suggest that RSV infected AECs can alone 
activate NK cells. This is dependent on direct cell-to-cell contact of which the IL-15/IL-15Rα 
complex may be an essential method of NK cell activation. Activated NK cells may then aid 
in an increase in AEC-derived CXCL10 protein expression and possibly membrane-bound 
BAFF during contact with infected airway epithelium. NK cells may therefore contribute to 
adaptive immune responses through enhancing airway epithelial responses. 
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Chapter 1. Introduction 
 

1.1. Human respiratory syncytial virus 
 

1.1.1. Disease burden and epidemiology  

RSV is the most common cause of lower respiratory tract illnesses, such as bronchiolitis and 

pneumonia. Disease caused by RSV represents a global burden with an estimated 64 million 

individuals worldwide having RSV-related disease each year (WHO 2009). RSV was first 

isolated from chimpanzees in 1956 and then one year later infants (1,2). RSV gained its name 

following the observation of syncytia formation by infected ciliated AECs during viral culture. 

RSV infection follows a seasonal pattern with hospital admissions increasing during the 

colder months in temperate climate regions or rainy periods in tropical regions (Figure 1.1) 

(3,4). Figure 1.1 details this seasonality in England and Wales, with RSV infection having 

remained dominant over other respiratory viruses. This seasonality is not seen with other 

respiratory viruses, such as rhinovirus (RV) which is seen throughout the year. RSV infects 

almost everyone by 2 years of age, but can infect anyone at any time in life. This is owing to 

the inability to induce long-term immunity towards RSV and a skewed and unfavourable Th2-

response seen in infants (5,6). RSV usually causes mild symptoms such as cough, wheeze and 

fever, however in some infants, the elderly, immunocompromised and those with pre-

existing conditions, RSV causes can cause severe disease requiring hospitalisation and in 

some cases requiring transfer to an intensive care unit (7–9).  
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Figure 1.1. Weekly distribution of major viruses in England and Wales. Data is collected 
from Public Health England and NHS laboratories surveillance from 2004 to 2018 and shows 
a 3-week moving average. Lines represent adenovirus (purple), influenza A (red), influenza B 
(aqua), parainfluenza (green), RSV (black) and RV (blue). Reproduced from Public Health 
England (accessed October 2018). 

 

In the USA between 1997-2009, an estimated average of 11,300 RSV-related deaths occurred 

annually (10). The burden of disease is greater in resource poor countries. RSV was reported 

to be responsible for 5.6% of deaths in a study of 8 African countries (11). Figure 1.2 details 

that infants who are born during the winter months had more RSV-attributable admission to 

hospital, which was more prevalent for those aged under 6 months as well (12–14). 

Predisposing factors resulting in an increased risk of severe RSV disease include preterm 

birth, low birth weight, not being breast fed, having a mother who smokes during pregnancy, 

genetic differences in innate immune responses, being from a low income household, and 

having other medical conditions such heart or respiratory problems (15–18). Overall, disease 

caused by this virus and its seasonal nature results in a large economic burden. Paediatric 

intensive care unit stays of up to 52 days are not uncommon and medical care for the elderly 

is more costly for those infected with the additional complications caused by RSV infection 

(19,20). 
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Figure 1.2. RSV-specific GP consultations and hospital admissions by month of birth. Graph 
represents the number of admissions to hospital associated with RSV disease for those born 
in each month. Light pink bars represent ages 6 months to 5 years and salmon bars represent 
infants under 6 months old. Reproduced from Cromer et al. 2018 (12). 

 

1.1.2. Classification and structure 

RSV is a single-stranded, negative-sense, enveloped, RNA virus belonging to the 

Orthopneumovirus genus of the Pneumoviridae family (21). The viral genome is 15.2kb 

nucleotides long and has 10 genes that encode 11 proteins (Figure 1.3A). RSV has two major 

antigenic subtypes, A and B which are concurrently in circulation, with subtype dominance 

during RSV seasons lasting around 1-2 years (22,23). Antigenic subtypes A and B can 

furthermore be sub-grouped into genotypes, or clades, based on G gene variability (24). 

Worldwide, the most prevalent clades for RSV A are GA2 and GA5 and for RSV B the BA 

(25,26).  

Structurally each RSV particle has three transmembrane glycoproteins contained with a lipid 

bilayer; the glycoprotein (G), the fusion protein (F) and a small hydrophobic protein (SH) 

(Figure 1.3B). G protein structure includes variable glycosylation of ‘mucin-like’ domains 

which determine antigenicity and give rise to the A or B serotypes according to antibody 

reactivity (24,27,28). The G protein interacts with cell surface proteins including the CX3CR1 

receptor found on ciliated AECs via a CX3C motif and enhances cell binding (29–32). CX3CR1 
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deficient mice do not display complete inhibition of viral replication and anti-CX3CR1 

treatment of the cell line Hela did not affect viral replication (30). This is possibly due to the 

multiple receptors expressed by AECs that RSV can utilise for enhanced cell entry such as 

ICAM-1, TLR4, nucleolin and HSPG (33–36). The F protein glycoprotein is essential for cell 

entry (37,38) and has both pre and post fusion states which form a trimeric structure at the 

membrane surface (39). Due to its essential requirement for cell entry, the F protein has a 

highly conserved region seen across RSV A and B subtypes, with overall 89% amino acid 

sequence similarity compared with 50% for the G protein (24,40). The F-protein binds to 

ICAM-1 and upon binding, virus particles are then endocytosed into the cell (41,42). The role 

of SH protein has still not been fully determined. The SH protein can form ion channels in 

human embryonic kidney cell line, HEK 293, however the role of this is still undetermined 

(43–45). RSV lacking both G and SH proteins is still able to infect cells and recombinant RSV 

lacking SH protein has a higher replicative ability than wild-type virus in vitro (46). Replication 

of RSV lacking SH protein has also shown to be different between upper and lower airways 

and also between difference species. Mice showed a 10-fold reduction in replication of RSV 

lacking SH protein in the upper airways, not seen in the lower airways compared to wild-type 

RSV, whilst in chimpanzees reduced replication was observed in the lower airways compared 

to the upper airways (47,48). This suggests that the SH protein may aid in RSV replication in 

vivo.  

Below the lipid bilayer is an inner layer consisting of two matrix proteins M and M2-1. M 

matrix protein is essential for the production of infectious viral particles and can associate 

with the nucleocapsid (49–51). The M2 protein aids in antitermination (the ability to prevent 

premature termination of RNA synthesis) which is especially important for longer RNA 

viruses (52,53). Figure 1.3C illustrates the RSV life cycle and details the stages of viral genomic 

replication, viral protein synthesis and virion budding. Within the virus particle is the 

nucleocapsid which is released into the cytoplasm of the host cell after fusion. The 
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nucleocapsid, consisting of N, P and L proteins, forms a decametric ribonucleoprotein ring 

which provides protection of RSV genomic RNA and aids in viral replication (54). Concurrently 

occurring is the translation of the viral mRNA using the host cell’s ribosomes to produce viral 

proteins (55). P protein associates with N protein to form ‘nucleocapsid-like’ structures 

which gives specificity for viral RNA-L complex RNA which is a cofactor in RNA synthesis and 

stabilises the L protein (56–58). The L protein is an RNA-dependent RNA polymerase involved 

in transcription of the viral RNA genome (59,60). M2-1 then combines to the nucleocapsid 

complex which allows M protein to bind. When M protein associates to the nucleocapsid 

complex the genomic RNA forms tighter coils and terminates transcriptase activity. Finally 

the nucleocapsid and envelope glycoproteins move to the cell surface where the M protein 

of the nucleocapsid interacts with the F and G protein and a new virion buds from the host 

cell membrane (58).  

Non-structural proteins, NS1 and NS2, are expressed during transcription and play a role in 

inhibiting host cell innate responses, such as IFN-α and IFN-β expression (61–63). This is a 

mechanism that may aid in enhanced viral replication within the host by suppression of 

innate immune response and viral clearance mechanisms. 
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Figure 1.3. The genetic organisation, structure and infectious cycle of RSV. A) The genomic 
sequence of RSV which is 15.2 kb long, encoding 10 genes, encoding 11 proteins. NS – non-
structural protein, N – nucleocapsid, P – phosphoprotein, M – matrix protein, SH – small 
hydrophobic protein, G – glycoprotein, F – fusion protein, L – large polymerase. B) Cartoon 
diagram of virion particle. The outer lipid bilayer layer consists of glycoproteins; G 
attachment protein, F fusion protein and SH small hydrophobic protein. The envelope lies 
below the outer layer consists of the M matrix and M2 protein. Within the envelope is the 
ribonucleoprotein complex, consisting of negative sense (-), single stranded (ss) RNA, 
genome and proteins N, P and L. C) RSV attaches to the host cell via G protein. Fusion of virus 
and cellular membranes occurs allowing release of viral genome into the cytoplasm. The 
genome is transcribed into mRNAs which are then transcribed into viral proteins by host cell 
ribosomes. New genomes associate with N, P, L, M and M2-1 proteins to form nucleocapsids. 
Envelope glycoprotein are processed through the host cells ER-Golgi secretory pathway. The 
glycoprotein complex and nucleocapsids associate to form a new budding virion which leaves 
the host cell. Reproduced from Ghildyal et al. (58). 
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1.1.3. Airway epithelium recognition of RSV 

RSV transmission can occur through viral particles present in aerosol sprays and also by direct 

contact from person to person. RSV has an incubation period of around 3-6 days, which is 

delayed in comparison to influenza virus (64,65). Infection begins in the nasopharynx and 

may then spread to the lower respiratory tract (66,67). RSV predominantly infects ciliated 

cells entering through the apical surface but can also infect other non-ciliated, bronchial, 

bronchiolar and alveolar epithelial cells such as basal cells (68). In the lower airways, RSV has 

also been shown to infect type 1 pneumocytes (responsible for gas exchange) in the alveoli, 

indicating a potential for viral spread throughout the entire airways (69). The extent of 

resultant epithelial damage includes sloughing, apoptosis of ciliated epithelial cells, loss of 

cilia function and increased goblet cell numbers, which leads to mucus overproduction 

(70,71). 

Infection of AECs initiates an innate immune response which progresses with the combined 

response of resident lung innate immune cells. AECs, alveolar macrophages, dendritic cells 

(DCs) and innate lymphoid cells (ILCs) express pattern recognition receptors (PRRs) which 

include toll-like receptors (TLRs), retinoic acid inducible gene (RIG-I) and nucleotide-binding 

oligomerisation domain (NOD)-like receptors. These bind pathogen-associated molecular 

patterns (PAMPs), such as viral RNA, and initiate signal cascades that induce localisation of 

two main transcription factors, nuclear factor-κB (NF-κB) and interferon regulatory factors 

(IRFs) (72,73). Activation of these signal cascades, as shown in Figure 1.4, leads to synthesis 

of cytokines and chemokines, including type I interferons (IFN), IFN-α and IFN-β, and type III 

interferons, IFN-λ, critical for virus elimination (Figure 1.4) (74,75).  

Ten TLRs have been identified in humans and although all ten types of TLR mRNA are 

expressed throughout the airway epithelium, protein expression can vary depending on 

airway location (76). TLRs also show differential compartmentation within AECs. TLR3 is 
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expressed on both apical and basolateral sides in contrast to TLR1, TLR4, TLR5, TLR7, TLR9 

and TLR10 which are predominantly expressed on the apical side, providing multiple sites for 

the initiation of an immune response when RSV binds and then enters AECs (77). TLRs TLR1, 

TLR2, TLR3, TLR5 and TLR6 have been shown to be the most highly expressed in AECs (77,78). 

In the AEC line, A549, RSV induces increases expression of TLR3, TLR4 and RIG-I which 

initiates activation of transcription such as NF-kB and IRF-3 (79–81). TLR3 recognises RSV 

dsRNA within the cell and also activates NF-κB leading to IL-8 synthesis (82). Knockdown of 

TLR3 in A549s reduced immune response-initiating gene expression of IFN-β, CXCL10 and 

CCL5 (83). RSV NS2 protein was also shown to inhibit the TLR3 pathway in A549s which again 

could lead to reduced interferon response (84). The role TLRs play in RSV-recognition provide 

a varied and crucial initiation of immune response cytokine expression in AECs. 

Polymorphisms in TLR structure could therefore reduce AEC recognition of RSV. For example 

TLR4 polymorphisms may correlate to a more severe RSV illness, but the role of TLR 

polymorphisms during RSV infection are not well defined (85–87). RSV F protein has been 

reported to bind TLR4 leading to NF-κB-led transcription of cytokines IL-6, IL-8, IL-10 and IFN-

β and an increase in disease severity has been associated with lower TLR4 gene expression 

(88,89). RSV has been shown to also upregulate TLR4 in A549s cells, however the role of RSV 

F protein binding and interactions with TLR4 is still debated with other studies having 

suggested RSV-TLR4 interactions do not influence RSV pathogenesis at all (88–92). Overall, 

RSV activated pattern recognition receptors (PRRs) and induced cytokine and chemokine 

expression leading to an infiltration of immune cell populations and subsequently 

development of acquired immunity. 
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Figure 1.4. RSV-induced toll-like receptor (TLR) signalling pathway. RSV proteins and RNA 
are recognised by extracellular and intracellular TLRs which signal through MyD88 or TRIF 
adaptor molecule pathways to induce transcription factors NF-κB and IRFs 3 and 7. This leads 
to production of interferons (IFNs) and pro-inflammatory cytokines. Reproduced and 
adapted from Kolli et al. (74).  

 

1.1.4. Therapies 

Delivering therapeutic advances for the prevention and treatment of RSV infection has been 

challenging. To date, there is still no accepted RSV vaccine. In the 1960’s, a formalin-

inactivated RSV vaccine was trialled on a small group of infants but when they were exposed 

to natural RSV infection, this resulted in more severe disease and two fatalities. In 1998 

Palivizumab (brand name Synagis), a monoclonal antibody that binds to the RSV F protein 

inhibiting viral entry into host cells, was approved for prophylactic use. This treatment, which 

takes the form of passive immunisation, is given to individuals at risk of RSV infection 

including infants born prematurely and those with other underlying diseases. High risk 
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children that do not receive RSV prophylaxis are more likely to be hospitalised and those who 

do not complete treatment have longer hospital stays (93,94). Palivizumab treatment has 

been shown to reduce overall risk of hospitalisations by ~50% in term infants and by 78% for 

infants born prematurely (95). However, prophylaxis treatment may still not fully inhibit 

symptoms such as wheezing (96). 

Currently, F and G proteins are thought to be attractive therapeutic targets for vaccine 

design. However, these vaccines may not provide lifelong protection from RSV disease. For 

example, an RSV F nanoparticle vaccine only resulted in increased anti-F IgG levels for up to 

a year in young adults (97). Alternative therapeutic strategies showing promise include low-

molecular-weight organic compounds which block viral entry to the cell by inhibiting fusion 

of RSV to host cell surface receptors (98). 

 

1.2. The host immune response to RSV 
 

1.2.1. Innate immunity 

The innate immune response provides the first line of defence against pathogens and other 

environmental substances. It is composed of anatomical barriers such as the skin, epithelial 

cells that line the airways and gastrointestinal tract, innate immune cells and leukocytes 

which coordinate the initiation of inflammatory and immune responses often through 

recognition of common pathogen features through PRR sensing. Although the innate 

immunity can be considered to lack classical immunological memory, it is an essential 

initiator of the highly specific adaptive immune response and thus also a regulator of the 

type, strength and longevity of that response. Innate immunity helps shape the adaptive 

response including immunological memory and subsequent response to infections.  



29 
 

1.2.1.1. Airway epithelium 

The airway epithelium is comprised of AECs that form a continuous layer in both large and 

small airways. The main cell types of the airway epithelium include ciliated columnar 

epithelial cells, secretory cells and basal cells (Figure 1.5). Over 50% of the airway epithelium 

are ciliated cells which transport mucus from the lower airways up to the throat (99). Goblet 

cells secrete mucin glycoproteins into the airway which consists of antimicrobial peptides, 

aiding in trapping of environmental substances (100). Serous cells form glands and secrete 

ions and airway liquid (101). Basal cells are progenitors of columnar cells and respond to 

airway cell loss, renewal or damage (102). Together, this mixed population of cells ensure 

the airway epithelium stays intact and acts quickly to initiate an immune response to 

pathogens. Pathogens are recognised by external and internal PRRs, TLRs, c-type lectin 

receptors, retinoic acid-inducible gene-I-like and NODs, described above in Section 1.1.3 

(103).  

 

Figure 1.5. Anatomy of the airway epithelium. Serous and goblet cells provide the mucus 
layer at the airway interface and ciliated columnar epithelial cells aid in moving the mucus 
up to the throat. Progenitor basal cells differentiate into columnar cells to ensure the 
epithelium stays as one continuous layer. Innate immune cells such as macrophages and 
macrophages reside at the basal surface. Modified from Hirota et al. (104). 



30 
 

The apical side of the airway epithelium consists of a mucus layer of secreted molecules that 

provides an important barrier to inhaled pathogens and substances to limit contact with 

AECs. Secreted molecules include antimicrobial substances such as β-defensins, LL-37 (or 

cathelicidin) antimicrobial peptide, lysozyme, lactoferrin, IgA, nitric oxide, and mucins (Figure 

1.6) (105–107). These molecules are multifunctional, acting on many types of microbes and 

microbial products. β-defensins are antimicrobial peptides that aid in pathogen clearance in 

which their expression can be induced by bacterial lipopolysaccharide (LPS), fungus, TNF-α 

and IL-1β (108,109). LL-37 expression stimulated by LPS induces infected AEC apoptosis and 

proliferation to maintain epithelium integrity (110–112). The iron binding protein lactoferrin 

has the ability to inhibit entry of various viruses, including RSV, into AECs and inhibit bacterial 

growth (113–115). IgA has potent virus neutralising properties, such as for influenza virus, 

however RSV specific IgA has shown little correlation to RSV neutralisation (116–118). 

Lysozyme cleaves bacteria cell wall peptidoglycans and has antimicrobial properties against 

common lung bacteria such as E.coli, P.aeruginosa and S.aureus (119,120). Nitric oxide has 

various roles within the lung such as ion channel regulation, airway secretions and ciliary 

motility which all aid in pathogen clearance (121). MUC5AC and MUC5B are the main 

secreted mucins and trap pathogens within the mucus layer, however overproduction of 

MUC5AC and MUC5B have been associated with increase in disease severity to RSV and 

chronic bronchitis possibly by reducing airflow (122–124). 

Functions of the basolateral side of the epithelium include secretion of pro-inflammatory 

cytokines and chemokines. These have the ability to aid migration, differentiation and 

activation of both innate and adaptive immune cells (125,126). Figure 1.6 details some innate 

responses during RSV infection. RSV upregulates the production of many chemokines and 

cytokines from AECS via the NF-κB pathway of which IL-1, IL-6, IL-11, CXCL10, IL-8, CCL5, 

CCL2, CCL3, CCL4, TNF-α, interferons such as IFN-α/β, and GM-CSF are the most prominently 

upregulated. Table 1.1 details some key AEC-derived chemokines during RSV infection (127–
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130). Differential expression of key AEC-derived chemokines and cytokines has been 

correlated to both RSV disease severity and also to protection from enhanced disease. In 

humans, increased serum CCL5 levels and a CCL5 (−403 G/A) polymorphism has been 

reported to be associated with increased risk of recurrent wheezing following RSV infection, 

potentially by leading to prolonged inflammatory cell recruitment in the lungs after infection 

(131). In mice, CCL3 expression was shown to protect from TNF-α induced weight loss, an 

indicator of disease severity, which was potentially through reducing the amount of TNF-α 

expressing CD8+ T cells in the lungs (132). Differential expression of AEC-derived chemokines 

may therefore drive and protect from excessive inflammation. 

 

Figure 1.6. Innate immune responses of the airway epithelium to viral infections. The first 
line of defence against respiratory viruses is a mucus layer which aids in trapping pathogens 
and holding secreted molecules such as β-defensins, interferons, nitric oxide and lactorferrin. 
Upon infection, AECs then co-ordinate an innate and adaptive immune response with the 
secretion of various chemokines and cytokines which attract and activate immune cells. 
Taken from Vareille et al. (133). 
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Table 1.1. AEC-derived chemokines during RSV infection. Modified from Zhang et al. (129). 

Chemokine (also known as) Receptor/s Target cells 
CCL2 (MCP-1) CCR2 Basophils, monocytes 
CCL3 (MIP-1α) CCR1/5 Lymphocytes, monocytes, 

macrophages, immature DC 
CCL4 (MIP-1β) CCR5/8 Monocytes, macrophages 
CCL5 (RANTES) CCR1/3/4/5 Eosinophils, monocytes, T 

lymphocytes, DC 
CCL17 (TARC) CCR4/8 Th2 lymphocytes, NK cells 
CCL20 (MIP-3α) CCR6 T lymphocytes, naïve B 

cells, DC 
CXCL2 (MIP-2) CXCR2 Monocytes, neutrophils, 

basophils 
CXCL8 (IL-8) CXCR1/2 Neutrophils, eosinophils, T 

lymphocytes 
CXCL9 (MIG) CXCR3 Activated Th1 lymphocytes, 

NK cells 
CXCL10 (IP-10) CXCR3 Activated Th1 lymphocytes, 

NK cells 
CXCL11 (I-TAC) CXCR3 Activated Th1 lymphocytes, 

NK cells 
CX3CL1 (Fractalkine) CXCR1/2 Monocytes, lymphocytes 

 

The anti-viral interferon response is especially important during RSV infection. AEC-derived 

interferons including type I (IFN-α, IFN-β) and type III (IFN-λ1/IL-29, IFN-λ2/IL-28A and IFN-

λ3/IL-28B) expressed during viral infection are thought to limit viral replication (134–136). 

IFN-α and IFN-β inhibit viral replication and spread through the induction of IFN-inducible 

proteins such as RNase L, which inhibits viral RNA synthesis, and expression of apoptotic 

proteins, which reduces cell-to-cell viral spread (137–140). However, RSV NS1 and NS2 

proteins restrict the expression of IFN-α, IFN-β, IFN-λ1 and IFN- λ2/3, which would otherwise 

aid in viral clearance (141,142). The interferon response during RSV infection is important in 

initiating adaptive responses. Mice lacking IFNAR1 showed reduced expression of memory 

CD8+ T cell–derived granzyme B during secondary RSV infection, suggesting an impaired 

interferon response from AECs could reduce protective responses on secondary infection 

(143). Expression of AEC-derived BAFF, a crucial B cell activating cytokine, is IFN-β 

dependent. As RSV NS1 and NS2 proteins reduce IFN-β gene expression this could potentially 
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reduce IFN-β-induced AEC-derived BAFF expression and hence reduced B cell responses 

(144–146). Reduced B cell responses could increase the likelihood for secondary infection, 

with less RSV-neutralising antibodies raised and reduced adaptive immune responses. 

Overall, an AEC-derived interferon response is essential to provide effective RSV innate 

immune cell elimination and adaptive immunological memory. 

During an inflammatory response, AECs can be further stimulated by cytokines in their 

environment including TNF-α and IFN-γ, to further increase or modify AEC cytokine and 

surface receptor expression. This could enhance the immune orchestration from AECs. TNF-

α and IFN-γ AEC-stimulation includes increased expression of ICAM-1 receptor, CCL11 

(eotaxin), CCL5, IL-6 and IL-15, which aid in eosinophil, neutrophil and T cell recruitment to 

infected airways and then immune cell adherence to infected AECs (147–152). RSV infection 

of AECs accompanied with IFN-γ treatment has been shown to act synergistically, that is the 

expression level by combined RSV infection and IFN-γ treatment produced an amount that 

was greater than the sum of levels observed with infection or treatment alone, to enhance 

CXCL10 expression which could increase recruitment of monocytes, T cells, natural killer (NK) 

cells and DCs to infected sites (153). Therefore upon recruitment of immune cell populations, 

a co-ordinated response between AECs and immune cell populations may occur. 

 

1.2.1.2. Lung resident and recruited immune cells 

Lung resident immune cells include cells such as mast cells, DCs, macrophages, NK cells and 

ILCs. Immune cells that are recruited during infection or injury include neutrophils, 

eosinophils, monocytes and other lymphocytes (154). These cells, along with AECs, can 

enhance an innate immune response and provide a bridge between the innate and adaptive 

immune response leading to activation of the adaptive immune response.  
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DCs can be classified as either myeloid (mDC) or plasmacytoid (pDC) based on expression of 

surface proteins, CD11c, CD13, CD33 and CD11b and CD123, CD303 and CD304, respectively 

(155). mDCs prime T cells whilst pDCs express type I interferons, especially IFN-α (156). DCs 

are an essential cell population for the presentation of pathogen antigens to T and B cells, 

however their role during RSV infection is not fully defined. Both mDCs and pDCs were found 

in nasal washes from children with RSV infection along with a decrease in peripheral blood 

DC numbers suggesting recruitment to infected airways (157). RSV has been shown to 

directly infect and replicate in monocyte derived DCs, with preferential infection of mDCs 

over pDCs (158,159). RSV NS1 and NS2 proteins have shown to reduce DC function and hence 

impaired DC-T cell interactions (160–162). Taking these results together suggest that upon 

recruitment to sites of infection, DC functions could be impaired such as by NS1 and NS2 

modulation of DC IFN-α expression. This was shown in mice with depletion of pDCs leading 

to enhanced lung inflammation and mucus production during RSV infection, which could 

have been due at least in part to an observed reduction in IFN-α protein expression (160). 

Furthermore DCs from neonatal mice were shown to have reduced ability to process RSV 

antigens and showed reduced expression IFN-α, resulting in enhanced airway pathology in 

comparison to that observed in adult mice. (161,162). A reduction in both the expression of 

IFN-α and RSV-antigen presentation could lead to reduced T cell responses. Overall, reduced 

DC-derived IFN-α expression could lead to the reduction of other cytokines, such as IFN-γ, 

CXCL10, IL-6 IL-1β and TNF-α, which has been observed in IFNAR1 deficient mice (147,148) 

and thus reduced adaptive responses and increased RSV illness. 

Alveolar macrophages present antigen or antigenic peptides from phagocytosed pathogens 

or infected-apoptotic cells to T or B cells (163) and enhance the cytokine response to RSV 

infection, including production of IFN-α, IFN-β, TNF-α, IL-6, CCL3, and CXCL10 (164,165). 

Macrophages seem to aid in immune cell recruitment and retention in the lungs of mice. 

Macrophage depleted mice showed reduced NK cell numbers and activation over an 8 day 
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period, compared to wild-type RSV infected mice that had NK cell recruitment lasting over 4 

days (166). However not all mouse studies show supporting results. In one study, changes in 

bronchoalveolar lavage (BAL) cellularity during RSV infection of macrophage depleted mice 

resulted in increased numbers of DCs, neutrophils, CD4+ and CD8+ T cells (167). Using New 

Zealand black mice, which have inherent macrophage functional deficiencies, results showed 

reduced lung CD4+ and CD8+ T cells and increased NK cells and DCs numbers compared to 

BALB/c mice (168). Here impaired macrophage function was associated with RSV pathology 

and increased viral load which could suggest T cell responses aid in resolution whilst NK cells 

and DCs could be involved in pathology. Mouse macrophage studies show it is apparent that 

macrophages have a role in recruiting and activating different immune cell populations, 

however their role has not been well defined in humans.  

Another group of emerging innate immune cells that are being extensively studied 

throughout many different inflammatory diseases are ILCs (169). There are three groups of 

ILCs which include ICL1 (including NK cells), ILC2 and ILC3 (including lymphoid tissue inducer 

cells) (170). ILCs derive from a common lymphoid progenitor which express ID2, a 

transcriptional repressor. Figure 1.7 briefly details how ILCs are classified based on 

phenotypes and functions. For instance, different ILCs groups express different cytokines, 

such as IFN-γ and TNF-α for ILC1s, IL-5, IL-6 and IL-13 for ILC2s and IL-22 and IL-17 for ILC3s, 

in response to different stimuli (Figure 1.7). All ILCs, except NK cells, express CD127 (IL-17RA) 

and all lack lineage markers for other hematopoietic-derived cells, such as CD3 (T cells), CD19 

(B cells), CD11b (neutrophils and eosinophils) or CD11c (DCs and monocytes). In healthy 

human lungs, the main ILC group are ILC3 (~57%) then followed by ILC2s representing around 

~33% and finally ILC1s ~10% (171). Expansion and activity of specific ILC groups have been 

reported in different lung disease including ILC3 in COPD, ILC1/NK cells and ILC2s during RSV 

infection and ILC2 in allergic asthma (171–173). NK cells are discussed in more detail in 

Section 1.3 and their role during RSV infection in Section 1.4. 
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Figure 1.7. Innate lymphoid cell groups and roles during infection. ILCs derive from a 
common lymphoid progenitor which express ID2, a transcriptional repressor. ILCs are then 
classified into one of three groups based on transcription factor expression, expansion by 
different cytokines and cytokine expression. Taken and modified from Elemam et al. (174). 

 

Neutrophils are the main inflammatory cell population recruited to the lungs during severe 

RSV infection where their functions include phagocytosis of pathogenic particles, neutrophil 

extracellular trap formation and degranulation of pro-inflammatory molecules. Neutrophil 

chemo-attractants present during RSV infection include IL-6, IL-8, CCL3 and CCL5 (175). Up 

to 75% of nasal lavage cells isolated from patients with bronchiolitis are neutrophils and 

airway neutrophilia has been suggested to correlate with disease severity (176,177). SNPs in 

the IL-8 gene associated with increased production of this potent neutrophil 

chemoattractant, have been associated with more severe RSV- disease (178). This may 

suggest a role in RSV pathogenesis, however the overall role of neutrophils is still unclear. 

Eosinophils are another group of recruited cells that have also been implicated in RSV 

pathogenesis. Recruited to the lung by chemo-attractants such as CCL5, CCL11 and CCL3 

(179,180), eosinophils produce cytokines and other inflammatory mediators, including nitric 

oxide, which aid viral clearance (181). Although the role of eosinophils during primary RSV 

has again not yet fully been characterised, their roles after RSV infection may be particularly 

relevant to the development of allergy or asthma. Eosinophil counts have been found to be 

higher in infants with persistent wheeze following RSV infection and reinfection after 

exposure to RSV early after birth in mice leads to an eosinophilic inflammation which is more 
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pronounced in IFN-γ deficient mice (182–185). Administration of IFN-γ was only able to 

protect from eosinophilia in IFN-γ deficient mice if given during primary infection indicating 

the importance of early IFN-γ expression in controlling eosinophil recruitment to the lungs 

both during first and subsequent infections (185). Mice first infected with RSV during the 

neonatal period and then later re-challenged with RSV show elevated Th2 responses which 

was also accompanied by a greater number of eosinophils in BAL, suggesting an imbalance 

Th1/2 responses (186). This data suggests eosinophils may not be involved in severe disease 

during primary RSV infection but may have a role in subsequent infections and promoting 

airway allergy. 

 

1.2.2. Adaptive immunity 

In contrast to the innate immune response, the adaptive immune response is highly specific 

and forms an immunological memory, providing faster and enhanced pathogen clearance on 

subsequent exposures. Two broad arms of adaptive immunity are the antibody or humoral 

response, initiated by B cells, and the cell-mediated response, initiated by T cells.  

 

1.2.2.1. Cell-mediated immunity 

Antigen presenting cells, such as DCs and macrophages described above, present antigen as 

peptide fragments associated with MHC class I or II which interact with CD8+ and CD4+ T cells, 

respectively (187). T cells can be classed into two main subsets CD4+ or CD8+. CD4+ T cells can 

be further differentiated into Th1 (T helper), Th2, Th9, Th17, Th22, Treg (regulatory), and Tfh 

(follicular helper) (188). CD8+ T cells include naïve, TCM (central memory), TEM (effector) and 

TEMRA (effector memory) cells (189). Upon activation, depending on the subset, T cells can 

produce cytokines including IFN-γ, TNF-α, TGF-β, IL-4, IL-5, IL-9, IL-13, IL-17, IL-22 and 

cytotoxic proteins, granzymes and perforin. During RSV infection, CD8+ T cells aid in viral 
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clearance by killing infected cells and are an important part of the memory response to RSV 

(23,190,191). CD4+ T cells during RSV infection are the main producers of the pleotropic 

cytokine IL-10, which has been shown the both reduce and increase pathology by influencing 

Th1 and Th2 responses (192,193). Both T cell subsets are important for viral clearance 

through expression of cytokines. 

In general the association between RSV severity with T cell numbers, T cell activation and T 

cell cytokine expression is unclear. RSV infection results in an expansion in the T cell 

population in infected children compared to non-infected children of which 1.9% of total BAL 

cells were T cells and of these ~28% were CD4+ and 62% RSV-specific CD8+ T cells (194). In 

adults, during more severe RSV disease there was an increase in proliferating and activated 

CD8+ T cells, although this study did not examine if these were RSV-specific CD8+ T cells (195). 

Brand et al. showed that peripheral blood from RSV infected children contained reduced 

absolute numbers of CD4+ and CD8+ T cells (196). Furthermore, this was most evident in 

severe disease which could suggest recruitment to sites of infection and an increase in lung 

T cell numbers may be associated with disease severity. Other studies have made similar 

observations with lower absolute numbers of peripheral blood CD8+ and CD4+ T cells during 

more severe disease and lower CD4+ T cells counts in infants needing ventilation (197,198). 

Reduced peripheral blood T cell number suggests T cell recruitment to the lungs, however 

many of these studies are limited by a lack of functional characterisation of the T cell subsets. 

Transcriptome analysis of CD4+ T cells from RSV infected infants showed increased SOCS2, 

SCOS3 and SOCS5 gene expression during severe illness compared to mild illness (199). SOCS 

proteins are involved in CD4+ T cell polarisation, and could indicate a Th2 polarised 

environment during RSV infection which may induce more severe disease, although 

phenotypic CD4+ T cell analysis was not conducted in the study above (200).  
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Animal models indicate T cells are necessary for effective viral clearance. Combined 

deficiency of both CD4+ and CD8+ T cells resulted in prolonged RSV viral titres up to day 14 

post infection. This was not observed in wild-type mice or mice depleted of CD8+ T cells only 

suggesting CD4+ T cells have a greater role in limiting viral spread than CD8+ T cells (201). 

Mice studies have been used to further determine T cells during secondary RSV infection. In 

one study mice immunised with formalin-inactivated RSV showed a strong memory CD4+ T 

cell response that induced a severe response on re-infection with RSV (202). In a different 

study, on RSV re-challenge wild-type mice showed little weight loss 4 days however mice 

depleted of CD4+ T cells showed the greatest weight loss and disease severity after re-

infection (201). This was not seen with CD8+ T cell depletion. This study indicates that CD4+ 

T cells may also play a protective role in subsequent infections such as initiating a stronger 

immunological memory against RSV. RSV has also been reported to directly infect CD4+ T 

cells which was suggested to result in reduced expression of the Th1 associated cytokines IL-

2 and IFN-γ (197). Overall, impaired CD4+ T cell responses in humans could result in 

prolonged RSV illness and the potential for subsequent repeated infections. 

Depletion of CD8+ T cells in mouse studies has also demonstrated their importance during 

RSV infection. CD4+ T cells, from RSV infection of mice that had been previously vaccinated 

with an RSV-F protein expressing vaccine and depleted of CD8+ T cells, expressed higher 

intracellular levels of Th2 cytokines IL-4 and IL-13 and reduced levels of the Th1 cytokine IFN-

γ (203). In this study, CD8+ T cell depletion was also associated with eosinophilia which may 

have been directed by CD4+ T cells as the result of reduced IFN-γ expression and an enhanced 

Th2 response. CD8+ T cells may therefore reduce CD4+ T cell-derived Th2 responses. Other 

mouse studies also show similar results stressing the importance of RSV specific CD8+ T cells 

in also controlling a Th2 response and reducing eosinophilia on subsequent re-infection 

(204,205). Furthermore, as shown in murine models, Tregs may supress early CD8+ T cell 

functions during RSV infection and result in enhanced pathology (206,207). These studies 
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indicate a dynamic interplay between CD4+ and CD8+ T cell populations is needed to control 

RSV infection and highlights a further beneficial role for CD8+ T cells. Overall both CD4+ and 

CD8+ T cell subsets appear to be mutually associated with overall RSV disease severity. 

Another important T cell subset during RSV infection are the IL-17 producing, Th17 cells. 

Infants express higher levels of IL-17 in tracheal aspirates and serum during RSV bronchiolitis 

which may be associated with disease severity (198,208,209). The role of Th17 cells during 

RSV infection is not well established, although they are believed to play a role in regulating 

airway inflammation. AECs stimulated with IL-17 show increased expression of inflammatory 

cytokines, mucus proteins and chemokines (210). In mice, IL-17 levels in the lung peaked 8 

days after infection suggesting that Th17 cells can contribute to RSV disease possibly through 

prolonged inflammation (208). This study also suggested enhanced IL-17 induced mucus 

production, inhibition of viral clearance and enhanced a Th2 cytokine profile. The role of 

Th17 cells needs further characterisation in humans and is relatively less characterised than 

other T cell subset responses. 

 

1.2.2.2. Humoral immunity 

Viral neutralising antibodies produced during infection has been shown to be important in 

preventing subsequent reinfection. In Infants protection can begin with passive immunity 

though transfer of maternal antibodies of IgG type to the foetus. Maternal anti-RSV IgG 

detected in mothers is also seen in their infants, but levels fall to around 6% of those at birth 

by 3-6 months of age, an age at which many infants are infected (211). Additionally whilst 

maternal RSV-specific IgG antibodies have been shown to have some protective role against 

RSV, including delaying infection, serum neutralising antibody levels do not fully correlate 

with protection against disease (212–214).  
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Natural RSV infection results in production of neutralising antibodies, particularly against the 

G and F proteins. However repeat infections are common and it appears RSV-specific 

antibody levels fall after infection and provide protection for only a limited time (5,215). In 

one study of participants after voluntary intranasal RSV infection, those who were negative 

for RSV after challenge had a significantly higher pre-inoculation nasal RSV-specific IgA titre, 

suggesting the level of IgA may provide protection, however nasal RSV IgA titres and RSV 

titres showed no correlation (216). Another study also observed that adults who were 

naturally infected with RSV had lower nasal RSV-specific IgA and serum IgG titres compared 

to non-infected individuals and an inverse relationship was seen between serum RSV 

neutralising antibodies and hospitalisation (217,218). This suggests RSV infection leads to an 

incomplete humoral response. A lack of correlation has also been observed between infant 

serum antibody levels and severity to RSV infection (219). Lower antibody levels and the 

short-term nature of their expression may also lead to reduced immune responses upon 

infection. 

At a cellular level RSV infection induces AEC-derived BAFF and APRIL expression, which are 

required for B cell activation (145,151,220). RSV infected infants showed an increase in B cell 

numbers in peripheral blood compared to age matched controls and the B cell absolute 

count was shown to continue to increase one week after hospital admission (221). A 

histology based study showed B cells, BAFF and APRIL are all present in the human lung 

during RSV infection (222). BAFF protein is also greatly increased in the BAL fluid of RSV 

infected infants of which a key source of BAFF could be the airway epithelium (145). B cells 

grown in culture supernatant from RSV infected BEAS-2B cells, an AEC line, show enhanced 

B cell survival indicating that B cells could be active during in vivo infection through AEC-

derived molecules (151). Overall, B cells can be activated during RSV infection however it 

appears subsequent antibody production may not be fully protective against RSV. 
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1.2.3. Imbalance in Th1/Th2 responses during RSV infection. 

RSV disease severity has been strongly associated with an imbalance in the Th1 and Th2 

response. This was first evidenced after the failed 1960’s FI-RSV vaccine in which children 

given the vaccine experienced severe RSV illness with natural infection. Subsequent research 

lead to the characterisation of FI-RSV vaccine-induced Th2 responses (223). Th1 cells highly 

express CXCR3 and CCR5 whilst Th2 cells highly express CCR2, CCR3 and CCR4, and therefore 

differential chemokine expression during RSV infection could influence which T cells are 

recruited to the lungs and influence inflammatory outcome (224).  

Early expression of IFN-γ was lower in nasal lavage fluid from infants with acute RSV 

bronchiolitis compared to upper respiratory tract infection, along with an increase in IL-4 at 

days 5-7 after hospitalisation (225). This was taken to indicate that a lack of early IFN-γ 

expression could lead to a Th2 response. Some studies show a Th2 profile is associated with 

more severe RSV illness, described as an increase in nasal fluid IL-4/IFN-γ ratio (225–227). 

However, not all clinical studies show that a reduced Th1 and increased Th2 response 

correlate to RSV disease severity (228,229). Others have observed an increase in nasal fluid 

IFN-γ/IL-4 ratio, indicating a Th1 response may also contribute to RSV illness (230–232). 

Vojvoda et al. found serum levels of Th2 cytokines TARC (CCL17) and CCL22 negatively 

correlated with RSV disease severity, whereas an increase in Th1 cytokine CXCL10 correlated 

with disease severity (233). Out of a selection of chemokines, CXCL10 had the highest 

expression at 33,000pg/ml in the BAL of RSV infected infants and although this study did not 

examine correlations with severity, these infants were hospitalised suggesting 

overexpression of Th1 associated chemokines, particularly CXCL10, early in infection 

contributes to more severe illness (234). Overall, clinical data indicates that an imbalance in 

either a Th1 or Th2 response can lead to enhanced RSV bronchiolitis in infants.  
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Murine models have provided further knowledge about the Th1/Th2 response to RSV 

infection. Neonatal mice re-infected as adults with RSV expressed more Th2 cytokine 

expressing CD4+ T cells compared to adult mice (186). IFN-γ deficient mice, a Th1-assoctiated 

cytokine, had no difference in viral load or airway inflammation compared to wild type mice 

during first RSV infection (185). However on second RSV re-challenge IFN-γ deficient mice 

developed severe airway inflammation along with eosinophilia, which could not be restored 

by IFN-γ treatment. This indicates Th1 associated cytokine IFN-γ shapes the initial adaptive 

immune response to RSV infection. Neonatal mice with enhanced IFN-γ expression at the 

beginning of RSV infection had less IL-4 expressing CD4+ T cells and overexpression of IL-4 

resulted in enhanced a Th2 response (235). These mouse models suggests that expression of 

IFN-γ or a controlled Th1 cytokine environment, is essential for a reduced and/or controlled 

Th2 response. Most significantly, these mouse models highlight the importance for IFN-γ and 

the development of acquired memory to RSV to reduce Th2 pathology on subsequent 

infections.  

However the overall balance of Th1/Th2 responses are also not well defined in mouse 

models. Decreased RSV load, reduced weight loss and reduced IFN-γ expression was 

observed in the lungs of mice which overexpressed of IL-13, a Th2 associated cytokine (236). 

Furthermore IL-13 deficient mice showed opposite results of higher RSV load, greater weight 

loss and more IFN-γ. Therefore a balance between Th1 and Th2 environments are likely to 

produce non-pathogenic responses to RSV but disease outcome is not exclusive of other T 

cell subsets. Tregs and Th17 cells have also been shown to regulate the Th1 and Th2 

responses in mice. Depletion of Tregs led to increased IFN-γ expression by CD4+ and CD8+ T 

cells and IL-13 by CD4+ T cells which was associated with Th2 pathology (237). IL-17 was 

shown to induce IL-13 expression during RSV infection, indicating Th17 cells may prolong a 

Th2 environment (208). Therefore, the interplay between Th1, Th2 and Th17 cells and 
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associated cytokines either before, during and/or after infection determine RSV disease 

outcome and is not well defined in humans. 

 

 1.3. Natural killer cells 

NK cells were originally believed to have a ‘natural’ ability to kill infected or tumorous cells. 

It has since been demonstrated that NK cells are a complex cell population that interact with 

their local environment to not only provide innate immunity, but also act as a bridge between 

innate and adaptive immunity (238–240). NK cells are large granular lymphocytes and as 

mentioned in Section 1.2.1.1, NK cells have been defined as a distinct population within the 

ILC1 group that express IFN-γ, TNF-α and T-box transcriptional factors T-bet and eomes (241). 

Although NK cells respond in a wide variety of infectious diseases and show significant anti-

tumour activity, this section mainly focuses on NK cell activation, receptor expression and 

cytokine and cytotoxic responses during RSV infection. 

 

1.3.1. Maturation, phenotype, markers and lung specific NK cells 

NK cells are of lymphocyte lineage and derived from CD34+ hematopoietic progenitor cells 

(242). NK cell precursors express the IL-15 receptor β chain (CD122) which binds IL-15 and is 

essential for NK cell maturation (243). Human NK cells are classically defined as expressing 

CD56 (NCAM) and lacking expression of the pan T cell marker CD3 (244). NK cells can be 

further characterised by their differential expression of CD16 and divided into two 

phenotypically diverse sub-sets of CD56dimCD16bright and CD56brightCD16dim (245). 

CD56brightCD16dim NK cells produce higher amounts of cytokines, including IFN-γ and TNF-α, 

compared to CD56dimCD16bright NK cells which have a higher cytotoxic function and expression 

of perforin and granzyme B, as shown in Figure 1.8 (246–249). The CD56dimCD16bright NK cell 

population may exhibit a more cytotoxic nature due to higher expression of cell surface 
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receptor CD16 (FcγRIIIa). CD16 binds to the Fc portion of antibodies, leading to antibody-

dependent cellular cytotoxicity and subsequently target cell lysis (250,251). 

 

Figure 1.8. Functional differences between NK cell subsets. NK cells can be divided into two 
broad subsets, CD56brightCD16dim and CD56dimCD16bright. Although the two subsets have 
overlapping functions, each subset has either greater cytokine producing or cytotoxicity 
activity. CD56dimCD16bright NK cells (A) have greater cytotoxicity function compared to that of 
CD56brightCD16dim NK cells (B) which express higher amounts of cytokines. Taken from 
Gabrielli et al. (252). 

 

NK cells are resident in lymphoid and non-lymphoid tissues throughout the body and make 

up between ~5-25% of peripheral blood lymphocytes with ~90% of peripheral blood NK cells 

being CD56dimCD16bright and 10% CD56brightCD16dim (253–256). The percentage of NK cells 

within the lymphocyte population found in each tissue varies throughout the body. Human 

lung NK cells represent ~10-30% of the lymphocyte population present in this tissue 

compared to ~5-10% of the lymphocyte population in the liver (257–260). In mice, lung NK 

cells numbers are thought to be generally lower at ~10% of the lung lymphocyte population 

(261). In the human lung, ~80% of lung resident NK cells are CD56dim which correlates with a 

higher expression of perforin (260,262,263). This suggests a primarily cytotoxic NK cell 

activity in response to respiratory infections.  
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1.3.2. Activating and inhibitory receptors 

Unlike B, T and NKT cells, NK cells are not activated by antigen-presentation via MHC class I 

or II molecules. Initially, it was thought that cells lacking HLA class I molecules were targeted 

by NK cells. This HLA class I inhibition of NK cell cytotoxicity ensures NK cell lysis does not 

occur against ‘self’ or host cells expressing HLA class I (264,265). It is now apparent that NK 

cell activation or inhibition of activation also depends on a combination of signals from 

multiple activating and inhibitory receptors (266). In brief as detailed in Figure 1.9, healthy 

cells express inhibitory and survival receptors which will keep NK cells in a resting state whilst 

infected or tumour cells can express a different array of receptors and NK cell stimulating 

cytokines which lead to NK cell activation. Both activating and inhibitory receptors fall into 

two classes, killer Immunoglobulin-like receptors (KIR) and c-lectin receptors which include 

CD94-NKG2C/E/H heterodimeric receptors and NKG2D (267). The precise interactions 

between activating and inhibitory receptor signals resulting in NK cell activation or inhibition 

are complex and not yet fully defined (268). Even between different diseases and tissues, 

differences in receptor expression has been examined which may lead to different NK cell 

functional outcomes (269). 
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Figure 1.9. Inhibitory and activating signals determine NK cell response. NK cells express a 
range of inhibitory and activating receptors. Ligand interactions with healthy or ‘self-cells’ 
inhibit NK cell-mediated cell lysis and expression of cytokines and chemokines whilst ligand 
interactions with infected, non-self or tumour cells induces NK cell activation. Modified from 
Long et al. (270). 

 

Activating receptors signal through immunoreceptor tyrosine-based activating motifs 

(ITAMs) and include natural cytotoxicity receptors such as NKp46, NKp44 and NKp30 (271). 

NKp44 and NKp46 have been reported to bind viral proteins presented on virally infected 

cells and initiates NK cell cytotoxicity (272–274). Nkp30 receptor activation can initiate 

tumour cell lysis and binds tumour associated proteins and transcriptional factors including 

B7-H6, BAT3 and heparan sulfate proteoglycans (275–277). Cytokine and chemokine 

receptors are also part of the activating receptor repertoire. Activating cytokines include IL-

12, IL-15, IL-18, IL-21 and IFN-α which bind to IL-2R, IL-12R, IL-15R, IL-18R, IL-21R and IFNAR 

respectively (278,279). Human peripheral blood CD56bright NK cells preferentially express 

chemokine receptors CXCR3 and CCR5 (which bind CXCL9, CXCL10, CXCL11, CCL3, CCL4, CCL5 
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and CC8) compared to CD56dim NK cells which preferentially express CXCR1 and CXCR2 (which 

bind IL-8) (280). Other chemokine receptors expressed on human NK cells include CCR1, 

CCR4, CCR7, CCR9, CXCR5 and CXCR6 (281). Differential cytokine and chemokine receptor 

expression by NK cell subsets indicates an ability for functionally different NK cell subsets to 

migrate towards different stimuli. 

Inhibitory signals for NK cell activation act through immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs). Inhibitory receptors include KIRs, which interact with HLA-A, HLA-

B and HLA-C molecules and CD94/NKG2A which interacts with HLA-C, HLA-E and HLA-G 

molecules (282–284). HLA molecules expressed by healthy ‘self-cells’ inhibit NK cell-

mediated cell lysis and are also important for NK cell development and then activation of 

mature NK cells against self-cells during infection (285,286). This further illustrates the 

complex nature of differential receptor expression which determines NK cell functions. 

Inhibitory receptor expression can also be influenced by viruses which have been shown to 

inhibit NK cell activity and the immune system through manipulation of inhibitory receptors 

(287).  

1.3.3. Cytokine activation of NK cells 

IL-12, IL-15, IL-18 are classically associated with NK cell development, homeostasis, cytokine 

production and cytotoxicity. Other cytokines such as IL-4, IL-7, IL-10, TGF-β and type I 

interferons also influence NK cell activity. Furthermore the cytokine environment NK cells 

are in can greatly influences their function and receptor expression (269). 

 

1.3.3.1. IL-2 
 

IL-2, part of the four alpha helix bundle cytokine family, is a pleiotropic cytokine which has 

greatest affects towards NK cells and T cells. IL-2 and IL-15 share two receptor subunits, IL-
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2Rβ and IL-2Rγ/common γ (γC) with IL-2 binding with a higher affinity to IL-2Rα and IL-15 

with ~1000-fold higher affinity to IL-15Rα than IL-2 (288,289). IL-2 aids in NK cell survival 

and proliferation although IL-2 is most commonly known to be a potent inducer of NK cells 

cell lysis and cytotoxicity against tumour cells (290–292). IL-2 also induces the expression of 

IFN-γ from NK cells, particularly from CD56bright NK cells with IL-12 co-stimulation (293,294). 

IL-2 stimulated NK cells can also express IL-10 which aids in dampening inflammatory 

responses (295). 

 

1.3.3.2. IL-12 
 
IL-12 is a heterodimer protein consisting of a p35 alpha chain and a p40 beta chain which 

form an active p70 protein. IL-12p70 binds to a dimerised receptor of IL-12Rβ1 and IL-12Rβ2 

subunits which initiates JAK (JAK2 and TYK2) and STAT (STAT3, 4 and 5) signalling pathways 

(296–298). The p40 chain can also form monomers which bind to IL-12 receptor and act 

antagonistically against signalling by preventing IL-12p70 binding (299). p40 also binds 

another subunit, p19 to form IL-23 (300). In the perspective of NK cells, IL-12 was first called 

NKSF (NK cell stimulatory factor) and alone was shown to induce cytotoxicity in both CD56dim 

and CD56bright NK cell subsets (296). Resting human NK cells express higher levels of IL-12Rβ1 

and IL-12Rβ2 subunits than T cells and their expression may be negatively regulated by IL-12 

itself indicating a possible protective role by reducing over activation (297). IL-12 has potent 

activity on IFN-γ expression from NK cells and alone is able to induce IFN-γ production (301). 

IL-12 also regulates CD16 expression on human NK cells which could enhance NK cell 

cytotoxicity (302). IL-2Rβ and IL-12Rβ2 knockout mice show reduced NK cell cytolytic ability 

(303,304).  

Major producers of IL-12 are antigen presenting cells such as DCs and macrophages (305–

307). The DC-NK synapse and particularly DC-derived IL-12 has recently been highlighted to 
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be important for NK cell activation. DC-specific siRNA knockdown of IL-12p40 or use of 

neutralising IL-12p20 antibody inhibited IFN-γ secretion by NK cells (308). 

1.3.3.3. IL-18 
 
IL-18 is part of the IL-1 family, a group of 11 pro-inflammatory cytokines (309). Pro-IL-18 

requires cleavage into an mature protein which is instigated through activation of the NLRP3 

inflammasome and then cleavage of pro-caspase-1 into of active caspase-1 (310,311). IL-18 

binds to IL-18Rα which recruits IL-18Rβ and finally forms a heterodimer which leads to 

MyD88 signalling and NFKB activation (312,313). The ability of IL-18 to act on target cells is 

also influenced by the presence of a soluble receptor IL-18BP which is seen in the plasma and 

serum of healthy individuals (74,314,315). NK cells constitutively express IL-18Rα and 

expression is not changed by negative or positive feedback loops to IL-18 (316,317). IL-18 

alone can directly induce NK cell proliferation and target-cell lysis possibly through an 

increase in degranulation markers such as CD107a (317–319). IL-18 can also induce NK cell 

apoptosis at higher concentrations indicating a modulatory role for IL-18 on mature NK cells 

(320). Mouse NK cells taken from IL-18BP deficient mice display an immature phenotype yet 

enhanced TNF-α production suggesting that IL-18 is important during NK cell maturation 

process to form balanced mature NK cell responses (321). However in vitro human NK cell 

stimulation with IL-18 alone may not be enough to induce IFN-γ expression (322). As 

discussed in Section 1.3.3.4, IL-18 plays an important role in enhancing NK cell responses by 

synergistically enhancing responses in combination with other cytokines.  

 

1.3.3.4. IL-15 and IL-15Rα receptor 

IL-15 is a pleotropic cytokine that shares a 4-alpha-helix bundle along with other cytokines 

such as IL-2, IL-3, IL-4 and IL-6 (289). As described above in section 1.3.3.1, IL-15 shares the 

two subunits two receptor subunits, IL-2Rβ and IL-2Rγ/common γ (γC) with IL-2, but shows 
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greatest affinity to IL-15Rα. IL-15 signalling in human NK cells has been shown to involve 

STAT1, STAT3, STAT4 and STAT5, which initiate maturation and proliferation (322,323). IL-15 

is also important in the later stages of NK cell responses for both survival and sustained and 

enhanced cytokine production through synergistic effects with IL-12 (324–326). 

IL-15 mRNA is expressed by many tissues, including placenta, skeletal muscle, lungs and 

kidney (327). The IL-15 pre-mRNA undergoes alternative splicing resulting in production of 

two protein isoforms a shorter 21-amino acid peptide and a longer 48-amino acid peptide 

which both bind to IL-15Rα and have been shown to be biologically active (328). Mature IL-

15 protein is coded by exons 5, 6, 7 and 8 and with of 114 amino acids (329). The shorter 

peptide has been detected within the cytoplasm and nucleus and the longer peptide is seen 

within the endoplasmic reticulum and Golgi apparatus (330,331). In regards to the work 

here, the longer IL-15 peptide is thus likely to be studied in Chapters 3, 4 and 5.  

An increase in IL-15 mRNA expression does not always reflect increased protein secretion. 

For instance, when stimulated monocytes showed induced expression of IL-15 mRNA, IL-15 

protein was not detected in the culture supernatants indicating tight regulation of IL-15 at 

both the transcriptional and translational levels (332). Furthermore, serum IL-15 in healthy 

adults is rarely detected or at low levels even though many tissues and cell types 

constitutively express IL-15 mRNA (333–335). One potential reason for the lack of secreted 

IL-15 during infection could be due to the formation of an IL-15/IL-15Rα complex. Dubois et 

al. first described IL-15/IL-15Rα complex presentation at the cell surface in the mouse T cell 

line, CTLL-2. CTTL-2 cells transfected with IL-15Rα showed surface expression of IL-15Rα 

mirroring expression of surface IL-15 (336). This study also showed that IL-15 bound to IL-

15Rα, and when expressed on the cell surface, allowed IL-15 to stimulate neighbouring cells 

through the IL-12Rβ/γC receptor. This unique presentation of IL-15 to a responding cell was 

then termed ‘trans-presentation’. Three dimensional structures of the complex show that 
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negatively charged IL-15 binds to the positively charged binding domain of IL-15Rα providing 

many charge/charge interactions leading to a stable and high affinity complex (337). 

Presenting IL-15 in this manner, at the cell surface as part of an IL-15/IL-15Rα complex, may 

be important for additional control of NK cells by presenting cells 

IL-15Rα is expressed by both hematopoietic cells, such as T cells B cells and non-

hematopoietic cells, such as mouse tubular epithelial cells, lung epithelial cells and found 

within various tissues in particular the liver, skeletal muscle, kidney, heart and lungs 

(288,338–341). This pattern of expression highlights a potentially important role for non-

hematopoietic cells in modulating the immune response through IL-15. Figure 1.10 details 

how the IL-15/IL-15Rα complex is thought to be formed inside the cell. IL-15 and IL-15Rα 

proteins independently translocate to the endoplasmic reticulum and then form a complex 

with IL-15Rα essential for translocation of IL-15, in complex form, to the Golgi apparatus 

(342). IL-15Rα processing is also known to be dependent upon removal of certain exons 

which once removed allow for the binding of IL-15 to be possible and for cell surface 

expression (338,343). Furthermore release of the complex may also rely on additional IL-

15Rα isoform modifications and its release may also only be observed by specific isoforms 

(343). Secretory vesicles then transport the IL-15/IL-15Rα complex to the cell surface. Trans-

presentation then occurs when responding cells express receptor chains IL-2Rβ and IL-

2Rγ/common γ (γC) at their cell surface and interact with the IL-15, which is part of the IL-

15/IL-15Rα complex on presenting cells, shown in Figure 1.10B.  

Co-ordinated expression of both IL-15 and IL-15Rα is essential for IL-15/IL-15Rα complex 

formation before transport to the cell surface (344–347). IL-15Rα also enhances the half-life 

of IL-15 activity (348,349). In human embryonic kidney cell line 293, co-expression of both 

IL-15 and IL-15Rα enhances surface expression IL-15 and in studies using the African green 

monkey kidney fibroblast-like cell line, COS-7, surface IL-15 was only detected when cells 
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were transfected with both IL-15 and IL-15Rα (342,347). Therefore, detection of IL-15 at the 

cell surface can indicate IL-15/IL-15Rα trans-presentation in which IL-15 is still biologically 

active. To date, cells shown to express IL-15 at the cell surface include CTTL-2 cells, human 

activated monocytes, mouse bone marrow-derived DCs and the human monocyte-like cell 

line THP-1 (336,350–353). Furthermore complex secretion or release by proteolytic cleavage 

from the cell surface may be another method of signalling with mice showing IL-15/IL-15Rα 

complexes in the serum and thus the potential for non-local IL-15 signalling (347,354). 
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Figure 1.10. IL-15/IL-15Rα intracellular complex formation and trans-presentation. IL-15 
and IL-15Rα proteins are formed within the endoplasmic reticulum and form a complex 
before being transported to the Golgi apparatus. The IL-15/IL-15Rα complex is then 
transported to the cell surface by a secretory vesicle. Modified from Burkett et al. and 
Jakobisiak et al. (344,355). 

 

Human NK cells have also been shown to express IL-15 at the cell surface which is dependent 

on IL-15Rα expression. This could suggest a method of cis-presentation and self-activation 

(350,356). Cis-presentation occurs where expression of both the IL-15/IL-15Rα complex and 
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IL-2Rβ and γC receptors on the same cell leads to same cell activation. Human NK cells 

overexpressing IL-15 at the cell surface, and hence cis-presentation, showed a potential for 

increased survival, expansion and cytotoxicity compared to wild-type NK cells co-cultured 

with K562 cells expressing IL-15 in trans (357). However these NK cells were transformed to 

overexpress IL-15 at the cell surface and the relevance of cis-presentation in vivo in humans 

has still not been determined, if it exists at all. Overall the cis- model has not be characterised 

in as much detail as trans-presentation. 

The importance of both IL-15 and IL-15Rα has been demonstrated through use of knock-out 

mice. IL-15 has shown to be essential for NK development and mice deficient in IL-15 are 

almost devoid of NK cells (325,358). Mice injected with plasmid DNA encoding both IL-15 and 

IL-15Rα showed increased NK cell numbers in the lung, liver and spleen with additional 

increase in serum IL-15 when compared to those that received plasmid DNA encoding IL-15 

only or wild-type mice (347). This study suggests that co-expression of IL-15 and IL-15Rα 

enhances NK cell proliferation compared to IL-15 alone. Bone marrow derived DCs taken 

from mice deficient in either IL-15 or IL-15Rα and co-cultured with NK cells could not induce 

expression of NK cell-derived IFN-γ and NK cell activation was only seen with co-ordinated 

expression of IL-15 and IL-15Rα by wild-type DCs (345). Other studies demonstrate the 

importance of co-ordinated IL-15 and IL-15Rα expression to form IL-15/IL-15Rα complexes 

(344,359). Furthermore, the IL-15/IL-15Rα complex has shown to have enhanced activity on 

both NK cells and T cells such as increased proliferation and cytokine secretion (347–349). 

Overall, data indicates a key role for both IL-15, IL-15Rα and an enhanced effect of the IL-

15/IL-15Rα complex for NK cell development and activation.  
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1.3.3.5. Synergistic effects of multiple cytokines on NK cells 

In vitro NK cell stimulation with different combinations of cytokines can either stimulate or 

inhibit NK cell maturation, proliferation, cytokine expression, cytolytic function or receptor 

expression. Human NK cells show increased proliferation with IL-12 and IL-18 (360). IL-2 plus 

IL-12 enhances NK cell cytotoxicity (297,360). IL-12 in combination with IL-15, IL-18 or TNF-α 

synergistically to increase IFN-γ positive NK cells and IFN-γ secretion (247,301,361). IL-15 in 

combination with IL-18 and IL-21 have also been shown to enhance IFN-γ expression by NK 

cells (322). NK cells cultured in the presence of IgG and IL-18 expressed higher levels of IFN-

γ (362). When human NK cells were cultured in the presence of IgG and IL-2 or IL-12, a 2-fold 

increase in IL-8 and CCL3 expression was observed (363). Receptor expression such as CD25 

may also be increased through cytokine synergy (364,365). 

Priming NK cells with certain cytokines may also be important for NK cell responses. Priming 

of mouse NK cells with IL-18 subsequently enhanced IL-12-induced NK cell-specific IFN-γ 

expression (366). Priming of human NK cells also provides enhanced cytokine expression 

when co-cultured with DCs. NK cells primed with a combination of IL-12 and IL-18 or IL-12 

and IL-2 40hrs before co-culture with DCs displayed increased IFN-γ and TNF-α expression in 

co-culture supernatants compared to NK cells primed with individual cytokines (367). This 

could suggest the environment NK cells reside in before activation can lead to not only 

different NK cell function but also influence other immune cell functions through NK cell-

induced effects. 

However combinations of cytokines do not always enhance NK cell cytokine expression. NK 

cells cultured with both IL-4 and IL-12 resulted in IL-4 mediated inhibition of IL-12-induced 

CD69 surface expression (367). Addition of TGF-β reduced the synergistic effect of IL-15 with 

IL-12 on CCL3 expression and TGF-β may reduce IL-15 enhanced NK cell metabolism 

(368,369). A combination of IL-12 and IL-10 reduces the number of IFN-γ positive NK cells 
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compared to IL-12. This may be an intrinsic mechanism of NK cell regulation as some NK cells 

express IL-10 (301,370). For mouse NK cells IL-21 stimulation inhibits the proliferative effect 

of IL-15 but does not compromise NK cell cytokine and cytolytic functions (371). 

Overall, these studies show that the cytokine environment NK cells are exposed to can 

greatly modulate NK cell proliferation and function. This also includes the environment 

before NK cell activation or interaction with other immune cells, such as DCs. Therefore, an 

imbalance in these key NK cell activating cytokines either before and/or during infection 

could lead to an abnormal NK cell responses. 

 

1.3.4. NK cell cytotoxicity and cytokine expression 

NK cell effector functions fall into two broad classes, cytotoxicity and cytokine expression. As 

described in Section 1.3.1, NK cells can be classed as CD56dim NK cells which have higher 

cytotoxic activity than CD56bright NK cells which have greater cytokine expression. First 

described here is NK cell cytotoxicity. 

Healthy self-cells express MHC class I molecules which inhibit NK cell activation. NK cell 

cytotoxicity can be induced by lack of MHC class I molecules on infected or non-self-cells. NK 

cell-mediated cell death is achieved through two mechanisms, granule exocytosis and death 

receptor pathways (372). For the granule exocytosis pathway, NK cells contain lytic granules 

which contain molecules that initiate cell-death pathways including granzymes, granulysin, 

FasL and perforin (373). These lytic granules are pre-formed in resting NK cells with NK cells 

expressing more perforin than cytotoxic CD8+ T cells (374). Furthermore, NK cell triggered 

cell apoptosis is much faster than that induced by cytotoxic CD8+ T cells indicating a pivotal 

role for NK cells controlling the spread of infection (375). This process is tightly regulated via 

the formation of lytic synapses ensuring specificity to infected cells and preventing damage 

to surrounding healthy cells (376). Granzymes are serine proteases that activate caspases 
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and non-caspase molecules that induces intracellular apoptotic pathways in the target cell 

(377,378). The glycoprotein perforin can form pores in target cell membranes under in vitro 

conditions (379). However the current model for perforin and granzyme B entry is via 

endocytosis of both molecules into the target cell which work together to induce increased 

apoptosis (380,381). The death receptor pathway is initiated by ligands expressed on NK cells 

such as FasL, TNF-α and TRAIL which bind to TNF receptor family death receptors on target 

cells (382). 

IFN-γ and TNF-α are classical NK cell-derived cytokines that act synergistically to reduce viral 

replication (383). IFN-γ and TNF-α secretion is not restricted to immunological synapses like 

perforin and granzymes and their secretion is separate from that of lytic granules (381). This 

is believed to optimise NK cell action allowing induction of apoptosis of infected cells whilst 

simultaneously initiating an anti-viral response in surrounding cells. Membrane bound TNF-

α has also been shown to be constitutively expressed on human peripheral blood NK cells 

and the NK92 cell line which could lead to faster NK cell-induced cytotoxicity through direct 

cell-to cell contact (384,385). NK cells may also contribute to immune cell recruitment to 

sites of infection by the expression of chemokines, including CCL3, CCL4 and CCL5 as 

observed from NK cells during co-culture with K562 cells. Other chemokines expressed by NK 

cells include IL-8, macrophage-derived chemokine (MDC), and CCL2 suggesting NK cells can 

display diverse and differing roles during infection (363,368,386–388). 

 

1.4. Immune response of NK cells in RSV infection 

NK cells are an initial source of defence against viruses in the lungs. One study showed that 

NK cells represented ~0.4% of BAL with an absolute count of 1-6x104 cells/ml in RSV infected 

infants (194). Although NK cells represent a small fraction of total BAL lymphocytes during 

RSV infection, they are the first immune cell population to expand in number following RSV 
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infection. Figure 1.11 displays viral titre and immune cell population cell numbers profiles 

over time with RSV infection. The NK cell population expansion rises and falls along with the 

viral titre. This is followed by an increase in T cells, B cells and the expression of RSV-specific 

antibodies (Figure 1.11). Analysis of BAL from RSV infected mice show NK cell numbers in the 

lung peak around 3 to 4 days and then fall at day 6 (166,389–391). This same pattern was 

also observed for IFN-γ positive mouse NK cells and NK cell cytotoxicity with greatest activity 

observed at day 3 and absent at day 8 (391,392). NK cell derived IFN-γ reduces RSV lung titres 

and depletion of either NK cells or IFN-γ results in sustained viral titres (391). As early as days 

1 and 2 after infection an increase in mouse CD69+NK cells, CD69 being an early marker of 

activation, can occur which is dependent on the presence alveolar macrophages (166). TNF-

α protein is also expressed in the lungs of RSV infected mice within the first 2 days after 

challenge (393). NK cells could be a source of this early expressed cytokine. Depletion of TNF-

α throughout RSV infection in mice resulted in increased viral titres. This indicates that NK 

cell-derived TNF-α may also aid in restricting viral spread like IFN-γ (132). These data indicate 

there is rapid expansion and activation of NK cells that is limited to the early stages of 

infection and not seen in later stages of infection. 

 

 

Figure 1.11. Time-scale of innate and acquired immunity during RSV infection. NK cell 
expansion follows RSV titres which are both seen to peak and reduce before arrival of 
adaptive immune cell populations such as CD4+ and CD8+ T cells. Taken from Openshaw & 
Tregoning (394). 
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The NK cell population in the BAL of infants with RSV bronchiolitis was 8-fold higher than 

non-infected infants indicating recruitment of NK cells from peripheral blood (395). 

Therefore, lung resident and recruited NK cells may both be present and activated during 

RSV infection. In infants, the absolute number of NK cells in peripheral blood were shown to 

be reduced during severe RSV disease compared to mild disease suggesting recruited NK cells 

to the lungs and/or prolonged NK cell activation may contribute to pathology (196,198). 

There is little knowledge about the role of resident NK cells in humans which would the 

earliest source of NK cell activity compared to those from the periphery. Other studies have 

given differing results regarding NK cell activity or the results were inadequate to support 

firm conclusions. For instance, immunohistochemical staining of post-mortem lung tissue 

from RSV infected infants showed little to no CD56+ cells (67). However it cannot be 

concluded that there is a lack of NK cells as the timing of tissue sampling may not be at the 

peak of NK cell expansion. Another study compared NK cell responses in vitro during various 

respiratory virus infections and concluded the NK cell cytotoxic response was much lower 

during RSV infection compared to other respiratory viruses (396).  

It is also important to take into consideration the function and level of activity of NK cells, 

which can in part be indicated by their specific pattern of NK cell receptor expression. This 

has rarely been examined in humans. One study of infants requiring hospitalisation reported 

a higher percentage of CD16+ and CD56bright activated NK cells present in peripheral blood 

compared to those who were not hospitalised, which could suggest a role of NK cells in RSV 

pathogenesis (397). Another factor to consider in regards to NK cell numbers and clinical 

results is the age of patients and the mean age of patients within these groups. Absolute 

numbers of NK cell in healthy neonates gradually increase over time from 25 weeks gestation 

to 42 weeks gestation (398). In particular, babies born at 25-30 weeks gestation, 

characterised as very pre-term, had the lowest NK cell absolute counts and this was not 

observed between preterm and full term neonates for B cells or T cells. This raises the 
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possibility of a numerical or functional deficiency in NK cells in preterm or younger infants 

which could influence the initial NK cell response to RSV. 

The exact role of NK cells during RSV has not yet been fully defined and their role has been 

debated. Some studies suggesting a beneficial activity for NK cells by inducing a Th1 response 

whilst others suggest that NK cells enhance a harmful Th2 response. IL-12 activated NK cells 

were shown to protect against eosinophilia through expression of IFN-γ in RSV G protein 

primed mice (390). In another study, RSV infected IL-12 deficient mice had reduced numbers 

of BAL NK cells and also reduced NK cell cytotoxicity in vitro compared to wild-type mice 

(384). Depletion of NK cells in adult mice resulted in an increase in viral load at day 4 post 

RSV infection and decreased lung histological inflammation scores suggesting NK cells may 

contribute to the earliest stages of lung inflammation (391,399). However viral load and 

inflammation were no different in later stages of infection indicating that NK cells are 

important at the initial or acute stages of infection and their depletion is not detrimental at 

the later stages of a first infection. NK cell depleted mice, at day 4 after RSV infection, 

normally when peak of NK cell numbers are seen, have reduced IFN-γ gene expression but 

increased IL-4, IL-13 and eotaxin expression indicative of a more Th2 environment which 

could develop as a result of deficient or impaired NK cells (389). This was later followed by 

increase in eosinophils and mucus positive AECs at day 9. Even when NK cell numbers had 

been restored, on secondary infection this Th2 environment was maintained. These data 

indicate that the early NK cell response can influence and shape responses at later stages of 

infection, possibly through IFN-γ expression.  

The NK cell response in neonatal mice has also been investigated and results remain 

inconclusive on whether NK cells are beneficial or not during RSV infection. Neonatally RSV 

primed mice re-infected as adults show increased lung RSV titres compared to adult mice on 

both first and second infection (393). Tregoning et al. showed that during adult reinfection 
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of neonatally RSV primed mice, those which had previously been depleted of NK cells as 

neonates had increased anti-RSV IgG titres (400). This suggested NK cells supress antibody 

responses which was subsequently shown to be through expression of IFN-γ. This response 

was also observed on depletion of CD8+ T cells. Tregoning et al. next examined the role of 

IFN-γ on antibody responses. Neonatal mice were shown to produce a strong IFN-γ response 

with ~2-fold increase in lung IFN-γ compared to non-infected mice at 5 days post infection. 

This was presumably from NK cells as this matched a ~2-fold increase in IFN-γ positive lung 

NK cells at day 5. There was also another significant increase in lung IFN-γ at day 11, 

determined to be from IFN-γ positive CD4+ and CD8+ at days 11 post infection. However, 

individual depletion of NK cell or T cells subsets did not decrease lung IFN-γ protein 

suggesting compensatory mechanisms operate between cell populations. This study then 

confirmed IFN-γ was inhibiting the antibody response using neutralising anti-IFN-γ antibodies 

which significantly increased anti-RSV IgG titres (400). Use of an IFN-γ expressing 

recombinant RSV also decreased antibody titres. 

Another study reported that adult reinfection of neonatally RSV primed mice had more lung 

CD69+ NK cells at 4 days post infection than mice primed and re-challenged (393). In this 

study Harker et al. show that more IFN-γ positive NK cells were observed after adult 

reinfection of neonatally RSV primed mice, although significance was not reached in this 

study (400). Harker et al. also demonstrate that there was a significant increase in 

CD11b+/CD27+ NK cells on adult reinfection of neonatally RSV primed mice. An increase in 

expression of CD69, CD27 and CD11b by NK cells could lead to enhanced cytokine expression 

and cytolytic responses which could have contributed to the increased weight loss and 

pathology observed by Harker et al. (401,402). Overall the results from studies of neonatal 

NK cell responses during RSV infection indicate early IFN-γ derived from NK cells, and later 

derived from T cells, reduces the antibody response in RSV infected neonatal mice, this 

persists into adulthood influences responses on reinfection.  
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The response of NK cells to RSV may also depend on expression of NK cell and AEC-derived 

inhibitory and activating receptors, which RSV could modulate to its advantage. Failure of 

RSV to induce AEC-derived NK cell activating receptors may reduce efficient RSV elimination. 

In RSV infected mice, lung NK cells express higher levels of activating receptors NKG2D and 

CD27 which mirrored an increase in IFN-γ expression in BAL (391). This study suggests that 

NK cell activation and NK cell-derived IFN-γ is involved in acute lung injury possibly through 

expression of these receptors. NKG2D has been shown to enhance NK cell induced injury 

whilst stimulation of CD27 by infected cells lead to NK cell cytotoxicity and cytokine 

expression (403,404). Examples of NK cell-activating receptors that are upregulated during 

RSV infection include the MHC class I-chain related protein MICA at the surface of human 

AECs and ULBP1 on human DCs, which bind NKG2D on NK cells (152,405,406). MICA 

polymorphisms have been associated with RSV infection with the MICA*002:01/A9 allele 

frequency significantly lower in RSV patients (407). In NKG2D deficient mice there was an 

increase in lung DC numbers during the early stages of RSV infection, however RSV-infected 

NKG2D deficient mice displayed no change in viral load, weight loss, NK cell recruitment to 

the lung or number of IFN-γ positive NK cells (408,409). This is possibly due to the wide range 

of inhibitory and activating receptors NK cells possess and the increase in DC numbers as a 

compensatory mechanism. For example NKG2D and LFA-1 act synergistically to enhance NK 

cell cytotoxicity yet activation only of individual receptors is not enough to induce 

cytotoxicity (410,411). This indicates a deficiency in only one activating receptor may be 

insufficient to alter the NK cell, although receptor deficiencies cannot be excluded as a 

possibility to describe NK cell responses during RSV infection.  

Overall these data indicate that NK cells play a significant role in the early stages of RSV 

infection, influencing viral load and acute inflammation through expression of IFN-γ. 

However NK cell responses and NK cell-derived IFN-γ during neonatal infections may also 

influence subsequent infection as adults and attenuate adaptive immune responses. NK cells 
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may also aid in compensatory mechanisms seen in T cell deficient mice and maybe beneficial 

in those who are immune compromised or in neonates with immature adaptive immune cell 

populations (390,412). Furthermore the environment, or type of NK cell priming could, 

additionally influence the NK cell response. This complexity may have given rise to the 

debated roles NK cells have during RSV infection in both human and mice studies. 

 

1.5. Aims of thesis 

The early antiviral immune mechanisms and importance of AEC-NK cell communication in 

the immune response to RSV has not been fully characterised. The main aim of the work 

described in this thesis was to investigate the ability of RSV infected AECs to support immune 

responses through NK cell activation in vitro. 

BEAS-2B cells, a cultured airway epithelial cell line, and human adult nasal airway epithelial 

cells (HNAECs) were first used to characterise the expression of NK cell activating cytokines 

IL-12, IL-15 and IL-18 and the IL-15 receptor, IL-15Rα, following RSV infection. The formation 

of IL-15/IL-15Rα complexes was also examined. These experiments are described in Chapter 

3 for BEAS-2B cells and Chapter 4 for HNAECs. 

To then determine if the infected airway epithelium can alone support NK cell activation, 

AEC-NK cell co-cultures were established for both BEAS-2B cells and HNAECs. NK cell 

activation was characterised by expression of IFN-γ and TNF-α. These experiments are 

described in Chapter 3 for BEAS-2B cells and Chapter 4 for HNAECs. 

To determine if there was a relationship between NK cell activating cytokine expression and 

disease severity in infants, NK cell activating cytokines, IL-15, IL-18 and the IL-15/IL-15Rα 

complex were measured in NPAs from infants under 1 years of age PCR positive only for RSV 

or RV. Results were characterised by disease severity, age and oxygen requirement during 
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hospital admission. A comparison between RSV and RV expression was then used to 

determine if individual respiratory viruses gave different NK cell activating cytokine profiles. 

Additionally for the RSV NPAs, to determine if there was a correlation with NK cell activating 

cytokine expression TNF-α and IFN-γ levels were examined. This work is described in Chapter 

4. 

NK cell-derived cytokines could lead to enhanced airway epithelium responses during RSV 

infection. To further understand this unique aspect of AEC-NK cell communication expression 

of the Th1 associated chemokines, CXCL9, CXCL0 and CXCL11, Th2 cytokine TARC and B cell 

activating cytokine BAFF by AECs during NK cell co-culture as examined. This work is 

described in Chapter 5. This work was extended to determine if Th1 or Th2 cytokine 

environments influence BEAS-2B cell expression of IL-15, IL-15Rα, ICAM-1 and BAFF during 

RSV infection and then the NK cell response during BEAS-2B cell-NK cell co-culture. 

An additional aim was to characterise the influence of RSV strain in AEC and NK cell 

responses. RSV lab strain A2 and an A strain clinical isolate, RSV X were used to determine if 

RSV strain influences NK cell responses during infection of BEAS-2B cells and subsequently if 

RSV X further resulted in an enhanced Th1 associated chemokine response compared to RSV 

A2. These experiments are described throughout Chapters 3, 4 and 5. 
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Chapter 2. Materials and methods 
 

2.1. BEAS-2B cell culture 

BEAS-2B cells, an adenovirus 12-SV40 virus transformed human bronchial epithelial cell line, 

were grown in complete Dulbecco’s modified Eagle’s medium (cDMEM) (Table 2.1, page 82) 

and cultured in T25 flasks (Nunc, Thermo Fisher Scientific) at 37oC with 5% CO2. Cells were 

subcultured twice weekly when 80-90% confluent in T25 flasks (Corning Costar) with media 

changed every 2-3 days. For experiments cells seeded at 5000 cell/cm2. Flasks and plates 

were coated with 3µg/ml collagen diluted in 20mM acetic acid (Table 2.1, page 82) for 1hr 

then washed 3 times with sterile PBS before addition of cells.  

For subculture, media was removed and cells washed with 5ml PBS. 1ml 0.25% trypsin (Table 

2.1, page 82) was added for 3-5 minutes at 37oC. Flasks were visualised under the microscope 

until 90% dissociation was achieved. 6ml cDMEM was added to neutralise the trypsin and 

then all 7ml transferred into a 10ml sterile tube and centrifuged at 2200 rpm for 5 minutes 

to pellet cells. Supernatant was discarded and cells resuspended in 1ml media for counting 

using a Bright-Line™ haemocytometer (Reichert, USA). Cells were only used up to passage 

15 before a new vial of cells were then used. 

Cells were only used up to passage 4 for long-term storage. After centrifugation, cells were 

resuspended in 1ml of cDMEM containing 10% DMSO (Table 2.2, page 83). Further cDMEM 

+ 10% DMSO was added so that cells were at a density of 1.5x106cells/ml and 1ml added to 

cyrovials (Fisher, UK). Cyrovials were placed in a CoolCell® freezing container (BioCision) and 

incubated at -80°C for 24hr before being transferred to -180oC freezer for long-term storage. 

For revival, all 1ml was added to 5ml warm cDMEM in a collagen coated T25 flask.  
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2.2. Processing and culture of human nasal airway epithelial cells 

HNAECs were obtained from consented healthy adult volunteers and otherwise healthy 

adults with asthma (A-HNAEC). This study was approved by Liverpool central research ethics 

committee study number 17/NW/0044 IRAS number 212223. 

Nasal passages were brushed using a ConMed® Cytology Brush Ring Handle 3.00mm x 

120.00cm (ConMed; 149R) after which the brush was repeatedly stirred and banged against 

the sides of a 10ml tube containing 7ml RPMI media to detach cells from the brush. Cells 

were centrifuged at 1500rpm for 5 minutes to pellet cells. Media was discarded and 500µl 

trypsin/EDTA solution added (Table 2.1, page 82) and cells incubated for 5 minutes at 37oC 

to allow for digestion of epithelial sheets. 500µl trypsin neutralising solution (Table 2.1, page 

82) was then added to neutralise the trypsin along with 2ml of bronchial epithelium growth 

medium (BEGM) (Table 2.1, page 82). Cells were centrifuged at 1500rpm for 5 minutes to 

pellet cells, media discarded and cells resuspended in 1ml BEGM. A further 2ml of media was 

added and 1ml of cell suspension added to each well of a 12-well plate pre-coated with 

10µg/ml collagen (Table 2.1, page 82).  

Cells were incubated typically for 6-7 days until 100% confluent before subculture. Media 

was removed and cells washed with PBS and 200µl/well of 0.25% trypsin/EDTA added (Table 

2.1, page 82) for 3-5 minutes at 37oC. Plates were visualised under the microscope until 90% 

dissociation was achieved. 200µl/well of trypsin neutralising solution (TNS) added to each 

well and the cell suspension transferred into a 10ml sterile tube. 1ml BEGM was added and 

cells centrifuged at 1500 rpm for 5 minutes to pellet cells. The supernatant discarded and 

cells resuspended in 1ml media for counting. Cells were seeded at 1x104 in 94-well plates 

and 1x105 in 12-well plates. After subculture, cells were typically incubated for 4-5 days 

before 100% confluence was reached and subcultured again. Cells were only used on 

passages 2 and 3 for experimentation and subculture was stopped at passage 3.  
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Figure 2.1 displays the growth of one donor’s nasal AECs 24hr after isolating and plating to 6 

days culture to form a confluent monolayer. Images were taken on the EVOS XL cell imaging 

system (Thermo Fisher Scientific). Figure 2.2 displays the same donor’s nasal AECs after the 

first subculture. To confirm cells were of epithelial origin, cells were stained for cytokeratin-

18 at either passages 2 or 3 (see Section 2.10.2). 

 

Figure 2.1. Culture of HNAECs to form a confluent monolayer. Images are representative of 
donor 1’s nasal AECs and show images taken at days 1, 2, 4 and 6 after seeding. Images were 
taken using a light microscope. Scale bars represent 200µm for images days 1, 2 and 5, and 
400µm for day 6. 
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Figure 2.2. Culture of HNAECs after first subculture. After 100% confluency was reached, 
cells were subcultured into 12-well plates. Shown here are HNAECs days 1, 2, 3 and 4 after 
subculture. Images are representative of donor 1’s nasal AECs. Images show photographs 
using a light microscope. Scale bars represent 200µm for all images. 

 

2.3. RSV propagation 

Hep2 cells were used for propagation of RSV A2 and RSV X. Hep2 cells were cultured similarly 

to BEAS-2B cells, with the difference of seeding at 30,000 cells/cm2 in uncoated T175 flasks 

in a total volume of 15ml cDMEM. Cells were first grown at 37oC with 5% CO2 for 24hr until 

60-70%, confluent. Media was removed and cells washed with 15ml PBS. 5ml of serum free 

DMEM (Table 2.1, page 82) was added along with 1 vial of RSV stock. The flask was gently 

rocked back and forth and then placed on a gentle rocker to allow for adequate infection of 

cells for 2hr at 37oC with 5% CO2 after which 11ml cDMEM was then added to give a final FBS 

concentration of 2%. Cells were assessed daily until a 50% cytopathic effect was visible, 
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typically at 48hr. 9ml of the media was removed and discarded. The monolayer was 

harvested using a cell scraper and cells collected in a 10ml sterile tube. Cells were lysed on 

ice with 10 passes through a 2ml syringe and 25-gauge needle. Lysate was then centrifuged 

at 1500 rpm in a pre-cooled centrifuge at 4oC for 5 minutes. The supernatant was aliquoted 

into pre-labelled cyrovials and snap frozen in liquid nitrogen. Cyrovials were quickly 

transferred to -80oC storage.  

RSV X was a gift from the Netherlands National Institute for Public Health and the 

Environment (RIVM). RSV-X was isolated in 1998 from a patient in the Leiden University 

Medical Center (LUMC) (Leiden, NL) and passaged in Hep2. In 1999, RIVM received the virus 

and determined is to be A strain. RSV X has been propagating in Hep2 cells for an unknown 

number of times and was given purified in sucrose density gradient. 

 

2.3.1. Determination of RSV titre by plaque assay 

RSV viral titres were measured by titration on monolayers of the airway epithelial cell line 

A549. A549 cells were seeded into 96-well plates at 10,000 cells/cm2 and incubated at 37oC 

with 5% CO2 for 24hr. Cells were washed with PBS before serial dilutions of RSV in serum free 

DMEM were added in triplicate wells (50µl/well) for 2hr after which 150µl of complete media 

was added and cells incubated for 24hr. Cells were washed with PBS, fixed with methanol, 

stained with goat anti-RSV biotinylated antibody (1/200 dilution) (Bio Rad; 7950-0104) and 

labelled using an extravidin peroxidise colour development substrate (Table 2.2, page 83). 

Plaques were visualised under light microscope and wells with 100-200 plaques present used 

to determine the mean plaques, shown in Figure 2.3. Plaque forming units (PFU) were 

calculated as: number of plaques/dilution factor x volume added (µl). 



71 
 

 

Figure 2.3. RSV plaque assay. RSV positive A549 cells, or plaques, are seen as dark brown 
spots. Selected plaques are indicated by arrows. Fixed cells were stained with goat anti-RSV 
biotinylated antibody and labelled using an extravidin peroxidise colour development 
substrate. Image was taken on the EVOS XL cell imaging system. 

 

2.4. Natural Killer Cell isolation 
 

2.4.1. Isolation of peripheral blood mononuclear cell (PBMCs) 

Ethics from University of Liverpool Research Ethics Committee approved for the analysis of 

normal blood leukocyte function using cells from healthy volunteers (reference: 

RETH000773). 

Venous blood was obtained from healthy adult donors and placed into 10ml tube containing 

lithium heparin coated beads (Sarstedt; 46.363.001). Peripheral blood mononuclear cells 

were isolated via density centrifugation using a histopaque-1077 gradient. Blood was diluted 

with equal amounts of PBS and layered onto histopaque (Table 2.2, page 83) at a volume 

equal to that of the original blood sample. Following centrifugation at 400g for 30 minutes, 

the layer above the histopaque interface containing PBMCs was transferred into a new tube. 

PBMCs were washed with PBS and pellet resuspended in 1ml RPMI. 9ml of red blood cell lysis 

buffer was added for 3 minutes, with gentle rocking for the first minute. Cells were 

centrifuged and NK cells were then isolated as described below (Section 2.4.2). 
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2.4.2. Natural killer cell negative isolation 

White cells were washed twice in EasySep™ Buffer (Table 2.2, page 83) before NK cell 

isolations using EasySep™ Human NK Cell Enrichment Kit following the manufacturer’s 

instructions (Table 2.2, page 83). After NK cell isolation, cells were washed twice in cRPMI 

before being counted and added to wells in 100µl cRPMI. Remaining cells where then washed 

twice in flow/IF buffer (Table 2.2, page 83) for preparation of flow cytometric purity analysis 

(Section 2.9.3). NK cells used for assays were above 95% purity.  

2.5. RSV infection of airway epithelial cells 

Cells were infected when 100% confluent. Media was removed and cells washed once with 

PBS before addition of RSV in serum free DMEM. Cells were incubated for 2hr at 37oC with 

5% CO2 before the inoculum was removed and complete media added. Biological replicates 

were considered as cells used from different passages. AECs were grown in 96-well plates for 

the majority of experiments in (200µl/well). 12-well plates (600 µl/well) was used for Figure 

3.3B. 24-well plates (400 µl/well) were used for flow cytometry experiments. For further 

details for specific experiments and the multiplicity of infection (MOI) used can be found 

within each results chapter. Palivizumab, a monoclonal antibody that binds to the F-protein 

of RSV, was used as an anti-RSV control during infection and used at 100µg/ml (Abbvie, UK). 

2.5.1 Airway epithelial cell and NK cell co-culture 

Confluent BEAS-2B cells and HNAECs were infected for 24hr at MOI 1 or MOI 2.5 respectively, 

in 100ul cRPMI before addition of isolated NK cells (Section 2.4) in 100ul cRPMI for a further 

24hr at AEC:NK cell ratios of 1:1, 1:2 and 1:3. For HNAECs, donor matched NK cells were used. 

2.5.2. Transwell separation of BEAS-2B cells and NK cells 

Figure 2.4 depicts the conditions used for this experiment. Corning® Transwell® polyester 

membrane cell culture inserts at 6.5mm diameter and pore size of 0.4µm were used 

(Corning; 3470). BEAS-2B cells were grown on the bottom of a 24-well plate or on in the 
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insert until confluent before infection with RSV A2 at MOI 1 for 24hr in 400ul cRPMI. Isolated 

NK cells (Section 2.4) were added for a further 24hr at a BEAS-2B cell: NK cell ratio of 1:3 into 

the lower chamber in 100ul cRPMI (A), into the insert in 100ul fresh cRPMI (B), into the insert 

in 100ul infected BEAS-2B cell culture supernatant (C) and into the lower chamber in 100ul 

cRPMI (D). Culture supernatants were taken from both lower compartment and insert and 

stored at -70oC. 

 

Figure 2.4. Diagram of transwell experiment conditions. BEAS-2B cells were infected with 
RSV A2 at MOI 1 for 24hr. Isolated NK cells (Section 2.4) were added for a further 24hr at a 
ratio of 1:3 into the lower chamber in 100ul cRPMI (A), into the insert in 100ul fresh cRPMI 
(B), into the insert in 100ul infected BEAS-2B cell culture supernatant (C) and into the lower 
chamber in 100ul cRPMI (D).  

 

2.6. Polymerase Chain Reaction (PCR) 
 

2.6.1. RNA isolation 

RNA was isolated using TRI reagent (Sigma) as described by the manufacturer. For RNA 

extracted from experiments using 96-well plates, media was first removed and cells lysed by 

adding 80µl of TRI reagent (Table 2.2, page 83) to each well. Three replicate wells were 

collected as one sample with a total volume of 240µl and the lysate transferred to an RNase-
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, DNase and pyrogen- free tube (Molecular BioProducts; 3412). At this point, samples were 

either frozen at -70oC in TRI reagent for future RNA isolation or RNA isolated immediately. 

Briefly 50µl of chloroform was added to each tube before it was vortexed at high speed for 

10 seconds and then centrifuged for 15 minutes, 12,000g and at 4oC. The top clear fraction 

was transferred to a new nuclease-free tube and the bottom layer discarded. 200µl 

isopropanol was added to the eluent, vortexed and allowed to sit at room temperature for 

10 minutes. Samples were then centrifuged for 15 minutes, 12,000g at 4oC to pellet the RNA. 

The eluent was discarded carefully so as to not disrupt the RNA pellet and the pellet washed 

with 300µl of 70% nuclease-free ethanol, after which samples were vortexed, centrifuged 

and eluent again discarded. The RNA pellet was allowed to dry at room temperature for 5 

minutes before being dissolved in 20µl nuclease-free water. Eluted RNA was either stored at 

-70oC for future use or placed on ice for RNA quantity and quality assessment using a 

Nanodrop ND-1000 Spectrophotometer. 1µl per sample was used to measure the 

absorbance of the RNA samples at 260nm and A260/A280 ratio. RNA samples were then 

stored at -70oC. 

2.6.2. Reverse transcription (RT) 

A High Capacity cDNA Reverse Transcription Kit (Table 2.2, page 83) was used for synthesis 

of cDNA. 10µl of each RNA sample containing around 1 µg of total RNA was combined with 

10µl of freshly prepared reverse transcription mastermix in an RNase-, DNase and pyrogen- 

free sterile tube (Thermo Fisher Scientific; 3451). The mastermix consisted of 2µl 10X RT 

buffer 10X RT Buffer, 2µl 10X RT Random Primers, 1µl 25X dNTP Mix, 1µl MultiScribe® 

Reverse Transcriptase and 4µl nuclease-free water for each 10µl RNA. Samples were 

incubated in a TC-512 thermal cycler (Techne, USA) for 1 hour at 37°C to complete cDNA 

synthesis. cDNA samples were then diluted 1:10 by addition of 180µl nuclease-free water. 

Samples were then either stored at -20oC or carried forward to qPCR analysis (Section 2.6.3). 
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2.6.3. Quantitative Polymerase Chain Reaction (qPCR) 

cDNA was analysed using TaqMan® gene expression assays, either TaqMan™ Universal PCR 

Master Mix (Table 2.2, page 83) or PrecisionPLUS MasterMix with ROX buffer was used (Table 

2.2, page 83). All probes spanned and exon boundary. For TaqMan™ Universal PCR Master 

Mix, 11.25µl cDNA was mixed with 12.5l TaqMan™ Universal PCR Master Mix and 1.25l 

TaqMan® primer/probe to give a final volume of 25µl. For PrecisionPLUS MasterMix, 9µl 

cDNA was mixed with 10µl PrecisionPLUS MasterMix and 1µl TaqMan® primer/probe to give 

a final volume of 20µl. 

Each cDNA sample was probed for the control housekeeping gene, ribosomal L32 (L32) and 

gene/s of interest. Details of specific probes used can be found in Table 2.3 (Table 2.3, page 

84).  

Samples were run in duplicate in 96-well PCR plate (Starlabs, UK) on a 7300 Real-Time PCR 

System (Applied Biosystems, UK) using Sequence Detection Software V1.4 (Applied 

Biosystems, UK). Cycling conditions were 50°C for 2 minutes, followed by hold at 95°C for 10 

minutes and then 40-50 cycles of 95°C for 15 seconds and 60°C for 1 minute. At the end of 

each run amplification plots were viewed and baseline and threshold values set individually 

for each gene.  

Analysis of each gene was done using the comparative CT method (2- ΔΔCT) using the equations 

below, with housekeeping gene L32 used as the internal reference gene. 

1) Duplicates of Ct values were averaged 

2) Ct values were corrected to housekeeping gene L32 to give Ct value relative to L32. 

ΔCT = CT (target mean) – CT (mean reference) 

3) ΔCT were then corrected to relative control. 

ΔΔCT = mean ΔCT (treatment group) – mean ΔCT (untreated control) 
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4) The fold change in target gene expression relative to the internal reference gene, 

L32.  

Relative gene expression = 2- ΔΔCT 

Relative gene expression values were then used for graphical presentation and expressed as 

the percentage of L32 housekeeping gene expression by multiplying the value given for the 

relative gene expression by 100. 

 

2.7. Enzyme Linked Immunosorbant Assay (ELISA) 
For all plates, absorbance were read at 540nm using a BioTek ELx800 absorbance microplate 

reader. OD values were collected using KC junior software (version 1.4.1.8) (BioTek). 

2.7.1. Chemokine and cytokines in cell supernatants 

All ELISAs were carried out according to manufacturer’s instructions. Table 2.4 provides 

details of the specific ELISAs and sample dilution factors used. Reconstituted capture 

antibodies, standards and detection antibodies were aliquoted stored at -70oC (Table 2.4, 

page 84). With the exceptions detailed below the specified reagent diluent was used for 

sample dilution. All assays supplied by R&D systems were carried out on MaxiSorp® flat 

bottom 96-well plates (Nunc, Thermo Fisher Scientific). Blank graphs represent that protein 

was examined however no protein was detected above the detection limit. 

2.7.2. Preparation of NPA for ELISAs 

NPAs were vortexed for 10 seconds at 1600rpm and centrifuged for 5 minutes at 2000rpm 

to pellet cells debris and mucus to before diluting 1:2 with RIPA buffer. 

2.8. Luminex 

Luminex Assay used for the detection of human IL-15 and BAFF protein in BEAS-2B cell and 

HNAEC supernatants were completed according to manufacturer’s instructions (R&D; 

LXSAHM-02). The standard curve range for IL-15 was 3 - 1,540pg/ml and for BAFF 17.4 - 
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4,240pg/ml. Assays were performed on MAGPIX® System (Merck) with xPONENT (version 

4.2.1324) (Luminex) software to acquire the data. 

2.9. Flow cytometry 
 

2.9.1. General staining procedure 

Cells were washed twice in flow/IF buffer (Table 2.2, page 84) before addition of antibodies 

or isotype controls (Table 2.9, page 86). Cells were incubated on ice for 30 minutes with 

shaking at 100rpm in the dark with either un-conjugated or conjugated primary antibodies 

(Table 2.5, page 85). Cells were washed twice before either continuing to flow cytometric 

analysis if conjugated antibodies were used, or incubated for a further 30 minutes on ice in 

the dark with secondary antibody. Cells were then washed twice before resuspension in 

200µl of flow/IF buffer and flow cytometric analysis.  

2.9.2. Surface staining of airway epithelial cells 

Media was removed and cells washed with PBS before addition of 0.48mM EDTA in PBS for 

3-5 minutes at 37oC. Cells were further disrupted by pipette and transferred to eppendorf 

tubes for centrifugation for 5 minutes at 4000rpm and preparation continued as described 

in Section 2.10. 

2.9.3. NK cell purity analysis 

Following NK cell isolation (Section 2.4.2) purity was determined by flow cytometry using 

CD56 and CD3 antibodies. PBMCs were first used to set gates for these antibodies and a 

representation of the gating strategy used for NK cell purity of isolated cells is shown in 

Figure 2.5. This gating strategy was then slightly altered to lower isotype control as shown in 

Figure 2.6. 
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Figure 2.5. Representative flow cytometry gating set-up using PBMCs for NK cell purity 
analysis. Isolated PBMCs were left unstained A) or stained with B) CD3 PE isotype, C) CD56 
APC isotype, D) CD3 PE, E) CD56 APC, F) dual stain CD56 APC and CD3 PE and analysed by 
flow cytometry to determine the NK cell population (CD56+ CD3-).  

  

A B 

C D 

E F 
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Figure 2.6. Representative flow cytometry of NK cell purity assessment after NK cell 
isolation. Isolated NK cells were left unstained or single stained with CD3 PE isotype, CD56 
APC isotype or dual stained with CD56 APC and CD3 PE. Shown are two donor’s NK cells, 
labelled as A and B. NK cells are the CD56+ CD3- population, shown in Q1 region with dual 
CD56 and CD3 staining. 

A 

B 



80 
 

2.9.4. Intracellular IFN-γ staining of NK cells 
 

2.9.4.1. Direct BEAS-2B cell:NK cell co-culture 

Cells first incubated with brefeldin A (Table 2.2, page 84) for 4hr before preparation as in 

Section 2.9.2, without continuation to Section 2.11.1. Cells were permeabilised with 

Fixation/Permeabilization Solution Kit (Table 2.2, page 84) following the manufacturer’s 

instructions before staining as described above (Section 2.9.1). Figure 2.7 shows gating 

strategy to distinguish BEAS-2B cells from NK cells during co-culture assays.  

 

Figure 2.7. Representative flow cytometry for gating strategy to distinguish BEAS-2B cells 
from NK cells during co-culture. Forward scatter and side scatter was displayed in log to 
clearly distinguish between BEAS-2B cells and NK cell populations. A) BEAS-2B cell culture 
only and B) BEAS-2B cells co-cultured with NK cells. 

 

2.9.4.2. NK cell stimulation with BEAS-2B cell culture supernatants 

These methods describes those of a collaborative effort with Liz Van Erp for the detection of 

IFN-γ and perforin intracellular expression in healthy adult NK cells cultured with BEAS-2B 

cell culture supernatants.  
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Figure 2.8 details the procedure of production of culture supernatants and NK cell culture. 

BEAS-2B cells were infected with RSV A2 at MOIs 1 and 2.5 for 24 and 48hr and culture 

supernatant (200ul/well) stored at -70oC. Three biological replicates were collected and 

supernatants shipped on dry ice to RIVM. Two separate donors were used and NK cells 

cultured in each three biological replicates of BEAS-2B cell culture supernatants and each 

replicate done in duplicate. 

Briefly, NK cells were isolated from healthy adult controls by negative selection (MACS, 

Miltenyi Biotec). NK cells were cultured at a ratio of 1:1 with cell line K562, at 1x105 cells/well 

in BEAS-2B cell culture supernatants with addition of Brefeldin A and anti-CD107a antibody 

(H4A3, Biolegend) for 4hr. Cells were fixed and permeabilised (eBioscience) before staining 

for CD56, (HCD56, Biolegend), CD3 (SK7, BD Biosciences) IFN-γ (B27, Biolegend) and perforin 

(B-D48, Biolegend) before flow cytometric analysis. Data was acquired using a BD LSR 

Fortessa X20 flow cytometer.  
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Figure 2.8. Experimental procedure for NK cells cultured in BEAS-2B cell supernatants. 
BEAS-2B cells were infected with RSV A2 at MOI 1 and 2.5 for 24hr and 48hr. NK cells were 
isolated from two healthy adult PBMCs and cultured in supernatants for 4hr before flow 
cytometric analysis. Non-infected cells contained cRPMI only as a control.  

 

2.9.5. Acquisition and analysis of flow cytometry data 

 Flow cytometry was performed using Guava® easyCyte flow cytometer using guavaSoft 

(version 3.1.1) software. Data was analysed using FlowJo analysis software (version 7.6.5) 

(FlowJo, LLC).  
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2.10. Immunofluorescence staining 

Confocal microscopy was conducted on a Leica DM2500 microscope at 40x magnification 

using LAS X Core (version 3.3.0) software. 

2.10.1. BEAS-2B cells 

2.10.1.1. Surface staining 

Primary antibody and secondary antibody staining of BEAS-2B cells was carried out as 

described in Section 2.9.1. Cells were either incubated with IL-15 and IL-15Rα alone or with 

combination of both (Table 2.6 and Table 2.8, pages 85 and 86). BEAS-2B cells were then 

immobilised onto glass slides using a cytospin centrifuge (ROTOαFIX 32A, Hettich). Cells were 

fixed with 4% paraformaldehyde (Table 2.2, page 84) for 15 minutes at room temperature 

and washed before being counter stained with DAPI (Sigma; D9542) for 10 minutes at room 

temperature, washed again and allowed to dry before addition of VECTASHIELD Antifade 

Mounting Medium (Vector laboratories; H-1000). 

2.10.1.2. Intracellular staining 

BEAS-2B cells were grown on sterile 13mm glass coverslips in 12-well plates and infected 

when at 50% confluency. Media was removed and cells washed with PBS before addition of 

4% methanol for 15 minutes at -20oC. Coverslips were incubated in permeabilising buffer 

PBST (Table 2.2, page 84) at room temperature for 15 mines before blocking in flow/IF buffer 

for 1hr at room temperature. Coverslips were then incubated with primary antibodies 

overnight at 4oC in PBST washed with PBST and then incubated for 2hr at room temperature 

with secondary antibodies diluted in PBST. After further washing slides were counter stained 

with DAPI for 10 minutes at room temperature, washed again and allowed to dry before 

mounting in VECTASHIELD Antifade Medium. 
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2.10.2. HNAEC cytokeratin-18 staining 

Approximately, 5x104 HNAECs were immobilised on glass slides using a cytospin centrifuge 

and fixed using 4% paraformaldehyde (Table 2.2, page 84) at room temperature for 15 

minutes. Slides were washed with PBS before incubation with anti- Cytokeratin 18 antibody 

(Table 2.6, page 85) in flow/IF buffer overnight at 4oC the washed again and incubated with 

secondary antibody (Table 2.6, page 85) for 1hr at room temperature. Slides were visualised 

using EVOS FLoid fluorescence microscopy (Thermo Fisher Scientific) (Figure 2.9).  

 

Figure 2.9. HNAECs express cytokeratin-18. After passage HNAECs were stained for 
cytokeratin-18 to determine if cells were of airway epithelial origin. Image is representation 
of one HNAEC donor. A) cytokeratin-18, B) isotype control. Cytokeratin staining is shown in 
red. Nuclei are stained in blue (DAPI). 

 

2.11. Nasopharyngeal aspirates 
 

Discarded nasopharyngeal aspirates (NPAs) collected between 1.11.2016 and 6.4.2017 RSV 

winter season were obtained from the microbiology department Alder Hey Children’s 

Hospital. This study was approved by Liverpool central research ethics committee study 

number 17/NW/0044 IRAS number 212223. 

PCR analysis of respiratory virus present in the samples had previously been carried out 

within the microbiology laboratory in Alder Hey Children’s Hospital by the staff. Samples for 

this analysis were randomly selected from a list as follows;  
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 Infants aged 7 days to 1 years old.  

 NPA requested by general paediatrics services only. 

o To exclude infants who were already in different departments at Alder Hey 

for issues potentially not related to respiratory illness. 

o Children were only included if they were admitted to hospital. 

 NPA taken within 2 days of admission. 

 Positive for RSV or RV only. 

 No comorbidities. 

 

Severity was determined as; 

 Mild, no oxygen at all during admission 

 Moderate, oxygen needed 

 Severe, admission to paediatric critical care unit 

 

2.12. Statistical Analysis 
 

AEC experiments that required comparison between two groups used the paired, non-

parametric Wilcoxon signed rank test. AEC experiments that required comparison between 

three or more groups used the paired, non-parametric Friedman test followed with Conover 

post-hoc test to calculate the statistical significance. For NPA protein analysis in Sections 

4.3.8 and 4.3.9, data was first assessed for normal distribution using Shapiro normality test. 

All NPA protein values did not follow a normal distribution so non-parametric tests were 

used. Analysis between two groups were analysed by Mann-Whitney U test and between 

more than three groups analysed by Kruskal-Wallis test followed with Conover-Inman post-

hoc test. Correlations between NPA cytokine levels were derived by Spearman’s rank 

correlation coefficient analysis. All statistical analysis was completed using StatsDirect 
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3.0.171. A p value of p <0.05 was considered to be significant. Figure legends detail statistical 

analysis used for each specific experiment. 

Table 2.1. Media and media supplements. 

Name Composition Application Supplier; cat no. 
Dulbecco’s modified 
Eagle’s medium 
(DMEM) 

Refer to manufacturer’s 
media composition 

BEAS-2B, A549 and 
Hep2 culture 

Sigma; D5796 

Bronchial epithelium 
basal 
medium (BEBM) 

Refer to manufacturer’s 
media composition 

Human nasal airway 
epithelial cell culture 

Lonza; CC-3171 

BEGM BulletKit Refer to manufacturer’s 
composition 

Human nasal airway 
epithelial cell culture 

Lonza; CC-3170 

Bronchial epithelium 
growth medium 
(BEGM) 

BEGM BulletKit in BEBM Human nasal airway 
epithelial cell culture 

As stated above 

RPMI 1640 Medium, 
GlutaMAX™ 
Supplement 

Refer to manufacturer’s 
media composition 

NK cell co-culture Thermo Fisher 
Scientific; 61870-
010  

Fetal bovine serum 
(FBS) 

Heat inactivated (60oC 
for 30 minutes in water 
bath) 

BEAS-2B, A549 and 
Hep2 culture 

Thermo Fisher 
Scientific; 16000-
044 

Gentamicin Refer to manufacturer’s 
composition 

BEAS-2B, A549 and 
Hep2 and NK cell 
culture 

Sigma; G1397 

Ultroser-G  Refer to manufacturer’s 
composition 

Human nasal airway 
epithelial cell 

Pall Life Sciences; 
15950-017 

Collagen I Rat 
Protein, Tail 

Worked concentration 
at 50µg/ml in 20mM 
acetic acid (sterile 
filtered) 

BEAS-2B (3µg/ml) and 
human nasal airway 
epithelial cell 
(10µg/ml) seeding 

Thermo Fisher 
scientific; A1048301 

Trypsin 10x solution 2.5% trypsin diluted in 
PBS to 0.025% 

BEAS-2B, A549 and 
Hep2 sub-culture 

Sigma; 59427C 

0.25% trypsin/EDTA 
solution 

Refer to manufacturer’s 
composition 

Human nasal airway 
epithelial cell sub-
culture 

Lonza; CC-5012 

Trypsin neutralising 
solution (TNS) 

Refer to manufacturer’s 
composition 

Human nasal airway 
epithelial cell sub-
culture 

Lonza; CC-5002 

Complete DMEM 
(cDMEM) 

10% FBS, 1% gentamicin 
in DMEM 

BEAS-2B, A549 and 
Hep2 culture 

As stated above 

Serum free DMEM 1% gentamicin in 
DMEM 

BEAS-2B, A549 and 
Hep2 infection media 

As stated above 

Complete RPMI 
(cRPMI) 

10% FBS, 1% gentamicin 
in RPMI 

NK cell co-culture As stated above 

Complete BEGM  
(cBEGM) 

2% Ultroser-G Human nasal airway 
epithelial cell culture 

As stated above 
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Table 2.2. Regents, buffers and kits. 

Name Composition Application Supplier; cat no. 
PBS (1x) 0.014M KH2PO4, 

0.008M Na2HPO4- 
7H20, 0.0026M KCl, 
0.137M NaCl 

Cell culture  

Dimethyl sulfoxide 
(DMSO) 

Refer to 
manufacturer’s 
composition 

Cell culture and 
general use 

Sigma; 2650 

ExtrAvidin®−Peroxidase Refer to 
manufacturer’s 
composition 

RSV titration Sigma; E2886 

3-Amino-9-ethylcarbazole Refer to 
manufacturer’s 
composition 

RSV titration Sigma; 03005 

Histopaque-1077 Polysucrose, 
57 g/L and sodium 
diatrizoate, 90 g/L 

Isolation of human 
peripheral PBMCs 

Sigma; 10771 

EasySep™ Buffer PBS, FBS (2%), EDTA 
1mM 

Isolation of NK cells Stem Cell; 20144 

EasySep™ Human NK Cell 
Isolation Kit 

Refer to 
manufacturer’s 
composition 

Isolation of NK cells Stem Cell; 19055 

Flow/IF buffer PBS, 1% BSA Flow cytometry  
TRI Reagent™ Solution Refer to 

manufacturer’s 
composition 

RNA isolation Invitrogen; 
AM9738 

High capacity cDNA RT kit 10X RT Buffer, 10X 
RT Random Primers, 
25X dNTP Mix (100 
mM), MultiScribe® 
Reverse 
Transcriptase (50 
U/µL) 

Reverse transcription Applied 
Biosystems; 
4368814 

4% paraformaldehyde Refer to 
manufacturer’s 
composition 

Immunofluorescence Electron 
Microscopy 
Sciences; 157-4-
100 

PBST 1x PBS, 0.3% Triton 
x-100 

Immunofluorescence  

Fixation/Permeabilization 
Solution Kit 

Refer to 
manufacturer’s 
composition 

Flow cytometry BD Biosciences; 
554714 

TaqMan™ Universal PCR 
Master Mix 

Refer to 
manufacturer’s 
composition 

qPCR Life technologies; 
4369016 

PrecisionPLUS MasterMix 
with ROX 

Refer to 
manufacturer’s 
composition 

qPCR Primer Design; 
PPLUS-R-XXML 
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Table 2.3. Taqman® primer/probe assays. 

  

 

 

 

 

 

 

 

 

 

 

Table 2.4. Commercially available ELISA kits. 

 

Primer/probe Gene Assay ID Amplicon length  

L32 MRPL32 Hs00388301_m1 81  

Interleukin 8 CXCL8 Hs00174103_m1 101  

Interleukin 12β IL12B Hs01011518_m1 72  

Interleukin 15 IL15 Hs01003716_m1 117  

Interleukin 18 IL18 Hs01038788_m1 115  

IL-15Rα IL15RA Hs00542604_m1 82  

TNF-α TNF Hs01113624_g1 143  

IFN-γ IFN Hs00989291_m1 73  

CXCL10 CXCL10 Hs00171042_m1 98  

BAFF TNFSF13B Hs00198106_m1 84  

ICAM-1 ICAM1 Hs00164932_m1 87  

TARC CCL17 Hs00171074_m1 51  

ELISA  
(human) 

Standard 
curve range 
(pg/ml) 

Supernatant 
dilution 
factor 

Nasopharyngeal 
aspirate dilution 
factor 

Supplier; cat no. 

CXCL8/IL-8 31.3-2000 60 - R&D; DY208 
IL-12 p70 7.81-500 1 - Invitrogen; 88-1726-

22 
IL-15 7.81-500 - 2 Biolegend; 435104 
IL-18 11.7-750 1 2 R&D; DY318 
IL-15/IL-15Rα 
complex 

62.5-4000 2 2 R&D; DY6924 

CXCL9/MIG 62.5-4000 30 - R&D; DY392 
CXCL10/IP-10 31.3-2000 30 - R&D; DY266 
CXCL11/I-TAC 7.81-500 30 - R&D; DY671 
IFN-γ 4-500 1 2 Invitrogen; 88-7316-

88 
TNF-α 4-500 1 2 Invitrogen; 88-7346-

88 
BAFF 39.1-2500 - - R&D; DY124 
TARC 3.9-250 - - Biolegend; 441104 
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Table 2.5. Antibodies used in flow cytometry. 

 

Table 2.6. Antibodies used in immunofluorescence. 

Antibody raised 
against 

Host/Isotype Working conc. Supplier; cat no. 

IL-15 Goat IgG 5µg/ml R&D; AF315 
IL-15Rα Rabbit IgG 1/400 dilution Abcam; ab140618 
GM130 Sheep IgG 5µg/ml R&D AF8199 
Cytokeratin-18 Sheep IgG  R&D; AF7619 

 

Table 2.7. Antibodies used for neutralisation assays. 

Antibody raised 
against 

Host/Isotype Working conc. Supplier; cat no. 

IFN-γ Mouse IgG2A 10ng/ml, 100ng, 
1µg/ml 

R&D; MAB285 

TNF-γ Goat IgG 10ng/ml, 100ng, 
1µg/ml 

R&D; AF-210-NA 

 

  

Antibody raised 
against 

Host/Isotype Conjugate Working conc. Supplier; cat no. 

CD3 Mouse IgG2a 
κ 

PE 2.5µg/ml Invitrogen; 12-0039-41 

CD56 Mouse IgG1 
κ 

APC 2.5µg/ml Invitrogen; 12-0039 

ICAM-1 Mouse IgG1 
κ 

APC 10µg/ml Invitrogen; 17-0549-41 

IL-15 Goat IgG - 15µg/ml R&D; AF315 

IL-15Rα Mouse IgG2b 
κ 

PE 10µg/ml Biolegend; 330207 

IL-15Rα Goat IgG - 10µg/ml R&D; AF247 

IFN-γ Mouse IgG1 
κ 

FITC 10µg/ml Invitrogen; 11-7319-81 
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Table 2.8. Secondary antibodies. 

Antibody 
raised against 

Conjugate Working conc. Used for 
primary 
antibody 

Supplier; cat no. 

Donkey anti-
sheep 

NL637 1/150 dilution GM130 R&D; NL011 

Donkey anti-
goat 

Alexa Fluor 488 10µg/ml IL-15 Invitrogen; 
A11055 

Donkey anti-
rabbit 

Alexa Fluor 488 10µg/ml IL-15Rα (single 
stain) 

Abcam; ab21206 

Donkey anti-
rabbit 

DyLight™ 649 5µg/ml IL-15Rα (dual 
stain) 

Biolegend; 
406406 

 

Table 2.9. Isotype controls. 

Name   Conjugate Isotype control for Supplier; cat no. 
Goat IgG - IL-15 R&D; AB-108-C 
Sheep IgG - GM130 R&D; 5-001-A 
Rabbit IgG - IL-15Rα SCBT; sc-13057 
Mouse IgG2a  PE CD3, IL-15Rα 

(Biolegend) 
Invitrogen; 12-4724-41 

Mouse IgG1 κ APC CD56, ICAM-1 Biolegend; 400119 
Mouse IgG1 κ PE IFNGR1 Biolegend; 400111 
Mouse IgG1 κ FITC IFN-γ Biolegend; 400107 

 

Table 2.10. Human recombinant proteins. 

Name Working conc. Supplier; cat no. 
TNF-γ 10ng/ml Peprotech; 300-01A 
IFN-γ 100ng/ml Peprotech; 300-02 
IL-15 10ng/ml Peprotech; 200-15 
IL-4 20ng/ml Peprotech; 200-04 
IL-13 20ng/ml Peprotech; 200-13 
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Chapter 3. In vitro NK cell activating-cytokine profile of RSV A2 

infected BEAS-2B cells and BEAS-2B cell-NK cell co-culture 

3.1. Introduction 

The epithelial response at the site of infection could have a crucial role in orchestrating 

inflammatory and immune responses through release of cytokines and chemokines. Airway 

epithelial-derived cytokines and chemokines act to activate and attract cells of the immune 

system. The work described in this chapter focusses on how epithelial cells, through cytokine 

release, may activate NK cells. Innate immune cells, such as NK cells, are present within the 

resting lung, and are believed to be one of the first immune cell populations to respond to 

infection (Section 1.4). As described in Chapter 1, the principle cytokines that activate NK 

cells are IL-12, IL-15 and IL-18 (Section 1.3.3). IL-15 may also form IL-15/IL-15Rα complexes 

which could act as a potent inducer of NK cell activation and cytokine expression (Section 

1.3.3). Activated, NK cells secrete IFN-γ and TNF-α which can act to further induce both 

immune and inflammatory responses (Section 1.3.4) and induce further expression of AEC-

derived cytokines (Section 5.1). 

IL-15 expression by the airway epithelium following RSV infection has already been 

demonstrated (Section 1.3.3.3), but expression of IL-12, IL-15Rα, the IL-15/IL-15Rα complex 

and IL-18 by AECs during RSV infection has not been examined. IL-15Rα expression has been 

measured in different epithelial cells from other organs under various different stimuli and 

shown to be expressed by a number of epithelial cell types (Section 1.3.3.3). IL-15Rα mRNA 

has also been shown to be expressed by human bronchial epithelial cells (HBEC) and BEAS-

2B cells under resting conditions, however expression and activity during RSV infection has 

not been characterised (341). In the work described in this chapter, I extend these findings 

to further define the pattern of NK cell activating cytokine expression including IL-12, IL-15, 
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IL-18, and the IL-15/IL-15Rα complex by airway epithelial cell line, BEAS-2B. To then further 

understand how the airway epithelium may activate NK cells during RSV infection I examined 

the hypothesis that alone AECs, after infection, can activate NK cells by expression of NK cell-

activating cytokines and IL-15Rα receptor. This was achieved by using a novel BEAS-2B cell-

NK cell co-culture model and by use of transwell cell separation to determine if direct cell 

contact, results in enhanced NK cell responses.  

3.2. Aims 
 

 To characterise the kinetics of cytokines IL-12, IL-15 and IL-18 and the IL-15Rα 

receptor expression by BEAS-2B cells in response to RSV A2 infection (Sections 3.31, 

3.3.2 and 3.3.3).  

 To determine if IL-15/IL-15Rα complexes are formed following RSV A2 infection of 

BEAS-2B cells (Sections 3.3.4, 3.3.5, 3.3.6 and 3.3.7). 

 To establish a BEAS-2B cell-NK cell co-culture model, measuring IFN-γ and TNF-α as 

indicators of NK cell activation (Section 3.3.8 and 3.3.10). 

 To determine if direct contact of BEAS-2B cells and NK cell are required for optimum 

NK cell activation (Section 3.3.8 and 3.3.9). 

 To determine if infected BEAS-2B cell culture supernatants can induce NK cell 

cytotoxicity (Section 3.3.11). 

 To compare the expression of IL-15 and IL-15Rα by BEAS-2B cells in response to 

infection with two different RSV A strains, A2 lab strain and clinical isolate RSV X. 

Then to determine if differences in AEC cytokine expression result in changes in IFN-

γ and TNF-α levels in BEAS-2B cell-NK cell co-cultures (Section 3.3.12). 
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3.3. Results 

In these experiments the bronchial epithelial cell line, BEAS-2B, were infected with RSV A2 

strain at an MOI of 1 for 4, 8, 24 and 48hr, after which culture supernatants and RNA were 

collected (Section 2.5). Cells without infection were cultured in media only as a non-infected 

control and described as ‘non-infected’ in Figures. To confirm the observed effects were due 

to replicating virus and exclude any possible influence of contaminants in viral lysate or 

culture media, control cultures were treated with Palivizumab, a neutralising monoclonal 

antibody, which binds the RSV F-protein and inhibits RSV entry into the cell. This is detailed 

as ‘anti-RSV control’. 

3.3.1. RSV replication and IL-8 expression in BEAS-2B cells 

After infection RSV N gene expression was measured by qPCR (Section 2.6.3) to confirm viral 

replication and IL-8 gene expression measured to ensure the BEAS-2B cells were responding 

to challenge. The pattern of expression observed is illustrated in Figure 3.1.  

Figure 3.1. Expression of RSV N gene and IL-8 mRNA in RSV A2 infected BEAS-2B cells. BEAS-
2B cells were infected with RSV A2 at an MOI of 1 for 4, 8, 24 and 48hr. Control non-infected 
cultures were cultured in the absence of RSV. A) RSV N gene (n=4) and B) IL-8 (n=4). Data is 
expressed as the mean ± SEM (Friedman with Conover post-hoc test, ***p<0.001). 

 

RSV N RNA was not detected in the absence of infection and was significantly increased at 

4hr (p<0.001), 8hr (p<0.001), 24hr (p<0.001) and 48hr (p<0.001) compared to non-infected 

cells (Figure 3.1A). IL-8 mRNA was significantly upregulated at 24hr (p<0.001) and 48hr 
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p<0.001) compared to control non-infected cells (Figure 3.1B). These results indicate both 

RSV replication and response to infection by the BEAS-2B cells. Similar measurements were 

made during all later experiments to ensure infection had taken place. 

 

3.3.2. Expression of IL-12 and IL-18 during RSV A2 infection of BEAS-2B cells 

IL-12 and IL-18 have been shown to act synergistically to enhance NK cell activation (Section 

1.3.3.4). Here IL-12β and IL-18 mRNA was first measured by qPCR as an indicator of IL-12 and 

IL-18 gene expression following RSV infection and subsequently IL-12p70 and IL-18 protein 

expression in culture supernatants measured by ELISA (Section 2.6.3 and 2.7). 
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Figure 3.2. Expression of IL-12 and IL-18 mRNA and protein in RSV A2 infected BEAS-2B 
cells. BEAS-2B cells were infected with RSV A2 at an MOI of 1 for 4, 8, 24 and 48hr. Control 
non-infected cultures were cultured in the absence of RSV. A) IL-12β mRNA (n=4), B) IL-12 
protein (n=3), C) IL-18 mRNA (n=4), D) IL-18 protein (n=3). Data is expressed as the mean ± 
SEM (Friedman with Conover post-hoc test, *p<0.05). 
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There was no significant difference in IL-12β mRNA expression between control non-infected 

and RSV infected BEAS-2B cells (Figure 3.2A). IL-12β mRNA expression was less than 0.1% of 

housekeeping gene L32, suggesting little if any protein would be expressed by BEAS-2B cells 

with or without RSV infection. This was confirmed by ELISA with no IL-12p70 protein detected 

in undiluted culture supernatants, above the detection limit of 7.8pg/ml (Table 2.4) (Figure 

3.2B). 

IL-18 mRNA was expressed in both control and infected BEAS-2B cells at ~10-30% relative to 

L32 housekeeping gene (Figure 3.2C). No significant differences were observed in IL-18 

mRNA expression between non-infected and infected cells at any time point. For the infected 

BEAS-2B cells, IL-18 mRNA expression was significantly lower at 24hr compared to 4hr 

(p<0.05) or 8hr (p<0.05). No IL-18 protein was detected using undiluted supernatants above 

the detection limit of 11.7pg/ml (Table 2.4) (Figure 3.2D).  

These results indicate that BEAS-2B cells are most likely not a source of IL-12 protein during 

RSV infection. IL-18 mRNA expression was reduced at 24hr after RSV infection compared to 

early time points of infection, however no significant difference was seen between control 

and RSV infected BEAS-2B cells at 24hr. IL-18 protein was not detected above the detection 

limit, although IL-18 mRNA levels indicate protein may be present. 

 

3.3.3. Expression of IL-15 during RSV A2 infection of BEAS-2B cells 

IL-15 is another key NK cell activating cytokine and IL-15 expression has already been 

characterised in AECs during RSV infection (Section 1.3.3.3). Here the influence of RSV 

infection on BEAS-2B IL-15 mRNA and protein expression was measured by qPCR and 

Luminex, respectively (Section 2.6.3 and 2.7).  
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Figure 3.3. Expression of IL-15 mRNA and protein in RSV A2 infected BEAS-2B cells. BEAS-
2B cells were infected with RSV A2 at an MOI of 1 for 4, 8, 24 and 48hr (A,B) or for 48hr at 
MOIs 0.5, 1 and 2.5 (C,D). Control non-infected cultures were cultured in the absence of RSV 
and Palivizumab used as an anti-RSV control. A) IL-15 mRNA (n=4), B) IL-15 protein (n=3). 
Dashed line shows lower detection limit. Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

IL-15 mRNA was significantly increased by ~2-fold at 8hr with infection compared to non-

infected cells (p<0.05) (Figure 3.3A). For detection of IL-15 protein in culture supernatants 

protein expression measured using a Luminex assay (Section 2.8). IL-15 protein was 

significantly increased at 24hr (p<0.01) and 48hr at ~17.9 pg/ml p<0.001) in comparison to 

non-infected cultures (Figure 3.3B). At 24hrs, Palivizumab treated cells showed comparable 

levels of IL-15 with that of infected culture supernatants. At 48hrs, IL-15 expression was 

significantly higher in infected cultures compared to those treated with anti-RSV control 

Palivizumab (p<0.05). IL-15 protein was not found above the detection limit in non-infected 

cultures at 4 and 8hrs culture with levels being below the limit of detection.  

These results show that RSV induces secretion of IL-15 from BEAS-2B cells at 48hr after 

infection. The Palivizumab treated control cultures were negative for IL-15 protein indicating 

expression was specifically induced by replicating RSV and not contaminants in the viral 

lysate used. 
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3.3.4. Expression of IL-15Rα during RSV A2 infection of BEAS-2B cells 

The IL-15/IL-15Rα complex is a potent inducer of NK cell activation (Section 1.3.3.3). IL-15Rα 

expression by AECs has not previously been examined during RSV infection. It has been 

suggested that co-ordinated expression of both IL-15 and IL-15Rα is essential for complex 

formation (Section 1.3.3.3). Therefore IL-15Rα mRNA and cell surface expression was 

characterised by qPCR and flow cytometry, respectively (Section 2.6.3 and 2.9). For flow 

cytometric analysis, BEAS-2B cells were infected at RSV A2 MOIs of 0.5, 1 and 2.5 for 48hrs. 

Isotype
Non-infected
RSV A2 MOI 2.5

 
Figure 3.4. Expression of IL-15Rα mRNA and protein in RSV A2 infected BEAS-2B cells. BEAS-
2B cells were infected with RSV A2 at an MOI of 1 for 4, 8, 24 and 48hr (A) or for 48hr at MOIs 
0.5, 1 and 2.5 (B,C). Control non-infected cultures were cultured in the absence of RSV. A) IL-
15Rα mRNA (n=4), B) representative flow histogram of surface IL-15Rα, C) flow cytometric 
analysis of surface IL-15Rα (n=3). Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

Basal expression of IL-15Rα mRNA in control BEAS-2B cells, was ~1-5% of the L32 mRNA level 

(Figure 3.4A). RSV infection resulted in a significant increase in IL-15Rα mRNA expression at 
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8hr (p<0.01), 24hr (p<0.05) and 48hr (p<0.001) compared to control non-infected cells. At 4, 

8 and 48hr, IL-15Rα mRNA was ~10-fold higher in infected when compared to non-infected 

BEAS-2B cells. 

Flow cytometric analysis was used to determine if IL-15Rα was expressed at the surface of 

BEAS-2B cells (Figure3.4B). This data is presented as relative change compared to isotype 

control. No difference was observed between isotype control and control non-infected cells 

indicating an absence of surface expression on non-infected cells (Figure 3.4B). A single peak 

was observed during RSV infection indicative of one homogenous positive population (Figure 

3.4B). Significant increases in mean fluorescence intensity (MFI) were seen between MOIs 

0.5 (p<0.01), 1 (p<0.001) and 2.5 (p<0.001) compared to non-infected control. At an MOI of 

2.5, the MFI was ~3-fold higher than that of control cells. Significant increases in MFI were 

also observed with increasing level of infection at MOI 0.5 (p<0.05) and MOI 2.5 (p<0.05) 

compared to MOI 1 (Figure 3.4C). Experiments described in Section 5.3.5 show Palivizumab 

pre-treatment effectively inhibits RSV-induced IL-15Rα surface expression.  

These results indicate that RSV infection increases the expression of IL-15Rα mRNA in BEAS-

2B cells and that IL-15Rα protein was expressed at the cell surface only on infection. Surface 

expression of IL-15Rα also followed an RSV MOI dose-dependent increase in expression. 

 

3.3.5. Surface expression of IL-15 during RSV infection of BEAS-2B cells 

Having established that RSV infected BEAS-2B cells express cell surface IL-15Rα (Section 

3.3.4), IL-15 could be bound to IL-15Rα and also detected at the cell surface. Surface IL-15 

has been explored in monocytes and the murine cytotoxic T cell line CTTL-2 (Section 1.3.3.3). 

Here, BEAS-2B cell surface IL-15 expression during RSV infection was measured using flow 

cytometry (Section 2.9). BEAS-2B cells were infected at RSV MOIs of 0.5, 1 and 2.5 for 48hrs. 
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Isotype
Non-infected
RSV A2 MOI 2.5

 
Figure 3.5. Expression of surface IL-15 of RSV A2 infected BEAS-2B cells. BEAS-2B cells were 
infected with RSV A2 for 48hr at MOIs of 0.5, 1 and 2.5. Control non-infected cultures were 
cultured in the absence of RSV. A) representative flow histogram of surface IL-15, B) flow 
cytometric analysis of surface IL-15 (n=3). Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, *p<0.05, **p<0.01). 

 

A single peak was observed during RSV infection indicative of one homogenous positive 

population (Figure 3.5A). Data is shown as relative change compared to isotype control. No 

difference was observed between isotype control and non-infected cells indicating an 

absence of surface expression on control non-infected cells. There was a significant increase 

in MFI between non-infected control and MOIs 0.5 (p<0.05), 1 (p<0.05) and 2.5 (p<0.05) 

(Figure 3.5B). At an MOI of 2.5, the MFI was ~3-fold higher than non-infected cells. 

Experiments described in Section 5.3.5 show Palivizumab pre-treatment effectively inhibits 

RSV-induced IL-15 surface expression.  

These results indicate that IL-15 was not only secreted as a soluble protein, as shown in 

Section 3.3.3, but also present on the cell surface after RSV infection.  
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3.3.6. Intracellular and extracellular expression of IL-15 and IL-15Rα during RSV A2 

infection of BEAS-2B cells 

Intracellular expression of IL-15 and IL-15Rα has previously been reported within the Golgi 

apparatus and endoplasmic reticulum, indicating that IL-15/IL-15Rα complex formation 

occurs within the Golgi apparatus before presentation at the cell surface, detailed in Section 

1.3.3.3. To further evaluate intracellular and extracellular expression of IL-15 and IL-15Rα 

during RSV infection of BEAS-2B cells, immunofluorescence staining was used to define their 

cellular location. BEAS-2B cells were either permeabilised for intracellular staining or not 

permeabilised for surface staining as detailed in Section 2.10.1. An antibody to GM130, a cis-

Golgi matrix protein, was used as a marker for intracellular staining within the Golgi 

apparatus (413). 

Surface expression was first determined by use of non-permeabilising method (Section 

2.10.1.1). Surface expression of both IL-15 (green) and IL-15Rα (red) were minimally detected 

in control non-infected BEAS-2B cells (Figure 3.6 upper). Stronger positive surface staining 

for both IL-15 and IL-15Rα was seen in RSV infected cells (Figure 3.6 lower). No staining was 

observed with the isotype control. 

Intracellular expression was then determined using a permeabilising method (Section 

2.10.1.2). Single staining for IL-15 (Figure 3.7) and IL-15Rα (Figure 3.8) showed intracellular 

expression of both proteins in both control non-infected and infected BEAS-2B cells. Both IL-

15 and IL-15Rα were localised within the Golgi apparatus, shown here stained with GM130 

(red). No staining was observed with the isotype control. 
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These confocal images compliment the cytometry analysis results in Section 3.3.4 and 3.3.5, 

with expression of IL-15 and IL-15Rα seen at the cell surface in RSV infected BEAS-2B cells. 

Single staining for IL-15 and IL-15Rα show that intracellular expression was localised within 

the Golgi apparatus of both non-infected and RSV infected BEAS-2B cells.  

3.3.7. Expression of IL-15/IL-15Rα complex during RSV A2 infection in BEAS-2B cells  

The IL-15/IL-15Rα complex has been detected in serum of mice (Section 1.3.3.3). Here above 

it has been shown that infected BEAS-2B cells express both IL-15 and IL-15Rα at the cell 

surface. Therefore IL-15/IL-15Rα complex levels were also measured in culture supernatants 

following RSV infection of BEAS-2B cells. 

The IL-15/IL-15Rα complex was detected in 2/5 RSV infected BEAS-2B cell supernatants, 

above the detection limit of 62.5pg/ml (Table 2.4) detailed in an experiment shown in Section 

5.3.5.2, Figure 5.15.  

This indicates that the IL-15/IL-15Rα complex was secreted or released from RSV infected 

BEAS-2B cells. The comparatively high minimum detection limit of this assay may have 

prevented detection in one or more of the 3 negative samples and requires further 

investigation. 

3.3.8. Co-culture of RSV A2 infected BEAS-2B cells and NK cells 

In order to be able to further characterise the ability of AECs to initiate NK cell activation 

during RSV infection, an in vitro co-culture model was established. Here, BEAS-2B cells were 

co-cultured with freshly isolated human peripheral blood NK cells from the blood of normal 

healthy adult volunteers (Section 2.4). In vivo infection of mice with RSV results in maximal 

airway NK cell number around 2-4 days after infection (Section 1.4). To reproduce an in vivo 

AEC-NK cell response to RSV, BEAS-2B cells were infected with RSV at MOI 1 for 24hr before 

addition of NK cells for a further 24hr (Section 2.5.1). This was to ensure that infected BEAS-

2B cells expressed IL-15 and IL-15Rα protein and to mimic any potential in vivo 24hr delay in 
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NK cell population expansion. An MOI of 1 was chosen as the above results show that this 

induces expression of both IL-15 and IL-15Rα protein. Also, an MOI of 1 could be considered 

moderate so as to minimise RSV-induced cell lysis before NK cells are added (66,144,414). 

NK cells were added at increasing ratios of 1:1, 1:2 and 1:3 compared to BEAS-2B cells (BEAS-

2B cell:NK cell), described in text as ‘ratio of…’.  

To confirm that BEAS-2B cells without RSV infection do not stimulate NK cells, control non-

infected BEAS-2B cells were co-cultured at the highest NK cell ratio of 1:3 used with infected 

BEAS-2B cells. The control BEAS-2B cell:NK cell are shown in result figures as ‘Non-infected 

1:3’. To confirm that NK cells alone were not stimulated by culture media, NK cells were 

cultured alone. As the results described above show that it is unlikely that IL-12 or IL-18 

protein was expressed by BEAS-2B cells, NK cells were stimulated with 10ng/ml human 

recombinant IL-15 as a stimulated NK cell positive control. These NK cell controls also provide 

additional information on the expression of mRNA and protein specifically from NK cells. 

Finally the neutralising anti-RSV antibody Palivizumab was used with the highest NK cell ratio 

of 1:3 to ensure observed results where produced by viral infection and not by other agents 

potentially present in the viral preparation. Production of TNF-α and IFN-γ were used as 

measures of NK cell activation. 

 

3.3.8.1. Visualisation of BEAS-2B cell-NK cell co-culture  

Light microscopy was used to determine if NK cells were in contact 4hr after addition to 

BEAS-2B cells BEAS-2B cell-NK cell co-cultures. NK cells were in contact with BEAS-2B cells 

after 4hr co-culture, as shown in Figure 3.9.  



106 
 

Figure 3.9. BEAS-2B cell-NK cell co-culture. BEAS-2B cells were infected with RSV A2 at MOI 
1 for 24hr. NK cells were isolated from healthy adult PBMCs and added at a ratio of 1:3 to 
BEAS-2B cells for a further 24hr. Images were taken 4hr after NK cell addition to culture. NK 
cells are seen as small darker cells above the BEAS-2B monolayer. Non-infected cell cultures 
contained cRPMI only as a control. A) BEAS-2B cell without NK cells, B) infected BEAS-2B cells 
co-cultured with NK cells. Arrows in the zoomed image indicated NK cells. 

 

3.3.8.2. Expression of RSV N gene and IL-8 protein in BEAS-2B-NK cell co-cultures. 

To confirm and assess the level of infection in each culture RSV N gene expression was 

measured by qPCR. As previously described IL-8 protein expression in culture supernatants, 

measured by ELISA, was used as a control to show cells were responding to RSV infection 

(Section 2.6.3 and 2.7). Both BEAS-2B cells and NK cells would contribute to the L32 

housekeeping gene expression. 
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Figure 3.10. Expression of RSV N gene and IL-8 protein during RSV A2 infection of BEAS-2B 
cells co-cultured with NK cells. BEAS-2B cells were infected with RSV A2 at MOI 1 for 24hr. 
NK cells were isolated from healthy adult PBMCs and added at increasing ratios to BEAS-2B 
cells for a further 24hr. Control non-infected cultures were cultured in the absence of RSV 
and Palivizumab used as an anti-RSV control. A) RSV N RNA (n=3), B) RSV N gene relative to 
‘RSV no NK cells’ (n=3), C) IL-8 protein (n=4). Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, ***p<0.001). 

 

RSV N RNA was not detected in control non-infected BEAS-2B cells, control BEAS-2B cells co-

cultured with NK cells or NK cells cultured alone (Figure 3.10A). A significant increase in RSV 

N RNA was observed in infected BEAS-2B cells compared to control BEAS-2B cells (p<0.001). 

Palivizumab inhibited RSV replication with significantly reduced RSV N RNA in these anti-RSV 

control cultures (p<0.05). No significant difference in RSV N gene level was observed 
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between infected BEAS-2B cells cultured alone and those co-cultured with NK cells (Figure 

3.10A). However it was noticed that infected BEAS-2B cells co-cultured with NK cells 

expressed lower RSV N RNA. Therefore data was expressed relative to infected BEAS-2B cells 

without NK cells, as shown in Figure 3.11B (Figure 3.10B). A significant decrease in RSV N 

RNA was seen with increasing NK cell ratios of 1:1 (p<0.001), 1:2 (p<0.001) and 1:3 (p<0.001) 

in comparison to infected BEAS-2B cells without NK cells. RSV N gene expression in cultures 

at a ratio of 1:3 was significantly lower than that observed in cultures at a ratio of 1:1 

(p<0.001). 

IL-8 protein was not detected in control non-infected BEAS-2B cell cultures, when non-

infected BEAS-2B cells were co-cultured with NK cells or when NK cells were cultured alone 

(Figure 3.10C). There was a significant increase in the amount of IL-8 protein in culture 

supernatants from infected BEAS-2B cells compared to non-infected cells (p<0.001). No 

significant difference in IL-8 expression was observed when NK cells were added to infected 

BEAS-2B cells. 

These results confirm, as expected, that RSV and IL-8 protein are found only in cultures 

following RSV infection. Relative expression of RSV N gene was decreased by addition of NK 

cells to infected BEAS-2B cells whereas IL-8 protein was not changed by addition of NK cells. 

 

3.3.8.3. Expression of IFN-γ and TNF-α in BEAS-2B-NK cell co-cultures. 

To measure activation of NK cells during co-culture with BEAS-2B cells, expression IFN-γ and 

TNF-α mRNA and protein were evaluated using qPCR and ELISA, respectively (Section 2.6.3 

and 2.7). As previously described, BEAS-2B cells were infected for 24 hours before addition 

of NK cells then cells were co-cultured for 24hr before sample collection. Hence the results 

here show effect of NK cell activation over a 24hr period. 
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Figure 3.11. Expression of IFN-γ and TNF-α mRNA and protein during RSV A2 infection of 
BEAS-2B cells co-cultured with NK cells. BEAS-2B cells were infected with RSV A2 at MOI 1 
for 24hr. NK cells were isolated from healthy adult PBMCs and added at increasing ratios to 
BEAS-2B cells for a further 24hr. Control non-infected cultures were cultured in the absence 
of RSV and Palivizumab used as an anti-RSV control. NK cells were cultured in cRPMI without 
or with 10ng/ml recombinant human recombinant IL-15. A) IFN-γ mRNA (n=4), B) IFN-γ 
mRNA (n=4), C) TNF-α mRNA (n=4), D) TNF-α protein (n=4). Data is expressed as the mean ± 
SEM (Friedman with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

Neither control BEAS-2B cells, infected BEAS-2B cells, shown as ‘RSV no NK cells’, or NK cells 

cultured in media only expressed detectable levels of IFN-γ mRNA (Figure 3.11A). IFN-γ 

mRNA was present at levels below 0.1% of the housekeeping gene L32 in samples from non-

infected BEAS-2B cells co-cultured with NK cells at a ratio of 1:3. This was significantly higher 

than control BEAS-2B cells without NK cells (p<0.01) and NK cells cultured in media alone 

(p<0.01). NK cells alone responded to recombinant IL-15 at 10ng/ml with expression of IFN-
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γ mRNA at levels between 17-412% of the housekeeping gene L32 (Figure 3.11A). This was 

significantly increased compared to NK cells cultured in media alone. NK cells co-cultured 

with infected BEAS-2B cells showed a significant increased expression of IFN-γ mRNA at NK 

cell ratios of 1:1 (p<0.001), 1:2 (p<0.001) and 1:3 (p<0.001) compared to infected BEAS-2B 

cells cultured without NK cells (Figure 3.11A). Increasing the NK cell number present in 

culture with the BEAS-2B cells from a ratio of 1:1 to 1:3 resulted in a significant increase in 

IFN-γ mRNA (p<0.05). Addition of Palivizumab to cultures at a 1:3 significantly reduced IFN-

γ mRNA expression (p<0.001), confirming expression was dependant on virus infection. 

IFN-γ protein was only detected in culture supernatants from RSV infected BEAS-2B cells co-

cultured with NK cells (Figure 3.11B). A significant increase in IFN-γ protein expression was 

observed between infected BEAS-2B cells without NK cells and those with NK cell ratios of 

1:1 (p<0.01), 1:2 (p<0.01) and 1:3 (p<0.001). IFN-γ protein expression was ~2-fold higher at 

~23pg/ml when a ratio of 1:3 was used compared to ratios of 1:1 and 1:2 at ~8-9pg/ml. IFN-

γ protein was not present in co-cultures where Palivizumab had been used to neutralise RSV. 

IFN-γ protein expression was significantly higher at a ratio of 1:3 compared to Palivizumab 

treated co-culture (p<0.01). 

Only comparatively low levels of TNF-α mRNA were present when BEAS-2B cells were 

cultured in the absence of infection (Figure 3.11C). Cultures of BEAS-2B cells alone contained 

TNF-α mRNA equivalent to ~0.02% of housekeeping gene L32. Expression in co-cultures 

containing control non-infected BEAS-2B cells with NK cells was ~0.4% of housekeeping gene 

L32 and this difference was significant (p<0.05) (Figure 3.11C). IL-15 stimulation, when 

compared to that of NK cells cultured alone, resulted in increased NK cell-derived TNF-α 

mRNA levels of between ~28-1700% in comparison to the housekeeping gene L32 (p<0.001). 

RSV infection significantly induced TNF-α mRNA expression by infected BEAS-2B cells in the 

absence of NK cells to ~0.8% of housekeeping gene L32 (p<0.05) (Figure 3.11C). Addition of 
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NK cells to infected BEAS-2B cells resulted in increased TNF-α mRNA expression. This was 

significantly increased in cultures containing NK cells at ratios of 1:1 (p<0.05), 1:2 (p<0.01) 

and 1:3 (p<0.001) when compared to infected BEAS-2B cells without NK cells (Figure 3.11C). 

Here, TNF-α mRNA expression was ~2%, ~2.9% and ~4% of housekeeping gene L32 at ratios 

of 1:1, 1:2 and 1:3, respectively. Treatment with Palivizumab resulted in significantly reduced 

TNF-α mRNA expression in cultures of infected BEAS-2B cells with NK cells (p<0.001), 

confirming expression was dependant on virus infection. 

TNF-α protein was detected in 3/4 culture supernatants from NK cells stimulated with 

10ng/ml of IL-15 and 3/4 from RSV infected BEAS-2B cell cultures without NK cells at ~4pg/ml 

each (Figure 3.11D). There was a significant increase in TNF-α protein from infected BEAS-2B 

cells co-cultured with NK cells at a ratio of 1:2 at ~5.6pg/ml compared to NK cells stimulated 

with 10ng/ml IL-15 (p<0.05) and infected BEAS-2B cells without NK cells (p<0.05). TNF-α 

protein was significantly higher in co-cultures of infected BEAS-2B cells and NK cells at a ratio 

of 1:3 at ~9pg/ml compared to NK cells stimulated with 10ng/ml IL-15 (p<0.01) or infected 

BEAS-2B cells without NK cells (p<0.01). There was no significant difference in TNF-α protein 

expression between co-cultures of infected BEAS-2B cell NK cell ratio 1:3 and infected BEAS-

2B cell plus Palivizumab at a ratio of 1:3. 

Within this assay, results indicate that NK cells do not express IFN-γ and TNF-α protein when 

cultured alone. The positive NK cell control cells stimulated with IL-15 expressed IFN-γ and 

TNF-α mRNA but only TNF-α protein. BEAS-2B cells also expressed TNF-α mRNA at low levels 

after virus treatment, whereas IFN-γ expression was specific to cultures with NK cells 

present. During co-culture, NK cells expressed more IFN-γ protein than TNF-α protein, with 

IFN-γ being ~2-fold higher. In general, prior exposure of BEAS-2B cells to RSV followed by co-

culture with NK cells resulted in production of IFN-γ and TNF-α. A dose-response relationship 

was also observed for both IFN-γ and TNF-α mRNA and protein expression in cultures with 
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NK cells and infected BEAS-2B cells. The anti-RSV control Palivizumab prevented RSV cell 

entry and replication, as shown by RSV N RNA, however only expression of IFN-γ and not 

TNF-α protein was not significantly reduced. This could suggest either that another factor in 

the RSV lysate (or Palivizumab solution) stimulates TNF-α protein secretion from NK cells 

without inducing TNF-α mRNA expression. 

 

3.3.9. Cell contact between NK cells and RSV A2 infected BEAS-2B cells was required to 

induce TNF-α and IFN-γ protein expression 

In the experiments described in Section 3.3.2, cultures of BEAS-2B cells infected with RSV at 

an MOI 1 for 48hr contained around ~17pg/ml IL-15. In the above Section 3.3.7.3 NK cells 

were stimulated with 10ng/ml IL-15 which was ~580 fold more than present in infected BEAS-

2B cell culture supernatants. The results illustrated in Figure 3.11 (Section 3.3.8.3) show that 

IFN-γ protein was not present in culture supernatants from NK cells stimulated with IL-15 

and TNF-α detected at ~4pg/ml. However, co-cultures of NK cells with infected BEAS-2B cells 

contained significantly increased IFN-γ and TNF-α protein. This raises the possibility that 

direct cell-to-cell contact is necessary for expression of IFN-γ and TNF-α protein. Expression 

of IL-15Rα and IL-15 at the surface of RSV infected cells has been demonstrated in Sections 

3.3.3, 3.3.4, 3.3.5 and 3.3.6, which could suggest IL-15/IL-15Rα complex presentation at the 

cell surface of BEAS-2B cells which may lead to enhanced NK cell activation compared to 

stimulation with IL-15 alone. Furthermore NK cells express an array of activating and 

inhibitory receptors which, during direct BEAS-2B cell contact, may or may not initiate further 

NK cell activation (Section 1.3.2). The fourth aim of this chapter questioned if direct contact 

of BEAS-2B cells and NK cells is required for optimum NK cell activation. To answer the fourth 

aim of this chapter, a transwell assay was used to separate BEAS-2B cells from NK cells in co-

culture to determine if BEAS-2B cell-NK cell contact is required for optimum NK cell activation 

(Section 2.5.2). 
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Figure 2.4 in Section 2.5.2 depicts the conditions used for this experiment, shown here in 

Figure 3.12 as conditions A, B, C and D and discussed below. Another difference between this 

experiment and the co-culture experiment in Section 3.3.8 is that a 24-well plate was used 

instead of a 96-well, therefore a higher total number of NK cells were used. Inserts consisted 

of 0.4µm pores which allow cytokines but not cells to pass through (Section 2.5.2). Cultures 

with direct contact between BEAS-2B cells and NK cells were used as a positive control (A). 

NK cells were either incubated in the transwell insert with fresh RPMI media (B) or culture 

supernatant taken from the lower BEAS-2B cell compartment (C). BEAS-2B cells were also 

grown on the transwell insert and NK cells placed in the lower compartment to allow for IL-

15 secretion from the basal surface of the epithelial cells (D). IFN-γ and TNF-α protein 

expression in supernatants from both upper and lower compartments was determined by 

ELISA. 

Figure 3.12. Expression of IFN-γ and TNF-α protein during RSV A2 infection of BEAS-2B cells 
co-cultured with NK cells or separated by a transwell insert. BEAS-2B cells were infected 
with RSV A2 at MOI 1 for 24hr. Control non-infected cultures were cultured in the absence 
of RSV. Isolated NK cells (Section 2.4) were added for a further 24hr at a ratio of 1:3 into the 
lower chamber in 100ul cRPMI (co-culture) A, into the insert in 100ul fresh cRPMI B, into the 
insert in 100ul infected BEAS-2B cell culture supernatant C and into the lower chamber in 
100ul cRPMI D. A) IFN-γ protein (n=3), B) TNF-α protein (n=3). Data is expressed as the mean 
± SEM (Friedman with Conover post-hoc test, *p<0.05). 
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Expression of TNF-α and IFN-γ protein was only detected in culture supernatants from NK 

cells in direct contact with BEAS-2B cells at a ratio of 1:3 (Figure 3.12A, B). TNF-α protein 

(p<0.05) and IFN-γ protein (p<0.05) was significantly increased in comparison to cultures 

without NK cells. Cytokine protein was not found when NK cells were cultured in the inserts 

separated and above the BEAS-2B cell monolayer or co-cultured in the lower compartment 

with BEAS-2B cells in the upper insert.  

These results indicate that NK cells do not express IFN-γ or TNF-α protein when cultured in 

supernatant from infected BEAS-2B cells alone and require direct contact with infected BEAS-

2B cells to stimulate secretion.  

 

3.3.10. Expression of intracellular IFN-γ protein in NK cells during BEAS-2B cell-NK cell co-

culture 

To further validate the hypothesis that NK cells are activated by RSV infected BEAS-2B cells, 

flow cytometric analysis was used to examine intracellular expression of IFN-γ protein in NK 

cells following direct BEAS-2B cell contact (Section 2.9.4). NK cells were cultured in media 

alone or with 10ng/ml IL-15 to determine negative and positive intracellular IFN-γ protein 

levels of expression. Direct contact stimulation of the NK cells followed the same 

methodology as used in Section 3.3.7, but with a 24-well plate instead and a BEAS-2B cell:NK 

cell ratio of 1:1.  

Figure 2.7 in Section 2.9.4.1 shows the gates used to distinguish between BEAS-2B cells and 

NK cells. Figure 2.7A shows BEAS-2B cells cultured alone and Figure 2.7B shows BEAS-2B cell-

NK cell co-culture. A Log scale was chosen to be able to distinguish between cell populations 

which was not clear in linear scale. The NK cell population was then confirmed by staining of 

co-cultured BEAS-2B cells and NK cells with CD56 and CD3. As shown in Figure 3.13 the 

selected NK cell population was CD56+ CD3- and the BEAS-2B cell population CD56- CD3-, 
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confirming correct gated for the NK cell population. Single staining for intracellular IFN-γ 

protein was then completed by gating the NK cell population. 
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Figure 3.14. Expression of intracellular IFN-γ in NK cells co-cultured with RSV infected BEAS-
2B. BEAS-2B cells were infected with RSV A2 at MOI 1 for 24hr. NK cells were isolated from 
healthy adult PBMCs and added at ratios of 1:1 (BEAS-2B cell:NK cells) for a further 24hr. 
Control non-infected cultures were cultured in the absence of RSV. Data is expressed as the 
mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001) (n=3). 

 

As expected the percentage of IFN-γ positive NK cells was significantly higher when NK cells 

were cultured with 10ng/ml IL-15 compared to media only (p<0.001) increasing to ~10% IFN-

γ positive (Figure 3.14). NK cells co-cultured with control non-infected BEAS-2B cells had a 

significantly higher percentage IFN-γ positive NK cells at ~5 %, ~3-fold higher, compared to 

NK cells cultured in media only (p<0.05). NK cells co-cultured with infected BEAS-2B cells had 

a significantly higher percentage of IFN-γ positive NK cells, at ~15% and ~3-fold higher, 

compared to NK cell co-cultured with non-infected BEAS-2B cells (p<0.001). 

These results further indicate that direct contact with RSV infected BEAS-2B cells induces NK 

cell intracellular expression of IFN-γ protein. The percentage of IFN-γ positive NK cells was 

not significantly different between cultures in which NK cells were stimulated with 10ng/ml 

IL-15 alone and NK cells co-cultured with infected BEAS-2B cells, at ~10% and 15% 

respectively. Control non-infected BEAS-2B cells did induce intracellular expression of IFN-γ 

protein, but this was ~3-fold lower than observed in NK cells co-cultured with infected cells. 

This data also suggests that co-culture with non-infected BEAS-2B cells may induce a small 

percentage of NK cells to express intracellular IFN-γ under resting conditions. 
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3.3.11. NK cell markers of cytotoxicity  

3.3.11.1. Expression of intracellular perforin in NK cells during culture with BEAS-2B cell 

supernatants  

NK cell secretory granules contain granzymes and perforin which are secreted through an 

immunological synapse when NK cells are in contact with target cells (Section 1.3.4). 

Intracellular perforin expression can be examined as an indicator of the NK cell cytotoxic 

response. To determine if BEAS-2B cell culture supernatants could induce a NK cell cytotoxic 

response, intracellular expression of perforin was determined in NK cells cultured with 

effector cell line, K562. These experiments where produced in collaboration with Liz Van Erp 

at the National Institute for Public Health and the Environment (RIVM, Netherlands). Section 

2.9.4.2 details the experimental procedure here also illustrated in Figure 3.15. Briefly, BEAS-

2B cell culture supernatants from non-infected and infected were prepared in Liverpool and 

sent on dry ice to Liz Van Erp who carried out the NK cell cytotoxicity assay. Isolated NK cells 

from two healthy adult donors were incubated for 4hr with K562 cells in BEAS-2B cell culture 

supernatants. NK cells were then assessed by flow cytometry for intracellular perforin 

expression. 
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Figure 3.15. Experimental procedure for NK cells cultured in supernatants. BEAS-2B cells 
were infected with RSV A2 at MOI 1 and 2.5 for 24hr and 48hr. NK cells were isolated from 
two healthy adult PBMCs and cultured in supernatants for 4hr before flow cytometric 
analysis. Non-infected cells contained cRPMI only as a control. 
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Figure 3.16. Expression of intracellular perforin in NK cells cultured in RSV infected BEAS-
2B culture supernatant. BEAS-2B cells were infected with RSV at MOIs 1 and 2.5 for 24 and 
48hr (n=3). Control non-infected cultures were cultured in the absence of RSV. NK cells from 
two separate donors (donor 1 A, B, E and donor 2 C, D) were cultured in 24hr (A, C) and 48hr 
BEAS-2B cell culture supernatant for 4hr before flow cytometric analysis. Each donor’s NK 
cells were cultured in three separate supernatants and done in duplicate. E (RPMI n=1, IL-15 
n=1). Data is expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, 
**p<0.01). 

 

Culture of NK cells from donor 1 in BEAS-2B cell culture supernatants taken after 24hrs 

infection showed a minor but significant decrease in the percentage of perforin positive NK 

cells at a MOI 1 compared to NK cells cultured in supernatants from non-infected BEAS-2B 

cells (p<0.05) (Figure 3.16A). Culture of NK cells in MOI 2.5 supernatants showed a minor but 
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significant increase in the percentage of perforin positive NK cells compared to MOI 1 

(p<0.01). For culture of NK cells from donor 1 in BEAS-2B cell culture supernatants taken 

after 48hr infection, a minor but significant increase in the percentage perforin positive NK 

cells cultured was observed at MOI 2.5 compared to NK cells cultured in supernatants from 

non-infected BEAS-2B cells (p<0.05) (Figure 3.18B). There were no changes in perforin 

expression from donor 2’s NK cells (Figure 3.16C, D). 

Donor 1 NK cells were used to determine intracellular expression of perforin protein when 

cultured in media only or 10ng/ml IL-15 (Figure 3.16E). No difference in perforin expression 

was observed which could suggest IL-15 did not stimulate perforin expression in this assay. 

Overall, the changes in the percentage of intracellular perforin positive NK cells between 

non-infected and infected culture supernatants was not much and it cannot be concluded 

that perforin expression was influenced by BEAS-2B cell culture supernatants. IL-15 alone 

may not be enough to induce perforin expression by NK cells. 

 

3.3.11.2. Expression of intracellular IFN-γ in NK cells during culture in BEAS-2B cell 

supernatants 

As part of the cytotoxicity assay performed by Liz Van Erp above, intracellular IFN-γ 

expression was also measured.  
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Figure 3.17. Expression of intracellular IFN-γ in NK cells cultured in RSV infected BEAS-2B 
culture supernatant. BEAS-2B cells were infected with RSV at MOIs 1 and 2.5 for 24 and 48hr 
(n=3). Control non-infected cultures were cultured in the absence of RSV. NK cells from two 
separate donors (donor 1 A, B, E and donor 2 C, D) were cultured in 24hr (A, C) and 48hr 
BEAS-2B cell culture supernatant for 4hr before flow cytometric analysis. Each donor’s NK 
cells were cultured in three separate supernatants and done in duplicate. E (n=2). Data is 
expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05). 

 

Donor 1’s NK cells showed a significant increase in the percentage of IFN-γ positive cells when 

cultured with supernatants from BEAS-2B cells challenged with RSV for 24hrs at MOI 1 

(p<0.05) and 2.5 (p<0.05) when compared to NK cells cultures with control non-infected 

supernatants (Figure 3.17A). A significant increase in the percentage of IFN-γ positive NK cells 

present was also observed with 48hr culture supernatants at MOI 1 (p<0.05) and 2.5 (p<0.05) 
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(Figure 3.17B). Donor 1 NK cells were also used to determine intracellular expression of IFN-

γ protein when cultured in media only or 10ng/ml IL-15 (Figure 3.17E). 

For donor 2 there was a significant increase in the percentage of IFN-γ positive NK cells when 

cultured with 24hr RSV infected BEAS-2B culture supernatants (MOI 1 (p<0.05) and 2.5 

(p<0.05)) compared to non-infected culture (Figure 3.18C). No significant differences were 

seen for donor 2 using 48hr culture supernatants (Figure 3.17D).  

These results indicate that BEAS-2B cell supernatants from infected cells could induce 

intracellular expression of IFN-γ in NK cells, which was ~2-fold more than NK cells cultured in 

non-infected BEAS-2B cell supernatant. 

 

3.3.12. Differential activation of BEAS-2B cells by specific RSV strains  

A better understanding of how different RSV isolates or strains modulate or induce specific 

immune responses by AECs could improve our knowledge of RSV pathogenesis. 

Characterising the airway epithelial responses in vitro with use of clinical RSV isolates may 

provide a more accurate representation of in vivo responses and aid in better vaccine and 

treatment development. The last aim of the work in this chapter was compare the expression 

of IL-15 and IL-15Rα by BEAS-2B cells in response to infection with two different RSV A 

strains, A2 lab strain and clinical isolate RSV X (Section 2.3.1). This was followed by comparing 

the expression of IFN-γ and TNF-α between RSV A2 and RSV X infected BEAS-2B cell-NK cell 

co-cultures. In these experiments BEAS-2B cells were infected with RSV A2 or RSV X at an 

MOI of 2.5 for 48hrs, after which culture supernatants and RNA were collected. 
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3.3.12.1. Differences between RSV A2 and RSV X replication and infectivity 
 

Figure 3.18. Comparison of RSV N gene and IL-8 mRNA expression induced by RSV A2 and 
RSV X. BEAS-2B cells were infected with RSV A2 and RSV X at an MOI of 2.5 for 48hr. Control 
non-infected cultures were cultured in the absence of RSV. A) RSV N gene (n=3), B) IL-8 mRNA 
(n=3), IL-8 protein (n=3). Data is expressed as the mean ± SEM (Friedman with Conover post-
hoc test, *p<0.05, ***p<0.001). 

 

The pattern of RSV N gene and IL-8 mRNA and protein expression observed for RSV A2 and 

RSV X strains is illustrated in Figure 3.19. As expected RSV N RNA was not detected in the 

absence of infection and was significantly increased with both RSV A2 (p<0.001) and RSV X 

(p<0.001) infection (Figure 3.18A). RSV N gene expression was ~56-fold greater in BEAS-2B 

cells infected with RSV X compared to RSV A2 (p<0.001). IL-8 mRNA was not detected in the 

absence of infection and was significantly increased with both RSV A2 (p<0.05) and RSV X 

(p<0.05) infection (Figure 3.18B). IL-8 protein was not detected in the absence of infection 

and was significantly increased with both RSV A2 (p<0.05) and RSV X (p<0.05) infection 
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(Figure 3.18C). For IL-8 mRNA and protein, no significant difference was observed between 

strains (Figure 3.18B, C). 

The results indicate that although RSV infectivity was greater for RSV X than RSV A2 in BEAS-

2B cells although no difference was observed in the RSV-induced expression of IL-8. 

3.3.12.2. Differences between RSV A2 and RSV X in expression of IL-15 and IL-15Rα 
 

 

Figure 3.19. Comparison between the expression of IL-15 and IL-15Rα mRNA in RSV A2 and 
RSV X infected BEAS-2B cells. BEAS-2B cells were infected with RSV A2 and RSV X at an MOI 
of 2.5 for 48hr. Control non-infected cultures were cultured in the absence of RSV. A) IL-15 
mRNA (n=3), B) IL-15Rα mRNA (n=3). Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, ***p<0.001). 

 

IL-15 mRNA was significantly increased by ~2-fold by 48hr infection at an MOI of 2.5 for both 

RSV A2 (p<0.05) and RSV X (p<0.05) compared to non-infected cells (Figure 3.19A). IL-15Rα 

mRNA was significantly increased by ~2-fold with RSV A2 (p<0.001) and increased by ~5-fold 

by RSV X (p<0.001) compared to non-infected cells (Figure 3.19B). Between RSV A2 and RSV 

X, RSV X infected cultures showed significantly more IL-15Rα mRNA expression, ~2-fold more 

than RSV A2 (p<0.001). 

The results here indicate that both strains of RSV, A2 and X, induce comparable amounts of 

IL-15 mRNA. However RSV X was able to induce more IL-15Rα mRNA than RSV A2. 
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3.3.12.3. NK cell activation during BEAS-2B co-culture with different RSV A2 and RSV X 

The results illustrated in Figure 3.19B indicate that RSV X induces the expression of more IL-

15Rα mRNA by BEAS-2B cells when compared to RSV A2. IL-15Rα has been shown to be play 

an essential role in trafficking of IL-15 to the cell surface and in trans-presentation which 

induces NK cell activation (Section 1.3.3.3). Although cell surface IL-15Rα was not 

determined here, an increase in IL-15Rα mRNA by RSV X over RSV A2 could increase 

expression of activated NK cell cytokines during infected BEAS-2B cell-NK cell co-culture. 

Here, BEAS-2B cells were infected with RSV A2 or RSV X at an MOI of 1 for 24hr before 

addition of NK cells at a ratio of 1:3.  

RSV  A2 A2 X X 
NK cells   -  - 

 

RSV  A2 A2 X X 
NK cells   -  - 

 

RSV  A2 A2 X X 
NK cells   -  - 

 

  

Figure 3.20. Comparison between the expression of IL-8, IFN-γ and TNF-α protein during 
RSV A2 and RSV X infection of BEAS-2B cells co-cultured with NK cells. BEAS-2B cells were 
infected with RSV A2 or clinical isolate, RSV X, at MOI 1 for 24hr. NK cells were isolated from 
healthy adult PBMCs and added at a ratio of 1:3 to BEAS-2B cells for a further 24hr. Control 
non-infected cultures were cultured in the absence of RSV. A) IL-8 protein (n=3), B) IFN-γ 
protein (n=3), C) TNF-α protein (n=3). Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, ***p<0.001). 
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Expression of IL-8 protein was measured to ensure BEAS-2B cells were responding to RSV 

challenge. IL-8 protein was not detected in culture supernatants in the absence of infection 

(Figure 3.20A). IL-8 protein was significantly increased in all infected cultures, apart from RSV 

A2 without NK cells (p<0.001) compared to non-infected BEAS-2B cells. Addition of NK cells 

to RSV A2 infected BEAS-2B cells significantly increased expression of IL-8 protein by 

~7000pg/ml (p<0.05) compared to infected culture without NK cells. 

IFN-γ protein was only found in supernatants where NK cells had been present in the 

cultures. A significant increase in IFN-γ protein expression was observed between infected 

BEAS-2B cells without NK cells and those with NK cells (RSV A2, p<0.001 and RSV X, p<0.001) 

(Figure 3.20B). IFN-γ protein expression was significantly higher with RSV X infection 

compared to RSV A2 (p<0.001). IFN-γ protein was ~2-fold higher at ~15pg/ml with RSV X 

infection compared to RSV A2 infection at ~6.5pg/ml.  

TNF-α protein was only detected in supernatants were NK cells had been present in the 

culture. A significant increase in TNF-α protein expression was observed between infected 

BEAS-2B cells without NK cells and those with NK cells (RSV A2, p<0.001 and RSV X, p<0.001) 

(Figure 3.20C). TNF-α protein expression was significantly higher following RSV X infection 

compared to RSV A2 (p<0.001). TNF-α protein was ~2-fold higher at ~25pg/ml with RSV X 

infection compared to RSV A2 infection at ~13pg/ml. 

These results indicate that IFN-γ and TNF-α proteins are only expressed during NK cell co-

culture with infected BEAS-2B cells and that RSV X, like RSV A2, was also able to induce their 

expression. Importantly, IFN-γ and TNF-α protein was significantly higher in culture 

supernatants during RSV X infection compared to RSV A2 infection.  
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3.4. Discussion 

One of the first innate immune cell populations present in the lung to expand during RSV 

infection and be activated are NK cells. This suggests AECs, the site of RSV replication are 

important NK cell activators at least during the early stages of RSV infection. The main 

hypothesis tested in the experiments described in this chapter is that RSV infected AECs can 

alone activate NK cells through the expression of NK cell-activating cytokines and the IL-15Rα 

receptor. To test this hypothesis, the expression of NK cell activating cytokines was first 

measured in infected BEAS-2B cells. A main focus was on IL-15Rα receptor expression, which 

could indicate IL-15/IL-15Rα complex formation and thus an enhanced NK cell response. 

Next, a BEAS-2B cell-NK cell co-culture model was established to determine if infected BEAS-

2B cells could alone initiate a cytokine response from NK cells. The nature of this interaction 

between NK cells and AECs was further examined using cell-to-cell contact inhibition to 

determine the importance of direct cell contact in initiating NK cell cytokine expression. The 

BEAS-2B cell response and then response of NK cells during co-culture with a clinical RSV 

isolate was also characterised and compared to the response obtained with RSV A2. 

Experiments here include the first use of an AEC-NK cell co-culture model to further 

understand RSV infection. 

3.4.1. Expression of NK cell activating cytokines IL-12, IL-15 and IL-18 and the IL-15Rα 

receptor expression by BEAS-2B cells in response to RSV A2 infection 

 

3.4.1.1. BEAS-2B cells do not express soluble IL-12p70 protein during RSV infection 

Here, evidence of only a low expression of IL-12β mRNA was seen over a time period of 4-

48hrs (Figure 3.2A). IL-12β mRNA expression was less than 0.1% of housekeeping gene L32 

and unchanged by RSV infection. Further results showed no evidence of soluble IL-12p70 

protein expression following RSV infection of BEAS-2B cells (Figure 3.2B). Other studies have 

also shown that BEAS-2B cells express very little, if at all any IL-12 subunits p35 or p40 in 
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response to other stimuli such as air-borne particulate matter (415,416). In conclusion, IL-12 

expression by BEAS-2B cells is not influenced by RSV infection and BEAS-2B cells may not 

express IL-12 protein at all. 

3.4.1.2. BEAS-2B cells express IL-18mRNA but not protein during RSV infection 

Both non-infected and RSV infected BEAS-2B cells expressed IL-18 mRNA at levels ~10-30% 

of the L32 housekeeping gene (Figure 3.2C). RSV did not change IL-18 mRNA expression at 

any specific time point over a 4 to 48hr period. However, analysis of RSV infected cells 

showed a significant decrease in IL-18 mRNA expression at 24hr when compared to 4hr and 

8hrs by ~2-fold (Figure 3.2C). Interestingly, this pattern of reduced IL-18 mRNA expression 

with RSV infection at a 48hr time point was also observed for infected HNAECS, specifically 

at lower MOIs of 0.1 and 1, but not for a higher MOI at 2.5 (Figure 4.4, Section 4.3.2). This is 

described and discussed in more detail in Chapter 4. Similarly to IL-12, IL-18 protein was not 

detected in culture supernatants either with or without infection (Figure 3.2D). This could be 

due to the detection limit of this assay, which was 11.7pg/ml (Table 2.4). RSV may fail to 

induce IL-18 protein expression from BEAS-2B cells above 11.7pg/ml and may reduce IL-18 

mRNA expression. This cannot be concluded as mature IL-18 protein requires caspase-1 

cleavage from a pro-IL-18 form (Section 1.3.3.2). BEAS-2B cells have been shown to lack 

expression of caspase-1 and this could be a possibly explain why IL-18 secretion was not 

observed here (417). However caspase-1 presence was not been examined here for BEAS-2B 

cells but could have offered further explanation of these results. 

3.4.1.3. BEAS-2B cells express low levels of soluble IL-15 during RSV infection 

IL-15 mRNA level was only shown to be significantly increased at 8hr with RSV infection by 

~1-2% of the housekeeping gene level. This suggests that RSV infection does not extensively 

alter IL-15 mRNA expression in BEAS-2B cells at the MOI of 1 used here. Experiments using 

different RSV MOIs at 24 and 48hrs could have provided further insight on the ability of RSV 
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to modulate IL-15 mRNA expression in BEAS-2B cells. IL-15 protein was not present in culture 

supernatants from control BEAS-2B cells and only found above the lower limit of detection 

following RSV infection for 48hrs (Figure 3.3B). Furthermore, Palivizumab inhibited 

expression indicating replicating RSV induced IL-15 secretion and not other factors in the 

viral lysate. 

IL-15 transcription and translation has been described as tightly regulated and could account 

for the relatively low soluble protein detected. For instance, the 5’ noncoding region of IL-15 

mRNA can prevent its translation and co-ordinated expression of IL-15Rα is essential for IL-

15 protein to leave the Golgi apparatus (342,418). Another possibility is RSV NS1 and NS2 

proteins potentially inhibiting IL-15 secretion. As described in the next section, the low levels 

of secreted IL-15 observed could also be due to complex formation, which provides a method 

of controlled and local use of IL-15 activity. This tight control may be especially beneficial for 

the prevention of over stimulation of IL-15 responsive immune cells. Low levels of secreted 

IL-15 could be beneficial so as to only act locally. For instance, mice overexpressing IL-15 

have elevated NK cell and memory T cell throughout the body and was later accompanied by 

weight loss, respiratory distress, leukaemia and premature death (419). 

The data described here show some similarities and some minor differences to that of other 

in vitro RSV-AEC studies. IL-15 expression in BEAS-2B cells was first examined by Ge et al. 

with reported resting BEAS-2B cells IL-15 protein expression being less than 1pg/ml (341). 

BEAS-2B cells have similarly shown expression of IL-15 mRNA under resting conditions, as 

well as A549 cells (420). IL-15 expression during in vitro RSV infection in airway cell lines 

A549s, BEAS-2B cells and commercially bought HBECs was first described by Zdrenghea et al. 

(152). Data here shows that IL-15 mRNA expression in BEAS-2B cells remained the same over 

a 48hr period and that IL-15 protein was not detected from control BEAS-2B cells and that 

RSV induced ~18pg/ml protein expression at 48hr and MOI of 1. Zdrenghea et al. show that 
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1) for A549s IL-15 mRNA decreased over a 72hr period, 2) non-infected BEAS-2B cells 

expressed ~1pg/ml IL-15 protein and 3) for infected BEAS-2B cells, only ~7pg/ml was 

detected at a 48hr and at an MOI 1. The ELISA used by Zdrenghea et al. had a lower limit of 

detection than the Luminex used here which could explain why no protein was detected in 

control supernatants. This study also showed that following RSV infection A549s expressed 

more IL-15 protein than BEAS-2B cells. This could suggest that different types of AEC lines or 

primary AECs, even from different airway locations, could have different IL-15 responses to 

RSV and thus differentially influence immune cell responses. 

3.4.1.4. BEAS-2B cells express IL-15Rα during RSV infection 

The next aim was to determine if IL-15/IL-15Rα complexes are formed following RSV A2 

infection of BEAS-2B cell. BEAS-2B cell IL-15Rα expression has not been characterised during 

RSV infection. Here, BEAS-2B cells expressed IL-15Rα mRNA which was ~1-5% of 

housekeeping gene and did not increase over time suggesting an unchanging basal level of 

IL-15Rα mRNA expression in the absence of infection (Figure 3.4A). RSV greatly increased IL-

15Rα mRNA expression. This was observed early in infection at 8hr and maintained up to 

48hrs at around ~4-10-fold higher. IL-15Rα surface expression was then examined at 48hrs 

infection using increasing RSV MOIs to determine if viral titre effected IL-15Rα expression. 

Control BEAS-2B cells did not express cell surface IL-15Rα (Figure 3.4B, C). RSV, at an MOI of 

0.1 to 2.5, induced an increase in cell surface expression of IL-15Rα interestingly showing a 

dose-dependent increase in expression with increase in MOI (Figure 3.4C). This is not the first 

account of BEAS-2B cells expressing IL-15Rα mRNA under resting conditions and RSV has 

previously been shown to increase IL-15Rα mRNA expression in A549s (341,420,421). 

However in these studies surface expression of IL-15Rα protein was not examined during 

RSV infection. The data presented here is the first report of RSV to inducing an increase in IL-

15Rα both at gene and protein level in BEAS-2B cells. RV has also been shown to induce IL-
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15Rα mRNA expression in the lungs of mice and may be a common airway epithelial response 

to viral infection (422).  

In conclusion RSV induces IL-15Rα mRNA expression, seen early after 8hrs infection, and 

induces IL-15Rα protein cell surface expression which may also be dependent on viral titre. 

Described in the section below are reasons why a dose-dependent increase in IL-15Rα 

expression may be beneficial. 

 

3.4.2. Do BEAS-2B cells express IL-15/IL-15Rα complex during RSV infection? 

IL-15Rα and IL-15 protein were separately shown to be expressed on the cell surface of RSV 

infected BEAS-2B cells (Figure 3.4 and 3.5). Therefore, there is a possibility that IL-15 is 

complexed to IL-15Rα and present at the cell surface. To investigate this, 

immunofluorescence staining was done to examine both intracellular and cell surface 

expression of IL-15 and IL-15Rα. Dual immunofluorescence staining of IL-15 and IL-15Rα 

showed positive staining on infected BEAS-2B cells at the cell surface (Figure 3.6). A very 

small amount of surface IL-15 and IL-15Rα were observed on non-infected BEAS-2B cells. 

Intracellular individual staining for IL-15 and IL-15Rα was then performed. Both non-infected 

and RSV infected BEAS-2B cells expressed IL-15 (Figure 3.7) and IL-15Rα (Figure 3.8) which 

were both located in the Golgi apparatus as evidenced by co-localisation with GM130. 

Expression of IL-15 by non-infected BEAS-2B cells was expected as IL-15 translation is 

complex and tightly regulated with detection and expression of IL-15 mRNA not correlating 

with IL-15 protein secretion (330,332). Finally, soluble IL-15/IL-15Rα complex was only 

observed in culture supernatants from RSV infected BEAS-2B cells (Figure 5.15, Section 

5.3.5.2). However, this needs further study as not all supernatants across experiments 

expressed IL-15/IL-15Rα complex. 
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Being able to increase IL-15/IL-15Rα complex at the cell surface on AECs based on viral titre 

could be of a great benefit during RSV infection. As described above, IL-15 expression is 

under tight regulation which could be of great benefit to restrict its action locally and reduce 

excessive immune responses. Therefore with greater viral titres, this could require a greater 

and or faster immune response. One way to achieve this could be through a rheostat-like 

expression of immune cell modulators. For instance during the end stages of disease when 

the virus titre is lower, reducing the expression of IL-15Rα and thus IL-15 signalling, could 

reduce excessive NK cell and T cell responses. This also allows for NK cells only present locally 

to be stimulated. 

3.4.3. Following RSV infection, can BEAS-2B cells activate NK cells? 

The next aim was to establish a BEAS-2B cell-NK cell co-culture model measuring IFN-γ and 

TNF-α as indicators of NK cell activation. So far, it has been determined that RSV infected 

BEAS-2B cells do not express NK cell-activating cytokines IL-12 and IL-18 but do express 

soluble and cell surface IL-15 with the assumption that this is through an IL-15/IL-15Rα 

complex, a potent inducer of NK cells. The absence of IL-12 and IL-18 in this model could 

mean activation is dependent on the ability of IL-15 and the IL-15/IL-15Rα complex to alone 

induce NK cell cytokine responses. These assays may therefore also provide information of 

the activity of these molecules. However it should be noted that other NK cell activating 

cytokines, such as IL-2 and IL-21, or NK cell inhibitory cytokines, such as IL-18BP, IL-10 and 

TGF-β, have not been measured here and could also be active within these experiments. 

Nevertheless, it is still a valid question to ask if BEAS-2B cells alone can activate NK cells 

during RSV infection. 
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3.4.3.1. Does co-culture of NK cells with RSV infected BEAS-2B cells influence viral replication 

and IL-8 response? 

Figure 3.9 shows that NK cells after addition to infected BEAS-2B cells settle above the cell 

monolayer by 4hr after addition to culture media. This would allow for cell-to-cell contact 

and potential stimulation of NK cells via cell surface expression of IL-15 on BEAS-2B cells. 

Settling of NK cells is likely to be due to the expression of RSV-induced chemokines expressed 

by infected BEAS-2B cells, as detailed in Section 5.3.1.  

Within this co-culture model it was observed that expression of RSV N gene within individual 

experiments decreased. When data was expressed as a ratio of infected BEAS-2B cells 

without NK cells, BEAS-2B cell-NK cell co-culture resulted in a significant decrease in RSV N 

gene compared to levels in infected BEAS-2B cells without NK cells (Figure 3.11B). A further, 

but minor decrease in RSV N gene expression was also seen between NK cells co-cultured at 

a higher ratio of 1:3 compared to 1:1. This is similar to results observed in Section 4.4.4.1 and 

is discussed further in that chapter’s discussion. Here briefly, this could be due to added NK 

cell derived L32 reducing the apparent RSV N gene expression or through NK cell-mediated 

lysis of infected cells. 

3.4.3.2. IFN-γ and TNF-α are expressed during co-culture of BEAS-2B cells and NK cells. 

Controls were set up to 1) determine if IFN-γ and/or TNF-α are expressed by BEAS-2B cells 

and if RSV influence their expression, 2) to characterise expression of IFN-γ and TNF-α from 

NK cells cultured alone or in the presence of IL-15 and 3) to determine if non-infected BEAS-

2B cells induced NK cell derived IFN-γ and/or TNF-α expression during co-culture.  

First to be answered was the question, are IFN-γ and TNF-α expressed by BEAS-2B cells? Only 

TNF-α mRNA was observed in non-infected BEAS-2B cells without NK cells at less than 0.02% 

of the housekeeping gene expression (Figure 3.11). TNF-α mRNA was increased by RSV 

infection to a level equal to ~0.8% of the housekeeping gene. IFN-γ mRNA was not expressed 
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by BEAS-2B cells and this indicates that within this co-culture, IFN-γ protein was unlikely to 

be expressed by BEAS-2B cells. Indeed, IFN-γ protein was not found in any BEAS-2B cell 

culture supernatants with or without RSV infection whereas TNF-α protein was from RSV 

infected BEAS-2B cells (Figure 3.11). Other studies have reported BEAS-2B cell-specific TNF-

α expression under resting conditions and increased by different stimulus, such as 

lipoteichoic acid, LPS via TLR4 signalling, dust extract, RSV and dsRNA (423–427). Therefore 

within this co-culture model, TNF-α cannot be described as NK cell specific whereas IFN-γ 

protein was likely to be NK cell specific.  

The second control used was NK cells cultured alone. This was included to determine basal 

IFN-γ and TNF-α expression specific to NK cells and their expression with IL-15 stimulation. 

BEAS-2B cell-derived L32 mRNA will be included in the calculations for NK-cell derived IFN-γ 

mRNA expression and will not represent NK cell-specific values. NK cells cultured in media 

only did not express detectable IFN-γ or TNF-α mRNA and following IL-15 stimulation where 

expressed at ~400% and ~1700%, respectively (Figure 3.11). Interestingly, even though IL-15 

induced IFN-γ and TNF-α mRNA expression by NK cells, TNF-α protein was only detected at 

~4pg/ml in supernatants from NK cells cultured alone (Figure 3.11B, D). IL-15 treatment may 

preferentially induce TNF-α protein secretion and not IFN-γ, although this amount is 

relatively low. 

The final control used was expression of IFN-γ and TNF-α during NK cell co-culture with non-

infected BEAS-2B cells. Here IFN-γ and TNF-α mRNA were detected at less than 0.1% and 

0.4% housekeeping gene, respectively (Figure 3.12A, C). No IFN-γ or TNF-α protein was found 

in culture supernatants when NK cells were co-cultured with non-infected BEAS-2B cells 

(Figure 3.12B, D). Overall, the controls mentioned above suggest that IFN-γ protein was 

specific to NK cells whereas TNF-α mRNA and protein could be made by both BEAS-2B cells 
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and NK cells. This should be considered when evaluating any apparent increases in TNF-α 

expression with co-culture. 

The most important outcome of this assay was the ability of RSV infected BEAS-2B cells to 

induce NK cell cytokines, IFN-γ and TNF-α. This is best considered in the context of protein 

expression, rather than gene expression, as these could exert a biological effect during RSV 

infection. Here, a dose-dependent increase in IFN-γ mRNA followed an increase in the 

number of NK cell co-cultured with infected BEAS-2B cells (Figure 3.11A). This dose-

dependent increase was also observed for IFN-γ protein, with the amount reaching ~23pg/ml 

at the highest co-culture ratio (Figure 3.11B). Furthermore IFN-γ protein was only detected 

from cultures with both RSV infected BEAS-2B cells and NK cells (Figure 3.11B). IFN-γ protein 

was also ~2.5 fold greater than TNF-α protein at the highest co-culture ratio. No IFN-γ protein 

was detected in culture supernatants from NK cells stimulated with IL-15, only IFN-γ mRNA. 

This suggests that infected BEAS-2B cell-NK cell cultures result in increased expression of 

actual IFN-γ protein production whereas the IL-15 stimulation does not induce its secretion 

to the same level. Possibly a post transcriptional regulatory mechanism is active during co-

culture. For TNF-α protein, as mentioned above, ~4pg/ml was seen in supernatants from NK 

cells stimulated with IL-15 and infected BEAS-2B cells (Figure 3.11D). TNF-α protein also 

followed a dose-dependent increase reaching ~9pg/ml at the highest co-culture ratio.  

Here the anti-RSV controls showed interesting results. For the anti-RSV control, addition of 

Palivizumab, NK cells were co-cultured at the highest ratio of 1:3 and these results compared 

to RSV infected BEAS-2B cells at a ratio of 1:3. As shown in Figure 3.11A Palivizumab 

successfully inhibited RSV N gene expression. Both IFN-γ and TNF-α mRNA were present in 

these anti-RSV control cultures. Both were significantly reduced compared to RSV infected 

BEAS-2B cells at a ratio of 1:3 ratio (Figure 3.11A, C). This suggests that the responses are 

specific to RSV infection. For IFN-γ, this was confirmed by lack of protein in anti-RSV control 
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supernatants (Figure 3.11B). However TNF-α protein was also present in the anti-RSV control 

supernatants and at the same concentration as RSV infected BEAS-2B cells at a ratio of 1:3 

ratio (Figure 3.11D). This suggest that something in the viral lysate or Palivizumab solution 

stimulates TNF-α protein but does not induce expression of soluble IFN-γ.  

Intracellular NK cell expression of IFN-γ was also examined. Figure 3.14 complements the 

data obtained in Figure 3.11A. For culture of NK cells only, stimulation with IL-15 enhanced 

IFN-γ expression resulting in ~10% of cells being IFN-γ positive, compared to ~1% for NK cells 

cultured in media only (Figure 3.14). NK cells co-cultured with non-infected BEAS-2B cells 

showed significantly more IFN-γ positive NK cells at around ~5% than NK cells cultured in 

media alone. This suggests some basal stimulation of NK cells by BEAS-2B cells under a non-

infectious environment which does not lead to IFN-γ protein secretion (Figure 3.14). This 

could possibly be through expression of more inhibitory rather than activating NK cell 

receptors by BEAS-2B cells. Furthermore, this could be beneficial for rapid NK cell activation 

and cytokine expression during RSV infection if NK cells already express some intracellular 

IFN-γ protein. Following RSV infection of BEAS-2B cells, as illustrated in Figure 3.14, the 

percentage of IFN-γ positive NK cells was significantly increased to ~15% compared to NK 

cells co-cultured with non-infected BEAS-2B cells. This was comparable to and not 

significantly different from the number of IFN-γ positive NK cells present when NK cells were 

cultured alone and stimulated with 10ng/ml IL-15. This indicates that IL-15 alone was able to 

induce approximately the same amount of intracellular IFN-γ protein in NK cells as when co-

cultured with infected BEAS-2B cells. 

As shown in Figure 3.11B, IFN-γ was not detected in culture supernatants from NK cells 

stimulated with IL-15, only during co-culture with infected BEAS-2B cells. BEAS-2B cells in 

these co-cultures may express ~17.9 pg/ml IL-15, as shown in Figure 3.3, during RSV 

infection. This is ~550-fold less than the 10ng/ml IL-15 added to NK cells alone, yet no soluble 
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IFN-γ was detected. Therefore, NK cells require direct cell-to-cell contact with BEAS-2B cells, 

or other stimulus within the co-culture, for IFN-γ secretion. This is an important observation 

as it details how NK cell responses in vivo during RSV infection could be greatly determined 

by the airway epithelium and close proximity.  

This co-culture model was the first of its kind and highlights how RSV infected BEAS-2B cells 

can activate NK cells. More specifically, this co-culture model shows that NK cells express 

IFN-γ protein only when co-cultured with RSV infected BEAS-2B cells and this followed a 

dose-dependent increase with increase in NK cells. As TNF-α production by RSV infected 

BEAS-2B cells was observed, it cannot be said that TNF-α protein was NK cell specific, but 

could show an additive value from both from BEAS-2B cells and NK cells during co-culture. 

This co-culture model also highlights a possibility that NK cells may require direct cell-to-cell 

contact during RSV infection for full activation. 

3.4.3.3. Direct cell contact is essential for NK cell cytokine expression during RSV infection of 

BEAS-2B cells. 

Results obtained using the BEAS-2B cell-NK cell co-culture model shown in Figure 3.11 and 

discussed above led to the next aim which was to determine if BEAS-2B cell-NK cell contact 

is required for optimum NK cell activation. This followed from the key observation that 

although IL-15 induced IFN-γ and TNF-α mRNA expression by NK cells, no protein was 

detected in culture supernatants and also that NK cells may require stimulation of their 

activating receptors for optimum responses. 

To test this, NK cells were separated from BEAS-2B cells by use of transwell inserts. As 

expected, IFN-γ and TNF-α protein was only observed in culture supernatants when NK cell 

were in direct contact with RSV infected BEAS-2B cells (Figure 3.12). Results also 

demonstrate the observation that NK cells do not express IFN-γ and TNF-α protein when 

cultured in supernatant from infected BEAS-2B cells. The transwell results show ~2-fold 
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higher expression of IFN-γ protein than the direct co-culture results shown in Figure 3.11B. 

This could be due to a higher total number of NK cells used in the 24-well plate transwell 

compared to 96-well plates. However this was not observed for TNF-α protein with similar 

expression at ~9-12pg/ml. This could indicate that the TNF-α response was restricted in some 

way, such as by the ratio of BEAS-2B cells-NK cells or that the TNF-α response was not as 

prominent as IFN-γ during RSV infection. IFN-γ expression could be associated with total 

number of NK cells. Therefore the more NK cells present during RSV infection, the more IFN-

γ protein may be expressed in vivo.  

During the NK cell cytotoxicity assay, performed by Liz Van Erp, intracellular NK cell IFN-γ 

expression was also measured (Figure 3.17). Both of the two donor’s NK cells cultured in 

supernatants taken from infected BEAS-2B cells showed a significant increase in the 

percentage of IFN-γ positive NK cells (Figure 3.17A-C). Results for donor 1 using 48 hour 

supernatant, showed a dose-dependent and significant increase in the percentage of IFN-γ 

positive NK cells with increase in RSV MOI (Figure 3.17B). This was also observed for donor 2 

but significance was not reached (Figure 3.17D). The 24hr culture supernatant induced an 

increase in IFN-γ positive NK cells by ~2-fold for both donors and an increase in the MOI did 

cause a dose-dependent increase, as shown for 48hr supernatant (Figure 3.17A, C). Overall, 

the percentage of IFN-γ positive NK cells reached no more than ~4%, which was lower than 

~15% positive observed during direct infected BEAS-2B cell-NK cell contact (Figure 3.14). The 

data shown in Figure 3.17 may therefore also reflect the requirement of NK cells to be in 

direct contact with infected BEAS-2B cells for optimal activation. 

In conclusion, data shown in Figures 3.11, 3.12, 3.14 and 3.17 indicate that NK cells require 

direct cell contact with infected BEAS-2B cells for NK cell-derived IFN-γ protein expression. 

TNF-α expression within these assays may be both from BEAS-2B cells and NK cells. The IFN-
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γ response from NK cells may be stronger than the TNF-α response during RSV infection in 

vivo.  

3.4.4. BEAS-2B culture supernatants do not induce NK cell cytotoxicity 

Finally, the potential for BEAS-2B cell culture supernatants to induce NK cell cytotoxicity 

during NK cell-K562 effector cell co-culture was also examined by Liz Van Erp. From the 

previous data, it was apparent that NK cells require direct contact with AECs for optimum 

IFN-γ protein expression. However, this may not be true for the cytotoxicity assay in which 

NK cells are cultured with effector cells providing a form of direct cell contact. 

Figure 3.16 shows the intracellular expression of perforin in NK cells from two separate 

donors. In conclusion, the percentage of perforin positive NK cells was not increased when 

NK cells were cultured in BEAS-2B cell supernatants from non-infected or infected cells 

(Figure 3.16A-D). The lack of perforin positive NK cells cultured in infected BEAS-2B 

supernatants could be because the NK cells were not in direct contact with BEAS-2B cells. 

Additionally, IL-15 alone may not be able to induce perforin expression by NK cells as shown 

from the IL-15 stimulated NK cells (Figure 3.16E) whereas IL-15 was able to induce IFN-γ 

expression (Figure 3.17E). The addition of IL-15 to NK cell-K562 cell co-culture was not able 

to induce intracellular perforin expression which showed the same percentage of perforin 

positive NK cells as those cultured in media only (Figure 3.16E). In other studies, isolated NK 

cells cultured with 10ng/ml IL-15 were shown to induce targeted cell-lysis by ~20%, however 

these results suggest targeted cell-lysis may not occur here (361,428). In conclusion, BEAS-

2B cell supernatants were not able to induce NK cell intracellular perforin expression, 

however it cannot conclude that no NK cell lysis was done by NK cells during BEAS-2B cell co-

culture. This could have been examined by granzyme B expression in culture supernatants 

by ELISA. 
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3.4.5. RSV X infects and replicates in BEAS-2B cells and induces a similar expression of IL-8 

as RSV A2  

An MOI of 2.5 was used for both RSV A2 and RSV X, notably RSV RNA expression was ~56-

fold higher during RSV X infection compared to RSV A2 (Figure 3.18A). RSV X clinical strain 

may have higher immune evasion strategies compared to RSV A2, such as reducing RNase L 

expression, detailed in Section 1.2.1. However IL-8 mRNA and protein expression were 

similar and not significantly different between the two strains (Figure 3.18B, C). This suggests 

that although the RSV X RNA expression was greater than that in RSV A2 cultures, expression 

of IL-8 was not enhanced by the higher viral titre in RSV X cultures. IL-8 expression may have 

reached saturation for RSV X and possibly this is why there was no observed difference 

between strains. Viral growth kinetics may be different between strains. Use of different 

MOIs and expression over time would have provided more information this. Overall, this was 

a very limited experiment design with only one MOI and one time point used but as discussed 

below allows an interesting comparison between these two strains. 

 

3.4.6. Comparison between the expression of IL-15 and IL-15Rα by BEAS-2B cells in 

response to infection with two different RSV A strains, A2 lab strain and clinical isolate RSV 

X 

Expression of IL-15 mRNA was not significantly different between RSV A2 and RSV X (Figure 

3.19A) and IL-15Rα mRNA was significantly more with RSV X infection compared to RSV A2 

(Figure 3.19B). As no protein analysis was done, such as cell surface expression by flow 

cytometry, it is hard to make a final comparison between RSV A2 and RSV X as protein and 

not mRNA influence immune responses. 

Figure 3.3A shows that at an MOI of 1 for 48hr infection, RSV A2 did not induce a significant 

difference in BEAS-2B cell IL-15 mRNA expression, with IL-15 mRNA for both being ~3-5% of 

the housekeeping gene. In comparison, the results in Figure 3.21A show that RSV A2 at an 
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MOI of 2.5 for 48hr infection significantly induced IL-15 mRNA expression to ~13% 

housekeeping gene compared to non-infected control. Therefore, the expression of IL-15 

mRNA may be dependent on viral RSV A2 titre, with more virus induced expression in 

comparison to changes in mRNA over time at the same MOI. An RSV dose-response at 48hr 

would need to be completed to confirm this.  

There was also a difference in expression of IL-15Rα mRNA between MOI 1 and 2.5 with 48hr 

RSV A2 infection. In Figure 3.4A 48hr RSV A2 infection at an MOI of 1 induced expression of 

IL-15Rα mRNA to ~40% housekeeping gene compared to Figure 3.21B in which IL-15Rα 

mRNA expression was induced to ~100% housekeeping gene, L32. This suggests that increase 

in MOI may induce an increase in IL-15Rα mRNA expression. A RSV A2 and RSV X dose-

response experiment would verify this. 

Overall, an increase in IL-15Rα mRNA by RSV X could have influenced the expression cell 

surface IL-15Rα and possibly also IL-15/IL-15Rα complex formation and trans-presentation. 

If this is so, RSV X clinical isolate infection of BEAS-2B cells may be able to further activate NK 

cells during co-culture. 

 

3.4.6.1. Is the expression of IFN-γ and TNF-α protein during NK cell co-culture of RSV infected 

BEAS-2B cells different between laboratory strain A2 and clinical isolate, X? 

As discussed above, with RSV A2 and RSV X infection during BEAS-2B cell-NK cell co-culture, 

IFN-γ was only detected with infection and NK cell co-culture. Therefore, providing further 

confirmation that IFN-γ detected was NK cell derived. RSV X induced ~2-fold more IFN-γ and 

TNF-α protein than RSV A2 infection of BEAS-2B cells from NK cells during co-culture. This 

may be reflect the increase in IL-15Rα mRNA expression by BEAS-2B cells infected with RSV-

X illustrated in Figure 3.19B. Potentially, the more IL-15Rα mRNA expressed, the increased 

likelihood of further IL-15 trans-presentation to NK cells.  
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3.4.7. Limitations of an in vitro BEAS-2B cell-NK cell co-culture model compared to in vivo 

AEC-NK cell responses during RSV infection 

The exact role of NK cells has not been fully characterised during human RSV infection. A 

protective role of NK cells can be seen in IL-15 deficient mice that lack NK cell population 

expansion and on challenged with virus, show more fatalities then wild type mice (Section 

1.3.3.3). However NK cells have also been implicated in enhancing RSV disease (Section 1.4). 

Here, the expression of IFN-γ and TNF-α was characterised using a RSV infected BEAS-2B cell-

NK cell co-culture, the first co-culture of its kind. This model allowed the interactions 

between infected AECs and NK cells alone, to be studied without other immune cell 

influences. Furthermore, this model details that expression of IL-15 and IL-15Rα during RSV 

infection can induce NK cell activation. Although as mentioned previously, the whole NK cell 

activating cytokine repertoire has not been characterised here. The dependence of NK cells 

on BEAS-2B cell-derived IL-15 and IL-15Rα during RSV infection could have been examined 

by siRNA knock-down of BEAS-2B cell IL-15 and/or IL-15Rα mRNA. This was tested, but it 

proved difficult using IL-15 and IL-15Rα siRNA which inherently have a complex regulation of 

translation. Treatment of BEAS-2B cells with these siRNAs resulted in more IL-15 and IL-15Rα 

mRNA expression by BEAS-2B cells (data not shown). Addition of anti-IL-15 and anti-IL-15Rα 

to infected BEAS-2B cell-NK cell co-cultures would not be a valid option either as these 

antibodies may stimulate NK cells. 

This model also has some limiting factors including the lack of IL-12 and IL-18 protein which 

have been observed in lung during RSV infection. This would otherwise change the NK cell 

response. Additionally it is not a whole lung model. It includes the use of an AEC line, BEAS-

2B, a model lacking other immune cells or other cellular sources of inflammatory mediators. 

A whole lung model would ultimately determine the NK cell response, however under 
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experimental conditions, this can only been studied in mice and equally is not representative 

of a full human response. The model used here is less complex but allows a clear dissection 

of the response and BEAS-2B cell-NK cell interactions which is not possible in vivo.  

A limitation that can be considered for all NK cell activating cytokines examined here is that 

only apical secretion was determined. These proteins may undergo basolateral secretion 

from infected BEAS-2B cells. A more thorough evaluation of apical and basolateral secretion 

by BEAS-2B cells would have been achieved by infecting BEAS-2B cells grown on transwell 

inserts. This would allow for detection of basolateral secretion, supernatants used from the 

bottom chamber and apical secretion, supernatants used from the upper chamber, 

concurrently. This may reflect why IL-12 and/or IL-18 and requires further investigation.  

Further limitations of this model are discussed in Chapter 7. A possibility to improve this 

model is use by using primary AECs. To improve this model, Chapter 4 extends these results 

with use of HNAECs and donor matched NK cells. 

3.5. Summary 

RSV infection of BEAS-2B cells induces expression of both IL-15 and IL-15Rα mRNA and 

protein, but not IL-12 and IL-18 protein. IL-15 protein was detected at relatively low levels in 

culture supernatants and only at 48hrs infection. IL-15 and IL-15Rα were expressed 

intracellularly by both non-infected and infected BEAS-2B cells. However, co-expression of 

cell surface expression of IL-15 and IL-15Rα was observed only following infection which 

suggests IL-15/IL-15Rα complex trans-presentation. Cell surface expression of IL-15Rα also 

followed a dose-dependent increase with increase in RSV MOI, suggesting the possibility for 

a fine regulation of IL-15-responsive immune cells. It was then shown that RSV infected BEAS-

2B cells could stimulate IFN-γ expression from NK cells over a 48hr period. TNF-α was also 

expressed within this co-culture model but it was not specific to NK cells. This BEAS-2B cell-

NK cell co-culture model lacked IL-12 and IL-18 protein and therefore IFN-γ expression by NK 
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cells could possibly be through stimulation by the more potent IL-15/IL-15Rα complex. This 

could be explained by the inhibition of IFN-γ protein expression observed when direct BEAS-

2B cell-NK cell contact was prevented. Figure 3.21 details a summary of the results observed 

within this chapter. RSV induces the expression of cell surface IL-15/IL-15Rα complex and 

may be presented in trans to NK cells. This could then aid in NK cell activation and expression 

of IFN-γ and possibly TNF-α protein. Soluble IL-15 may also activate NK cells via cis-

presentation. Overall, these results demonstrate that the RSV infected airway epithelium can 

alone initiate an IFN-γ, and possibly a TNF-α, response from NK cells which is dependent on 

direct cell-to-cell contact. 
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Figure 3.21. Direct contact between RSV infected BEAS-2B cells and NK cells is essential for 
NK cell activation. RSV infected BEAS-2B cells express cell surface IL-15/IL-15Rα complex 
which through trans-presentation, and through other cellular interactions and secreted 
molecules, stimulate NK cells to express IFN-γ and TNF-α 
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Chapter 4. In vitro NK cell activating-cytokine profile of RSV A2 
infected human nasal airway cells, human nasal airway cell-NK 
cell co-culture and infant nasopharyngeal aspirate analysis 
 

4.1. Introduction 

The experiments described in Chapter 3 demonstrate that after RSV infection the airway 

epithelial cell line BEAS-2B express the NK cell activating cytokine IL-15, the IL-15Rα protein 

and additionally the more potent NK cell activating IL-15/IL-15Rα complex. A BEAS-2B cell-

NK cell co-culture model was established in which NK cell-derived IFN-γ protein was 

expressed only during direct NK cell contact with RSV infected BEAS-2B cells and TNF-α was 

produced by both BEAS-2B cells and NK cells. Limitations of the BEAS-2B cell model include 

a potential tissue miss match between donor NK cells and the BEAS-2B cells, which could 

greatly influence the NK cell response (Section 1.3.2). Use of primary AECs would add further 

in vivo relevance to these specific studies of AEC-NK cell interactions. Therefore to extend 

the studies described in Chapter 3 indicating AECs, after infection, can activate NK 

cells by expression of NK cell activating cytokines and IL-15Rα receptor, HNAECs were 

cultured and the AEC-NK cell model modified to use HNAEC and NK cells from the same 

donor.  

In these experiments the kinetics of NK cell activating cytokines expression, including IL-12, 

IL-15 and IL-18, and IL-15Rα was first characterised during RSV infection of HNAECs. 

Expression of IL-15 mRNA and protein by HBECs and human airway basal cells has already 

been reported (152), but IL-12p70, IL-18, IL-15Rα and IL-15/IL-15Rα complex expression 

following RSV infection has not been investigated. The work described in Chapter 3 shows 

the clinical isolate RSV X can induced significantly more IL-15Rα mRNA expression in BEAS-

2B cells compared to RSV A2. Therefore a comparison between the expression of IL-15 and 

IL-15Rα by HNAECs during infection with RSV A2 and clinical isolate RSV X was also made, 
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especially considering a clinical isolate may more closely match in vivo infection compared 

to RSV A2.  

Second, HNAECs and donor matched NK cells were co-cultured and IFN-γ and TNF-α 

expression measured as potential indicators of NK cell activation. Characterising the NK cell 

response during a co-culture model with donor matched NK cells will provide a more 

accurate representation of the in vivo response than BEAS-2B cells.  

Finally, NPAs from infants under the age of 1 year naturally infected with RSV were analysed 

and expression of NK cell activating cytokines IL-15, IL-15/IL-15Rα complex and IL-18 and the 

NK cell-derived cytokines IFN-γ and TNF-α measured. Here, cytokine expression was 

compared to patient oxygen requirement as a disease severity score and age group. 

Furthermore, the levels of IL-15, IL-15/IL-15Rα complex and IL-18 in NPAs from infants 

infected with another common respiratory virus, RV, allow for comparison to the results 

obtained for RSV.  

 

4.2. Aims 

 To determine the kinetics of IL-12, IL-15 and IL-18 NK cell activating cytokines and 

cytokine receptor IL-15Rα expression, including the IL-15/IL-15Rα complex, by RSV 

A2 infected HNAECs (Sections 4.3.1, 4.3.2, 4.3.3, 4.3.4 and 4.3.5). 

 To compare the expression of IL-15 and IL-15Rα by HNAECs in response to infection 

with two different RSV A strains, A2 lab strain and clinical isolate X (Section 4.3.6). 

 To establish if HNAECs can activate NK cells in a HNAEC-NK cell co-culture model, 

measuring IFN-γ and TNF-α as indicators of NK cell activation (Section 4.3.7). 
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 To characterise expression of IL-15, IL-15/IL-15Rα complex, IL-18, IFN-γ and TNF-α in 

NPAs from RSV infected infants and IL-15, IL-15/IL-15Rα complex and IL-18 in NPAs 

from RV infected children (Sections 4.3.8 and 4.3.9). 

 To determine if the IL-15, IL-15/IL-15Rα and IL-18 protein levels in NPAs from infants 

infected with RSV and RV differ (Section 4.3.10). 

  

4.3. Results 

To assess the NK cell activating cytokine profile of human primary AECs, HNAECs were 

isolated and grown from healthy adult donors (Section 2.2). HNAECs were infected with RSV 

A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Palivizumab was used with RSV at an MOI 2.5 as an 

anti-RSV control. To reduce variation that could occur between different viral lysate 

preparations the same batch of RSV was used for all experiments. Here, unless stated all data 

is presented as the fold change to compensate for inter-individual differences in base-line 

gene expression and individual donor responses to RSV infection.  

 

4.3.1. RSV replicates in HNAECs leading to IL-8 expression 

To confirm infection, RSV N gene expression and IL-8 gene expression was measured by qPCR 

and IL-8 protein by ELISA (Section 2.6.3 and 2.7). 
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Figure 4.1. Expression of RSV N gene in RSV A2 infected HNAECs. HNAECs were infected 
with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Control non-infected cultures were cultured 
in the absence of RSV and Palivizumab used as an anti-RSV control. A) RSV N gene (n=3), B) 
individual donor expression of RSV N gene (n=1 per donor). Data is expressed as the mean ± 
SEM (Friedman with Conover post-hoc test, ***p<0.001). 

 

RSV N RNA was not detected in the absence of RSV infection and was significantly increased 

at MOIs 0.1 (p<0.001), 1 (p<0.001) and 2.5 (p<0.001) (Figure 4.1A) compared to non-infected 

HNAECs. A significant increase in RSV N RNA was seen between MOI 2.5 compared to MOIs 

0.5 (p<0.001) and 1 (p<0.001). Palivizumab anti-RSV control significantly decreased 

expression of RSV N RNA between MOI 2.5 and MOI 2.5 plus Palivizumab (p<0.001). RSV N 

gene expression in anti-RSV control was less than 0.01% L32.  

Individual donor expression of RSV N RNA is shown in Figure 4.1B, with a dose-dependent 

increase in mRNA expression that reflected the increasing MOIs. Donor 3 had ~0.3-fold 

higher expression than donors 1 and 2 (Figure 4.1B).  
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Figure 4.2. Expression of IL-8 mRNA and protein in RSV A2 infected HNAECs. HNAECs were 
infected with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Control non-infected cells were 
cultured in the absence of RSV and Palivizumab used as an anti-RSV control. A) IL-8 mRNA 
(n=3), B) individual donor expression of IL-8 mRNA, C) IL-8 protein (n=3), D) individual donor 
expression of IL-8 protein. Data is expressed as the mean ± SEM (Friedman with Conover 
post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

IL-8 mRNA expression was significantly increased at MOIs 0.1 (p<0.01), 1 (p<0.001) and 2.5 

(p<0.001) in comparison to non-infected HNAECs (Figure 4.2A). Palivizumab anti-RSV control 

significantly decreased expression of IL-8 mRNA between MOI 2.5 and MOI 2.5 plus 

Palivizumab (p<0.001). Individual donor IL-8 mRNA expression is shown in Figure 4.2B with 

donor 1 showing ~3-fold lower expression than donors 2 and 3 and also not following a clear 

dose-response (Figure 4.2B). 

IL-8 protein was not significantly different between non-infected and infected HNAECs 

culture supernatants (Figure 4.2C). IL-8 protein was significantly reduced between MOI 2.5 
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and MOI 2.5 plus Palivizumab (p<0.05) (Figure 4.2C). Individual donor expression of IL-8 is 

shown in Figure 4.2D with donor 1 showing ~2-fold higher expression than donors 2 and 3, 

both with and without RSV infection (Figure 4.2D). Donor 2 cultures showed an expected 

dose-response with increase in RSV MOI and donors 1 and 3 did not show an increase in IL-

8 protein with RSV infection. 

These results indicate successful in vitro RSV infection and replication in HNAECs, a shown 

by RSV N RNA and IL-8 mRNA, however differences were not seen at the protein level with 

IL-8. Individual donor plots show that mRNA does not necessarily correlate to protein 

expression with donor 1 expressing the lowest level of IL-8 mRNA yet the highest level of IL-

8 protein.  

 

4.3.2. Expression of IL-12 and IL-18 during RSV A2 infection of HNAECs 

BEAS-2B cells do not express IL-12β mRNA, IL-12p70 protein and IL-18 protein (Section 3.3.2). 

IL-18 mRNA was present and a reduction in IL-18 mRNA was observed with RSV infection at 

24hr and an MOI of 1 from BEAS-2B cells. The lack of expression could be specific to BEAS-

2B cells, therefore IL-12β mRNA, IL-12p70 protein and IL-18 protein expression by HNAECs 

was also examined and the kinetics of IL-18 mRNA during RSV infection determined. 

IL-12β and IL-18 mRNA was first measured by qPCR as an indicator of IL-12 and IL-18 gene 

expression following RSV infection and subsequently IL-12p70 and IL-18 protein expression 

in culture supernatants measured by ELISA (Section, 2.6.3 and 2.7). 
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Figure 4.3. Expression of IL-12β mRNA and IL-12p70 protein in RSV A2 infected HNAECs. 
HNAECs were infected with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Control non-infected 
cultures were cultured in the absence of RSV and Palivizumab used as an anti-RSV control. 
A) IL-12β mRNA (n=3), B) individual donor expression of IL-12β mRNA, C) IL-12p70 protein 
(n=3). Data is expressed as the mean ± SEM (Friedman with Conover post-hoc test). 

 

Similarly to the results observed for BEAS-2B cells in Section 3.3.2 for IL-12β mRNA 

expression, no significant differences were observed between non-infected and infected 

HNAECs with IL-12β mRNA levels less than 0.05% of the housekeeping gene L32 (Figure 4.3A). 

Individual donor expression of IL-12β mRNA is shown in Figure 4.3B with donor 2 only 

expressing IL-12β mRNA at MOIs 1 and 2.5 (Figure 4.3B). No IL-12p70 protein was detected 

(Figure 4.3C). 
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Figure 4.4. Expression of IL-18 mRNA and protein in RSV A2 infected HNAECs. HNAECs were 
infected with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Control non-infected cultures were 
cultured in the absence of RSV and Palivizumab used as an anti-RSV control. A) IL-18 mRNA 
(n=3), B) individual donor expression of IL-18 mRNA, C) IL-18 protein (n=4), D) individual 
donor expression of IL-18 protein. Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 
 

In comparison to non-infected HNAECs, IL-18 mRNA expression by infected HNAECs was 

significantly reduced at MOIs 0.1 (p<0.05), 1 (p<0.001) and 2.5 (p<0.05) with levels at ~80%, 

~70% and ~90% of those in non-infected HNAECs, respectively (Figure 4.4A). IL-18 mRNA 

expression by infected HNAECs at MOIs 0.1 (p<0.001), 1 (p<0.001) and 2.5 (p<0.05) was 

significantly greater than observed in cultures treated with Palivizumab. Individual donor IL-

18 mRNA expression is shown in Figure 4.4B, with donors 2 and 3 showing 2-3-fold increase 

in basal IL-18 mRNA expression compared to donor 1 (Figure 4.4B). IL-18 mRNA expression 

by non-infected HNAECs ranged from ~70-250% of the L32 house keeping gene level (Figure 
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4.4B). Each individual donor expression pattern also demonstrates the reduction at MOI 1 

observed for each donor, regardless of the relative level of basal IL-18 mRNA expression. 

IL-18 protein was present in culture supernatants from non-infected HNAECs at ~20-40pg/ml 

(Figure 4.4C). The apparent reduction in IL-18 mRNA expression following RSV infection was 

also reflected for protein expression with a significant decrease in IL-18 protein at MOI 0.1 

compared to non-infected HNAECs (p<0.01). At a higher MOI of 2.5, there was a significant 

increase in IL-18 protein expression compared to non-infected HNAECs (p<0.001). IL-18 

protein expression was significantly higher at MOI 2.5 compared to MOI 1 (p<0.001). For the 

Palivizumab anti-RSV control, only 2/4 culture supernatants were positive for IL-18 protein. 

Palivizumab treatment resulted in significantly decreased expression of IL-18 protein in 

comparison to infection at MOI 2.5 (p<0.001) and non-infected HNAECs (p<0.001). Individual 

donor IL-18 protein expression is shown in Figure 4.4D, with donor 2 having ~2-fold higher 

expression than donors 1, 3 and 6 at ~100-125pg/ml (Figure 4.4D). Donors 1, 3 and 6 had 

similar expression levels of IL-18 protein at ~20-40pg/ml. 

These results indicate that similarly to BEAS-2B cells (Section 3.3.2), HNAECs do not express 

IL-12p70 protein neither with or without RSV infection. HNAECs express IL-18 protein both 

with and without RSV infection. At a lower MOI of 0.1 the reduction in IL-18 mRNA matched 

IL-18 protein. A higher MOI of 2.5 showed a significant increase in IL-18 protein, which was 

not reflected by individual donor mRNA levels at this time point. Palivizumab inhibited the 

reduction in IL-18 mRNA expression, however this was not seen at the protein level.  
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4.3.3. Expression of IL-15 during RSV A2 infection of HNAECs 

IL-15 protein was detected in culture supernatants from RSV infected BEAS-2B cells (Section 

3.3.3). IL-15 mRNA and protein expression by HBECs infected with RSV at an MOI of 1 for 

24hr at ~2pg/ml has been reported (152). However, HBECs in the published study had been 

bought and recovered from frozen which may give a different response to the freshly isolated 

HNAECs used here. Here, IL-15 mRNA was measured by qPCR following RSV infection and IL-

15 protein expression in culture supernatants measured by Luminex (Section 2.6.3 and 2.8). 
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Figure 4.5. Expression of IL-15 mRNA and protein in RSV A2 infected HNAECs. HNAECs were 
infected with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr. Control non-infected cultures were 
cultured in the absence of RSV and Palivizumab used as an anti-RSV control. A) IL-15 mRNA 
(n=3), B) individual donor expression of IL-15 mRNA, C) IL-15 protein (n=4). Data is expressed 
as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, ***p<0.001). 

 

IL-15 mRNA was significantly increased following infection at MOI 2.5 (p<0.05) as compared 

to non-infected HNAECs (Figure 4.5A). Palivizumab anti-RSV control significantly decreased 
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IL-15 mRNA expression compared to MOI 2.5 (p<0.05). Individual donor IL-15 mRNA 

expression is shown in Figure 4.5B with donors 2 and 3 expressing ~3-fold higher basal 

expression of IL-15 mRNA compared to donor 1 (Figure 4.5B). Basal IL-15 mRNA ranged from 

10-40% of the housekeeping gene L32. Donor 1 shows the largest fold increase in IL-15 mRNA 

at ~2-fold compared to donors 2 and 3. The detection limit for IL-15 was 3pg/ml (Section 

2.8), however no protein was detected in any sample (Figure 4.5C).  

The results here indicate that RSV induces expression of IL-15 mRNA in HNAECs which was 

only seen at MOI 2.5 in comparison to non-infected HNAECs. IL-15 protein was not detected 

above the detection limit of 3pg/ml and matches the approximate level expressed by primary 

AECs from published data. 

 

4.3.4. Expression of IL-15Rα during RSV A2 infection 

RSV induced both IL-15Rα mRNA and cell surface expression in BEAS-2B cells (Section 3.3.3 

and 3.3.4). Here expression of IL-15Rα by infected HNAECS was also evaluated. IL-15Rα 

mRNA was measured by qPCR following RSV infection and IL-15Rα cell surface expression 

measured by flow cytometry (Section 2.6.3 and 2.9). 



157 
 

Isotype
Non-infected
RSV A2 MOI 2.5

Figure 4.6. Expression of IL-15Rα mRNA and protein in RSV A2 infected HNAECs. HNAECs 
were infected with RSV A2 at MOIs of 0.1, 1 and 2.5 for 48hr (A, B) or MOI 1 for 48hr (C, D, 
E). Control non-infected cultures were cultured in the absence of RSV and Palivizumab used 
as an anti-RSV control. A) IL-15Rα mRNA (n=3), B) individual donor expression of IL-15Rα 
mRNA, C) IL-15Rα protein (n=3), D) individual donor expression of IL-15Rα protein, E) 
representative flow histogram of surface IL-15Rα. Data is expressed as the mean ± SEM 
(Friedman with Conover post-hoc test, *p<0.05, **p<0.01). 
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RSV infection resulted in a significant increase in IL-15Rα mRNA expression at MOIs 0.1 

(p<0.01), 1 (p<0.01) and 2.5 (p<0.01) compared to non-infected HNAECs (Figure 4.6A). RSV 

increased IL-15Rα mRNA expression by ~3-6 fold compared to non-infected HNAECs. 

Addition of Palivizumab as an anti-RSV control led to significantly reduced IL-15Rα mRNA 

expression (p<0.001). Individual plots show that the lowest MOI used 0.1, induced an ~3-fold 

increase in IL-15Rα mRNA expression in donors 1 and 2 and an ~5-fold increase in donor 3 

compared to non-infected HNAECs (Figure 4.6B). IL-15Rα mRNA was between ~15-50% of 

the housekeeping gene L32 in non-infected HNAECs. Between MOI 0.1 and 2.5, donor 1 and 

3 showed similar expression of IL-15Rα mRNA and donor 2 showed a dose-dependent 

increase with MOI. 

Flow cytometric analysis was used to measure surface IL-15Rα expression. No difference was 

observed between isotype control and IL-15Rα staining on non-infected cells indicating an 

absence of surface expression (Figure 4.6C). A single peak was observed during RSV infection 

indicative of one homogenous positive population (Figure 4.6E). There was a significant 

increase in MFI at MOI 1 (p<0.05) compared to isotype control and non-infected HNAECs. 

Individual donor expression of surface IL-15Rα is shown in Figure 4.6D with donor 1 showing 

an ~5-fold increase in IL-15Rα surface expression with infection, whereas donor 3 showed 

very little increase in expression and donor 6 ~0.5-fold increase.  

These results indicate that RSV induces IL-15Rα mRNA expression by HNAECs with no 

apparent increase in expression level with increase in RSV titre. IL-15Rα protein was also 

expressed at the cell surface during infection with variable levels of expression between 

donors.  
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4.3.5. Expression of soluble IL-15/IL-15Rα complex 

The IL-15/IL-15Rα complex was detected in 2/5 infected BEAS-2B cell supernatants (Section 

5.3.5.2, Figure 5.15). HNAECs culture supernatants were also examined for IL-15/IL-15Rα 

complex and no protein was detected below the detection limit of 62.5pg/ml. 

 

4.3.6. Comparison between the response of HNAECs during RSV A2 and RSV X infection 

As described in Section 3.3.12.2, BEAS-2B cells expressed ~10-fold more IL-15Rα during 

infection with a clinical isolate RSV X compared to RSV A2 (Figure 3.19). This was then 

complimented by significantly higher expression of IFN-γ and TNF-α during NK cell co-culture 

(Figure 3.20). It was also observed that gene expression of RSV N RNA with infection of RSV 

X was ~56-fold more than RSV A2 suggesting that RSV X may be able to better utilise 

receptors for cell entry and induce increased inhibition of anti-viral gene expression (Figure 

3.18). However using HNAECs with a clinical isolate, like RSV X, may provide a more accurate 

response to in vivo infection compared to infection of HNAECs with RSV A2.  

The aims set out in this section are to compare the gene expression of IL-15 and IL-15Rα by 

HNAECs infected with RSV A strains, laboratory A2 and a clinical isolate, RSV X (Section 2.3). 

In these experiments HNAECs were infected with RSV A2 and RSV X at an MOI of 2.5 for 

48hrs, after which culture supernatants and RNA were collected. 
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4.3.6.1. Differences between RSV A2 and RSV X replication and infectivity 
 

Figure 4.7. Comparison between the expression of RSV N gene and IL-8 protein in RSV A2 
and RSV X infected HNAECs. HNAECs were infected with RSV A2 and RSV X at an MOI of 2.5 
for 48hr. Control non-infected cultures were cultured in the absence of RSV. A) RSV N gene 
(n=3), B) IL-8 mRNA (n=3), IL-8 protein (n=3). Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, *p<0.05, ***p<0.001). 

 

RSV N RNA was significantly increased by treatment with both RSV A2 (p<0.001) and RSV X 

(p<0.001) infection (Figure 4.7A). RSV N gene expression was ~20-fold greater in HNAECs 

infected with RSV X compared to RSV A2 (p<0.001). IL-8 mRNA was detected at ~842% of the 

housekeeping gene L32 level in the absence of infection and was significantly increased with 

both RSV A2 (p<0.05) and RSV X (p<0.05) infection by ~50-fold (Figure 4.7B). IL-8 protein was 

detected at ~1900pg/ml in the absence of infection and was significantly increased with both 

RSV A2 (p<0.001) and RSV X (p<0.001) infection to ~9670pg/ml and ~2530pg/ml, respectively 

(Figure 4.7C). IL-8 protein was significantly lower with RSV X (p<0.001) than RSV A2 by ~4-

fold (Figure 4.7C).  
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The results indicate that although RSV infectivity was greater for RSV X than RSV A2 in 

HNAECs, RSV A2 infection induces the most IL-8 protein synthesis. 

 

4.3.6.2. Differences between RSV A2 and RSV X and expression of IL-15 and IL-15Rα 
 

 

Figure 4.8. Comparison between the expression of IL-15 and IL-15Rα mRNA in RSV A2 and 
RSV X infected HNAECs. HNAECs were infected with RSV A2 and RSV X at an MOI of 2.5 for 
48hr. Control non-infected cultures were cultured in the absence of RSV. A) IL-15 mRNA 
(n=3), B) IL-15Rα mRNA (n=3). Data is expressed as the mean ± SEM (Friedman with Conover 
post-hoc test, *p<0.05, ***p<0.001). 

 

IL-15 mRNA was significantly increased after 48hr infection at an MOI of 2.5 by both RSV A2 

(p<0.001) and RSV X (p<0.001), ~4-fold and ~~7-fold, respectively, compared to non-infected 

cells (Figure 4.8A). IL-15 mRNA expression was significantly greater, ~2-fold, after RSV X 

infection (p<0.001) when compared to RSV A2 infection. No IL-15 protein was observed in 

culture supernatants. IL-15Rα mRNA level was significantly increased ~10-fold by RSV A2 

(p<0.001) and increased ~8-fold by RSV X (p<0.001) when compared to non-infected cells 

(Figure 4.7B). 

The results here indicate that both strains of RSV, A2 and X, induce a similar amount of IL-

15Rα mRNA level. However RSV X was able to induce more IL-15 mRNA expression than RSV 

A2. 
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4.3.7. Co-culture of RSV A2 infected HNAECs and donor matched NK cells 

In Section 3.3.7 cultures using freshly isolated human adult peripheral blood NK cells were 

used to characterise BEAS-2B cell-induced NK cell activation. Co-culture of HNAECs with NK 

cells may be more characteristic of in vivo responses compared to experiments using an AEC 

line, BEAS-2B, although still not a full representation of lung infection. Co-culturing HNAEC 

and donor matched NK cells could give a more representative NK cell response. Secondly, 

HNAECs express IL-18 protein as shown in Section 4.3.2 which could enhance NK cell protein 

expression whereas BEAS-2B cells do not (Section 3.3.2). This suggests an enhanced NK cell 

cytokine response may be seen overall during HNAEC-NK cell co-cultures when compared to 

BEAS-2B cell-NK cell co-cultures. The next aim in this chapter was to establish if HNAECs can 

activate NK cells in an HNAEC-NK cell co-culture model again with IFN-γ and TNF-α as 

indicators of NK cell activation. 

The method used here for HNAEC-NK cell co-culture is the same as that used with BEAS-2B 

cells, detailed in Section 3.3.8, with the difference of an MOI of 2.5 for HNAECs in comparison 

to MOI 1 used for BEAS-2B cells. 

 

4.3.7.1. Expression of RSV N gene and IL-8 protein in HNAEC-NK cell co-cultures 

To confirm infection, RSV N gene expression was measured by qPCR and to confirm viral 

replication, IL-8 protein expression in culture supernatants was measured by ELISA (Section 

2.6.3 and 2.7).  
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Figure 4.9. Expression of RSV N gene and IL-8 protein during RSV A2 infection of HNAECs 
cells co-cultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 for 24hr. Donor 
matched NK cells were isolated from PBMCs and added at increasing ratios to HNAECs for a 
further 24hr. Control non-infected cultures were cultured in the absence of RSV. A) RSV N 
gene (n=3), B) individual donor expression of RSV N gene, C) IL-8 protein (n=4), D) individual 
donor expression of IL-8 protein. Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

RSV N RNA was not found in control HNAECs or non-infected HNAECs cultured with NK cells 

(Figure 4.9A). A significant increase in RSV N RNA was seen in infected HNAECs compared to 

non-infected HNAECs (p<0.001). A significant decrease in RSV N RNA was seen at ratios of 

1:1 (p<0.01), 1:2 (p<0.05) and 1:3 (p<0.001) as compared to infected HNAECs without NK 

cells. This was ~0.5-fold lower in NK cell co-cultures at a ratio of 1:3. Individual donor 

expression of RSV N RNA is shown in Figure 4.16B with donor 3 showing ~2-fold higher 

expression than donors 1 and 2 (Figure 4.9B). 
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Similarly to the results in Section 4.3.1, IL-8 protein was present in supernatants from non-

infected HNAECs cultures and no significant differences were seen between non-infected, 

infected or infected HNAECs/NK cell co-cultures (Figure 4.9C). Individual donor expression of 

IL-8 protein is shown in Figure 4.9D with donor 3 showing ~3-fold lower expression than 

donors 1, 2 and 4 (Figure 4.9D).  

These results indicate infection only occurred in cultures where RSV was added and that RSV 

N gene expression decreased with addition of NK cells in infected HNAECs. Although qPCR 

shows RSV infection occurred, there was no increase in IL-8 protein in infected compared to 

non-infected HNAECs. This was seen with BEAS-2B cells (Section 3.3.8.2). IL-8 protein 

expression in HNAECs culture supernatants detailed in Section 4.3.1 also show that this was 

not significantly different, with or without RSV infection.  

 

4.3.7.2. Expression of IFN-γ and TNF-α in HNAEC-NK cell co-cultures 

To determine activation of NK cells during BEAS-2B cell co-culture, expression of NK cell-

derived IFN-γ and TNF-α mRNA and protein were evaluated using qPCR and ELISA, 

respectively (Section 2.6.3 and 2.7). 
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Figure 4.10. Expression of IFN-γ mRNA and protein during RSV A2 infection of HNAECs cells 
co-cultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 for 24hr. Donor 
matched NK cells were isolated from PBMCs and added at increasing ratios to HNAECs for a 
further 24hr. Control non-infected cultures were cultured in the absence of RSV. A) IFN-γ 
mRNA (n=3), B) individual donor expression of IFN-γ mRNA, C) IFN-γ protein (n=4), D) 
individual donor expression of IFN-γ protein. Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001) (n=3). 

 

IFN-γ mRNA was only detected in cultures with NK cells present and at less than 0.06% of the 

housekeeping gene L32 from non-infected HNAEC-NK cell co-cultures (Figure 4.10A). IFN-γ 

mRNA was significantly increased in HNAEC-NK cell co-cultures by infection with RSV at ratios 

of 1:1 (p<0.05), 1:2 (p<0.01) and 1:3 (p<0.001) compared to non-infected HNAECs co-

cultured with NK cells at a ratio of 1:3. Individual donor expression of IFN-γ mRNA is shown 

in Figure 4.10B, with donor 2 showing ~8-fold higher expression than donors 1 and 3 (Figure 
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4.10B). Both donors 1 and 3 show a dose-dependent increase in IFN-γ mRNA with increase 

in NK cell ratio co-culture. 

IFN-γ protein was only found in supernatants from cultures with NK cells present, however 

not all donors were positive at each NK cell co-culture ratio (Figure 4.10C, D). IFN-γ protein 

was present in 2/4 supernatants from non-infected HNAECs co-cultured with NK cells at ratio 

of 1:3 at ~20pg/ml. IFN-γ protein was found in 3/4 supernatants from NK cells cultured alone 

with 10ng IL-15 at ~10-20pg/ml. For HNAEC-NK cell co-cultures IFN-γ protein was detected 

in 2/4 supernatants from cultures at a ratio of 1:1, 3/3 supernatants at a ratio of 1:2 and 4/4 

supernatants at a ratio of 1:3 (Figure 4.10C). IFN-γ protein was significantly increased at a 

ratio of 1:3 compared to non-infected HNAECs co-cultured NK cells at ratio of 1:3 (p<0.01), 

NK cells cultured alone with 10ng/ml IL-15 (p<0.01) and ratio of 1:1 (p<0.01). Individual donor 

expression of IFN-γ protein is shown in Figure 4.10D which details the culture supernatants 

that were negative for IFN-γ protein for each donor (Figure 4.10D). For donor 2, IFN-γ protein 

was found in all culture supernatants with NK cells present. At a co-culture ratio of 1:3 IFN-γ 

ranged from ~10-60pg/ml (Figure 4.10D). 

These results indicate that infected HNAECs are able to express IFN-γ mRNA and protein 

during co-culture with donor matched NK cells. This appears to be NK cell specific and that 

the responses appear heterogeneous. 
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Figure 4.11. Expression of TNF-α mRNA and protein during RSV A2 infection of HNAECs 
cells co-cultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 for 24hr. Donor 
matched NK cells were isolated from PBMCs and added at increasing ratios to HNAECs for a 
further 24hr. Control non-infected cultures were cultured in the absence of RSV. A) TNF-α 
mRNA (n=3), B) individual donor expression of TNF-α mRNA, C) TNF-α protein (n=4), D) 
individual donor expression of TNF-α protein. Data is expressed as the mean ± SEM 
(Friedman with Conover post-hoc test, ***p<0.001) (n=3). 

 

TNF-α mRNA was detected in all cultures (Figure 4.11A). RSV significantly induced TNF-α 

mRNA expression in infected HNAECs culture without NK cells by ~2-3 fold (p<0.001). TNF-α 

mRNA was similarly significantly increased following addition of NK cells to infected HNAECs 

at ratios of 1:1 (P<0.001), 1:2 (P<0.05) and 1:3 (p<0.05). No other significant differences in 

TNF-α mRNA expression were seen. Individual donor expression of TNF-α mRNA is shown in 

Figure 4.11B with basal TNF-α mRNA expression of ~20% relative to the housekeeping gene 

L32, seen across all three donors (Figure 4.11B). RSV induced TNF-α expression in HNAECs to 

~50-60% of the housekeeping gene L32 which was ~2-3-fold more than non-infected 
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HNAECs. Donors 1 and 2 showed a decrease in TNF-α mRNA expression with addition of NK 

cells at a ratio of 1:3 compared to non-infected HNAECs without NK cells (Figure 4.11B). 

Donor 1 and 2’s TNF-α mRNA expression for was approximately the same as that in non-

infected HNAECs. Donor 3 showed a decrease in TNF-α expression at ratios of 1:1 and 1:3 

(Figure 4.11B). 

TNF-α protein was present in culture supernatants from non-infected and infected HNAECs 

without NK cells present at ~200-400pg/ml (Figure 4.11C). RSV infection and co-culture with 

NK cells did not significantly increase TNF-α protein. Individual donor expression of TNF-α 

mRNA is shown in Figure 4.11D, with basal expression of TNF-α protein greatly differing 

between donors (Figure 4.11D). TNF-α protein expression was lowest from donor 2 and 

highest from donor 3. For donors 1 and 3, TNF-α protein was reduced when NK cells were 

added at a ratio of 1:3 compared to infected HNAECs without NK cells. For donors 2 and 4 

TNF-α protein expression was similar between infected HNAECs with and without NK cell co-

culture in.  

These results also indicate that HNAECs express TNF-α protein which was not influenced by 

RSV infection. Addition of NK cells to infected HNAECs did not result in increased expression 

of TNF-α mRNA or protein. 

  

4.3.8. Analysis of NK cell activating cytokine expression in nasopharyngeal aspirate 

samples from children with RSV infection 

The final aim of the work described in this chapter were to measure expression of IL-15, IL-

15/IL-15Rα complex, IL-18, IFN-γ and TNF-α in NPAs from RSV infected infants and from RV 

infected children. 

A total of 56 NPAs from RSV infected infants were analysed by ELISA (Section 2.7.2). IL-15, IL-

15/IL-15Rα complex and IL-18 were measured in all samples. Of these 56, 25 were also used 
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for IFN-γ analysis and 32 for TNF-α. Section 2.11 details the selection criteria for the NPAs 

used. Protein expression was compared to 1) whether patients required oxygen, 2) patient 

age by group, less than one month old (<1M), one to three months old (1-3M) and 3 months 

to 1 year old (3M-1Y), and 3) patient disease severity, mild (no oxygen required), moderate 

(oxygen required) and severe (oxygen and stay in paediatric critical care unit). No protein 

values followed a normal distribution. 

 

4.3.8.1. IL-15 protein levels in NPAs from infants with RSV infection 
 

Figure 4.12. IL-15 concentrations in RSV-only positive NPAs from infants under 1 years old. 
Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) between 
age groups and D) disease severity. M, months and Y, year. Data is expressed as the mean ± 
SEM (n=56) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman post-hoc 
test), *p<0.05). 
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The mean NPA value for IL-15 was 25.5pg/ml with 2/56 NPAs negative in this assay. (Figure 

4.12A). Samples from infants who were given oxygen contained significant more IL-15 

(p<0.05) (Figure 4.12B). No significant differences in IL-15 protein were seen between age 

groups or with severity (Figure 4.12C, D).  

These results indicate that an increase in IL-15 protein in NPAs was associated with the 

requirement for oxygen and level did not change between age groups or with different 

severities.  

 

4.3.8.2. IL-15/IL-15Rα complex levels in NPAs from infants with RSV infection 
 

 

 
Figure 4.13. IL-15/IL-15Rα complex concentrations in RSV-only positive NPAs from infants 
under 1 years old. Data is shown as protein expression in A) all NPAs, B) with oxygen 
administration, C) between age groups and D) disease severity. M, months and Y, year. Data 
is expressed as the mean ± SEM (n=56). 
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Only 6/56 NPAs were positive for IL-15/IL-15Rα complex with values of 74, 74, 82, 86, 660, 

and 935 pg/ml (Figure 4.13A). Due to small number of positive values statistical analysis 

relating this data to oxygen requirement, age group or disease severity was not made. (Figure 

7.13B, C, D). 

These results indicate that in the majority of NPAs the IL-15/IL-15Rα complex was not present 

above the minimum detection limit of 62.5pg/ml. 

 

4.3.8.3. IL-18 protein levels in NPAs from infants with RSV infection 
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Figure 4.14. IL-18 concentrations in RSV-only positive NPAs from infants under 1 years old. 
Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) between 
age groups and D) disease severity. M, months and Y, year. Data is expressed as the mean ± 
SEM (n=56) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman post-hoc 
test). 

 

The mean value for IL-18 was 33.8pg/ml with 13 NPAs below detection level of 11.7pg/ml 

(Figure 4.14A). There was a significant increase in IL-18 protein between those infants who 
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were given oxygen compared to those who did not (p<0.05) (Figure 4.14B). No significant 

differences in IL-18 protein were seen between age groups or with severity (Figure 4.14C, D).  

These results indicate that an increase in IL-18 protein in NPAs was associated with the 

requirement for oxygen and its level did not change between age groups or with different 

severities.  

 

4.3.8.4. IFN-γ protein levels in NPAs from infants with RSV infection 
 

Figure 4.15. IFN-γ concentrations in RSV-only positive NPAs from infants under 1 years old. 
Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) between 
age groups and D) disease severity. M, months and Y, year. Data is expressed as the mean ± 
SEM (n=25) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman post-hoc 
test, *p<0.05, ***p<0.001). 

 

The mean value for IFN-γ was ~23pg/ml with 4 NPAs below the minimum level of detection 

level (Figure 4.15A IFN-γ). There was a significant increase in IFN-γ protein between infants 
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aged 1-3M compared to those aged <1M (p<0.001) and 3M-1Y (p<0.001) (Figure 4.15C). No 

significant differences in IFN-γ expression was observed in relation to oxygen requirement 

or with severity were observed (Figure 4.15B, D).  

These results indicate that an increase in IFN-γ protein in NPAs was associated with the age 

group 1-3M. Protein level did not change with oxygen requirement or with different 

severities.  

 

4.3.8.5. TNF-α protein levels in NPAs from infants with RSV infection 
 

Figure 4.16. TNF-α concentrations in RSV-only positive NPAs from infants under 1 years 
old. Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) 
between age groups and D) disease severity. M, months and Y, year. Data is expressed as the 
mean ± SEM (n=32) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman 
post-hoc test, *p<0.05). 

 

The mean value for TNF-α was ~12.8pg/ml with 3 NPAs below detection level (Figure 4.16A). 

There was a significant decrease in TNF-α protein between infants aged 1-3M (p<0.05) 
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compared to those aged 3M-1Y (Figure 4.16C). No significant differences in TNF-α protein 

were seen between oxygen requirement or with severity (Figure 4.16B, D).  

These results indicate that an increase in IFN-γ protein in NPAs was associated with the age 

group 1-3M and level detected did not change with oxygen requirement or with different 

severities. 

 

4.3.8.6. Correlations between IL-15 and other proteins in NPAs from infants with RSV infection 

Next was to determine if protein levels observed above for IL-15/IL-15Rα complex, IL-18, IFN-

γ and TNF-α positively or negatively correlated to IL-15. Figure 4.17 details these correlations 

between. 

 

Figure 4.17. Correlations between protein levels of IL-15 against IL-18, IFN-γ and TNF-α in 
RSV-only positive NPAs from infants under 1 years old. A) IL-15/IL-15Rα complex (n=56), B) 
IL-18 (n=55), C) IFN-γ (n=25), D) TNF-α (n=32). Correlations were derived by Spearman’s rank 
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order analysis, P two-tailed, n = number of XY pairs. Statistical significant correlation (p<0.05) 
is given in bold. 

The correlation coefficients for IL-15 paired with IL-15/IL-15Rα complex, IL-18 and IFN-γ were 

-0.09, 0.248 and 0.154, respectively, with no significance observed (Figure 4.17A, B, C). A 

positive but weak correlation coefficient of 0.356, was observed between IL-15 and TNF-α 

(p>0.05). However the degrees of freedom, here being 30, based on a critical value table for 

Pearson's correlation shows that the r value of 0.356 is larger than 0.349 and therefore this 

result is not significant. 

 

4.3.9. Analysis of NK cell activating cytokine expression in nasopharyngeal aspirate 

samples from children with RV infection 

A total of 60 NPAs from RV infected infants were used for analysis. IL-15 and IL-18 were 

measured in all samples and 19 samples for IL-15/IL-15Rα complex. 
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4.3.9.1. IL-15 protein levels in NPAs from infants with RV infection 
 

Figure 4.18. IL-15 concentrations in RV-only positive NPAs from infants under 1 years old. 
Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) between 
age groups and D) disease severity. M, months and Y, year. Data is expressed as the mean ± 
SEM (n=60) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman post-hoc 
test, *p<0.05). 

 

The mean value for IL-15 was 36.4pg/ml with 2/60 NPAs were negative in this assay (Figure 

4.18A). No significant differences were observed for IL-15 protein between oxygen 

requirement, age groups and disease severity (Figure 4.18B, C, D).  

These results indicate that IL-15 protein in NPAs from infants under 1 years old and infected 

with RV do not show differences over age or disease severity. 
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4.3.9.2. IL-15/IL-15Rα complex levels in NPAs from infants with RV infection 
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Figure 4.19. IL-15/IL-15Rα complex concentrations in RV-only positive NPAs from infants 
under 1 years old. Data is shown as protein expression in A) all NPAs, B) with oxygen 
administration, C) between age groups and D) disease severity. M, months and Y, year. Data 
is expressed as the mean ± SEM (n=19). 

 

Only 2/19 NPAs were positive for IL-15/IL-15Rα complex with values of 342 and 1621 pg/ml 

(Figure 4.19A). Due to the small number of positive values (Figure 4.19B, C, D) statistical 

analysis and correlation with oxygen requirement, age groups and severity groups were not 

made.  

These results indicate that with the exception of two samples, the IL-15/IL-15Rα complex 

was not present at levels above the minimum level of detection in this assay 62.5pg/ml.  
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4.3.9.3. IL-18 protein levels in NPAs from infants with RV infection 
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Figure 4.20. IL-18 concentrations in RV-only positive NPAs from infants under 1 years old. 
Data is shown as protein expression in A) all NPAs, B) with oxygen administration, C) between 
age groups and D) disease severity. M, months and Y, year. Data is expressed as the mean ± 
SEM (n=60) (B, Mann-Whitney U-test and C, D Kruskal-Wallis with Conover-Inman post-hoc 
test). 

 

The mean value obtained for IL-18 expression was 36.35pg/ml with 18/60 NPAs negative in 

this assay (Figure 4.20A). One NPA had an IL-18 protein level of 600pg/ml. No significant 

differences in IL-18 expression dependant on between oxygen requirement, age groups or 

disease severity was observed (Figure 4.20B, C, D). 

These results indicate that IL-18 expression in NPAs from infants under 1 years old and 

infected with RV do not differ with age or disease severity. 
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4.3.9.4. Correlations between IL-15 and other proteins in NPAs from infants with RV infection 
 

 

Figure 4.21. Correlations between protein levels of IL-15 against IL-18 in RV-only positive 
NPAs from infants under 1 years old. Correlations were derived by Spearman’s rank order 
analysis, P two-tailed, n = number of XY pairs. Statistical significant correlation (p<0.001) is 
given in bold (n=60). 

 

Also determined was if protein levels observed above for IL-18 show positive or negative 

correlation to IL-15. Figure 4.21 details the correlations between protein levels detected in 

NPAs. A positive but weak correlation coefficient of 0.45, was observed between IL-15 and 

IL-18, which was significant (p<0.001). 
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4.3.10. Comparison between IL-15 protein levels in paediatric nasopharyngeal aspirates 

during RSV and RV infection 

 

 

Figure 4.22. Comparison between IL-15 protein in NPAs from infants with RSV or RV 
infection. Data is shown as protein values for A) IL-15 (RSV n=56, RV n=60), B) IL-18 (RSV 
n=56, RV n=60) between RSV and RV. Data is expressed as the mean ± SEM (Mann-Whitney 
U-test, *p<0.05). 

 

Comparison was made between the results obtained with samples from RSV patients and 

those with RV for both IL-15 and IL-18. NPAs from infants with RV infection contained 

significantly higher IL-15 protein (p<0.05) compared to those with RSV by ~11pg/ml (Figure 

4.22A). NPAs from infants with RV infection had significantly higher IL-18 protein (p<0.05) 

than those with RV (Figure 4.22B).  

The significant increase in IL-18 protein for those with RV than those with RSV was possibly 

due to the one sample containing ~600pg/ml protein. Therefore, only IL-15 was taken for 

further comparison to determine if those with RV infection had higher IL-15 protein levels 

with oxygen requirement, between age groups and with disease severity, compared to those 

with RSV infection. 
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Figure 4.23. Comparison between oxygen requirement, age and disease severity for IL-15 
protein levels in NPAs from infants with RSV or RV infection. Data is shown as protein 
expression in A) with oxygen administration (RSV no n=22, RSV yes n=34, RV no n=44, RV yes 
n=16), B) between age groups (RSV <1M n=16, RSV 1-3M n=24, RSV 3M-1Y n=15, RV <1M 
n=13, RV 1-3M n=21, RV 3M-1Y n=26) and C) disease severity (RSV mild n=22, RSV moderate 
n=27, RSV severe n=7, RV mild n=46, RV moderate n=8, RV severe n=6). M, months and Y, 
year. Data is expressed as the mean ± SEM and (Mann-Whitney U-test, *p<0.05, **p<0.01).  

 

RV NPA samples from those who did (p<0.01) or did not (p<0.001) require oxygen treatment 

contained significantly higher IL-15 protein levels than those from RSV infected infants 

(Figure 4.23A). NPAs from RV infants who were aged 1-3M (p<0.05) and those aged 3M-1Y 

(p<0.01) had significantly higher IL-15 protein levels compared from those to RSV infected 

infants (Figure 4.23A). NPAs from RV infants from those with mild disease (p<0.001) and 

those with moderate disease (p<0.05) had significantly higher IL-15 protein levels compared 

to RSV infected infants (Figure 4.23C). 



182 
 

4.4. Discussion 

This chapter aimed to extend the hypothesis detailed in Chapter 3 which was that AECs, after 

infection, can activate NK cells by expression of NK cell-activating cytokines and IL-15 bound 

to IL-15Rα receptor. Here the expression of NK cell activating cytokines IL-12, IL-15, IL-18 and 

IL-15Rα from infected HNAECs was first characterised. This included a comparison in 

expression of IL-15 and IL-15Rα mRNA during infection of HNAECs with RSV A2 and clinical 

isolate RSV X. Next, a HNAEC-NK cell co-culture model was established to determine if 

infected HNAECs could initiate a cytokine response from donor matched NK cells. Finally, 

NPAs from RSV and RV infected infants were analysed to show that these proteins are 

expressed 1) in vivo during RSV or RV infection and 2) a comparison was made between RSV 

and RV results to determine if these viruses induced significantly different patterns of NK cell 

cytokine expression. 

 

4.4.1. Expression of NK cell activating cytokines IL-12, IL-15 and IL-18, the IL-15Rα receptor 

and IL-15/IL-15Rα complex expression by HNAECs in response to RSV A2 infection 

 

4.4.1.1. HNAECs do not express IL-12 during RSV infection 

Here, evidence of only a low expression of IL-12β mRNA was seen in HNAECs at 48 hours in 

the presence or absence of infection (Figure 4.3A). IL-12β mRNA expression was less than 

0.05% of housekeeping gene L32 and significantly unchanged by RSV infection. For some 

donors, IL-12β mRNA was not observed in all samples. No evidence of IL-12 protein 

expression as determined by IL-12p70 subunit measurement, was obtained. Similar results 

were obtained with BEAS-2B cells (Figure 3.2C). In conclusion, IL-12 expression by HNAECs 

and BEAS-2B cells is not influenced by RSV infection and this may also be true for AECs in 

vivo. 
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4.4.1.2. HNAECs express IL-18 protein during RSV infection 

Both non-infected and RSV infected HNAECs expressed IL-18 mRNA ranging between ~70-

250% relative to the housekeeping gene L32 (Figure 4.4B). RSV infection reduced the 

expression of IL-18 mRNA at all MOI compared to non-infected HNAECs (Figure 4.4A). This 

observation was further confirmed by results obtained with the anti-RSV control which 

showed significantly higher IL-18 mRNA expression compare to infection. The reduction in 

IL-18 mRNA following RSV infection was only minor at ~0.25-fold less than control at an MOI 

of 1.  

Unlike BEAS-2B cells, HNAECs expressed IL-18 protein. For each individual donor IL-18 

protein was reduced following infection at an MOI of 0.1, which correlated with the observed 

decrease in IL-18 mRNA at MOI 0.1 (Figure 4.4C, D). At an MOI of 1, IL-18 protein expression 

was the same as non-infected HNAECs and at a higher MOI of 2.5, IL-18 protein was 

significantly greater. Protein expression was reduced in cultures with Palivizumab treatment 

indicating this expression is an RSV-specific response. 

Interestingly, the results observed here using HNAECs and a reduction in IL-18 mRNA at an 

MOI 1 was also observed with BEAS-2B cells (Figure 3.2C). Furthermore, between infected 

BEAS-2B cells over time, IL-18 mRNA was significantly reduced (Figure 3.2C). One explanation 

for this could be a method of controlling IL-18 expression. Under resting conditions, IL-18 

mRNA and pro-IL-18 is expressed however during infection, mRNA synthesis is inhibited to 

reduce excessive inflammatory responses. This was suggested as a mechanism for 

keratinocyte damage and wound healing with keratinocytes showing reduced IL-18 mRNA 

expression when stimulated with cytokines (TNF-α, IL-1β, IFN-γ) yet resulted in simultaneous 

and increasing IL-18 protein detected over time (429). Another possibility is that RSV 

infection leads to downregulation of IL-18 mRNA as a method to allow for increased viral 

spread at lower MOIs and thus early immune evasion. Inhibition in expression mediated by 
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NS1 and NS2 viral proteins has been shown for anti-viral IFNs (Section 1.2.1). Reduced early 

AEC-derived IL-18 expression could lead to reduced or altered NK cell activation, and could 

also affect other IL-18 responsive immune cells. Use of RSV KO strains without NS1 and NS1 

proteins would allow for determine if RSV does modulate IL-18 mRNA expression in AECs. 

 

4.4.1.3. HNAECs express IL-15 mRNA during RSV infection but soluble protein was not 

detected. 

A significant increase in HNAECs IL-15 mRNA expression of ~1.5-fold, was observed at MOI 

2.5 (Figure 4.5A). For all donors, RSV increased IL-15 mRNA levels, particularly at an MOI of 

2.5. Although this indicates that the IL-15 response may be different between individuals, 

due to the complex nature and tight regulation of IL-15 translation and transcription, 

variation in IL-15 protein may not be observed. This may be true because IL-15 protein was 

not observed below 3pg/ml (Figure 4.5B, C). However, as described in Chapter 3, IL-15 is 

expressed at the cell surface on BEAS-2B cells during RSV infection. Therefore determining 

the cell surface expression of IL-15 on HNAECs would provide a better insight into the 

individual expression of IL-15, rather than soluble protein expression in culture supernatants, 

and therefore provide more information on the potential of IL-15 signalling by HNAECs. 

In comparison to the results observed using RSV infected BEAS-2B cells, the overall 

expression of IL-15 mRNA by HNAECs was ~3-10-fold higher in non-infected HNAECs than 

non-infected BEAS-2B cells (Section 3.3.3). Similar to BEAS-2B cells at an MOI of 1 with 48hr 

infection, HNAECs also did not show a significant increase in IL-15 mRNA levels. Only with 

higher RSV MOI was there a significant increase in IL-15 mRNA levels by HNAECs. This could 

suggest that induction of IL-15 mRNA by AECs may only be seen during infection with higher 

viral titres. However, as HNAECs express a higher basal expression of IL-15m RNA, this could 
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suggest that primary epithelial cells may be primed for the initiation of NK cell stimulation 

and other IL-15 responsive immune cells during RSV infection. 

The results here cannot be used to support the conclusion that IL-15 protein was not 

expressed by HNAECs as IL-15 has been shown to be ~2.5pg/ml with RSV infection in HBECs 

and ~1pg/ml during no infection, which is below the detection limit of the Luminex assay 

used here (152,341). In comparison to results observed by Zdrenghea et al., IL-15 mRNA was 

increased by ~3-fold at an MOI of 1 with 24hr RSV infection, which is more than what was 

observed here in Figure 4.5A at ~1.5-fold (152). This may reflect the different cell types used, 

here being nasal epithelial cells and for Zdrenghea et al., bronchial epithelial cells. This could 

also suggest that lower AECs could be a better model to use for AEC-NK cell co-cultures and 

is discussed further in Chapter 6. 

 

4.4.1.4. HNAECs express IL-15Rα during RSV infection 

IL-15Rα mRNA levels were ~15-50% of the housekeeping gene L32 in non-infected HNAECs 

and increased by RSV by ~3-6 fold for all MOIs (Figure 4.6). IL-15Rα was also detected at the 

cell surface, similar to BEAS-2B cells (Figure 4.6D). Therefore, RSV can induce IL-15Rα 

expression in both BEAS-2B cells and HNAECs and therefore is likely to be a common 

response to RSV infection by AECs in vivo. HNAECs had a higher basal expression of IL-15Rα 

mRNA compared to BEAS-2B cells and with this in mind, HNAECs may potentially express 

more IL-15/IL-15Rα complex, either presented at the cell surface or as a secreted complex, 

compared to BEAS-2B cells. However, RSV produced a greater fold increase in IL-15Rα mRNA 

in BEAS-2B cells compared to HNAECs in relation to basal expression level. Culture 

supernatants were used for IL-15/IL-15Rα complex protein analysis but for HNAECs no 

protein was detected. This does not however, fully support the conclusion that IL-15/IL-15Rα 

complexes are not secreted by HNAECs and a method of protein detection below 62.5pg/ml 
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would clarify this. Overall, RSV induced expression of IL-15Rα by AECs could suggest a specific 

method of IL-15 signalling through cell surface complex expression in comparison to soluble 

IL-15 signalling. This could occur in vivo and is discussed further in Chapter 6. 

 

4.4.2. Comparison between the expression of IL-15 and IL-15Rα by HNAECs in response to 

infection with two different RSV A strains, A2 lab strain and clinical isolate RSV X 

Expression of IL-15 mRNA was significantly higher by ~4-fold with RSV X compared to RSV A2 

infection (Figure 4.8A). IL-15Rα mRNA expression was similar for each RSV strain (Figure 

4.8B). An increase in IL-15 mRNA level induced by RSV X compared to RSV A2 may not 

necessarily correlate to increased protein expression due to the complex nature of IL-15 post 

transcription controls. However, it is possible that there could be an increase in IL-15 protein 

synthesis and possibly IL-15/IL-15Rα complex formation with RSV X infection in HNAECs. This 

however would need to be demonstrated through cell surface flow cytometry and culture 

supernatant analysis. 

 

4.4.3. Following RSV infection, can HNAECs activate NK cells? 

4.4.3.1. Does co-culture of donor matched NK cells with RSV infected HNAECs influence viral 

replication and IL-8 response? 

Similarly to infected BEAS-2B cells co-cultured with NK cells in Section 3.3.8.2, a lower 

expression of RSV N RNA was also observed when infected HNAECs were co-cultured with 

NK cells. Therefore RSV N RNA expression was expressed as relative to infected HNAECs 

without NK cell co-culture. RSV N gene expression was significantly reduced in all HNAEC-NK 

cell co-cultures (Figure 4.9A, B). At a ratio of 1:3, RSV N gene was ~0.5-fold lower than from 

infected HNAECs without NK cells. This could be reflective of NK cell-derived housekeeping 

gene L32 which would reduce true RSV N gene levels specific to infected BEAS-2B cells. 
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Another possibility is that the presence of NK cell derived anti-viral cytokines and/or targeted 

cell lysis of infected cells. A decrease in RSV L gene expression was observed during HBEC-

CD8+ T cell co-culture and these cells, similarly to NK cells, also express both anti-viral 

cytokines and display cytotoxic responses (430). Therefore, NK cells in this model may 

express a cytolytic phenotype and induce infected-AEC apoptosis. However as discussed in 

Section 3.4.3.1, this decrease in RSV RNA gene expression observed in this work and the 

published study could be due to additional housekeeping gene contribution from NK cells. 

IL-8 mRNA and protein levels remained the same for all conditions, with and without RSV 

infection or NK cell co-culture (Figure 4.9C, D). This result was also similar for BEAS-2B cell-

NK cell co-cultures (Figure 3.10C). Therefore, addition of NK cells to infected HNAECs does 

not alter IL-8 expression, regardless of the apparent decrease in RSV N gene expression. This 

may indicate that the decrease in RSV N gene during co-cultures is not due to NK cell 

cytotoxicity, which could have been displayed as a decrease in IL-8 expression. Again, this 

would need further evaluation. 

 

4.4.3.2. IFN-γ is expressed during co-culture of HNAECs and NK cells 

IFN-γ mRNA and protein were only expressed in co-cultures with NK cells present (Figure 

4.10). IFN-γ protein was only present in all HNAEC-NK cell co-cultures at a ratio of 1:3 and 

only expressed when NK cells are present in cultures, again suggesting that the IFN-γ protein 

detected is NK cell specific (Figure 4.10C, D). IFN-γ protein was also expressed from 2/4 non-

infected HNAEC-NK cell co-cultures which was not seen for BEAS-2B cells and could be due 

to donor matching (Figure 3.11B). In the lung, resting HNAECs will likely be in contact with 

resident NK cells and may provide survival of resident NK cells to maintain beneficial NK 

numbers for potential infection. Resident NK cells may therefore express a small level IFN-γ 

which could act to induce expression of certain IFN-γ inducible genes, like ICAM-1, which 
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could aid in continued AEC-NK cell interactions without infection. This possibility is examined 

further in Chapter 5.  

 

4.4.3.3. TNF-α expression during co-culture is not NK cell specific 

A basal level of TNF-α mRNA and protein was observed from HNAECs without NK cells which 

could be necessary for AECs, such as for survival and cell signalling. TNF-α mRNA, although 

not significant showed an apparent decrease in expression with addition of NK cells at a ratio 

of 1:3 compared to infected HNAECs without NK cells. Therefore these results demonstrate 

that soluble TNF-α may not be a suitable cytokine to measure NK cell activation within these 

co-cultures as it is not NK cell specific. However, detection of TNF-α protein by other means 

could have been used. Furthermore, membrane-bound TNF-α has also been reported on 

human peripheral blood NK cells, NK92 cells and IL-2 stimulated mouse NK cells 

(384,385,431), with IL-15 also being shown to upregulate membrane-bound TNF-α on human 

peripheral NK cells (384). Measurement by flow cytometry of intracellular or membrane-

bound TNF-α, would have provided more information about NK cell-specific TNF-α 

expression during HNAEC co-cultures missed when using the ELISA for soluble protein 

analysis. 

 

4.4.4. Heterogeneity in HNAEC responses to RSV 

There is great heterogeneity between both level and patterns of gene and protein expression 

between HNAEC donors without and with RSV infection and also NK cell responses during 

co-culture. Although these experiments were done in vitro, differences in responses 

between individuals during in vivo infection may also occur. An individual’s AEC-expression 

profile at any one time may reflect RSV disease severity and requires further 

characterisation. Overall, heterogeneity in individual donor responses has been observed for 
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expression of NK cell activating IL-15, IL-15Rα and IL-18 from HNAECs and this has also been 

reflected in expression of IFN-γ and TNF-α during HNAEC-NK cell co-cultures with some 

donors expressing IFN-γ and others not. For example during RSV infection, donor 2 showed 

the biggest induction of IL-15Rα mRNA, most IL-18 protein and was the only donor to show 

IFN-γ expression in all cultures with NK cells in comparison to other donors. However, this is 

only speculative and for conformation of this, repeated HNAEC isolations from the same 

donor would need to be done. The responses shown here also are only measured at one time 

point and individual donor kinetics of gene expression may result in different peaks in protein 

expression at different times.  

4.4.5. Expression of IL-15, IL-15/IL-15Rα complex, IL-18, IFN-γ and TNF-α in NPAs from RSV 

and RV infected infants 

To support the hypothesis here that alone AECs, after infection, can activate NK cells, in vivo 

expression of NK cell activating cytokines were examined in airway fluids from RSV and RV 

infected infants. 

4.4.5.1. IL-15 and IL-18 are associated with oxygen administration with RSV infection only 

For those who required oxygen, IL-15 protein was slightly but significantly increased by 

~6pg/ml (Figure 4.12B). This is not much, however severity scores show that those with the 

highest IL-15 protein levels had moderate or severe disease (Figure 4.12D).  

IL-15/IL-15Rα complex was only detected in 6/56 NPAs and this could be reflective of the 

detection limit of the assay as 4 out of these 6 positive were just about the detection limit 

(62.5pg/ml) at 74, 74, 82, 86pg/ml (Figure 4.13). Therefore it cannot be concluded that IL-

15/IL-15Rα complex was not present in NPAs and requires further analysis.  

IL-18 protein was slightly but significantly increased by ~18pg/ml in NPAs from those who 

required oxygen compared to those who didn’t (Figure 4.14A, B). Furthermore, more NPAs 
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were negative for IL-18 protein from infants who did not require oxygen compared to those 

who did.  

 

4.4.5.2. Those aged 1-3 months old and infected with RSV show different expression of IFN-γ 

and TNF-α protein 

For those aged 1-3 months old, lower IFN-γ protein and higher TNF-α protein was observed 

compared to younger and older infants (Figures 5.23 and 5.24). However, this is a small 

sample size making it hard to conclude that this is a true response within this age group. 

Analysis of more samples might support the veracity of this observation. However, infants 

within this age group are likely to have waning maternal antibody titres compared to infants 

aged less than 1 month and less self-produced antibodies than those aged 3 months above. 

How this relates to the results shown here is difficult to explain without speculating. 

Other studies observed no differences for IFN-γ protein between age during RSV infection 

(432,433). However, the overall levels of IFN-γ and TNF-α are similar to other studies. Nasal 

IFN-γ ranged from 0-~70pg/ml in children with RSV and was shown to be positively correlated 

to TNF-α levels (434). Tracheal aspirates from infants with RSV bronchiolitis observed IFN-γ 

ranged from ~10-54pg/ml and TNF-α ranged from ~11-18pg/ml (435). IFN-γ protein was 

higher in nasal washes from infants under 1 years old with influenza compared to those with 

RSV (433). Another study also showed significantly less IFN-γ in serum of RSV infected infants 

compared to influenza, parainfluenza and adenovirus, suggesting (436). Furthermore, non-

ventilated infants with RSV bronchiolitis had higher levels of IFN-γ in NPAs than those who 

required mechanically ventilation or oxygen (432,437). RSV may fail to induce a robust IFN-γ 

response which lead to increased disease severity. Lower IFN-γ levels could limit IFN-γ-

inducible gene expression, such as anti-viral proteins and IFN-γ-inducible chemokines, which 
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would otherwise reduce viral spread and recruit adaptive immune cell populations to sites 

of infection.  

 

4.4.5.3. Correlations between NPA cytokines.  

For infants with RV infection, a weak but positive correlation was observed between IL-15 

and IL-18 levels (Figure 4.21). Increase in both these proteins at the same time could lead to 

synergistic enhancement of NK cell and T cell responses. However, analysis of proteins in this 

way does not conclude if increase in either IL-15 or IL-18 leads to increased expression of the 

other cytokine.  

 

4.4.5.4. NPAs from infants with RV infection show higher expression of IL-15 and IL-18. 

Infants with RV infection had higher NPA level of IL-15 and IL-18 protein compared to those 

with RSV (Figure 4.22). For IL-15, the difference was only small at ~11pg/ml and for IL-18 this 

significance could have been driven through one sample with ~600pg/ml IL-18. Comparisons 

between oxygen requirement show that those with RV had higher IL-15 levels than those 

with RSV infection whether they required oxygen or not (Figure 4.23A). This comparison 

details that overall RV infection may induce more IL-15 protein than RSV and only in those 

with RSV infection is a higher level of IL-15 protein potentially associated with increased 

disease severity. 

Other clinical studies have also reported IL-15, IL-18, IFN-γ and TNF-α in mucosal and serum 

samples collected during RSV infection. This is the first account of IL-15/IL-15Rα complex 

analysis from infants infected with RSV and RV. Tracheal aspirates from infants with RSV 

bronchiolitis also showed similar IL-15 protein levels at ~30-37pg/ml suggesting low IL-15 

protein levels throughout the lower and upper airways (435). In regards to the data shown 

here, low respiratory IL-15 levels could indicate that IL-15 secretion is highly regulated during 
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RSV infection and its expression may be seen as part of IL-15/IL-15Rα complexes presented 

at the AEC cell surface. Serum IL-15 has been shown to be increased with disease severity in 

RSV infected infants (438). Here, higher IL-15 levels in NPAs did not correlate to more severe 

RSV or RV disease, only with oxygen requirement for those with RSV infection, and could be 

reflective of the small sample size for the severe groups. The results of a comprehensive 

analysis of NPA from children with bronchiolitis show some similarities to observations in 

this work, with overall higher IL-15 levels in samples from infants with RV infection (439). 

Overall, these results could indicate that during RSV infection, IL-15 responses could be lower 

compared to RV infection which could alter immune response outcomes for each virus. 

However, airway fluid analysis does not regard IL-15 trans-presentation signalling though IL-

15/IL-15Rα complex. 

4.4.5.5. Limitations of analysing discarded NPAs 
 

Use of discarded NPAs which were taken when infants displayed symptoms that led to 

guardians taking them to the hospital could suggest that the cytokines analysed here may be 

more reflective of later stages of RSV infection when NK cell population expansion is starting 

to decline, as shown in mice. It is impossible to collect NPAs from infants on the first day or 

second of RSV infection which would be more representative of the environment NK cells 

will be exposed to and IFN-γ and TNF-α potentially derived from NK cells. However, the NK 

cell population expansion and decline has not been studied in humans and may not represent 

that shown in mouse models. Regardless, IL-15 and IL-18 are still present in NPAs from 

infants with RSV infection during later stages of RSV infection and levels higher in those 

requiring oxygen. Higher expression of IL-15 and IL-18 many days after initial infection may 

lead to prolonged NK cell activation, population expansion and increased T cell responses 

which may reflect an increase in disease severity. Furthermore, hospital stays for infants with 

RSV infection are longer compared to those with RV bronchiolitis and additionally RV 
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symptoms present sooner than for RSV (440,441). Considering the published data together 

with results observed from the NPA analysis, RSV modulation of the immune response may 

lead to increased IL-15 and IL-18 expression which may reflect disease severity and longer 

hospital stays in comparison with RV. 

Another limitation is use of NPA in comparison to analysis of BAL. BAL may have provided a 

more representative response within the lung and thus more accurately reflect RSV severity. 

To allow for further characterisation of NK cell activating cytokines and NK cell-derived 

cytokines during RSV infection, a prospective study could be developed in which NPAs and/or 

BAL are taken from infants each day after admission for up to 1 week. It may also be possible 

to collect NK cells from BAL which could allow for phenotyping. Comparison from infants 

with other respiratory disease may provide more detail into how RSV modulates the immune 

response and if one of these pathways affects IL-15 and IL-18 expressing and responsive cells.  

Overall, the results for NPAs analysed here indicate that higher levels of IL-15 and IL-18 may 

be associated with RSV disease severity which is not observed for those with RV infection. 

Furthermore, although an increase in IL-15 and IL-18 levels was observed in NPAs from 

infants with RV in comparison to those with RSV, IL-15 and IL-18 levels were not associated 

with an increase in disease severity for those with RV infection. Therefore, IL-15 and IL-18 

responsive cells during RSV infection may be the populations that are contributing to 

severity, such as NK cells and T cells, which is not seen for those with RV infection. 

 

4.4.6. Limitations of an in vitro HNAEC-NK cell co-culture model compared to in vivo 

HNAEC-NK cell responses during RSV infection 

Similar to the limitations mentioned with the BEAS-2B cell-NK cell co-culture model (Section 

3.4.7), peripheral blood NK cells may not respond in the same way as resident lung NK cells. 

A comparison between human peripheral blood and nasal NK cells observed that gene 
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expression profiles differs between the two (442). Analysis indicated that nasal NK cells may 

express a less cytotoxic phenotype than peripheral blood NK cells. IL-12 was also not 

expressed by HNAECs and may therefore produce different NK cell response than that in 

vivo. This model is still an improvement on that with use of BEAS-2B cells to determine NK 

cell responses during co-culture. However, an even better model would be to use nasal NK 

cells with HNAECs as human nasal NK cells have a different phenotype compared to lung NK 

cells (262). Furthermore, ALI culture is conclusively a better model than that of submerged 

monolayers such as having similar gene profiles to in vivo cells, although is still not a perfect 

match (443,444). The best in vitro model that could be achieved would be the use of ALI 

cultured HBECs with donor matched lung NK cells. Regardless, the AEC-NK cell co-culture 

used here is still a better model than characterising responses to RSV with AECs or NK cells 

alone. A strength of this model has been its ability to demonstrate that recruited peripheral 

NK cells can be activated by RSV infected HNAECs to express IFN-γ. Furthermore, it has 

highlighted the heterogeneity of individual AEC responses to RSV and that impaired airway 

epithelium responses for some could ultimately lead to imbalances in immune cell 

responses. 

 

4.5. Summary 

RSV infection of HNAECs induces increased expression of both IL-15 and IL-15Rα mRNA, cell 

surface IL-15Rα protein and IL-18 protein. IL-15 protein was not detected in culture 

supernatants with 48hrs infection up to MOI 2.5. Clinical isolate RSV X induced more IL-15 

mRNA than RSV A2. IL-18 mRNA protein has a reduced expression with RSV at an MOI of 0.5 

compared to control non-infected HNAECs. It was then shown that RSV infected HNAECs 

could stimulate NK cell IFN-γ expression. This was observed for NK cells at a ratio of 1:3 for 

all donors. TNF-α protein was also expressed by non-infected and infected HNAECs within 
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this co-culture model with no apparent increase with co-culture with NK cells. These results 

show that different donors displayed different NK cell activating cytokine expression profiles 

which may reflect the different expression of IFN-γ during HNAEC-NK cell co-culture. NPA 

samples from infants infected with RSV and requiring oxygen during hospital admission show 

higher IL-15 and IL-18 protein levels than those who did not need oxygen treatment. Those 

aged 1-3 months displayed higher IFN-γ and lower TNF-α protein in NPAs compared to those 

younger and older which may reflect changes in the developing immune system. For infants 

infected with RV, IL-15 and IL-18 protein levels in NPAs were not different between disease 

severities. Infants infected with RV showed higher NPA IL-15 protein levels than those 

infected with RSV. This trend towards an increase with disease severity was not observed for 

IL-18. Overall, these results demonstrate that the RSV infected nasal airway epithelium can 

alone initiate an IFN-γ response from donor matched NK cells and that nasal IL-15 and IL-18 

protein levels may correlate to disease severity in infants with RSV bronchiolitis.  

  



196 
 

Chapter 5. Enhanced immune responses during RSV infection 
of airway epithelial cells during co-culture with NK cells 
 

5.1. Introduction 

In Chapter 3, RSV infection of BEAS-2B cells was shown to induce the expression of IL-15 and 

IL-15Rα mRNA, cell surface IL-15 and IL-15Rα and soluble IL-15 protein. During co-culture of 

RSV infected BEAS-2B cells and NK cells, NK cells were shown to express IFN-γ indicating 

activation. In Chapter 4 these results were extended to primary AECs and co-culture with 

donor matched NK cells. RSV infection of HNAECs induced expression of IL-15 and IL-15Rα 

mRNA and cell surface IL-15Rα. During co-culture of RSV infected HNAECs, NK cells expressed 

IFN-γ. Overall these results indicate that during RSV infection, AECs are capable of activating 

NK cells. In turn, NK cell-derived cytokines within this co-culture model could influence the 

AEC response. IFN-γ and TNF-α were expressed in co-cultures and levels were higher when 

NK cells were present. NK cell derived cytokines, such as IFN-γ and TNF-α observed in 

Chapters 3 and 4 during co-culture, could lead to the expression of IFN-γ and TNF-α inducible 

gene expression by AECs. For example, TNF-α has been shown to induce gene expression of 

IL-15 by ~2-fold and IL-15Rα by ~8-fold, 10ng/ml and 20ng/ml, respectively, in A549 cells 

(445,446). This could then lead to enhanced inflammatory cell recruitment which is co-

ordinated through both AECs and NK cells. 

The work described in this chapter aimed to further characterise the interactions between 

AECs and NK cells using my established co-culture model. Emphasis was placed on measuring 

expression of IFN-γ and TNF-α induced AEC-derived immune mediators. I examined the 

hypothesis that NK cells, through expression of IFN-γ and TNF-α, influence the AEC immune 

and inflammatory responses and that the cytokine environment before infection also 

determines BEAS-2B cell activation of NK cells. A selected IFN-γ/TNF-α-inducible AEC-derived 

cytokine profile was measured. This profile was chosen because previous studies have shown 
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proteins within this group to be significantly upregulated during RSV infection including the 

Th1 response associated chemokines CXCL9, CXCL10, CXCL11 (234), Th2 response associated 

chemokine TARC (233,447), B cell activating cytokine BAFF (145,448) and immune cell 

adhesion molecule ICAM-1 (449–451).  

First, expression of the selected IFN-γ-inducible AEC-derived cytokine profile was 

characterised within the AEC-NK cell co-culture models following infection of with either RSV 

A2 or RSV X. Neutralising antibodies were used to confirm the observed effects are 

dependent on IFN-γ and TNF-α. As described in Section 1.2.3, differential cytokine 

environments such (e.g.Th1 or Th2) may alter the resultant AEC inflammatory profile, both 

before and during RSV infection. Therefore the response of BEAS-2B cells primed in Th1 and 

Th2 cytokine environments was measured and responses further characterised during 

infected BEAS-2B cell-NK cell co-cultures. 

 

5.2. Aims 
 

 To characterise AEC-NK cell interactions through expression of AEC-derived CXCL9, 

CXCL10, CXCL11, TARC and BAFF during co-culture of RSV infected AECs and NK cells 

(Sections 5.3.1, 5.3.3 and 5.3.4). 

 To compare the effect of NK cell-induced expression of BEAS-2B cell-derived Th1 

associated chemokines in response to infection with two different RSV A strains, A2 

lab strain and clinical isolate X (Section 5.3.2). 

 To characterise how Th1 and Th2 cytokine environments influence the expression of 

BEAS-2B cell derived immune molecules which could then influence NK cell 

responses during BEAS-2B cell-NK cell co-culture (Section 5.3.5). 
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5.3. Results  
 

5.3.1. Expression of chemokines, cytokines and adhesion molecules during BEAS-2B-NK cell 

co-culture 

5.3.1.1. Th1 associated chemokines CXCL9, CXCL10 and CXCL11 

To determine if NK cells influence the expression of BEAS-2B cell derived Th1 associated 

chemokines CXCL9, CXCL10 and CXCL11 proteins and CXCL10 mRNA expression were 

evaluated by ELISA and qPCR, respectively (Section 2.6.3 and 2.7).  
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Figure 5.1. Expression of Th1 recruitment associated chemokines CXCL9, CXCL10 and 
CXCL11 in RSV A2 infected BEAS-2B cells co-cultured with NK cells. BEAS-2B cells were 
infected with RSV A2 at MOI 1 for 24hr. NK cells were isolated from healthy adult PBMCs and 
added at increasing ratios to BEAS-2B cells for a further 24hr. Control non-infected cultures 
were cultured in the absence of RSV and Palivizumab used as an anti-RSV control. A) CXCL9 
protein (n=4), B) CXCL10 mRNA (n=3), C) CXCL10 protein (n=3), D) CXCL11 protein (n=4). Data 
is expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, **p<0.01, 
***p<0.001). 

 

CXCL9 protein was found in culture supernatants from infected BEAS-2B cells, cultured with 

or without NK cells (Figure 5.1A). NK cells cultured alone or with 10ng/ml IL-15 did not 

express CXCL9 protein. CXCL9 was not detected in culture supernatants from NK cells 

cultured with control non-infected BEAS-2B cells. There was a significant increase in CXCL9 
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protein detected from infected BEAS-2B cells alone without NK cells at ~2900pg/ml (p<0.001) 

compared to non-infected BEAS-2B cells. CXCL9 expression was significantly increased by 

addition of NK cells at ratios of 1:1 (p<0.001), 1:2 (p<0.001) and 1:3 (p<0.001) to ~3700pg/ml, 

~4000pg/ml and ~6500pg/ml, respectively, compared to infected BEAS-2B cells alone. There 

was significantly higher expression of CXCL9 protein at an NK cell ratio of 1:3 compared to 

ratios of 1:1 (p<0.01) and 1:2 (p<0.05) (Figure 5.1A). At a ratio of 1:3, there was ~2-fold 

increase in CXCL9 protein expression compared to infected BEAS-2B cells without NK cells. 

Neutralisation of RSV with the control antibody Palivizumab significantly reduced expression 

of CXCL9 protein compared to infected BEAS-2B cells without NK cells (p<0.05) and infected 

BEAS-2B cells cultured with NK cells at a ratio of 1:3 (p<0.001). 

CXCL10 mRNA was expressed at ~0.02% of the housekeeping gene L32 levels by non-infected 

BEAS-2B cells or NK cells cultured in media alone or with 10ng/ml IL-15 (Figure 5.1B). CXCL10 

mRNA levels where similar ~0.23% of the housekeeping gene L32 level in cultures with non-

infected BEAS-2B cells co-cultured with NK cells at a ratio of 1:3. There was a significant 

increase in CXCL10 mRNA expression by infected BEAS-2B cells to ~60% of the housekeeping 

gene L32 compared to non-infected BEAS-2B cells (p<0.05). CXCL10 mRNA expression was 

significantly increased in infected BEAS-2B cell-NK cell co-cultures at ratios of 1:1 (p<0.05), 

1:2 (p<0.01) and 1:3 (p<0.001) being ~166%, ~239% and ~324% of the housekeeping gene 

L32 levels, respectively, compared to infected BEAS-2B cells alone. There was a significantly 

higher expression of CXCL10 mRNA in BEAS-2B cell-NK cell co-cultures at ratio of 1:3 (p<0.05) 

compared to ratio of 1:1. Compared to infected BEAS-2B cells without NK cells, CXCL10 mRNA 

expression was ~2-fold higher at ratios of 1:1 and 1:2 and ~3-fold higher for ratio 1:3 (Figure 

5.1B). CXCL10 mRNA expression was significantly reduced in infected BEAS-2B cells cultured 

with NK cells at a ratio of 1:3 plus Palivizumab compared to infected BEAS-2B cells cultured 

with NK cells at a ratio of 1:3 (p<0.001). 
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CXCL10 protein was not expressed by control BEAS-2B cells, non-infected BEAS-2B cells co-

cultured with NK cells, NK cells cultured in media alone or with 10ng/ml IL-15 (Figure 5.1C). 

RSV infection of BEAS-2B cells led to a significant increase in CXCL10 protein expression to 

~2120pg/ml (p<0.001). CXCL10 protein expression was significantly increased further in co-

cultures of infected BEAS-2B cells and NK cell at ratios of 1:1 (p<0.05), 1:2 (p<0.05) and 1:3 

(p<0.001) to ~2700pg/ml, ~2950pg/ml and ~3650pg/ml, respectively, compared to infected 

BEAS-2B cells without NK cells. There was significantly higher expression of CXCL10 protein 

at an NK cell ratio of 1:3 compared to 1:1 (p<0.05). Compared to infected BEAS-2B cells 

without NK cells, CXCL10 protein was ~2-fold higher at a ratio of 1:3. Palivizumab anti-RSV 

control significantly reduced CXCL10 protein expression by infected BEAS-2B cells without 

NK cells (p<0.01) and infected BEAS-2B cells cultured with NK cells (p<0.001).  

CXCL11 protein was not expressed by control BEAS-2B cells, non-infected BEAS-2B cells co-

cultured with NK cells and NK cells cultured in media alone or with 10ng/ml IL-15 (Figure 

5.1D). There was a significant increase in CXCL11 protein expression by infected BEAS-2B 

cells compared to non-infected BEAS-2B cells (p<0.001). CXCL11 protein expression was 

significantly increased in infected BEAS-2B cell-NK cell co-cultures at ratios of 1:1 (p<0.001), 

1:2 (p<0.001) and 1:3 (p<0.001) to ~950pg/ml, ~1000pg/ml and ~1480pg/ml, respectively, 

when compared to infected BEAS-2B cells without NK cells which had expression at ~750% 

of the housekeeping gene L32. There was significantly higher expression of CXCL11 protein 

in co-cultures at a ratio of 1:3 compared to ratios of 1:1 (p<0.001) and 1:2 (p<0.01). 

Compared to infected BEAS-2B cells without NK cells, CXCL11 protein was ~0.5-fold higher at 

a ratio of 1:3. Cultures pre-treated with Palivizumab, an anti-RSV control, had significantly 

reduced CXCL11 protein expression when compared to infected BEAS-2B cells without NK 

cells (p<0.01) and infected BEAS-2B cells cultured with NK cells at a ratio of 1:3 (p<0.001).  
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These results firstly indicate that RSV induces the expression of CXCL9, CXCL10 and CXCL11 

proteins and CXCL10 mRNA in BEAS-2B cells. Expression of CXCL11 protein was ~2-fold lower 

than CXCL10 during RSV infection. Secondly, NK cells do not express these proteins in culture 

media alone or with IL-15 stimulation. Thirdly, addition of NK cells to infected BEAS-2B cells 

increased the expression of these proteins and CXCL10 mRNA. The induced increase in CXCL9 

protein expression during NK cell co-culture was greater than observed for CXCL10 and 

CXCL11. 

 

5.3.1.2. Th2 associated chemokine TARC 

TARC has been shown to be expressed by HBECs and AEC lines, A549 and BEAS-2B (452,453). 

TARC expression was furthermore shown to be induced by IFN-γ. Therefore, to determine if 

NK cells influence TARC expression by infected BEAS-2B cells, TARC mRNA and protein 

expression was measured by qPCR and ELISA, respectively (Section 2.6.3 and 2.7).  
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Figure 5.2. Expression of Th2 recruitment associated chemokine TARC in RSV A2 infected 
BEAS-2B cells co-cultured with NK cells. BEAS-2B cells were infected with RSV A2 at MOI 1 
for 24hr. NK cells were isolated from healthy adult PBMCs and added at increasing ratios to 
BEAS-2B cells for a further 24hr. Control non-infected cultures were cultured in the absence 
of RSV and Palivizumab used as an anti-RSV control. Data is expressed as the mean ± SEM 
(n=3). 
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TARC mRNA expression was only observed in infected BEAS-2B cell-NK cell co-cultures 

(Figure 5.2). TARC mRNA expression was observed in 2/3 samples at a ratio of 1:1 and 1/3 at 

a cell ratios of 1:2 and 1:3. TARC mRNA expression ranged from ~0.4-2% of the housekeeping 

gene L32. TARC protein was not detected in any culture supernatants. 

These results indicate that BEAS-2B cells do not express TARC protein, even when infected 

with RSV. TARC mRNA was only observed in some infected BEAS-2B-NK cell co-cultures, 

however these results cannot determine if expression is specific to RSV infection and/or NK 

cell co-culture. 

5.3.1.3. Adaptive immune response cytokine BAFF 

BAFF has been shown to be expressed by HBECs and AEC lines, A549 and BEAS-2B cells 

(145,151). BAFF expression has also been shown to be induced by IFN-γ in human intestinal 

epithelial cells, human decidual stromal cells and AECs (151,454,455). Therefore, to 

determine if NK cells influence BAFF expression by infected BEAS-2B cells, mRNA and protein 

were measured by qPCR and ELISA, respectively (Section 2.6.3 and 2.7).  
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Figure 5.3. Expression of BAFF in RSV A2 infected BEAS-2B cells co-cultured with NK cells. 
BEAS-2B cells were infected with RSV A2 at MOI 1 for 24hr. NK cells were isolated from 
healthy adult PBMCs and added at increasing ratios to BEAS-2B cells for a further 24hr. 
Control non-infected cultures were cultured in the absence of RSV and Palivizumab used as 
an anti-RSV control. A) BAFF mRNA (n=3), B) BAFF protein (n=4), C) BAFF protein fold change 
relative to RSV control (n=4). Data is expressed as the mean ± SEM (Friedman with Conover 
post-hoc test, *p<0.05, **p<0.01, ***p<0.001). 

 

BAFF mRNA expression was detected in non-infected BEAS-2B cells at ~0.14% of the 

housekeeping gene L32 level (Figure 5.3A). BAFF mRNA was detected in 1/3 NK cell samples 

cultured in media only and 2/3 samples cultured with 10ng/ml IL-15 at ~1.9% and ~11.92% 

of the housekeeping gene L32, respectively. BAFF mRNA expression from co-cultures of non-

infected BEAS-2B cells with NK cells at a ratio of 1:3 was seen at ~0.2% of the housekeeping 

gene L32 level. RSV induced expression of BAFF mRNA (p<0.01) up to ~25% of the 

housekeeping gene L32 compared to non-infected BEAS-2B cells. BAFF mRNA was 

significantly increased in infected BEAS-2B cell-NK cell co-cultures at a ratio of 1:3 (p<0.01) 

to ~55% of the housekeeping gene L32 expression when compared to infected BEAS-2B cells 

without NK cells. Compared to infected BEAS-2B cells without NK cells, BAFF mRNA 

expression was ~2-fold higher at a ratio of 1:3. Palivizumab anti-RSV control significantly 

reduced expression of BAFF mRNA in cultures of infected BEAS-2B cells without NK cells 
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compared to infected BEAS-2B cells cultured with NK cells at a ratio of 1:3 (p<0.05). BAFF 

mRNA expression was significantly reduced in infected BEAS-2B cells cultured with NK cells 

at a ratio of 1:3 plus Palivizumab compared to infected BEAS-2B cells cultured with NK cells 

at a ratio of 1:3 (p<0.001). 

BAFF protein was expressed in all cultures with RSV infection at ~40pg/ml with no significant 

difference observed between BEAS-2B cells cultured alone or with NK cells (Figure 5.3B). 

These results indicate that BAFF mRNA can be expressed by NK cells and may be induced 

further by IL-15 stimulation. RSV induces BAFF mRNA expression in BEAS-2B cells and BAFF 

mRNA was increased with addition of NK cells to BEAS-2B cells, which could be from both 

cell populations.  

 

5.3.2. Comparison of CXCL9, CXCL10 and CXCL11 expression during infection of BEAS-2B 

cell with RSV A2 and RSV X during NK cell co-cultures 

The results in Section 3.3.12.2 show RSV X induces significantly more IL-15Rα mRNA than 

RSV A2. During BEAS-2B cell-NK cell co-culture, significantly more IFN-γ and TNF-α protein 

was observed in culture supernatants from RSV X compared to RSV A2 infected BEAS-2B cells. 

Although soluble or cell surface protein was not determined, taking this into consideration 

RSV X may induce a greater expression of IFN-γ and TNF-α inducible AEC-derived cytokines 

if there was an increase in IL-15/IL-15Rα complex expression. Increased IFN-γ production 

could enhance expression of Th1 associated chemokines such as CXCL10. As part of the 

second aim in this chapter and continuing from results observed in Chapter 3, expression of 

Th1 associated chemokines were characterised during RSV A2 and RSV X BEAS-2B cell-NK cell 

co-culture. Data is also shown as the fold change relative to protein present in culture 

supernatants of infected BEAS-2B cells without NK cells.  
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RSV  A2 A2 X X 
NK cells   -  - 

 

RSV  A2 A2 X X 
NK cells   -  - 

 

RSV  A2 A2 X X 
NK cells   -  - 

 

 

Figure 5.4. Comparison between the expression of CXCL9, CXCL10 and CXCL11 protein 
during RSV A2 and RSV X infection of BEAS-2B cells co-cultured with NK cells. BEAS-2B cells 
were infected with RSV A2 or clinical isolate, RSV X, at MOI 1 for 24hr. NK cells were isolated 
from healthy adult PBMCs and added at a ratio of 1:3 to BEAS-2B cells for a further 24hr. 
Control non-infected cultures were cultured in the absence of RSV. B, D and F show the fold 
change of protein compared to RSV without NK cells. A,B) CXCL9 protein (n=3), C,D) CXCL10 
protein (n=3), E,F) CXCL11 protein (n=3). Data is expressed as the mean ± SEM. A, C and E 
(Friedman with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.01), B, D, F (Wilcoxon 
signed rank test). 
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No significant differences were observed for CXCL9 protein expression between RSV A2 and 

RSV X and with addition of NK cells (Figure 5.4A, B). 

CXCL10 protein expression was induced by RSV A2 (p<0.001) and RSV X (p<0.001) infection 

to ~3000pg/ml and ~1050pg/ml, compared to control non-infected BEAS-2B cells. The 

increase in CXCL10 protein from infected BEAS-2B cell-NK cell co-cultures compared to those 

infected without NK cells was ~2-fold for RSV A2 (p<0.001) and ~6-fold for RSV X (p<0.001) 

(Figure 5.4C). No significant difference was observed for CXCL10 protein expression between 

RSV A2 and RSV X when data was expressed as protein concentration in NK cell co-culture 

relative to infected BEAS--2B cells without NK cells (Figure 5.4D). However, RSV X infection 

during BEAS-2B cell-NK cell co-culture induced ~6-fold more CXCL10 relative to infection 

without NK cells in comparison to RSV A2 at ~2-fold. 

CXCL11 protein was significantly increased during NK cell co-culture with RSV A2 (p<0.001) 

and RSV X (p<0.001) infected BEAS-2B cells compared to infection without NK cells (Figure 

5.4E). The increase during infected BEAS-2B cell-NK cell co-culture compared to infection 

without NK cells was ~2-fold for both RSV A2 and RSV X. No significant difference was 

observed for CXCL11 protein expression between RSV A2 and RSV X when data was 

expressed as NK cell co-culture relative to infection without NK cells (Figure 5.4F). 

The results here indicate that RSV X induced 3 times more CXCL10 protein in culture 

supernatants during NK cell co-culture compared to RSV A2, although this did not reach 

statistical significance. Additional assays done may have provided more confidence that this 

results is not statistically significant. 
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5.3.3. Neutralisation of IFN-γ and TNF-α during BEAS-2B cell and NK cell co-culture with 

antibodies 

To confirm that IFN-γ and TNF-α within the BEAS-2B cell-NK cell co-culture supernatants 

were inducing the significant increases in CXCL9, CXCL10, CXCL11 protein and BAFF mRNA 

seen above in Figures 5.1 and 5.3, anti-IFN-γ and anti-TNF-α neutralising antibodies were 

added during co-culture (Table 2.7, page 86). The BEAS-2B cell-NK cell co-culture followed 

the same method as in Section 3.3.8. A ratio of 1:3 gave a significant increase and highest 

expression of IFN-γ and TNF-α proteins compared to infected BEAS-2B cells without NK cells. 

Here, a BEAS-2B cell-NK cell ratio of 1:3 was used with neutralising antibodies at increasing 

concentrations of 10ng/ml, 100ng/ml and 1µg/ml. Antibodies were added at the same time 

as NK cells to the infected BEAS-2B cells. All data is expressed as relative to infected BEAS-2B 

cells plus NK cells, shown as ‘RSV + NK cells’ in Figures 5.5, 5.6 and 5.7 to remove individual 

assay variability. Matched isotype controls were also used at the highest concentration of 

1µg/ml. The isotype control, an antibody that matches the class of the neutralising 

antibodies used here that should lack specificity to IFN-γ and TNF-α, should show expression 

of these cytokines which is comparable to infected BEAS-2B cell-NK cell co-cultures. 

Therefore, this specific antibody class is not inducing the response seen and results are 

specific to neutralisation. 
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5.3.3.1. Effect of anti-IFN-γ on the expression of Th1 associated chemokines CXCL9, CXCL10 
and CXCL11 and adaptive immune response cytokine BAFF during BEAS-2B cell and 
NK cell co-culture 
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Figure 5.5. Expression of Th1 recruitment associated chemokines during BEAS-2B and NK 
cell co-culture with anti-IFN-γ neutralising antibody. BEAS-2B cells were infected with RSV 
A2 at MOI 1 for 24hr. NK cells were isolated from healthy adult PBMCs and added at ratio of 
1:3 (BEAS-2B cells:NK cells) for a further 24hr, with or without anti-IFN-γ neutralising 
antibody at 10ng/ml, 100ng/ml and 1µg/ml or isotype control at 1µg/ml. Control non-
infected cultures were cultured in the absence of RSV. Expression of A) CXCL9 protein (n=3), 
B) CXCL10 mRNA (n=3) and C) CXCL10 protein (n=3), D) CXCL11 protein (n=3), D) BAFF mRNA 
(n=2). Data is expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, 
**p<0.01, ***p<0.001).  
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Addition of anti-IFN-γ neutralising antibody reduced expression of CXCL10 mRNA at 

100ng/ml (p<0.001) and 1µg/ml (p<0.001) and for CXCL10 protein at 10ng/ml (p<0.05), 

100ng/ml (p<0.05) and 1µg/ml (p<0.001) (Figure 5.5B, C). The decrease in CXCL10 mRNA and 

protein observed was not seen with matched isotype control which showed significantly 

higher CXCL10 mRNA (p<0.001) and protein (p<0.001) expression compared to co-culture 

with 1µg/ml anti-IFN-γ antibody. 

BAFF mRNA expression was measured in 2 experiments and therefore no statistical analysis 

was done. BAFF mRNA was not detected in control non-infected BEAS-2B cell cultures and 

seen at ~25% of the housekeeping gene L32 with RSV infection (Figure 5.5E). Addition of NK 

cells at a ratio of 1:3 increased BAFF mRNA to ~75% of the housekeeping gene L32 compared 

to infected BEAS-2B cells alone. BAFF mRNA followed a pattern of decrease in expression 

with increase in anti-IFN-γ antibody. BAFF mRNA in the isotype control was similar to that of 

infected BEAS-2B cells co-cultured with NK cells. 

These results indicate that BAFF mRNA, CXCL10 mRNA and CXCL10 protein expression was 

induced by IFN-γ within the culture supernatant of infected BEAS-2B cells co-cultured with 

NK cells, but was not true for CXCL9 and CXCL11. 
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5.3.3.2. Effect of anti-TNF-α on the expression of Th1 associated chemokines CXCL9, CXCL10 
and CXCL11 during BEAS-2B cell and NK cell co-culture 
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Figure 5.6. Expression of Th1 recruitment associated chemokines during BEAS-2B and NK 
cell co-culture with anti-TNF-α neutralising antibody. BEAS-2B cells were infected with RSV 
A2 at MOI 1 for 24hr. NK cells were isolated from healthy adult PBMCs and added at ratio of 
1:3 (BEAS-2B cells:NK cells) for a further 24hr, with or without anti-IFN-γ neutralising 
antibody at 10ng/ml, 100ng/ml and 1µg/ml or isotype control at 1µg/ml. Expression of A) 
CXCL9 protein, B) CXCL10 protein and C) CXCL11 protein (n=3 for all). Data is expressed as 
the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, **p<0.01, ***p<0.001).  

 

Addition of anti-TNF-α neutralising antibody only showed a reduction in CXCL10 protein 

levels at 10ng/ml (p<0.01), 100ng/ml (p<0.001) and 1µg/ml (p<0.001) (Figure 5.6B). The 

decrease in CXCL10 protein levels observed was not seen with matched isotype control which 
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showed significantly higher CXCL10 protein (p<0.001) expression compared to co-culture 

with 1µg/ml anti-IFN-γ antibody. 

These results indicate that CXCL10 protein levels was induced by TNF-α within the culture 

supernatant of infected BEAS-2B cells co-cultured with NK cells, but this was not true for 

CXCL9 and CXCL11. For CXCL9, although a decrease in protein levels was observed with 

addition of anti-TNF-α neutralising antibody, the isotype also matched these levels. 

5.3.3.3. Effect of anti-IFN-γ and anti-TNF-α on the expression of Th1 associated chemokines 
CXCL9, CXCL10 and CXCL11 during BEAS-2B cell and NK cell co-culture 
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Figure 5.7. Expression of Th1 recruitment associated chemokines during BEAS-2B and NK 
cell co-culture with anti-IFN-γ and anti-TNF-α neutralising antibodies. BEAS-2B cells were 
infected with RSV A2 at MOI 1 for 24hr. NK cells were isolated from healthy adult PBMCs and 
added at ratio of 1:3 (BEAS-2B cells:NK cells) for a further 24hr, with or without anti-IFN-γ 
and anti-TNF-α neutralising antibody at 10ng/ml, 100ng/ml and 1µg/ml or isotype control at 
1µg/ml. Expression of A) CXCL9 protein, B) CXCL10 protein and C) CXCL11 protein (n=3 for 
all). Data is expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05).  
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Addition of both anti-IFN-γ and anti-TNF-α neutralising antibodies showed a reduction in 

CXCL10 protein levels at 10ng/ml (p<0.05), 100ng/ml (p<0.001) and 1µg/ml (p<0.05) (Figure 

5.7B) and CXCL11 at 10ng/ml (p<0.05) (Figure 5.7C). The decrease in CXCL10 and CXCL11 

protein levels observed was not seen with matched isotype control which showed 

significantly higher expression compared to co-culture with 1µg/ml anti-IFN-γ antibody 

(p<0.05 for both). 

These results indicate that CXCL10 and CXCL11 protein expression was inhibited by both 

addition of anti-IFN-γ and anti-TNF-α within the culture supernatant of infected BEAS-2B cells 

co-cultured with NK cells, but this was not true for CXCL9.  

 

5.3.4. Expression of chemokines, cytokines and adhesion molecules during HNAEC-NK cell 

co-culture 

In Section 5.3.1, the expression of Th1 associated chemokines, CXCL9, CXCL10 and CXCL11, 

and B cell cytokine BAFF mRNA were higher in infected BEAS-2B cell–NK cell co-cultures at a 

ratio of 1:3 compared to RSV infected BEAS-2B cells only. It was also concluded that TARC 

protein was not expressed by BEAS-2B cells, with or without RSV infection and with the 

addition of NK cells. Then in Section 5.3.3, neutralisation assays suggested that CXCL10 

protein was induced individually by IFN-γ and TNF-α, CXCL11 with both IFN-γ and TNF-α and 

BAFF mRNA by IFN-γ during infected BEAS-2B cell-NK cell co-culture at a ratio of 1:3. For 

CXCL9, this conclusion could not be reached. 

In Section 4.4.3, IFN-γ was present in culture supernatants from HNAEC-NK cell co-cultures 

and TNF-α was present in culture supernatants from non-infected and infected HNAECs with 

no change seen with the addition of NK cells. Therefore, there is a potential for IFN-γ and 

TNF-α in HNAEC-NK cell co-culture supernatants to also induce AEC-derived cytokine 

expression. As part of the aim in this chapter, expression of HNAEC-derived CXCL9, CXCL10, 
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CXCL11, TARC and BAFF was characterised during co-culture with NK cells. The experimental 

approach and methodology used is the same as in Section 4.4.3 and data is expressed as 

relative to infected HNAECs cultures without NK cells, described in figures as ‘RSV no NK 

cells’. This was to reduce variation in individual responses. Individual plots are also given to 

display exact expression values. 

 

5.3.4.1. Th1 associated chemokines CXCL9, CXCL10 and CXCL11 
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Figure 5.8. Expression of Th1 recruitment associated chemokine CXCL9 during RSV A2 
infected HNAECs cocultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 
for 24hr. Donor matched NK cells were isolated from PBMCs and added at increasing ratios 
to HNAECs for a further 24hr. Control non-infected cultures were cultured in the absence of 
RSV. A) CXCL9 protein (n=4), B) individual donor expression of CXCL9 protein. Data is 
expressed as the mean ± SEM (Friedman with Conover post-hoc test, **p<0.01, ***p<0.001). 

 

CXCL9 protein was found in non-infected HNAEC culture supernatants at ~1250pg/ml with a 

significant decrease of ~250pg/ml with RSV infection (p<0.01) (Figure 5.8A). CXCL9 protein 

was significantly lower in infected HNAECs co-cultured with NK cells at ratios of 1:1 (p<0.01), 

1:2 (p<0.001) and 1:3 (p<0.001) compared to control non-infected HNAECs. No difference in 

CXCL9 protein was observed between infected HNAEC cultured alone and those co-cultured 
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with NK cells. Individual donor expression of CXCL9 protein is shown in Figure 5.8B, with 

similar expression of CXCL9 seen across all four donors and a reduction in expression with 

RSV infection (Figure 5.8B). 
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Figure 5.9. Expression of Th1 recruitment associated chemokine CXCL10 during RSV A2 
infected HNAECs cocultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 
for 24hr. Donor matched NK cells were isolated from PBMCs and added at increasing ratios 
to HNAECs for a further 24hr. Control non-infected cultures were cultured in the absence of 
RSV. A) CXCL10 mRNA (n=3), B) individual donor expression of CXCL10 mRNA, C) CXCL10 
protein (n=4), D) individual donor expression of CXCL10 protein. Data is expressed as the 
mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, ***p<0.01). 

 

Only for CXCL10 protein was an increase in expression observed with addition of NK cells to 

infected HNAECs (Figure 5.9). There was a significant increase in CXCL10 protein present in 

infected HNAEC culture supernatants compared to control non-infected HNAECs (p<0.001). 

CXCL10 protein was significantly increased in infected HNAEC-NK cell co-culture 

supernatants at a ratio of 1:3 (p<0.001) compared to infected BEAS-2B cells without NK cells. 
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There was significantly higher expression of CXCL10 protein in ratio of 1:3 (p<0.05) compared 

to ratio of 1:1 (Figure 5.9C). Individual donor expression of CXCL10 protein is shown in Figure 

5.13D, with addition of NK cells at a ratio of 1:3 inducing an apparent and slight increase in 

CXCL10 protein for all donors (Figure 5.9D).  

Figure 5.10. Expression of Th1 recruitment associated chemokine CXCL11 during RSV A2 
infected HNAECs cocultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 
for 24hr. Donor matched NK cells were isolated from PBMCs and added at increasing ratios 
to HNAECs for a further 24hr. Control non-infected cultures were cultured in the absence of 
RSV. A) CXCL11 protein (n=4), B) individual donor expression of CXCL11 protein. Data is 
expressed as the mean ± SEM (Friedman with Conover post-hoc test). 

 

No significant differences were seen in CXCL11 protein between infected HNAECs and with 

NK cell co-culture (Figure 5.10). 

These results indicate that only CXCL10 and not CXCL9 and CXCL11 expression was increased 

from infected HNAEC-NK cell co-cultures. CXCL9 protein expression was slightly reduced 

during RSV infection of HNAECs and with addition of NK cells. CXCL10 protein was only 

slightly increased during NK cell co-culture at a ratio of 1:3. 
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5.3.4.2. Th2 associated chemokine TARC 
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Figure 5.11. Expression of Th2 recruitment associated chemokine TARC during RSV A2 
infected HNAECs cocultured with NK cells. HNAECs were infected with RSV A2 at MOI 2.5 
for 24hr. NK cells were isolated from healthy adult PBMCs and added at increasing ratios to 
BEAS-2B cells for a further 24hr. Control non-infected cultures were cultured in the absence 
of RSV. A) TARC mRNA (n=3), B) individual donor expression of TARC mRNA (n=3). Data is 
expressed as the mean ± SEM (Friedman with Conover post-hoc test, *p<0.05, ***p<0.001). 

 

TARC mRNA was detected in all non-infected HNAECs ranging from 0.7-5% of the 

housekeeping gene L32 (Figure 5.11A, B). TARC mRNA was significantly increased in infected 

HNAECs compared to non-infected HNAECs (p<0.001) (Figure 5.11A). TARC mRNA was 

significantly reduced with NK cell co-culture ratio of 1:2 compared to infected HNAECs 

without NK cells (p<0.05). Individual donor expression of TARC mRNA is shown in Figure 

5.17B, with donor 1 basal expression being ~5-fold more than donors 2 and 3 (Figure 5.11B). 

RSV infection induced TARC mRNA expression by ~ 6-fold for donor 1, by ~3-fold for donor 2 

and by ~ 10-fold for donor 3 compared to non-infected HNAECs. Addition of NK cells at ratios 

of 1:1, 1:2 and 1:3 reduced TARC mRNA expression by ~3-fold for donor 1 compared to RSV 

only. TARC mRNA expression was reduced by ~2-fold with NK cell ratio of 1:2 for donor 2 and 

at ratio 1:1 by ~2-fold for donor 3, compared to RSV only. No TARC protein was detected in 

culture supernatants. 
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These results indicate that there was great variation between TARC mRNA expressions 

between donor’s nasal cells cultured in vitro. Addition of NK cells to infected HNAECs at a 

ratio of 1:2 reduced TARC mRNA expression. 

5.3.4.3. B cell differentiation activating cytokine BAFF 
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Figure 5.12. Expression of BAFF in RSV A2 infected HNAECs cocultured with NK cells. 
HNAECs were infected with RSV A2 at MOI 2.5 for 24hr. Donor matched NK cells were 
isolated from PBMCs and added at increasing ratios to HNAECs for a further 24hr. Control 
non-infected cultures were cultured in the absence of RSV. A) BAFF mRNA (n=3), B) individual 
donor expression of BAFF mRNA (n=3). Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, **p<0.01). 

 

There was a significant increase in BAFF mRNA expression by non-infected HNAECs co-

cultured with NK cells at a ratio of 1:3 (p<0.05) when compared to non-infected HNAECs 

(Figure 5.12A). BAFF mRNA expression was significantly increased by, ~50-fold, in infected 

HNAECs (p<0.01) compared to non-infected HNAECs. BAFF mRNA was significantly increased 

in infected HNAEC-NK cell co-cultures at ratio of 1:1 (p<0.01), 1:2 (p<0.001) and 1:3 (p<0.001) 

when compared to infected HNAECs without NK cells. At a ratio of 1:3, BAFF mRNA 

expression was ~2-fold higher than that in infected HNAECs without NK cells. Individual 

donor expression of BAFF mRNA is shown in Figure 5.12B, with an increase in BAFF mRNA 

with the addition of NK cells seen for donors 1 and 2 (Figure 5.12B). Donor 3 showed no 
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changes in BAFF mRNA expression following the addition of NK cells. BAFF protein was not 

detected in any culture supernatants. 

 

5.3.5. Effects of Th1 and Th2 cytokine environments during RSV A2 infection of BEAS-2B 

cells 

The experiments described in this section address the final aim of the work in this chapter to 

determine if a primed and/or continuous cytokine environment could influence expression 

of inflammatory molecules during RSV infection. These experiments use the BEAS-2B cell-NK 

cell co-culture model. The effects of a pre-existing Th1 or Th2 cytokine environment on BEAS-

2B cell cytokine and receptor expression before RSV infection was first examined. Cell surface 

IL-15, IL-15Rα, ICAM-1 and BAFF or soluble IL-15, IL-15/IL-15Rα, BAFF and TARC proteins in 

culture supernatants were measured. Finally, if these environments influence the NK cell 

response during BEAS-2B cell co-culture, was examined.  

 

5.3.5.1. Effect of Th1/Th2 cytokine priming on cell surface protein expression during RSV A2 

infection of BEAS-2B cells 

A preliminary experiment was used to determine which cytokine/s conditions were most 

appropriate for inducing the expression of IL-15 and IL-15Rα in BEAS-2B cells (data not 

shown). Figure 5.13 illustrates the experimental design briefly, confluent BEAS-2B cells were 

primed with either IFN-γ (100ng/ml), TNF-α (10ng/ml) or TNF-α/IL-4/IL-13 (10ng/ml, 

20ng/ml, 20ng/ml) for 24hr before RSV infection at an MOI of 1 (Table 2.10, page 86). 

Cytokine/s were then added again to the BEAS-2B cells after 2hr RSV inoculation for a further 

48hr. Culture supernatant protein and cell surface protein expression was analysed by ELISA 

and flow cytometry, respectively (Section 2.7 and 2.9). 
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Figure 5.13. Experimental design for BEAS-2B cell cytokine priming and stimulation before 
and during RSV infection for protein analysis. BEAS-2B cells were primed with either IFN-γ 
(100ng/ml), TNF-α (10ng/ml), or TNF-α/IL-4/IL-13 (10ng/ml, 20ng/ml, 20ng/ml) for 24hr 
before RSV infection at an MOI of 1. Cytokine/s were then added again to the BEAS-2B cells 
after 2hr RSV inoculation for a further 48hr, at which RNA was collected.  
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Figure 5.14. Effects of Th1 and Th2 cytokine environments on cell surface protein 
expression of BEAS-2B cells during RSV infection. BEAS-2B cells were primed with either 
IFN-γ (100ng/ml), TNF-α (10ng/ml), or TNF-α/IL-4/IL-13 (10ng/ml, 20ng/ml, 20ng/ml) for 
24hr before RSV infection at an MOI of 1. Cytokine/s were then added again to the BEAS-2B 
cells after 2hr RSV inoculation for a further 48hr. Cell surface expression of A) IL-15, B) IL-
15Rα, C) ICAM-1, D) BAFF (n=3 for all data). Data is expressed as the mean ± SEM (Friedman 
with Conover post-hoc test, *p<0.05, **p<0.01***p<0.001). 
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Significantly higher IL-15 MFI values were seen for BEAS-2B cells stimulated with TNF-α 

(p<0.05), IFN-γ (p<0.01) and TNF-α/IL-4/IL-13 (p<0.001) compared to control non-infected 

BEAS-2B cells (Figure 5.14A). RSV infected BEAS-2B cells showed significantly higher MFI 

values when compared to control non-infected BEAS-2B cells (p<0.001) and anti-RSV control 

(p<0.001). Cytokine stimulation did not change IL-15 MFI during RSV infection (Figure 5.14A).  

Significantly higher MFI values were seen for BEAS-2B cells stimulated with TNF-α (p<0.05), 

IFN-γ (p<0.001) and TNF-α/IL-4/IL-13 (p<0.01) when compared to control non-infected cells 

(Figure 5.17B). For IFN-γ treatment, this was ~2-fold more compared to control BEAS-2B cells. 

RSV infected BEAS-2B cells showed significantly higher MFI values compared to control non-

infected BEAS-2B cells (p<0.001) and or anti-RSV treated control cultures (p<0.001). Cytokine 

stimulation did not result in a change in IL-15 MFI value during RSV infection (Figure 5.14B). 

Non-infected BEAS-2B cells expressed significantly more cell surface ICAM-1 when 

stimulated with TNF-α (p<0.01), IFN-γ (p<0.05) or TNF-α/IL-4/IL-13 (p<0.01) compared to 

control non-infected cells (Figure 5.14C). During RSV infection, BEAS-2B cells expressed 

significantly more cell surface ICAM-1 when stimulated with TNF-α (p<0.05) or IFN-γ 

(p<0.05). RSV infected BEAS-2B cells stimulated with IFN-γ expressed significantly more cell 

surface ICAM-1 compared to control non-infected BEAS-2B cells (p<0.001) (Figure 5.14C). 

Significantly higher BAFF MFI values were seen for BEAS-2B cells stimulated with TNF-α 

(p<0.05) or IFN-γ (p<0.001) when compared to control non-infected BEAS-2B cells (Figure 

5.14D). Stimulation with IFN-γ resulted in significantly higher BAFF MFI values (p<0.05) when 

compared to stimulation with Th2 cytokines. As expected RSV infected BEAS-2B cells showed 

a significantly higher BAFF MFI value (p<0.001) in comparison to control non-infected BEAS-

2B cells or anti-RSV treated control cultures (p<0.001). Stimulation with IFN-γ before and 

during RSV infection resulted in a significantly increased BAFF MFI value (p<0.05) in 

comparison to that obtained by infection only or Th2 stimulated cells (p<0.01) (Figure 5.14D). 
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These results indicate that cytokine stimulation of non-infected BEAS-2B cells results in 

increased cell surface expression of IL-15, IL-15Rα and BAFF. This was not observed for IL-15 

and IL-15Rα during RSV infection. BAFF expression was increased during RSV infection by 

IFN-γ treatment only. ICAM-1 expression by non-infected and infected BEAS-2B cells was 

increased by both TNF-α and IFN-γ treatments. Addition of Th2 associated cytokines in 

combination only resulted in increased ICAM-1 expression by non-infected BEAS-2B cells.  

5.3.5.2. Effect of Th1/Th2 cytokine priming on expression of soluble IL-15/IL-15Rα complex, 
TARC and BAFF proteins during RSV A2 infection of BEAS-2B cells 
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Figure 5.15. Effects of Th1 and Th2 cytokine environments on IL-15/IL-15Rα complex, TARC 
and BAFF protein expression in BEAS-2B cells during RSV infection. BEAS-2B cells were 
cultured with IFN-γ (100ng/ml), TNF-α (10ng/ml), or TNF-α/IL-4/IL-13 (10ng/ml, 20ng/ml, 
20ng/ml) for 24hr, infected with RSV A2 at MOI 1 for 48hr and again cultured with cytokines. 
Control non-infected cultures were cultured in the absence of RSV. A) IL-15/IL-15Rα complex 
(n=5), B) TARC (n=5), C) BAFF (n=3). Data is expressed as the mean ± SEM (Friedman with 
Conover post-hoc test, *p<0.05, **p<0.01***p<0.001). 
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IL-15/IL-15Rα complex was not detected in culture supernatants from non-infected cells with 

and without cytokine stimulation (Figure 5.15A). During RSV infection, IL-15/IL-15Rα complex 

was only detected in 2/5 samples, 2/5 samples plus TNF-α, 3/5 samples plus IFN-γ and 3/5 

samples plus TNF-α/IL-4/IL-13 combination. No significance was reached at any conditions.  

TARC protein was only detected in 1/5 culture supernatants from non-infected BEAS-2B cells 

with Th2 cytokine stimulation (Figure 2.15B). During RSV infection 1/5 samples were positive 

for TARC protein and 1/3 with TNF-α stimulation. TARC protein was expressed in 3/5 culture 

supernatants during infection and addition of IFN-γ which was significantly higher than those 

stimulated with IFN-γ and anti-RSV control (p<0.01 for each). 

BAFF protein was only detected in non-infected BEAS-2B cell culture supernatants from 

those with IFN-γ stimulation at ~60pg/ml which was significantly higher (p<0.001) compared 

to non-infected control BEAS-2B cells and those stimulated with Th2 cytokines (Figure 2.15C). 

During RSV infection 1/3 samples were positive for BAFF and 2/3 following addition of TNF-

α. BAFF protein was expressed at ~127pg/ml with infection and addition of IFN-γ which was 

significantly more than control non-infected (p<0.01), infected control (p<0.001), infected 

with TNF-α (p<0.05), infected with Th2 cytokines (p<0.001) and anti-RSV control (p<0.001) 

(Figure 5.15E). 

These results indicate that soluble IL-15/IL-15Rα complex protein was expressed during RSV 

infection of BEAS-2B cells, however the detection limit of this assay may have prevented 

detection in all culture supernatants, such as those with expression lower than 62.5pg/ml. 

TARC protein was only detected in cultures with RSV infection and Th2 associated cytokine 

treatment. BAFF protein expression was induced by IFN-γ treatment from non-infected 

BEAS-2B cells and there was a synergistic increase in BAFF expression with RSV infection and 

IFN-γ treatment. 
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5.3.5.3. Th1 and Th2 cytokine environments influence NK cell responses to RSV A2 infected 

BEAS-2B cells 

As part of the final aim of this chapter, the expression of IFN-γ and TNF-α were characterised 

from BEAS-2B cell-NK cell co-cultures during Th1 (IFN-γ) and Th2 (TNF-α/IL-4/IL-13) priming 

and/or continuous stimulation environments. The results in Figure 5.18 suggest that Th1 and 

Th2 cytokine environments increase both IL-15 and IL-15Rα cell surface expression, but only 

when BEAS-2B cells are not infected. Therefore, priming BEAS-2B cells with Th1 and Th2 

cytokines may lead to different NK cell activation during co-culture with RSV infected BEAS-

2B cells. To extend the analysis of inflammatory responses observed in the section above 

during Th1 and Th2 cytokine stimulation of BEAS-2B cells, a Th1/th2 stimulated-BEAS-2B cell-

NK cell co-culture model was also used to characterise the expression of IFN-γ and TNF-α.  

Figure 5.16 depicts the experimental design for results in this section. Confluent BEAS-2B 

cells were primed with either the Th1 associated cytokine IFN-γ (100ng/ml) or Th2 cytokine 

combination consisting of TNF-α/IL-4/IL-13 (10ng/ml, 20ng/ml, 20ng/ml) for 24hr before RSV 

infection at an MOI of 1. NK cells were then added for a further 24hrs at a ratio of 1:3 for all 

conditions. A set of cytokine conditions and ELISA analyses used for specific culture 

supernatant are shown in Figure 5.17. These conditions are detailed as NK cells cultured 

alone with 1) media only, 2) IL-15, 3) IL-15/IL-4/IL-13 and 4) IL-15/TNF-α/IL-4/IL-13 (Figure 

5.16 and 5.17). This was to determine if Th2 cytokines could stimulate cytokine expression 

from NK cells without BEAS-2B cells co-culture. NK cells were also co-cultured with both non-

infected and infected BEAS-2B cells. For NK cell co-culture with RSV infected BEAS-2B cells, 

conditions were 5) Th2 primed, 6) Th2 continuous, 7) Th1 primed, 8) Th1 continuous. For 

primed conditions (5, 7 and 8), NK cell were added in media only. For continuous conditions, 

NK cells were added in media containing cytokines to BEAS-2B cells already containing the 

same cytokines.  
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Figure 5.16. Experimental design for the influence of Th1 and Th2 cytokine environments 
on TNF-α and IFN-γ expression during infected BEAS-2B cell-NK cell co-culture. BEAS-2B 
cells were either primed with IFN-γ/Th1 or Th2 cytokines TNF-α/IL-4/IL-13 for 24hr, infected 
with RSV A2 at MOI 1 for 24hr and then either NK cells added with no additional cytokines 
(primed) or with Th2 cytokines (continuous) for 24hr. Numbers correspond to conditions 
used in Figure 5.15. IL-15 10ng/ml, IL-4 20ng/ml, IL-13 20ng/ml, TNF-α 10ng/ml, IFN-γ 
100ng/ml. 
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No. Condition ELISA outcome

NK cells alone

1 Media only IFN-γ and TNF-α

2 IL-15 IFN-γ and TNF-α

3 IL-15/IL-4/IL-13 IFN-γ and TNF-α

4 IL-15/TNF-α/IL-
4/IL-13 

IFN-γ

BEAS-2B cell-NK cell co-culture

5 Th2 primed IFN-γ

6 Th2 continuous IFN-γ

7 Th1 primed TNF-α

8 Th1 continuous TNF-α

 

Figure 5.17. Influence of Th1 and Th2 cytokine environments on TNF-α and IFN-γ 
expression during infected BEAS-2B cell-NK cell co-culture. BEAS-2B cells were either 
primed with IFN-γ/Th1 or Th2 cytokines TNF-α/IL-4/IL-13 for 24hr, infected with RSV A2 at 
MOI 1 for 24hr and then either NK cells added with no additional cytokines (primed) or with 
Th2 cytokines (Continuous) for 24hr. NK cells were isolated from healthy adult PBMCs and 
added at ratio of 1:3 to BEAS-2B cells. Control non-infected cultures were cultured in the 
absence of RSV. A) IFN-γ protein and B) TNF-α protein (n=3 for all data). IL-15 10ng/ml, IL-4 
20ng/ml, IL-13 20ng/ml, TNF-α 10ng/ml, IFN-γ 100ng/ml. Data is expressed as the mean ± 
SEM (Friedman with Conover post-hoc test, *p<0.05, **p<0.01). 
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IFN-γ mRNA was significantly increased in infected BEAS-2B cell-NK cell co-cultures (p<0.001) 

compared to infected BEAS-2B cells alone at ~1% to the housekeeping gene L32 (Figure 

5.17A). Priming BEAS-2B cells before infection with IFN-γ significantly reduced the expression 

of IFN-γ mRNA during co-culture (p<0.01) to ~0.45% to the housekeeping gene compared to 

co-cultures with no cytokine treatment. Priming BEAS-2B cells with Th2 cytokines did not 

change IFN-γ mRNA expression compared to co-culture without cytokines but was 

significantly higher compared to priming with IFN-γ (p<0.001) at ~1.4% to the housekeeping 

gene L32. Priming BEAS-2B cells with Th2 cytokines before RSV infection and then Th2 

cytokine treatment during NK cell co-culture resulted in a significant increase in IFN-γ mRNA 

at ~2.7% to the housekeeping gene L32 compared to RSV only co-culture (p<0.01), IFN-γ 

priming (p<0.001) and Th2 priming (p<0.01) (Figure 5.17A). 

IFN-γ protein was only detected in culture supernatants from RSV infected BEAS-2B cells co-

cultured with NK cells at ~5.6pg/ml (Figure 5.17B). There was a slight but significant increase 

in IFN-γ protein (p<0.01) by ~2pg/ml in culture supernatants when BEAS-2B cells were 

primed and had continuous Th2 cytokine stimulus when co-cultured with NK cells compared 

to co-cultures where no cytokine were added.  

TNF-α mRNA expression was only significantly higher in infected BEAS-2B cell-NK cell co-

cultures without cytokine treatment compared to RSV infected BEAS-2B cells only (p<0.05) 

with ~2-fold higher expression (Figure 5.17C). 

TNF-α protein was detected in 1/3 culture supernatants from NK cells stimulated with 

10ng/ml of IL-15 (Figure 5.17D). RSV infected BEAS-2B cell cultures without NK cells 

expressed TNF-α protein at ~5.6pg/ml. There was a significant increase in TNF-α protein 

(p<0.01) from culture supernatants of infected BEAS-2B cells co-cultured with NK cells to 

~12.9pg/ml compared infected BEAS-2B cells without NK cells. BEAS-2B cells primed with 

IFN-γ (Th1) showed a significant decrease in TNF-α protein (p<0.05) expression by ~2-fold 
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compared to infected BEAS-2B cell-NK cell co-cultures. BEAS-2B cells primed with Th2 

cytokines showed a significant increase in TNF-α protein (p<0.01) expression by ~2-fold 

compared to NK cell co-cultures with BEAS-2B cells primed with IFN-γ at ~15.8pg/ml (Figure 

5.17D).  

These results indicate that priming BEAS-2B cells before RSV infection and then continuous 

treatment with Th2 cytokines increased IFN-γ mRNA and protein in comparison to co-

cultures with no cytokine treatment. Priming with IFN-γ reduced expression of IFN-γ mRNA 

in comparison to co-cultures with no cytokine treatment. Priming and then continuous 

treatment with IFN-γ did not change TNF-α mRNA in comparison to co-cultures with no 

cytokine treatment. Only priming of BEAS-2B cells with IFN-γ resulted in reduced expression 

of TNF-α protein from co-cultures in comparison to co-cultures with no cytokine treatment. 

 

5.4. Discussion 

Having established that IFN-γ and TNF-α are expressed in culture supernatants from infected 

BEAS-2B cell-NK cell co-cultures and that AECs are responsive to cytokine stimulation 

(Sections 3.3.8 and 5.3.5), it was hypothesised that NK cells, through expression of IFN-γ and 

TNF-α, influence the AEC immune and inflammatory responses. Furthermore, it was 

hypothesised that the cytokine environment before infection also influences BEAS-2B cell 

activation of NK cells. 

5.4.1. NK cells are influencing epithelia through expression of CXCL9, CXCL10 and CXCL11 

 

5.4.1.1. Do NK cells influence AEC-derived expression of Th1 associated chemokines? 

CXCL9 protein was expressed by infected BEAS-2B cells and during co-culture with NK cells 

there was a significant increase in CXCL9 protein expression at all ratios (Figure 5.4A). For 

HNAECs, CXCL9 protein was slightly reduced at ~100pg/ml with RSV infection and ~200pg/ml 
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during NK cell co-culture compared to infection only (Figure 5.14). Therefore, there is a 

difference in CXCL9 expression between BEAS-2B cells and HNAECs at this time point and 

with co-culture of NK cells. For BEAS-2B cells, the increase in CXCL9 protein with co-culture 

of NK cells during RSV infection was not be due to IFN-γ or TNF-α within the culture 

supernatants. Neutralisation assays showed that addition of anti-IFN-γ and anti-TNF-α to co-

cultures did not reduced CXCL9 protein expression (Figures 5.5A, 5.6A and 5.7A). Therefore 

the increase in CXCL9 protein during co-culture could either be driven by a different 

mechanism or be NK cell derived. If not from NK cells, the neutralisation assays suggest that 

other molecules, not IFN-γ or TNF-α, or cell-to-cell interactions could be increased expression 

of CXCL9. 

CXCL10 mRNA expression by infected BEAS-2B cells showed a clear increase in expression 

with increase in NK cell number (Figure 5.4B). Increase in expression levels also followed a 

dose-response relationship with increase in NK cell numbers. CXCL10 protein displayed a 

very similar expression pattern to CXCL10 mRNA for BEAS-2B cell co-cultures (Figure 5.4C). 

During co-culture with NK cells, there was a clear increase in CXCL10 protein expression with 

increase in NK cells. At a ratio of 1:3, ~1500pg/ml more CXCL10 protein was detected 

compared to infected BEAS-2B cells alone. For HNAECs, significance was only achieved for 

CXCL10 protein at a ratio of 1:3 compared to infected HNAECs alone (Figure 5.15). This 

increase in CXCL10 protein for HNAECs was not as distinct as with BEAS-2B cells. For BEAS-

2B cell, the increase in CXCL10 was specific to IFN-γ and TNF-α present within the co-culture 

supernatant as shown by anti-IFN-γ and anti-TNF-α neutralisation assays (Figures 5.5B, 5.5C, 

5.6B and 5.7B). Therefore NK cell derived IFN-γ induced an increase in BEAS-2B cell derived 

CXCL10 during RSV infection. During infection in vivo, IFN-γ and TNF-α expressed by activated 

NK cells may also act to enhance CXCR3+ immune cell recruitment through a co-ordinated 

AEC-NK cell interactions. 
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CXCL11 protein, similarly to CXCL9 and CXCL10, was only expressed by BEAS-2B cells on 

infection and expression was also significantly increased by co-culture with NK cells at all 

ratios of 1:1, 1:2 and 1:3 (BEAS-2B cells:NK cells) (Figure 5.4D). Infected HNAECs did not show 

any difference in CXCL11 expression during NK cell co-culture (Figure 5.10). For CXCL11 

expression, likewise to CXCL9 and CXCL10, BEAS-2B cells were more responsive to NK cell co-

culture compared to HNAECs although this could reflect the time point and AEC-NK cell ratios 

used. The increase in CXCL11 expression during NK cell co-culture with infected BEAS-2B cells 

required the presence of IFN-γ or TNF-α alone. Use of anti-IFN-γ or anti-TNF-α alone did not 

reduce CXCL11 expression during NK cell co-culture (Figure 5.5D, 5.6C) and only with addition 

of both anti-IFN-γ and anti-TNF-α to co-cultures was expression of CXCL11 reduced (Figure 

5.7C). 

Overall, co-culture of NK cells for 24hr with infected BEAS-2B cells increased additional 

expression of all Th1 associated chemokines, but only a slight increase for CXCL10 protein 

was seen in HNAEC cultures. These results provide a new understanding of the role of NK 

cells within the lung during RSV infection possibly influencing subsequent immune 

responses, particularly CXCR3+ immune cell recruitment, through inducing an increase in 

AEC-derived Th1 associated chemokine expression. This was most apparent using BEAS-2B 

cell-NK cell co-cultures. Further investigation of HNAECs such as longer co-culture times and 

increased NK cell ratios could be needed and this is discussed further below. 

Some studies suggest that NK cells also express CXCL10 both intracellularly and at the cell 

surface (456–458). However, apparent cell surface expression may represent detection of 

CXCL10 bound to CXCR3 receptor on NK cells. Fauriat et al. suggest that NK cells themselves 

can express CXCL9 and CXCL10 proteins, albeit at low levels, and during co-culture with K562 

cells show a significant upregulation of these protein to ~200pg/ml (387). However it cannot 

be conclude if the increase in expression was NK cell specific and/or in combination with 



231 
 

K562 cells. Flow cytometric analysis of intracellular CXCL9, CXCL10 and CXCL11 expression 

from NK cells during AEC-NK cell co-cultures could have clarified this issue. Nevertheless and 

irrespective of which cell population expresses these chemokines, an overall increase in 

expression is observed during co-culture and is therefore a more representative model for in 

vivo chemokine expression than infection of AECs alone. This confirms my hypothesis that 

NK cells influence the AEC immune and inflammatory responses, particularly CXCL10 

expression. 

Interestingly, CXCL10 mRNA expression was increased by ~10-fold in non-infected BEAS-2B 

cell-NK cell co-cultures compared to non-infected BEAS-2B cells alone. This suggests that IFN-

γ and/or TNF-α protein may be present below the detection limit of 4pg/ml or direct cell-to-

cell interactions induce gene expression. Other proteins may also be active within these non-

infected BEAS-2B cell-NK cell co-cultures, but not examined here, which may have increased 

CXCL10 mRNA expression in comparison to control BEAS-2B cell basal expression. NK cells 

have been shown to express membrane-bound TNF-α, discussed further in Section 6.2. If 

membrane-bound TNF-α was present on NK cells in this co-culture model and interacted 

with non-infected BEAS-2B cells, this could potentially induce low levels of CXCL10 mRNA 

expression by BEAS-2B cells. This could also indicate that there is a basal level of AEC-NK cell 

communication, which may be essential for resident NK cell survival in resting lung before 

infection. 

Sauty et al. reported that HBEC derived CXCL10 expression is more sensitive to IFN-γ 

stimulation than that of BEAS-2B cells (459). Here IFN-γ protein expression from some 

HNAEC-NK cell co-cultures appeared to be higher than that detected in BEAS-2B cell-NK cell 

co-cultures (Figures 3.11B and 4.17A). This could be explained by both the basal and RSV 

induced expression of IL-15 mRNA and IL-15Rα mRNA which was greater for HNAECs than 

for BEAS-2B cells (Chapters 3 and 4). TNF-α was also constituently expressed by HNAECs and 
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for donors 1 and 2, IFN-γ protein was ~60pg/ml and 40pg/ml, respectively (Figure 4.17D). 

Sauty et al. also shows that TNF-α acts with IFN-γ to synergistically induce CXCL10 expression 

and HNAECs have a basal expression of TNF-α at ~200-400pg/ml. The additional IFN-γ 

expressed during NK cell co-culture may increase further CXCL10 expression (459). Therefore 

here it was expected that during co-culture of infected HNAECs with donor matched NK cells 

a greater induction of CXCL10 would be observed compared to that of BEAS-2B cells. 

However, this was not the case and CXCL10 expression was more pronounced during BEAS-

2B-NK cell co-cultures, as shown as a dose-response with increase in NK cells, than with 

HNAECs. One explanation for this could be to do with use of donor-matched NK cells. These 

NK cells will respond to that donor’s HLA molecules (Section 1.3.2) and may be under 

stronger inhibitory signals when cultured with self AECs. Another explanation is the time of 

culture supernatant collection. Sauty et al. observed that IFN-γ/TNF-α stimulation of HBECs 

showed peak CXCL10 protein expression later than that of BEAS-2B cells (459). Although 

Sauty et al. used a different AEC cell type, HBECs, from that used here, co-culture of NK cells 

with infected HNAECs for a longer period of time could have provided further insight into the 

influence NK cells have on CXCL10 expression by HNAECs. However, the objective of this 

work was to determine if AEC responses are changed by NK cell co-culture and for HNAECs, 

this was only apparent for CXCL10. Furthermore, HNAECs were infected with RSV at an MOI 

of 2.5 and BEAS-2B cells at an MOI of 1. At an MOI of 2.5, CXCL10 protein expression may 

have reached a maximum for HNAEC cultures. Co-culture of NK cells with infected HNAECs 

at different MOIs would provide more clarity to increases or decreases of Th1 associated 

chemokines during HNAEC-NK cell co-culture.  
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5.4.1.2. Do NK cells influence AEC-derived expression of Th2 associated chemokine TARC? 

In the BEAS-2B cell-NK cell co-culture model, TARC mRNA was only present in some co-

cultures and at relatively low levels compared to housekeeping gene L32 at ~0.4-2% (Figure 

5.5A). Furthermore, no TARC protein was expressed as might be expected from the low and 

inconsistent mRNA expression (Figure 5.5B). For HNAECs, TARC mRNA was expressed by non-

infected HNAECs and expression induced by RSV infection by ~3-fold (Figure 7.17A, B). Again, 

TARC mRNA was relatively low at ~0.7% for donors 2 and 3 and for donor 1, 7% of 

housekeeping gene L32 in control HNAECs (Figure 5.17B). With co-culture of NK cells at a 

ratio of 1:2, TARC mRNA was significantly reduced. Alternatively, the decrease in TARC mRNA 

could be due to the addition of NK cells resulting in increased NK cell-derived L32 

housekeeping gene mRNA levels, which is also discussed as a possible explanation of the 

apparent decrease in RSV N gene expression reported in Section 3.4.3.1 during AEC-NK cell 

co-cultures. Overall, any biological relevance of the results observed here cannot be 

concluded as no TARC protein was detected in culture supernatants. 

Here, TARC was chosen as a Th2 associated chemokine because serum TARC levels are 

reported to be significantly higher in infants with RSV infection compared to other 

respiratory infections and may be associated with disease severity (233). TARC has also been 

shown to be expressed during in vitro RSV infection of AECs and its expression increased by 

AECs during stimulation with IFN-γ and TNF-α (129,453). The role of TARC during RSV 

infection has not been fully characterised and whether NK cells can influence its expression 

through AECs has also not been evaluated previously. The results from these previously 

published AEC in vitro infection studies suggest that expression of NK cell derived IFN-γ and 

TNF-α during co-cultures might similarly induce an increase AEC-derived TARC, as discussed 

above for Th1 associated chemokines but was not observed here. TARC expression may 

require Th2 cytokines to be present within the co-culture. Th2 cytokine treatment to HNAECs 

has been shown to induce TARC protein levels to ~100pg/ml with 36hr stimulation (460). 
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Overall, published literature and the results obtained here show different results regarding 

TARC expression. Expression of TARC during AEC-NK cell co-culture is inconclusive and 

requires further investigation. 

5.4.1.3. Do NK cells influence AEC-derived expression of BAFF? 

BAFF mRNA followed a similar pattern of expression as that for CXCL10 mRNA described 

above with expression increasing following addition of NK cells to infected BEAS-2B cells and 

HNAECs (Figure 5.6A and 5.12A). However BAFF protein did not follow the same pattern of 

expression with no increase in BAFF protein observed with increase in NK cell ratio during 

BEAS-2B cell co-cultures (Figure 5.6B) and for HNAECs no protein was detected in culture 

supernatants (Figure 5.12B). 

Here, 10ng/ml IL-15 stimulated expression of BAFF mRNA in NK cells alone. Therefore, it 

cannot be concluded that the increase in BAFF mRNA expression observed during co-culture 

was exclusive to BEAS-2B or HNAECs. The increase in BAFF mRNA with increasing NK cell 

number may represent the activity of NK cells. Other studies have reported NK cells express 

BAFF (461,462). Alternatively, other results not shown here demonstrate that infected BEAS-

2B cells showed increased expression of BAFF protein following TNF-α and IFN-γ treatment 

and therefore it is reasonable to suggest that the increase in expression, or a partial increase, 

was also due to IFN-γ and TNF-α stimulation of BEAS-2B cells during co-culture. Furthermore 

as discussed in Section 5.4.2.1, BAFF can be membrane-bound and determining BAFF 

expression only in culture supernatants of AEC-NK cell co-cultures does not provide a 

complete expression profile of BAFF protein. Overall, this data suggests that NK cells may 

also contribute to adaptive immunity during RSV infection and may enhance BAFF expression 

either producing BAFF themselves or increasing production by the airway epithelium.  
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5.4.1.4. Is AEC-derived protein expression increased by IFN-γ and TNF-α present in BEAS-2B 

cell-NK cell co-culture supernatants? 

As part of the first aim in this chapter, which was to determine if the expression of CXCL9, 

CXCL10, CXCL11, TARC and BAFF changed during co-culture of RSV infected AECs and NK 

cells, it was essential to determine if the increase in these inflammatory molecules was 

dependent on IFN-γ and TNF-α within the co-culture model.  

During treatment with anti-IFN-γ neutralising antibody CXCL10 mRNA and protein expression 

showed a dose-dependent decrease with increase in anti-IFN-γ neutralising antibody used 

(Figure 5.11B, C). BAFF mRNA showed an apparent decrease with increase in anti-IFN-γ 

antibody, although this is only observed in 2 experiments (Figure 5.11E). Therefore, BEAS-2B 

cell-derived BAFF mRNA expression may be enhanced through IFN-γ expression during NK 

cell co-culture. Treatment with anti-TNF-α antibody resulted in decreased CXCL9 protein, 

however this was also true for the isotype control and it can be concluded that the observed 

decrease is due to non-specific antibody effects (Figure 5.12A). For CXCL10 protein, a similar 

result was observed to that with anti-IFN-γ antibody and a slight but significant decrease in 

CXCL10 protein was observed with anti-TNF-α antibody treatment (Figure 5.12B). A 

combination of both anti-IFN-γ and anti-TNF-α treatment reduced CXCL10 and CXCL11 

protein expression (Figure 5.13B, C). As discussed above in Section 5.4.1.1, the increase in 

CXCL9 protein during BEAS-2B cell-NK cell co-culture could be due to alternative stimulatory 

mechanisms, direct cell-to-cell interactions and/or be from NK cells. For CXCL10, either IFN-

γ and/or TNF-α present in co-culture supernatants increase its expression. For CXCL11 

expression, IFN-γ and TNF-α alone could induce an increase in CXCL11 expression, as shown 

with no changes in expression with single anti-IFN-γ or anti-TNF-α neutralisation.  

Use of neutralising antibodies in this assay may not be the best method due to alternative 

stimulatory mechanisms and BEAS-2B cell-NK cell cellular interactions that will continue to 
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be present in these assays. As the effects of anti-IFN-γ antibody on CXCL10 mRNA expression 

was more apparent than that for protein, potentially characterising mRNA expression of 

CXCL9 and CXCL11 would have helped clarify changes in CXCL9 and CXCL11 during 

neutralisation of IFN-γ and TNF-α in more detail.  

 

5.4.1.5. Comparison in NK cell driven, BEAS-2B cell derived Th1 associated chemokine 

expression between RSV strains. 

Here expression of CXCL10 mRNA and protein with RSV infection and without NK cells was 

higher from RSV A2 than RSV X (Figure 5.9). This indicates that infection with RSV A2 alone 

may be able to induce a stronger expression of these Th1 associated chemokines from AECs 

than RSV X. The expression and induction of CXCL10 protein by RSV X during NK cell co-

culture was comparable to that of RSV A2 co-culture (Figure 5.10C). Furthermore during NK 

cell co-culture, although not significant, culture supernatants from RSV X infected BEAS-2B 

cell-NK cell co-cultures had ~3-fold higher induction of CXCL10 compared to RSV A2 infected 

BEAS-2B-NK cell co-cultures (Figure 5.10D). No conclusion as to which strain can induce the 

greatest Th1 associated chemokine profile during NK cell co-culture can be made as the 

results were not significantly different. However it is still important to use clinical isolates for 

a more representative in vivo inflammatory profile. 

Similarly to the results observed in Figure 5.4D, CXCL11 protein expression level was induced 

by RSV A2 infection alone and also by RSV X (Figure 5.10E). RSV A2 induced significantly more 

CXCL11 protein expression than RSV X by ~200pg/ml (Figure 5.10E). Co-culture of NK cells 

with RSV A2 and RSV X infected BEAS-2B cells induced an expected increase in CXCL11 

protein level which was similar between each strain (Figure 5.10F). Overall, these results 

suggest that although infection of BEAS-2B cells during NK cell co-culture with RSV A2 and 
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RSV X resulted in both CXCL10 and CXCL11 protein expression, CXCL10 expression was more 

sensitive to NK cell-co-culture during RSV X infection than RSV A2. 

 

5.4.2. Do priming and continuous cytokine environments influence cytokine expression 

during BEAS-2B cell-NK cell co-culture model during? 

The final aim of this chapter was to determine if a priming and/or continuous cytokine 

environment can influence the expression of cell surface IL-15, IL-15Rα, BAFF and ICAM-1 

and soluble IL-15/IL-15Rα, TARC and BAFF during BEAS-2B cell-NK cell co-culture model 

during. First, the influence of Th1 and Th2 cytokine treatments before and during RSV 

infection on expression of cell surface IL-15, IL-15Rα, ICAM-1 and BAFF and soluble IL-15/IL-

15Rα complex, TARC and BAFF were measured. Secondly, if Th1 or Th2 cytokine stimulation 

of BEAS-2B cells before and during RSV infection could influence expression of IFN-γ and TNF-

α was examined. 

 

5.4.2.1. Th1 and Th2 cytokine environments alter expression of immune molecules by BEAS-

2B cells 

Some of the more interesting observations from these assays relate to the cell surface 

expression of IL-15 and IL-15Rα by non-infected BEAS-2B following with cytokine stimulation 

which has not been published in the literature. With either TNF-α, IFN-γ and TNF-α/IL-4/IL-

13 in combination cell surface expression of both IL-15 and IL-15Rα were significantly 

increased compared to non-infected control BEAS-2B cells (Figure 5.14A, B). This was not 

apparent for RSV infected BEAS-2B cells which had been primed before infection and 

cytokines added, after viral infection, for a further 48hrs. These experiments also confirm 

that replicating RSV can trigger for the expression of cell surface IL-15 and IL-15Rα by BEAS-

2B cells, which was not characterised in Figures 3.4 and 3.5. Furthermore, data shown in 

Figure 5.15A indicates that BEAS-2B cells may be able to express soluble IL-15/IL-15Rα 
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complex up to ~100pg/ml, which was only seen during RSV infection. Although not all 

samples were positive, 3/5 RSV infected BEAS-2B cells treated with IFN-γ and TNF-α/IL-4/IL-

13 in combination displayed a slightly higher average concentration than those infected with 

RSV alone. However there was no increase in cell surface IL-15 and IL-15Rα with additional 

cytokine treatment during RSV infection. This was unexpected as a preliminary experiment 

(data not shown) indicated that IL-15Rα mRNA expression was synergistically increased by 

IFN-γ treatment and RSV infection. ICAM-1 and BAFF cell surface expression were induced 

with IFN-γ treatment and infection (Figure 5.14) and this indicates that infected BEAS-2B cells 

were still responsive to cytokine treatment during RSV infection and could highlight the 

highly controlled post transcriptional regulation that is displayed for IL-15 and IL-15Rα. 

Overall cytokine treatment of non-infected BEAS-2B cells increase cell surface expression of 

IL-15 and IL-15Rα and therefore the presence of these cytokines before infection may alter 

the responsiveness of NK cells.  

IFN-γ may be a key regulator of AEC-derived IL-15 expression before and after RSV infection 

for many cell types. IFN-γ has also been shown to increase IL-15 and IL-15Rα expression in 

monocytes and macrophages (338). In BEAS-2B cells and A549 cells LPS, IL-1β, TNF-α and 

IFN-γ have been shown to induce IL-15 mRNA level with IL-15 protein only detected in 

cultures stimulated with IFN-γ (154,337,414,453). Stimulation with IFN-γ also followed a 

dose-dependent increase on IL-15 mRNA expression in BEAS-2B cells and led to increasing 

the half-life of IL-15 mRNA (337). Zdrenghea et al. also observed that IFN-γ could induce 

secretion of IL-15 protein alone from non-infected and RSV infected BEAS-2B cells (152). On 

the other hand, IFN-γ may also reduce expression of certain genes and proteins. Treatment 

of IFN-γ to both non-infected and RSV infected BEAS-2B cells was shown to reduce 

expression of soluble and cell surface MICA, a ligand for NKG2D (152). NK cells express 

NKG2D and IFN-γ expressed by NK cells after their activation could aid in reducing NK cell 

activities and cell expansion, shown as NK cells expansion only during the first few days RSV 
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infection. Overall this data displays that the expression of early inflammatory mediators, 

such as those by NK cells after RSV infection, could influence IL-15 signalling via the airway 

epithelium for other IL-15 responsive immune cells.  

ICAM-1 cell surface expression followed that reported in the literature with IFN-γ and TNF-α 

individually able to induce cell surface expression in non-infected AECs and also act 

synergistically to enhance ICAM-1 expression during RSV infection (440,454,455). Here, IFN-

γ, TNF-α and TNF-α/IL-4/IL-13 treatments induced ICAM-1 cell surface expression in non-

infected BEAS-2B cells (Figure 5.14C). During RSV infection, an increase in ICAM-1 expression 

was seen with TNF-α and IFN-γ treatment alone, although these values were not more than 

that of cytokine treated non-infected BEAS-2B cells. Addition of IL-4 and IL-13 with TNF-α 

treatment (Th2-like environment), showed reduced ICAM-1 expression in comparison to 

TNF-α alone and IFN-γ treatment. Therefore possibly IL-4 and IL-13 may have inhibitory 

effects on TNF-α and IFN-γ induced ICAM-1 cell surface expression. The implications of this 

in vivo could be that increased immune cell adherence could be achieved in lung 

environments with more IFN-γ and/or TNF-α during RSV infection and this could result in 

increased infected cell lysis and other unknown cell-to-cell interactions. For NK cells, increase 

in AEC surface ICAM-1 expression could increase the strength of NK cell surface interactions 

allowing for a stronger activation through the IL-15/IL-15Rα complex. An increase in ICAM-1 

expression was also observed with cytokine treatment of non-infected BEAS-2B cells. If these 

cytokine environments remain after RSV infection, this could lead to prolonged immune cell 

retention within the lung and could lead to pathologic effects.  

As detailed above, NK cells may contribute to the adaptive immune response, both through 

NK cell-derived BAFF expression and also IFN-γ/TNF-α stimulation of AECs. BAFF can either 

be membrane-bound protein or be cleaved and act as a soluble cytokine (456). Therefore, 

cell surface BAFF was measured as part of this experiment. To my knowledge, here this is the 
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first time cell surface BAFF expression has been examined during RSV infection of AECs with 

treatment of Th1 and Th2 cytokines. Similarly to IL-15 and IL-15Rα, cell surface BAFF 

expression increased with cytokine treatment without infection compared to control non-

infected BEAS-2B cells (Figure 5.14D). This was more pronounced with IFN-γ treatment. RSV 

induced expression of cell surface BAFF compared to control non-infected BEAS-2B cells 

which showed no expression of cell surface BAFF. In comparison to the results observed for 

IL-15 and IL-15Rα, which did not change with cytokine treatment during RSV infection, IFN-γ 

slightly induced BAFF cell surface expression with RSV infection, this was not seen for TNF-α 

or TNF-α/IL-4/IL-13 treatment (Figure 5.14D). Therefore, NK cell derived IFN-γ and TNF-α 

may enhance AEC-derived BAFF and co-ordinate an adaptive immune response. 

Figure 5.15C details the expression of soluble BAFF protein during the same cytokine 

treatment. Only IFN-γ induced release of soluble BAFF protein from non-infected BEAS-2B 

cells and during RSV infection with IFN-γ treatment, BAFF protein expression was ~2-fold 

more than that from non-infected and IFN-γ treated BEAS-2B cells. This suggests IFN-γ has a 

synergistic effect on BAFF protein expression during RSV infection. Changes in BAFF protein 

expression were not observed following Th2 cytokine treatment during RSV infection. This 

could suggest different Th1 and Th2 environments during and after infection could alter 

adaptive immune responses. During infection IFN-γ could induce BAFF expression and then 

after virus elimination, continued IFN-γ expression could lead to sustained B cell responses 

and development of immunological memory. This could lead to more effective B cell 

responses, such as anti-RSV antibody production. Furthermore, Th2 environments during 

RSV infection could lead to reduced BAFF expression and reduced adaptive immune 

responses. IFN-γ treatment alone induced the most cell surface BAFF whereas a Th2 cytokine 

combination did not. This could suggest that a Th1 environment is beneficial for adaptive 

immune responses whereas a Th2 environment may dampen B cell activation. Overall this 
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further indicates that NK cell-derived IFN-γ could enhance AEC adaptive immune responses 

during RSV infection. 

The results observed within this section have been summarised in a model of AEC induced 

NK cell activation shown in Figure 5.18. This model represents what could happen at the 

airway epithelium during RSV infection with four proposed mechanisms of IL-15 signalling 

reflecting the data obtained here in this work and the possible interactions between infected 

AECs and NK cells. Proposed mechanism number 1 details that with RSV infection there 

appears to be tight regulation of IL-15 and IL-15Rα expression by AECs, such low levels of IL-

15 protein in culture supernatants and cell surface expression. Tight regulation of IL-15 and 

IL-15Rα expression could be beneficial for the airway epithelium to prevent over activation 

of NK cells, reduce NK cell-targeted cell lysis and/or excessive NK cell cytokine expression. 

However this apparent tight regulation of IL-15 and IL-15Rα expression could be an immune 

evasion strategy by RSV and is shown as proposed mechanism number 2. No further increase 

in cell surface expression of IL-15 and IL-15Rα was observed here with additional IFN-γ 

treatment but IFN-γ treatment did increase their expression by non-infected cells (Figure 

5.14). If RSV hindered further secreted IL-15 and IL-15/IL-15Rα complex expression, this 

could reduce and/or slow NK cell activation and responses and other IL-15 responsive 

immune cells, such as T cells. Another possibility could be that during RSV infection and 

cytokine treatment, instead of IL-15/IL-15Rα complex being expressed at the cell surface, 

soluble complexes may be produced to aid in activation of IL-15 responsive immune cells not 

in direct contact with the infected airway epithelium as part of a co-ordinated response, 

shown as mechanism 3 in Figure 5.18. IL-15 has been shown to induce monocyte 

differentiation into DCs and regulate macrophage cytokine expression which could aid in 

clearance of infected cell debris and presentation of antigens to T cells (457,458). On the 

other hand during RSV infection NK cell derived IFN-γ, and particularly then IFN-γ expression 

from other immune cells during later stages of RSV infection, could reduce cell surface IL-
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15/IL-15Rα complex expression as a protective mechanism to dampen NK cell responses, 

shown as mechanism 4. This could reduce excessive and prolonged NK cell activation which 

may be detrimental and complements the pattern of NK cell population expansion which 

rises steeply during the first 1-2 days of infection then also rapidly declines along with viral 

titre (Figure 1.11). 

  



243 
 

 

Figure 5.18. Proposed mechanisms of IL-15 signalling during RSV infection of the airway 
epithelium. 1) During RSV infection and IFN-γ stimulation, prevention of cell surface IL-15/IL-
15Rα complex is done to reduce over activation of NK cells. 2) RSV inhibits IFN-γ induced 
expression of cell surface IL-15/IL-15Rα complex to reduce NK cell activation and aids in RSV 
spread. 3) IFN-γ induces expression of soluble IL-15/IL-15Rα complexes to act on IL-15-
responsive immune cells which are not localised at the site of infection. 4) NK cell-derived 
IFN-γ acts back on the airway epithelium to reduce IL-15/IL-15Rα complex expression as self-
protective and beneficial NK cell-activation reduction method to prevent excessive NK cell 
responses. 

 

5.4.2.2. Priming BEAS-2B cells with Th1 and Th2 cytokines induces different expression of IFN-

γ and TNF-α during co-culture with NK cells. 

Figure 5.17 details the expression of IFN-γ during Th1/Th2 treatment of BEAS-2B cell-NK cell 

co-cultures. Similarly to Figure 3.11, here in Figure 5.17 IFN-γ mRNA and protein was only 

expressed with addition of NK cells to cultures, IFN-γ protein was only detected from co-

culture supernatants, TNF-α mRNA was expressed by BEAS-2B cells and expression induced 

with RSV infection and TNF-α protein was expressed by RSV infected BEAS-2B cells and 



244 
 

increased with NK cell co-culture at a ratio of 1:3. Priming BEAS-2B cells for 24hrs before RSV 

infection with IFN-γ, resulted in a significant reduction in IFN-γ mRNA compared to untreated 

co-cultures (Figure 5.17A). For TNF-α mRNA there was an apparent decrease in TNF-α mRNA, 

but this was not significant (Figure 5.17C). However, a significant reduction in TNF-α protein 

was observed when BEAS-2B cells were primed with IFN-γ compared to untreated co-culture 

alone (Figure 5.17D, condition 7). Priming BEAS-2B cells with Th2 cytokine combination (TNF-

α/IL-4/IL-13) and then continued cytokine stimulation after RSV infection and during NK cell 

co-culture induced IFN-γ mRNA expression and a slight increase in IFN-γ protein compared 

to untreated co-cultures (Figure 5.17A, B, condition 6). Treatment of BEAS-2B with any other 

conditions, both priming only and continuous stimulation, did not alter TNF-α mRNA and 

protein compared to untreated co-cultures (Figure 5.17C, D). 

The reduction in IFN-γ mRNA, TNF-α mRNA and TNF-α protein with BEAS-2B cell IFN-γ 

treatment 24hrs before RSV infection and then during NK cell co-culture could suggest that 

IFN-γ had induced anti-viral gene and protein expression by BEAS-2B cells. RSV N gene 

expression would have validated this suggestion. However, TNF-α protein was unaffected 

when IFN-γ treatment was given before and during RSV infection during NK cell co-culture 

(Figure 5.19, condition 8/Th1 continuous). Here IFN-γ treatment was only for 24hrs whereas 

those described in Section 5.3.8.4.1 was a total of 36hrs stimulation. Therefore, it makes it 

difficult to compare the results from here and in the above section to describe why there 

was a reduction in IFN-γ mRNA with IFN-γ priming during NK cell co-culture. For instance, in 

the above section it was proposed that IFN-γ treatment for non-infected BEAS-2B cells 

enhances IL-15 and IL-15Rα cell surface expression which could possibly lead to enhanced 

NK cell activation before RSV infection. However this was not observed for IFN-γ and TNF-α 

mRNA expression during NK cell co-culture in Figure 5.19.  
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With continuous Th2 cytokine treatment during BEAS-2B cell-NK cell co-culture, an increase 

in IFN-γ mRNA was observed. The results in Figure 5.14 suggest that there was no increase 

in cell surface IL-15 and IL-15Rα suggesting it was not cell-surface IL-15/IL-15Rα complex 

driven. Soluble IL-15/IL-15Rα complex was observed with Th2 cytokine treatment (Figure 

5.15) and could be influencing the increase in IFN-γ mRNA rather than through IL-15/IL-15Rα 

complex stimulation. These results could also be due to unknown changes in protein 

expression by AECs, such as activating/inhibitory receptors. Furthermore, although IFN-γ 

protein was not observed with NK cells treated with Th2 cytokines alone, Th2 cytokines could 

be acting directly on NK cells. IFN-γ mRNA was not determined here and this could have been 

highlighted if cytokines induced this increase in IFN-γ mRNA level. 

The data described in this section is very limited and may reflect changes in other NK cell 

activating cytokines and/or changes in inhibitory and activating receptors expressed by 

BEAS-2B cells. These results may also reflect a change in NK cell functions going from cytokine 

production to cytotoxic responses. All of these variable shave not been examined here but 

would provide a much more comprehensive description of this model. It is important to note 

that these results are that of one single time point, using one concentration for each cytokine 

and lacking other cytokines that may be present within the lung. These results are however 

important in starting to characterise the cellular communications of AECs and NK cells both 

before and during RSV infection under chosen and specific cytokine environments. Overall, 

these results suggest that cytokine environment the airway epithelium is exposed to may 

alter the expression of AEC-derived NK cell stimulating molecules and thus induce a different 

NK cell response. 
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5.5. Summary 

NK cell co-culture with BEAS-2B cells induces expression of CXCL9, CXCL10 and CXCL11, of 

which CXCL10 and CXCL11 were IFN-γ and TNF-α dependent and CXCL9 induction was 

dependent on another unknown stimulus. Donor matched NK cells co-cultured with HNAECs 

showed a slight increase in expression of CXCL10 but not for CXCL9 and CXCL11. TARC protein 

is not expressed during both BEAS-2B cell- and HNAEC-NK cell co-culture or by AECs alone. 

For HNAECs, TARC mRNA level was induced by RSV and may be reduced with co-culture of 

NK cells. Cell surface ICAM-1 expression is induced by RSV infection in BEAS-2B cells and is 

slightly reduced with co-culture of NK cells. For both BEAS-2B cell- and HNAEC-NK cell co-

culture, BAFF mRNA expression is induced during co-culture and expression may be a 

combination from both AECs and NK cells. Between different RSV strains A2 and clinical 

isolate X, RSV A2 was able to induce more CXCL10 protein level during RSV infection 

compared to RSV X. However with RSV X infection of BEAS-2B cells during NK cell co-culture, 

co-culture induced an apparent greater increase in CXCL10 compared to infected BEAS-2B 

cells only in comparison to RSV A2. Cytokine treatment of non-infected BEAS-2B cells with 

IFN-γ induced cell surface expression of IL-15, IL-15Rα, ICAM-1 and BAFF. Priming BEAS-2B 

cells with IFN-γ before RSV infection and then during RSV infection induced the expression 

of cell surface ICAM-1 and BAFF and soluble BAFF and IL-15/IL-15Rα complex. Priming of 

BEAS-2B cells before RSV infection and then co-culture with NK cells reduced expression of 

IFN-γ mRNA, but not protein, an apparent decrease in TNF-α mRNA and decrease in TNF-α 

protein. Priming BEAS-2B cells with Th2 cytokines before RSV infection then treatment 

during RSV infection with NK cell co-culture induced expression of IFN-γ mRNA and protein.  

Figure 5.19 details a summary of the results observed within this work here. RSV infected 

AECs stimulate NK cells during direct cell-contact to express IFN-γ and possibly TNF-α. IFN-γ 

and TNF-α present in the culture supernatant may then act back on AECs to induce further 
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expression of Th1 associated chemokine CXCL10. This would aid in recruitment of CXCR3+ 

immune cells to sites of infection within the lung. Expression of CXCL9 and CXCL11 cannot be 

concluded here. AEC-derived BAFF expression may also be induced during NK cell co-culture, 

with NK cells potentially contributing to overall BAFF expression. This would aid in B cell 

activation and production of RSV –specific antibodies. IFN-γ and TNF-α may act 

synergistically to enhance expression of AEC-derived BAFF, IL-15/IL-15Rα complex and ICAM-

1. Overall, co-culture between RSV infected AECs and NK cells display unique interactions 

which enhance both AEC-derived and NK cell-derived inflammatory responses. 
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Chapter 6. General discussion and future work 
 

6.1. RSV induces AEC expression of NK cell activing cytokines IL-15, IL-18 

and receptor IL-15Rα 

The overall hypothesis examined in this thesis was that alone AECs, after infection, can 

activate NK cells by expression of NK cell-activating cytokines and the IL-15Rα receptor. The 

results described in Chapters 3 and 4 provide evidence to show that in vitro RSV infection of 

BEAS-2B cells and HNAECs induced expression of IL-15 and IL-15Rα. Both BEAS-2B cells and 

HNAECs expressed IL-15Rα at the cell surface only after RSV infection (Figures 3.6 and 4.13). 

Secreted IL-15 was released by infected BEAS-2B cell in culture but not by infected HNAECs. 

As soluble IL-15 was only expressed at low amounts by BEAS-2B cells and undetected in 

HNAEC cultures, this could suggest IL-15 signalling by the airway epithelium is primarily via 

the IL-15/IL-15Rα complex and its expression at the cell surface. Here, IL-15Rα was expressed 

on the cell surface of both BEAS-2B cells (Figure 3.4) and HNAECs (Figure 3.5), and IL-15 for 

BEAS-2B cells (Figure 4.6). These results indicate that IL-15 signalling could occur through IL-

15/IL-15Rα complex provided by infected AECs. This could be beneficial allowing localised 

and highly controlled IL-15/IL-15Rα signalling only at the site of infection. As the expression 

of both IL-15 and IL-15Rα were observed at the cell surface of AECs, activation of NK cells in 

this co-culture model is most probably dependent on surface expression which also implies 

there is a need for cell-to-cell interactions between infected AECs and IL-15 responsive 

immune cells.  

Both IL-15 and IL-15Rα were expressed inside both non-infected and infected BEAS-2B cells, 

whereas extracellular expression was only observed with infection (Figures 3.6 and 3.7). A 

possible explanation as to why intracellular IL-15Rα protein was detected in non-infected 

BEAS-2B cells could be explained through the expression of different isoforms, discussed in 

Section 1.3.3.3, in which certain IL-15Rα isoforms and other post-translational modifications 
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allow for IL-15 complexing and cell surface expression. This may be relevant to the results 

observed here as intracellular staining of IL-15Rα and IL-15 was observed in non-infected 

BEAS-2B cells but not at the cell surface of infected cells. However, this is only a suggestion 

to describe the results in this work as the intracellular control of IL-15 and IL-15Rα protein 

isoforms has not been explored in BEAS-2B cells and may be different from that observed in 

cells examined in the literature. 

Expression of IL-18 by BEAS-2B cells and HNAEC IL-18 is also described in Chapters 3 and 4. 

IL-18 protein expression was not observed following RSV infection of BEAS-2B cells but was 

expressed by both non-infected and infected HNAECs, with an apparent increase in 

expression on infection. As mentioned in Section 3.4.1, IL-18 requires caspase-1 to convert 

pro-IL-18 into mature IL-18, which BEAS-2B cells have been shown to lack. A more interesting 

result observed here is the changes in expression of IL-18 mRNA during RSV infection. For 

BEAS-2B cells this included a reduction in IL-18 mRNA expression with 24hr infection 

compared to 4 and 8hr infection (Figure 3.2C). For HNAECs a reduction in IL-18 mRNA was 

observed across all MOIs used compared to non-infected HNAECs (Figure 4.4). As detailed in 

Section 4.4.1.2, this could be either a protective mechanism by AECs to prevent 

overexpression of IL-18 protein or part of RSVs immune modulation to reduce IL-18 signalling 

which could allow for viral spread. 

Other studies have reported AECs express IL-18 protein during other viral infections. RV has 

been shown to induce IL-18 protein expression in HBECs, at 48hr infection with a low MOI of 

0.007 inducing IL-18 to ~2000pg/ml (463). This protein concentration is much more than 

observed here from RSV infected HNAECs with IL-18 in culture supernatants detected at less 

than 150pg/ml in all donors following 48hr RSV infection at an MOI of 2.5 (Figure 4.4). This 

may suggest that AECs are more responsive to RV for the production of IL-18 in comparison 

to RSV. If so, this could be another way RSV manipulates the immune response. Lower IL-18 
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expression could result in reduced early NK cell activation by the airway epithelium and allow 

RSV to spread at low titres throughout the airways, such as upper to lower airways before 

NK cells are activated. However NPA analysis here suggests that there is not much difference 

in overall IL-18 protein present in samples from infants infected with RSV or RV (data not 

shown). This could suggest that in vivo IL-18 expression during RSV and RV infection is similar 

IL-18 being derived both from the airway epithelium and immune cells. Overall, IL-18 is 

expressed by AECs and within the airways during viral infections. Further characterisation of 

in vivo IL-18 expression following RV and RSV infections will aid in determining if IL-18 

expression is related to virus specific NK cell activation levels and how this may relate to 

disease severity. 

Other epithelial cells, such as oral epithelial cells, have also been shown to express IL-18 

(464). These cells expressed IL-18 mRNA and pro-IL-18 but not the active, mature form of IL-

18. Therefore epithelial barriers may be a critical store of IL-18 both at mRNA and pro-IL-18 

levels. AECs may also secrete pro-IL-18 without infection and provide an alternative method 

of IL-18 signalling during respiratory virus infection. For example, caspase-1 has been shown 

to be secreted by activated monocytes and therefore have the potential to cleave pro-IL-18 

if it is expressed by AECs during RSV infection (465). However pro-IL-18 protein expression 

by RSV infection AECs would need to be determined to conclude if this method of IL-18 

signalling could occur during RSV infection. 

The activity of IL-18 is also dependent on expression of IL-18BP (Section 1.3.3.2). This was 

not examined here at either gene expression or protein level and would have been a 

complimentary addition to this data set. To my knowledge, IL-18BP activity has not be 

assessed during RSV infection of human epithelial cells. IL-18BP gene expression has been 

reported to be upregulated ~1.8-4-fold in lungs of mice during RSV infection (466,467) and 

may be regulated in vitro by cytokines such as IFN-γ (468). Expression of IL-18BP could 
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provide a protective mechanism during inflammatory responses particularly later in 

infection, possibly by reducing NK cell cytotoxicity. IL-18BP knockout mice showed enhanced 

TNF-α expression from NK cells along with reduced IFN-γ expression, however overall the 

expression of IFN-γ was greater in IL-18BP deficient mice (321). This suggests that IL-18BP 

could also be a key regulator in NK cell responses during infection in the airway epithelium. 

IL-18BP protein expression has not been studied during RSV infection of AECs and could 

provide further information on the potential for AECs to activate NK cells. 

In conclusion, RSV infected airway epithelium has the potential to activate NK cells and RSV 

may modulate NK cell activation and activities through expression of AEC-derived IL-15 and 

IL-18. 

 

6.2. RSV infected AECs induce NK cell activation 

The second section of this work was to determine if RSV infected AECs could activate NK 

cells. This was done using an in vitro AEC-NK cell co-culture model which is to the best of my 

knowledge the first of its kind. As described in Chapters 3 and 4, RSV infection of both BEAS-

2B cells and HNAEC and then co-culture with NK cells at a ratio of 1:3 resulted in activation 

of NK cells determined through expression of IFN-γ and possibly TNF-α (Figures 3.11 and 

4.17). IFN-γ gene expression was also highest at an NK cell co-culture ratio of 1:3 for both 

BEAS-2B cells and HNAECs. Use of HNAECs here was the best model to characterise AEC-NK 

cell interactions compared to use of BEAS-2B cells. Indeed, IFN-γ mRNA expression was ~2-

fold higher from non-infected BEAS-2B cell-NK cell co-culture. This could reflect the use of 

donor matched NK cells which may be under the influence of additional inhibitory signals in 

HNAEC- compared to BEAS-2B cell- co-cultures. Direct contact was also essential for IFN-γ 

and TNF-α expression during BEAS-2B cell-NK cell co-cultures as shown using transwell assays 

(Figure 3.12). This could be indicative of the relatively low levels of IL-15 secreted by BEAS-
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2B cells during RSV infection and compliments the results shown in Figures 3.4, 3.5, and 3.6 

in which IL-15 and IL-15Rα were present at the cell surface of infected BEAS-2B cells only.  

NK cell-specific intracellular IFN-γ protein was measured during BEAS-2B cell co-culture. This 

provided information that RSV infected BEAS-2B cells induced more intracellular NK cell-

specific IFN-γ protein compared to NK cells cultured with non-infected BEAS-2B cells (Figure 

3.15). In particular, intracellular IFN-γ protein was at approximately the same level in both 

NK cells stimulated with 10ng/ml IL-15 and those co-cultured with infected BEAS-2B cells. 

However, soluble IFN-γ protein was only detected in co-culture supernatants (Figure 3.11) 

suggesting that direct cell contact is required for IFN-γ protein secretion. This is an interesting 

finding as it indicates NK cell secretion of IFN-γ, and other proteins, may be under the 

influence of direct cell-to-cell contact. This may not be an exclusive characteristic of AECs but 

also other resident or later recruited immune cell populations as well. Within the lung, it may 

be better to communicate this way to control inflammatory responses and secretion of 

soluble factors that could lead to unnecessary and/or prolonged activation of immune cells. 

TNF-α was expressed by infected BEAS-2B cells and by both non-infected and infected HNAEC 

(Figure 4.19) making it hard to distinguish if TNF-α protein was also expressed by NK cells 

during AEC-NK cell co-cultures. For BEAS-2B cells, TNF-α protein was highest at a ratio of 1:3 

NK cell co-culture, however expression of TNF-α by NK cells during HNAEC co-culture was 

inconclusive. As HNAECs were shown to express IL-18 protein (Figure 4.4) and BEAS-2B cell 

did not (Figure 3.2), it was expected that more IFN-γ and TNF-α protein would be detected 

during NK cell co-culture as IL-18 has potent synergistic effects with IL-15 on NK cell functions 

(Section 1.3.3.4), although this was noticeably not the case. This could be due to stricter 

control of donor matched NK cell activation in co-cultures with HNAECs, although this was 

not determined in this work.  



254 
 

Lung NK cells may in general be under tighter control by inhibitory signals from the airway 

epithelium compared to other organs. This has been suggested to be the case for lung NK 

cells in mice which had a higher expression of the inhibitory receptor NKG2A and lower 

expression of the activating receptor CD69 compared to NK cells from other organs (261). If 

this is so, with potential additional RSV immune evasion mechanisms to reduce IL-18, 

discussed above, NK cells may not be activated as effectively as compared to other 

respiratory infections. Comparison between RV and RSV using this co-culture model could 

have provided complementary findings to the role NK cells play during RSV infection.  

Within the lungs NK cell function may also be under the influence of other immune cells 

during RSV infection and in particular may be dependent on direct contact with both the 

airway epithelium and immune cells. AECs have been shown to induce differentiation of 

monocytes into monocyte-derived DC through IL-15 expression (469). Monocyte-derived 

DCs could go on to further modulate NK responses. Mature human DCs have also been 

shown to present IL-15 and IL-15Rα on their surface, indicting the importance of direct NK 

cell contact for optimum IFN-γ expression during DC-NK cell co-culture (470). Furthermore 

the same study observed that skin DCs (Langerhans cells) did not express cell surface IL-15Rα 

and even though soluble IL-15 and IL-18 was present in culture supernatants, this failed to 

induce NK cell activation (471). This again suggests that cell surface expression of IL-15Rα is 

very important in NK cell activation, such as IL-15 trans-presentation. Expression of IFN-γ was 

increased during direct DC-NK cell contact and this was shown to be through the interactions 

of DC-derived membrane-bound TNF-α and membrane TNFR2 on NK cells (431). This 

response was specific to direct membrane TNF-α-TNFR2 interactions and not through soluble 

TNF-α, suggesting other beneficial roles direct cell-to-cell contact utilise. Direct NK cell 

contact with macrophages has also shown to enhance IFN-γ expression during influenza 

infection (472). This was reported using both the NK cell line, NK-92, and isolated human NK 
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cells. During RSV infection in mice, mice depleted of macrophages had reduced lung NK cell 

numbers and those that were analysed had less CD69, indicating lower activation (166).  

Overall this indicates that the airway epithelium may not only aid in the activation of NK cells 

during infection but also activate other immune cell populations to further enhance NK cell 

functions. Harker et al. studied acute RSV disease during secondary infection of adult mice 

previously also infected as neonates and reported that macrophages may enhance 

recruitment of NK cell to the lungs and prolong NK cell activation (166,393). Activated NK 

cells through these specific cellular communications could induce a series of immune cell 

responses. NK cell derived IFN-γ and TNF-α were also shown to induce membrane-bound IL-

15, via IL-15Rα, on DCs which were then able to induce IFN-γ expression by CD8+ T cells (473). 

The potential for NK cell derived IFN-γ to increase cell surface expression of IL-15 and IL-15Rα 

was explored further in Section 5.3.5.1, in which IFN-γ treatment increased cell surface 

expression of IL-15 and IL-15Rα on non-infected BEAS-2B cells and not infected BEAS-2B cells 

(Figure 5.14). So through the airway epithelium, activated NK cells may also activate other 

immune cells and lead to many different and unique cell-to-cell communications. This also 

includes interactions of the airway epithelium with other immune cell populations. 

 

6.3. NK cells enhance expression of Th1 associated chemokines and BAFF 

during co-culture of RSV infected AECs 

Having established that AECs after infection express NK cell activating cytokines and that in 

co-culture this leads to NK cell activation and IFN-γ expression, it was important to ask if in 

turn NK activation altered the AEC inflammatory response. For BEAS-2B cells, Th1 associated 

chemokines CXCL9, CXCL10 and CXCL11 were all expressed and their expression increased 

during NK cell co-culture (Figure 5.1). For HNAECs this was less apparent with only CXCL10 

levels slightly higher with NK cell ratio at the highest ratio of 1:3 (Section 5.3.5.1). For 
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HNAECs, this could be due to the early time-point used and only 24hr co-culture and 48hr 

total RSV infection as described in more detail in Chapter 5’s discussion (Section 5.3.8.1). 

Another study reported HNAECs and HBECs show greatest CXCL10 and CXCL11 expression at 

96hrs post RSV infection (474). However, the bottom line is that expression of chemokines, 

in particular CXCL10, was changed indicating NK cells can influence AEC-responses in line 

with the hypothesis. Overall, the data presented here suggests that NK cell-derived IFN-γ 

during the early stages of RSV infection, before the activation and/or recruitment of 

CXCR3+/IFN-γ expressing immune cells, may enhance AEC-derived CXCL10. Furthermore, 

both AECs and NK cells may contribute towards an adaptive immune response through an 

increase in BAFF, discussed below. 

A major observation in this part of my study was increased CXCL10 expression. The results 

demonstrate that CXCL10 mRNA and protein expression during NK cell co-culture with BEAS-

2B cells increases in proportion to the number of NK cells present. The more NK cells present, 

the more CXCL10 protein may be expressed in vivo. Indeed for Th1 associated chemokine 

protein expression there seemed to be an optimum infected BEAS-2B cell-NK cell ratio of 1:3. 

Overall this indicates how important the total number of NK cells may be as a determinant 

of AEC-derived chemokine expression. In humans, a lack of NK cells during respiratory viral 

infection may lead to inefficient and early Th1 associated chemokine expression by the 

airway epithelium which could lead to delayed CXCR3+ immune cell infiltration. This could 

lead to prolonged and uncontrolled viral spread and replication. On the other hand, excessive 

NK cell numbers may lead to excessive immune cell infiltration and an imbalance in Th1 

responses, which has been linked to RSV illness (Section 1.2.3). Therefore, a reasonable 

question to ask during RSV infection is whether the total number of NK cells influence RSV 

disease outcome. 
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Here, there was a clear dose-dependent increase in IFN-γ protein expression with an increase 

in the ratio of NK cells during direct contact with infected BEAS-2B cells (Figure 3.12A, B). 

Moreover, a comparison between NK cells at a ratio of 1:3 in Figures 3.12B and 3.16 show 

that when the total number of NK cells was increased in the transwell assay, more IFN-γ 

protein was detected which was ~2-fold greater. This was not observed for TNF-α which 

seemed to be more dependent on the ratio of BEAS-2B cells to NK cells rather than an 

increase in NK cell numbers. This could have implications on the Th1/2 balance as directed 

by NK cells through AEC-activation. For instance, the presence of more NK cells during the 

early stages of infection could produce a stronger Th1-repsonse through IFN-γ expression 

and then Th1 associated chemokine expression. Here a TNF-α, or Th2, response was not as 

pronounced as the IFN-γ, or Th1, response. NK cell numbers are lower in infants compared 

to adults and lower for infants born prematurely compared to full term (475–477). Lower NK 

cell numbers in infants could lead to a reduced recruitment and activation of T cells through 

reduced AEC-NK cell co-ordinated chemokine expression. Furthermore, T cells stimulated 

with PMA/ionomycin from infants were not able to illicit a strong IFN-γ and TNF-α response 

in comparison to adults and with increase in infant age, a positive correlation is seen for IFN-

γ/TNF-α producing T cells (478). Therefore in infants, a lack of sufficient NK cell numbers 

could then lead to reduced T cell recruitment to the lung and could be a possible contribution 

towards RSV illness. Limited T cell responses and IFN-γ expression has been studied in mouse 

models (Section 1.2.2.1) where CD8+ T cells have been shown to limit Th2-driven RSV 

pathology and IFN-γ reduced eosinophilia on re-infection (185,203). 

A published study reported experiments in which A549 cells and HBECs were co-cultured 

with human PBMCs (479). This study showed a similar CXCL10 profile as those observed here 

in Figure 5.3. No CXCL10 protein was detected from PBMCs, A549 cells and HBECs cultured 

alone. CXCL10 was then expressed with the addition of IFN-γ. Then during A549/PBMC and 

HBEC/PBMC co-culture there was a significant induction in expression of CXCL10 with IFN-γ 



258 
 

stimulation. Co-cultures alone did not express CXCL10. The observations made in these 

studies and the results shown within this thesis indicate that a Th1 cytokine environment, or 

IFN-γ, co-operate to induce increased expression of CXCL0. Mouse models have shown a ~2-

fold greater induction in lung CXCL10 mRNA during RSV infection compared to other 

chemokines making it a key chemokine to examine during RSV infection (480). In another 

study, mice were generated to only express IFN-γ receptors on AECs and it was observed that 

AECs, through IFN-γ signalling, were able to reduce mucus expression and BAL eosinophilia 

during allergic airway inflammation (481). This mouse model indicates that IFN-γ acting on 

AECs may reduce certain inflammatory responses, such as Th2 responses. In a human study 

in which nebulized IFN-γ was used to treat people with asthma, although small, 4/5 patients 

had a decrease in BAL eosinophil number (482). Furthermore, CXCL10 levels were 

significantly increased by IFN-γ treatment, ~1.5 fold indicating a very direct role for IFN-γ on 

the airway epithelium and CXCL10 expression in vivo. 

Another role NK cells may play towards the wider immune response to RSV is the production 

of BAFF for the development of adaptive immune responses. For BAFF, an overall increase 

in mRNA was observed during co-culture but this was not reflected in levels of the soluble 

protein, in either BEAS-2B cell or HNAEC-NK cell co-cultures (Figures 5.6 and 5.18). This 

increase in BAFF mRNA could be from both IFN-γ induced AEC-derived BAFF mRNA 

expression and potentially NK cell derived BAFF mRNA (Section 5.3). BAFF expression has 

previously been shown to be induced by IFN-γ and TNF-α in BEAS-2B cells and HBECs (151). 

To my knowledge, this is the first time BAFF expression has been characterised during RSV 

infection of AECs following IFN-γ and TNF-α treatment. Furthermore, a synergistic increase 

in BAFF cell surface protein and secreted protein was observed during RSV infection of BEAS-

2B cells with priming and continuous treatment with IFN-γ (Figure 5.14 and Figure 5.15).  
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AECs appear to be an important, and possibly the earliest, source of BAFF during RSV 

infection (145,448). However AECs may not be the only source of BAFF during RSV infection. 

Neutrophils and macrophages have also been shown to express BAFF with neutrophils 

requiring treatment of IFN-γ and IL-8 or TNF-α to express BAFF (483,484). The data here and 

that of the literature suggests that NK cells may not only be a contributor of BAFF themselves 

but aid in release of BAFF from other immune cells through expression of IFN-γ and TNF-α. 

This response could also be in co-ordination with the expression of airway epithelium 

cytokines. Another immune cell population that could benefit from BAFF expression by the 

airway epithelium and possibly NK cells are T cells. BAFF-R has been observed on activated T 

cells with BAFF possibly limiting certain T cell functions such as IFN-γ and granzyme B 

expression (485,486). Co-ordinated expression of BAFF through airway epithelium and NK 

cells interactions may therefore also influence T cell as well as B cell responses during RSV 

infection. Also worth noting is that a second signal maybe be needed for release of 

membrane-bound BAFF, such as the expression of serine proteases, which may recruited and 

activated through AEC-NK cell-derived chemokines and cytokines. Overall this leads to the 

suggestion that NK cells may be a key regulator of BAFF responses either through direct BAFF 

expression or indirectly by activating other immune cells to express it and/or proteases to 

allow for surface cleavage. This area requires further study. 

 

6.4. Could NK cell-induced, AEC-derived CXCL10 expression contribute to 

RSV illness? 

An important and still debated topic is whether NK cells are beneficial during RSV disease 

resolution or contribute to RSV bronchiolitis, such as through expression of IFN-γ. In mouse 

models, primary RSV infection of IFN-γ deficient mice led to severe RSV pathology upon re-

challenge suggesting IFN-γ plays a critical protective role (185). However IFN-γ has also been 
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shown to inhibit RSV-specific antibody production in mice which would allow for repeat 

reinfections (400). The roles of NK cell-derived IFN-γ in humans has not been defined. In 

relation to the results described in this work, NK cell derived IFN-γ induced AECs to express 

CXCL10 (Figure 5.1).  

It is known that RSV induces an increase in CXCL10 levels in BAL and serum of infants with 

bronchiolitis, with reduced numbers of CXCR3 positive lymphocytes in the blood suggesting 

recruitment of for example Th1 cells and NK cells to lungs (234,487). Other respiratory 

viruses have been shown to induce similar amounts of CXCL10 in serum of infants suggesting 

CXCL10 is a commonly expressed chemokine during respiratory viral infection (233). 

Influenza virus infection of HBECs cultured with IFN-γ for 24hrs induced synergistic increase 

in CXCL10 expression (153). The role CXCL10 plays during RSV pathogenesis remains unclear. 

Excessive CXCL10 protein may lead to more severe RSV illness. CXCL10 protein has been 

positively correlated to viral load, mucosal and plasma IgG levels and RSV severity scores in 

infants (233,234,487,488). However a more recent study suggested the opposite with 

reduced nasal fluid CXCL10 protein observed in infants with severe RSV bronchiolitis (489). 

This was associated with reduced viral load and IFN-γ levels and, as mentioned above, could 

reflect insufficient IFN-γ levels which leads to reduced CXCL10 expression and reduced 

CXCR3+ immune cell infiltration. McNamara et al. observed that in intubated infants with 

severe RSV disease CXCL10 was highest at 1 day and levels decreased steadily up to 7 days 

(234). The CXCL10 expression profile has also been shown to correlate with viral load (488) 

with the NK cell population and viral load also return to base-line levels around 6 days post 

infection (Section 1.4). Therefore, NK cells could be a contributor to this potentially excessive 

CXCL10 expression through AEC-NK cell interactions and IFN-γ expression.  

During human RV infection, significant increases in mucosal proteins levels of IFN-γ, CXCL11, 

CXCL10 and IL-15 were observed for those with asthma and not in those without asthma but 
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also infected with RV (447). Therefore, these cytokines and chemokines may also play a role 

in allergic inflammatory responses. This could also suggest a connection between AEC-

derived IL-15, NK cell-derived IFN-γ, CXCL10 and CXCL11 during viral infection and a potential 

for them to be involved in the initiation of future respiratory diseases. This could be driven 

through early AEC-NK cell cellular communications. Whether RSV infection may led to the 

development of asthma in children has been widely debated. AEC-NK cell crosstalk may be 

important in the expression of these inflammatory molecules during RSV infection which 

may then be involved in the development of asthma. No correlation was observed between 

IL-18 and IFN-γ during RV infection in infants, however CXCL10 did correlate to IFN-γ and IL-

12 (490). Positive correlation between serum IL-18 and IFN-γ has been associated with 

pulmonary sarcoidosis(491), although no correlation was observed from NPAs in the work 

described in Section 4.3.10. In one study, infants who required hospitalisation with RSV 

illness had higher NPA levels of IFN-γ, IL-15 and CXCL10 than those who were not hospitalised 

(439). This study also reported that those hospitalised and under 6 months old had lower 

IFN-γ and CXCL10. Furthermore, unlike with RSV infection, infants with RV infection did not 

show any difference in expression of IFN-γ, IL-15 and CXCL10 between hospitalised and non-

hospitalised groups. This could indicate that IL-15, IFN-γ and CXCL10 expression levels are 

specific to RSV in regards to disease outcome and less so for RV. 

As the airway epithelium is the initial driver of the immune response, defective AECs may 

also contribute to RSV disease pathology by having knock-on effects for immune cell 

populations which may appear to an apparent result of the examined immune cells. In a 

different co-culture model, HNAECs were co-cultured with monocyte-derived DCs during 

influenza infection (492). The aim of this study was to compare the co-culture Th1/Th2 

responses of non-smokers and smokers. Here they observed that smokers with additional 

influenza virus infection showed reduced CXCL10 protein and increased TARC protein. This 

suggests that the overall Th1 and Th2 response is also dependent on the state of the airway 
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epithelium and therefore defective AECs may also contribute to RSV illness which ultimately 

begin and drive the immune response. Indeed, infants exposed to smoke have increased risk 

of more severe RSV illness, again indicating the lung environment before infection shapes 

disease outcomes (493,494). Use of cigarette smoke here in this work could have provided 

information on expression levels of IL-15, IL-18 and IL-15Rα by AECs and then if cigarette 

smoke alters NK cell responses during co-cultures. 

Overall regarding the results observed in Section 5.3.5, the response of AECs and NK cells will 

also be influenced by cytokines present both before and during infection. A specific lung 

environment, such as Th1, Th2 or Th17 one, may alter AEC-NK cell interactions. NK cells 

themselves may therefore not be the driving force of potential IFN-γ or CXCL10-induced 

pathologies, but part of a wider imbalance in certain inflammatory mediators and immune 

cell responses.  

 

6.5. RSV strains influence response to RSV which may influence NK cell 

response 

Throughout this work the response to the clinical isolate RSV X was also used and compared 

to that to RSV A2. In Chapter 3, BEAS-2B cells infected with RSV X and co-cultured with NK 

cells expressed slightly more IFN-γ and TNF-α protein (Figure 3.21) which may reflect the 

increase in IL-15Rα mRNA observed for RSV X compared to RSV A2 (Figure 3.20). Results 

presented in Chapter 4 show expression of IL-15Rα mRNA is the same after infection of 

HNAECs with RSV A2 or RSV X, however IL-15 mRNA was ~2-fold higher after RSV X infection 

(Figure 4.8). Finally in Chapter 5, RSV A2 infected BEAS-2B cells alone expressed more CXCL10 

protein in comparison to RSV X (Figure 5.9). However during co-culture of NK cells, RSV X 

induced a ~3-fold greater increase in CXCL10 expression when compared to RSV infection 

alone than that observed with RSV A2 (Figure 5.10). Overall these results suggest that clinical 



263 
 

isolates may, through increased expression of IL-15 and/or IL-15Rα, enhance NK cell 

activation, such as IFN-γ and TNF-α expression, which induces further CXCL10 expression 

from AECs. This possibility however needs more examination including measurement of cell 

surface IL-15 and IL-15Rα by flow cytometry comparing between RSV A2 and RSV X and then 

intracellular IFN-γ expression in NK cells. Different RSV strains could therefore affect the 

magnitude of the AEC and NK cell response and comparison between different clinical 

isolates should also be characterised. For example use of RSV-Long strain, which lacks the 

ability to suppress type I interferon induction, infected AEC-NK cell co-cultures could provide 

further insight into the role of RSV NS protein suppression of AEC-IL-15, -IL-18 and -IL-15Rα 

and how this relates to NK cell responses (126). Different cytokine expression has been 

observed in BALB/cJ mice between different RSV laboratory strains A2, Long and Line 19 and 

also between laboratory strains and clinical isolates (495,496). This indicates that although 

the use of clinical isolates, and not lab strains, may provide a more representative response 

to human RSV infection, it is still not a direct comparison to in vivo responses. Nevertheless, 

it is still important to characterise responses to RSV that is as close to human RSV infection 

within animal or AEC in vitro infection models, which clinical isolates may provide. 

 

6.6. Model of AEC-NK cell interactions during RSV infection 

A classical view on the responses to RSV infection describes the infected airway epithelium 

expressing cytokines and chemokines which then act on immune cells. The immune cells 

then co-ordinate viral elimination through expression of anti-viral molecules, killing virally 

infected AECs, clearing cell debris and initiating an immunological memory. The work here 

describes a method of co-operation and communication between the airway epithelium and 

early activated NK cells, which may also be applicable to other resident immune cells, which 

together orchestrate the immune response to RSV. This model may also suggest that an 
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ineffective airway epithelium response to RSV infection, such as reduced IL-15/IL-15Rα 

complex cell surface expression, and then response to immune cell derived cytokines, such 

as NK cell-derived IFN-γ and CXCL10 upregulation, could lead to enhanced or inefficient 

cytokine expression.  

Figure 6.1 illustrates a proposed model of airway epithelium-NK cell interactions during RSV 

infection which draws on the results described within this work and observations reported 

in the literature. First, RSV induces expression of IL-15 bound to surface expressed IL-15Rα 

which activates resident NK cells through trans-presentation. Still unknown is whether 

soluble AEC-derived IL-15 can also activate NK cells via a method of cis-presentation. AEC cell 

surface ICAM-1 expression, induced by RSV infection, could aid in NK cell responses and/or 

adherence to the epithelium. Then through specific cellular communications between the 

airway epithelium and NK cells, NK cells expression IFN-γ and possibly TNF-α. Macrophages 

and DCs are also present and active during the early inflammatory response and may aid in 

additional cellular communications with NK cells. NK cell-derived IFN-γ and TNF-α could then 

act back on the airway epithelium to enhance expression of Th1 associated chemokines, in 

particular CXCL10, to aid in the recruitment of CXCR3+ immune cells from the periphery to 

aid in viral clearance, including CD4+, CD8+ and IL-17 expressing T cells. Increased expression 

of BAFF from the airway epithelium by IFN-γ, and possibly also sourced from NK cells, would 

aid in adaptive immune responses, such as B cell activation and production of RSV-specific 

antibodies. The expression of NK cell-induced expression of AEC-derived BAFF, ICAM-1, IL-

15/IL-15Rα complex and IL-18 requires further examination as these may be induced by RSV 

alone (red arrow), as an additive expression with cytokines (blue arrow), or in a synergistic 

fashion with cytokine stimulation (purple arrow). Overall, during RSV infection the balance 

between protective immunity and immunopathogenesis may be strongly influenced by AEC-

NK cell and/or other resident immune cell cellular communications. 
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6.7. Limitations and implications of an in vitro AEC-NK cell co-culture 

model 

One key limitation of the experiments presented in this thesis is the lack of knowledge of NK 

cell cytotoxicity during these AEC co-cultures. Cytotoxicity, whilst not the focus of these 

experiments, is nevertheless a key feature of NK cells activity and aids in reducing viral 

replication. A reduction in RSV N gene expression was observed in both BEAS-2B cell and 

HNAEC cell NK cell co-cultures (Figures 3.10 and 4.16). This could indicate NK cell targeted 

lysis of infected cells reducing RSV replication. However this could also be due to the anti-

viral effects of cytokines expressed during co-cultures, such as IFN-γ and/or type I 

interferons. The expression of other cytokines were either unaltered, such as IL-8, or 

increased, such as CXCL10, during co-cultures indicating that the NK cell responses was not 

exclusively cytotoxic. Perforin expression was determined by Liz Van Erp and is described in 

section 3.3.10. However these experiments used BEAS-2B cell culture supernatants only 

which do not reflect responses during direct AEC-NK cell co-cultures. 

One potential limiting factor of the BEAS-2B cell-NK cell co-culture model was the absence 

IL-12 and IL-18 protein in culture supernatants and for HNAECs the lack of IL-12 which work 

synergistically to enhance NK cell functions and could be expressed by other immune cells 

during infection. DC-NK cell co-culture models show that NK cells require IL-12 and IL-18 for 

optimum IFN-γ expression. This suggests a limited and/or muted NK cell response could have 

been observed within these AEC-NK cell co-cultures lacking IL-12 and/or IL-18. However the 

results obtained here for HNAECs overall reflects potential in vivo responses and early NK 

cell activation, in which IFN-γ protein was expressed by NK cells during co-culture. 

Furthermore, IFN-γ expression in the lungs of RSV infected mice was not altered by IL-12 

and/or IL-18 deficiency in the early stages of infection (497). Assuming early IFN-γ expression 

in this published study was to be NK cell derived, this suggests that there could be alternative 
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methods of NK cell activation during early stages of infection, such as direct cell-to-cell 

contact and IL-15/IL-15Rα complex as described in this thesis. During RSV infection, specific 

and tightly controlled direct cellular communications may occur between the airway 

epithelium and NK cells leading to IFN-γ expression. Additionally, as was discussed in Section 

3.4.7, for both BEAS-2B cells and HNAECs there is a lack of knowledge about basolateral 

secretion of NK cell activating proteins within this study which may also affect NK cell 

activation and the results observed here. 

Another limitation of this co-culture model is that the expression of other NK cell activating 

and inhibitory cytokines have not be assessed. Cytokines that have been shown to be 

expressed by BEAS-2B cells during RSV infection that can stimulate NK cells and have not 

been characterised in the work here include IL-1β, IFN-α and IFN-β (426,498). Here a focus 

was on cytokines that were believed to be key ones for NK cell activation. NK cell activating 

and inhibitory receptors will also be involved in the NK cell responses within these co-culture 

models and were not examined here. For instance, IFN-γ treatment alone and RSV 

infection was shown to increase cell surface MHC class I expression on BEAS-2B cells and 

HBECs after 24hr infection (152). Self- or healthy-cell expression of MHC class I molecules 

acts to inhibit NK cell activation (Section 1.3.2). This could be a beneficial role of IFN-γ to 

reduce prolonged NK cell activation and may reflect the short life-span of NK cell population 

expansion observed during RSV infection (Section 1.4). On the other hand, RSV was also 

shown to increase MHC class I molecules on BEAS-2B cells and this could be an immune 

evasion method RSV uses to impair immediate NK cell activation through the airway 

epithelium and thus allow for undetected viral spread. Therefore, the work here lacks a 

complete AEC-specific NK cell activating profile which would give more information and 

provide further understanding of AEC-NK cell communications during RSV infection. Now 

that key factors and time points have been defined, this model could be advanced by a more 

detailed examination of the changes in gene expression by both AECs and NK cells. For 
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instance, cells could be sorted from co-cultures and a micro array based approach, used to 

fully define the changes in gene expression. This would allow for analysis of proteins not 

characterised in this assay and aid in characterising AEC and NK cell interactions.  

Another limitation is the purity of NK cells which was at or above 95%. Therefore up to 5% 

of the unknown cells may contribute to the responses observed here. However, RSV infected 

BEAS-2B cells were shown to induce expression of intracellular IFN-γ which was specific to 

NK cells through flow cytometric gating. Therefore, RSV infected AECs do have the ability to 

induce NK cell activation and expression of NK cell-derived IFN-γ.  

Another consideration to make in regards to the AEC-NK cell co-culture model used here is 

the potential for NK cells to also be infected by RSV. RSV particles may be present from lysed 

AECs cells, either due to viral replication or due to NK cell lysis. A recent study has observed 

that NK cells contain intracellular RSV viral particles (499). Furthermore in addition with sub-

neutralising RSV-antibody complexes, NK cells displayed lower activation marker receptors, 

increased inhibitory receptors. This suggests that NK cells with RSV infection may require 

higher thresholds to be activated if infected with RSV. Although, this study also showed that 

another NK cell activation marker, CD107a, and NK cell-derived IFN-γ expression was 

increased with RSV infection alone, but not the expression of perforin. In regards to the 

results in this work, infection of BEAS-2B cells with an RSV expressing a fluorescent protein 

and intracellular flow cytometry after co-culture would have determined if NK cells in this 

model contained viral particles. Overall, further characterisation is required for NK cell 

functions during RSV infection. 

The use of peripheral blood NK cells here in these co-culture assays may not share the same 

phenotype and activity as resident lung NK cells would during RSV infection and is therefore 

another limitation of this model. This co-culture model may be more representative of the 

infiltrating NK cell response rather than that of resident NK cells which will ultimately be the 
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first to be activating and interact with the airway epithelium. ~90% of NK cells used in this 

work were CD56dim, with the percentage of CD56bright NK cells being 6.8% (range 0.5-13.4) 

(data not shown). Both lung resident and peripheral blood NK cells show a CD56dim 

phenotype (Section 1.3.1) which may allow for a similarities between the NK cell responses 

observed here in vitro to in vivo responses. However resident airway NK cells may be under 

different levels of control compared to peripheral NK cells and if resident NK cells were used 

as part of this co-culture here, different results may have been observed. Use of lung or nasal 

NK cells would improve this co-culture model, however obtaining these specific NK cell 

populations and at sufficient numbers would likely to be hard to do. Therefore use of 

peripheral blood NK cells is the best option for this work.  

Overall, both the BEAS-2B cell and HNAEC-NK cell co-culture model is less complex than 

whole lung infection but allows a clear dissection of the response and specific AEC-NK cell 

interactions not possible in vivo and is an improvement on single cell population cultures. 

This in vitro co-culture model is still a better match to the AEC-NK cell interactions that may 

occur in vivo in comparison to use of mouse models. Mice have a lower lung NK cell 

lymphocyte population percentage than for humans, ~10% compared to ~10-30% (Section 

1.3.1). Mouse models may limit the true influence of lung NK cells within in humans. Other 

lung resident immune cells could also influence both AEC and NK cell responses and then 

also be involved in AEC-NK cell interactions as well, such as DCs and macrophages. This 

includes the potential for other NK cell activating cytokines derived from either the airway 

epithelium or other lung resident immune cells to be expressed and influence the NK cell 

response. To challenge this triple cell cultures could also be used, but this type of co-culture 

model was beyond the scope of the aims established for this work. 



270 
 

6.8. Future directions  

Overall, the findings in this work describes a unique AEC-NK cell cellular communication 

during RSV infection. In Chapters 3 and 4 both BEAS-2B cells and HNAECs induced IFN-γ 

expression during NK cell co-culture. For both AECs used for co-culture models expression of 

NK cell specific intracellular and extracellular TNF-α protein, perforin and granzyme B 

expression during direct co-cultures with and without RSV infection would provide a more 

complete picture of NK cell responses during RSV infection. This includes a more detailed 

analysis of BAFF expression from NK cells, which has not been determined before during RSV 

infection. 

Furthermore, in regards to the differences in NK cell phenotype seen for infants, comparing 

the cytokine and cytotoxic profile of primary AEC-donor matched NK cell co-cultures taken 

from infants/children and adults would detail how age affects both NK cell responses and 

then enhanced AEC Th1 associated chemokine and BAFF expression during co-culture. This 

could be extended to the responses of both AECs and NK cells between individuals including 

those with different airway disease, such as asthma or COPD, where there is an underlying 

inflammatory activity. 

To improve this in vitro co-culture model, an ALI culture with human primary AECs and donor 

matched NK cells could be used. ALI culture can be seen as a more accurate representation 

of in vivo RSV infection of airway epithelium compared to submersion monolayer culture. 

This would be more representative of a lung environment such as having a differentiated 

AEC layer and polarised cytokine expression.  

Another reasonable comparison to make would the AEC-NK responses during different viral 

infections such as influenza and RV, including RV strains A, B and C. A comparison between 

these viruses would determine if certain viruses create specific early AEC-NK cell driven 

immune profiles. If there are differences in NK cell responses and AEC-Th1/Th2 associated 
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chemokine expression between viruses, this could provide early viral-specific NK cell driven 

immune responses and could aid answering the unknown relationship between infant 

bronchiolitis with recurrent wheeze and the later development of asthma. 

For HNAECs, expression of IL-18 protein expression was induced with RSV infection and this 

was not seen for BEAS-2B cells. To increase the knowledge of NK cell activating potential by 

primary AECs, pro-IL-18 and IL-18BP expression kinetics over time and with different MOIs 

should be evaluated. As discussed above, IL-18BP expression has been shown to be induced 

by IFN-γ in certain cell lines. The AEC-derived IL-18 signalling profile may also be extended 

through examination of Th1 and Th2 cytokine treatment with priming before RSV infection 

and continued treatment during RSV infection. This also includes expression of IL-18BP with 

cytokine treatment as well.  

Finally, further characterisation of how different cytokine environments alter AEC-NK cell co-

culture responses, such as a Th17 environment or with additional LPS stimulation, could 

allow for a more detailed observation of in vivo responses. This could be important in 

understanding how a stimulated airway epithelium before RSV infection induces certain 

resting NK cell phenotypes. 

Overall this work has provided valuable knowledge to the field in regards to how RSV infected 

AECs and NK cells communicate to bring about a co-ordinated immune response, with a focus 

on IL-15/IL-15Rα complex, IFN-γ and CXCL10 expression. 
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