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Abstract 

Terahertz (THz) (0.1 – 10 THz) region of the electromagnetic spectrum spans the 

frequency range between the mid-infrared and the millimetre range. THz technology has generated 

a lot of interest recently due to its potential applications as a tomographic imaging and material 

spectroscopic characterization technique in a wide range of industry sectors including aerospace 

industry, wood products industry, the pharmaceutical industry, art conservation and semiconductor 

industry. There have been significant advances in the development of THz sources and detectors. 

The radiated THz power from these devices, however, is very low, and they are very inefficient.  

Hence, there are still a lot of continued interests in developing more powerful and compact THz 

sources as this will enable new applications of this electromagnetic spectrum.  

In this thesis, a novel photoconductive antenna with an embedded electrode structure had 

been proposed. Formulated equations had been used with COMSOL Multiphysics software 

package for the proposed THz photoconductive antenna analysis. Simulation results indicate that 

the proposed THz antenna can store two times more effective electric energy than the 

conventional photoconductive antenna. These results suggest higher THz power could potentially 

be obtained using the proposed structure. The proposed model also exhibits almost double the 

value of current when the substrate material mobility is doubled.  

 Based on the appraised parameters of the proposed model, the best dimension of a THz 

photoconductive antenna had been recommended to be constructed.  
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Chapter 1 Introduction 

1.1 The Terahertz Spectrum 

The region of the electromagnetic spectrum in the range of 100 GHz (3 mm) to 10 THz 

(30 μm) which is between the millimetre and infrared frequencies is used to describe the THz 

radiation typically [2, 3]. THz band has variously been named such as sub-millimetre, far 

infrared and near millimetre wave. At 1 THz, the radiated signal has a wavelength of 300 μm 

in free space, a period of 1 ps, 4.14 meV photon energy and = 48 K temperature; where 

h is Planck’s constant, f is frequency and kB is Boltzmann’s constant. The THz band in the 

electromagnetic spectrum is shown in Fig. 1.1 

 

Fig. 1.1 Schematic diagram showing the location of THz band in the electromagnetic spectrum [1-2] 

 

Bkhf /
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Due to the absence of efficient, coherent, and compact THz sources and detectors, this 

segment of the electromagnetic spectrum is the least explored region [3, 4]. Common 

microwave-frequency sources such as transistors or RF/MW antennas and devices working in 

the visible and infrared range, for example, semiconductor laser diodes exhibit these 

characteristics [5]. Due to the significant reduction in power and efficiency, it is not possible to 

adopt these technologies for operation in the THz region. Solid-state electronic devices, such 

as diodes generated power that has roll-offs of 1/ f 2 [6] due to reactive-resistive effects and 

long transit times at the lower extreme of THz frequency range [6]. Furthermore, lack of 

materials with adequately small bandgap energies [5] making optical devices, such as diode 

lasers, perform poorly at THz range limit. Therefore, the term “THz gap” is invented to explain 

the lack of maturity of this band compared to fully developed adjacent spectral regions. Various 

types of research on new emitters and detectors based on semiconductor technology are 

emerging to address these issues [4, 7-9].  

In this chapter, the THz radiation is explained. Its properties and application are 

discussed. Then, different THz sources and detectors are reviewed and evaluated. Based on the 

built foundation, the research motivations and objectives of this thesis are outlined.  

1.2 The THz Wave Properties and Applications  

Interest in THz region dates back to 1920s [30], though only within the past three 

decades extensive research has been dedicated to this spectrum. Endless applications possibility 

in the THz frequency range and remarkable wave properties is the reason for the sudden interest 

in the region. Since THz region is contained between microwave-millimetre and infrared areas 

it has mid-characteristics borrowed from the two bands. These properties can be summarised 

as follows [1-2]: 

1. Penetration: The wavelength of THz radiation is longer than the infrared 

wavelength; hence, THz waves have less scattering and better penetration depths 

(~ cm) compared to infrared ones (~ μm). Therefore, dry and non-metallic 

materials are transparent in this range but are opaque in the visible spectrum. 
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2. Safety: In contrary to X-rays, the photon energies in the THz band are much lower. 

Therefore, THz radiation is non-ionising.  

3. Spectral fingerprint: Inter- and intra-vibrational modes of many molecules lie in 

THz range. 

4. Resolution: THz waves have shorter wavelengths in comparison to the microwave 

ones, this gives a better spatial imaging resolution. 

1.2.1 Atmospheric Characteristics of THz Waves 

Compared to the microwave and infrared waves THz radiation has distinct atmospheric 

characteristics. THz waves have extremely high absorption in the atmospheric situation and the 

moist environment. Fig. 1.2 shows the atmospheric attenuation across the electromagnetic 

spectrum. Signal degradation in this range- with the main peak attenuation between 1 to 10 

THz- is considerably more than the microwave and infrared bands. THz signal absorbs water 

significantly. Thus, for long range (> few hundred meters) applications, the required power for 

signal transmission is high and impractical [6]. However, the application of THz waves in the 

two following cases is different.  

1. Signal absorption and attenuation due to water drops are not problems in space 

since the ambient is near-vacuum. Moreover, black body temperatures of THz 

signals lie in the range of 4.8-480 K which means the majority of ambient radiation 

is THz waves. Considering spectral signature of interstellar dust which is located 

in THz region and advantage above of THz signals in space, THz technology is a 

very interesting and widely used technique in radio astronomy and space science 

[10]. European Space Agency launched the largest infrared space telescope known 

as Herschel Space Observatory in 2009 [11]. 

2. Atmospheric attenuation does not have any significant impact for short range 

applications, typically less than 100 m is not a big issue. Hence, THz technology 

has substantial potential for fundamental investigations in various disciplines such 

as chemistry and physic. 
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Despite adverse effect of water vapour lines on THz signals, these lines are narrow 

enough, and their positions have been known; thus, this allows removal or recognition of the 

water vapour lines effect in THz applications such as spectroscopy [12]. 

 

Fig. 1.2 Attenuation at sea level for different atmospheric situations, Rain = 4 mm/h, Fog = 100 m 

visibility, STD = 7.5 gm/m3 water vapour, and 2×STD = 15 gm/m3 water vapour [13] 

1.2.2 Applications of THz Radiation 

THz radiation can be applied in many possible applications including imaging, 

spectroscopy and wireless communication based on THz wave properties [11, 14-15]. Even 

though THz applications have widely been explored, only in the recent decade, companies such 

as TeraView Ltd [16], Terametrix (formerly known as Picometrix)  [17] and Toptica [18] had 

manufactured several commercial THz imaging and spectroscopy systems. In early 2011, the 

first THz camera that can see and record in real-time at room temperature was introduced by 

Traycer [19].  

1.2.2.1 THz Pulsed System Applications 

Pioneer work in THz pulsed imaging in [20] and THz CW imaging [21] spur many 

research areas on applications based on THz imaging areas [22]. One of the main subcategories 

in this field is medical imaging. Since THz waves can penetrate up to a few hundred 

micrometres (μm) in human tissues, therefore, making it a potential method for body surfaces 

such as skin, breast and mouth cancer detection [23-24] and dental imaging [25]. Early 

detection of cancerous tissues and tooth decay or minimisation of the damage to the surrounding 
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healthy skin in a biopsy are the benefit from this technology. THz medical imaging, however, 

has two major drawbacks where the equipment is expensive and data acquisition time is long. 

Arrays of antennas and micro lenses are employed in [22] to address the long data acquisition 

time.   

Since the first introduction of THz pulsed spectroscopy in [27], a fascinating 

application for commercialising THz technology in diverse areas [26] can be observed. THz 

spectroscopy is a compelling technique to characterise material properties and understand their 

signature which lies in the THz band. This is because many molecules have rotational and 

vibrational transition lines in this range of frequency. Among interesting THz spectroscopy 

application is in biochemical science such as analysis of DNA signatures and protein structures 

[28].  

Investigating material integrity and inspecting multi-layered materials such as wood, 

composites, and cloths can also be done using THz radiation. All of these materials are 

transparent in THz frequencies. THz pulsed imaging and spectroscopy have been adopted for 

non-destructive testing; for example, on imaging antiquities [29, 30] to reveal the thickness of 

the different layers of the artwork and to show the types of their materials [31]. This technique 

can be used for in-line control of polymeric compounding processes as well [32]. THz pulsed 

imaging and spectroscopy are also two robust quantitative and qualitative non-invasive 

methods for examining pharmaceutical solid dosage forms [33, 34]. 

Security applications using THz systems is also a huge possibility [22] because of the 

possibility of using these systems in personnel screening [16], solid explosive material 

detection [35, 36], and mail screening [37]. However, metals are not transparent to THz signals; 

therefore, they are not suitable for imaging inside the metallic suitcases. This system can 

perhaps be treated as a backup for the well-established monitoring techniques like X-ray [22].  

One of the major drawbacks of the THz technology is its high water absorption. 

However, this drawback can be manipulated positively to distinguish the hydrated substances 

from dried ones. For instance, in the paper industry, THz spectroscopy has been used for 

monitoring the thickness and moisture content of papers by manufacturers [38-39].  
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Finally, a very convenient method to take 3D images from the inside of an integrated 

circuit device can be done using THz pulsed imaging. This is better compared to the 2D images 

provided by the X-ray method [22].  

In a nutshell, a schematic overview of various THz applications based upon 

optoelectronic systems is depicted in Fig. 1.3 [1,2]. 

 

Fig. 1.3  Schematic overview illustrating some commercial and laboratory applications of THz pulsed 

imaging and spectroscopy across the various sciences [1] 

THz application in wireless communication, one interesting THz application which 

cannot be categorised in either THz pulsed imaging or spectroscopy.  To provide sufficient 

transmission capacity for future high data rate demands, higher carrier frequencies need to be 

utilized, and THz frequencies had the potential to satisfy these needs. However, THz 

communication links have two main limitations where THz communication systems are only 

suitable for line of sight cases, and  THz signals can only propagate over a short path length 

due to severe atmospheric attenuation. Considering these restrictions, THz communication 

systems can be a suitable option for indoor short distances which is limited to several tens of 

meters such as multipoint to point/multipoint basis at frequencies between about 0.2 to 0.3 THz 

[40]. From another point of view, these restrictions are beneficial for secure THz 

communication since the beam can be highly directional and it attenuates severely over the 

distance; unwanted signal detection is difficult. THz data communications for short ranges less 

than < 1m is based upon THz time domain systems and have been tested at 0.3 THz in recent 

years [41]. In [42] external semiconductor THz modulator is used with data transmission of 6 

kHz while in [43] audio signals through the voltage of the transmitter THz antenna modulates 
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the THz frequency, and the reported data transmission was 5 kb/s. Block diagrams of these two 

approaches are demonstrated in Fig. 1.4. 

 
(a) 

 

(b) 

Fig. 1.4  Schematic diagram of THz communication links for (a) system of [42] with external modulator 

(b) system of [43] where voltage modulation of the THz antenna is used  

1.2.2.2 THz CW applications 

Narrowband high resolution systems are required for some applications such as gas-

phase spectroscopy, high frequency dielectric measurements of electronic, metamaterials and 

nano-materials, and signature analysing in microliter DNA [22,44-46]. This opportunity can be 

realised via THz CW imaging and spectroscopy systems [47-48]. For some applications like 

imaging of aircraft glass-fibre composites or determining the thickness of a sample however 

both pulsed and CW imaging methods can be used [41, 49].  

1.3 THz Sources  

Among all the elements in THz technology, the THz source has been considered as the 

most challenging component to accomplish [26]. Numerous research and effort have been done 

to extend RF/MW and optical technologies to THz band. Combining both of the technologies 
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to realise THz sources with better performance had also been considered [50]. Due to this effort, 

THz emitters are divided into three main groups: THz sources developed from RF/MW side, 

THz sources extended from optical side, and THz sources combining RF/MW and optical 

techniques.  

1.3.1 THz Sources from RF/MW Side 

In this category, diodes and THz vacuum tube sources are explained. 

1.3.1.1 Diodes and Frequency Multipliers 

On the lower end of the THz spectrum, diodes can transfer the functionality of lower 

frequency electronics into the THz band. There are several types of diodes, such as Gunn 

diodes, IMPATT diodes and resonant tunnelling diodes (RTD). The principle of power 

generation from these diodes is based upon their negative differential resistance [51] although 

the operation bases of these diodes are different. Each of these diodes has their own advantages 

and disadvantages [51-56]. Still, in these components, dramatic reduction in powers can be 

observed with increasing frequency [53].  

Another method to reach THz band is the use of frequency multipliers which 

outperform other solid-state electronic sources. This is because the diode multipliers are 

physically and operationally simple [52]. Since higher order multipliers are incredibly 

inefficient, series arrangements of doublers and triplers have mostly been implemented [26]. In 

this method, chains of microwave sources, such as GaAs Schottky diodes, at lower GHz bands 

(20 – 40 GHz) can be used in series to drive multiplication at THz ranges [52]. However, the 

output power from multipliers decreases at higher frequencies [57], like the diodes mentioned 

above. The bandwidth of these sources is also limited [57]. 

1.3.1.2 THz Vacuum Tube Sources 

Free electrons emission from microwave tubes is one of the traditional THz generation 

methods. THz tubes such as travelling wave tube (TWT), backward wave oscillator (BWO), 

klystron and gyratron can produce strong power levels at the lower end of THz band. In [58] a 
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power level of 52 mW at about 0.6 THz from a BWO has been reported. One of the main 

operational similarities in all of these tubes is the interaction of an electron beam with an 

electromagnetic wave to produce THz energy. Although THz tubes can produce much stronger 

power levels at the lower end of THz band compared to previously explained solid-state 

components [51], they are very bulky. They also need large magnetic biases and high voltage 

power supplies. This restricts the use of these sources in wide operational settings, making it 

inflexible. 

1.3.2 THz Sources from Optical Side 

THz sources from optical side are mainly divided into lasers with different generation 

techniques and nonlinear crystals [2].  

1.3.2.1 Molecular Lasers 

THz signals with a power level of few ten milliwatts can be produced by injecting 

grating tuned CO2 lasers into low-pressure flowing gas cavities [2,26]. The frequency of this 

THz power depends on the spectral line of the gas; for example, a rotational transition of 

methanol occurs at 2.522 THz.  

1.3.2.2 THz Semiconductor Lasers 

Semiconductor diode lasers are very successful and prevalent in the near-infrared and 

visible frequency ranges. In THz bands, natural materials with suitable band gaps are not 

available, artificially engineered materials are considered [5, 59]. Therefore, the concept of THz 

Quantum-Cascade lasers (QCL) which are intra-band lasers and require the creation of 

quantised sub-bands was introduced [4]. For this purpose, several few-nm-thick GaAs layers 

separated by AlGaAs barriers need to be fabricated. Therefore, proper engineering of the 

thickness of the semiconductor layers (or quantum wells) and also a choice of the appropriate 

bias voltage is required to achieve population inversion. Because the energy of the system is 

inversely proportional to the square of the layers thicknesses, by narrowing or widening the 
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quantum wells, series of multi layers of energy can be created. Thus, the electron motion from 

one miniband to the next results in an emission of a THz photon at each transition. 

QCL can operate in both pulsed and continuous-wave (CW) modes. QCL operating 

frequency is controlled by quantum well design (band gap engineering), and different 

wavelengths can be achieved in the same material [2]. QCLs have been one of the most 

intensive research topics in THz area during the past decade and the survey on different THz 

QCLs show that the frequency ranges of these devices span from 0.84 THz to 5 THz at various 

cryogenic working temperatures [60-63] with the best peak optical power of 200 mW at about 

4.5 THz [5] . The best peak operating temperature of 200 K at about 3.2 THz reported in  [64]. 

In room temperature situation, a THz QCL with a power of 8.5 μW at 4 THz has been 

demonstrated [65].  

As a conclusion, QCLs have larger output power at higher THz frequencies and as 

frequency decreases the power reduces considerably [2]. One of the main limitations of THz 

QCLs is that for THz operation they need cryogenic cooling and this restricts the operation of 

QCLs to only laboratory environments making it unattractive.   

1.3.2.3 Optical Down Converters 

One of the common methods for THz generation is the use of nonlinear crystals with 

large second order susceptibility, χ, for down conversion of power from optical regime [2]. 

Several nonlinear materials for this purpose can be employed [11]. THz parametric processes 

such as parametric oscillator or difference frequency generation (DFG) are techniques for 

production of monochromatic highly tunable THz wave sources with a high spectral resolution 

[66-68]. Another optical down conversion method is the optical rectification in which all 

possible difference frequencies of spectrally broad optical pulses are generated.  

The drawbacks of this method are that the phase matching between the optical fields 

and induced THz field is needed. This requires thorough design on the thickness of the 

nonlinear material. The THz output power in this method is low, and to generate significant 

THz power, high power optical sources are needed.  
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1.3.3 THz Sources Combining RF/MW and Optical Techniques 

THz antennas which are based upon photoconduction which is the basis of this thesis 

can be assigned to this category of THz sources. As shown in Fig.1.5, a Photoconductive THz 

antenna consists of a voltage-biased antenna mounted on a photoconductive substrate where 

GaAs is commonly used. Optical laser sources as the excitation sources of THz antennas are 

used to produce THz waves by inducing rapid changes in the current/carrier density in the 

photoconductive substrate. Depending on the type of optical excitation, there are two 

alternatives for THz antennas based upon photoconduction technique: 

1) THz photoconductive antennas in pulsed systems  

2) THz photomixer antennas in CW systems  

 

Fig. 1.5 Schematic diagram of a THz antenna as an emitter for both pulsed and CW THz systems 

Although it is possible to use the same antenna in both systems, different excitation 

methods dictate different requirements for each antenna type and result in different THz waves 

and applications. In THz pulsed systems, because of the external bias field, the optically 

induced photo-carriers in the photoconductive gap give rise to rapid changes in the current 

density. These currents induce a THz electromagnetic field in the connected antenna, and as a 

consequence, ultrafast electrical pulses are produced and radiated into free space. In CW 

systems the process is same; however, usually two monochromatic lasers with slightly different 

optical frequencies (the difference is in THz) are used for THz emission from the antenna. This 

inherent excitation difference in THz pulsed and CW systems leads to the generation of ultra 

wideband and narrowband THz waves respectively. In a CW system, the term “photomixer” 
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refers to the antenna gap (which can have various designs) in an analogy of “photoconductive 

gap” in a THz pulsed system. The focus of this thesis will be on these types of sources. Detailed 

and comprehensive study and investigation on THz antennas will be presented in next chapters. 

1.4 THz Detectors  

Compared to emitters/sources,  development in THz detectors has been more 

aggressive [26]. One of the main issues in the detection of THz waves is that the photon energy 

in this frequency band is in the range of 0.41 to 41 meV which is comparable to the background 

thermal noise energy. Therefore, to overcome this problem mainly two methods have been 

adopted: cryogenic cooling and signal integration for long enough periods [26]. 

THz detection can be categories into coherent and incoherent techniques. The main 

difference between them is that in coherent technique both the amplitude and phase of the 

received signal are determined. Meanwhile, an incoherent technique only the intensity of the 

signal is measured [2].  

Important, coherent technique in detecting weak and narrowband signals is heterodyne 

detection. In this method, a mixer, a nonlinear device, as a local oscillator is used for frequency 

down conversion. Fig. 1.6 demonstrates the process of electronic heterodyne detection. The 

amplitude of the detected signal is proportional to the amplitude of the THz signal [2]. There 

are various types of mixers in the THz range. A Schottky diode is a common and basic mixer 

type for room temperature detectors where a modest sensitivity is required. However, for high 

sensitivity applications, superconducting heterodyne detectors are employed which operate in 

cryogenic temperatures. SIS tunnel junction mixers and HEB mixers are two examples of 

mixers in this category. 
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Fig. 1.6 Block diagram of a THz heterodyne detector [2] 

Electro-Optic (EO) and photoconduction samplings are also coherent methods. In the 

former, the amplitude and phase of the THz signal are measured by using a nonlinear crystal. 

In the photoconduction samplings as shown in Fig. 1.7, the THz signal induces a voltage across 

the antenna which leads to a generation of THz current due to the existence of free electron-

hole pairs in the antenna gap. The phase of the THz signal in these methods can be measured 

by varying the optical path length of the optical probe pulse.  

Other incoherent detectors are direct detectors such as Golay cells and bolometers. 

These detectors in room temperature are appropriate for applications where high spectral 

resolution and rapid response time in the order of seconds are not required [26]. For a better 

sensitivity and dynamic range, cryogenic cooled direct detectors such as cryogenically cooled 

bolometers which have a response time in the order of microseconds can be used [26]. 

 

 
Fig. 1.7  Schematic diagram of a THz antenna as a THz detector for both pulsed and CW THz systems 

[2] 
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1.5 Research Motivations and Objectives  

The primary motivation for this research is triggered by the limitation in the 

development of high output power and efficient sources in the fast growing THz technology.  

Though light and radio waves belong to the same electromagnetic spectrum, their 

behaviour is different. THz region is the intermediate part of the spectrum which has a mixture 

of both characteristics. Despite the fascinating and unique properties, THz technology has been 

largely avoided by the late of the twentieth century due to the lack of robust, coherent, efficient 

and cost effective THz sources and detectors [1-2]. However, the advent of femtosecond lasers 

in the 1980s and later photoconductive antennas in 1984 [68],  developed accessibility to THz 

gap. Since then and over the last three decades, due to interests in new THz applications in 

different fields as discussed previously, THz technology has undergone extraordinary progress. 

Commercial THz imaging and spectroscopy systems have started to be introduced to the 

market. Still, there are various issues, such as the low output power and working temperature 

of THz sources, which need to be tackled for this technology to be as mature as radio and optical 

technologies.  

THz photoconductive antennas are one of the keys and common components in many 

THz systems. The popularity of these THz antennas is because of the several advantages that 

these types of THz sources are offered as compared to other THz sources discussed earlier. For 

instance, they work in a room-temperature environment, they are compact, and they can operate 

both in the emitter and detector sides [1-2].  

Although these types of components have been widely employed in established THz 

systems, the radiated power from them is very low, which is about few microwatts, and they 

are inefficient [69]. For this purpose, it is crucial to establish the effect of various parameters 

of optical sources, photoconductive materials and antennas on the performance of the THz 

antennas. Thus, having a model which links these parameters can be very useful for both, 

designing a THz antenna and tuning a THz system to achieve the optimum power conversion 

efficiency and THz radiated power. Therefore, as fundamental research work on the THz 
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photoconductive antennas, a numerical model is developed in this study considering the 

interaction between laser beams, photoconductive materials and antennas in a typical THz 

scheme. 

Utilising a package of commercial simulation tool is an essential part of radio 

frequency (RF) antenna analysis. This step is crucial to determine the necessary parameters 

before preceding to any experimental procedure. However, the major difference in analysing 

THz antennas as compared to RF antennas is the optoelectronic characteristics of THz antennas 

which are the result of the optical excitation and photoconductive material response. Some 

commercial semiconductor solvers such as TCAD Sentaurus [70] and COMSOL [71] perform 

advanced simulations on characterising semiconductor devices considering their complex 

physical phenomena, and various information for instance on electric field distribution and 

charge concentration can be provided by them. Sentaurus is a suite of TCAD tools which 

simulates the fabrication, operation and reliability of semiconductor devices, but COMSOL 

COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics 

simulation software. One software product with a lot of different modules. COMSOL offers a 

single and comprehensive software set. One advantage provided through COMSOL is the ease 

of setting up a multi-physics simulation. With one pre-processor, solver and post-processor, 

simulation analysts don’t have to use a wide range of tools to get one job done. COMSOL is a 

consolidated environment hence simulation analysts don’t have to worry about mapping the 

results of one simulation onto another simulation. For THz antenna analysis, the THz current 

source is the main input that needs to be fed to full-wavelength simulation tools. This 

combination of semiconductor solvers with full-wave electromagnetic solvers can provide a 

possibility of simulation of THz antennas, and this method can predict the outcome of any 

experimental procedure hence saving cost on unsuccessful experimental procedure. 

 

 

 

 

https://en.wikipedia.org/wiki/Finite_element
https://en.wikipedia.org/wiki/Multiphysics
https://en.wikipedia.org/wiki/Simulation_software
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As a summary, the main objectives of this research are as follows:  

 To develop a novel model which perform better than conventional THz 

photoconductive antenna that will produce higher radiated THz power by 

identifying the related parameters that can be improved 

 To formulate an equation that will be used with a new simulation method for 

THz photoconductive analysis  

 To appraise the parameters of the proposed model and recommend the best 

dimension to be constructed  

 

1.6 Thesis Overview 

The thesis is organised as follows. To focus on the scope of the research to THz 

Photoconductive antennas, Chapter 2 starts with providing comparisons of THz antennas with 

conventional RF/MW (microwave) antennas from various aspects. To build the foundation for 

the contributions of this thesis, the necessity of new look and approach on analysis of THz 

antennas as compared to RF/MW antennas are highlighted. In the second part, the problems 

and reasons for THz antennas having low efficiency are elaborated, and some of the previous 

work on the previous photoconductive antenna is reviewed. 

In Chapter 3, the impact of substrate dimensions and substrate material on the 

performance of THz photoconductive antenna were investigated. The investigations were done 

using commercial software, CST (Computer Simulation Technology). The radiated power and 

the efficiencies of a THz photoconductive antenna with various substrate dimensions were 

simulated. Both parameters were also simulated for THz photoconductive antenna with 

different substrate materials. 

Electrodes are main components which are responsible for the generation of THz 

current. Geometrical modification and optimisation of electrodes can lead to a generation of 

more THz current which couples to the antenna. A study on the electrode structure’s effect and 

electrode material’s effect using CST (Computer Simulation Technology) are studied in this 
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chapter. However, the results from this commercial software are found insufficient. Hence, the 

investigation of the electrode structure effect is done thoroughly in Chapter 5 using COMSOL.  

A novel design of a Photoconductive Antenna with an embedded electrode is proposed 

in Chapter 5. A novel concept to enhance the generated THz photocurrent in the 

Photoconductive Antenna is elaborated. Then, the proposed antenna is compared to the 

conventional antenna and proven to perform better using a simulation tool COMSOL where the 

combination of semiconductor solvers with full-wave electromagnetic solvers is used. Also, a 

novel analytical method is introduced in this chapter. The antenna operation principle, design 

procedure and simulated results are systematically described in Chapter 5. 

Finally, Chapter 6 the concludes the research. The main objectives are reviewed, and 

the achievements are highlighted. Furthermore, the challenges and suggestions worthwhile to 

investigate as future further works are also discussed. 
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Chapter 2 THz Photoconductive Antennas  

2.1  Introduction 

This chapter focussed on the THz Photoconductive antenna. As emitters, it converts 

optical waves to THz waves. As detectors side, it transforms THz energy to electric energy 

detectable by a lock-in amplifier. However, special excitation method of this antenna imposes 

new and different approaches for antenna analysis, simulation, fabrication and measurement as 

compared to a common RF/MW antenna. Thus, in this chapter after highlighting the necessity 

of having an antenna, THz antennas are compared with RF/MW antennas. This comparison is 

significant because it highlights research options in THz antennas and it builds the base for 

contributions of this thesis. 

2.2  The Importance of Having a THz Antenna in a THz System  

Semiconductor materials like LT-GaAs and InP can generate THz waves  [1, 2]. Under 

the illumination of femtosecond optical pulses, electron-hole pairs on the surface of a 

semiconductor substrate are separated. Then, due to the acceleration of the carriers in the 

electric field originating in the surface depletion layer of this semiconductor, THz wave is 

radiated [3]. Carrier mobility and the intensity of the static internal field affect the amplitude 

and phase of the radiated THz field [1]. THz emission can be enhanced by applying an external 

magnetic field from semiconductor surfaces, and this is due to the reorientation of the created 

dipole in semiconductor towards the surface [4]. Nevertheless, the emitted power based on this 

method is small. Therefore, this can be improved by employing antenna electrodes on the 

semiconductors and applying an external bias field across the antenna which surpasses the 
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surface depletion field [5]. Companies such as Thorlabs [6], Toptica [7], Tetechs [8] and 

Menlosystem [9], had manufactured commercially THz antennas. Hence, THz antenna plays a 

vital role in stronger THz generation and detection. 

2.3  The THz Photoconductive Antenna 

THz photoconductive antennas, consisting of two metal usually gold electrodes on a 

photoconductive substrate. When used as an emitter these electrodes act mainly as a means for 

biasing the device and also as an antenna. The distance between the electrodes is referred to as 

the photoconductive gap. This gap is where the laser pulses illuminate. This gap is also where 

the electron-hole pairs are produced [10]. 

 Through the differences in the photoconductive gap sizes, THz photoconductive 

antennas can be categorised into three types, firstly, small gap antennas with a gap size of about 

5 to 50 μm. Secondly, large-aperture antennas where the gap dimension is much greater than 

the centre wavelength of the emitted THz radiation where the gap sizes are usually larger than 

few hundred micrometres [11] and lastly, semi-large gap antennas which the gap size is between 

the two previous types [12]. With small gap antennas, larger spectral ranges can be achieved 

[12, 14]. Meanwhile, large-aperture and semi-large antennas are better heating handling 

capability due to larger deposited electrode areas on the substrate and the ease of fabrication  

[13]. Electrodes of a THz antenna made a bigger impact on the THz power and bandwidth of 

small gap antennas rather than large-aperture antennas [12]. More detailed performance 

comparison of the small gap and large-aperture antennas are provided in the next section. 

As shown in Fig. 2.1, an antenna electrode can have various shapes and geometries. 

Commonly used in THz pulsed systems due to their frequency independent characteristics are 

the bowtie antennas. Furthermore, the sharp ends of the antenna lead to singular electric fields 

hence enhancing the THz radiation from the device [15]. Besides bowtie antennas, a large gap 

coplanar strip line is also favoured because it does not need micro-fabrication techniques like 

small gap antennas.  Also, for a precise laser focus alignment, a large gap coplanar strip line is 

not as sensitive as small gap antennas. 
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        (a)                                                                    (b) 

Fig. 2.1  Sketch of THz photoconductive antennas (a) small gap bowtie antenna (b) large-aperture 

coplanar strip line [10] 

2.3.1 Theoretical Principle of THz Photoconductive Antenna as an Emitter 

Electron-hole pairs are created when the THz photoconductive antenna as an emitter is 

excited by ultra-short laser pulses. These ultra-short laser pulse’s photon energy is higher than 

the bandgap energy of semiconductor material. Due to the bias voltage across the electrodes of 

the antenna, transient photocurrents are produced, because of the acceleration and deceleration 

of the photo-generated carriers. As a result, the THz wave is radiated into free space by the 

antenna. The theory of generation of THz photocurrent may differ [11] from each other due to 

the differences in the antenna gap size. In the following section, this is discussed in detail. 

2.3.1.1 Large-Aperture Antennas 

The emission of THz radiation from the large-aperture antenna is in line with the theory 

of dipole antenna. The generated photocurrent can be assumed as surface current confined to a 

thin layer in the photoconductive gap [11, 16-17] under the laser illumination. Hence, the on–

axis radiated THz field in the temporal format can be written as [17]: 

 
(2.1) 

where is the surface current density, µ is the permeability, S is the photo-excited area in 

the antenna gap and z is the on-axis distance from the antenna gap.  

According to the detailed explanations in Appendix A, the surface current density in a 

large-aperture antenna is: 
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(2.2) 

where  is the surface conductivity of the photoconductive substrate, m* is the 

effective mass and μe is the electron mobility and related to photoconductive material 

characteristics as .  

Through equations 2.1 and 2.2, the radiated THz field can be obtained as:  

 

(2.3) 

Hence, it can be interpreted that large aperture antennas relied on surface current density and 

applied bias to antenna electrodes. 

2.3.1.2 Small Gap Antennas 

While the emission of THz radiation from a large-aperture antenna is in line with the 

theory of dipole antenna, the emission of THz radiation from a small gap antenna is in line with 

the theory of Hertzian dipole. The radiated electric field is proportional to the time derivative 

of the current, Ipc, (or equivalently it is proportional to the current density, Jpc) as [18, 19]: 

 
(2.4) 

The movement of electrons from the valence band to the conduction band under the 

laser illumination generated the photocurrent. Since the electron (free carrier) density in the 

conduction band is n(t), and the velocity of carriers is v(t), the current density, Jpc (t) is given 

by [20]: 

 (2.5) 

Where e is the electron charge. This current relation applies to the hole, but with a positive sign. 

Hole contribution to THz current and radiation is much smaller [21] due to the effective mass 

of a hole is much larger than that of the electron; hence it is often be neglected.   
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A simple one-dimensional Drude-Lorentz model has been developed in  [14] in order 

to explain the main features of this photocurrent density and carrier dynamics. This model 

consists of three interlinked differential equations describing the relation of free carrier density, 

the velocity of carriers, and the polarisation caused by separated carriers under the bias field, 

Psc. These equations are as follows:  

 
(2.6) 

 
(2.7) 

 
(2.8) 

 
(2.9) 

Where τc is the carrier lifetime where it is the average time span that excess free electrons 

survive before recombining [20], τs is the momentum relaxation time or carrier scattering time 

where it is the average time between two collisions of each electron in the conduction band, 

and it is in the order of a tenth of ps [20], τr is the carrier recombination lifetime [22], G(t) is 

the generation rate of carriers by laser pulses, m* is the effective mass, Elocal is the electric field 

in the photoconductive gap, Ebias is the applied bias to antenna electrodes, and ζ is the 

geometrical factor [14]. Jpc(t) and ETHz(t) can be found through numerical calculations of 

equations (2.6) -(2.9) 

 Radiated THz field can be related to carrier dynamics and calculated as: 

 
(2.10) 

by considering both equations (2.4) and (2.5) 

Hence, it can be interpreted that for small gap antennas, THz radiation relies on the 

results of ultrafast variation in carrier density and acceleration of photo-carriers. This THz 

radiation can be increased by applying a large bias field and large optical power. 
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 By comparing equations (2.3) for large-aperture antennas and (2.10) for small gap 

antennas, it can be interpreted that different antenna gap sizes impose different analysis criteria 

and different equations for the radiated THz field. The focus of this thesis is on small gap 

antennas which are used in the proposed model in Chapter 5. 

2.3.2 Theoretical Principle of a THz Photoconductive Antenna as a Detector 

THz detection by photoconductive antennas is the opposite of the emitting process. No 

bias voltage is applied across the electrodes in detection. The incident THz radiation induces a 

voltage across the antenna which accelerates photo-carriers generated by the gating laser pulse 

from the optical source. The arrival time of the gating pulse can be adjusted using a variable 

time delay gating pulse thus the temporal behaviour of the photocurrent due to THz radiation 

can be measured. The photocurrent can be measured by a current meter or lock-in amplifier 

[10]. 

 Based upon the Ohm’s law, the detected photocurrent at a time delay of t can be 

explained as shown in the equation below as:   

 
(2.11) 

Where ETHz(t) is the received THz signal, σdet(t) is the time-varying conductivity of the detector, 

and nr(t) is the generated photo-carrier density by the gating pulse [19]. For photoconductive 

materials with ultra-short carrier lifetime , then the detected current from equation 

(2.11) will be proportional to the original income THz signal where . For 

materials with extremely long carrier lifetime like SI-GaAs,  it is presumed that nr(t) has 

behaviour like a step function then . This proves that the bandwidth of 

the detected signal of affected by the characteristics of the photo-carrier density in the detector 

antenna and its decay behaviour. The in-between case is the realistic situation where the 

distortion effect of the detector on the incident THz field is considered by convolving the 

detector response with THz field in time domain [21]. Thus, the detected photocurrent for the 





 tdttnetEttEtJ reTHzTHz )()()()()( detdet 

)()( ttnr 

)()(det fEfJ THz

ffEfJ THz )()(det 



31 

 

in-between situation can be explained considering the spectral behaviour of laser pulses, Il(f), 

and carrier dynamics in the photoconductive antenna, B(f) as equation (2.12) [18, 23]. 

 (2.12) 

 

The amount of detected signal at high frequencies is determined by the response time 

of the detector [10]. Other factors that determine the amount of detected signal are finite carrier 

recombination lifetime of semiconductor, τr, and the RC time constant related to the device 

capacitance [24]. Hence, THz photoconductive antenna in detector side can be construed as a 

low pass filter dominated by carrier lifetime and carrier recombination time of photoconductive 

material. Small gap photoconductive antennas are commonly employed as detectors. The 

sensitivity of a detector reduces once the antenna gap size is increasing as the optical intensity 

on the gap reduces [14]. The maximum response of detector shifts to lower frequencies also is 

the outcome of a bigger antenna gap size [14].  

2.4  Comparison of THz Antennas with RF/MW Antennas 

Fig. 2.2a and Fig. 2.2b show common RF/MW and THz antenna measurement setups 

respectively [25, 26]. It is apparent that THz antennas differ significantly from the conventional 

RF/MW antennas from the measurement facility, feeding method and antenna structure points 

of views. These differences are elaborated and summarised in this section. 
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(a) 

 

(b) 

Fig. 2.2  Common (a) RF/MW antenna (b) THz antenna measurement setup (both the emitter and 

detector are antennas) [10] 

2.4.1 Fabrication and Measurement 

Fabrication of RF/MW antennas is common. Manufacturing a THz antenna is rather 

complicated and expensive. Manufacturing of a THz antenna consists of the fabrication and 

preparation of the photoconductive substrate and also patterning the antenna on the substrate. 

Photolithography and electron beam lithography is used for patterning the antenna on the 

substrate. The latter method which is more expensive than the former one is employed for sub-

micron dimensions that fall below the resolution of the photolithography method [10].  

 These two types of antennas are also very different from measurement setups and 

measurement techniques points of views. In RF/MW antennas as illustrated in Fig. 2.2a, both 

transmitter (TX) and receiver (RX) antennas are connected to a vector network analyser, and 
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the various parameters of the antenna under tests such as radiation pattern, gain, efficiency, 

impedance/VSWR, bandwidth, and polarisation can be determined. The alignment of TX and 

RX antennas is relatively easy. Measurement facilities for RF/MW antennas are known as 

anechoic chambers and reverberation chambers. Antenna measurements can take on many 

forms, including near-field and far-field measurements. A basic test system requires at least a 

source antenna with a transmitter and the antenna under test with a receiver. The main idea in 

this testing is to use the source antenna and a transmitter with suitable bandwidth and 

polarisation to illuminate the antenna under test with plane waves, which can then be measured 

by the receiver being fed by the antenna under test. One variation on this system involves a 

switchable reference antenna for feeding the test receiver with known performance 

characteristics. Another involves some kind of a positioning system to rotate the antenna under 

test relative to the source antenna, thus measuring the radiation pattern as a function of angle. 

  In the THz measurement setup as shown in Fig. b, there is no physical connection 

between the optical source and the emitter and/or detector antenna. Various optical components 

such as parabolic mirrors are allocated between the emitter and detector antennas to direct the 

electromagnetic wave which may attenuate and broaden the THz signal. From the shown setup 

in Fig. 2.2b, the amplitude and phase of the THz signal can be detected. However, for pattern 

measurement of the antenna, another setup using fibre coupled detectors is needed [27, 28] as 

the antenna under test in the THz system cannot be rotated in contrast to RF/MW antennas as 

the rotation will cause the loss of laser illumination on the THz antenna gap. Moreover, the 

alignment of the THz system is a very sensitive task, and the detected THz signal is crucially 

affected by it. Finally, as THz signals are sensitive to water vapours, it is better for THz 

measurement bench to be in an enclosed environment and to be purged with dry nitrogen. 

2.4.2 Feeding, Excitation Source and Biasing  

Coplanar Waveguide (CPW), coaxial cable, and microstrip are among various feed 

lines available for conventional antennas but, for a THz antenna, there is none. There are two 

ways to couple the optical pulses to a THz antenna firstly through the air and secondly through 
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a fibre. Typically, optical waves are coupled to the antenna through the air. However, for some 

industrial applications where flexible and movable emitters and detectors are essential, optical 

fibres are employed. Recently some fibre-coupled THz systems have been presented for 800 

nm laser pulses [29] and 1550 nm which are telecommunication wavelength pulses [30, 31]. 

The feed line for THz antennas is actually a laser; therefore, the source impedance of the 

antenna is variable, and this is different to commonly used 50 Ohms feed lines of RF/MW 

antennas.  

Another difference between RF/MW and THz antennas are from bias voltage point of 

view. RF/MW antennas do not need any biasing. However, as shown in Fig 2.2b, THz antennas 

as emitters require voltage biasing as it is the fundamental procedure of THz generation. When 

employed as a detector, THz antennas do not need bias voltage. 

2.4.3 Electrode Material 

Highly conductive metals such as copper and silver usually made RF/MW antennas. In 

THz antennas, an AuGe alloy and a layer of Ti/Au (Titanium/Gold) are employed as the 

electrode material. These are suitable metallization types on LT-GaAs substrates and can 

provide ohmic contacts [32]. AuGe alloys such as AuGe/Ni/Au have been used in THz antennas 

[33, 34]. However, Ti/Au (or Ti/Pd/Au) layer stack is more extensively employed [5,36-38] 

where a thin layer of Ti is initially deposited to improve adhesion of the Au to the substrate 

[39]. The advantage of the Ti/Au contact over the AuGe alloy is that for its deposition no 

annealing is required and it is more thermally stable under laser illumination [32]. The electrical 

conductivity, σ, of Au is 45.2 × 106 S/m [16]. Most of the current flow occurs in a very thin 

region near the surface of the conductor since the skin depth or characteristic depth of 

penetration, for Au at 1 THz is 74.9 nm. The surface resistance, in this case, is 

0.29 Ω. In practice for THz antennas, usually 10-20 nm thick Ti followed by Au with a thickness 

of 100 nm is deposited on the photoconductive substrate.  

Graphene is another type of material which very recently has been theoretically studied 

as an antenna electrode material [40-41]. It is a one-atom-thick 2D carbon crystal which has 
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extraordinary mechanical, electronic and optical properties [42] and has a Young modulus of 

1.5 TPa, the carrier mobility of 200 000 cm2.V-1.s-1 [43], and an absorption coefficient of 24×104 

cm-1 [44]. Various parameters such as temperature and chemical potential determine the surface 

conductivity of graphene. The chemical potential of graphene is one of the parameters which 

can be tuned to achieve antennas with different radiation characteristics thus realising 

reconfigurable antennas [45].  

2.4.4 Substrate Material 

A low-loss dielectric material is desirable in planar RF/MW antennas. One of the most 

common dielectric materials for this type of antennas is FR4 which consists of fibreglass 

reinforced epoxy laminate sheet. Special MW antenna category, for example, monolithic 

microwave integrated circuit (MMIC), however, needs GaAs as the main substrate material due 

to its high carrier mobility and homogeneous nature [39, 46]. 

For THz antennas, the substrate material used is a photoconductive material which is 

basically a semiconductor, such as Si, InP, GaAs, and InGaAs. LT-GaAs is the most popular 

material due to its desirable characteristics, namely ultra-short carrier lifetime in order to obtain 

fast current pulses or CW current variation, relatively high electron mobility in order to obtain 

strong THz signals, high intrinsic resistivity and high breakdown voltage in order to support 

applying high bias voltages [47-48]. Since photoconductive materials play a crucial role in THz 

wave generation and detection, characteristics and effective parameters of them with the main 

focus on LT-GaAs is described in the next sub-section.  

One of the intensely studied topics in the THz field is the THz photoconductive 

material. No natural material exists to allow an efficient and powerful THz emission, hence 

spurred the interest [49]. The intrinsic carrier lifetime of materials is not fast enough to reach 

very high frequency ranges of the THz spectrum. Thus, to reduce the carrier lifetime, material 

studies for THz are very crucial and the research and improvement of material characteristics 

for optoelectronic applications still ongoing [50, 51]. 
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The first THz antenna developed in  [52] used silicon as the photoconductive substrate 

material. The bandgap of the silicon is 1.12 eV at 300 K, with corresponding intrinsic resistivity 

of 2.3 × 105 Ω.cm. However, the bandgap of silicon is indirect which means that the minimum 

of conduction-band is misaligned compared to the maximum of valence-band [53]. This results 

in a relatively slow optical recombination process.  

GaAs, on the other hand, has a direct bandgap, and photon emission is possible without 

phonon exchange with the lattice. The intrinsic resistivity of GaAs is 108 Ω.cm.  As GaAs an 

III-V compound, it is possible to modify its composition of alloys by adding defects to tune the 

electrical and optical behaviours. Many development and improvement in characteristics of 

GaAs is one of the main reason progress in THz antennas is possible [54]. GaAs crystal can be 

grown in semi-insulating (SI) form by liquid encapsulated Czochralski (LEC) method. In this 

process, all dependencies of GaAs on quartz and carbon components are eliminated [55]. This 

forms a substrate where it is possible to grow another epitaxial layer. 

 The carrier lifetime of SI-GaAs is in the range of hundreds of picoseconds. This 

satisfies the needs to have THz antennas with large bandwidth and good SNR. This may be 

achieved by incorporating additional energy levels in the bandgap through various native point 

defect types [47]. Therefore, another recombination path can be provided by trapping electrons 

in intermediate states. For this purpose, point defects should be introduced into the crystal. 

Adding defects can reduce carrier lifetime of the material which is desirable. On the other hand, 

it reduces thermal conductivity and the carrier mobility because the mean free paths are 

decreased as a result of new scattering centres introduced by trapping levels [20,56]. These 

consequences are unfavourable. Hence, it can be concluded that the primary challenge in the 

development of ultrafast photoconductive materials is to have material with a sub-picoseconds 

carrier lifetime, high mobility and a high dark resistivity.  

Low temperature growth technique in molecular beam epitaxy Molecular beam epitaxy 

(MBE) is one of the conventional technique to introduce defects into the material. This method 

produces LT-GaAs. Typically, at a low growth temperature between 200 to 250°C, GaAs is 

deposited in excess of As which leads to the formation of a relatively high density of point 
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defects. Under an As overpressured at high annealing temperature typically between 500 and 

600°C, it is annealed [48,57] to increase the resistivity. A 1 to 2 μm-thick LT-GaAs layer as the 

active layer is usually grown on SI-GaAs [47].  

LT-GaAs was first used in 1988 [58], and since then continuous research on the effect 

of various growth and annealing factors on properties of LT-GaAs has been performed [57, 59-

61]. However, still in literature when a THz antenna on LT-GaAs is used, the full parameters 

related to the production of the LT-GaAs wafer especially on its growth and its annealing 

temperatures wafer and the derived carrier lifetime are discussed. Each MBE chamber is 

unique, and even in the same chamber, it is challenging to replicate the same wafer’s 

characteristics. This fabrication process is sensitive to the ambient condition, and the exact 

growth temperature is difficult to control. Another parameter of the photoconductive material 

influenced by the fabrication procedure is the material resistivity. The resistivity decreases with 

the growth of the temperature [62]. Annealing process helps to increase this resistivity that was 

effected before. 

Other methods to modify the characteristics of GaAs have been practised like ion-

implantation [63] and use of self-assembled ErAs islands in GaAs [54, 64-65]. The objective 

of these techniques is to create a similar material with a carrier lifetime mirroring LT-GaAs. 

The results are ErAs: GaAs which has high resistivity but with low mobility and Ion-implanted 

GaAs which has high mobility but with very low intrinsic resistivity. Hence, LT-GaAs is still 

the best material for THz antennas [49]. 

Indium based is another category of photoconductive materials for THz applications is 

from III-V compounds. These materials have narrower bandgap energy. The bandgap of 

InGaAs is 0.75 eV compared to 1.43 eV of LT-GaAs. Thus, Indium based III-V compounds 

are suitable materials at higher optical wavelengths.  Ultra-short carrier lifetime and high 

resistivity of LT-InGaAs had been reported in [51]. Most application for LT-InGaAs is in the 

telecommunication wavelength of 1.55 um. Fibre amplifiers with high power, narrow line-

width and tunable wavelength in this frequency are also available [69].  Compatibility with 1.55 

μm has been achieved with Fe-implanted InGaAs [70-71], ErAs: InGaAs [72], heavy-ion 
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irradiated InGaAs [73], embedded InGaAs layers between InAlAs trapping layers [30], and 

low-temperature-grown Be doped InGaAs [74].  

Table 2.1 summarised the properties of different main THz photoconductive materials 

for optical sources of 800 nm and 1.55 μm  

 

Table 2.1 Properties of various photoconductive materials in THz antennas [10,16] 

Material Carrier lifetime (ps) Mobility  

(cm2.V-1.s-1) 

Resistivity 

(Ω.cm) 

Breakdown 

voltage 

(V.cm-1) 

SI-GaAs Several hundred  8500  ~ 10 7  4 ×105  

LT-GaAs < 1  200  >107  5 ×105  

LT-

InGaAs 

Larger than LT-

GaAs  

26  760  ~ 6×104  

 

The carrier lifetime, resistivity, and breakdown voltage of LT-GaAs at 1550 nm are 

very low. However, the most significant advantage of this material is that it can be used with 

well-established communication optical sources. This feature is attractive as this can reduce the 

cost of a THz system. Most THz antennas use LT-GaAs as the photoconductive material 

because of its excellent characteristics.  

SI-GaAs has high mobility but lower breakdown voltage compared to LT-GaAs. 

Hence, the amount of dc bias field for any THz antennas using SI-GaAs as a substrate is limited. 

SI-GaAs also has lower resistivity that results in a generation of larger dark current even when 

there is no laser illumination as a feed in comparison to LT-GaAs. This will lead to heating of 

the THz antenna and quicker breakdown. Finally, SI-GaAs has large carrier lifetime which 

limits the achievable spectral range, and it leads to more noise.   
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2.4.5 Type of Current 

Conduction current due to the motion of conduction electrons is the current type in 

RF/MW. In THz antennas however the generation of current in the photoconductive material 

is attributed to two phenomena which are the generation of electron-hole pairs under electric 

bias field known as drift current and displacement current which is due to second order 

nonlinear optical characteristics of the photoconductive substrate. However, the effect of the 

displacement current is only considered at low bias fields. At high bias fields (more than 105 

V.cm-1) drift current is dominant [14, 75]. More details on the current type are discussed in 

Chapter 4. 

2.4.6 Computer Aided Design 

There is no available and complete design tool available for THz antenna designs 

though Computer Aided Design (CAD) is now a common practice for conventional antenna 

designs. Generation of THz waves from the antennas consists of two processes which are 

optoelectronic and electromagnetic (EM) parts. Most available commercial tools can only 

simulate the first or second part of the process. No readymade commercial software is dedicated 

to the THz antenna. Therefore, the development of a new method that can facilitate analysis of 

THz antennas by combining numerical and CAD method is required. This is the main 

contributions of this thesis that will be explained in Chapter 5. 

To sum up, the significant differences between these two types of antennas are 

reviewed in Table 2.2. The dissimilarities highlight the necessity of having a different analysis 

approach for THz antennas.  
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Table 2.2 Comparison of THz antennas with common RF/MW antennas [10,25] 

Parameter THz antenna RF/MW antenna 

Excitation source/feeding Laser pulses Transmission line 

Bias voltage Emitter: biased 

Receiver: unbiased  

Emitter: unbiased  

Receiver: unbiased 

Substrate material High resistive semiconductor  Low loss dielectric  

Antenna electrode material AuGe and Ti/Au Highly conductive metals  

Type of current Drift current and displacement 

current  

Conduction current 

Fabrication Complex and expensive Relatively easy and cheap  

Computer aided design Not available in one package Available 

 

2.5  Problems of THz Photoconductive Antennas 

Although other THz sources may have better THz radiation performance in certain 

circumstances, THz antennas had useful characteristics compared to the other source. Unlike 

QCLs THz Photoconductive Antennas can operate in room temperature. Also, unlike diodes 

they can operate over a broader range of THz frequencies and unlike BWOs, they are compact. 

Nevertheless,  the radiated THz power and the optical-to-THz conversion efficiency from THz 

Photoconductive Antenna is still deficient (<2%) [76].  

Generation of THz wave through the photoconduction process has shown promising 

performance [54, 77-80]. Under a laser illumination, for each absorbed photon by the 

photoconductive material, one electron-hole pair is generated, and when this pair reaches the 

antenna, several THz photons can be emitted which is the considerable advantage of using THz 

Photoconductive antennas  [81]. Thus, the optical-to-THz conversion efficiency of a THz 

antenna can theoretically reach 100 % which is much larger than the Manley–Rowe limit [82]. 

However, in reality, the radiated THz power is in the range of few μW and the optical-to-THz 

conversion efficiency of THz antennas is very low (< 2%).  
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The entire wave generation process from a THz antenna needs to be considered in order 

to have a better view and to understand the reason for having a low power level and efficiency.  

For this purpose, the adopted method here is to divide the process into three parts [16, 25]:  

1) Generation of THz photocurrent from optical power in the photoconductive material. 

The related efficiency; i.e. optical-to-electrical efficiency, η1, can be defined as the ratio of the 

generated THz power in the photoconductive gap to the optical power  

2) The amount of coupled THz power from the photoconductive gap to the antenna 

electrodes; i.e. matching efficiency, η2  

3) The amount of coupled THz wave from the antenna to the free space; i.e. radiation 

efficiency, η3.  

The first two parts are different for THz antennas in a pulsed and a CW system due to 

the excitation type, and they are separately described in the next sections. However, the latter 

part; i.e. radiation efficiency, for both systems is the same, and it depends on the antenna 

radiation characteristics- mainly the electrical thickness of the substrate and the relative 

permittivity of photoconductive material. Since the photoconductive substrate has high 

permittivity (εr = 12.9 for GaAs), as substrate thickness increases, the radiation efficiency 

decreases sharply depending on substrate thickness. This is due to the generation of surface 

waves. 

2.5.1 Problems Related to THz Photoconductive Antennas 

In order to find out how part one and two of the THz generation process contribute to 

the optical-to-THz efficiency, a preliminary and straightforward calculation with approximate 

assumptions is performed for a THz photoconductive antenna in a pulsed system [85]. 

1. The average photocurrent [86], Iavp, and approximate photoconductive resistance 

[87], Rapp, are considered as equations (2.13) and (2.14) respectively:  

 
(2.11) 

2hfL

PVe
I avbiasce
avp


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(2.12) 

where Vbias is the bias voltage, L is the antenna gap length, and Pav is the average optical power. 

Then, the optical-to-electrical efficiency can be estimated as:  

 

(2.13) 

The index of “p” is added to represent THz photoconductive antenna in a pulsed system. 

Considering some typical values as μe = 1000 cm2.V-1.s-1, c = 0.5 ps, Vbias = 30 V, Pav = 50 

mW, L = 5 μm, trep = 1/80 μs, and f = 375 THz and plugging in these values in equation (2.13), 

η1p = 7.2 × 10-5.  

2. The matching efficiency can be calculated according to equation (2.14) for a half-

wavelength dipole antenna on a substrate with εr = 12.9. Assuming the antenna resistance in 

free space, Zfree, is 73 Ω and by using the above values in equation (2.12) Rapp is 0.89 Ω, then 

the matching efficiency will be η2p = 0.16.  

 

(2.14) 

 

The total antenna efficiency for this sample, which is a multiplication of efficiencies 

from described processes, is calculated as 5.7 × 10-6 [88]. Although this value is comparable 

with what most people obtained in practice, it is smaller than some reported best efficiencies. 

This could be due to better parameters realised in the best cases [88]. The details calculations 

can be found in Appendix B. 

2.6  Previous work on THz Photoconductive Antennas 

Some previous research published had been focused on specific criteria to make 

improvement in the radiated THz antenna performance and also efficiency. This section will 

discuss the notable contribution done by the researchers. 
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2.6.1 Varying Antenna Gap Area Geometry 

Commonly used THz antennas are bowtie, dipole and coplanar strip line. Antenna gap 

area is essential as it is where the electron-hole pairs are generated and coupled to the antenna 

electrodes. Demonstrated in [12, 15, 33] antennas with sharp tip ends can produce larger THz 

power compared to the antennas with rectangular edges in the gap. Sharper antenna tips, will 

results in enhanced THz emission even with less optical power due to the overlapping of the 

laser spot and the electric field area in the antenna gap. Though the fabrication of tiny sharp 

tips for small gap antennas is difficult in reality, the importance of the geometry of the electrode 

should not be undermined. 

2.6.2 Improving Optical Power Coupling 

Higher photo-carrier density and transient photocurrent can be achieved by increasing 

the absorption of infrared laser power to the antenna. In order to increase the absorption, anti-

reflection (AR) coating Si3N4 is used on the antenna electrode. The coating is essentially an 

optically transparent layer [128]. The reflection of optical waves from the surface of the device 

will be suppressed with the existing of the additional layer. An AR with a refractive index of

, where nGaAs is the refractive index of the photoconductive material is usually used. 

Another approach is to use AlAs: GaAs or AlAs: AlGaAs Bragg reflectors [54,89]. This 

material acts as a mirror for optical waves, and it is transparent to THz waves. It is located 

beneath the active layer of a substrate.  Fig. 2.3 shows the schematic view of an antenna with 

both an AR coating and Bragg reflectors. 

 

 

GaAsn
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Fig. 2.3  Schematic view of the material structure of a THz antenna with AR coating on top of the antenna 

electrodes and Bragg reflectors beneath the photoconductive layer [89] 

As shown in [90-91] another method to enhance the generation of photo-carriers in the 

antenna gap [90-91] is the usage of nanoantennas in the photoconductive gap. A locally 

enhanced electric field can be obtained as this optical nanoantennas can strongly concentrate 

the emitted laser waves. Increased THz power emission can be achieved using this method 

since more optical power can be confined to the substrate active layer. This is due to the fact 

that these nano antennas are deposited on the substrate. Fig. 2.4 shows two types of 

nanoantennas in the form of nanorods and nanoislands in the photoconductive gap. The width 

of nanorods or thickness of nanoislands may be varied in order to tune resonance frequencies 

of these antennas. The fabrication cost of these devices is high, and due to its miniature size, it 

is important to avoid an electric short circuit. 

 

              

(a)                                                            (b) 

Fig. 2.4  SEM image of the THz photoconductive antenna with (a) nanorods [90] (b) nanoislands [91] in 

the photoconductive gap  
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In [92], nano-structuring of metals or nanoplasmonic electrodes is another cutting edge 

technology introduced in order to improve the coupling of optical power to the antenna and the 

THz radiated power. The main goal is to reduce the photo-carrier transport time, and this can 

be done by employing arrays of sub-micron electrodes.  Due to the coupling of light with the 

surface plasmon of the sub-wavelength arrays, the interaction and concentration of the emitted 

wave on noble metals for example gold are increased [93]. Here, surface plasmon is introduced 

as collective oscillation of free electrons at the boundary between a conductor and a dielectric 

material. 

Also using this concept, an array of dipole antennas with plasmonic contacts has been 

reported by [69] as shown in Fig. 2.5.Ultra-short THz pulses with superior responsivity have 

been achieved from this device as an emitter, even though the antenna was mounted on large 

electron mobility and large carrier lifetime material. This is due to the short carrier transport 

time provided by electrodes and increased transmission of laser power to the sub-wavelength 

gaps of electrodes because of surface plasmon waves. 

 

 

Fig. 2.5 SEM image of plasmonic THz dipole arrays, a middle ground electrode is added to collect the 

remaining electron-holes in the antenna gap quicker to prevent the screening effect [69] 

A small gap dipole antenna with nanoplasmonic interdigitated fingers on SI-GaAs as 

shown in Fig. 2.6 [94] were also introduced. Nano distance gaps (100 nm) allows coupling of 

generated photo-carriers to the antenna more efficiently due to reducing transport distance. This 

geometry, however, is prone to break down at high optical powers due to narrow distance 

between the fingers. 
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Fig. 2.6 SEM image of the nanoplasmonic interdigitated antenna [94] 

Another example is, a bowtie antenna with plasmonic contact electrode gratings [82] 

as shown in  Fig. 2.7. Due to the very short carrier transport path lengths as an effect of 

plasmonic contacts (~100 nm), a high number of generated photo-carriers can be coupled to the 

antenna before recombination. It was found that the optical-to-terahertz conversion efficiency 

of the photoconductive THz antenna emitter could be 50 times higher than that of a 

conventional emitter [95]. Plasmonic contact electrodes used were nanoscale gold gratings 

designed to allow excitation of surface plasmon waves along the nanoscale gratings in 

response to the incident optical pump. Yang et al. reported that an optical-to-terahertz power 

conversion efficiency of 7.5% could be achieved by using these plasmonic contact electrodes 

[96] 

 

 

 

   

(a)                                                                   (b) 

Fig. 2.7 Schematic and SEM image of the (a) conventional bowtie antenna (b) nanoplasmonic bowtie 

antenna  [95] 

Tip-to-tip rectangular nano gap meander antenna had been introduced in Fig.2.8 [97]. 

This geometry reduces the photo-carrier transit time between the electrodes and provides a 

strongly enhanced electric field in the gap. 
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Fig. 2.8 SEM image of the tip-to-tip rectangular nano gap meander antenna [97] 

 

Finally, the work done by [16] with a new geometry is shown in Fig. 2.9. A top hat 

loaded antenna with trapezoidal tip-to-tip fingers in the photomixer part integrated with a 

conical horn was proposed. Simulation results demonstrated a reduction in capacitance value 

and improvement in E-field intensity for the trapezoidal tip-to-tip configuration. This should 

lead to a larger THz current generated in the antenna gap. For the 6-finger trapezoidal 

electrodes, the normalised E-field to the electrode area in the gap is increased four times as 

compared to rectangular electrodes. 

 

 

Fig. 2.9 Microscopic images of the THz bowtie antenna with trapezoidal tip-to-tip fingers (a) overall 

antenna view (b) zoom-in of the photomixer section (c) SEM zoom-in of the trapezoidal tip-

to-tip finger  (d) SEM zoom-in of a nanogap trapezoidal finger [16] 
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2.7  Summary 

The necessity of having a THz antenna and the theoretical principle of THz 

photoconductive antenna as an emitter and as a detector was elaborated in this chapter. Its 

differences from conventional RF/MW antennas in various aspects were also discussed in this 

chapter. These differences highlight the requirement of different methods in THz antenna 

analysis, simulation, fabrication, and measurement. Problems related to THz photoconductive 

antenna is also addressed. Published work on THz antenna was discussed on the end of the 

chapter in order to introduce the design concept by various researchers of THz antenna design.  
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Chapter 3 A Comparison of the Effect of Substrate on  

  the Performance of THz Antenna 

3.1 Introduction 

 Radiation patterns and the radiated power of the photoconductive antenna can be 

significantly affected by the substrate thickness and size [1]. Hence, the effects of 

photoconductive material’s dimensions on the performance of the THz antennas are 

investigated in this chapter.  

 In this chapter also, the effects of photoconductive material parameters on THz 

antennas are investigated since they play an essential role in THz wave generation and 

detection. The main reason is that naturally, no material exists to allow an efficient and powerful 

THz emission. The intrinsic carrier lifetime of materials is not fast enough to reach very high 

frequency ranges of the THz spectrum. Thus, to reduce the carrier lifetime, materials studies 

for THz are very crucial. In THz antennas, the substrate is a photoconductive material which is 

basically a semiconductor [2]. LT-GaAs is the most popular material due to its desirable 

characteristics, namely ultra-short carrier lifetime, relatively high electron mobility, high 

intrinsic resistivity and high breakdown voltage. Table 3.1 shows the properties of various 

photoconductive materials used as a substrate in THz antennas. 
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Table 3.1 Properties of various photoconductive materials [3, 5-6] 

Material  Carrier lifetime  Mobility Resistivity  Breakdown voltage 

   (ps) (cm2.V-1.s-1) (Ω.cm) (V.cm-1) 

SI-GaAs Several hundred 8500 ~107 4 x 105 

LT-GaAs < 1 200 >107 5 x 105 

LT-InGaAs Larger than LT-GaAs 26 760 ~ 6 x 104 

Graphene N/A 15000 10-6 N/A 

 

Nevertheless, graphene in Fig. 3.1, a one-atom-thick layer of carbon atoms arranged in a 

honeycomb lattice has recently attracted considerable interest as a potential material due to its 

high electron mobility [5-7]. 

 

Fig. 3.1 2D of Graphene [2] 

 In Fig. 3.2, a femtosecond laser pulse with energy more significant than the band gap 

of substrate material at a room temperature illuminating the antenna gap. The electron-hole 

pairs are produced in the semiconductor substrate and accelerated by the electric field formed 

by the DC bias voltage. Thus, the photocurrent is generated. The antenna can radiate an 

electromagnetic wave in the THz region. Hence, photoconductive material plays a vital role in 

THz wave generation and detection. 
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Fig. 3.2 Schematic diagram of a THz antenna as an emitter [18] 

3.2 Previous Investigation on the Effects of Substrate on THz 

Antennas 

 Various studies had been done to investigate the effects of substrate on the performance 

of the THz Antennas. Most studies had been focused on the substrate thickness and the 

dimensions of the substrate [1,8-9]. For antennas working in THz range, the thickness of the 

substrate is usually comparable with the wavelength and sometimes even higher than the 

wavelength. 

 In [1] the effects of the substrate’s thickness on the performance of photoconductive 

antennas had been investigated. LT-GaAs had been chosen as the semiconductor substrate in 

that study. A dipole antenna with a fixed length of 50 µm had been simulated using Computer 

Simulation Tool (CST), and the substrate thicknesses had been varied. It was found that the 

radiation patterns and the radiated power of the photoconductive antenna are significantly 

affected by the substrate thickness and size. 

  Meanwhile, in [3] the effects of the substrate’s thickness using graphene on the 

performance of Terahertz antenna had been studied. Graphene nanoantennas with various 

geometries had been simulated using Method of Moments (MoM-2D) and Comsol. The 

substrate thicknesses had been varied. It was observed that for smaller sizes, the resonance 
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frequencies shifted to higher frequencies and the values of absorption cross section are increased. 

These prove that graphene has the capability to harvest light. 

To generate a high frequency THz signal with significant power, the photoconductive 

material has to show three main properties [4]: 

1) A short electron-hole recombination time to obtain fast current pulses or CW current 

variation in the antenna 

2) High carrier mobility to obtain these signals 

3) A high dark resistivity to produce THz efficiently and to support a high static bias voltage. 

A high dark resistivity permits applying higher bias voltages across the antenna without 

contributing to a considerable amount of heat which can influence the performance of the 

device. In [4], photoconductive devices using GaAs and InGaAs had been compared in terms 

of materials design and solid-state metrics such as electron-hole lifetime, carrier mobility and 

resistivity. It is found that GaAs still has superior performance due to its high dark resistivity 

and high mobility as [3]. 

Fig. 3.3 showed that when a dipole antenna is located in free space, the antenna has an 

omnidirectional pattern in azimuth. It radiates in all direction along the plane perpendicular to 

the electric field of the dipole. When the dipole is fabricated on a photoconductive substrate, 

the radiation pattern becomes asymmetrical. This radiation pattern enhanced towards the 

substrate [1] as shown in Fig. 3.4. 

 

 

Fig. 3.3 Dipole antenna [8] surrounded by air and its radiation pattern 
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Fig. 3.4 Dipole antenna [8] on a GaAs substrate and its radiation pattern 

Since the photoconductive substrate has high permittivity (εr = 12.9 for GaAs), most of 

the power is radiated towards the substrate rather than the free space. Hence, a photoconductive 

substrate with a low permittivity is also desirable in addition to the material properties 

mentioned before. 

 In [4], photoconductive devices using GaAs and InGaAs had been compared in terms 

of materials design and solid-state metrics such as electron-hole lifetime, carrier mobility and 

resistivity. It is found that GaAs still has superior performance due to its high dark resistivity 

and high mobility. 

 Photoconductive dipole antenna based on semi-insulating GaAs substrate has been 

used as an emitter in [3]. The surface of the antenna is coated with Si3N4 and later sealed with 

transparent silicon gel. It had been demonstrated that the THz power had been increased by 1 

order and the breakdown voltage had been increased by 3 times when the antenna been coated 

with Si3N4. Coated antenna generates stronger THz radiation due to the higher electric field. 

 Graphene is a one-atom thick sheet of carbon atoms arranged in a honeycomb lattice. 

It was first discovered in 2004 by exfoliation of graphite. Due to its attractive mechanical, 

thermal and electrical properties such as high electron mobility, graphene had been seen as a 

potential research topic by researchers.  Possible applications of graphene in solar cells and  

light- emitting  devices,  photodetectors, microwave transistors and had been identified and 

currently being investigated extensively [3,5-7]. 
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 Graphene offers a substantial advantage as its properties can be readily tuned by 

applying a gate voltage. In [10], a dipole antenna made by gold deposition on a graphene layer 

placed on a grown over a SiO2/Si substrate had been studied. It had been shown that by tuning 

the gate voltage, the radiation pattern could be exploited. The radiation pattern is switched ON 

and OFF by the two states of resistivity in graphene. At 1.05THz by using IE3D software, the 

radiation efficiency is 95.80%, and the antenna efficiency is 89.14%. 

 In [11], a graphene dipole-like antenna had also been studied. However, graphene is 

now used as an electrode instead as a substrate. The proposed antenna was simulated using 

Ansys HFSS. Values of 0-0.2 eV range of chemical potential had been chosen base on 

experimental activity. The gate voltage used is between 0-3 V. By varying the chemical 

potential, it had been demonstrated that radiation efficiencies increases. 

 

3.3 Simulation Results 

3.3.1  Substrate Thickness 

 Firstly, the length and the width of the substrate are both fixed to 150 µm, and the 

frequencies are varied from 0.5 THz to 1 THz. The substrate thickness, however, is varied from 

15 µm to 300 µm. Fig. 3.5 shows that at 1 THz the radiated power is higher once the thickness 

of the substrate is at the minimum size which is at 15 µm. Fig. 3.6 shows that at 1 THz, the 

efficiency is greater once the thickness of the substrate is at the minimum size which is at 15 

µm. The results consist with the findings in [1]. It was found that when increasing the thickness 

of the substrate, the dipole antennas couple power to higher-order substrate modes. Also, more 

than 90% of the power can be trapped in the substrate. Therefore, not all the power radiated 

from the dipole structure can be directly transferred into the air.  
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Fig. 3.5 Total radiated power when substrate thickness is varied while length and the width of the 

 substrate are both fixed to 150 µm 

 

Fig. 3.6 Total efficiency when substrate thickness is varied while length and the width of the substrate 

 are both fixed to 150 µm 
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Secondly, the substrate thickness is fixed to 15 µm while the length and the width of 

the substrate are chosen to be 150 µm x 150 µm, 300 µm x 300 um and 600 µm x 600 µm. The 

frequencies are varied from 0.5 THz to 1 THz.  Fig. 3.7 shows that at 1 THz, the radiated power 

is more significant for the substrate with 150 µm length and 150 µm width compared to the 

other dimensions. Fig. 3.8 also shows that at 1 THz, the efficiency is greater for the substrate 

with 150 µm length and 150 µm width. At 1 THz, the efficiency is 0.9543 for a substrate 

thickness with dimensions of 150 µm x 150 µm x 15 µm. For a substrate thickness with 

dimensions of 300 µm x 300 µm x 15 µm, the efficiency is 0.9392 and for a substrate thickness 

with dimensions of 600 µm x 600 µm x 15 µm, the efficiency is 0.8782. Hence, the dimensions 

of 150 µm x 150 µm x 15 µm should be used for as the substrate dimensions for any further 

study on the substrate material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Total radiated power when substrate thickness fixed to 75µm while the length and width are 

 varies 
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Fig. 3.8 Total efficiency when substrate thickness fixed to 75µm while the length and width are varies 

 

3.3.2  Substrate Material 

 Considering all the main material properties desired for a terahertz photoconductive 

antenna, graphene is chosen as a semiconductor substrate in this investigation. Graphene has 

low permittivity (εr = 5) and high carrier mobility (15 000 cm2.V-1. s-1) [5-7]. The dipole antenna 

operating at 0.5 THz – 1 THz can be modelled in CST as two electrodes separated by a small 

gap as in [1], driven by a discrete face port between the two electrodes. The substrate dimension 

used in both photoconductive antennas is set to 150 µm in length x 150 µm in width, and 150 

µm in thickness as these are the parameters that showed promising results in radiated power 

and total efficiency as shown in previous simulations results. All simulations were done using 

CST Microwave Studio. The radiated power and efficiency of a graphene-based dipole antenna 

in [8] are compared with those of GaAs-based devices, and the results are as indicated below. 

Fig. 3.9 shows that the radiated power photoconductive material with the highest 

mobility are higher compared to other at 0.5 THz – 0.7 THz. The power radiated by the antenna 

using graphene is 33% more at 0.5 THz than the antenna with the same structure but using a 
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GaAs substrate. Though the radiated power decreases as the frequency increases, the power 

increment is encouraging. Note that the carrier mobility of graphene is higher than that of GaAs; 

thus this generates larger photocurrent hence more radiated power. The simulation results are 

in good agreement with the theory in [14-16]. 

 

Fig. 3.9 Total radiated power for various photoconductive materials 

After 0.7 THz until 1 THz, the simulation shows that the radiated power of 

photoconductive antenna using GaAs as a substrate supersede photoconductive antenna using 

Graphene as a substrate. This is might due to the fact that GaAs has a higher dielectric constant. 

The radiation patterns of both photoconductive antennas are shown in Fig. 3.10 and Fig. 3.11.  

It can be observed that the higher dielectric constant in GaAs, more energy is attracted into the 

substrate and the radiated to the substrate side as in [1]. 
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Fig. 3.10 A radiation pattern of a dipole antenna in [1] with GaAs as a substrate  

 

  

 

 

Fig. 3.11 A radiation pattern of a dipole antenna in [1] with Graphene as a substrate  

 

 Fig. 3.12 shows the efficiency of the photoconductive antenna using GaAs and graphene 

as the substrate material respectively. It is shown that the efficiencies are increased by 3 times 

at 0.5 THz – 0.55 THz. The efficiencies of a photoconductive antenna using graphene keep 

decreasing from 0.55 THz to 1 THz. Though the efficiencies decrease as the frequencies 

increase, the increment is promising. It had been stated theoretically in [14-16], that the 

efficiency was found to be proportional to the photoconductive material properties; hence the 

simulation results validated the theory. 
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Fig. 3.12  Total efficiency for various photoconductive material 

 

3.4 Summary 

 Substrate effect in THz plays an important role compared to substrate effect in 

microwave frequency. At 1 THz, the efficiency is 0.9543 for a substrate thickness with 

dimensions of 150 µm x 150 µm x 15 µm. The radiated power is higher once the thickness of 

the substrate is at the minimum size which is at 15 µm. Hence, the dimensions of 150 µm x 150 

µm x 15 µm had been used for as substrate dimensions for any further study on a substrate 

material.  

 In the preliminary finding, it has been shown that graphene is a promising material to 

be used as a substrate for THz antennas. It is found that the estimated radiated power of the 

antenna using graphene is 33% more than the radiated power from the THz antenna using GaAs 

as a substrate at 0.5 THz – 0.7 THz. A new development by [17] had shown that graphene could 

emit ultrashort terahertz pulses. In the present experiment conducted, the electrons in graphene 

were excited using infrared laser light. This is indeed exciting to know that there is work done 
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experimentally to show that graphene can emit laser terahertz radiation. This finding, however, 

can be more elaborated in details.  

Due to the limitations of the CST Microwave Studio software wherein the student 

edition, only 30 000 mesh cells can be simulated; another potential software needs to be 

reconsidered to prove the theory discussed more accurately. This limitation also only allows a 

narrow frequency range. New potential simulation software such as Comsol will provide more 

accurate results on the effects of a substrate material of a photoconductive antenna. 
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Chapter 4  The Effect of Electrode Design on THz 

Photoconductive Antenna 

4.1 Introduction 

A comprehensive literature survey [1-3] had summarised the main parameters that 

can be the solution in producing high THz output power and high optical-to-THz efficiency 

from the antenna. Studies had been done on the sizes of the antenna gap where sharp tip ends 

will produce high photo- carrier acceleration. Types of laser excitation also had been studied. 

The findings had been summarised in Fig. 4.1.  

Nevertheless, none of the parameter studied below had been focusing on the electrode 

structure and electrode material that may lead to higher THz power. This chapter will focus 

solely on the effect of the electrode structure to the THz radiated power. This chapter also 

will focus on the impact of electrode material to the THz radiated power. Comparing a dipole 

antenna with an electrode made from noble materials with graphene and nitrides, a 

metamaterial will provide insight on the best electrode material for THz photoconductive 

antenna. 
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Fig. 4.1 Contribution of each parameter on THz output power and optical-to THz conversion 

efficiency [1-3] 
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4.2 The Importance of the Electrode Study 

4.2.1  Electrode Structure Study 

 THz power can be determined by the photoconductive material characteristics and 

electrode geometry. Improving the effective carrier lifetime by minimising the carrier drift time 

can be achieved by optimising electrode design [6-7]. The longer the electrode, it had been 

found that the resonant frequency shifted even lower. The lower the resonant frequency, the 

smaller efficiency will be at higher THz frequency. 

 Also, by reducing the finger electrode separation, the transit time for the 

photogenerated carrier will be reduced, this will result in higher efficiency (photon to current 

conversion). Meanwhile the larger gap, the larger enhancement can be achieved. Electric field 

strength is also found greatest at the photoconductive gap [6-7]. Thus, the embedded electrode 

will generate high photo-carriers that will lead to high THz power as shown in Fig. 4.2. 

 

Fig. 4.2 Framework on the contributions to produce high photo-carriers. 
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4.2.2  Electrode Material Study 

As a continuance, high optical power coupling can be achieved with the right electrode 

material. This will hopefully be one of the factors that will improve the conversion efficiency 

of a photoconductive antenna which will lead to higher THz radiated power. Fig. 4.3 is the 

theoretical framework that had been constructed for this study. 

 

Fig. 4.3 Framework on the contributions to produce high optical power coupling 

Fig. 4.4 is the summary of the theoretical framework that had been constructed for this 

study in order to contribute to high optical power coupling compared to the previous noble 

metals. 

 

Fig. 4.4 Summary of Contribution to High Optical Power Coupling 
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4.3  Electrode structure study using CST 

In theory, embedding the three-dimensional plasmonic contact electrode inside the 

substrate will drift the majority of photocarriers to the photoconductor contact electrodes, 

thus enhancing the optical-to-terahertz conversion efficiency of the photoconductive 

terahertz emitter [6]. 

It had been shown by [6] that 7.5 % Optical-to-Terahertz power conversion efficiency 

at 1.4 mW optical pump power by using three-dimensional plasmonic contact electrodes. 

Validated via simulation tools COMSOL, indicating the optical absorption and experimental 

results indicating the radiated power and photocurrent for both two-dimensional and three-

dimensional, showing a significant increase in the latter. 

In order to efficiently contribute to terahertz radiation, the transit time of the 

photocarriers to the photoconductor contact electrodes should be within a fraction of the 

terahertz oscillation period; thus only the photocarriers which are generated within distances 

of 100nm from the contact electrodes can efficiently contribute to the terahertz radiation.  

4.3.1  Methodology  

 A dipole antenna similar to [1] in Chapter 3, was simulated using CST. The dipole 

antenna operating at 0.95 THz – 1 THz had been modelled in CST as two electrodes separated 

by a small gap, driven by a discrete face port between the two electrodes. The substrate 

dimension used in both photoconductive antennas is set to 150 µm in length x 150 µm in width 

and 150 µm in thickness. The gap is set to 10 µm. The thickness of the substrate is set to 15 µm 

as this is the optimum dimensions that were simulated earlier in Chapter 3. The substrate used 

is GaAs while the electrode used is modelled as Perfect Electric Conductor (PEC).  To study 

the effect of the embedded electrode, the electrode is embedded 2 µm into the substrate. Fig. 

4.5 shows the dipole antenna used in this electrode structure study using CST. Fig. 4.6 shows 

the structure of dipole antenna and their wireframe with (a) standard electrode (b) embedded 

electrode. 
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Fig. 4.5 The dipole antenna used in electrode structure study using CST. 

 

   
       

(a)               (b) 

Fig. 4.6 The structure of dipole antenna and their wireframe with (a) standard electrode (b) embedded 

 electrode  
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4.3.2  The Simulation Results 

 Fig. 4.7  shows the radiated power of dipole antenna using (a) standard electrode and 

(b) embedded electrode, 2 µm into the substrate while Fig. 4.8 shows the efficiency of the dipole 

antenna using standard electrode and an embedded electrode, 2 µm into the substrate. Not so 

much difference in radiated power and efficiency can be observed between both structures. Less 

than 1% difference can be seen between both electrode structure. Hence, CST is not the best 

simulation tool to be used in electrode study. 

.  

Fig. 4.7 The radiated power of dipole antenna using standard electrode and an embedded electrode, 2 

 µm into the substrate 
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Fig. 4.8 The efficiency of the dipole antenna using standard electrode and an embedded electrode, 2 

 µm into the substrate 

However, should the accurate simulation tools been used, the results are expected to be 

more accurate. This is because CST is a configurable tool uses Maxwell’s Equations that 

describe the world of electromagnetic. These equations describe how electric and magnetic 

field propagate and interact. These equations also describe how the electric field and magnetic 

field are influenced by objects. The effects of the interactions between the semiconductor and 

the laser pulse had not been considered here. The physics involved in this interaction must be 

added to the simulation. When the substrate in the gap is illuminated with photons, the energy 

from the photons generates charge carriers in the substrate. If a voltage bias is applied to those 

traces, the generated electric field mobilises these carriers creating the current. 

 This behaviour of carriers over time in a substrate begins with continuity equations that 

account the change in carrier concentrations over time. The total change in carrier combination 

must equal the changes due to drift, diffusion, regeneration/combination, and other processes 

such as photo generation [4]. The combined effects of all carrier action must satisfy : 
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Where n and p are the concentrations of electrons and holes, respectively. 

Defining the change in carrier concentration due to other processes as G and the change 

in carrier concentrations due to regeneration as R in addition to noting that 
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Where q is an electric charge of an electron is the current density due to electrons, and 

is the current density due to holes; the continuity equations can be more written as  
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Additionally, it is known that the current across the substrate is due to the drift and 

diffusion of the charge carriers. Therefore, the following relationships must also be satisfied: 

Jp ꞊ qµp pE – qD p 𝛻p                                 (4.7) 

Jn = qµnnE+ qDn𝛻n                                    (4.8) 
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Where µ and µ are the carrier mobility of the electrons and holes respectively, E is the 

electric field, and Dn and Dp are the carrier diffusion coefficients for the electrons and holes 

respectively. It is also known that the current density in steady-state conditions [21]. 

J = Jn +Jp                   (4.9) 

This semiconductor physics equation should be combined with Maxwell’s equations in 

order to obtain the accurate results of the expected radiated power of the THz photoconductive 

antenna. Thus, the next step is to find out how these properties can be combined together by 

using suitable software to produce more accurate results since there is no available software 

that is available to do this.  

4.4  Electrode material study using CST 

4.4.1 The Advantages of Plasmonic Metamaterial  

4.4.1.1 Surface Plasmon Excitation 

 The idea to excite surface plasmon waves had been introduced in [5, 8]. Excitation of 

surface plasmon waves allows transmission of the optical pump through the nano fingers made 

from gold (aurum) into the photo absorbing substrate. A surface plasmon is a travelling wave 

oscillation of electrons that can be excited in the surface of certain metals with the right material 

properties. To date, the only noble metals that can exhibit plasmonic characteristics are gold 

(aurum) or silver (argentum). 

 In [5, 8], this paper stated that in the case of the plasmonic photoconductor, the optical 

pump is transmitted through the nanoscale metallic grating through the coupling with surface 

plasmon. It is also stated that the highest optical absorption and photocarrier generation occurs 

in direct proximity to the metal contacts since the excited surface plasmon waves exist at the 

dielectric-metal interface. This is what plasmonic metamaterial is made of.  

 However, as a surface plasmon propagates along the surface, it loses energy to the 

metal due to absorption. Hence larger surface plasmon propagation is desirable to ensure that 

the excited surface plasmon does not lose its energy/power/intensity too early. 
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 The propagation length of surface plasmon  δSPP  is defined as the distance over which 

the energy/power/intensity of the mode falls to 1/e of its initial value. δSPP  is found from the 

imaginary part of the surface plasmon wavevector.  

From [12], complex surface plasmon wavevector kSPP is defined as  

 

𝑘𝑆𝑃𝑃 =  𝑘′𝑆𝑃𝑃 + 𝑖𝑘"𝑆𝑃𝑃  

         (4.10) 

 

From [13] kSPP  is defined as below where ω is the angular frequency, c is the speed of light 

and Ɛm is the and Ɛd is the relative permittivity of metal and dielectric respectively.  
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and k’SPP, the real part of the surface plasmon wavevector 
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while k”SPP is the imaginary part of the surface plasmon wavevector, ko is the light free space 

where ko = 2π/λ0.  

Thus,  
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Since surface plasmon propagation length δSPP, the distance over which the power/intensity of 

the mode falls to 1/e of its initial value  is  

 

𝛿𝑆𝑃𝑃 =  1/2𝑘"𝑆𝑃𝑃  

       (4.14) 

Given from [12], the wavelength of surface plasmon, λSPP 

 

And λo is the wavelength of free space 
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Approximate  |𝜀′
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    (4.17) 

 

From equation (4.8), in order to have longer propagation length, a large real part of 

metal and small imaginary part of the metal is needed [12-13]. Thus, plasmonic metamaterial 

fits the criteria as it has large real part of the metal and a small imaginary part. This will ensure 

that the excited surface plasmon does not lose its energy too early in order for the coupling 

between the surface plasmon and the optical pump is transmitted through the nanoscale 

gratings. 
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A comparison is made on the dielectric function of Titanium Nitride (TiN), in contrast 

with conventional plasmonic materials in [14-15] as shown in Fig. 4.9 proves that the real part 

of these highly potential plasmonic metamaterials is more significant.  

 

Fig. 4.9 Comparison done on the dielectric function of plasmonic metamaterial TiN with conventional 

metals [14-15] 

The imaginary part of Titanium Nitride (TiN), is comparable to the conventional 

metals. Thus this proves that plasmonic metamaterial is an excellent candidate to replace 

conventional metals such as Gold (Aurum) or Silver (Argentum). 

 

4.4.1.2 High Loss of Noble Metals 

In [9,16], noble metals had been shown to have substantial carrier concentrations, 

which in turns makes their plasma frequencies very large [14]. A large plasma frequency 

produces a large imaginary permittivity which translates to a significant loss. Plasmonic 

metamaterial, however, has lower carrier concentrations hence smaller losses. 

Experimentally, losses result in [9,16] of the alternatives plasmonic metamaterials of 

oxides and nitrides compared to Gold (Aurum) or Silver (Argentum) shown that the imaginary 

part of the plasmonic metamaterial of oxides (transparent conducting oxides) are found smaller 

compared to the noble metals.  
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4.4.2  Methodology  

 Again, a dipole antenna similar to [1] was simulated using CST. The dipole antenna 

operating at 0.95 THz – 1 THz had been modelled in CST as two electrodes separated by a 

small gap, driven by a discrete face port between the two electrodes. The substrate dimension 

used in both photoconductive antennas is set to 150 µm in length x 150 µm in width and 150 

µm in thickness. The gap is set to 10 µm. The thickness of the substrate is also set to 15 µm as 

this is the optimum dimensions that were simulated earlier in Chapter 3. The substrate used is 

GaAs while the electrodes material used are graphene, Gold (Aurum), Silver (Argentum) and 

Titanium Nitride (TiN). Defined in CST’s material library, Gold has an electric conductivity of 

6.3012 x 107 S/m, while Silver has an electric conductivity of 4.561 x 107 S/m. These 

simulations were repeated for three times, and the result is shown in Fig. 4.10. 

 

4.4.2.2 The Simulation Results 

 Fig. 4.10 shows the radiated power of the dipole antenna using an electrode made from 

noble metals and metamaterial. As expected, graphene performed better than gold and silver 

due to its material properties such as higher carrier mobility. Titanium nitride (TiN), performed 

second after Graphene. This confirms the experimental results in [10-11] that the noble metal 

losses found to be higher compared to metamaterial. These simulation results agree with the 

experimental done in [10-11]. Thus, this finding will be beneficial for design purposes. The 

radiation patterns of these simulations are shown in Fig. 4.11 for the graphene electrode, Fig. 

4.12 for the gold electrode, Fig. 4.12 for the silver electrode and Fig. 4.13 for the TiN electrode. 

The radiation pattern of an electrode using noble metals becomes asymmetrical. This radiation 

pattern enhanced towards the substrate. Hence, this might explain the lower radiated power 

using noble metals as the power can be trapped in the substrate. 
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Fig. 4.10 The radiated power of dipole antenna using an electrode made from noble metals and 

 metamaterial 

 

                                    

 

 

 

 

 

Fig. 4.11 The 3D pattern of the farfield of dipole antenna using graphene as an electrode is shown in 

 dBi 
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Fig. 4.12 The 3D pattern of the farfield of dipole antenna using gold as an electrode is shown in dBi 

 

                               

 

 

 

 

 

 

Fig. 4.13 The 3D pattern of the farfield of dipole antenna using silver as an electrode is shown in dBi 
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Fig. 4.14 The 3D pattern of the farfield of dipole antenna using TiN as an electrode is shown in dBi 

4.6 Summary 

 This chapter focuses on electrode structure and electrode material study. The study of 

the radiated power of a dipole antenna using embedded electrode compared to the dipole 

antenna using standard electrode is not very encouraging. Another simulation tool needs to be 

used instead of CST. This semiconductor physics equation should be combined with Maxwell’s 

equations in order to obtain the accurate results of the expected radiated power of the THz 

photoconductive antenna. 

 The study of the radiated power of a dipole antenna using noble materials such as gold 

(Aurum) and silver (Argentum) with graphene and Titanium Nitride (TiN) proves that graphene 

performed better than gold and silver due to its material properties such as higher carrier 

mobility as in [21]. Besides higher losses in noble materials compared to metamaterial, they 

also cannot be tuned. Tunability can be either static or dynamic depending. Graphene, another 

material that has a unique band structure and high carrier mobility had been found to enable 

excitation of surface plasmons [10-11, 20]. Graphene is a two-dimensional material, thus 

described by its surface conductivity, σ. Surface conductivity, σ can be controlled by applied 

bias voltage [17-18]. Thus, surface conductivity and σ can be exploited to create reconfigurable 

devices. However, due to the limitation of CST, this cannot be proven in the electrode material 

study.     
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Chapter 5  Analysis of a Photoconductive Antenna using 

  COMSOL   

5.1   Introduction 

 Fig. 5.1 and 5.2 show the schematic diagram of the photoconductive antenna structures 

and their corresponding dimensions of the conventional and the proposed photoconductive 

antenna, respectively. The proposed photoconductive antenna: 

 Has an embedded electrode in the substrate material 

 Was fed with both voltage bias and optical pump in the simulation works 

 Were shown to withstand higher bias voltage than conventional photoconductive 

antenna hence higher THz radiation power 

 For simplicity, LT-GaAs was chosen as the substrate material while Gold was used as 

the electrode material in all simulation works. The simulated electric field values were plotted 

using the coordinates as defined in Figure 5.2. 

 

 

Fig. 5.1 The structure of a (a) conventional model photoconductive antenna. (b) proposed model 

photoconductive antenna. 

(a) (b) 
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Fig. 5.2 Schematic diagram of the structure of a photoconductive antenna (a) conventional model (b) 

proposed model and the coordinate of the simulated electric field 

 

A commercial finite-difference time-domain (FDTD) simulation software package 

COMSOL version 5.2 was used in all simulation work. Unlike microwave antennas, 

photoconductive antennas are fed with two different sources namely the dc voltage bias and the 

optical pump. After defining the respective geometries as summarised in Table 5.1, the AC/DC 

module in the COMSOL Multiphysics was used to calculate the electric field distribution inside 

the photoconductive device when voltage biases were applied to the electrode. The optical 

pumps were modelled using the Electromagnetic Waves, Frequency Domain interface in order 

to calculate the density distribution of the photo-generated carriers produced by the pump laser. 

 Table 5.1 Parameters for Comsol Simulation 

 

Parameter  Value     

Substrate dimension (height x width x depth) 100 μm x 100 μm x 100 μm 

Antenna gap 2 μm   

Voltage biases 0 V - 4 V   

Optical power pumps 1.4 mW - 10 mW   

LT-GaAs Relative permittivity (Ɛr) [5-6 ] 12.9   

Gold Relative permittivity (Ɛr) [5-6 ] 6.9   

Wavelength (λ) 780 nm    

Electrode thickness 0.1 μm - 1 μm   

(a) (b) 
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5.2     Simulation Method 

Using the AC/DC module in COMSOL Multiphysics, the electric field of both the 

convention and the proposed antennas is simulated at the wavelength and laser power as shown 

in Table 5.1. Fig. 5.3a and b show the electric field map calculated at a voltage bias of 4 V for 

a conventional and the proposed antenna, respectively. The electric field is at the strongest at 

the sharp edges between the antenna gap. Note that the breakdown electric field of GaAs is   4 

x 107 V/m while the breakdown electric field of air is 3 x 106 V/m; hence the chosen voltage 

bias of 4 V will not exceed the breakdown electric field of air in the conventional model. 

    

 

Fig. 5.3   Electric Field of (a) conventional (b) proposed THz photoconductive antenna at 

given voltage bias at 4 V 

 

    

5.3     Simulation Results 

5.3.1  Electrode Thickness 

Fig. 5.4 shows the electric field distribution along the depth direction in the antenna 

substrate. The electric field calculated at the centre of the antenna gap of both the conventional 

and proposed photoconductive antenna is plotted against the depth of the substrate, starting 

from the substrate surface as indicated in Fig. 5.2. It is found that electrode thickness of the 

proposed antenna plays a role; higher electric field over larger depth is observed for a thicker 

electrode of the proposed antenna. In contrast, no change of the electric field can be observed 

when the electrode thicknesses of the conventional antenna are changed. 

 

(a) (b) 
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Fig. 5.4   Electric Field of the proposed photoconductor and the conventional photoconductor at 4V 

voltage bias 

 

 Fig. 5.5 shows the electric field across the gap of the proposed photoconductive antenna 

at the surface of the electrode and at a depth of 1 µm electrode where the electric field of the 

proposed model are at the highest. The electric field of a conventional photoconductive antenna 

is also shown in Fig. 5.4. As expected, the electric field near the two electrodes is largest; 

suggesting that the largest THz power could be expected when focusing pump laser near the 

edge of the electrodes. 
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Fig. 5.5 Electric Field of the proposed photoconductor of 1 μm electrode thickness and the conventional 

 photoconductor at 4 V voltage bias 

 

The simulated electric field can be converted to the electric energy density which is given by, 

 

  E1 = 0.5 |E|2 ε0       (5.1) 

 

Where E = electric field, ε0 = constant dielectric permittivity. 

As the electric field is higher in the proposed photoconductive antenna as compared to 

the conventional photoconductive antenna, the electric energy density should be higher too. 

This stored static electric power could be potentially converted into THz radiation power when 

the antenna device is excited with, for example, short laser pulses from a femtosecond laser.  

Not all stored electric power could be converted in to THz radiation power since most of 

the photo-generated carriers are near the surface of the LT-GaAs.  Fig. 5.3a and Fig 5.3b show 

the electric field of the proposed model simulated in COMSOL at voltage bias of 4 V and laser 

pump of 10 mW, respectively. The total effective energy stored in the conventional and 
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proposed antenna can then be calculated in COMSOL Multiphysics using the following 

equation: 

 

ʃʃʃ (0.5 |E1|2 ε0 ) x   |E2|2 dv                               (5.2) 

 

Where E1 = electric field from Fig. 5.6a, E2 = electric field from Fig. 5.6b and ε0 = 

constant dielectric permittivity. Note that |E2|2 is proportional to the density of the photo-

generated carriers. As shown in Fig. 5.7, the total effective energy conserved in the proposed 

antenna was found to be almost double than that of the conventional model. The equation is 

inspired by the fact that the total electric current (I) can be related to the current density (J) by 

integrating the current density over the area where a charge is flowing, which in this case is the 

proposed model. Also, the current density can be related to the electric field with its electric 

conductivity. Since LT-GaAs has non-zero conductivity, this electric field will produce a 

current. Experimental results of this proposed antenna can prove these equations. 

 

 

 

 

 

 

 

Fig. 5.6 Electric field of proposed THz photoconductive antenna with 0.1 um electrode thickness from 

(a) electric current module (b) electromagnetic module simulated in COMSOL Multiphysics 

 

(a) (b) 
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Fig. 5.7  Total effective energy of the conventional photoconductor vs proposed photoconductor at 4V 

voltage bias and various laser power 

 

5.3.2  Substrate Mobility 

Fig. 5.8 shows the simulated current across the gap of the proposed photoconductive 

antenna at the surface of the electrode until the depth of 0.5 μm where the voltage biases are 

varying from 1 V to 10 V. The optical pump is given at 1 nW. The substrate used is LT-GaAs 

that has the hole mobility of 400 cm2/Vs and electron mobility of 8500 cm2/Vs. The bandgap 

of LT-GaAs is 1.424 V. The current is proportional to the voltages. The linear relationship is 

expected and theoretically proven. 

Fig. 5.8 also shows the simulated current across the gap of the proposed 

photoconductive antenna at the surface of the electrode until the depth of 0.5μm where the 

voltage biases are varying from 1 V to 10 V. The optical pump is also given at 1 nW. The 

substrate used is LT-GaAs that has the hole mobility of 200 cm2/Vs and electron mobility of 

4500 cm2/Vs. The bandgap of LT-GaAs is fixed at 1.424 V. The value of the current is still 

proportional to the voltages, but it is now reduced. 
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Fig. 5.8 Current density of the proposed model at different depth using GaAs as the substrate using its 

actual carrier mobility of 8500 cm2/Vs – straight line and half of the carrier mobility of 4500 

cm2/Vs - dashed line 

 

Fig. 5.9a and b show the total current density plot of the proposed model at 1 µm depth using 

LT-GaAs as the substrate using at half of its carrier mobility of 4500 cm2/Vs and LT-GaAs 

actual carrier mobility of 8500 cm2/Vs. Due to the limitation of COMSOL Multiphysics, the 

electrode thickness which is made of gold (Aurum) is modelled as a straight line and assigned 

as a conductor. The voltage bias given is 4V. The optical pump given is at 1nW. The bandgap 

of LT-GaAs is fixed at 1.424 V. The current density plot of a photoconductive antenna using 

LT-GaAs as a substrate at its actual carrier mobility at 8500 cm2/Vs has higher value based on 

the colour scale plot indication. 
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(a)                                                                           (b) 

Fig. 5.9    Total current density plot of the proposed model at 1 µm depth using GaAs as the substrate 

using (a) half of its carrier mobility of 4500 cm2/Vs and (b) actual carrier mobility of 8500 

cm2/Vs at 4V. 

 

Fig. 5.10 shows the comparison of the simulated current across the gap of the proposed 

photoconductive antenna at different mobility.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 The integration of the current density across the cross-sectional area of the proposed model 

simulated at different carrier mobilities  
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The sum of the current in the proposed model at lower mobility is half of the sum of 

the current at the actual mobility of LT-GaAs. This proves that the mobility of a substrate 

material plays a crucial role in determining the current generated by the photoconductive 

antenna. The results agree with the findings previously in [1-3]. 

 

 

5.3.3  Antenna Gap 

Fig. 5.11 shows the electric field distribution along the depth direction in the antenna 

substrate. Again, the electric field calculated at the centre of the antenna gap of both the 

conventional and proposed photoconductive antenna is plotted against the depth of the 

substrate, starting from the substrate surface as indicated in Fig. 5.2. However, the antenna gap 

is now changed to 2 µm and 4 µm. Theoretically, the electric field is indirectly proportional to 

the gap of the antenna. It is found that the proposed antenna with larger antenna gap has lower 

electric field compared to the proposed antenna with 2 µm antenna gap. Hence, the results agree 

with the theory.  

 

Fig. 5.11  Electric Field of the proposed photoconductor with 4 µm and 2 µm antenna gap at 4 V voltage 

bias 
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5.3.4 Substrate Thickness 

Fig. 5.12 shows the electric field calculated at the centre of the antenna gap of the 

proposed photoconductive antenna is plotted against the depth of the substrate, starting from 

the substrate surface as indicated in Fig. 5.2. The substrate thicknesses of the proposed antenna 

are changing from 100 µm, 90 µm and 80 µm. No change of the electric field can be observed 

when the substrate thicknesses of the proposed antenna are changed. These simulations results 

are expected as most of the photo-generated carriers are near the surface hence the substrate 

thicknesses does not contribute to any changes in the number of photo-carriers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Electric Field of the proposed photoconductor with 100 µm, 90 µm and 80 µm substrate 

thickness at 4V voltage bias 

 

5.3.5  Material Comparison 

Indium Phosphide (InP) is a semiconductor that has a direct bandgap [4] which is 

similar to Gallium Arsenide (GaAs). Hence, InP is chosen to be as a substrate replacing GaAs 

for the proposed model. Fig. 5.13 shows the simulated current across the gap of the proposed 

photoconductive antenna at the surface of the electrode until the depth of 0.5 μm where the 

voltage biases are varied from 1 V to 10 V. The substrate used is InP that has the hole mobility 

of 200 cm2/Vs and electron mobility of 5400 cm2/Vs. The bandgap of InP is 1.344 V. At these 
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thicknesses, the current simulated in the proposed model using InP as a substrate material is 

almost four times higher more value than the proposed model using GaAs as a substrate material 

in Fig. 5.8.  

 

    

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 Current density of the proposed model at different depth using InP as the substrate 

 

 Fig. 5.14 shows the comparison of the total simulated current across the gap of the 

proposed photoconductive antenna at different materials. The sum of the current in the proposed 

model using InP as a substrate material is almost four more times higher than the sum of the 

current in the proposed model using LT-GaAs as a substrate material. This proves that both the 

mobility of a substrate and the bandgap are amongst the factor in determining the potential 

current of the proposed antenna.  

Fig. 5.15a and b show the total current density plot of the proposed model at 1 µm depth using 

LT-GaAs and InP. Due to the limitation of COMSOL Multiphysics, the electrode thickness 

which is made of gold (Aurum) is modelled as a straight line and assigned as a conductor. The 

voltage bias given is 4V. The optical pump given is at 1nW. The bandgap of LT-GaAs is fixed 
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at 1.424 V, and the bandgap of InP is 1.344 V. The current density plot of a photoconductive 

antenna using InP as a substrate has higher value based on the colour scale plot indication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14  Comparison of the integration of the current density across the cross-sectional area of the 

proposed model simulated at different materials 

 

 

 

 

 

(a)                                                                                  (b) 

Fig. 5.15 Total current density plot of the proposed model at 1 µm using (a) GaAs as the substrate (b) 

InP as a substrate at 4V. 
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5.4     Summary 

 Numerical simulations using COMSOL Multiphysics indicate that the proposed THz 

antenna structure can store two times more effective electric energy than the conventional 

model. This suggests that by using this embedded model, the expected THz power could also 

potentially be doubled. Furthermore, in the conventional photoconductive devices, the highest 

electric field is at the surface of GaAs thus the highest bias voltage that could be applied will 

be determined by the breakdown electric field of air which is 2 x 106 V/m. In the proposed 

device, the highest electric field is found to be within the GaAs substrate which has a much 

high breakdown electric field of is 4 x 107 V/m. Therefore, for the same gap width of the 

electrodes, the proposed device would withstand a higher bias voltage than the conventional 

ones. This would lead to even higher THz radiation power for the proposed device as the 

radiated THz power is expected to increase with the applied bias voltage. This is the 

achievement of this thesis, where the proposed model had been proven numerically to be better 

than the conventional model. In Chapter 4, using CST, a dipole antenna embedded in GaAs as 

substrate material had been simulated and compared with a conventional dipole antenna. The 

results, however, are not encouraging. Using COMSOL Multiphysics, by focusing on the 

electric field of the proposed model, the advantage of the proposed model had been proven. 

 Carrier mobility of material had also been identified as a factor that can increase the 

current in the proposed antenna. Based on the simulation results, the current with double carrier 

mobility produces twice the sum of current compared to the proposed model with half of the 

carrier mobility. This high photo carrier density results to high time-varying transient 

photocurrent that can lead to high THz power. 

Substrate thicknesses do not have any impact on the electric field of the proposed 

antenna simulated. Antenna gap, however, does have an impact on the electric field computed 

hence proposed antenna with a smaller gap is advisable to achieve higher THz current as smaller 

antenna gap is proven to compute higher current. In the previous work in Chapter 3, however, 

substrate thickness had been proven to have an impact on the radiated power and the efficiency 
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of THz photoconductive antenna. The antenna was fed with a discrete port, due to the limitation 

of CST. Hence, the results might not be accurate. In COMSOL, the fed of a THz 

photoconductive antenna is emulated with both voltage bias and optical pump.  

To achieve the wavelength of 780nm, the bandgap of the material chosen as substrate 

material should be in the range of 1.3 V-1.4 V. As bandgap energy of a material is fixed, Indium 

Phosphide (InP) is chosen as an alternative substrate material to LT-GaAs in order to investigate 

the current’s result once the proposed model substrate material is changed to LT-GaAs. The 

bandgap energy of InP is lower than LT-GaAs bandgap energy [5-7]. The photocurrent 

simulated is found to be almost four times higher than the original proposed model using LT-

GaAs. Hence, as a conclusion, the electrode thickness and material mobility are among the 

most crucial factor in determining the current of the proposed model. 
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Chapter 6 Conclusions and Future Work  

6.1      Conclusions  

THz photoconductive antenna consists of two metal usually gold electrodes on a 

photoconductive substrate. Substrate effect in THz plays an important role compared to 

substrate effect in microwave frequency. Chapter 3 investigated the impact of substrate 

dimensions and substrate material on the performance of THz photoconductive antenna. The 

investigations were done using CST simulation. At 1 THz, the efficiency and the radiated power 

are the highest for a substrate thickness with the minimum size which is at 15 µm. Hence, the 

dimensions of 150 µm x 150 µm x 15 µm had been used for as substrate dimensions for any 

further study on a substrate material. Graphene, a promising material to be used as a substrate 

for THz antennas had been found to radiate 33% more power than the THz antenna using GaAs 

as a substrate at 0.5 THz – 0.7 THz.  

In Chapter 4, the investigation centres on electrode structure and electrode material 

study. The study of the radiated power of a dipole antenna using embedded electrode compared 

to the dipole antenna using standard electrode is not very encouraging. Due to the limitations 

of the CST Microwave Studio software wherein the student edition, only 30 000 mesh cells can 

be simulated; another potential software needs to be reconsidered to prove the theory discussed 

more accurately. This limitation also only allows a narrow frequency range. This semiconductor 

physics equation should be combined with Maxwell’s equations in order to obtain the accurate 

results of the expected radiated power of the THz photoconductive antenna. Also, the study of 

the radiated power of a dipole antenna using noble materials such as gold (Aurum) and silver 
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(Argentum) with graphene and Titanium Nitride (TiN) proves that graphene performed better 

than gold and silver due to its material properties such as higher carrier mobility. 

In chapter 5, a novel photoconductive antenna with an embedded electrode structure, 

rather than the conventional planner electrode structures had been introduced. Electric field 

simulated using COMSOL Multiphysics proves that the proposed model performs better than 

the conventional model.  The electric field calculated at the centre of the gap between two 

electrodes for both the conventional and the proposed photoconductive antenna is plotted 

against the depth of the substrate, starting from the substrate surface. A higher electric field 

over larger depth is observed for a thicker electrode of the proposed antenna. In contrast, no 

change of the electric field can be observed when the electrode thicknesses of the conventional 

antenna are changed. The new findings in Chapter 5, disputes the conclusions of Chapter 3, 

where in Chapter 3 substrate thickness had been proven to have an impact on the radiated power 

and the efficiency of THz photoconductive antenna. Due to the limitation of CST, the antenna 

was fed with a discrete port. Hence, the results earlier might not be accurate. 

The simulated electric field can be converted to the electric energy density. This stored 

static electric power represents the maximum electric power that could potentially be converted 

into THz radiation when the antenna device is excited with, for example, short laser pulses from 

a femtosecond laser. The total effective energy stored in the conventional and proposed antenna 

had then be calculated in COMSOL Multiphysics using the novel equation and the total 

effective energy stored in the proposed antenna was found to be almost double than that in the 

conventional antenna. The equation is inspired by the fact that the total electric current (I) can 

be related to the current density (J) by integrating the current density over the area where a 

charge is flowing, which in this case is the proposed model. Also, the current density can be 

related to the electric field with its electric conductivity. Since LT-GaAs has non-zero 

conductivity this electric field with produce a current. Experimental results of this proposed 

antenna can prove these equations. 
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 Besides the electrode thickness, substrate mobilities and antenna gap are among the 

related parameters that had been identified and proven in this research to produce more 

photocurrent hence possibility of higher radiated THz power. The integration of the current 

density across the cross-sectional area in the proposed model at lower mobility is half of the 

integration of the current density across the cross-sectional area in the proposed model at the 

actual mobility of LT-GaAs. This proves that the mobility of a substrate material plays a crucial 

role in determining the current generated by the photoconductive antenna.  

In conclusion, the proposed THz photoconductive antenna had been proven 

numerically to improve THz photocurrent compared to the conventional photoconductive.  
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6.2  Future Work  

Photoconductive antennas (PCAs) are among the most popular devices used in THz 

radiation emission and detection of THz radiation. Compare to other THz emitter and detector, 

photoconductive antennas are compact, able to work in room temperature and they can work 

both as an emitter and detector. However, due to their low optical-to-THz conversion 

efficiencies, applications of these devices are limited.  Extensive research had been done to 

understand and identify the improvement that can be done in order to rectify the low optical-

to-THz conversion.  

Using nanoplasmonic structures is very effective in improving the quantum efficiency 

of photoconductive THz devices. The reason for this fact originates from the unique capability 

of nanoplasmonic structures to enhance the absorption of incident laser pulses. Fabrication of 

such structures, however, is difficult and costly. Hence, the equation proposed in this research 

together with the simulation tool that combines both optoelectronic and electromagnetic 

simulations is the approach which should be adopted for THz antenna analysis in order to a 

predict the results of THz photocurrent and avoid any costly and unsuccessful experiment.  

Though photoconductive antenna is basically consisting of simple electrode geometry 

such as bow tie and dipole, with the proof of concept of an embedded electrode using both the 

equation and simulation software, more robust and more complicated design can now be 

implemented and simulated before proceeding with the experimental work. Table 6.1 shows 

the suggested substrate dimensions, for THz Photoconductive Antenna based on the simulation 

done throughout the thesis. The findings on Chapter 5, disputes the conclusions of Chapter 3, 

where in Chapter 3 substrate thickness had been proven to have an impact on the radiated power 

and the efficiency of THz photoconductive antenna. 

Semiconductor as the substrate material of terahertz photoconductive antenna is one of 

the main contributions of the THz radiation where high electron mobility is needed to obtain 

strong THz signals, high intrinsic resistivity and high breakdown voltage in order to support 
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applying high bias voltages. Many recent developments had been done on improving the 

characteristics of the substrate material. Though graphene had been shown to be a superior 

substrate material and electrode material using CST, the investigation in COMSOL focuses 

both on Gallium Arsenide (GaAs) and Indium Phosphide (InP) as potential substrate materials 

since graphene had been a challenge to be constructed into a structurally useful form on a three-

dimensional level. Based on the simulation done throughout the thesis, Table 6.1 also shows 

the suggested substrate material for THz Photoconductive Antenna with antenna gap of 2 µm.  

 

 Table 6.1 Suggested parameters for THz Photoconductive Antenna 

Substrate Material 
Substrate Parameter  

( Length x Width x Thickness) 
Electrode Structure 

GaAs 100 µm x 100 µm x 100 µm Embedded Electrode 

InP 100 µm x 100 µm x 100 µm Embedded Electrode 
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Appendix A   E-field of THz Small and Large Gap 

Antennas 

A.1. Small Gap THz Antennas  

Hertzian dipole is an antenna with infinitesimal length dl (dl<<λ). Since the antenna length is 

very small, the current of the Hertzian antenna can be assumed to have a constant amplitude of Ipc with 

a constant phase; hence antenna is equivalent to a constant current source of Ipcdl. It is good to state that 

Ipcdl=JpcdV, where Jpc is the current density and dV is the source volume. The Hertzian dipole antenna 

geometry is illustrated in Fig. A.1.  

 

Fig. A.1 Geometry of a Hertzian dipole with its associated electric field components in the spherical coordinate 

To derive the radiated electromagnetic fields using Maxwell’s equations, first, the vector 

potential, Az, needs to be calculated through equation (A.1) and then it is transformed to spherical 

coordinate as shown in equation (A.2) [1]. 
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here μ is the permeability,  is the wave number and r is the observation distance.  

Considering the relations of electric and magnetic fields with the vector potential according to equation 

(A.3),  

 
(A.3a) 

 (A.3b) 

Electric, E, and magnetic, H, fields can be calculated as presented in (A.4):  

 
(A.4a) 

 

(A.4b) 

 
(A.4c) 

, ,  (A.4d) 

where are the intrinsic impedance and ε is the permittivity.  

In THz photoconductive antennas, time domain behaviour of fields is used. Therefore, by 

multiplying field components of equation (A.4) with ejωt, getting the real part of fields and considering 

the time difference between the observation point and source point as (c is the light velocity), 

time domain equations of the fields of equation (A.4) can be obtained by (A.5).  
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From equation (A.5) it can be interpreted that and  are radiative components in the far field 

(kr>>1) since they have the factor of 1/r. Assuming that Ipc(td) = Ipc cosωtd and considering the relation 

between charge and current , equations (A.5a) and (A.5b) can be rewritten as (A.6a) and 

(A.6b) respectively: 

 
(A.6a) 

 
(A.6b) 

Thus, the radiated electric field is proportional to the time derivative of the current (or 

equivalently it is proportional to the current density).  

It is good to mention that in previous work in the literature, the relation of radiated THz power 

to the current was explained through Hertz vector potential of a time-varying dipole moment [34, 68] 

which is a popular method in areas like quantum electronics and solid-state physics. However, here this 

relation was explained through the usage of vector potential and considering the time-varying behaviour 

of the Hertzian dipole as an antenna.  

 

A.2. Large-Aperture THz Antennas 

The geometry of a large-aperture THz antenna is shown in Fig. A.2. Spectral and temporal 

format of emission of THz radiation from this antenna according to Maxwell's equations can be written 

as [84]: 

 (A.7a) 
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Fig. A.2 Geometry of a large-aperture THz antenna  

As mentioned earlier, the size of the excitation area by the laser on the photoconductive gap is 

greater than the wavelength of the emitted THz wave. Therefore, the fields from this type of antenna 

can be assumed as plane waves and be modelled by considering boundary conditions [75]. Thus, 

according to Fig. A.2 and based on the basics of electromagnetic fields, the boundary conditions for 

electric and magnetic fields at the air-substrate interface can be written as: 

 (A.8a) 

 (A.8b) 

The relation of E-field to H-field in two regions of air and substrate are: 

 
(A.9a) 

 
(A.9b) 

Where η0 is the intrinsic impedance of air and εr is the relative permittivity of the substrate. Thus, using 

equations (A.8) and (A.9) and considering Ohm’s law that surface current density can be expressed as

, and the surface current in a large-aperture antenna is derived as: 

 
(A.10) 
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Appendix B   Calculation of efficiencies 

 

The average photocurrent Iavp and approximate photoconductive resistance Rapp are considered as 

equations (B.1) and (B.2) respectively:  

 
(B.1) 

 
(B.2) 

where Vbias is the bias voltage, L is the antenna gap length, and Pav is the average optical power. Then, 

the optical-to-electrical efficiency can be estimated as:  

 

(B.3) 

Considering some typical values as  

μe = 1000 cm2.V-1.s-1 

c = 0.5 ps  

Vbias = 30 V 

Pav = 50 mW  

L = 5 μm  

trep = 1/80 μs  

h = 6.626 x 10-34 J.s  

e = 3 x 10-8 ms-1  

c = 1.6 x 10-19 C   

 f = 375 THz  

in equation (B.3), η1p = 7.2 × 10-5.  

 

The matching efficiency can be calculated according to equation (B.4) for a half-wavelength dipole 

antenna on a substrate with εr = 12.9. Assuming the antenna resistance in free space, Zfree, is 73 Ω and 
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by using the above values in equation (B.2) Rapp is 0.89 Ω, then the matching efficiency will be η2p = 

0.16.  

 

(B.4) 

 

Assuming also that a radiation efficiency η3p of can be relatively high, typically over 80%, the total 

antenna efficiency for this sample, which is a multiplication of efficiencies from three described 

processes, is calculated as 5.7 × 10-6. 
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