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Abstract 

The work presented in this thesis explored the modification of naturally occurring 

nucleosides and is split into two main sections investigating the processes of 

denitration and decarboxylation. A common theme of the work investigated the 

nitration of nucleosides and their biological role. Both purines and pyrimidine 

nucleosides have been investigated, with the initial focus being on guanosine and a 

potential repair mechanism of a common DNA lesion associated with nitration. 

Secondly, an essential decarboxylation step in the biosynthesis of pyrimidine 

nucleosides was investigated to probe whether formation of bioisosteric analogues 

of a key intermediate in this process could aid in the treatment of disease.  

8-Nitroguanine is a DNA lesion strongly associated with inflammation-related 

carcinogenesis. Nitration of the guanine base greatly labilises the glycosidic bond, 

often resulting in the formation of abasic sites which can lead to mispairing during 

DNA replication. A potential repair mechanism of the lesion was investigated 

involving a reductive denitration reaction. Synthesis of the ribonucleoside form of 8-

nitroguanosine was achieved and the process of reductive denitration was 

investigated using sodium borohydride. The main product of the reduction was 

found to be 8-aminoguanosine, but a small amount of guanosine was found to form 

showing reductive denitration of the lesion is a chemically feasible reaction and thus 

a potential repair mechanism. A deuterium labelling study proved the origin of the 

guanosine formed was from the 8-nitroguanosine starting material. 

The final step in the de novo biosynthesis of pyrimidine nucleotides involves a 

decarboxylation reaction to produce uridine 5’-monophosphate, catalysed by the 

enzyme orotidine monophosphate decarboxylase (ODCase). Certain disease 

causing organisms, such as the malaria parasite, rely on this pathway to obtain the 

pyrimidines they require. Humans utilise two pathways to obtain pyrimidines which 

introduces the possibility of inhibiting the de novo pathway as a means of 

therapeutic intervention. A series of eleven bioisosteric analogues of the natural 

substrate of ODCase were synthesised as potential inhibitors of the enzyme and 

antimalarial agents. Computational docking of the eleven compounds into a crystal 

structure of ODCase was carried out and showed that all are predicted to fit into the 

active site. All eleven compounds synthesised have been sent for biological testing 

in a 3D7 assay to assess their antimalarial activity. 
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Chapter 1 Introduction 

1.1 The primary structure of nucleic acids 

Nucleotides are the building blocks of the long chain polymers deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA).1 The basic structure of a nucleotide is comprised 

of three key components, namely, a heterocyclic nitrogenous base (nucleobase), a 

furanose ring formed from a pentose sugar and at least one phosphate group.2 In 

the absence of any phosphate residues the molecules are referred to as 

nucleosides rather than nucleotides.2 Figure 1 shows the general structure of a 

nucleoside and the numbering system used to refer to each atom of the sugar.3 

 

Figure 1 General structure of a nucleoside (left). The numbers in red refer to each atom of the sugar according to 
the rules set out by IUPAC-IUB.3  General structure of a nucleic acid chain (right).4 

The atoms of the sugar moiety are differentiated from the atoms of the base by a 

superscript prime mark after the number.3 The nucleotide monomers that make up 

DNA are formed using the pentose sugar 2-deoxy-D-ribose whereas the nucleotides 

that make up RNA are derived from D-ribose.2 The two pentoses differ only at C-2’ 

where D-ribose has a hydroxyl group and 2-deoxy-D-ribose has a proton.2 In both 

cases, a β-glycosidic bond attaches the sugar at C-1’ to a base residue.2 Both DNA 

and RNA chains are formed when their constituent nucleotide monomers 

polymerise to form a phosphodiester linkage as shown on the right of Figure 1.4 

Work carried out by Klein and Thannhauser helped to establish that in DNA, 

phosphodiester linkages can only form between the 5’-OH of one nucleotide and the 

3’-OH of another.2 The extra hydroxyl group at C-2’ of RNA nucleotides means that, 
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unlike DNA, they have the potential to form phosphate esters at this position. 

However, examples of 2’- to 5’- phosphodiester linkages are rare and typically RNA 

forms 3’- to 5’- phosphate esters just like in DNA.2 The 2’-hydroxyl group present in 

RNA also has an effect on its overall stability. Whilst both DNA and RNA are liable 

to decompose in solution, the presence of the additional hydroxyl group in RNA 

greatly enhances the susceptibility of its phosphodiester bonds towards hydrolysis.4 

Nevertheless, this vulnerability is somewhat offset by the additional stability the 2’-

OH provides towards the glycosidic bond in RNA as compared to DNA where in its 

absence, the lability of the glycosidic bond towards hydrolysis is significantly 

increased.  

1.1.1 The nucleobases 

There are five naturally occurring bases which can be split into two classes known 

as the purines and the pyrimidines. Figure 2 shows the structure of each base and 

the numbering system used to refer to each atom.3 

 

Figure 2 Structures of the five primary nucleobases found in DNA and RNA. The numbers in red refer to the atom 
label according to the rules set out by IUPAC-IUB.3  

The purines consist of adenine (A) and guanine (G), bases which are common to 

both DNA and RNA. They are differentiated from the pyrimidines by their bicyclic 

structure and form glycosidic bonds at the N-9 position.2 The pyrimidines are 

smaller, monocyclic bases and of the three, only cytosine (C) can be found in both 

DNA and RNA. Thymine (T), which only differs from uracil (U) by the presence of a 

methyl group at the C-5 position, is found in DNA whereas uracil is found in RNA. 

All three pyrimidines use N-1 to form glycosidic bonds to the anomeric carbon of the 

pentose sugar.2 Given that they are the only part of a nucleotide unit to vary, the 

exact sequence of the nucleobases in a DNA or RNA chain is what encodes the 

biological and genetic information, and is what constitutes the primary structure of 

nucleic acids. 

Each of the five nucleobases has the ability to display either keto-enol or amine-

imine tautomerisation and in some cases, displays both. Through the use of multiple 
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spectroscopic techniques, it has been established that under physiological 

conditions all five nucleobases exist predominantly in their keto and amino forms, as 

drawn in Figure 2.2 The ability of the nucleobases to tautomerize was one of the 

biggest obstacles that stood in the way of early pioneers in nucleic acid research 

establishing the exact structure and bonding behaviour of DNA and RNA. Right up 

until the early 1950’s, it was widely believed that the bases existed in their enolic 

form and it was not until their keto forms were fully considered and appreciated that 

Watson and Crick were able to publish their seminal work on the structure of DNA in 

1953.5,6 

As previously mentioned, the nucleobases are attached to C-1’ of the sugar via a β-

glycosidic bond. This means that the bases are on the same face of the sugar as 

the 5’-carbon. They lie virtually perpendicular to the plane of the sugar and it is 

approximated that they bisect the angle created by O4’-C1’-C2’.2 There are two 

major conformations that the bases can adopt known as syn and anti.7 Of the two, 

the anti conformation is the most stable.8 In this conformer, the smaller part of the 

base moiety, i.e. H-8 in the purines and H-6 in the pyrimidines, lies above the 

sugar.2 The syn conformation has the base orientated in such a way that the larger 

bulk of the bases, i.e. N-3 in the purines and O-2 in the pyrimidines, is located 

above the sugar which introduces unfavourable steric effects.2  

 

Figure 3 Top: Anti and syn conformations adopted by the purines, in this example adenine. Bottom: Anti and syn 
conformations adopted by the pyrimidines, in this example cytidine. X = H or OH. 

It is due to these steric effects that nucleobases predominantly adopt the anti 

conformation. Whilst not unheard of, examples of pyrimidine nucleotides in the syn 

conformation are rarer than examples of purines.8 In fact, guanine has been found 
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to display a preference for the syn conformer under certain conditions. It is thought 

that guanine is able to form a stabilising electrostatic interaction between its amino 

group at C-2 and its 5’-phosphate which makes the syn conformer overall less 

unfavourable.8 Furthermore, the introduction of steric bulk at the C-8 position of 

guanine has been found to also result in the nucleobase showing a preference for 

the syn conformer. It has been determined that the presence of a halogen atom at 

C-8 of 2’-deoxyguanosine results in a destabilisation of the base pairing to 2’-

deoxycytidine.9 This is due to a destabilisation of the anti conformer caused by 

steric interactions and the preference of the halogenated guanine to now adopt the 

syn conformation.9 These findings have important biological implications as several 

well-known DNA lesions contain modifications at the C-8 position of guanine and it 

is possible some of their mutagenic and carcinogenic properties are due to the 

increased steric bulk at this position causing destabilising effects. One such lesion is 

8-nitroguanosine which is the subject of part of this thesis and will be discussed in 

greater detail in the next chapter. 

1.1.2 The sugar conformation 

It is both energetically and sterically unfavourable for the pentose sugar in nucleic 

acids to adopt a planar structure and so to help alleviate ring strain and 

unfavourable eclipsing steric interactions, it adopts a puckered conformation.7 There 

are two main conformations that it can adopt known as the envelope (E) and the 

twist (T).7 In the envelope conformation, four of the five ring atoms lie in the same 

plane with the fifth atom displaced. The twist conformation has two adjacent atoms 

displaced in opposite directions from the plane formed by the other three atoms. 

The conformations are described as exo when the atom displaced furthest from the 

plane is on the opposing face to the 5’-carbon and termed endo when it is on the 

same side.2 

In work carried out to investigate the concept of pseudorotation in nucleosides and 

nucleotides by Altona et al., it was established that nucleic acids largely adopt two 

conformations.10 These conformations are known as the C2’-endo and C3’-endo, 

both of which are derived from a twist pucker arrangement and are shown in Figure 

4. Due to their geographic locations on the pseudorotational cycle, in addition to the 

shape formed by their C4’-C3’-C2’-C1’ atoms, the conformations can also be 

referred to as South (S) and North (N) respectively.10 
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Figure 4 Two most commonly occuring nucleic acid sugar puckers; C2’-endo (S) on the left and C3’-endo (N) on 
the right 

The stability of both S and N conformations comes in the main from the gauche 

interactions (60o dihedral angles) between the O-4’ of the sugar ring and the oxygen 

atom at C-3’ as well as the additional oxygen at C-2’ in RNA.11-13 In solution, 

interconversion between the S and N conformations is rapid due to the energy 

barrier separating them being relatively low (less than 20 kJ mol-1).14 However, due 

to the reasons about to be discussed, both DNA and RNA show a preference for 

which conformation they adopt. 

In the case of DNA, the C2’-endo conformation predominates. As DNA lacks the 2’-

OH found in RNA, the gauche interaction between O-4’ and O-3’ has the largest 

contribution to its overall stability. As this is not present in the N conformation it 

preferentially adopts the S conformation instead. 

 

Figure 5 a) DNA sugar pucker b) Newman projection viewing along C3’-C4’ bond showing the key stabilising 
gauche interaction. 

RNA on the other hand shows a preference to adopt the N conformation. The extra 

hydroxyl group it possesses at C-2’ introduces additional gauche interactions which 

makes both the S and N conformations equally stable. In order to understand RNA’s 

preference for C3’-endo, an additional stereoelectronic effect has to be considered. 

The anomeric effect, although somewhat weaker than the gauche effect, provides 

extra stabilisation through donation of the lone pair of electrons on O-4’ into the σ* 

orbital of the glycosidic bond.12 This anomeric interaction is only possible in the N 

conformation where the nucleobase adopts a pseudo-axial position. This allows for 

a better overlap between its anti-bonding orbital and the lone pair of electrons at O-

4’ than is possible in the S conformation. In addition, through adopting the C3’-endo 

conformation, RNA can form an intra-strand hydrogen bond between the O-2’ of one 



Chapter 1  Introduction 

7 
 

residue and the O-4’ of another.2 This is not possible in the C2’-endo conformation 

and so again adds to its overall stability and preference for N. 

 

Figure 6 a) RNA sugar pucker b) Newman projection viewing along C1’-C2’ bond showing a stabilising gauche 
interaction c) Anomeric interaction between O-4’ lone pair and σ* orbital of glycosidic bond d) Intra-strand 
hydrogen bond between O-2’ of one residue and O-4’ of another.  

1.2 The secondary structure of nucleic acids 

Nucleic acids are able to form secondary structures such as duplexes through a 

process known as base-pairing in which specific hydrogen bonds form between 

nucleobases. The combination of NH groups and lone pairs on their carbonyl 

oxygens means the nucleobases make both good hydrogen bond donors and good 

hydrogen bond acceptors.  

The most common hydrogen bonding pattern found in nature is known as Watson-

Crick pairing.5 In this pairing model, guanine specifically pairs to cytosine in both 

DNA and RNA by forming three hydrogen bonds whilst adenine pairs to thymine in 

DNA and uracil in RNA.5 In both A•T and A•U base-pairs, there are only two 

hydrogen bonds present meaning they are thermodynamically less stable than G•C 

pairs.2,5 Figure 7 shows the Watson-Crick hydrogen bonding pattern. 

 

Figure 7 The two most commonly found base-pairing patterns; Watson-Crick (left) and Hoogsteen (right). 
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Also shown in Figure 7, is the Hoogsteen base-pairing pattern. This is an alternative 

hydrogen bonding pattern first reported by Karst Hoogsteen.15,16 This mode of 

pairing again has G pairing with C and A with T/U, but differs from the Watson-Crick 

model in the conformation the purine nucleobase adopts. In Hoogsteen base pairs, 

adenine and guanine adopt the syn conformer which results in these base pairs 

having quite different properties compared to Watson-Crick pairs. In the syn 

conformation, the purine nucleobases of Hoogsteen base pairs utilise the N-7 of 

their imidazole ring to form hydrogen bonds and for the G•C base pair, only 2 

hydrogen bonds can form and it is required that cytosine is protonated. Hoogsteen 

base-pairs are much less common in nature than Watson-Crick pairs, but they can 

be found in some higher order multi-stranded structures. 

The ability of the nucleobases to pair so specifically is what allows the formation of 

more complex nucleic acid structural motifs. 

1.3 The double-helix 

The double helical structure of DNA was first proposed in 1953 by Watson and Crick 

and is comprised of two anti-parallel, complementary strands of nucleic acids.5,6 The 

strands are bonded to each other by the aforementioned Watson-Crick base-pairing 

interactions and coil into a right-handed helix known as B-DNA. The helix orientates 

itself in such a way that the sugar-phosphate backbone is on the outside of the 

duplex and the nucleobase pairs are stacked inside. In this way, the helix is able to 

minimise electrostatic repulsions by having the hydrophobic nucleobases shielded 

by the negatively charged, hydrophilic sugar-phosphate backbone. This 

arrangement also contributes to the overall stability of the duplex. There are several 

key interactions that help to stabilise the structure of the double helix with one of the 

most important being the π-π stacking interactions that occur between adjacent 

base pairs.17 Further stability is imparted through solvent interactions between water 

molecules and the hydrophilic sugar-phosphate backbone. The exclusion of solvent 

water from the hydrophobic core created by the base stacking interactions also 

results in the gain of favourable entropy.2 

There are two grooves present on the surface of nucleic acid double helices. They 

are known as the major and minor grooves and are formed by the gaps that open 

up as the two sugar-phosphate backbones coil around each other.2 The size of 

these grooves depends on which helical conformation is adopted. Nucleic acid 

duplexes are capable of displaying structural polymorphism meaning that they can 

adopt different helical conformations depending on the surrounding environment 
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and the composition of their bases.18 It has been established via X-ray diffraction 

studies that a wide variety of conformations are able to be adopted by nucleic acid 

duplexes.19 Of these, there are three main forms that predominate known as A, B 

and Z, each of which will now be looked at in closer detail. 

1.3.1 A-form helix 

The A-form helix is a right-handed double helix that has its strands running anti-

parallel to each other, bonded together through Watson-Crick base-pairing. It 

contains sugars that display the C3’-endo pucker making it the helical conformation 

most favoured and adopted by RNA duplexes.20 Under conditions of low-humidity 

(high-salt) it is the conformation adopted by DNA duplexes as well.21 The A-form 

helix is characterised by having a major groove that is deep and narrow and a minor 

groove that is wide and shallow.22 The base pairs in A-form helices are displaced 

away from the helix axis which creates a hollow core of approximately 3 Å running 

through the middle of the helix.2 Both A-RNA and A-DNA display similar structural 

parameters with both helices containing 11 base pairs per turn. A-form DNA was 

first revealed in diffraction patterns of DNA fibres obtained by Rosalind Franklin and 

Raymond Gosling under conditions of low humidity in the early 1950’s.21,23 Since 

then, the development of technology has allowed single crystal x-ray structures of 

A-form DNA to be obtained.24 From these single crystal structures, a vast amount of 

structural information about A-helices has been determined (Table 1). Analysis of 

DNA using single crystal x-ray structures was initially held back by difficulties in 

isolating pure, homogenous DNA samples, but advancements in oligonucleotide 

syntheses during the 1970’s means obtaining short, uniform oligonucleotides is now 

relatively straight forward.25  

 

Figure 8 A-form helix viewed from the side (left) and down the helix axis (right) adapted from reference 26.26 
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1.3.2 B-form helix 

The B-form is the most commonly observed helix and is the one adopted by DNA 

under physiological conditions.2 It shares some similarities with the A-type helix in 

that they are both right-handed helices whose nucleic acid strands run anti-parallel 

to each other and are bonded by Watson-Crick hydrogen bonds. However, in B-

form helices, the sugars adopt the C2’-endo pucker and the base-pairs, of which 

there are 10 per turn, are not displaced but rather sit directly on the helix axis.19,27 

This results in the B-type helix having a narrower diameter compared to the A-type 

and major and minor grooves that are more similar in depth.27 Like the A-form, the 

structure of B-form DNA was first revealed in diffraction patterns of DNA fibres 

obtained by Franklin and Gosling.21,23 The B-form was found to exist under 

conditions of high humidity and the data from the diffraction patterns helped enable 

Watson and Crick to devise their model of the DNA double helix.5 Similarly again to 

the A-form, many single crystal x-ray structures of B-form DNA are now in 

existence.25 Dickerson et al. were amongst the first to report single crystal diffraction 

data for B-form DNA which was obtained using the dodecamer sequence 

CGCGAATTCGCG.28 These single crystal diffraction analyses have not only 

confirmed the double helix model put forward by Watson and Crick, but also 

revealed a wealth of data regarding the structural parameters of the helix, with some 

of the key parameters summarised in Table 1.  

 

Figure 9 B-form helix viewed from the side (left) and down the helix (right) adapted from reference 26.26 
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1.3.3 Z-form helix 

The Z-type helix differs significantly from both A and B helices. Its structure was first 

elucidated in 1979 by Rich et al. using single crystal x-ray diffraction and found to be 

a left-handed, anti-parallel duplex.29 Although not a requirement for its formation, Z-

form helices are most often observed for alternating purine-pyrimidine sequences, 

typically poly(dG-dC), and high salt concentrations are known to help stabilise 

them.2,30 Their sugar-phosphate backbone adopts an unusual zig-zag appearance 

which is the origin of the helix name. The reason for this zig-zagging appearance is 

due to the unusual combination of conformations its nucleobases and sugars adopt. 

Its purine nucleotides have been found to have their nucleobases in the syn 

conformation and to display a C3’-endo pucker whereas its pyrimidines have their 

nucleobases in the more usual anti conformation and adopt a C2’-endo sugar 

pucker.25 It is much less commonly observed than either A or B form helices and its 

exact biological significance is still not yet fully understood.31 Work on Z-form 

helices has discovered that negative supercoiling of DNA is known to stabilise Z-

DNA helix formations and so a biological role for Z-DNA is most commonly 

associated with processes that utilise this phenomenon, such as transcription.32 The 

findings that several proteins can bind specifically to Z-DNA also points towards a 

biological role for this helix.33-35 

 

Figure 10 Z-form helix viewed from the side (left) and down the helix axis (right) adapted from reference 26.26 
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Table 1 compares and summarises some of the key structural parameters of the 

helices discussed.2,27 

Table 1 Key structural parameters of the most common nucleic acid helices. 

Parameter A-DNA A-RNA B-DNA Z-DNA 

Helix sense Right-handed Right-handed Right-handed Left-handed 

Sugar pucker C3’-endo C3’-endo C2’-endo Purines: C3’-

endo 

Pyrimidines: 

C2’-endo 

Nucleobase conformation Anti Anti Anti Purines: Syn 

Pyrimidines: 

Anti 

Base-pairs per turn 11 11 10 12 

Twist per base pair (o) 32.7 32.7 36 -9, -51 

Helix diameter (Å) 23 ~23 20 18 

Axial rise per base pair (Å) 2.56 2.8 3.3-3.4 3.7 

 

1.4 Multi-stranded structures 

Through the many studies carried out into elucidating the structure of DNA, it has 

been established that several higher order structures exist that involve bonding of 

multiple DNA strands. These multi-stranded DNA structures are of interest due to 

their potential to be exploited as therapeutic agents. The three most widely studied 

multi-stranded structures are the triple helix, the i-motif and the G-quadruplex.  

1.4.1 Triple helices 

In DNA triple helices, a third strand of DNA is bonded via Hoogsteen hydrogen 

bonding to a B-form DNA duplex.36 The bonding of the third strand has been found 

to be weak compared to the Watson-Crick bonding present in duplexes, but the 

binding of the third strand is sequence specific which is why triple helices are of 

therapeutic interest.37 Triple helices can be classified as either intramolecular or 

intermolecular depending on the origin of the third strand. Intramolecular triple 

helices form from polypurine-polypyrimidine duplexes that contain mirror repeat 

sequences.36 Under certain conditions, such as low pH, these duplexes can 

dissociate.38 Intramolecular triple helices can then form if one of the single strands 

folds back on one of the mirror repeats and binds to it.38 Intermolecular triple helices 

form when a different strand of DNA bonds to a duplex. The third strand is typically 

a triplex forming oligonucleotide (TFO) and it binds at the major groove of the DNA 
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duplex.37 It is restricted to binding to the duplex at sites which have runs of purines 

on one strand and pyrimidines on the other.39 The TFO will always bind to the 

purine rich strand of the duplex regardless of whether it is a polypurine or 

polypyrimidine molecule.36 Polypurine TFO’s bind in an antiparallel sense to the 

purine strand of the duplex using reverse Hoogsteen bonding whereas 

polypyrimidine TFO’s bond in a parallel fashion using regular Hoogsteen hydrogen 

bonding.36 The ability of TFO’s to bind to DNA duplexes with high affinity and a high 

degree of specificity means they possess great potential to be used for genetic 

manipulation. 

1.4.2 i-Motifs 

i-Motifs, short for intercalated motifs, are four stranded DNA structures that form in 

regions rich in cytosine.40 The structure is comprised of two parallel DNA duplexes 

held together in an antiparallel orientation by intercalated base pairs.40 The base 

pairs that hold the structure together are C•C+ pairs in which one of the bases is 

protonated (Figure 11).40 

 

Figure 11 Structure of a C•C+ base pair. 

The structures were first discovered by Gehring et al. for the sequence 

d(TCCCCC).41 In vitro investigations showed they are particularly stable under 

acidic conditions, becoming less stable as the pH rises to physiological pH or 

higher.42 For this reason, for many years a biological role for i-motifs was uncertain, 

but in recent years studies have shown that certain conditions such as molecular 

crowding and negative superhelicity during transcription can induce formation of the 

structure at physiological pH.43-45 Very recently, a study by Christ et al. showed that 

a human antibody fragment can recognise i-motif structures with high selectivity and 

affinity.46 They then used this fragment in immunofluorescent staining experiments 

to provide the first direct evidence that i-motif structures are present in the nuclei of 

human cells.46 Most work in the early years following their discovery focused on 

using i-motifs for applications in DNA nanotechnology.40 But, with the discovery that 

they can exist for certain in vivo, a whole range of other biological roles for this 

structure can now be explored. 



Chapter 1  Introduction 

14 
 

1.4.3 G-Quadruplexes 

Of all the higher order nucleic acid structures, probably the most widely studied is 

the G-quadruplex. They form in regions of nucleic acid sequences that are rich in 

guanine.47 The single stranded guanine rich strands can fold to form four stranded 

G-quadruplexes either intermolecularly or intramolecularly.48 G-Quadruplexes arise 

through the stacking of G-quartets, which form when four guanine bases assemble 

into a tetramer held together by Hoogsteen hydrogen bonds (Figure 12).49 

 

Figure 12 Structure of a G-quartet with a monovalent cation at its centre. The dashed bonds are Hoogsteen 
hydrogen bonds. 

The G-quadruplex formed when two or more G-quartets self-stack is stabilised by 

the presence of a monovalent cation.49 The cation, which is typically located 

between two quartets, helps to reduce the electrostatic repulsion in the centre of the 

tetramer that is created by the carbonyl oxygen atoms and so provides a stability to 

the overall structure.50 Their stability and ability to form at physiological pH is what 

has attracted so much attention to G-quadruplexes. 

Simple computational algorithms have predicted that the human genome has the 

potential to form around 376 000 G-quadruplex structures, although more 

sophisticated high-resolution sequencing-based methods have predicted almost 

double this number can form.51,52 Their presence in human cells was confirmed 

through visualisation upon binding of a highly specific DNA G-quadruplex 

antibody.53 Further computational analysis has revealed that G-quadruplexes or 

sequences capable of forming G-quadruplexes are highly prevalent in certain key 

regulatory regions of the human genome that are involved in processes such as 

transcription regulation and translation.49 This has made G-quadruplexes an 

attractive target for potential new therapeutic treatments, particularly the targeting of 

G-quadruplexes by small molecules for use in anti-cancer therapies.49 
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Telomeres are repetitive sequences of nucleotides found at the ends of 

chromosomes that are required to protect them from degradation and fusing with 

other neighbouring chromosomes.54 They are made up of a double stranded region 

and a single stranded overhang.55 The overhang is guanine rich and capable of 

forming G-quadruplexes.55 Telomeric repeats are lost during each cycle of cell 

division causing shortening of the telomere which ultimately leads to cell death.55 

However, the reverse transcriptase ribonucleoprotein telomerase helps to lengthen 

and maintain telomeres through addition of telomeric repeats.56 It is inactive in most 

somatic cells, but has been found to be upregulated in 80-90% of tumour cells 

which can lead to cell immortality of malignant cells.55,56 The formation of G-

quadruplexes has been found to block the activity of telomerase and so much work 

has gone into trying to develop small molecules that can bind and stabilise G-

quadruplex structures as a means of developing new anti-cancer therapies.48,49 
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Reductive denitration as a potential repair mechanism of the 
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Chapter 2 Introduction 

The aim of this project was to investigate whether it was possible to carry out a 

reductive denitration reaction on 8-nitroguanine, thereby converting it directly back 

to guanine. Such a conversion would suggest that a direct repair of this lesion was a 

chemically feasible process. It is therefore important to first discuss how the lesion 

occurs, why the lesion is such a problem, the established mechanisms of direct 

DNA repair and the literature precedent for reductive denitration reactions.  

2.1 How does 8-nitroguanine form? 

The DNA lesion 8-nitroguanine is strongly associated with inflammation-related 

carcinogenesis.57,58 It has been established that areas of chronic inflammation are at 

high risk of becoming cancerous, due in the main to the high amounts of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) concentrated in these 

areas.59-61 The link between inflammation and cancer was first suggested back in 

1863 by Rudolf Virchow who identified white blood cells (leucocytes) in samples of 

carcinogenic tissues.62 In the years since, there has been much research to confirm 

the existence of such a link and there is now a general acceptance that there is a 

connection between inflammation and carcinogenesis. One of the most compelling 

pieces of evidence to support the link comes from the finding that inflammatory cells 

and mediators are present in the majority of tumours, if not all, irrespective of what 

triggered the tumour to develop.59 It has been estimated that between 15-25% of all 

cancer cases are as result of chronic inflammation, or, infections that can induce 

and trigger an inflammatory response.59,62,63 Table 2 summarises some of the 

cancers known to be associated with inflammation.62-64 

Table 2 Causes of chronic inflammation and their associated cancers. 

Cancer Site Inflammatory Cause 

Stomach Helicobacter pylori infection 

Skin (Melanoma) Sunburn caused by exposure to UV light 

Lungs Repeated exposure to tobacco smoke 

Cervix Human papilloma virus 

Pancreas Chronic pancreatitis caused by tobacco, alcohol and genetics  

Bladder Schistosomiasis 

Liver Hepatitis  

 

Inflammation is the natural physiological response to infection or tissue injury that 

initiates the healing process. It can be classified into one of two categories known 



Chapter 2  Introduction 

18 
 

as acute or chronic inflammation. Acute inflammation is the first response of the 

host which involves activation and migration of plasma and leucocytes to the 

damaged tissue.65 Medzhitov described a generic inflammatory pathway which 

comprises of four main components, namely inducers, sensors, mediators and 

effectors.66 Inducers can be categorised as either exogenous or endogenous. 

Stressed, damaged or malfunctioning tissues induce an endogenous inflammatory 

signal.66 Exogenous inducers can be subdivided further into either microbial or non-

microbial inducers. As the name suggests, microbial inducers are derived from 

invading microorganisms whereas examples of non-microbial inducers include 

allergens, irritants and foreign bodies.66 Tissue-resident immune cells, which include 

macrophages, dendritic cells and mast cells, contain receptors on their surface 

known as pattern recognition receptors (PRRs).66 These receptors act as sensors 

and are able to recognise the signals given off by the inducers and stimulate cellular 

mediators.67 The amount and combination of inflammatory mediators produced 

depends on the exact nature of the inducer.68 The purpose of the mediators is to act 

on the effectors, which in most cases are the target tissues and cells, to produce a 

response that restores the affected tissue to homeostasis and removes the 

inducer.66,68 Most commonly, the inflammatory response involves release of potent 

oxidising and highly reactive species that attack and destroy the inducers of 

inflammation.69 A successful response to acute inflammation is deemed as removal 

of the inflammatory inducer followed by repair of the damaged tissue and 

termination of the immune response.66  

However, problems can arise when the inflammatory response fails to eliminate the 

inducer, termination of the immune response fails or continual exposure to an irritant 

results in recurring bouts of inflammation. These issues lead to chronic inflammation 

which can ultimately lead to carcinogenesis. As discussed, when an inflammatory 

response is required, mediators induce the release of highly reactive species in 

order to eliminate the inducer. Unfortunately, these highly reactive and potent 

species do not discriminate between the host and the pathogen and so there is 

invariably collateral damage to otherwise healthy host cells.66,70 This collateral 

damage is minimised in acute inflammation where overall the inflammatory 

response is short lived and well-regulated, but in chronic inflammation the prolonged 

exposure to RNS and ROS can have serious implications. ROS and RNS are 

capable of causing both oxidative and nitrative damage to DNA which can lead to 

mutagenesis and carcinogenesis.69,71 Nitric oxide (NO) is one such RNS and its 
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chemistry at sites of inflammation makes it the most relevant with regard to the work 

carried out in this thesis. 

NO is a key signalling molecule that participates in several physiological processes 

such as vasodilation, neurotransmission and the aforementioned inflammatory 

response.72 It is produced endogenously by the enzyme nitric oxide synthase (NOS) 

which displays three isoforms.72 Two of these isoforms are Ca2+ dependent and are 

known as the endothelial form (eNOS) and the neuronal form (nNOS) whereas the 

third form is Ca2+ independent and is known as the inducible form (iNOS).72 The two 

calcium dependent isoforms are constitutive enzymes that act transiently and when 

activated emit only nanomolar levels of NO.73 The inducible form is what 

participates in the immune response and is capable of producing highly 

concentrated bursts of NO.72 At sites of chronic inflammation there is an 

upregulation of iNOS which is problematic as excess NO is produced for extended 

periods of time.73 In the immune response, NO is produced as a cytotoxic agent to 

attack and remove the invading pathogen, but when it is present for prolonged 

periods it is capable of causing significant damage to neighbouring cells.74 Oxidative 

and nitrative damage caused to DNA at sites of chronic inflammation are rarely due 

to NO itself as individually it is fairly unreactive towards DNA.57 However, several 

RNS are formed through reaction of NO with other highly reactive species present 

and it is these RNS that can cause DNA lesions. 

Under aerobic conditions, NO is known to autoxidise to produce the nitrosating 

agent N2O3 which can cause DNA deamination and alkylation.57,75 Deamination of 

DNA results in the conversion of cytosine into uracil, guanine into xanthine and 

adenine into hypoxanthine which can lead to DNA mispairing and mutations.73 

Deamination caused by N2O3 occurs through direct attack of N2O3 at nucleobases 

containing an amine moiety.57 Alkylation occurs when N2O3 reacts with a secondary 

amine to form a N-nitrosamine which can alkylate DNA and cause mutagenic 

lesions such as O6-alkylguanine.57 
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Figure 13 Deamination and alkylation products formed through reaction of the RNS N2O3 with DNA. 

As mentioned previously, at sites of chronic inflammation, numerous highly reactive 

species are present. The DNA lesion under investigation in this thesis, 8-

nitroguanine, forms as a result of the reaction between NO and the ROS, 

superoxide (O2
•-).76 Superoxide is generated by activated macrophages and reacts 

with NO to form the highly reactive species peroxynitrite (ONOO-) in a reaction that 

is only limited by diffusion.60,77 Of all the nucleobases, it has been established that 

guanine has the lowest oxidation potential and so is the most susceptible to attack 

by oxidising and nitrative species.78,79 Peroxynitrite therefore readily oxidises 

guanine to first form the widely studied DNA lesion, 8-oxoguanine.79 The oxidation 

process does not stop there however, as it has been estimated that 8-oxoguanine is 

approximately 1000-fold more reactive than guanine and so it can undergo further 

oxidation to produce products such as guanidinohydantoin and 

spiroiminodihydantoin.57 8-Nitroguanine forms as a result of peroxynitrite 

decomposition. When peroxynitrite decomposes, it can either be proton catalysed or 

CO2 catalysed. In the proton-catalysed decomposition, •OH and NO2
• form whereas 

in the CO2 decomposition pathway CO3
•- forms in addition to NO2

•.73 Regardless of 

the decomposition pathway, one of the products formed is NO2
• which nitrates 

guanine to form 8-nitroguanine as well as 5-guanidino-4-nitroimidazole.57 Scheme 1 

summarises the reactions that can take place between peroxynitrite and guanine. 
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Scheme 1 Major products formed through reaction of peroxynitrite with guanine.57 

2.2 Why is the 8-nitroguanine lesion a problem? 

The formation of 8-nitroguanine at sites of chronic inflammation is problematic as it 

is a mutagenic lesion.80 The presence of the electron withdrawing nitro group at C-8 

makes the lesion chemically unstable. The lability of the glycosidic bond is greatly 

increased which can result in the spontaneous release of 8-nitroguanine and 

formation of an abasic site, as shown in Figure 14. 

 

Figure 14 Spontaneous loss of 8-nitroguanine to form an abasic site. 
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As an individual nucleoside, 8-nitrodeoxyguanosine has been estimated to 

depurinate with a half-life of 1 hour under physiological conditions although the half-

life increases slightly to ~4 hours when the lesion is part of a DNA strand.79,81 The 

stability of 8-nitroguanine is much improved in RNA where after 6 hours, only 5% 

depurination was found to have occurred.82 Its increased stability in RNA is due to 

the presence of the C-2’ OH group which destabilises the oxonium ion making the 

depurination process much less favourable.  

Abasic sites are known to pair preferentially with adenine during DNA synthesis and 

so loss of 8-nitroguanine results in a G→T transversion mutation.83 Due to its 

inherent instability, incorporation of the lesion into chemically synthesised 

oligodeoxynucleotide sequences has proved challenging and so relatively little is 

known about its base-pairing preferences. Suzuki et al. sought to establish the 

miscoding potential of 8-nitroguanine by preparing an oligodeoxynucleotide strand 

containing one 8-nitroguanine adduct.75 The adduct was prepared photochemically 

and the oligo strand was then used as a template in primer extension reactions to 

investigate whether polymerisation would extend past the lesion and if so, 

determine what deoxyribonucleotide was incorporated opposite.75 Four different 

mammalian polymerases, α, β, η, and κΔC were tested. It was found that when 

polymerases α and β catalysed the reaction, the majority of syntheses were 

retarded opposite the lesion or in some cases one base prior.75 When synthesis was 

able to extend past the lesion, cytosine was preferentially incorporated, but pairing 

with adenine was also observed.75 For η and κΔC polymerases, primer extension 

reactions were extended past the 8-nitroguanine lesion, but broad miscoding 

specificity and high miscoding frequency were observed.75 The results showed that 

whilst both polymerases were able to incorporate the correct base cytosine opposite 

the lesion, a significant amount of misincorporation also took place. Primer 

extension reactions using polymerase η showed adenine was incorporated opposite 

the lesion with almost the same probability as the correct base cytosine and 

polymerase κΔC actually displayed a preference for incorporation of adenine across 

from 8-nitroguanine.75 The results obtained from this study show the mutagenic 

nature of 8-nitroguanine as they suggest the lesion displays a preference for base-

pairing with adenine which would again induce a G→T transversion. However, when 

considering the results of this study it should be noted that the template-primer 

system used in the experiments readily releases 8-nitroguanine to leave abasic 

sites. As discussed, abasic sites show a preferences for pairing with adenine so it is 
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possible that the polymerases were pairing adenine with an abasic site although the 

authors do state that observed depurination was minimal (less than 0.8%).75 

A further study by Bhamra et al. carried out similar primer extension experiments, 

but rather than use 8-nitrodeoxyguanosine in the oligodeoxynucleotide, the more 

stable RNA analogue, 8-nitro-2’-O-methylguanosine, was used instead.84 The use of 

8-nitro-2’-O-methylguanosine rather than the natural lesion was rationalised as its 

glycosidic bond is more stable due to the 2’-OMe group which helps to minimise 

depurination and it is more readily incorporated into oligodeoxynucleotides by 

conventional chemical methods.84 For the primer extension reactions in this study, 

two polymerases were used. The polymerase AMV-RT was chosen as it is known to 

extend past 2’-OMe groups and DNA polymerase β was also investigated to allow 

for a direct comparison to the results of Suzuki.84 The results obtained showed that 

both polymerases stalled significantly when they reached the 8-nitro lesion.84 The 

AMV-RT polymerase showed a preference for incorporating the correct base 

cytosine across from the lesion, but the results using polymerase β were more in 

agreement with Suzuki’s findings of 8-nitroguanosine displaying a base-pairing 

preference for adenosine.75,84 Polymerase β in Bhamra’s study showed a preference 

for incorporation of adenine opposite the lesion, although in a different quantitative 

ratio to that reported by Suzuki for polymerase β.75,84 Possible reasons for the 

difference in observed ratios could be due to the use of two different 8-nitro 

analogues and the use of different pH’s by the two different research groups. 

Bhamra et al. also carried out some thermal melting studies to try and determine 

what nucleotide formed the most stable pairing opposite 8-nitroguanine.84 They 

again used 8-nitro-2’-O-methylguanosine as a model compound for their study. 

They found the most stable pairing to be 8-nitro-G•G.84 The thermal melting 

temperature (Tm) was found to be significantly lower for the 8-nitro-G•C pair 

compared to the control G•C pair.84 The introduction of the nitro group was also 

found to destabilise the G•T pair, but had no effect on the G•A pair.84 NMR studies 

determined that the presence of the nitro group at C-8 induces a change in 

conformation about the glycosidic bond from anti to syn.84 This means that in the 8-

nitroguanine lesion, it is the Hoogsteen face rather than the Watson-Crick face that 

takes part in hydrogen bonding. The Hoogsteen face forms only two hydrogen 

bonds to an opposite nucleotide which helps to explain why the 8-nitro-G•C pair is 

less stable than the G•C pair which forms three Watson-Crick hydrogen bonds. 

Despite the finding that the 8-nitro-G•G pair is the most stable, the polymerase 

study indicated that adenosine was preferentially added opposite the lesion.84 This 
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is thought to be because the syn-8-nitroG•G pair is a poor genetic match for the 

natural Watson-Crick pairing and so the polymerases select against it. Further work 

on the subject is required to determine why exactly adenosine seems to be the 

nucleobase of choice incorporated opposite the lesion. 

2.3 DNA repair 

DNA repair and the mechanisms by which it takes places are areas of nucleic acid 

chemistry that have been extensively researched and continue to be of great 

interest. A full discussion on the topic goes beyond the scope of the work carried out 

in this thesis, but the following section gives an overview of some of the main 

mechanisms of repair. 

2.3.1 Excision repair 

It has been estimated that ~105 DNA lesions occur in a human cell per day and so it 

is of the upmost importance that repair pathways exist in order to maintain the 

genome integrity.85 Several different DNA repair mechanisms are known to exist, 

with some acting on specific lesions whereas others are able to act on and repair a 

wider, more general range.  

One of the most important mechanisms of DNA repair is excision repair. There are 

two main types of excision repair known as base excision (BER) and nucleotide 

excision (NER). In BER, a single damaged nucleobase is repaired whereas NER 

acts on bulkier lesions which are often formed by radiation and chemical 

exposure.86 BER utilises a DNA glycosylase to act on the damaged base by 

cleaving the glycosidic bond to leave an abasic site.87 Various DNA glycosylases 

are known to exist that can recognise lesions caused by damage such as 

deamination, methylation and oxidation.87 Glycosylases can either be 

monofunctional or bifunctional. Monofunctional glycosylases act simply by cleaving 

the glycosidic bond of a lesion whereas bifunctional glycosylases can carry out AP 

lyase activity as well.85 Following removal of the damaged base, an AP 

endonuclease then creates an incision in the sugar-phosphate backbone at the 

abasic site, unless, one has already been made by a bifunctional glycosylase.86,87 At 

this stage, BER can either carry out a short patch repair or a long patch repair. In 

short patch repair, the abasic sugar is then removed by a DNA polymerase, typically 

polymerase β, which concurrently fills in the gap, followed by ligation of the nick in 

the DNA strand by a ligase.86,87 In long patch repair, following incision by an AP 

endonuclease, DNA polymerase δ/ε acts with a clamp loading factor and 
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processivity factor to produce a flap of nucleotides, typically 2-10 nucleotides 

long.85,86 This flap is then removed using an endonuclease and polymerase δ/ε 

synthesises a new strand which can then be ligated with DNA ligase.86,87  

NER typically repairs lesions that induce helical distortions in the DNA structure, 

such as UV-induced dimer lesions, although it is known to have a broad substrate 

acceptability.85,88 It is a highly conserved process, known to be used by both 

prokaryotes and eukaryotes.88 NER in eukaryotes requires a combination of more 

complex enzymes and repair factors than is required for NER in prokaryotes, but 

overall the general principal is very similar.88 It primarily involves (i) recognition of 

the damaged site, (ii) dual incisions that bracket the lesion and form a 24-32 

nucleotide oligomer in eukaryotes or a 12-13 nucleotide oligomer in prokaryotes, (iii) 

removal of the lesion-containing oligomer, (iv) gap-filling synthesis and finally 

ligation to restore the DNA strand.85,86,88  

Base-mismatch repair (MMR) is another mechanism of correcting damage to DNA 

and broadly falls into the category of an excision-type repair. MMR primarily looks 

for and repairs base-base mismatches and nucleotide insertions/deletions that 

occur during DNA replication.89,90 It is a highly conserved process and much of the 

current understanding of the way MMR works in man is derived from studies on 

Escherichia coli.91 For MMR to be carried out successfully, it must first recognise the 

mismatched pair and then direct the repair proteins to the misincorported base on 

the daughter strand.92 MMR is thus strand specific as it carries out repairs on the 

daughter strand rather than the template strand of DNA synthesis.92 E. coli uses 

three key proteins known as MutS, MutL and MutH to carry out MMR, each of which 

has a human homolog.89,92 MutS and MutL are required to recognise the mismatch 

and MutH functions as an endonuclease that creates the incision that acts as a 

starting point for excision of the mismatched base.89,90 A helicase is then used to 

unwind the DNA from the nick site past the mismatch followed by digestion of the 

error-containing unwound daughter strand by an exonuclease.91 Like BER and 

NER, MMR also requires a DNA polymerase to then fill in the gap and finally a 

ligase to seal the nick.89 

2.3.2 Direct repair 

Relatively few DNA lesions are known to be repaired by direct chemical reversal, 

but the repair of O6-alkylguanine lesions and the repair of UV-induced pyrimidine 

dimer lesions are two examples. Pyrimidine dimers are repaired directly in bacteria 

using the process of photoreactivation catalysed by a photolyase.93 Photolyases 
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contain two non-covalently bound chromophore cofactors that are essential to their 

catalytic ability.93 The cofactor FAD is present in all photolyases whereas the other 

cofactor is either methenyltetrahydrofolate (MTHF) or 8-hydroxy-7,8-didemethyl-5-

deazariboflavin (8-HDF) depending on the class of enzyme.93 The mechanism of 

action first requires the enzyme to recognise the dimer lesion and bind to it. 

Exposure to blue light is then required for activation as absorption of a blue light 

photon by either MTHF or 8-HDF is essential for providing the energy required for 

the process.93 The excitation energy absorbed from the blue photon is then passed 

to the flavin cofactor which transfers an electron to the pyrimidine dimer to form a 

radical.93 This dimer radical is highly unstable and so decays quickly, splitting to 

form the two original pyrimidines while concomitantly transferring an electron back 

to the flavin cofactor so it can regenerate.93 This process cannot take place in 

humans as photolyase is no longer functioning in man and so UV-induced dimer 

lesions are repaired as mentioned previously by NER. 

O6-Alkylguanine lesions are considered mutagenic as the presence of the alkyl 

group on the nucleobase can result in mispairing of the lesion with thymine and thus 

a transition of G→A can occur.94 Repair of the lesion takes place by means of a 

direct chemical reversal mediated by the enzyme O6-alkylguanine-DNA alkyl-

transferase (AGT).95,96 The enzyme acts sacrificially as once it carries out the 

dealkylation, it cannot be regenerated.94,97 The enzyme contains a highly conserved 

amino acid sequence consisting of Pro-Cys-His-Arg which is responsible for 

carrying out the catalysis.95 The SH group of the Cys residue acts as an alkyl 

acceptor by carrying out an SN2 displacement of the alkyl group as shown in Figure 

15.95 The S-alkylcysteine that forms then renders the enzyme inactive which is why 

it is said to act sacrificially. The enzyme most commonly carries out demethylation 

reactions on O6-methylguanine, but it has also been found to dealkylate ethyl-, 2-

hydroxyethyl- and 2-chloroethyl guanines.95 

 

Figure 15 Cartoon showing repair of alkylated guanine by AGT. 
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It is assumed that 8-nitroguanine lesions are repaired via one of the excision repair 

mechanisms given that they readily depurinate to form abasic sites which can be 

detected by these methods. As the lesion has a relatively short half-life and is prone 

to depurination, it is possible that the 8-nitroguanine remains undetected until an 

abasic site forms and the abasic site is what is repaired. However, repair of the 

lesion by direct chemical reversal is an attractive possibility as it would directly 

regenerate guanine from the lesion. 

2.4 Reductive denitration 

Reduction of a nitro group typically yields an amine. Indeed, when 8-nitroguanosine 

has been exposed to classical reducing agents such as zinc-HCl and sodium 

hydrosulfite, the expected 8-aminoguanosine has been found to form.81,98 The 

formation of 8-aminoguanosine was also observed when Chen et al. carried out an 

enzymatic reduction on 8-nitroguanine using lipoyl dehydrogenase with NADPH as 

a cofactor.99 Nevertheless, the work carried out in this thesis sought to investigate 

the feasibility of converting 8-nitroguanosine directly back to guanosine as this could 

suggest a potential repair mechanism for the lesion. 

The previous enzymatic work carried out by Chen made mention of only 8-

aminoguanosine forming in the reduction by lipoyl dehydrogenase.99 However, the 

discovery that a deazaflavin-dependent nitroreductase (Ddn) enzyme can carry out 

a reductive denitration on a nitroimidazole compound prompted the thought that a 

related enzyme capable of binding to DNA could carry out a similar reaction on the 

8-nitroguanine lesion.100 The reductive denitration of the nitroimidazole compound 

was reported by Singh et al. whilst investigating new treatments for tuberculosis.100 

The postulated mechanism of action is believed to proceed through hydride transfer 

from the enzyme to the nitroimidazole ring followed by protonation and finally 

elimination of nitrous acid, as shown in Figure 16.100 

The overall reaction is a denitration in which NO2 is replaced by H and it was 

hypothesised that a similar reaction on the 8-nitroguanine lesion in DNA could 

convert it back to guanosine. If a hydride equivalent could be delivered to the C-8 

position, then an addition-elimination reaction could take place that would expel the 

nitro group. 
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Figure 16 Suggested mechanism for the reductive denitration of a nitroimidazole by a deazaflavin-dependent 
nitroreductase (Ddn). The R group of the nitroimidazole refers to a number of p-(trifluoromethoxy)benzene 
derivatives.100 

In terms of carrying out a reductive denitration, there is literature precedent to show 

sodium borohydride carrying out the reaction on both heterocyclic systems and 

polysubstituted nitro aromatic compounds. Work by Kaplan found that when 1,3,5-

trichloro-2,4,6-trinitrobenzene 1 was exposed to sodium borohydride under alkaline 

conditions, a reduction took place that produced 1,3,5-trichloro-2,4-dinitrobenzene 2 

as the only isolable product rather than any reduction products.101 Further reduction 

of 2 with sodium borohydride resulted in the substitution of another nitro group with 

hydride as shown in Scheme 2.101 Further work in this area has determined that the 

products formed from reaction of poly-substituted nitro aromatic compounds with 

NaBH4 is strongly influenced by the precise substrate and reaction conditions, but 

these results indicate the reaction is possible.102 

 

 

Scheme 2 Reductive denitration of a polysubstituted nitro aromatic compound using NaBH4.101 

A study by Blinnikov and Makhova found that a nitro substituent in a furoxan 

derivative 4 was replaced by hydride using NaBH4.103 The initial aim of their work 

was to produce a nitro alcohol through reduction of a nitro ester, but they 
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unexpectedly found that a reductive denitration occurred instead, as shown in 

Scheme 3.103 

 

Scheme 3 Reductive denitration of heterocyclic system.103 

Again, the results of this work show displacement of a nitro group with hydride is 

possible and so this project aimed to investigate whether a similar reaction was 

feasible using a nitro nucleoside as a substrate. 

2.5 Project aims 

The DNA lesion 8-nitroguanine is known to form at sites of chronic inflammation and 

is strongly associated with mutagenic and carcinogenic events that occur at these 

sites. It is currently unknown whether the lesion is repaired by its own specific DNA 

repair pathway, but given its propensity to depurinate, it is likely it is more generally 

recognised and repaired via an excision repair mechanism. The purpose of this 

work was to investigate the possibility of carrying out a direct repair on the lesion. 

More specifically, this project sought to investigate the chemical feasibility of using a 

hydride source to carry out a reductive denitration reaction on 8-nitroguanosine that 

would covert it directly back to guanosine and therefore suggest that a direct repair 

of the lesion was possible by an enzyme able to deliver a hydride equivalent. 

 

Figure 17 Hypothesised direct repair of 8-nitroguanosine by a hydride source or equivalent. 
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Chapter 2 Results and discussion 1 

2.6 Synthesis of 8-nitroguanosine 

Before investigations into the feasibility of carrying out a reductive denitration on 8-

nitroguanosine could begin, the compound itself first had to be synthesised. A 

synthetic route to 8-nitroguanosine was published by Saito et al. in 2008 and has 

been more widely used.84,104 This route was therefore adopted for use in this project. 

Scheme 4 outlines the route and the following section will discuss each step in more 

detail. 

 

Scheme 4 Synthetic route to 8-nitroguanosine. 

As can be seen from Scheme 4, it was decided to use the ribonucleoside form of 

guanosine as the starting material as the presence of the extra hydroxyl group at 
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the 2’ position helps add stability, making depurination following nitration less likely 

to occur. This hydroxyl group, along with the hydroxyls at C-3’ and C-5’ require 

protection to stop them from participating in any unwanted side reactions. The first 

step of the synthesis therefore was protection of the three hydroxyl groups of the 

sugar ring using the acetyl protecting group. The acetyl protecting group was 

chosen as it is removed under basic conditions and it is electron withdrawing. These 

properties help to reduce depurination as they minimise exposure to acid later in the 

synthesis and the electron withdrawing nature of acetyl groups makes formation of 

an oxonium ion less favourable. 

Reaction of guanosine with acetic anhydride in the presence of triethylamine with 

DMAP as a catalyst produced the desired tri-O-acetyl nucleoside in 87% yield. The 

DMAP increases the rate of reaction by acting as a nucleophilic catalyst and the 

triethylamine helps to neutralise the acetic acid that forms as a by-product. The 

formation of the acetylated product 8 was confirmed by 1H NMR which showed 

three singlets at 2.03, 2.04 and 2.11 ppm corresponding to the incorporation of the 

three CH3 groups from the acetyls. 

The next step of the synthesis was an electrophilic bromination reaction at the C-8 

position. Insertion of bromine at this position is required so that it can be displaced 

by nitrite in the key step of the synthesis. The bromination was carried out by 

treating tri-O-acetylguanosine 8 with aliquots of bromine water which produced the 

desired product 9 in 76% yield. This reaction is somewhat unusual in that both the 

starting material and product are insoluble in the reaction media. Nevertheless, 

formation of the product was confirmed by mass spectrometry which showed the 

characteristic isotope pattern for incorporation of a bromine atom. In addition, the 1H 

NMR lacked the peak for H-8 that was present in the starting material at 7.93 ppm 

which indicated successful incorporation of bromine at the correct position. 

Protection of the exocyclic amine of the nucleobase was then required as, like the 

hydroxyl groups of the sugar, it has the potential to take part in unwanted side 

reactions. The dimethoxytrityl (DMTr) protecting group was chosen for this purpose 

because, as mentioned previously, compound 9 is fairly insoluble and so 

introduction of the DMTr group helps to increase the solubility of the nucleoside. 

Reaction of compound 9 with DMTCl in anhydrous pyridine afforded the fully 

protected nucleoside 10 in 83% yield. Confirmation the desired product had been 

successfully isolated was provided by 1H NMR which indicated the presence of the 

DMTr aromatic protons at 6.83-7.30 ppm. 
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For the critical nitration step, compound 10 was reacted with KNO2 in DMF at 100 

oC in the presence of 18-crown-6. The high temperature for the reaction was 

required in order to solubilise the KNO2. The 18-crown-6 makes the NO2
- anion 

more nucleophilic as it acts as a chelating agent for the potassium cation, for which 

it has a particular affinity. However, the yield of nitrated product 11 obtained was 

disappointingly low (14%) and not in agreement with the 60% yield reported by 

Saito et al. using the same conditions.104 Similarly low yields have also been found 

for this reaction previously within our research group and a great amount of effort 

has gone into trying to improve the reaction conditions. Unfortunately, the exact 

mechanism by which the nitration takes place under laboratory conditions is 

unknown which makes it difficult to know how best to optimise the reaction. It has 

been postulated that the nitration with KNO2 could proceed via an addition-

elimination type mechanism, as illustrated in Figure 18, but so far this could not be 

proven. 

 

Figure 18 Formation of 8-nitroguanosine via an addition-elimination mechanism. 

As discussed in the introduction, it is thought that in vivo, the reaction between 

guanosine and peroxynitrite and its decomposition products proceeds via a radical 

pathway. Previous work within the group investigated whether the reaction with 

KNO2 could potentially proceed in a similar fashion by adding the radical initiator 

azobisisobutyronitrile (AIBN). However, it was found that this had no overall effect 

on the reaction rate or yield implying the reaction was unlikely to involve radical 

species. 

Other previous attempts to increase the yield of nitration include; varying the 

reaction concentration, varying the reaction solvent, altering the amounts of 

reagents used, changing the halogen at C-8 and use of silver (I) salts to sequester 
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the displaced halogen. All had little or no effect on increasing the yield to those 

stated in the literature.  

Due to the consistently low yields of ~15% obtained in this project, several further 

attempts were made to improve the yield. These included; investigating the need for 

anhydrous conditions, using a different source of nitrite and the use of a copper 

catalyst. Addition of a known amount of water to the reaction resulted in no product 

formation which indicates anhydrous conditions are required. Upon changing the 

source of nitrite from KNO2 to n-Bu4NNO2, again, no product formation was 

observed, although n-Bu4NNO2 was found to be much more soluble in DMF than 

KNO2. A paper by Koizumi et al. reported that aromatic halides could be nitrated in 

good yield using a copper catalyst, amine ligand and n-Bu4NNO2, as shown in 

Scheme 5.105 However, when these conditions were tried using compound 10 as a 

starting material no nitro product was formed. 

 

Scheme 5 Nitration of an aromatic halide.105 

As the main aim of the project was to investigate the reductive denitration of 8-

nitroguanosine, it was decided at this point to continue with the original conditions 

reported by Saito as no progress was being made in optimising the reaction. Saito’s 

reaction conditions allow for recovery of a significant proportion of unreacted 

starting material (~60%) which can be recycled in further reactions. So, despite the 

disappointing yields, enough nitrated product 11 was able to be synthesised and 

taken forward to the next step. 

Formation of the nitrated product 11 was observed through monitoring of the 

reaction by reverse phase high performance liquid chromatography (RP-HPLC). 

Once nitrated, the nucleoside possesses a distinctive UV absorption at ~400 nm 

that is not present in the starting material and so provides an effective method for 

identifying product formation. Following purification by column chromatography, 

successful isolation of the desired product 11 was confirmed by mass spectrometry. 

An accurate mass, showing only one isotope, was obtained that was consistent with 

a mass corresponding to that of the desired nitro compound. 



Chapter 2  Results and discussion 1 

34 
 

The final stage of the synthesis was removal of the protecting groups. As the two 

different protecting groups employed are removed under different conditions, an 

orthogonal deprotection strategy was required. The DMTr group requires acidic 

conditions to be removed which can promote depurination in the nitrated 

nucleoside. It was therefore decided to deprotect the exocyclic amine first whilst the 

electron withdrawing acetyl groups were still in place to offer some stabilisation to 

the glycosidic bond. Removal of the DMTr group was achieved by adding pTsOH to 

a solution of compound 11 in CHCl3/MeOH. Following removal of the solvent and 

trituration, the DMTr deprotected nucleoside was carried through to the next step 

without further purification. The acetyl groups were then removed using methanolic 

ammonia. These conditions are typical for removal of acetyl protecting groups and 

are ideal for use with nucleosides as they do not cause any significant 

decomposition. Upon completion of the deprotection, the nucleoside was triturated 

to remove any acetamide that formed as a by-product. Over the course of the two 

deprotection steps, 8-nitroguanosine 13 was obtained in a 54% yield. Spectroscopic 

evidence for its formation was provided by 1H NMR which lacked the aromatic 

signals of the DMTr group and the three CH3 signals of the acetyl groups showing 

they had been successfully removed. 

2.7 Reductive denitration of 8-nitroguanosine 

Once 8-nitroguanosine had been synthesised, investigations into reductively 

denitrating it began. It was decided to test out the reaction using NaBH4 as the 

hydride source. As discussed in the introduction, NaBH4 has previously been utilised 

to successfully carry out reductive denitration reactions.101,103 Although it is not a 

compound that would be found in vivo, it was thought it would be a good starting 

point for assessing whether reduction of 8-nitroguanosine to guanosine by a hydride 

equivalent is chemically feasible. There are several enzymes known to be capable 

of delivering a hydride equivalent, an example being the deazaflavin-dependent 

nitroreductase discussed earlier.100 It was therefore thought that if it could be shown 

that 8-nitroguanosine could be reductively denitrated with NaBH4, then a similar 

process could be envisioned in vivo using an enzyme capable of delivering a 

hydride equivalent. 

Scheme 6 summarises the hypothesised reductive denitration reaction and the 

potential products it could form. 
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Scheme 6 a) Hypothesised reductive denitration reaction of 8-nitroguanosine b) Mechanism showing how attack 
of hydride at C-8 could result in loss of nitro group. 

The reduction reactions were carried out on a relatively small scale, due in part to 

the difficulties associated with bringing through large quantities of 8-nitroguanosine. 

Initially, it was decided to carry out the reductive denitration reactions under 

aqueous conditions using 0.1 M triethylammonium bicarbonate (TEAB) solution. 

The reasoning behind this decision was that the aqueous conditions would make 

the study more biologically relevant and the slightly basic pH (~pH 8) of the TEAB 

solution would help to reduce any depurination occurring, although it is not possible 

to stop this happening altogether. A large excess of NaBH4 (50 eqv.) was added at 

regular intervals over the course of the reactions (every 30 minutes for 90 minutes) 

to compensate for hydrolysis under the aqueous conditions. RP-HPLC was used to 

monitor the reactions using a gradient of MeCN in TEAB (0.1 M) which had 

previously been shown to be an effective eluent for separating mixtures of 

nucleosides. Figure 19 shows two RP-HPLC traces recorded under these 

conditions. 

The results obtained were promising as they showed 8-nitroguanosine (retention 

time=11.56 min) being consumed in the reaction with the appearance of a new peak 

in the chromatogram for the reduced product (retention time=8.80 min). 8-
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Nitroguanosine was readily identified in the chromatograms due its distinctive 

absorbance at ~400 nm. As can be seen from the traces, despite best efforts to 

minimise depurination, some trace impurities were present. The new peak forming 

over the course of the reaction did not absorb at 400 nm implying it was a denitrated 

product. However, it was not clear from the RP-HPLC data whether the product 

forming was guanosine via a reductive denitration or whether it was 8-

aminoguanosine via simple reduction. A series of coinjections of the reaction 

mixture with standard samples of guanosine and 8-aminoguanosine proved 

inconclusive, as under these eluent conditions, guanosine and 8-aminoguanosine 

were found to both elute at very similar retention times. Efforts to isolate the product 

formed in the reactions so an NMR spectrum could be recorded were unsuccessful 

as they had not been carried out on a large enough scale to obtain sufficient 

material for a good NMR sample. 

 

 

Figure 19 Reduction of 8-nitroguanosine in 0.1 M TEAB with NaBH4. Top: HPLC trace at time 0. Bottom: HPLC 
trace at time 90 minutes. Both recorded on a reverse-phase C18 column with an elution gradient of MeCN in 
TEAB (0.1 M). Chromatograms recorded at 254 nm using HPLC Method 1 (p 116). 
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Therefore, a change in the RP-HPLC eluents was required in order to find a suitable 

system that would give a good separation between the two potential products of the 

reaction. At this stage of the project, an opportunity to use a HPLC-MS system 

through a collaboration with The MicroBioRefinery at The University of Liverpool 

arose. So, in addition to wanting to find a better resolving eluent system for 

separation of the reductive denitration reaction mixture, a move towards conditions 

that would be compatible with HPLC-MS was also required. 

A gradient of MeCN in 0.1% AcOH in water was found to give excellent separation 

between the two potential products of the reactions, guanosine and 8-

aminoguanosine, and so was used to monitor all subsequent reactions. These 

eluent conditions were also ideal for use with HPLC-MS systems as the AcOH and 

MeCN are volatile enough not to cause issues in the spectra obtained from the MS 

system.  It was also decided at this point to carry out the reduction reactions in 

distilled water rather than 0.1 M TEAB, as the presence of triethylammonium cations 

from TEAB tend to dominate the mass spectra obtained from the HPLC-MS. Figure 

20 shows a series of 3 chromatograms recorded using the optimised conditions. 

 

Figure 20 Reduction of 8-nitroguanosine in water with NaBH4. All three traces were recorded using a reverse-
phase C-18 column and an elution gradient of 0.1% AcOH in water/MeCN. Chromatograms recorded at 254 nm 
using HPLC Method 2 (p 117). 

The chromatograms show that addition of NaBH4 to 8-nitroguanosine in water 

causes a slow reduction to occur that produces 8-aminoguanosine as the major 

product in addition to a small amount (8-10%) of guanosine. The identity of both 
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guanosine and 8-aminoguanosine was confirmed with the aid of HPLC-MS. Table 3 

shows the masses obtained for all the peaks.  

Table 3 Reduction products identified using HPLC-MS with both their calculated and found masses. 

Compound Calculated mass for [M-H]- Mass found for [M-H]- 

8-Nitroguanosine 13 327.0695 327.0685 

8-Aminoguanosine 16 297.0953 297.0943 

8-Nitroguanine 195.0272 195.0265 

Guanosine 7 282.0844 282.0827 

Compound 17 - 280.0672 

 

Interestingly, the chromatograms show that the small amount of nitrated base, 8-

nitroguanine, present in the starting material due to depurination, persists 

throughout the reaction and shows no sign of reducing to either 8-aminoguanine or 

guanine. 

As can be seen in the chromatograms in Figure 20 and the mass data in Table 3, in 

addition to the two reduction products, a third product labelled 17 was found to form 

(~20%). Using the accurate mass data obtained from its peak in the chromatogram 

it is believed compound 17 is 8,5’-O-cycloguanosine (Figure 21). 

 

Figure 21 Structure of 8,5’-O-cycloguanosine with its measured and calculated masses for the [M-H]- ion (top). 
Proposed mechanism of formation of 8,5’-O-cycloguanosine (bottom). 
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Over the course of the reaction, the pH rises as the NaBH4 is hydrolysed. Given that 

the nitro functionality is known to be a very good leaving group, particularly with thiol 

nucleophiles, it is believed that the 5’-OH carries out a displacement of the nitro 

group facilitated by the basic pH leading to compound 17, as shown in Figure 

21.106,107 

Efforts were made to synthesise a standard sample of 8,5’-O-cycloguanosine so 

that a coinjection with the reaction mixture could be run to confirm that it is 

compound 17. Scheme 7 shows the planned synthetic route which involves using 

cyclisation conditions originally reported by Ikehara.108 

 

Scheme 7 Planned synthetic route to 8,5’-O-cycloguanosine. 

However, several attempts to perform the cyclisation using NaH in DMF failed. 

Despite the lack of a standard compound, the literature precedent for this type of 

cyclisation combined with the accurate mass for compound 17 was considered solid 

evidence that compound 17 was 8,5’-O-cycloguanosine. In addition, it is not a 

compound that would readily form in vivo, as the 5’-OH that is thought to displace 

the nitro moiety forming compound 17 would not be free to react as it is bonded to 

the next nucleotide forming the sugar phosphate backbone. 
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2.8 Control reactions 

In order to confirm the products formed during the reductive denitration reactions 

were due to the reducing agent being added, a series of control reactions were 

carried out. Table 4 summarises the control reactions performed and their 

outcomes. 

Table 4 Summary of control reactions carried out, showing the outcome of the reaction and the reason why it 
was performed. 

Control conditions Reason Outcome 

8-NO2-rG dissolved in distilled 

water, sodium dithionite 

added. 

To produce a standard sample 

of 8-NH2-rG using a known 

reduction method. 

HPLC showed only one peak 

for 8-NH2-rG following 

reduction. 

8-NO2-rG dissolved in 0.1 M 

TEAB, no NaBH4 added. 

To rule out reduction products 

forming due to some sort of 

hydrolysis. 

After 24 hours, HPLC showed 

no formation of 8-NH2-rG, 

guanosine or compound 17. 

8-NO2-rG dissolved in distilled 

water, no NaBH4 added. 

To rule out reduction products 

forming due to some sort of 

hydrolysis. 

After 24 hours, HPLC showed 

no formation of 8-NH2-rG, 

guanosine or compound 17. A 

slight increase in the amount of 

8-nitroguanine was observed. 

8-NH2-rG dissolved in 0.1 M 

TEAB, NaBH4 (50 eqv.) 

added every 30 mins for 90 

mins. 

To determine whether the 

guanosine forming was coming 

from 8-NO2-rG or breakdown of 

8-NH2-rG. 

After 24 hours, HPLC showed 

presence of only 8-NH2-rG. 

8-NH2-rG dissolved in distilled 

water, NaBH4 (50 eqv.) added 

every 30 mins for 90 mins. 

To determine whether the 

guanosine forming was coming 

from 8-NO2-rG or breakdown of 

8-NH2-rG. 

After 24 hours, HPLC showed 

presence of only 8-NH2-rG. 

8-NH2-rG dissolved in distilled 

water, no NaBH4 added. 

To determine whether the 

guanosine forming was coming 

from 8-NO2-G or breakdown of 

8-NH2-rG. 

After 24 hours, HPLC showed 

presence of only 8-NH2-rG. 

 

The results of the control reactions indicate that the observed products formed 

during the reductive denitration reactions because of the NaBH4 added. To further 

confirm the results a deuterium study was carried out. 

2.9 Deuterium study 

A deuterium study was carried out in order to prove that the guanosine forming over 

the course of the reductive denitration reactions was being produced as a result of 

the hydride delivering reducing agent being added.  
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Analogous reactions to those performed previously were carried out in which 8-

nitroguanosine was dissolved in distilled water and then 50 equivalents of reducing 

agent was added every 30 minutes for 90 minutes. The only difference in reaction 

conditions to those performed previously was the substitution of NaBH4 for NaBD4. 

HPLC was again used to monitor the reactions and pleasingly identical 

chromatograms were observed to those obtained for reaction with NaBH4. 8-

Aminoguanosine, guanosine and compound 17 were all found to form following 

reaction of 8-nitroguanosine with NaBD4. 

Analysis by HPLC-MS showed the guanosine peak to have the correct mass for 

incorporation of one deuterium atom (Scheme 8). This proved that the guanosine 

forming over the course of the reaction was due to the action of the reducing agent 

being added.  

 

Scheme 8 Reduction to form 8-deuteroguanosine. Deuterium incorporation identified using HPLC-MS. Both its 
calculated and measured masses for the [M-H]- ion are shown. 

As expected, the mass obtained for the peak corresponding to 8-aminoguanosine 

showed no inclusion of deuterium as any incorporated during the reduction reaction 

would be exchanged through protonation by the solvent water. This exchange 

cannot take place in the case of guanosine as the proton/deuteron on C-8 is not 

labile. 

2.10 Change of reaction conditions  

In an attempt to increase the proportion of guanosine formed, the reaction was 

investigated under a variety of conditions. Aqueous buffered solutions between pH 

6-9 were prepared (Table 5) and the reduction reactions were carried out as before 

to see if any increase in the proportion of guanosine could be observed. 
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Table 5 Table to show pH of aqueous buffers used in the reductive denitration reactions. 

pH required Aqueous solution used 

6 0.1 M Ammonium acetate adjusted to pH 6 

7 Distilled water 

8 0.1 M TEAB 

9 0.1 M Ammonium acetate adjusted to pH 9 

 

All of the reactions at the four different pH’s were monitored by HPLC, with the pH 7 

reaction acting as a control as the reaction media (distilled water) was the same as 

used previously. However, very little difference in product distribution at pH’s 6, 8 

and 9 were observed compared to that obtained in water. The only real difference 

observed between the reactions was that at pH 6 the reduction appeared to 

progress slightly faster. The fact that all the aqueous reduction reactions started at 

different pH’s gave essentially the same product distribution can be rationalised by 

considering their finishing pH. The large excess of borohydride added regularly over 

the course of the reaction raises the pH as it is hydrolysed meaning that all of the 

reactions ended up pH ~9.6 by the end of reaction. 

The slightly milder reducing agent, NaBH3CN was tried in the reaction in place of 

NaBH4 to see whether this had an effect on the product distribution obtained. Initial 

reaction of 8-nitroguanosine with NaBH3CN was carried out in an analogous way to 

the NaBH4 reactions, by adding 50 equivalents every half an hour for 90 minutes to 

a solution of the nucleoside in distilled water. Analysis by HPLC showed that under 

these conditions no reduction took place, even after prolonged stirring, with the only 

change in the chromatograms being an increase in the amount of 8-nitroguanine 

base observed. The reaction with NaBH3CN was then repeated at the slightly acidic 

pH 6, obtained by using 0.1 M ammonium acetate solution adjusted to pH 6. 

NaBH3CN is known to be more activated at lower pH’s and so it was thought that by 

using pH 6, some reduction may be observed. However, HPLC analysis of the 

reaction again showed only starting material indicating that NaBH3CN is too weak a 

reducing agent to carry out the reductive denitration. Due to the potential for 

depurination to occur more readily under acidic conditions, no pH lower than 6 was 

investigated. 

Work carried out by Lamson et al. on the denitration of polysubstituted nitro 

aromatic compounds suggests that the reaction occurs quicker in DMSO than in 

protic solvents.102 However, when DMSO was used in favour of distilled water for 

the reaction in this project, denitration was found to occur either extremely slowly or 
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not at all. An initial reaction found that after addition of NaBH4 and a further week of 

stirring no 8-aminoguanosine or guanosine had formed at all. The only product 

observed was a trace amount of the cyclisation product 17. A second attempt at the 

reaction in DMSO was heated to 50 oC and left to stir for even longer (10 days). 

HPLC analysis of this reaction showed a small a peak for 8-aminoguanosine and a 

larger peak for compound 17. It is believed that as the 8-nitroguanosine starting 

material is not being reduced to either 8-aminoguanosine or guanosine in DMSO as 

quickly as it does in aqueous conditions, then the competing reaction of 

displacement by the 5’-OH group can occur more, producing compound 17. 

2.11 Conclusions 

The results of this study show that whilst the major product that forms in the 

reductive denitration of 8-nitroguanosine is 8-aminoguanosine, a small proportion of 

guanosine does also form. Although efforts to increase the proportion of guanosine 

formed have so far been unsuccessful, its formation by displacement of the nitro 

group by a hydride equivalent, in aqueous solution, does clearly show that a direct 

repair of 8-nitroguanosine is a chemically feasible reaction. Control reactions and a 

deuterium study have proven that the origin of the guanosine formed is from the 8-

nitroguanosine starting material used in the reactions and not from breakdown of 8-

aminoguanosine or an alternative non-reductive pathway. 

2.12 Future work 

Now that it has been shown that NaBH4 is capable of forming guanosine from 8-

nitroguanosine, albeit it in a small amount, it would be interesting to see what other 

hydride delivering agents can perform the transformation. A move towards 

investigation of more biologically relevant hydride sources would be favourable. Of 

the highest priority, would be investigations into whether an enzyme similar to Ddn 

could also convert 8-nitroguanosine to guanosine. Ddn is dependent on a flavin 

derivative to function and so studies into the synthesis of flavin related molecules 

would also be an interesting line of enquiry. Other sources of physiological hydride, 

such as nicotinamide adenine dinucleotide hydride (NADH), are also of interest to 

this project. NADH is a coenzyme and naturally occurring source of hydride found in 

all living cells. Along with its phosphate ester, NADPH, they take part in a variety of 

cellular redox reactions and processes. Several synthetic analogues of NADH are 

known, with most commonly derived from the nicotinamide moiety as this is what 

acts as the hydride donor, an example of which is shown in Figure 22. Future work 
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would look to see if any NADH or flavin analogues can carry out the reductive 

denitration process.  

 

Figure 22 a) Structure of NADH b) General structure of flavin from which analogues can be derived by altering 
the R group c) Example of an NADH analogue based on the structure of nicotinamide. 
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Chapter 3 Introduction 

3.1 Pyrimidine nucleotide biosynthesis 

There are two routes through which pyrimidine nucleotides can be synthesised, 

namely the de novo pathway and the salvage pathway. The salvage pathway 

makes use of intermediates and by-products from the degradation of nucleic acids 

and recycles them to reform the desired nucleotide.2 In the de novo pathway, the 

nucleotide is synthesised from its constituent starting materials in a series of 

enzyme catalysed reactions, as shown in Scheme 9.2,109 

 

Scheme 9 The de novo pyrimidine biosynthetic pathway. Key enzymes are shown in red. 
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In the first step of the synthesis, glutamine reacts with bicarbonate to produce 

carbamoyl phosphate in a reaction that requires two molecules of ATP and is 

catalysed by carbamoyl phosphate synthetase.109 Aspartate transcarbamoylase 

then catalyses the irreversible formation of carbamoylaspartate in a step that is 

subject to feedback inhibition by the pathways final product, cytidine triphosphate 

(CTP).2 Carbamoylaspartate cyclises with loss of water to give dihydroorotate which 

is dehydrogenated in the next step by dihydroorotate dehydrogenase to produce the 

pyrimidine ring orotate.2,109 5-Phosphoribosyl-1-pyrophosphate (PRPP), a key 

intermediate in the pathway, then reacts with orotate to form orotidine 

monophosphate (OMP).2,109 In this step, there is an inversion of configuration at C-1’ 

which results in the formation of the desired β-glycosidic linkage.2 The final step is 

the decarboxylation of OMP by OMP decarboxylase (ODCase) to produce uridine 

monophosphate (UMP), the nucleotide from which all other pyrimidine nucleotides 

are derived.2,109  

Not only are pyrimidine nucleotides pivotal to life as the monomers that form DNA 

and RNA, they also play an essential role in cell metabolism as metabolic regulators 

and extracellular mediators.110 Most organisms, humans included, use a 

combination of both pathways in order to form the pyrimidine nucleotides they 

require. Certain organisms, however, such as the malaria parasite for example, lack 

the ability to salvage pyrimidine nucleotides and so rely completely on the de novo 

pathway to obtain the pyrimidines that they need.111 This presents the potential to 

target the pyrimidine de novo pathway as a means to combat diseases such as 

malaria. Interestingly, although the malaria parasite is unable to salvage pyrimidine 

nucleotides, it relies solely on the salvage pathway to obtain purines as it lacks the 

ability to form purine rings de novo.112 

If the pyrimidine de novo pathway could be disrupted, then certain disease causing 

organisms would be starved of the pyrimidine nucleotides they need to survive, 

without causing too much damage to human cells which are still able to salvage 

them. Inhibition of one or more of the enzymes that catalyse the pyrimidine de novo 

pathway is one way this could be achieved. Disruption of one of the reactions in the 

pathway would cause an accumulation of intermediates prior to that reaction with 

the knock-on effect of causing a depletion in the subsequent intermediates and 

ultimately a reduction in the amount of nucleotides formed.113 Any imbalance 

capable of causing a shortfall in nucleotide synthesis can lead to mutations, 

miscoding and cell death.113 
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3.2 OMP decarboxylase (ODCase) 

As shown in Scheme 9, ODCase catalyses the final step in the pyrimidine de novo 

pathway resulting in the formation of UMP from OMP. Enzymes earlier in the 

pathway have been extensively investigated, particularly in relation to potential 

cancer treatments although issues with toxicity have arisen.113 Only in relatively 

recent years has there been a renewed interest in ODCase as a therapeutic target, 

due largely to the discovery of the fact that of the six main enzymes that participate 

in the de novo pathway, ODCase has been discovered to be exceptionally 

proficient.114 It has been found to display a rate enhancement of over 17 orders of 

magnitude compared to the corresponding uncatalysed reaction at room 

temperature and neutral pH.114,115 To put this into context, it is estimated that the 

half-time (t½) for the decarboxylation of OMP to occur in the absence of ODCase is 

approximately 78 million years compared to the 18 ms it takes when ODCase is 

present.116 

ODCase is found in the majority of species, from bacteria to parasites to humans, 

with viruses being the only exception currently known.117 Viruses rely on their host 

cells to provide them with the nucleotides they need to replicate. In humans, and 

certain other high-level organisms, ODCase forms part of a bifunctional enzyme 

known as UMP synthase whereas it is a monofunctional enzyme in parasites and 

bacteria.118 

3.2.1 ODCase catalytic mechanism 

The mechanism by which ODCase decarboxylates OMP has been the subject of 

numerous studies, particularly since the enzyme has been found to carry out the 

process without the aid of any metal ions or co-factors making it unique amongst 

decarboxylases.119,120 Through the many studies into the mechanism of 

decarboxylation, much information has been gained about the active site of 

ODCase. The enzyme is known to exist as a dimer and two conserved lysine 

residues and two conserved aspartate residues have been identified as being 

particularly important to its overall catalytic ability.121,122 It has been found that upon 

binding, the C-6 position of OMP and these four residues are in close proximity to 

each other and although the specific decarboxylation mechanism remains unknown, 

several proposals have been put forward.123,124 



Chapter 3  Introduction 

49 
 

 

 

Figure 23 a) Surface structure of ODCase from Methanothermobacter thermautotrophicus (one monomer 
coloured blue, the other coloured orange) b) Close up image of active site of one of the monomers in complex 
with UMP (coloured by atom type, carbon-green, nitrogen-blue, oxygen-red, phosphorus-orange). Images from 
a) and b) were rendered using PyMOL from data deposited in the protein data bank (PDB code: 4NUW).125 

Early work on the decarboxylation mechanism was carried out by Beak and 

Siegel.126 Through studying the way 1,3-dimethylorotic acid is decarboxylated in the 

absence of any enzyme, they postulated that the formation of a zwitterionic 

intermediate leading to a nitrogen ylide is key to the reaction mechanism.126 They 

proposed that protonation occurs at the carbonyl oxygen of C-2 resulting in the 

formation of an intermediate with a positively charged N-1.126 They believed that this 

intermediate would offer stabilisation to the carbanion formed following 

decarboxylation therefore making the process more likely to occur.126 Figure 24 

shows their proposed mechanism. 

This mechanism was later ruled out by Rishavy and Cleland in a paper that showed 

formation of a nitrogen ylide at this position was unlikely to occur.127 They carried 

out a study to investigate the 15N kinetic isotope effect on N-1 and found that during 

the decarboxylation reaction there is no change in bond order that would imply 

formation of a quaternary N-1.127 

 

a) 

b) 
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Figure 24 Proposed mechanism of decarboxylation put forward by Beak and Siegel.126 

An alternative mechanism involving a Michael addition to form a covalently bound 

intermediate which can then undergo a decarboxylative elimination was put forward 

by Silverman and Groziak.128 An active site residue was suggested to perform a 

nucleophilic attack at C-5 creating a trans intermediate species that is then able to 

decarboxylate, eliminating carbon dioxide and the enzymic nucleophile as shown in 

Figure 25.128 Work carried out by Acheson et al. disproved this theory as they were 

able to show there are no secondary deuterium isotope effects at C-5.129 If the 

Michael addition mechanism was correct, a change in geometry from sp2 to sp3 

hybridization would be expected at C-5 upon addition of the enzyme active site 

residue. In order to monitor whether this change in geometry occurs, Acheson et al. 

replaced H-5 with a deuterium atom and monitored the effect on the rate constant 

for decarboxylation.129 They found no observable secondary deuterium isotope 

effects suggesting that the geometry at C-5 does not alter.129 

As mentioned, to date, the exact catalytic mechanism is still not known for certain, 

but there is an increasing amount of evidence that the mechanism proceeds via a 

direct decarboxylation, as shown in Figure 26. Evidence for the viability of the 

different stages of this mechanism has been put forward by several different 

research groups.130-132 There are now over 200 crystal structures of the enzyme 

deposited in the Protein Data Bank (PDB) which in combination with computational 

studies and biochemical assays have helped to determine that transition state 

stabilisation and substrate distortion are the two most significant factors in the rate 

that OMP decarboxylates.118,133-135 
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Figure 25 Michael addition mechanism of decarboxylation proposed by Silverman and Groziak.128 

The direct decarboxylation mechanism is believed to be initiated through distortion 

of the OMP carboxylate moiety caused by repulsive interactions with one of the key 

aspartate residues in the enzyme’s active site.124 This results in a loss of carbon 

dioxide and the formation of a vinyl carbanion intermediate. Stabilisation of the vinyl 

carbanion is believed to be the most important factor in the decarboxylation 

catalysis.136-139 The negative charge is thought to be stabilised by the amino group 

of one of the key lysine residues in the active site. In the final step, the same lysine 

is proposed to transfer a solvent derived proton to the C-6 position thereby 

neutralising the negative charge to form the desired product, UMP. 

 

 

Figure 26 Direct decarboxylation mechanism. 

A similar mechanism has been suggested in which the decarboxylation is postulated 

to occur in a concerted manner as shown in Figure 27.140 In the concerted 

mechanism, the loss of carbon dioxide is proposed to occur simultaneously with 

protonation.140 However, evidence supporting the existence of a vinyl carbanion 

disfavours the concerted mechanism and makes the stepwise mechanism set out in 

the direct decarboxylation theory the more likely route to UMP. 
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Figure 27 Concerted mechanism proposed by Appleby et al.140 

A study by Toth et al. found that when the decarboxylation of OMP by ODCase 

takes place in a mixed H2O/D2O buffer, the H/D isotope ratios of the product UMP 

matches the H/D ratio of the buffer.137,138 The result implies that the rate determining 

step of the reaction does not involve proton transfer making the concerted 

mechanism seem unlikely and lending support to the stepwise decarboxylation 

proceeding through formation of a vinyl carbanion. Further evidence for a vinyl 

carbanion was provided in a study that showed ODCase is capable of catalysing the 

exchange of the C-6 proton of UMP for a deuterium atom from solvent D2O.141 The 

exchange goes via the formation of a vinyl carbanion in a reaction that is the 

reverse of the proton transfer that takes place in the decarboxylation of OMP.141 The 

pKa of the C-6 proton of enzyme bound UMP has been calculated to be ≤22 which is 

around 10 units lower than the C-6 proton of 1,3-dimethyl uracil (pKa 30-34) in 

water.141,142 This increase in acidity of H-6 in UMP when it is bound to the enzyme 

shows that ODCase must be able to stabilise a vinyl carbanion intermediate. 

Furthermore, it was found that ODCase from yeast catalyses the replacement of the 

C-6 proton in 5-fluoro-UMP approximately 3400 times faster than it does in UMP.139 

The presence of an atom of fluorine, the most electronegative element, at C-5 is 

thought to stabilise the negative charge that is built up at C-6 of the vinyl carbanion 

and increases the rate of exchange.   

The 5’-phosphate group of OMP is also considered to play an important role in the 

rate of decarboxylation. It is believed that substrate OMP gains an intrinsic binding 
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energy from interaction of its 5’-phosphate with surrounding enzymic residues and 

that it is this energy that helps to force the negatively charged carboxylate group 

into the active site where decarboxylation can take place.115,143-145 Evidence of the 

importance of the 5’-phosphate group was obtained in a study that showed the rate 

of decarboxylation is dramatically decreased for orotidine as compared to 

OMP.146,147 

The other main contributing factor to decarboxylation is believed to be substrate 

distortion. Several crystal structures of ODCase in complex with OMP and other 

analogues have been obtained that show that C-6 substituents are not co-planar to 

the pyrimidine ring in the active site.134 Molecular and quantum mechanics 

calculations predict that substrate distortion contributes between 10-15% to the 

overall rate of ODCase catalysis.134 

3.2.2 ODCase promiscuity 

As well as carrying out the decarboxylation of OMP, ODCase displays enzymatic 

promiscuity as it has also been shown to carry out a pseudo-hydrolysis reaction. 

Whilst investigating potential inhibitors of ODCase, Fujihashi et al. found that 6-

cyano-UMP was converted to 6-hydroxy-UMP (barbiturate-5’-monophosphate, 

BMP) by ODCase (Scheme 10).148 Crystals obtained following incubation of 6-

cyano-UMP with ODCase derived from Methanobacterium thermoautotrophicum 

were analysed by X-ray crystallography and showed the enzyme’s active site bound 

to BMP.148 

 

Scheme 10 Pseudo hydrolysis reaction carried out by ODCase that converts 6-cyano-UMP to 6-hydroxy-UMP 
(BMP).  

Incubation of 6-cyano-UMP under the same reaction conditions, but in the absence 

of any enzyme failed to produce any BMP showing it was ODCase that was 

catalysing the reaction.148  

As shown in the previous example, there is a degree of plasticity associated with the 

active site of ODCase meaning it is able to accept and interact with other substrates 
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apart from OMP. This ability to interact with other ligands is one of the reasons 

ODCase is such an interesting and attractive target when investigating new 

therapeutic treatments. Some of the currently known inhibitors of ODCase will now 

be examined in more detail as well as looking into the factors to be considered 

when designing new ones. 

3.2.3 Known inhibitors of ODCase 

Numerous research groups have investigated the design of inhibitors to target 

ODCase in an effort to probe its reaction mechanism and to develop new drug 

candidates in the treatment of malaria, cancer and viral infections. The majority of 

the inhibitors that have presently been developed are based on the structure of the 

enzyme’s natural substrate OMP, but contain modifications at the C-5 and C-6 

positions of the pyrimidine ring. The carboxylate group that is lost from OMP during 

the decarboxylation process is located at C-6 so most currently known inhibitors 

have looked to mimic the natural substrate by replacing CO2 at this position with a 

similarly sized group. As discussed, when CO2 is lost from OMP there is a build-up 

of negative charge around the C-6 position so functionalities that are capable of 

being transition state analogues have been of high interest. However, inhibitors of 

ODCase are not limited to being derivatives of OMP. The plasticity of the enzymes 

active site allows for incorporation of other nucleotide structures, with inhibitors 

derived from cytidine known, as well as inhibitors derived from purine nucleotides. In 

addition, there are also reports of some non-nucleotide inhibitors of ODCase. 

The most potent inhibitor of ODCase currently known is BMP, which has been 

determined to have an inhibition constant (Ki) of 9 x 10-12 M against ODCase from 

yeast.149 BMP is believed to be a transition state inhibitor with the negative charge 

from the hydroxyl group at the C-6 position mimicking both the negative charge of 

the carboxylate group of OMP and the negative charge that is present at C-6 during 

decarboxylation. Similarly, 6-aza-UMP, another of the most potent inhibitors of 

ODCase known, is also thought to mimic the carbanion transition state.150 

6-Aza-UMP has been investigated in anti-cancer therapies and has been shown to 

exhibit good activity against several clinical tumour models.150,151 Another analogue 

that has been extensively studied as a potential treatment for cancer is the unusual 

C-nucleoside, pyrazofurin. Like 6-aza-UMP, it has been found to display good anti-

cancer activity, particularly against leukaemia cell lines.152,153 In addition, both 

compounds have also been identified as effective anti-viral agents, principally in the 

treatment of West Nile virus.154 The compounds are thought to act as competitive 
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inhibitors of ODCase and pyrazofurin has even been evaluated in phase I clinical 

trials relating to its use in cancer treatments.155 However, issues with patient toxicity 

have meant that further investigations into this compound as a treatment for cancer 

have been abandoned.155,156 

 

Figure 28 A selection of known inhibitors of ODCase shown in their monophosphate form. 

Bello et al. found that derivatives of UMP that carry a fluorine atom at C-5 as well as 

being modified at C-6 show promise as chemotherapeutic agents against cancer.157 

They found that 6-azido-5-fluoro-UMP and 6-amino-5-fluoro-UMP covalently inhibit 

ODCase and their nucleoside derivatives show potent anti-cancer activity in cell 

based assays.157 Their results show promise that ODCase inhibition could one day 

be used in the treatment of cancers. 
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Nifedipine and nimodipine are two non-nucleotide inhibitors of ODCase. Both drugs 

are known to be calcium channel blockers, but both have been found to display 

moderate inhibitory activity against ODCase with Ki values of 105 and 18 μM, 

respectively.158 The binding of these two compounds was assessed in detail by 

Meza-Avina et al. in order to try and elucidate more information on how the active 

site of ODCase is able to accommodate ligands quite different from its natural 

substrate.159 They were unable to crystallise the enzyme in complex with either of 

the two compounds so carried out computational docking studies instead to 

determine the key interactions between the ligands and the active site.159 They 

found that both compounds fit nicely into the active site and the nitro moiety present 

in both structures interacts with an arginine residue known to be important for 

binding of the monophosphate group of the natural substrate OMP.159 The side 

chain ester functionalities of both compounds were found to bind at the same site as 

where C-5 substitutions in the natural substrate interact.159 These findings show that 

inhibitors of ODCase do not necessarily need to be derived from a nucleotide 

structure and so expands the possibilities and structural features to be considered 

when designing new inhibitor scaffolds. 

Despite its primary function being the decarboxylation of a pyrimidine nucleotide, 

ODCase has been found to also bind purine nucleotides in its active site with 

xanthosine-5’-monophosphate (XMP) being known to inhibit yeast ODCase.117,160 

While cytidine-5’-monophosphate (CMP) is known to be a weak inhibitor of 

ODCase, N-3 and N-4 oxygen derivatives of CMP show much improved potency 

which again goes to show the wide scope of ligands ODCase is able to 

accommodate.161      

The development of ODCase inhibitors as a means to target the malaria parasite 

has received increasing amounts of attention in recent years and is indeed one of 

the main focuses of this thesis.162,163 Research into new antimalarial drugs is of 

critical importance as resistance to current treatments continues to grow. Kotra et al. 

discovered that 6-iodo-UMP binds irreversibly to P. falciparum ODCase by forming 

a covalent bond through displacement of the iodo moiety at C-6 by one of the key 

lysine residues of the active site.164 This was a surprising result given that ODCase 

catalysis is not known to involve any covalent species. Subsequently, additional 

compounds capable of covalently inhibiting ODCase were identified, as detailed 

earlier in the section for the cases of 6-azido-5-fluoro-UMP and 6-amino-5-fluoro-

UMP.157 This finding prompted further studies of the nucleoside analogue, 6-

iodouridine, and this compound was found to display potent anti-plasmoidal activity 
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in in vitro testing.165 Additional testing of 6-iodouridine as a potential new drug was 

carried out in malaria mouse models where it was assessed in combination with the 

well-known antimalarial artemisinin.165 The compound was found to show an 

additive effect in vitro when combined with artemisinin as well as good efficacy in in 

vivo testing.165 The same research group investigated other potential ODCase 

inhibitors to target malaria based on introducing functionalities at C-6 that are of a 

similar size to the carboxylate in the natural substrate.166 They synthesised and 

tested 6-cyano, 6-azido, 6-amino and 6-methyl derivatives as inhibitors of 

plasmoidal ODCase. Of these compounds, the most promising appeared to be 6-

azido-UMP which was found to also covalently inhibit P. falciparum ODCase.166 

However, unlike the case of 6-iodouridine, its nucleoside analogue showed no 

significant activity against Plasmodia cultures.166  

These results show promise that targeting of plasmoidal ODCase could produce a 

potential new treatment or drug candidate in the fight against malaria. The 

observation that ODCase can be irreversibly inhibited by C-6 substituted 

compounds containing good leaving groups opens up a new class of potential 

therapeutic agents to be considered when designing inhibitor molecules. 

3.2.4 Design of inhibitors of ODCase 

The purpose of this project was to investigate the design and synthesis of inhibitor 

molecules to target the enzyme ODCase, with the ultimate aim of generating 

molecules capable of exerting an anti-malarial effect. The previous section 

highlighted some of the known inhibitors of ODCase and before detailing the work 

carried out in this study, it is important to first consider what structural aspects could 

contribute towards the design of new inhibitor molecules. 

Work carried out by Meza-Avina et al. sought to identify the characteristics required 

by an inhibitor in order to achieve potent inhibition of ODCase.159 The generic 

pharmacophore they proposed was based on nucleotide ligands although they do 

note their awareness that non-nucleotide structures can act as ODCase 

inhibitors.159 They identified three regions critical to binding in their empirical model 

as shown in Figure 29.159 
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Figure 29 Empirical pharmacophore proposed by Meza-Avina et al. for inhibitors of ODCase.159 

Region A is thought to be important in terms of obtaining the correct orientation of 

the nucleobase in the enzyme active site.159 Region B has been identified as 

important as the properties of the substituents at this site will greatly influence the 

potency and overall inhibitory ability of the ligand.159 Region C, as mentioned earlier, 

has been found to confer a significant amount of binding energy and so is vital to 

obtaining and maintaining tight binding of the inhibitor molecule in the active site.159 

For the purpose of this thesis, all molecules were synthesised in their nucleoside 

form so that they have the potential to be tested in cell-based assays. The 5’-

monophosphate group is highly polar and so would prevent the potential inhibitor 

molecules from entering the cell. As is usually the case when assessing drug 

molecules derived from nucleic acids, it is assumed that the nucleoside form will be 

phosphorylated by a nucleoside kinase upon entering the cell.  

As discussed in the previous section, there are many inhibitors of ODCase that 

have already been reported which display varying degrees of potency. However, the 

replacement of the carboxylate group of the natural substrate with a nitro group has 

yet to be detailed which is somewhat surprising given that the nitro functionality is 

both isosteric and isoelectronic to a carboxylate. One possible reason for the lack of 

reports of 6-nitrouridine could be due to the difficulties associated with nitrating 

nucleosides. More often than not, nitration reactions require harsh reaction 

conditions which are not always compatible with nucleoside chemistry. The 

glycosidic bond linking the sugar and base of nucleosides is particularly sensitive to 

acidic conditions making the common procedure of nitrating molecules with a mix of 

concentrated nitric and concentrated sulphuric acids totally unsuitable.  

There is literature precedent for a nitro group replacing a carboxylate group and 

successfully inhibiting an enzyme. Firestine et al. investigated the enzyme 

aminoimidazole ribonucleotide carboxylase which catalyses the formation of 4-

carboxy-5-aminoimidazole ribonucleotide (CAIR), shown in Figure 30.167 They found 

that by replacing the carboxylate group of the product with a nitro group to produce 
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4-nitro-5-aminoimidazole ribonucletoide (NAIR), they could achieve potent inhibition 

of the enzyme.167  

 

Figure 30 Structure of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) and its nitro analogue 4-nitro-

5-aminoimidazole ribonucleotide (NAIR). 

Work by Judice et al. provides a further example of a nitro group successfully 

replacing and mimicking a carboxylate group.168 They found that replacement of a 

glutamate residue in the active site of Staphylococcal nuclease with its nitro 

analogue had little effect on catalytic activity over a certain pH range.168 Therefore, if 

milder nitration conditions can be found then the synthesis of 6-nitrouridine could 

prove useful in the search for new inhibitors of ODCase.  

In addition to 6-nitrouridine, another potential inhibitor of ODCase could be a uridine 

molecule substituted at the C-6 position with a tetrazole moiety as tetrazoles can act 

as a bioisostere for the carboxylate group.169,170 There is one previous report in the 

literature of the preparation of the C-6 tetrazole adduct, formed from 6-cyanouridine 

and NaN3.171 However, its ability to inhibit ODCase was not tested or, not reported, 

and so further work on this compound is required in order to assess its potential as 

an inhibitor.  

Use of click chemistry could prove useful in the search for other new inhibitors of 

ODCase as click reactions have become increasingly popular in medicinal 

chemistry over recent years, due in part to their mild reaction conditions and high 

yields.172 One of the most commonly used click reactions is the copper catalysed 

azide alkyne cycloaddition (CuAAC) which produces triazole compounds.173 

Triazoles are stable under both reductive and oxidative conditions and are able to 

take part in hydrogen bonding making them useful functionalities to include in 

potential drug molecules.172 As yet, no C-6 substituted uridine triazoles have been 

reported. This could be due to them being ruled out as potential inhibitors due to the 

larger size of triazoles compared to carboxylates, but nevertheless the introduction 

of a triazole at the C-6 position of uridine would be an interesting possibility for a 

new inhibitor molecule.  
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Hydroxamic acids and boronic acids can also be used as carboxylic acid 

bioisosteres and so introduction of these functionalities at the C-6 position of uridine 

is another option worth considering when designing potential ODCase inhibitors.170 

Compounds that are able to mimic the transition state of the decarboxylation have 

already been shown to be important as BMP is currently the best known inhibitor of 

ODCase. Therefore, design of alternative compounds that can remain stable with a 

negative charge at or close to C-6 are of high priority. 

3.3 Project aims 

ODCase is clearly a remarkable enzyme that plays a vital role in the de novo 

synthesis of pyrimidine nucleotides. The reliance of certain pathogens on the 

pyrimidine de novo pathway presents an opportunity to target and inhibit the 

enzymes of the pathway as a means of therapeutic intervention. The vast amount of 

work that has gone into elucidating the reaction mechanism of ODCase has 

produced a variety of crystal structures of the enzyme, derived from several different 

species. The active site of the enzyme is now well mapped which makes it an 

attractive target for the design of potential new drug candidates. The aims of this 

project were to: 

1) Design a series of inhibitors to target the enzyme ODCase by introducing 

moieties at the C-6 position of uridine that have the potential to mimic the 

carboxylate group that is in the natural substrate. 

2) Investigate the use of molecular modelling and docking studies to predict the 

ability of potential inhibitors to interact with the active site of ODCase.  

3) Assess the anti-plasmoidal activity of final nucleoside compounds through 

biological testing.  
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Chapter 3 Results and discussion 2 

The first stage of this project investigated the synthesis of 6-iodouridine. This 

compound has been reported previously in the literature by Kotra et al. and as 

mentioned in the introduction, it is known to be a potent inhibitor of ODCase.164 It 

was identified as a key intermediate for use in this project as having an iodo group 

at the C-6 position allows for a range of potential transformations to take place. It 

was thought that it would therefore act as a good starting point for the synthesis of a 

variety of different analogues of OMP. In addition, one of the overall aims of the 

project was to send final compounds for biological testing and so it was reasoned 

that having a sample of 6-iodouridine tested would act as a good comparison for 

validating the results of the testing against those of previous studies. 

3.4 Synthesis of 6-iodouridine 

Scheme 11 outlines the synthetic route to 6-iodouridine. The preparation utilised 

conditions originally reported by Kotra et al. with some modifications made to the 

critical iodination step, which will now be discussed in more detail.164 

 

Scheme 11 Synthetic route to 6-iodouridine. 

The synthesis began with protection of the three hydroxyl groups of the ribose sugar 

ring. This was required to prevent them from taking part in unwanted side reactions. 

One of the main advantages of nucleoside syntheses involving uridine is that 

protection of the nucleobase is rarely required unlike in the cases of adenosine, 

guanosine and cytidine. Protection of the three hydroxyl groups was achieved using 
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an isopropylidene group for the 2’ and 3’ positions and the silyl protecting group 

TBDMS for the 5’-OH. These groups were chosen as they are stable under basic 

conditions which is critical as the all-important iodination step involves the use of the 

strong base LDA. 

The isopropylidene group is one of the most commonly used groups for the 

protection of 1,2-diols. It was introduced prior to the TBDMS group by suspending 

uridine in anhydrous acetone with a catalytic amount of concentrated sulphuric acid. 

Compound 26 was then isolated in 89% yield following column chromatography. 

Confirmation compound 26 had been successfully synthesised was provided by 1H 

NMR which showed the presence of two singlets at 1.28 and 1.48 ppm, indicative of 

the two CH3 groups of the isopropylidene group. In addition, the spectrum lacked 

signals for the 2’ and 3’-OH groups, but still showed the 5’-OH as a triplet at 5.08 

ppm. 

Protection of the 5’-OH of compound 26 was carried out using TBDMSCl and 

imidazole in anhydrous DCM. It has been found that in the absence of imidazole, 

the reaction between TBDMSCl and alcohols is very slow and low yielding whereas 

in its presence, reactions are found to proceed in high yield under mild conditions.174 

The imidazole functions by reacting with TBDMSCl to displace the chloride and 

produce an intermediate that is more reactive than the initial silyl compound. In this 

reaction, this intermediate was then attacked by the 5’-OH to produce the desired 

compound 27 in 90% yield. Analysis of the product by 1H NMR spectroscopy 

showed singlet peaks at 0.09, 0.10 and 0.90 ppm, integrating to 3, 3 and 9 protons 

respectively. These peaks correspond to the two methyls and the tBu of the TBDMS 

group showing that the reaction had been successful. 

With the nucleoside now protected, the next stage was iodination of the 6 position of 

the pyrimidine ring. The procedure reported by Kotra et al. for the formation of 6-

iodouridine involves a double deprotonation of compound 27 by LDA, firstly at the 

acidic ring NH then at C-6, after which I2 is added as the electrophile.164 For this 

reaction, it was decided to generate the LDA in situ from diisopropylamine and n-

BuLi rather than buy it in ready-made and so the reaction was therefore carried out 

under strictly anhydrous conditions. The reaction however proved quite problematic, 

with consistently low yields being obtained. A one-off yield of 64% was consistent 

with that reported in the literature, but the yields of all other initial attempts were 

considerably lower, averaging at 24%. As the protected 6-iodo compound had been 
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identified as being a key intermediate for use in further reactions, it was decided to 

try and improve the reaction yield through optimisation of the reaction conditions. 

An initial attempt to improve the yield investigated whether a change in the source 

of iodine would have any effect. However, when I2 was substituted for 1,2-

diiodoethane, no significant improvement in the average yield for the reaction was 

observed. Upon addition of I2 to the reaction mixture containing the anionic 

nucleoside, a distinctive colour change shows whether the reaction is working. 

When the LDA has successfully generated the anionic nucleoside, the characteristic 

deep red colour of the iodine added is lost as it is consumed in the reaction. This 

colour consumption is not observed when 1,2-diiodoethane is used as the iodo 

source and since it was found not to offer any vast improvement to the yield 

obtained, it was decided to continue using I2 as the electrophile. 

It is believed that one of the main barriers to obtaining a good yield for this reaction 

is the need to carry out a double deprotonation. A deuterium labelling study was 

carried out in order to try and ascertain the percentage of deprotonation that was 

occurring at the C-6 position. For this study, compound 27 was deprotonated in an 

analogous fashion to the iodination reaction, but rather than trap out the anion 

formed with I2, an excess of deuterated methanol (CD3OD) was added. Scheme 12 

shows the reaction. 

 

Scheme 12 Deuterium labelling study carried out to determine the amount of deprotonation occurring at C-6. 

Following work-up, the reaction was analysed by 1H NMR which showed the 

presence of only the starting material and the C-6 deuterated analogue. As 

expected, almost all of the signals of the two compounds overlapped. The 

percentage of deuteration was determined by analysing the integration values for 

the H-5 and H-6 signals. The integration value of the H-1’ signal was found to be 1 

as it represents H-1’ from both compounds and it was used as reference for the 

other signals. The signal corresponding to H-5 was observed as an apparent triplet 

that also integrated to 1 as it represents H-5 from both compounds. It appeared as 
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an apparent triplet due to the overlap between the doublet of compound 27 and the 

singlet of compound 30. H-5 appears as a doublet in compound 27 due to splitting 

by the proton at the 6 position whereas when deuterium is incorporated at this 

position, as for compound 30, H-5 appears as a singlet. The amount of 

deprotonation that took place was determined by integrating the signal for H-6. This 

was found to have an integration value of 0.5 indicating that approximately 50% of 

the reaction media analysed was starting material with the other 50% being 

deuterated. This implies that around 50% of the starting material is deprotonated at 

C-6. 

The results of the deuterium study correlate with work that has been carried out to 

determine the pKa of the C-6 proton. Sievers and Wolfenden used 1,3-dimethyluracil 

as a model compound for UMP to determine the pKa of H-6.142 They used 1,3-

dimethyluracil to avoid any difficulties that might have arisen due to deprotonation at 

other positions. From their results, they estimated that in water at 25 oC, the pKa of 

1,3-dimethyluracil is 34±2.142 As the structure of 1,3-dimethyluracil and UMP are 

very similar, it is highly probable that the pKa of H-6 in UMP is also approximately 

34. The base used in the experiments, LDA, has a pKa of ~36 and so the position of 

equilibrium for the deprotonation of H-6 is likely to lie only slightly to the right-hand 

side.  

The optimisation of the original reaction conditions had so far shown that changing 

the iodo electrophile had no great effect on the yield and that the base being used 

was only just strong enough to get deprotonation at the desired position to occur. In 

an effort to avoid using an even stronger, more hazardous base than LDA 

unnecessarily, further modifications of the reaction conditions were attempted. 

Initially, 2.2 equivalents of LDA were being generated at 0 oC before being cooled to 

-78 oC for the reaction. It was found that increasing the number of equivalents of 

LDA to 2.6 and generating and maintaining it at -78 oC increased the overall 

average yield from 24% to a point where yields in the region of 40% could be 

consistently achieved. Whilst ideally higher yields than 40% would be desirable, it 

was found that the reaction could be carried out under these conditions safely on a 

scale that allowed the production of multigram quantities of the desired protected 

iodo compound. The conditions also allowed for recovery of any unreacted starting 

material which meant it could be recycled in further reactions. These conditions 

were therefore adopted for use as standard for this reaction throughout the rest of 

the project. 
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Confirmation compound 28 had been made was provided by 1H NMR and mass 

spectrometry. The 1H NMR spectrum lacked the signal for H-6 at 7.70 ppm found in 

the starting material showing that a proton was no longer present at this position. 

Mass spectrometry then confirmed the presence of the iodo moiety as the correct 

mass for the desired product was obtained. 

Deprotection of compound 28 was then required to obtain a sample of 6-iodouridine 

for biological testing. As both the isopropylidene and TBDMS groups are acid labile, 

it was found that both could be removed in tandem by suspending compound 28 in 

a 50% aqueous trifluoroacetic acid solution. Following purification, 6-iodouridine 

was isolated in 75% yield. A 1H NMR spectrum of the isolated product lacked the 

two methyl group signals of the isopropylidene at 1.34 and 1.55 ppm and the 

TBDMS signals at 0.05 and 0.88 ppm that were present in the starting material 

showing compound 29 had been successfully synthesised. 

Once the protected iodo compound 28 had been successfully isolated and an 

optimised route to it obtained, a list of OMP analogues that could potentially be 

derived from it was drawn up. 

 

Figure 31 Potential analogues of OMP that could be derived from compound 28. 

The main aim of the project was to carry out modifications to the C-6 position of 

uridine that would allow a range of OMP analogues to be synthesised. As discussed 

in the introduction, there are several moieties that are known to be good 

bioisosteres of a carboxylate group, but amongst them, the nitro group is known to 
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be one of the best as it is both isosteric and isoelectronic to a carboxylate. It was 

therefore decided to investigate the synthesis of 6-nitrouridine first. 

 

3.5 Potential routes to 6-nitrouridine 

3.5.1 Nucleophilic displacement using nitrite 

There have been no previous reports in the literature of the preparation of 6-

nitrouridine so the first step in the synthesis was to investigate potential routes of 

nitration. Having synthesised compound 28 with its halogen at C-6, a substitution 

reaction involving displacement of the halogen by nitrite was thought to be the 

simplest route to 6-nitrouridine. It was decided to first attempt nitration using the 

reaction conditions reported by Saito et al. for the nitration of guanosine described 

in Chapter 2 as these conditions have been proven to be mild enough for use in 

nucleoside chemistry.104 Although in the case of Saito’s nitration the reaction was 

carried out on a bromo substituted nucleoside, it was thought use of an iodo 

nucleoside instead would not have much of an effect overall. Scheme 13 shows the 

reaction. 

 

Scheme 13 Attempted formation of 6-nitrouridine using KNO2 and 18-crown-6. 

The conditions for conversion of 8-bromoguanosine to 8-nitroguanosine reported by 

Saito were 1 equivalent of nucleoside to 10 equivalents of KNO2 and 18-crown-6 

with DMF as solvent, all heated to 100 oC.104 Unfortunately, no nitrated product 

could be isolated when they were applied to compound 28. The reaction was 

monitored by TLC which showed the formation of several new components in the 

reaction mixture, but none could be isolated and characterised by spectroscopic 

means. 

The reaction was repeated, but rather than heat to 100 oC again, this time the 

reaction mixture was kept at room temperature and half the number of equivalents 

of KNO2 and 18-crown-6 were used in an attempt to make monitoring of the reaction 
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and interpretation of the compounds forming easier. Again, however, no nitrated 

nucleoside was isolated from the reaction mixture. There was one component on 

the TLC plate that was not visible under UV light, but appeared as a black spot 

when the plate was stained using sugar stain. Initially, it was thought that this could 

be the desired nitro compound as nitration was expected to alter the absorption 

characteristics of the uracil base. However, when isolated, a combination of NMR 

and mass spectrometry showed that the compound was actually a protected sugar 

that had lost the nitrogenous base (Figure 32). 

 

Figure 32 Abasic site formed during attempted nitration. 

This was a disappointing result, although the fact that the base has been lost from 

the sugar ring could indicate that the nitro compound formed, but the glycosidic 

bond was subsequently cleaved. Nitration of the base will increase the nucleosides 

susceptibility to be hydrolysed due to the electron withdrawing power of the nitro 

group making it a better leaving group. This is consistent with what has previously 

been observed for 8-nitroguanosine which readily depurinates. However, given that 

none of the desired compound was isolated, alternative reaction conditions were 

tried. 

It was decided to attempt the reaction using AgNO2 as the nitro source. The well-

known affinity of silver for halide ions was the reasoning behind the switch from 

KNO2 to AgNO2 as it was hoped that the Ag+ ions may be able to interact with the 

iodine atom at C-6 and encourage the desired reaction to take place (Scheme 14). 

Again, unfortunately no nitrated uridine was obtained. After stirring overnight, only 

starting material could be detected by TLC. 
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Scheme 14 Attempted nitration using AgNO2. 

3.5.2 Oxidation of C-6 azidouridine 

A literature search showed that Corey et al. had reported a procedure that produced 

organic nitro compounds under relatively mild conditions.175 They had devised the 

method for production of a nitro galactose intermediate that they found could not be 

synthesised using conventional methods such as silver nitrite displacement.175 The 

general reaction scheme for the method, shown in Scheme 15, involves oxidation of 

an azide starting material. This azide is then reacted with triphenylphosphine to give 

a phosphine imine that when oxidised with ozone was found to give a nitrated 

product. The exact mechanism by which the phosphine imine is converted to a nitro 

compound is not known exactly, but Corey speculated that it requires at least 3 

equivalents of ozone and could possibly take place as shown in Scheme 15.175 

 

Scheme 15 a) Overall reaction to produce organic nitro compound starting from organic azide b) Possible 
mechanism by which ozone causes formation of organic nitro compound.175 

Corey et al. found that simple SN2 displacement of either a halide or a sulfonate by 

azide produced the compounds they needed for their starting material.175 It was 

therefore decided to attempt this method of nitration by again starting from the 

protected iodo compound 28, reacting with sodium azide then carrying out the 

Corey nitration using ozonolysis. Scheme 16 shows the route followed.  
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Scheme 16 Attempted route to 6-nitrouridine. 

Reaction of compound 28 with sodium azide in DMF produced the desired protected 

6-azidouridine 33 in a good yield of 84%. Compound 33 was confirmed to have 

been made by mass spectrometry which showed a peak at 462.18 which is 

consistent with the [M+Na]+ ion of the desired compound. A strong absorption at 

2136.43 cm-1, indicative of an azide, in the IR spectrum of compound 33 further 

confirmed its identity. 

An initial attempt at the nitration was carried out without attempting to isolate any 

intermediates. The azido nucleoside was reacted with PPh3 and then directly 

exposed to a saturated solution of ozone in DCM. After subjecting the reaction 

mixture to several short bursts of ozone it was purged and worked up. However, 

analysis of the crude product showed predominantly starting material and so it was 

decided to repeat the reaction, but attempt to isolate the phosphine imine to show 

that it was forming. 

Compound 33 and PPh3 were stirred in anhydrous DCM for 1 hour after which TLC 

showed no remaining starting material. Following column chromatography, one 

compound was isolated which a combination of 1H NMR, 13C NMR, 31P NMR and 

mass spectrometry showed to be the protected phosphine imine 34. A peak in the 

31P NMR at 14.39 ppm was too high for PPh3 which comes around -6 ppm and too 

low for triphenylphosphine oxide as this peak comes around 29 ppm.176 It was in the 

right region however for a N=P bond which literature values state are ~7 ppm 

depending on what else is bonded to the nitrogen.176 Significant changes in the 1H 

NMR were observed for H-1’ and H-5 on going from the azide to the phosphine 
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imine. The H-5 proton shifted by approximately 1 ppm from 5.50 ppm in the azide to 

4.43 ppm in the phosphine imine. The H-1’ proton showed a similar shift, but in the 

other direction going from 6.09 ppm in the azide to approximately 7.26 ppm in the 

phosphine imine. The peak for H-1’ in the phosphine imine came at the same shift 

as the CDCl3 peak, but its presence was confirmed by HSQC which showed that C-

1’ coupled to this peak. Figure 33 shows potential resonance forms of the 

phosphine imine that could explain these changes in chemical shift. 

 

Figure 33 Potential resonance forms of compound 34. 

A resonance form for the phosphine imine can be drawn that puts a negative charge 

at C-5 and a positive charge at N-1. This would explain the shift to a lower ppm for 

H-5 as it is directly next to a negative charge and the shift to higher ppm for H-1’ as 

it is directly next to a positively charged nitrogen. The 13C NMR provided further 

proof that the phosphine imine had formed as the C-6 signal, which is in close 

proximity to the phosphine, was split into a doublet by the phosphorus atom. Mass 

spectrometry also showed a peak at 696.26 for the [M+Na]+ ion of the desired 

protected phosphine imine.  

Despite obtaining clear spectroscopic evidence that the protected phosphine imine 

34 could be obtained, it was found that it could only be isolated in low yield (7%). 

Nevertheless, a second attempt at the nitration was carried out. Formation of the 

phosphine imine was monitored by TLC. Upon formation, the reaction mixture was 

transferred to a saturated solution of ozone in DCM. Unfortunately, following work 

up, no nitrated product could be detected in the crude material. This could be due to 

the fact that although the phosphine imine forms, it does so in only a small amount 

and further reaction does not take place. 

3.5.3 Miscellaneous nitration attempts 

Several further attempts at nitration were carried out which include; use of TEMPO 

as a catalyst in a radical based method, a conjugate addition to the 5,6-double bond 

and use of Saito’s nitration conditions with alternative protecting groups.104,177-179 
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However, no nitrated product has been obtained. Whilst this is a disappointing 

result, the lack of reports in the literature on the formation of 6-nitrouridine shows 

achieving nitration at the C-6 position of uridine is not easily accomplished and 

further work in the area is required. It was decided at this stage to move on with the 

project and investigate other analogues of OMP that could be synthesised. 

3.6 Click chemistry 

Having successfully synthesised the protected 6-azido compound 33 in good yield, 

it was decided to utilise this compound further to carry out some click chemistry. 

Prior to the start of the project, as discussed in the introduction, the mild conditions 

used in click reactions were identified as showing great potential for synthesising 

triazole and tetrazole moieties at C-6 that could produce promising OMP analogues. 

Of particular interest was formation of the carboxy triazole uridine derivative shown 

in Figure 34 due to its similarity to OMP. But, before a synthetic route to it was 

devised, a test reaction was carried out between compound 33 and 5-chloro-1-

pentyne which was immediately available in the laboratory. 

 

Figure 34 C-6 substituted uridine carboxy triazole identified as potential inhibitor of ODCase. 

Scheme 17 shows the reaction between compound 33 and 5-chloro-1-pentyne. 

Reaction conditions used were based on those reported by Ferreira et al. for the 

formation of 1,2,3-triazole glycoconjugates.180 
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Scheme 17 Test reaction between compound 33 and 5-chloro-1-pentyne. 

Reactions of this type are known as copper-catalysed azide-alkyne cycloadditions 

(CuAAC). The presence of the copper catalyst in the reaction mixture allows 

formation of only the 1,4-isomer of the product, whereas, the reaction done in the 

absence of copper gives both 1,4 and 1,5-isomers from the 1,3-dipolar 

cycloaddition. Figure 35 shows the current most widely accepted mechanism for 

CuAAC reactions.181 The reaction is initiated through coordination of Cu(I) to the 

alkyne to give a copper acetylide intermediate. The Cu(I) species is most commonly 

generated in situ through reduction of a Cu(II) species by a reducing agent such as 

sodium ascorbate. A second Cu(I) is then recruited to form the catalytically active 

complex which bears both a σ and π bound copper atom. This complex can 

reversibly bind to the organic azide forming a copper-azide-acetylide metallocycle. 

Cyclisation can then take place followed by protonation and release of the triazole 

product. 

 

Figure 35 Catalytic cycle for CuAAC reactions.181 
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Formation of the desired triazole 36 was carried out successfully in 72% yield. 

However, when deprotection of the isopropylidene and TBDMS groups was 

attempted using the same conditions as had removed them from the 6-iodo 

compound 28, it was found compound 36 broke down. None of the deprotected 

triazolic nucleoside could be detected or isolated, possibly due to loss of the 

nucleobase or interference in the deprotection from the chloro propyl side chain. It 

was decided to switch to different protecting groups that could be removed under 

milder conditions. Acetyl protecting groups were chosen as they can be removed 

using methanolic ammonia and their electron withdrawing nature helps to stabilise 

the glycosidic bond. There is a requirement during the iodination reaction for the 

protecting groups to be base stable so it was decided to keep using the 

isopropylidene and TBDMS groups until the azide stage, then perform a protecting 

group swap. Scheme 18 summarises these reactions.  

 

Scheme 18 Protecting group swap performed on 6-azidouridine. 

The isopropylidene and TBDMS groups were successfully removed from compound 

33 using a 50% aqueous TFA solution in 82% yield. 1H NMR showed no protecting 

group signals and a mass spectrum of the product had a peak at 308.06 for the 

[M+Na]+ ion of the desired deprotected nucleoside. A sample of 6-azidouridine 38 

was kept for biological testing. In order to reprotect with acetyl groups, compound 

38 was suspended in anhydrous MeCN with acetic anhydride, DMAP and 

triethylamine using the same procedure that had been used for formation of tri-O-

acetylguanosine. The reaction proceeded in a good yield of 69% and confirmation 

the reaction had been successful was provided by 1H NMR which showed the 

presence of three singlets at 2.05, 2.08 and 2.10 ppm for the three methyl groups of 

the acetyls. 

Having successfully changed the protecting groups, compound 39 was reacted 

separately with both 5-chloro-1-pentyne and phenyl acetylene, again in the 

presence of copper sulphate and sodium ascorbate (Scheme 19). For both of these 
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reactions, it was decided to swap the reaction solvent from DCM/H2O to tBuOH/H2O 

to achieve better solubility of the reactants. 

Both reactions were found to produce the desired triazolic product, although only in 

fairly modest yields. Confirmation compound 40 had been successfully isolated was 

provided by 1H NMR which showed peaks due to the propyl side chain of the 

triazole at 2.20-2.27, 2.99 and 3.62 ppm as well as its mass spectrum which 

contained a peak at 514.13 for the [M+H]+ ion. 1H NMR was also used to confirm 

compound 41 had been isolated. It showed characteristic signals between 7.42 and 

7.88 ppm in the aromatic region integrating to five protons, indicating successful 

incorporation of the phenyl ring. 

 

Scheme 19 Click reactions between compound 39 and 5-chloro-1-pentyne (top) and phenyl acetylene (bottom) 

The change in protecting groups may have contributed to the moderate yields, but 

this was necessary as acidic deprotection with a triazole present had been found to 

be unsuccessful.  

Having established click reaction conditions suitable for synthesising substituted 

triazoles at the 6-position of uridine, attempts were made to synthesise the carboxy 

triazole 35 by reaction with methyl propiolate. 



Chapter 3  Results and discussion 2 

75 
 

 

Scheme 20 Reaction between compound 39 and methyl propiolate. 

TLC showed the formation of new components in the reaction mixture, but it was 

found to be extremely sluggish. Isolation of the new components was carried out 

using column chromatography, but the desired triazole 42 was found to form as only 

the minor component of the reaction, in a disappointing yield of 25%. Its formation 

was confirmed by 1H NMR which showed a singlet at 3.97 ppm for the methoxy 

group in addition to a singlet at 8.98 ppm for the single proton of the triazole ring. A 

peak in its mass spectrum at 518.11 is correct for the [M+Na]+ ion of the desired 

triazole compound 42. 

 

Figure 36 1H NMR of the desired methoxy ester triazole 42 recorded in CD3OD. 

The major component isolated following column chromatography and extensive 

spectroscopic analysis (1H NMR, 13C NMR, COSY, HSQC, HMBC, mass 

spectrometry) was found to be the compound shown in Figure 37. 
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Figure 37 Unexpected product isolated from click reaction between compound 39 and methyl propiolate. 

Formation of compound 43, and as the major product of the reaction, was 

unexpected as CuAAC reactions generally produce only 1,4-substituted triazoles in 

high yield. Upon isolation of compound 43, determination of its structure proved 

quite tricky. Its 1H and 13C NMR spectra showed the presence of signals 

corresponding to the sugar, nucleobase and protecting groups implying that it was 

not a decomposition product. 

 

Figure 38 1H NMR of the unexpected product 43 recorded in CDCl3. 

However, it lacked a signal that could be due to the triazole proton, but did show 

signals that suggested the presence of an ester. Addition of D2O to the NMR sample 

revealed that two exchangeable protons were present at 9.25 and 9.57 ppm. In 

addition, the 1H NMR spectrum contained an AB quartet system that integrated to 

two protons at 3.46-3.66 ppm which 2D NMR analysis showed was due to a CH2 

group. When the D2O exchange was carried out, this AB quartet was found to slowly 
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diminish, indicating likely proximity to a C=O group. The presence of a singlet 

corresponding to an OCH3 group indicated a reaction between the nucleoside and 

methyl propiolate had occurred, but the absence of a triazole proton and the 

presence of a CH2 moiety implied it was not the desired reaction that had taken 

place. 

 

Figure 39 D2O exchange carried out on 1H NMR sample of compound 43. The top spectrum shows the initial 
sample in CDCl3 and the bottom spectrum is the same sample 3 days after addition of D2O. 

A mass spectrum of compound 43 found a peak at 508.12 which is consistent with 

the mass of the [M+Na]+ ion of the structure shown in Figure 37. By considering 

what possible side reactions could occur given the reagents used, in combination 

with the spectroscopic data, the structure of compound 43 was deduced. It was 

initially thought to form following the mechanism shown in Figure 40. Following 

reaction of the nucleosidic azide component with the alkyne to form the triazole, it 

was thought the lone pair on N-1 of the triazole could delocalize resulting in loss of 

molecular nitrogen and formation of a carbene. Carbenes are known to be highly 

reactive and so rapid shift of the adjacent proton was thought to occur in order to 

stabilize the structure. Attack of solvent water can then take place which following 

proton rearrangement would produce the unexpected compound 43. 
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Figure 40 Possible mechanism by which compound 43 forms. 

A search of the literature showed compounds similar to compound 43 are known, 

but to form them from triazoles requires flash vacuum pyrolysis conditions and 

presumably proceeds via the mechanism shown in Figure 40.182 This called into 

doubt whether the structure elucidated for compound 43 was correct as the reaction 

was carried out at room temperature and not the high temperatures required for 

pyrolysis to occur. A control reaction was therefore carried out on the small amount 

of pure methyl ester triazole 42 obtained from the reaction. It was first dissolved in 

tBuOH/H2O to see whether any decomposition occurred and then re-subjected to 

the reaction conditions and monitored to see if any rearrangement to compound 43 

could be observed. However, it was found that compound 42 was quite stable to the 

reactions conditions with no decomposition at all observed. This was in agreement 

with the finding that harsh vacuum pyrolysis conditions are required for the triazole 

to decompose.  

A further search of the literature found studies carried out by Chang et al. and 

Baskaran et al. had reported findings that when reacted together in the presence of 

a copper catalyst, azides and alkynes do not always give 1,4-triazoles.183,184 The 

work of both groups investigated the synthesis of amidines and they found that 

coupling of a sulfonyl azide and an alkyne with a copper catalyst followed by 

treatment with an amine produced amidines in good yield. A role for copper in the 

mechanism was advocated by both groups.183,184 Figure 41 shows one example 

from the work of Baskaran.183 In the example, the electron withdrawing effect of the 

tosyl group connected to the azide, in combination with the presence of the ester 

connected to the alkyne, is thought to help promote this type of reaction. The 

reactivity of the azide component towards the Cu-acetylide formed in the reaction is 

thought to play a part in determining what product is formed. For the amidine 

product to form, following loss of nitrogen, the amine present must attack the 

ketenimine intermediate to give the desired product. 
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Figure 41 Possible mechanism by which amidines form from reaction of azides, alkynes and amines.183 

In the reaction reported here, although a sulfonyl azide is not used, the nucleosidic 

azide is somewhat electron deficient due to the electron withdrawing effect of the 

carbonyl at C-4 in conjugation with the 5,6-double bond. Although some formation of 

the desired triazole product is observed, formation of compound 43 through a 

pathway similar to the one described by both Chang and Baskaran can be 

envisaged. Formation of an amidine product does not occur as no amine is present, 

but the water present as a co-solvent could carry out a similar attack on a 

ketenimine intermediate to form compound 43. The initial mechanism postulated in 

Figure 40 is likely to be the route through which compound 43 forms, apart from that 

copper is thought to remain associated with the triazole at the beginning of the 

mechanism and helps to initiate loss of the nitrogen. 

An analogous reaction was carried out using benzyl propiolate rather than methyl 

propiolate to see whether it had any effect on the amount of 1,4-substituted triazole 

produced (Scheme 21). Once again, the major component of the reaction was the 

analogous benzyl derivative of compound 43 which was isolated in 44% yield and 

only milligram quantities of impure 1,4-benzyl ester triazole 45 could be isolated. 

Although a small amount of the methoxy triazole 42 was isolated, it seems the 

reaction conditions and reagents used disfavour formation of 1,4-triazoles of this 

type. The earlier success in the click reactions with 5-chloro-1-pentyne and phenyl 

acetylene show the nucleoside azide 39 is able to take part in click reactions, but it 

seems when in combination with alkynyl esters in the presence of copper, the 

favoured reaction pathway leads primarily to the formation of the unexpected 

products described. 
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Scheme 21 Click reaction between compound 39 and benzyl propiolate. 

It appears unlikely at present that the reaction could be scaled to produce larger 

quantities of the desired triazoles as there does not seem to be a way to prevent the 

side reaction which results in loss of nitrogen and formation of a ketenimine 

intermediate from happening. The apparent low reactivity of the starting azide 

material is thought to also contribute to the issues encountered. Although successful 

reactions were achieved with 5-chloro-1-pentyne and phenyl acetylene, the yields 

obtained for the click reactions are much lower than reported literature values. The 

reactions were found to be extremely slow which could be due to decreased 

reactivity of the azide due to conjugation with the uracil base. The slowness of the 

reaction could contribute to the formation of these unexpected products as the 

desired triazoles are not forming quickly enough allowing alternative reactions to 

compete. Further work on optimising the conditions when carrying out click 

reactions with these reagents is required in order to produce the desired 1,4-ester 

triazoles, but unfortunately due to time constraints this was not pursued further in 

this project. 

Although triazole 40 with its chloro-propyl side chain was not originally a target as 

an OMP analogue, it was decided that as it had been successfully synthesised it 

should be deprotected for testing. The earlier attempt at deprotecting the 

isopropylidene and TBDMS analogue under acidic conditions had failed, but it was 

hoped that removal of the acetyl protecting groups by methanolic ammonia would 

be more successful (Scheme 22). However, it was found that following column 
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chromatography, the only product that could be isolated was 6-methoxy uridine. 

This was a quite a surprising result, as although loss of the triazole moiety from the 

6 position is feasible, displacement by methanol was unexpected. Given the 

reaction conditions, and that ammonia is a better nucleophile than methanol, it was 

thought that 6-aminouridine was the more likely product. 

 

Scheme 22 Deprotection of compound 40 using methanolic ammonia. 

The 1H NMR of compound 46 lacked any protecting group signals showing that they 

had been successfully removed, but unfortunately it also lacked any signals for the 

chloro-propyl triazole moiety. All sugar and base signals were present and a singlet 

at 3.93 ppm integrating to three protons was indicative of an OMe group. The 

compounds identity was confirmed by mass spectrometry which showed a peak at 

273.07 which corresponds to the [M-H]- ion of 6-methoxy uridine. 

The results obtained from the reaction show that the C6-N bond is easily broken 

through addition of an external nucleophile and loss of the triazole moiety occurs 

readily. For this reason, in addition to the problems described earlier, it was decided 

to shift focus away from synthesising triazoles of this type. 

3.7 Formation of C-6 substituted tetrazole 

Prior to the start of the project, incorporation of a tetrazole moiety at the C-6 position 

of uridine was identified as being one of the key analogues desired to synthesise. 

Tetrazoles are excellent bioisosteres of carboxylic acids and so a tetrazole group at 

the C-6 position was potentially an interesting mimic of OMP. There has been one 

previous report in the literature of formation of a 6-tetrazole derivative of uridine, but 
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it was not assessed for its ability to bind to ODCase or in any in vitro biological tests 

and thus it was decided to design a route to 6-(1H-tetrazol-5-yl) uridine (Scheme 

23).171 

 

Scheme 23 Synthetic route to tetrazole derivative 51. 

Formation of tetrazoles quite often proceeds through reaction of azides with cyano 

compounds. As shown for the triazole click chemistry, the bond between C-6 of 

uridine and the nitrogen of a heterocycle is susceptible to cleavage via an addition-

elimination pathway. It was therefore decided to react a nucleosidic nitrile with azide 

rather than vice versa to form the tetrazole moiety as this would lead to a carbon-

carbon bond between the nucleoside and the heterocycle which should be more 

stable.  

Formation of protected 6-cyanouridine could be achieved starting from the 6-iodo 

compound 28, but a high yielding route via protected 5-bromouridine has previously 

been published and so these conditions were adopted.179,185 It was decided to use 

acetyl protecting groups for the synthesis and so the synthetic route began by 

protecting the three hydroxyl groups of uridine. The reaction proceeded in 86% yield 

and confirmation the desired product 47 had been obtained was provided by 1H 
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NMR which showed the presence of 3 singlets integrating to three protons each 

corresponding to the acetyl groups.  

Formation of 5-bromo-2’,3’,5’-tri-O-acetyluridine 48 was achieved through reaction 

of compound 47 with 1,3-dibromo-5,5-dimethylhydantoin.185 The reaction proceeded 

in a very good yield of 87%. Successful isolation of the desired product was 

confirmed by 1H NMR and mass spectrometry. The mass spectrum of compound 48 

showed an isotope pattern that is distinctive for incorporation of bromine, with peaks 

at 471.00 and 473.00 for the [M+Na]+ ion. The 1H NMR of compound 48 lacked the 

signal for H-5 at 5.80 ppm that was present in the starting material, showing the 

bromination had occurred at the correct position. 

Cyanation was achieved by reacting compound 48 with sodium cyanide in DMF. 

The procedure followed was originally detailed by Inoue et al. and proceeds via an 

interesting addition-elimination type mechanism (Figure 42).179 

 

Figure 42 Cyanation reaction originally reported by Inoue et al.179 

Inoue et al. found that when 1 equivalent of sodium cyanide is added to compound 

A, intermediate B is formed.179 The H-6 proton shown in red is more acidic than the 

H-5 proton and so is eliminated as HBr to give protected 6-cyano uridine. 

Additionally, they reported that when a further equivalent of NaCN is added to 

compound C, intermediate D then forms.179 Now, the H-5 proton shown in green is 

more acidic so gets eliminated as HCN to give protected 5-cyano uridine. For this 
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project, only one equivalent of NaCN was used and the desired product was found 

to form in 52% yield. Confirmation cyanation had been achieved was provided by 1H 

NMR and mass spectrometry. The mass spectrum of compound 49 lacked the 

characteristic isotope peaks of bromine showing that it was no longer present and 

contained a peak at 418.09 which is consistent with the [M+Na]+ ion of the desired 

product. The 1H NMR spectrum of compound 49 lacked a signal for H-6 at 7.83 ppm 

that was present in the starting material, but did contain a signal at 6.31 ppm for H-

5. 

Following the success of this reaction, an additional analogous reaction was carried 

out, swapping NaCN for KNO2 and 18-crown-6 to see if nitration of the 6-position 

could be achieved using this method. Unfortunately however, only starting material 

48 was recovered from the reaction. 

Formation of the tetrazole moiety was achieved by reacting compound 49 with 

sodium azide at 95 oC in DMF in the presence of ammonium chloride.171 Mass 

spectrometry was used to determine the success of the reaction as 1H NMR was 

found to be less informative in this case. Compound 50 was found to be quite polar, 

even with the presence of the three acetyl groups and so NMR analysis was 

performed using CD3OD. Under these conditions the tetrazole NH proton was not 

observable and could not be used to determine whether the reaction had worked. 

The mass spectrum however showed the desired increase in mass corresponding 

to formation of the tetrazole with a peak at 461.10 for the [M+Na]+ ion of the desired 

product. NMR analysis showed the presence of dimethylamine as an impurity in the 

product, which forms as a result of breakdown of the reaction solvent DMF at 

elevated temperatures. Due to the high polarity of the product and its observed 

preference to go into the aqueous layer during extractions, it was decided to carry 

the product through without further purification to the deprotection step. 

Deprotection of the acetyl protecting groups of compound 50 was achieved using 

methanolic ammonia. The desired deprotected product was isolated by filtration and 

purified by trituration with diethyl ether. 1H NMR analysis of the isolated product 

lacked the three singlets associated with the acetyl groups indicating they had been 

successfully removed. The spectrum also indicated successful removal of the 

dimethylamine impurity and so the yield over the final two steps of the synthesis 

was calculated as 39%. No displacement of the heterocyclic moiety by methanol 

was observed, as the mass spectrum showed a mass of 311.07 which is correct for 
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the [M-H]- ion of the desired product. A sample of compound 51 was sent for 

biological testing. 

A sample of 6-cyano-2’,3’,5’-tri-O-acetyluridine was also deprotected so that it could 

be sent for biological testing (Scheme 24). 6-Cyanouridine is a known inhibitor of 

ODCase, but as its protected form had been successfully synthesised en route to 

the tetrazole derivative, it was decided to deprotect a sample. It was thought that, 

like the 6-iodouridine and 6-azidouridine synthesised previously, although it is not a 

novel compound, sending a sample for biological testing would be good for 

comparison with other compounds synthesised in the project. Removal of the acetyl 

protecting groups from compound 49 was again achieved using methanolic 

ammonia. The deprotection proceeded in 73% yield and confirmation the isolated 

product was correct was provided by 1H NMR and mass spectrometry. The 1H NMR 

spectrum showed all required sugar and nucleobase signals, but it did not contain 

the three singlet signals that correspond to the methyl groups of the acetyls. The 

mass spectrum of compound 52 contained a peak at 268.06 which is correct for the 

[M-H]- ion of 6-cyanouridine. 

 

Scheme 24 Deprotection of compound 49 using methanolic ammonia. 

3.8 Alternative electrophiles for use in the double deprotonation 

reaction 

3.8.1 Methyl chloroformate - Synthesis of orotidine  

Synthesis of orotidine, the nucleoside derived from the natural substrate of 

ODCase, was desired so that a sample could be sent for biological testing and the 

results could be compared to those of other compounds synthesised. A route to the 

formation of orotidine was devised using a similar method to that used to obtain 6-

iodouridine. It was thought that by carrying out an analogous double deprotonation 

of protected uridine 27 with LDA, then trapping out the anion formed with methyl 

chloroformate, that following hydrolysis of the ester and deprotection, the desired 

product would be isolated. 
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Scheme 25 shows the route followed. The 5’-silyl protecting group was switched 

from TBDMS to TBDPS for the synthesis as the dimethyl silyl protecting group was 

found to be unstable to the ester hydrolysis conditions. Although removal of the 

protecting groups was required in the next step, it was desirable to have all three 

ring hydroxyl groups protected following hydrolysis of the ester to make purification 

of the carboxylic acid easier. 

The silylation of compound 26 with TBDPSCl was achieved using the same method 

as had been used to form the TBDMS derivative 27. The reaction proceeded in a 

very good yield of 85% and following column chromatography the isolated product 

was characterised using NMR and mass spectrometry. The 1H NMR spectrum 

showed peaks in the aromatic region between 7.36-7.47 and 7.61-7.65 ppm 

integrating to ten protons in total for the two phenyl rings, indicating incorporation of 

the TBDPS group had been successful. In addition, mass spectrometry of 

compound 53 showed a peak at 545.21 which is correct for the [M+Na]+ ion of the 

desired product. 

 

Scheme 25  Synthetic route to orotidine. 

Insertion of the methyl ester functionality at the C-6 position was achieved by 

carrying out a double deprotonation of compound 53 using LDA, then adding methyl 

chloroformate. The 29% yield obtained for the reaction is quite low, but as 

previously discussed for the synthesis of the 6-iodo compound 28, this is 

presumably due to the need to carry out a double deprotonation. As described for 

the iodination reaction, a significant portion of starting material can be recovered 
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from the reaction for use in subsequent reactions. Confirmation compound 54 had 

been successfully synthesised was obtained from 1H NMR which showed the 

presence of a singlet at 3.81 ppm integrating to three protons corresponding to the 

OMe group. It also lacked the signal for H-6 at 7.57 ppm found in the starting 

material showing the reaction had taken place at the desired position. Mass 

spectrometry further confirmed the success of the reaction as a peak at 603.21 was 

obtained which is correct for the [M+Na]+ ion of the desired product. 

Hydrolysis of the methyl ester was achieved using lithium hydroxide in a mixture of 

THF and water as solvent. These conditions were found to result in cleavage of a 5’-

TBDMS group but the diphenyl silyl equivalent was quite stable which allowed for 

successful purification of compound 55. A 1H NMR of compound 55 lacked a singlet 

for the methoxy group showing the hydrolysis had been successful and mass 

spectrometry showed the desired decrease in mass on going from the methyl ester 

to the carboxylic acid. 

Full deprotection of all protecting groups to obtain the final desired compound 56 

was carried out under acidic conditions, using a 50% aqueous TFA solution. The 1H 

NMR of compound 56 lacked both the isopropylidene and TBDPS signals present in 

the starting material and a mass spectrum showed a peak at 287.05 which 

corresponds to the [M-H]- ion of orotidine. A sample of the final unprotected material 

was sent for biological testing. 

3.8.2 Methyl chloroformate - Formation of a hydroxamic acid 

Hydroxamic acids are mildly acidic (pKa ~8-9) and are known to be strong metal 

chelators.170 Due to their similarity in structure, they are often considered as 

isosteres of carboxylic acids and have been used successfully as such in previous 

studies.170,186 They are most commonly formed through reaction of esters or 

activated esters with hydroxylamine salts. As formation of a C-6 methyl ester 

derivative of uridine had been obtained whilst synthesising orotidine, it was decided 

to utilise this compound further by forming a hydroxamic acid that could act as an 

inhibitor of ODCase. Scheme 26 shows the synthetic route followed to obtain a C-6 

substituted hydroxamic acid. 
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Scheme 26 Synthetic route to C-6 substituted hydroxamic acid derivative. 

Starting from compound 27, again a double deprotonation reaction was carried out 

using methyl chloroformate as the electrophile. The 5’-silyl group used was the 

TBDMS group as it was found to be stable to the subsequent reaction conditions. 

The reaction proceeded in a very similar yield (30%) to that done using the 5’-

TBDPS protected compound 53 (29%) during the synthesis of orotidine. Formation 

of the C-6 methyl ester derivative 57 was confirmed by 1H NMR which showed a 

singlet at 3.94 ppm for the OMe group. 

Formation of the hydroxamic acid was achieved by reacting compound 57 with a 1.5 

M solution of hydroxylamine in methanol, prepared according to a patent submitted 

by Mathew and Ulmer.187 The reaction was found to be quite low yielding (21%), but 

several previous attempts to form the hydroxamic acid via other methods had been 

unsuccessful. Confirmation the reaction had been successful was provided by mass 

spectrometry. Whilst the 1H NMR of the product obtained lacked the methyl singlet 

due to the ester of the starting material, it was not possible to determine whether the 

reaction had formed the desired hydroxamic acid or had hydrolysed to the 

carboxylic acid. However, the mass spectrum of compound 58 showed a peak at 

480.18 which is correct for the [M+Na]+ ion of the hydroxamic acid. 

Deprotection of the isopropylidene and TBDMS groups was achieved using a 50% 

aqueous TFA solution in almost quantitative yield (96%). Removal of the protecting 

groups was confirmed by 1H NMR which lacked the two singlets of the 

isopropylidene group present in the starting material at 1.33 and 1.50 ppm and the 
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TBDMS signals at 0.07 and 0.90 ppm. A mass spectrum of compound 59 contained 

a peak at 302.06 which is correct for the [M-H]- ion of the desired hydroxamic acid. 

A sample of compound 59 was submitted for biological testing. 

3.8.3 Diethyl chlorophosphate – Formation of a C-6 phosphonate 

Although problems have arisen carrying out a double deprotonation on protected 

uridine in order to insert different functionalities at the 6 position, as discussed, a 

procedure that can reliably produce ~30-40% yields has now been obtained that 

also allows for recovery of unreacted starting material. The reaction was therefore 

utilised further to produce a C-6 substituted phosphonate compound. It was decided 

to investigate whether the presence of a P=O bond at C-6 was able to mimic the 

C=O bond of OMP. Scheme 27 shows the synthetic route followed. 

 

Scheme 27 Synthetic route C-6 substituted diethyl phosphonate 61. 

The first step was to carry out the double deprotonation of compound 27 using LDA. 

Diethyl chlorophosphate was then added as the electrophile and compound 60 was 

found to form in 34% yield. Diethyl chlorophosphate was used as it has been shown 

previously to react with C-6 of uridine, but the compound formed has not been 

tested for its ability to bind to ODCase or as an antimalarial.188 Confirmation 

compound 60 had been correctly isolated was provided by NMR. The 1H NMR 

lacked the signal for H-6 at 7.70 ppm present in the starting material but showed 

signals at 1.31 and 4.11-4.23 ppm corresponding to the presence of two ethyl 

groups. The 13C NMR showed splitting of the C-6 carbon into a doublet due to its 

close proximity to the phosphorus atom. A 31P NMR showed only one peak at 5.61 

ppm indicating there was only one phosphorus environment and this shift was in the 

correct region for a phosphonate of this type. 

Again, the isopropylidene and TBDMS protecting groups were removed using a 

50% aqueous TFA solution to yield the diethyl phosphonate product 61 in 89% 

yield. A 1H NMR spectrum of compound 61 contained no protecting group signals 
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and a peak at 379.09 in its mass spectrum for its [M-H]- ion confirmed it had been 

successfully deprotected. A sample of this compound was submitted for biological 

testing.  

Due to time constraints, no further work was carried out on compound 61, but in 

theory it is possible to remove the diethyl functionality of the phosphonate using 

sodium iodide.188 Future work would investigate synthesis of this compound so it 

could be tested for its antimalarial properties in vitro. 

3.9 Palladium chemistry 

3.9.1 Route to a C-6 substituted propargylic acid 

Formation of potential inhibitors of ODCase that can mimic the transition state of the 

decarboxylation process were identified as important targets. It was thought that 

insertion of a carbon-carbon triple bond at the C-6 position would help to mimic the 

elongation of the bond that occurs as CO2 is lost from this position in the natural 

substrate OMP. The initial synthetic target was that shown in Figure 43, due to its 

similarity in structure to orotidine. 

 

Figure 43 Target in search of new ODCase inhibitor. 

It was decided to utilise the Sonogashira reaction to form the desired compound 

62.189 The Sonogashira reaction is used to form carbon-carbon bonds and due to its 

mild operating conditions, it was deemed to be suitable for use in this project. The 

reaction involves coupling of a terminal alkyne with either an aryl or vinyl halide 

under basic conditions in the presence of both a palladium catalyst and a copper 

catalyst (Figure 44). 
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Figure 44 Sonogashira reaction mechanism.190 

The protected iodo compound 28, previously identified as a key intermediate in the 

project, was thought to be an ideal substrate for the reaction as it is a vinyl halide 

and is stable to basic conditions. A Sonogashira reaction between compound 28 

and propiolic acid was attempted as a successful reaction between the two would 

directly give the desired analogue. 

 

Scheme 28 Unsuccessful Sonogashira reaction between compound 28 and propiolic acid. 

Unfortunately, the reaction was unsuccessful. Although TLC showed the formation 

of new components, none could be isolated. It was speculated that decarboxylation 

could have occurred. 
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Nevertheless, alternative routes to compound 62 were attempted. A search of the 

literature showed a Sonogashira reaction between a 6-iodo uridine derivative and 

propargyl alcohol was feasible.191 It was therefore decided to attempt to form the C-

6 substituted propargyl alcohol and then oxidise it to the desired carboxylic acid 

(Scheme 29). 

 

Scheme 29 Formation of C-6 substituted propargyl alcohol and subsequent oxidation attempts. 

The Sonogashira reaction between compound 28 and propargyl alcohol was carried 

out in the presence of Pd(PPh3)2Cl2 and CuI using triethylamine as solvent and was 

found to proceed in almost quantitative yield (97%). Confirmation the reaction had 

been successful was provided by 1H NMR and mass spectrometry. A 1H NMR of the 

isolated compound showed the presence of a CH2 group at 4.52 ppm appearing as 

a doublet as well as a signal for the OH group at 3.20 ppm that had been split into a 

triplet due to the coupling between the two groups. A mass spectrum of the 
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compound contained a peak at 475.19 which is consistent with the mass that should 

be obtained for the [M+Na]+ ion of the desired compound.  

Having formed the nucleoside propargylic alcohol 64, the next step was to 

investigate ways of oxidising it to the corresponding carboxylic acid. It was decided 

to first attempt a stepwise oxidation in which the alcohol would be converted to the 

aldehyde and then oxidised further to the carboxylic acid. For this task, the oxidising 

agent manganese dioxide was chosen as it is known to be fairly mild and is 

selective for allylic, benzylic and propargylic alcohols. Reaction of compound 64 

with MnO2 was found to be quite slow, but TLC monitoring of the reaction showed 

the formation of a new component and eventual consumption of all starting material. 

Isolation of the new component was achieved using column chromatography and 

although a preliminary 1H and 13C NMR spectrum seemed to indicate formation of 

the desired aldehyde, it was found to be quite unstable. Despite showing signs of 

breaking down, the crude aldehyde material obtained was subjected to Pinnick-

Lindgren oxidation conditions in the hope that some carboxylic acid derivative could 

be isolated. The Pinnick-Lindgren oxidation is a mild reaction used for converting 

aldehydes to carboxylic acids. Unfortunately however, no desired product could be 

isolated form the reaction. 

Due to the apparent instability of the propargylic aldehyde, it was decided to attempt 

formation of the carboxylic acid directly from the alcohol in a one-pot method. Two 

attempts were made to carry out this conversion; one involving oxidation by the 

hypervalent iodine species bis(acetoxy)iodobenzene (BAIB) and one using a 

modified Pinnick oxidation with TEMPO and bleach.192,193 However, neither method 

was found to give the desired carboxy compound 63. The most promising of the 

one-pot methods was the BAIB reaction which consumed all of the starting material, 

but attempted isolation of new compounds formed in the reaction was unsuccessful. 

A 1H NMR of the crude reaction material showed it contained a nucleosidic 

component, but it appeared loss of the TBDMS protecting group was occurring 

which made purification difficult and isolation unachievable. 

Whilst it was not possible to obtain the C-6 substituted propargylic acid, it was 

decided that as the propargylic alcohol 64 had been synthesised, a sample should 

be deprotected for biological testing (Scheme 30). Although C-6 substituted 

propargyl alcohol uridine has been synthesised previously, it has not been 

evaluated as an antimalarial or as an inhibitor of ODCase. 
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Scheme 30 Deprotection of compound 64 under acidic conditions. 

Removal of the protecting groups was carried out using a 50% aqueous TFA 

solution and proceeded in a good yield of 87%. A 1H NMR of the isolated compound 

lacked the protecting group signals present in the starting material and a mass 

spectrum showed a peak at 297.07 which is correct for the [M-H]- ion of the desired 

deprotected nucleoside 66.  

3.9.2 Formation of a carbon linked triazole 

As discussed earlier in the section on click chemistry, formation of a nitrogen linked 

triazole to the C-6 position encountered several problems. One of the main issues 

was deprotection of the compounds. Under acidic conditions, the compounds were 

found to decompose and under basic conditions, an unusual addition-elimination 

reaction of the triazole moiety was found to occur. As demonstrated for the C-6 

substituted tetrazole described earlier, the formation of a carbon-carbon bond 

between C-6 and a heterocycle is much more stable than a carbon-nitrogen one. It 

was decided therefore to investigate whether a carbon linked triazole could be 

formed at the C-6 position via reaction of azide with a nucleosidic alkyne. 

Following on from the successful Sonogashira reaction between compound 28 and 

propargyl alcohol, the same reaction conditions were used to react compound 28 

with TMS acetylene. This reaction was required to insert the desired carbon-carbon 

triple bond at C-6 and as a TMS group can be selectively cleaved, it is an ideal 

route to forming the C-6 substituted alkyne required for forming a carbon linked 

triazole. 

The Sonogashira reaction between compound 28 and TMS acetylene proceeded in 

a good yield of 63%. Its success was confirmed by 1H NMR which contained a 

singlet at 0.89 ppm integrating to nine protons corresponding to the three methyls of 

the TMS group. In addition, the 13C NMR contained signals for the alkyne carbons 

and a mass spectrum showed a peak at 517.22 for the [M+Na]+ ion of the desired 

compound. 
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Scheme 31 Formation of a carbon linked triazole at C-6. 

Selective removal of the TMS group in the presence of the TBDMS group was 

achieved using potassium carbonate in methanol. The reaction proceeded in 86% 

yield and the isolated compound was characterised by NMR and mass 

spectrometry. A 1H NMR lacked the singlet due to the three methyl groups of TMS 

present in the starting material, but contained a signal for the terminal alkyne proton 

that appeared at the same chemical shift as the C-5’ protons (3.76-3.84 ppm). An 

HSQC confirmed that the terminal alkyne proton correlated to a carbon at 90.91 

ppm which corresponds to the terminal alkyne carbon. A mass spectrum of the 

isolated compound showed the desired reduction in mass for loss of the TMS group 

with a peak appearing at 445.18 for the [M+Na]+ ion. 

With a terminal alkyne now in place at C-6, a [3+2] cycloaddition between 

compound 68 and an appropriate azide could take place. Yamamoto et al. reported 

a procedure that utilises a copper catalyst to perform the addition of TMS azide to 

an alkyne to give a 1,2,3-triazole.194 The TMS functionality is lost during the reaction 

so the 1,2,3-triazole produced is unsubstituted. Figure 45 shows the authors 
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proposed mechanism for the reaction.194 Reaction of compound 68 with TMS azide 

in the presence of copper iodide at 100 oC produced the desired triazole compound 

in 19% yield. The low yield obtained for the desired product is due in part to the fact 

that some loss of TBDMS occurred under the reaction conditions, so as well as 

isolating the fully protected nucleoside triazole 69, a proportion of 6-(1H-1,2,3-

triazol-5-yl)-2’,3’-isopropylidene uridine 70 was also isolated. Confirmation the 

triazole had formed was provided by 1H NMR and mass spectrometry. A 1H NMR 

spectrum showed the terminal alkyne proton was no longer present, but a signal at 

8.21 ppm, integrating to one, corresponding to the triazole proton, was present. A 

13C spectrum lacked the signals for the two carbons of the triazole which called into 

question whether the desired product had been made, but a mass spectrum showed 

a peak at 488.19 ppm which is correct for the [M+Na]+ ion of the desired triazole. 

Due to the small amount of compound 69 isolated, it is possible that the NMR 

sample was just not strong enough for these signals to appear in the carbon 

spectrum, especially given that one of them is a quaternary carbon.  

 

Figure 45 Mechanism of copper catalysed [3+2] cycloaddition proposed by Yamamoto et al. for reaction 
between a terminal alkyne and TMS azide.194 

For the deprotection reaction, the fully protected triazole compound 69 and 

compound 70 lacking the TBDMS group were combined. A 30 % aqueous TFA 

solution was used to achieve full deprotection to compound 71. A 1H NMR lacked 

any protecting group signals and a peak at 310.08 in the mass spectrum for the [M-

H]- ion confirmed the desired carbon linked triazole had been formed. A sample was 

submitted for biological testing. 

The success of this 1,2,3-triazole forming reaction was pleasing, as prior to the start 

of the project, insertion of a triazole moiety at the C-6 position was identified as a 
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promising target. Due to the difficulties described in forming a nitrogen linked 

triazole starting from a nucleoside azide, it was thought isolation of a C-6 substituted 

triazole may not be achievable. But, the formation of the carbon linked triazole 

shows promise that further compounds of this type could be synthesised, depending 

on how well the molecular modelling studies predicts it to bind and how active the in 

vitro biological testing finds it. 

3.9.3 Isolation of 6-ethynyl uridine 

Having successfully isolated protected 6-ethynyl uridine 68 during the synthesis of 

the carbon linked triazole, it was decided to fully deprotect a sample so it too could 

be sent for biological testing. Although 6-ethynyl uridine has been prepared 

previously, it has not been tested for its antimalarial properties.191 Scheme 32 shows 

the deprotection of compound 68. 

 

Scheme 32 Deprotection of compound 68 to yield 6-ethynyl uridine. 

A 30% aqueous TFA solution was used to remove the TBDMS and isopropylidene 

groups. Isolation of the desired compound was achieved using column 

chromatography. Initial spectroscopic analysis indicated the reaction had been a 

success as a 1H NMR recorded in CD3OD contained all of the desired signals, 

although the terminal acetylene proton was observed at a higher chemical shift 

(4.65 ppm) than where it had been observed for the protected analogue 68 in CDCl3 

(3.76-3.84 ppm). Compound 72 was found to be quite insoluble in methanol and so 

in order to record a 13C spectrum the solvent was changed to D2O. However, upon 

changing NMR solvents, signals corresponding to the acetylene moiety could not be 

observed in either 1H or 13C spectra. There was no signal in the 1H NMR for H-6 

indicating that a substituent was still present at this position, but the terminal alkyne 

proton was not observed and the two acetylenic carbons in the 13C spectrum could 

also not be detected. A second 1H NMR spectrum in CD3OD was recorded following 

exposure to D2O and the signal thought to correspond to the terminal alkyne was no 

longer present. However, a mass spectrum of the isolated compound showed a 
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peak at 267.06 which is correct for the [M-H]- ion of 6-ethynyl uridine, indicating the 

product was correct. It is thought that NMR signals for the acetylene moiety are not 

observed possibly due to some form of exchange reaction with solvent D2O. Due to 

lack of time and material, it was not possible to record any spectra in DMSO-d6. The 

acetylenic signals are observable in the protected nucleoside, when CDCl3 is used 

to record the NMR spectrum, but they appear to disappear following deprotection 

despite 1H NMR indicating there is a substituent at C-6 and mass spectrometry 

showing the correct mass for 6-ethynyl uridine. Although the acetylene moiety could 

not be observed in the NMR data, it is believed 6-ethynyl uridine has been 

successfully isolated as the accurate mass data obtained for compound 72 is 

correct for 6-ethynyl uridine and under the deprotection conditions used, there is no 

plausible mechanism for loss of the acetylene moiety. 

3.9.4 Attempts to form a C-6 substituted boronic acid 

Whilst carrying out some palladium chemistry, it was decided to investigate whether 

a C-6 substituted boronic acid could be synthesised (Figure 46).  

 

Figure 46 C-6 substituted boronic acid. 

Boronic acids are known to be good bioisosteres of carboxylic acids and can be 

formed through palladium catalysed coupling of an aryl halide or triflate with a 

diboronyl ester such as bis(pinacolato)diboron.170 Hydrolysis of the boronate ester 

formed yields the boronic acid. 

Several attempts were made to synthesise compound 73 using palladium cross-

coupling reactions starting from the protected iodo intermediate 28, but 

unfortunately, none were found to yield the desired boronic acid 73. The most 

promising of the reactions was a Pd catalysed borylation reaction using conditions 

reported by Yoshida et al. (Scheme 33).195 
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Scheme 33 Borylation conditions reported by Yoshida et al.195 

When the iodo compound 28 was subjected to these reaction conditions, the only 

isolatable product obtained was the protected uridine compound 27. This implies 

that the desired borylation may have taken place, but the boron ester formed then 

protodeboronated. Although Yoshida et al. reported only minor formation of the 

dehalogenated pyrrole 76, this was not the case using compound 28 as the 

substrate.195 An attempt to make the C-6 substituted boronic acid 73 was also 

attempted in the absence of Pd by carrying out a deprotonation of compound 27 

and adding (iPrO)3B, but again this was found to be unsuccessful. 2-Pyridyl boronic 

acids and esters are known to be highly susceptible to decomposition via 

protodeboronation.196 A C-6 substituted uridine boronic acid is very similar in 

structure to 2-pyridyl boronic acid and so it is highly likely that it would also be prone 

to undergo protodeboronation readily. For this reason, this class of analogues was 

not pursued further in this project.  

3.10 Synthesis of 6-aminouridine 

The final analogue synthesised was 6-aminouridine. This compound has been 

isolated previously and tested as an inhibitor of ODCase and as an antimalarial.166 It 

has been found to be a moderate inhibitor of ODCase from both Methanobacterium 

thermoautotrophicum and Plasmodium falciparum, but to show very little 

antimalarial activity.166 It was synthesised in this project to act as a comparison for 

other analogues in the biological testing and as it was identified as an intermediate 

for the synthesis of further analogues.  
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Scheme 34 Synthesis of 6-aminouridine (top) Potential route to other analogues via 6-amino derivative 79 
(bottom). 

To obtain a sample of 6-aminouridine for biological testing, 6-azidouridine was 

hydrogenated over a palladium on carbon catalyst. The resulting 6-aminouridine 

was characterised by NMR and confirmation it had been successfully formed was 

provided by mass spectrometry which showed a peak at 282.07 which corresponds 

to its [M+Na]+ ion. 

Formation of a sulphonamide at the C-6 position was identified as another potential 

inhibitor of ODCase. Sulphonamides are very good isosteres of carboxylic acids so 

it would be interesting to investigate how one interacts with ODCase.170 There was 

not time in this project to fully investigate the synthesis of a sulphonamide uridine 

derivative, but it is a compound that is of high priority for future work. Preliminary 

work has shown that the hydrogenation of fully protected azido compound 33 gives 

the protected amine 79 in good yield and so future work will look to continue on the 

synthesis from this point.   

3.11 Conclusions and future work 

The work carried out in this project sought to generate a series of analogues of the 

compound OMP that could act as inhibitors of the enzyme ODCase and potentially 

display antimalarial properties. In total, eleven compounds were generated and they 

have been sent for biological testing in a Plasmodium falciparum 3D7 assay.  
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Figure 47 Final compounds synthesised. 

Of the compounds synthesised, four (29, 38, 78, 52) have been tested previously as 

ODCase inhibitors and for their antimalarial properties.166 They were synthesised 

again presently so that the results obtained from the biological testing could be 

compared to those obtained previously and as a comparison for the other 

analogues synthesised. The nucleoside form of ODCase’s natural substrate 56 was 

also generated during the course of the project so its results could be compared to 

those of the other analogues.  

Each of the compounds synthesised was also computationally docked into the 

crystal structure of ODCase to see how well they might fit into the active site. More 

details on the computational work can be found in the following chapter. 

As discussed, several problems have been encountered during this work. The initial 

low yields obtained for the synthesis of the key iodo intermediate 28 were overcome 

through optimisation of the reaction conditions and it can now be synthesised in 

sufficiently large quantities so that it does not act as a bottleneck to further 

reactions. Although not all analogues identified prior to the start of the project as 

being promising inhibitors were able to be synthesised, such as 6-nitrouridine, 
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eleven analogues were able to be isolated. Of these eleven, the carbon linked 

triazole 71 and the hydroxamic acid 59 are completely novel.  

Future work would look to build on the synthetic work that has already taken place. 

As mentioned, formation of a C-6 substituted sulphonamide is of high interest as is 

formation of a C-6 substituted phosphonic acid through further reaction of 

compound 61. The results obtained from the in vitro testing will also largely 

influence what compounds are investigated next. 
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Chapter 4 Results and discussion 3 

Molecular modelling was performed in order to try and predict how well the eleven 

final compounds synthesised might interact with ODCase. The project used three 

computational programs to model, dock and visualise the ligands and ODCase 

crystal structure. The modelling program Spartan ‘16 was used to construct all 

compounds that were to be docked into ODCase.197 To carry out the docking, the 

program GOLD was used which stands for Genetic Optimisation for Ligand 

Docking.198 It is designed to take into account the flexibility of ligands when scoring 

them. GOLD contains four different scoring functions which allows the user to 

compare the performance of the ligands scored using different criteria. For this 

work, the scoring function ChemPLP was chosen to assess the binding of the 

ligands.198 This scoring function is now the default scoring function used in GOLD as 

validation tests have found that overall it is more effective than the other scoring 

functions for predicting the poses of ligands effectively.198,199 The program PyMOL 

was used to visualise the crystal structure of ODCase and the docked ligands.200 

4.1 Validation docking of BMP 

Before docking of the eleven final compounds into an ODCase crystal structure 

could be carried out, a validation of the docking protocol was required. As 

mentioned in the introduction, there are now more than 200 ODCase crystal 

structures deposited in the Protein Data Bank, over half of which are derived from 

Methanothermobacter thermautotrophicus (Mt) and one of these entries, PDB code: 

1X1Z, was selected for use in this study.201 This crystal structure is of ODCase in 

complex with 6-hydroxyuridine-5’-monophosphate (BMP), the most potent inhibitor 

of ODCase currently known.148 The reasons for choosing this crystal structure were: 

1) It was thought if GOLD could accurately match the binding pose of the best 

known inhibitor of ODCase, then it would act as a benchmark for evaluating 

how well the compounds synthesised in this study might bind. 

2) ODCase has four key active site residues, two Lys and two Asp, known to be 

important for binding. These residues are conserved across species and so 

any compounds predicted to bind well to Mt should bind well to other 

species.131,164 

3) Previously it has been found that the Ki values obtained for inhibitors against 

ODCase from Mt are comparable to their Ki values against ODCase from 

other species.161 
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The first stage of the validation involved downloading the 1X1Z PDB file and treating 

it according to Protocol 1 (see Experimental section).201 ODCase is a dimer and 

often in molecular modelling, one monomer of a dimer crystal structure is deleted 

prior to beginning docking studies, especially if the dimer is symmetrical. However, 

in this case, it was decided to leave ODCase as a dimer for the docking study as 

previous investigations have found that both monomers contribute key residues to 

the active site.118 The structure of BMP was then modelled in Spartan ‘16 following 

Protocol 2.197 GOLD was used to extract the crystallographic BMP molecule and 

then the BMP molecule modelled in Spartan ‘16 was re-docked as described in 

Protocol 3, generating 25 solutions.197,198 This was to test whether GOLD was able 

to match the binding pose of the crystallographic data. In order to evaluate how well 

GOLD carried out this task, the root mean square deviation (RMSD) values 

generated from the docking were considered. RMSD is a measure of the distance 

between the pose of a ligand predicted by the docking program and the pose of the 

ligand in the crystallographic structure, so, the lower this value is, the better. Ideally, 

RMSD values should be less than 2 Å.202 Table 6 summarises the data obtained 

from the validation docking. 

Table 6 Summary of data obtained from validation docking of BMP in ODCase crystal structure (PDB code: 
1X1Z).201 

Structure Average ChemPLP score (± 

standard deviation) 

Average RMSD (± standard 

deviation) (Å) 

 

139.50 (3.31) 0.27 (0.06) 

 

The data obtained from the validation docking shows that GOLD is suitable for 

carrying out further docking into ODCase.198 The average RMSD value of 0.27 Å is 

well below the threshold value of 2 Å showing GOLD is able to match the 

crystallographic pose of BMP very well. Visual inspection of the 25 poses generated 

by GOLD in PyMOL showed good matching of the poses to the crystallographic 

BMP molecule which correlated with the low RMSD values obtained.198,200 The 

average ChemPLP score was also calculated so it could be compared to the scores 

from the eleven final compounds. 
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4.2 Docking of final compounds 

Having established that GOLD can successfully reproduce the binding pose of a 

known inhibitor of ODCase, the eleven final compounds synthesised in this project 

were docked and evaluated.198 The compounds were modelled in Spartan ‘16 

according to Protocol 2 as their 5’ monophosphates.197 It has been established that 

the 5’-monophosphate moiety of the enzyme’s natural substrate, OMP, contributes 

a significant amount of intrinsic binding energy. The eleven compounds synthesised 

in this project were sent for biological testing in their nucleoside form as the 

presence of a 5’ phosphate can often prevent them from entering cells. It is 

assumed that cellular kinases will phosphorylate the nucleosides upon entry to the 

cell and so for this computational work they were constructed as 5’-

monophosphates. Each compound in turn was docked into the ODCase crystal 

structure as described in Protocol 4.198 Table 7 summarises the results obtained. 

Table 7 Average ChemPLP score for the top 10 poses of each compound.198 

Compound 

 

Average ChemPLP score for top 10 poses (± 

standard deviation) 

R=OH 139.50 (3.31) 

R=I 129.71 (1.50) 

R=N3 135.85 (1.89) 

R=COOH 138.21 (1.80) 

R=CN 126.73 (1.49) 

R=NH2 142.95 (2.45) 

R=  
124.23 (2.46) 

R=  

107.57 (1.27) 

R=   

110.99 (4.04) 

R=PO(OEt)2 84.84 (3.10) 

R=  135.79 (2.76) 

R=  

131.41 (1.96) 
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For the ChemPLP scoring function, the higher the value obtained, the better the 

binding of the compound is predicted to be. The results show that GOLD predicts 6-

amino-UMP to bind most strongly to the active site of ODCase with the diethyl 

phosphonate derivative predicted to be the worst. The natural substrate, OMP, has 

a score just slightly higher than BMP and is second only to 6-amino-UMP. 

Visualisation of the poses generated by GOLD in PyMOL seemed to indicate that all 

eleven compounds fitted into the active site in a similar manner to BMP.200 The only 

compound that differed was the tetrazole derivative. All but two of its top ten poses 

had the 5’ phosphate and the uracil base transposed compared to BMP and the 

other compounds. The images on the following pages show the top binding pose for 

each compound in the active site, visualised from the same orientation. The binding 

pose of BMP is shown for reference.  
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Figure 48 Top binding pose for each compound docked into ODCase crystal structure (PDB code: 1X1Z).201 First 
entry shows binding of BMP into active site as a reference. Last two entries show the binding pose of the 
tetrazole derivative which is incorrectly orientated in one (top binding pose of this compound) and correctly 
orientated in the other. The images show residues within 6 Å of the active site as lines and crystallographic 
waters as red spheres.200 The docked compounds are shown as sticks (coloured by atom type; carbon-light blue, 
nitrogen-dark blue, oxygen-red, phosphorus-orange, iodine-purple).200 

Despite having the lowest average ChemPLP score, as can be seen in the image 

for its top binding pose, even the diethyl phosphonate derivative appears to fit into 

the active site. However, as can be seen for the tetrazole derivative, a higher 

docking score can sometimes be misleading as GOLD predicted the majority of its 

docking poses in the wrong orientation.  

4.3 Biological testing 

As mentioned, four of the eleven final compounds (iodo 29, amino 78, azido 38, 

cyano 52) sent for biological testing have been synthesised previously and are 
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known to be inhibitors of ODCase. All were obtained in either one or two steps from 

key intermediates used in the project. All four have previously been tested in a P. 

falciparum 3D7 assay. They were re-synthesised and sent for biological testing in 

this project to provide benchmarks against which the novel compounds synthesised, 

such as the triazole derivative 71, could be compared.  

The previous assay was carried out by Kotra et al. and they found that 6-iodouridine 

exhibits potent in vitro anti-plasmoidal activity.164 They additionally found that its 

mononucleotide derivative 6-iodo-UMP is a covalent inhibitor of ODCase from both 

Methanobacterium thermautotrophicum and Plasmodium falciparum.164 However, 6-

cyanouridine, 6-aminouridine and 6-azidouridine showed no significant in vitro 

antimalarial activity despite all three mononucleotide forms showing inhibitory 

activity against ODCase.166 These results show that good inhibitory activity against 

ODCase does not always result in antimalarial activity. Nevertheless, the example 

of 6-iodouridine gives confidence that molecules capable of inhibiting ODCase can 

produce an antimalarial effect. 

Prior to sending for biological testing, the eleven compounds were assessed for 

purity by HPLC. Table 8 summarises the results. 

Table 8 Purity of compounds as assessed by HPLC. Retention times denoted with a were obtained using HPLC 
Method 3 and those denoted b were obtained using HPLC Method 4. 

Compound Retention time (min) Purity by HPLC (%) 

6-Iodouridine 29 23.15a 100 

6-Azidouridine 38 18.43a 93 

6-Aminouridine 78 13.61a 89 

6-Ethynyl uridine 72 21.25a 96 

6-(1H-1,2,3-Triazol-5-yl) uridine 71 15.77a 100 

6-(3-Hydroxyprop-1-yn-1-yl) uridine 66 20.80a 98 

6-Hydroxamic acid uridine 59 6.67a 100 

6-Cyanouridine 52 18.31a 93 

6-Diethyl phosphonate uridine 61 31.01a 100 

6-Carboxyuridine 56 7.69b 100 

6-(1H-Tetrazol-5-yl) uridine 51 12.54b 100 

 

The compounds all showed a high level of purity and were deemed suitable to be 

assessed biologically. The compounds were sent to The Liverpool School of 

Tropical Medicine for biological assessment in an assay that uses 3D7 Plasmodium 

falciparum parasites. The results of the assay are currently being awaited. 
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4.4 Conclusions 

The computational work carried out has shown that the docking program GOLD can 

accurately re-dock the known inhibitor BMP into the crystal structure of ODCase. 

Docking of compounds synthesised over the course of this project was carried out 

and visualisation of the results generated indicate that they all fit into the active site 

of the enzyme. The amino derivative was predicted to bind most strongly with the 

diethyl phosphonate derivative predicted to bind least strongly, possibly due to its 

greater size. 

The compounds have also been sent for biological testing to assess their 

antimalarial properties. Once the results of the testing have been received, further 

development of any compounds showing antimalarial activity will be conducted.  
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Chapter 5 Experimental 

5.1.1 General techniques 

Analytical thin layer chromatography (TLC) 

TLC was performed on UV254 sensitive, silica gel coated, aluminium TLC plates 

purchased from Merck. Plates were visualised under UV light and treated with a 

sugar stain. Following treatment with the sugar stain and heating, compounds 

containing a ribose moiety stained on the TLC plates as black spots. 

Flash column chromatography 

The required quantity of silica gel was made into a homogenous slurry using the 

column eluent. The slurry was applied to the column over a base layer of sand. The 

crude material to be purified was then introduced to the column in either the 

minimum volume of column eluent, or, as a powder due to pre-absorption onto 

silica. Eluted fractions were collected and analysed by TLC. 

Nuclear magnetic resonance (NMR) spectroscopy 

All NMR spectra were recorded on either a Bruker Avance 400 MHz or 500 MHz 

spectrometer in the deuterated solvent stated. Chemical shifts are reported in ppm 

and coupling constants (J) are reported in Hz. All 13C and 31P NMR spectra were 

proton decoupled. The chemical shifts reported for all samples run in deuterated 

chloroform (CDCl3) are relative to an internal standard of tetramethylsilane. 

Mass spectrometry 

Unless otherwise stated (please see HPLC-MS), all mass spectra were recorded by 

Ms Moya McCarron in the Mass Spectrometry Department at the University of 

Liverpool using a Micromass LCT Mass Spectrometer in the ES ionisation mode. 

Samples were injected using a direct infusion syringe pump. 

Infrared spectroscopy 

IR spectra were recorded using a Bruker FTIR Alpha spectrometer. 

pH Measurements 

Measurements of pH were recorded using a pH probe connected to a Mettler 

Toledo T50 autotitrator system. 
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High performance liquid chromatography (HPLC) 

HPLC was performed on an Agilent 1260 Infinity system equipped with an 

autoinjector, a photodiode array detector and quaternary pump. Chromatographic 

data was controlled and handled using Agilent OpenLAB Chemstation software.  

Reverse phase (RP) HPLC was performed on a Gemini ® 5 μm C18 column (110 Å, 

250 mm x 4.6 mm) purchased from Phenomenex ®. The eluent system and control 

method (see HPLC methods) used were changed depending on the polarity of the 

compounds being analysed. The RP-HPLC column was stored in HPLC grade 

MeCN when not in use. 

High performance liquid chromatography – mass spectrometry (HPLC-MS) 

HPLC-MS was performed on an Agilent 6530B accurate mass Q-TOF mass 

spectrometer connected to an Agilent 1260 Infinity HPLC system (as described in 

HPLC section). Samples were run on the RP-HPLC column described in the HPLC 

section. HPLC-MS data was obtained using a multimode ion source and processed 

using Agilent MassHunter software. 

5.1.2 HPLC solvents 

Acetonitrile – HPLC gradient grade was purchased from Fisher Scientific. 

Acetic acid – HPLC gradient grade was purchased from Sigma Aldrich. The desired 

concentration of aqueous acetic acid solution was then made up using distilled 

water. 

Triethylammonium bicarbonate solution (TEAB) – prepared by bubbling CO2 gas 

through a solution of triethylamine (HPLC gradient grade purchase from Sigma 

Aldrich) and distilled water until a pH between 7.5 and 7.7 was obtained. This 

solution was diluted to give a final concentration of 1 M which was then further 

diluted as necessary.  

5.1.3 HPLC methods 

HPLC Method 1 

The eluent was gradually changed from 100% 0.1 M TEAB solution to 100% of a 

40% MeCN in 0.1 M TEAB solution over 20 minutes before being changed back to 

100% 0.1 M TEAB solution over 3 minutes. The eluent was held at 100% 0.1 M 

TEAB solution for the final 2 minutes of the run. 
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Column temperature – 25 oC 

Flow rate – 1 mL/min 

Injection volume – 5 μL 

 

Figure 49 HPLC method 1 

HPLC Method 2 

The eluent was held at 96% 0.1% AcOH in water and 4% MeCN for the first 2 

minutes of the run. It was then gradually altered to 80% 0.1% AcOH in water and 

20% MeCN over the next 10 minutes and held at this ratio for 3 minutes. The eluent 

was then changed back to 96% 0.1% AcOH in water and 4% MeCN over 3 minutes 

and held at this ratio for the final 4 minutes of the run. 

Column temperature – 40 oC 

Flow rate – 0.5 mL/min 

Injection volume – 5 μL 

0

20

40

60

80

100

0 5 10 15 20 25

%
 M

o
b

il
e
 p

h
a
s
e

Minutes

HPLC Method 1

0.1 M
TEAB

40%
MeCN in
0.1 M
TEAB



Chapter 5  Experimental 

118 
 

 

Figure 50 HPLC method 2 

HPLC Method 3 

The eluent was held at 98% 0.1% AcOH in water and 2% MeCN for the first 5 

minutes of the run. It was then gradually altered to 80% 0.1% AcOH in water and 

20% MeCN over the next 20 minutes and held at this ratio for 2 minutes. The eluent 

was then changed back to 98% 0.1% AcOH in water and 2% MeCN over 3 minutes 

and held at this ratio for the final 5 minutes of the run. 

Column temperature – 40 oC 

Flow rate – 0.5 mL/min 

Injection volume – 5 μL 

 

Figure 51 HPLC method 3 

 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

%
 M

o
b

il
e
 p

h
a
s
e

Minutes

HPLC Method 2

0.1%
AcOH in
water
MeCN

0

20

40

60

80

100

0 5 10 15 20 25 30 35

%
 M

o
b

il
e
 p

h
a
s
e

Minutes

HPLC Method 3

0.1%
AcOH
in water

MeCN



Chapter 5  Experimental 

119 
 

HPLC Method 4 

The eluent was held at 98% 0.1 M TEAB solution and 2% MeCN for the first 2 

minutes of the run. It was then gradually altered to 90% 0.1 M TEAB solution and 

10% MeCN over the next 10 minutes and held at this ratio for 2 minutes. The eluent 

was then changed back to 98% 0.1 M TEAB solution and 2% MeCN over 2 minutes 

and held at this ratio for the final 2 minutes of the run. 

Column temperature – 40 oC 

Flow rate – 0.5 mL/min 

Injection volume – 5 μL 

 

Figure 52 HPLC method 4 

5.1.4 Solvents 

Unless otherwise stated, all solvents were purchased from Fisher Scientific. 

Anhydrous solvents were obtained as follows: 

Acetone – AcroSeal™ anhydrous solvent purchased from Acros Organics. 

Acetonitrile – Sure/Seal™ anhydrous solvent purchased from Sigma Aldrich. 

Dichloromethane – anhydrous solvent obtained via solvent passage through drying 

columns supplied by Innovative Technology Ltd. 

N,N-Dimethylformamide – Sure/Seal™ anhydrous solvent purchased from Sigma 

Aldrich.  

Pyridine – Sure/Seal™ anhydrous solvent purchased from Sigma Aldrich. 
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THF – anhydrous solvent obtained via solvent passage through drying columns 

supplied by Innovative Technology Ltd. 

Triethylamine – Sure/Seal™ anhydrous solvent purchased from Sigma Aldrich. 

5.1.5 General reagents 

Unless otherwise stated, general reagents were all purchased from Acros Organics, 

Fluorochem or Sigma Aldrich. 

Sugar stain – Phenol (3 g) was dissolved in a solution of ethanol (95 mL) and 

concentrated sulphuric acid (5 mL). 
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5.2 Experimental procedures for results and discussion 1 

2’,3’,5’-Tri-O-acetylguanosine 884,104 

 

DMAP (0.13 g, 1.06 mmol, 0.1 eqv.) and Et3N (8.86 mL, 63.6 mmol, 6 eqv.) were 

added to a suspension of guanosine (3.09 g, 10.9 mmol, 1 eqv.) in anhydrous 

MeCN (40 mL) and cooled to 0 oC. Acetic anhydride (3.00 mL, 31.7 mmol, 3 eqv.) 

was added dropwise and the resulting reaction mixture was allowed to warm to 

room temperature. The reaction was found to be complete following full 

solubilisation of the reactants. MeOH (~5 mL) was added to quench the reaction 

which was then concentrated in vacuo to leave a thick, cloudy oil. The desired 

product was isolated by recrystallisation from the minimum amount of hot iPrOH and 

then washed with Et2O to remove residual Et3N. This yielded a white solid as 

product (3.90 g, 87%). 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.78 (1H, br s, NH), 

7.93 (1H, s, H8), 6.55 (2H, br s, NH2), 5.99 (1H, d, J 6.0, H1’), 5.79 (1H, app t, J 6.0, 

H2’), 5.49 (1H, dd, J 5.6 and 4.4, H3’), 4.38 (1H, dd, J 11.2 and 3.6, H5’), 4.33-4.30 

(1H, m, H4’), 4.26 (1H, dd, J 11.2 and 5.6, H5’’), 2.11 (3H, s, COCH3), 2.04 (3H, s, 

COCH3), 2.03 (3H, s, COCH3). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 170.10 

(CO), 169.45 (CO), 169.28 (CO), 156.69 (C6), 153.94 (C2), 151.12 (C4), 135.62 

(C8), 116.83 (C5), 84.41 (C1’), 79.54 (C4’), 72.05 (C2’), 70.31 (C3’), 63.08 (C5’), 

20.53 (COCH3), 20.38 (COCH3), 20.19 (COCH3). HRMS (ES+) (m/z): 432.1129 

([M+Na]+); C16H19N5O8Na requires 432.1126 (+0.6943 ppm). 

 

8-Bromo-2’,3’,5’-tri-O-acetylguanosine 984,104 

 

Aliquots of bromine water (2 mL, ~30 mL in total) were added to a vigorously stirred 

suspension of 2’,3’,5’-tri-O-acetylguanosine (3.39 g, 8.28 mmol) in distilled H2O (30 
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mL) until the colour of the reaction remained permanently yellow. The reaction 

mixture was then filtered under vacuum and the solid collected was washed with 

cold iPrOH and Et2O. This yielded a pale orange solid as product (3.09 g, 76%). 1H 

NMR (400 MHz, DMSO-d6): δ (ppm) 10.91 (1H, br s, NH), 6.60 (2H, br s, NH2), 6.02 

(1H, dd, J 6.2 and 4.6, H2’), 5.89 (1H, d, J 4.4, H1’), 5.65 (1H, app t, J 6.0, H3’), 

4.42 (1H, dd, J 11.8 and 3.8, H5’), 4.34-4.30 (1H, m, H4’), 4.21 (1H, dd, J 11.8 and 

6.2, H5’’), 2.11 (3H, s, COCH3), 2.07 (3H, s, COCH3), 2.00 (3H, s, COCH3). 13C 

NMR (100 MHz, DMSO-d6): δ (ppm) 170.09 (CO), 169.47 (CO), 169.40 (CO), 

155.40 (C6), 153.81 (C2), 151.92 (C4), 120.10 (C8), 117.18 (C5), 87.63 (C1’), 79.30 

(C4’), 71.27 (C2’), 69.92 (C3’), 62.76 (C5’), 20.47 (COCH3), 20.30 (COCH3), 20.24 

(COCH3). HRMS (ES+) (m/z): 510.0231 and 512.0211 ([M+Na]+); C16H18BrN5O8Na 

requires 510.0231 and 512.0213 (0.0000 and -0.3906 ppm). 

 

N2-Dimethoxytrityl-8-bromo-2’,3’,5’-tri-O-acetylguanosine 1084,104 

 

8-Bromo-2’,3’,5’-tri-O-acetylguanosine (3.23 g, 6.62 mmol, 1 eqv.) was dried by co-

evaporation of water with anhydrous pyridine (3 x 10 mL) and then dissolved in 

anhydrous pyridine (30 mL). DMTCl (4.49 g, 13.3 mmol, 2 eqv.) was added in 

portions, under a N2 atmosphere, over the course of 5 minutes and the resulting 

reaction mixture was left to stir overnight. Upon completion, the reaction was 

partitioned between H2O (30 mL) and DCM (30 mL). The aqueous layer was 

extracted with DCM (2 x 30 mL) and the combined organic extracts were washed 

with H2O (3 x 50 mL) and saturated NaHCO3 solution (30 mL) before being dried 

over Na2SO4. All solvent was removed in vacuo to leave a brown oil which was 

purified by flash column chromatography (100% DCM – 2% MeOH/98% DCM) to 

give a yellow solid as product (4.33 g, 83%). Rf = 0.61 (5% MeOH/95% DCM). 1H 

NMR (400 MHz, CD3OD): δ (ppm) 7.30-7.19 (9H, m, DMTr Ar-H), 6.85-6.83 (4H, m, 

DMTr CHCOCH3), 5.58 (1H, d, J 6.0, H1’), 5.23 (1H, app t, J 6.4, H2’), 4.97 (1H, dd, 

J 6.6 and 4.6, H3’), 4.02-3.98 (1H, m, H4’), 3.90-3.82 (2H, m, H5’ and H5’’), 3.76 

(6H, s, DMTr Ar-OCH3), 2.09 (3H, s, COCH3), 2.01 (3H, s, COCH3), 1.94 (3H, s, 

COCH3). 13C NMR (100 MHz, CD3OD): δ (ppm) 172.01 (CO), 170.98 (CO), 170.79 
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(CO), 160.06 (Ar-C), 160.00 (Ar-C), 158.07 (C6), 153.03 (C2), 152.83 (C4), 131.16 

(Ar-C), 131.03 (Ar-C), 129.73 (Ar-C), 129.09 (Ar-C), 128.12 (Ar-C), 123.23 (C8), 

119.18 (C5), 114.32 (Ar-C), 114.26 (Ar-C), 89.32 (C1’), 80.65 (C4’), 71.89 (C3’), 

71.78 (NHC), 71.36 (C2’), 64.20 (C5’), 55.68 (Ar-OCH3), 20.70 (COCH3), 20.45 

(COCH3), 20.16 (COCH3). Signals not observed: 3 x quaternary carbons from DMTr 

group. HRMS (ES+) (m/z): 812.1556 and 814.1500 ([M+Na]+); C37H36BrN5O10Na 

requires 812.1538 and 814.1525 (+2.2163 and -3.0707 ppm). 

 

N2-Dimethoxytrityl-8-nitro-2’,3’,5’-tri-O-acetylguanosine 1184,104 

 

N2-Dimethoxytrityl-8-bromo-2’,3’,5’-tri-O-acetylguanosine (1.50 g, 1.90 mmol, 1 

eqv.) was dissolved in anhydrous DMF (105 mL). KNO2 (1.62 g, 19.0 mmol, 10 

eqv.) and 18-crown-6 (5.01g, 19.0 mmol, 10 eqv.) were added. The reaction mixture 

was heated to 100 oC for 6 hours then cooled to room temperature and poured into 

brine (100 mL). The aqueous solution was extracted with EtOAc (3 x 100 mL) and 

the combined organic extracts were washed with saturated NaHCO3 solution (100 

mL) and dried over Na2SO4. All solvent was removed in vacuo to leave an orange 

oil. The crude product was purified by flash column chromatography (50% Hex/50% 

EtOAc – 100% EtOAc) to yield a yellow solid as product (0.20 g, 14%). 1H NMR 

(400 MHz, DMSO-d6): δ (ppm) 11.19 (1H, br s, NH), 8.06 (1H, br s, NH), 7.35-7.12 

(9H, m, DMTr Ar-H), 6.90-6.87 (4H, m, DMTr CHCOCH3), 5.58 (1H, d, J 4.8, H1’), 

5.46 (1H, dd, J 7.0 and 5.0, H2’), 5.15 (1H, app t, J 6.8, H3’), 4.14 (1H, dd, J 12.0 

and 3.6, H5’), 4.01-3.97 (1H, m, H4’), 3.86 (1H, dd, J 12.0 and 6.0, H5’’), 3.73 (3H, 

s, DMTr Ar-OCH3), 3.72 (3H, s, DMTr Ar-OCH3), 2.05 (3H, s, COCH3), 2.00 (3H, s, 

COCH3), 1.78 (3H, s, COCH3). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 169.87 

(CO), 169.13 (CO), 168.82 (CO), 157.97 (quat C), 157.91 (quat C), 156.02 (quat C), 

153.31 (quat C), 151.28 (quat C), 144.66 (quat C), 142.89 (quat C), 136.46 (quat C), 

135.98 (quat C), 129.68 (Ar-C), 129.63 (Ar-C), 128.23 (Ar-C), 127.89 (Ar-C), 126.83 

(Ar-C), 115.24 (quat C), 113.16 (2 x CHCOCH3), 113.10 (2 x CHCOCH3), 87.25 

(C1’), 78.24 (C4’), 70.88 (C2’), 70.00 (NHC), 68.62 (C3’), 61.83 (C5’), 55.02 (Ar-
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OCH3), 55.00 (Ar-OCH3), 20.37 (COCH3), 20.20 (COCH3), 19.84 (COCH3). HRMS 

(ES+) (m/z): 779.2282 ([M+Na]+); C37H36N6O12Na requires 779.2283 (-0.1283 ppm). 

 

8-Nitroguanosine 1384,104 

 

To a solution of N2-dimethoxytrityl-8-nitro-2’,3’,5’-tri-O-acetylguanosine (0.20 g, 0.26 

mmol, 1 eqv.) in CHCl3 (10 mL) was added a solution of pTsOH (10 mg, 0.05 mmol, 

0.2 eqv.) in MeOH (1 mL). After 20 minutes the reaction was concentrated under 

reduced pressure to leave an orange residue as crude. This was then triturated with 

Et2O and carried forward to the final deacetylation step without further purification. 

The detritylated nucleoside was dissolved in NH3 (7 M) in MeOH (2 mL) and allowed 

to stir at room temperature for 48 hours in a sealed reaction vial. All solvent was 

then removed in vacuo and the resulting orange solid was triturated several times 

with Et2O to yield the desired product (46 mg, 54% over two steps). 1H NMR (400 

MHz, DMSO-d6): δ (ppm) 6.30 (1H, d, J 5.6, H1’), 4.93 (1H, app t, J 5.8, H2’), 4.19 

(1H, app t, J 5.2, H3’), 3.88-3.84 (1H, m, H4’), 3.68 (1H, dd, J 11.8 and 4.2, H5’), 

3.53 (1H, dd, J 12.0 and 5.6, H5’’). Signals not observed: NH, NH2, 2’-OH, 3’-OH, 5’-

OH. 13C NMR (100 MHz, DMSO-d6): δ (ppm) 159.91 (quat C), 157.64 (quat C), 

152.78 (quat C), 143.18 (quat C), 115.70 (quat C), 90.40 (C1’), 85.84 (C4’), 71.10 

(C2’), 70.28 (C3’), 61.98 (C5’). HRMS (ES-) (m/z): 327.0704 ([M-H]-); C10H11N6O7 

requires 327.0695 (+ 2.7517 ppm) 

 

General procedure for 8-nitroguanosine reduction reactions 

8-Nitroguanosine (1.0 mg, 3.1 μmoles) was dissolved in distilled H2O (1 mL) with 

stirring. Reducing agent (50 eqv.) was added, with additional portions (50 eqv.) 

subsequently added every 30 minutes for 90 minutes. Reactions were monitored by 

HPLC with samples taken every 30 minutes from the reaction start. 

 

 



Chapter 5  Experimental 

125 
 

2’,3’-Isopropylidene guanosine 18 

 

To a suspension of guanosine (3.01 g, 10.6 mmol, 1 eqv.) in anhydrous acetone 

(120 mL) was added pTsOH (1.83 g, 9.62 mmol, 0.9 eqv.) and DMP (30 mL, 245 

mmol, 23.1 eqv). The resulting reaction mixture was allowed to stir at room 

temperature overnight. All solvent was then removed under reduced pressure to 

leave an off-white solid. The solid was dissolved in water (20 mL) and solid NaHCO3 

(0.89 g, 10.6 mmol, 1 eqv.) was added in portions which produced a white foam that 

was stirred for 2 hours. A saturated NaHCO3 solution (10 mL) was then added and 

the reaction was stirred for a further 2 hours, over which time a suspension formed. 

The reaction mixture was filtered under vacuum and the white solid isolated was 

washed several times with cold water then dried under vacuum to yield the desired 

product (2.27 g, 66%). 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.87 (1H, br s, NH), 

7.89 (1H, s, H8), 6.58 (2H, br s, NH2), 5.92 (1H, d, J 2.8, H1’), 5.19 (1H, dd, J 6.4 

and 2.8, H2’), 5.08 (1H, br s, 5’-OH), 4.96 (1H, dd, J 6.2 and 3.0, H3’), 4.13-4.10 

(1H, m, H4’), 3.57-3.49 (2H, m, H5’ and H5’’), 1.51 (3H, s, CH3), 1.31 (3H, s, CH3). 

13C NMR (100 MHz, DMSO-d6): δ (ppm) 157.72 (quat C), 154.38 (quat C), 150.80 

(quat C), 135.69 (C8), 116.81 (quat C), 113.03 (quat C), 88.50 (C1’), 86.59 (C4’), 

83.52 (C2’), 81.21 (C3’), 61.64 (C5’), 27.08 (CH3), 25.25 (CH3). HRMS (ES+) (m/z): 

346.1122 ([M+Na]+); C13H17N5O5Na requires 346.1122 (0.0000 ppm). 

 

8-Bromo-2’,3’-isopropylidene guanosine 19 

 

2’,3’-Isopropylidene guanosine (2.38 g, 7.36 mmol) was suspended in distilled H2O 

(25 mL). Aliquots of bromine water (5 mL) were added until the reaction mixture 

remained permanently yellow. The reaction mixture was stirred for 6 hours at room 
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temperature and then filtered under vacuum. The solid obtained was washed with 

the reaction liquor then dried under vacuum to yield the desired product as a pale 

yellow solid (1.98 g, 67%). 1H NMR (400 MHz, DMSO-d6): δ (ppm) 10.86 (1H, s, 

NH), 6.64 (2H, br s, NH2), 5.89 (1H, d, J 1.6, H1’), 5.44 (1H, dd, J 6.4 and 1.6, H2’), 

5.12 (1H, dd, J 6.4 and 4.0, H3’), 4.08-4.03 (1H, m, H4’), 3.54 (1H, dd, J 11.4 and 

5.8, H5’), 3.47 (1H, dd, J 11.6 and 6.8, H5’’), 1.52 (3H, s, CH3), 1.32 (3H, s, CH3). 

Signal not observed: 5’-OH. 13C NMR (100 MHz, DMSO-d6): δ (ppm) 155.47 (quat 

C), 153.66 (quat C), 151.51 (quat C), 120.29 (quat C), 117.09 (quat C), 113.08 (quat 

C), 89.80 (C1’), 88.33 (C4’), 82.83 (C2’), 81.51 (C3’), 61.83 (C5’), 27.07 (CH3), 

25.35 (CH3). HRMS (ES+) (m/z): 424.0244 and 426.0216 ([M+Na]+); 

C13H16BrN5O5Na requires 424.0227 and 426.0208 (+4.0092 and +1.8778 ppm). 
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5.3 Experimental procedures for results and discussion 2 

2’,3’-Isopropylidene uridine 26164 

 

Concentrated H2SO4 (1 mL) was added dropwise to a suspension of uridine (2.00 g, 

8.19 mmol) in anhydrous acetone (85 mL) and stirred for 3 hours. The reaction was 

quenched by the addition of Et3N (5.2 mL) and all solvent was removed in vacuo to 

leave a thick, yellowish oil as crude. The crude material was purified by flash 

column chromatography (100% DCM-5% MeOH/95% DCM) to yield the desired 

product as a white solid (2.08 g, 89%). Rf = 0.25 (5% MeOH/95% DCM). 1H NMR 

(400 MHz, DMSO-d6): δ (ppm) 11.37 (1H, s, NH), 7.79 (1H, d, J 8.0, H6), 5.83 (1H, 

d, J 2.4, H1’), 5.63 (1H, d, J 8.0, H5), 5.08 (1H, t, J 4.6, 5’-OH), 4.89 (1H, dd, J 6.0 

and 2.4, H2’), 4.74 (1H, dd, J 6.4 and 3.6, H3’), 4.08-4.05 (1H, m, H4’), 3.62-3.52 

(2H, m, H5’ and H5’’), 1.48 (3H, s, CH3), 1.28 (3H, s, CH3). 13C NMR (100 MHz, 

DMSO-d6): δ (ppm) 163.18 (CO), 150.34 (CO), 141.92 (C6), 112.97 (quat C), 

101.74 (C5), 91.12 (C1’), 86.52 (C4’), 83.68 (C2’), 80.48 (C3’), 61.27 (C5’), 27.05 

(CH3), 25.19 (CH3). HRMS (ES+) (m/z): 307.0904 ([M+Na]+); C12H16N2O6Na requires 

307.0901 (+0.9769 ppm). 

 

5’-tert-Butyldimethylsilyl-2’,3’-isopropylidene uridine 27164 

 

2’,3’-Isopropylidene uridine (3.00 g, 10.6 mmol, 1 eqv.) was suspended in 

anhydrous DCM (30 mL) and cooled to 0 oC. Imidazole (1.45 g, 21.2 mmol, 2 eqv.) 

and TBDMSCl (2.39 g, 15.9 mmol, 1.5 eqv.) were added under N2 and the reaction 

mixture was allowed to warm to room temperature. After 3 hours, TLC showed the 
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reaction to be complete. All solvent was removed in vacuo and the resulting crude 

material was dissolved in EtOAc (50 mL) and washed with water (30 mL) and brine 

(30 mL). The organic layer was dried over Na2SO4 and then concentrated under 

reduced pressure. The crude material was purified by flash column chromatography 

(100% DCM – 3% MeOH/97% DCM) to yield a white solid as product (3.79 g, 90%). 

Rf = 0.44 (5% MeOH/95% DCM). 1H NMR (400 MHz, CDCl3): δ (ppm) 8.59 (1H, br 

s, NH), 7.70 (1H, d, J 8.0, H6), 5.99 (1H, d, J 2.8, H1’), 5.68 (1H, dd, J 8.0 and 2.0, 

H5), 4.76 (1H, dd, J 6.0 and 2.8, H3’), 4.68 (1H, dd, J 6.4 and 2.8, H2’), 4.33-4.31 

(1H, m, H4’), 3.93 (1H, dd, J 11.4 and 2.2, H5’), 3.80 (1H, dd, J 11.4 and 3.0, H5’’), 

1.59 (3H, s, CH3), 1.36 (3H, s, CH3), 0.90 (9H, s, 3 x CH3), 0.10 (3H, s, SiCH3), 0.09 

(3H, s, SiCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 163.04 (CO), 150.11 (CO), 

140.66 (C6), 114.30 (quat C), 102.32 (C5), 92.07 (C1’), 86.80 (C4’), 85.55 (C2’), 

80.43 (C3’), 63.50 (C5’), 27.43 (CH3), 26.00 (3 x CH3), 25.51 (CH3), 18.49 (quat C), 

-5.30 (SiCH3), -5.40 (SiCH3). HRMS (ES+) (m/z): 421.1767 ([M+Na]+); 

C18H30N2O6SiNa requires 421.1765 (+0.4749 ppm). 

 

6-Iodo-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 28164 

 

A solution of anhydrous diisopropylamine (1.03 mL, 7.37 mmol, 2.6 eqv.) in 

anhydrous THF (10 mL) was cooled to -78 oC. To this solution was added 2.5 M n-

BuLi (2.95 mL, 7.37 mmol, 2.6 eqv.). The resulting LDA solution was allowed to stir 

at -78 oC for 10 minutes and then a solution of 5’-TBDMS-2’,3’-isopropylidene 

uridine (1.13 g, 2.84 mmol, 1 eqv.) in anhydrous THF (5 mL) was added. The 

reaction mixture was stirred for 45 minutes and then a solution of iodine (0.77 g, 

3.03 mmol, 1.1 eqv.) in anhydrous THF (5 mL) was added. The reaction mixture 

was maintained at -78 oC with stirring for a further 4 hours and then was quenched 

by the addition of AcOH (0.4 mL). EtOAc (50 mL) was then added and the reaction 

mixture was washed with 1 M Na2S2O3 solution (50 mL), saturated NaHCO3 solution 

(50 mL) and brine (50 mL). The organic layer was dried over Na2SO4 and all solvent 

was removed under reduced pressure to leave a crude residue that was purified by 
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flash column chromatography (100% Hex – 70% Hex/30% EtOAc). The desired 

product was isolated as a yellow solid (0.66 g, 44%). Rf = 0.26 (70% Hex/30% 

EtOAc). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.34 (1H, br s, NH), 6.45 (1H, s, H5), 

6.09 (1H, d, J 1.2, H1’), 5.18 (1H, dd, J 6.4 and 1.2, H2’), 4.81 (1H, dd, J 6.0 and 

4.4, H3’), 4.19-4.15 (1H, m, H4’), 3.83-3.75 (2H, m, H5’ and H5’’), 1.55 (3H, s, CH3), 

1.34 (3H, s, CH3), 0.88 (9H, s, 3 x CH3), 0.05 (3H, s, SiCH3), 0.05 (3H, s, SiCH3). 

13C NMR (100 MHz, CDCl3): δ (ppm) 161.44 (CO), 147.19 (CO), 116.93 (C5), 

114.00 (quat C), 113.78 (quat C), 102.08 (C1’), 89.96 (C4’), 84.54 (C2’), 82.16 

(C3’), 64.12 (C5’), 27.37 (CH3), 26.09 (3 x CH3), 25.53 (CH3), 18.61 (quat C), -5.07 

(SiCH3), -5.09 (SiCH3). HRMS (ES+) (m/z): 547.0734 ([M+Na]+); C18H29IN2O6SiNa 

requires 547.0732 (+0.3656 ppm). 

 

6-Iodouridine 29164 

 

6-Iodo-5’-TBDMS-2’,3’-isopropylidene uridine (0.10 g, 0.19 mmol) was suspended in 

distilled H2O (2 mL) and cooled to 0 oC. A 50% aqueous TFA solution (3 mL) was 

added dropwise and the reaction mixture was allowed to warm to room temperature 

and left to stir in the dark for 45 minutes. The reaction mixture was concentrated in 

vacuo and purified by flash column chromatography (10% EtOH/90% CHCl3 – 15% 

EtOH/85% CHCl3) to yield the desired product as a white solid (53 mg, 75%). 1H 

NMR (400 MHz, CD3OD): δ (ppm) 6.43 (1H, s, H5), 5.96 (1H, d, J 3.6, H1’), 4.71 

(1H, dd, J 6.4 and 3.2, H2’), 4.33 (1H, app t, J 6.6, H3’), 3.88 (1H, td, J 6.3 and 3.1, 

H4’), 3.80 (1H, dd, J 12.0 and 2.8, H5’), 3.67 (1H, dd, J 12.0 and 6.0, H5’’). 13C 

NMR (100 MHz, CD3OD): δ (ppm) 163.94 (CO), 149.00 (CO), 117.50 (C6), 117.26 

(C5), 104.04 (C1’), 86.29 (C4’), 73.39 (C2’), 71.28 (C3’), 63.71 (C5’). HRMS (ES+) 

(m/z): 392.9545 ([M+Na]+); C9H11IN2O6Na requires 392.9554 (-2.2903 ppm). 
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6-Azido-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 33203 

 

6-Iodo-5’-TBDMS-2’,3’-isopropylidene uridine (0.20 g, 0.38 mmol, 1 eqv.) was 

dissolved in anhydrous DMF (3 mL). Sodium azide (0.03 g, 0.46 mmol, 1.2 eqv.) 

was then added and the reaction mixture was stirred in the dark for 1 hour at room 

temperature, after which time TLC showed complete disappearance of starting 

material. All solvent was then removed in vacuo and the resulting crude residue 

dissolved in EtOAc (30 mL). The crude was washed with cold H2O (3 x 30 mL) and 

brine (3 x 30 mL) and the organic layer was dried over Na2SO4. All solvent was 

removed under reduced pressure and the crude material was purified by flash 

column chromatography (70% Hex/30% EtOAc – 60% Hex/40% EtOAc) to give the 

desired compound as an off-white solid (0.14 g, 84%). Rf = 0.27 (60% Hex/40% 

EtOAc). IR νmax/cm-1 2136 (N3). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.41 (1H, br s, 

NH), 6.09 (1H, d, J 1.2, H1’), 5.50 (1H, s, H5), 5.14 (1H, dd, J 6.6 and 1.4, H2’), 

4.80 (1H, dd, J 6.4 and 4.8, H3’), 4.13-4.09 (1H, m, H4’), 3.83-3.75 (2H, m, H5’ and 

H5’’), 1.54 (3H, s, CH3), 1.33 (3H, s, CH3), 0.88 (9H, s, 3 x CH3), 0.05 (6H, s, 2 x 

SiCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 162.01 (quat C), 152.35 (quat C), 

149.30 (quat C), 114.12 (quat C), 89.96 (C1’), 89.40 (C4’), 88.69 (C5), 84.28 (C2’), 

81.88 (C3’), 64.09 (C5’), 27.38 (CH3), 26.08 (3 x CH3), 25.54 (CH3), 18.61 (quat C), 

-5.10 (SiCH3), -5.13 (SiCH3). HRMS (ES+) (m/z): 462.1784 ([M+Na]+); 

C18H29N5O6SiNa requires 462.1779 (+1.0818 ppm).  
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6-((Triphenyl-λ5-phosphanylidene)amino)-5’-tert-butyldimethylsilyl-2’,3’-

isopropylidene uridine 34175 

 

To a solution of 6-azido-5’-TBDMS-2’,3’-isopropylidene uridine (0.15 g, 0.34 mmol, 

1 eqv.) in anhydrous DCM (2 mL) was added a solution of triphenylphosphine (89 

mg, 0.34 mmol, 1 eqv.) in anhydrous DCM (2 mL). The resulting bright yellow 

reaction mixture was stirred for 1 hour and then concentrated in vacuo. The crude 

material was purified by flash column chromatography (40% Pet. Ether/60% EtOAc 

– 100% EtOAc) to yield the title compound as a white solid (17 mg, 7%). 1H NMR 

(400 MHz, CDCl3): δ (ppm) 8.07 (1H, br s, NH), 7.70 (6H, app dd, J 12.6 and 7.4, 

Ar-H), 7.64-7.60 (3H, m, Ar-H), 7.51 (6H, td, J 7.6 and 3.2, Ar-H), 5.27 (1H, app d, J 

6.8, H2’), 4.85 (1H, dd, J 6.2 and 4.2, H3’), 4.43 (1H, s, H5), 4.21-4.17 (1H, m, H4’), 

3.87-3.85 (2H, m, H5’ and H5’’), 1.58 (3H, s, CH3), 1.37 (3H, s, CH3), 0.88 (9H, s, 3 

x CH3), 0.05 (6H, s, 2 x SiCH3). Signal not observed: H1’ (correlations present but 

signal hidden under CDCl3 peak). 13C NMR (100 MHz, CDCl3): δ (ppm) 163.55 

(CO), 158.37 (d, J 12.2, 3 x Ar-C), 151.21 (CO), 133.20 (d, J 2.8, 3 x Ar-C), 132.84 

(d, J 10.3, 6 x Ar-C),129.34 (d, J 12.6, 6 x Ar-C), 126.95 (d, J 102.6, C6), 113.12 

(quat C), 89.33 (d, J 1.5, C1’), 89.26 (C4’), 84.97 (C2’), 84.46 (d, J 8.1, C5), 82.94 

(C3’), 64.85 (C5’), 27.46 (CH3), 26.17 (3 x CH3), 25.87 (CH3), 18.68 (quat C), -4.97 

(SiCH3), -5.04 (SiCH3). 31P NMR (162 MHz, CDCl3): δ (ppm) 14.39. HRMS (ES+) 

(m/z): 696.2604 ([M+Na]+); C36H44N3O6PSiNa requires 696.2629 (-3.5906 ppm). 
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6-(4-(3-Chloropropyl)-1H-1,2,3-triazol-1-yl)-5’-tert-butyldimethylsilyl-2’,3’-

isopropylidene uridine 36180 

 

6-Azido-5’-TBDMS-2’,3’-isopropylidene uridine (0.2 g, 0.46 mmol, 1 eqv.) was 

dissolved in a mixture of DCM (0.7 mL) and distilled H2O (0.7 mL). To this solution 

was added 5-chloro-1-pentyne (43 μL, 0.41 mmol, 0.9 eqv.) followed by 

CuSO4
.5H2O (6 mg, 24.0 μmol, 5 mol%) and sodium ascorbate (13 mg, 65.6 μmol, 

13 mol%). The resulting reaction mixture was stirred vigorously at room temperature 

overnight. The reaction mixture was then diluted with more DCM (10 mL) and 

washed with water (10 mL). The organic extract was dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (80% Hex/20% EtOAc – 60% Hex/40% EtOAc) to yield the 

desired product as a white solid (0.16g, 72%). Rf = 0.24 (60% Hex/40% EtOAc). 1H 

NMR (400 MHz, CDCl3): δ (ppm) 9.39 (1H, br s, NH), 7.85 (1H, s, NCHC), 5.99 (1H, 

s, H5), 5.24 (1H, app d, J 6.4, H2’), 5.10 (1H, app s, H1’), 4.79 (1H, dd, J 6.4 and 

4.4, H3’), 4.11-4.07 (1H, m, H4’), 3.83-3.81 (2H, m, H5’ and H5’’), 3.62 (2H, t, J 6.2, 

CH2CH2CH2Cl), 3.01 (2H, t, J 7.4, CH2CH2CH2Cl), 2.25 (2H, m, CH2CH2CH2Cl), 

1.43 (3H, s, CH3), 1.31 (3H, s, CH3), 0.89 (9H, s, 3 x CH3), 0.07 (3H, s, SiCH3), 0.06 

(3H, s, SiCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 161.42 (quat C), 149.11 (quat 

C), 147.91 (quat C), 146.17 (quat C), 123.34 (NCHC), 114.13 (quat C), 100.85 (C5), 

91.96 (C1’), 89.97 (C4’), 84.14 (C2’), 81.85 (C3’), 64.03 (C5’), 43.97 

(CH2CH2CH2Cl), 31.42 (CH2CH2CH2Cl), 27.22 (CH3), 26.05 (3 x CH3), 25.42 (CH3), 

22.63 (CH2CH2CH2Cl), 18.58 (quat C), -5.07 (SiCH3), -5.09 (SiCH3). HRMS (ES+) 

(m/z): 564.2015 ([M+Na]+); C23H36ClN5O6SiNa requires 564.2016 (-0.1772 ppm). 
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6-Azidouridine 38203 

 

6-Azido-5’-TBDMS-2’,3’-isopropylidene uridine (0.88 g, 2.00 mmol) was suspended 

in distilled H2O (6 mL) and cooled to 0 oC. A 50% aqueous TFA solution (3 mL) was 

added dropwise and the reaction mixture was allowed to warm to room temperature 

and left to stir in the dark for 45 minutes. The reaction mixture was concentrated in 

vacuo and purified by flash column chromatography (5% EtOH/95% CHCl3 – 20% 

EtOH/80% CHCl3) to yield the desired product as an off-white solid (0.47 g, 82%). 

1H NMR (400 MHz, CD3OD): δ (ppm) 5.96 (1H, d, J 3.6, H1’), 5.58 (1H, s, H5), 4.64 

(1H, dd, J 6.4 and 3.6, H2’), 4.33 (1H, app t, J 6.4, H3’), 3.85-3.79 (2H, m, H4’ and 

H5’), 3.69-3.65 (1H, m, H5’’). 13C NMR (100 MHz, CD3OD): δ (ppm) 164.57 (quat 

C), 154.55 (quat C), 151.32 (quat C), 92.00 (C1’), 89.62 (C5), 85.96 (C4’), 73.22 

(C2’), 70.93 (C3’), 63.36 (C5’). HRMS (ES+) (m/z): 308.0603 ([M+Na]+); 

C9H11N5O6Na requires 308.0602 (+0.3246 ppm). 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine 39 

 

6-Azidouridine (0.47 g, 1.65 mmol, 1 eqv.) and DMAP (20 mg, 0.16 mmol, 0.1 eqv.) 

were added to anhydrous MeCN (5 mL) and cooled to 0 oC. Et3N (1.37 mL, 9.83 

mmol, 6 eqv.) was added followed by the dropwise addition of acetic anhydride 

(0.46 mL, 4.88 mmol, 3 eqv.). The reaction mixture was then warmed to room 

temperature and stirred for 3 hours. Once TLC indicated there was no remaining 

starting material, MeOH (5 mL) was added and all solvent was then removed under 

reduced pressure. The crude residue was purified by flash column chromatography 

(100% DCM – 2% MeOH/98% DCM) to yield the desired product as a white solid 

(0.47 g, 69%). 1H NMR (400 MHz, CD3OD): δ (ppm) 6.01 (1H, d, J 2.4, H1’), 5.73 
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(1H, dd, J 6.8 and 2.8, H2’), 5.59 (1H, s, H5), 5.55 (1H, app t, J 7.2, H3’), 4.45-4.40 

(1H, m, H5’), 4.23-4.17 (2H, m, H4’ and H5’’), 2.10 (3H, s, COCH3), 2.08 (3H, s, 

COCH3), 2.05 (3H, s, COCH3). 13C NMR (100MHz, CD3OD): δ (ppm) 172.45 (CO), 

171.71 (CO), 171.34 (CO), 164.37 (quat C), 153.66 (quat C), 150.93 (quat C), 89.71 

(C5), 89.62 (C1’), 80.29 (C4’), 74.46 (C2’), 71.06 (C3’), 63.86 (C5’), 20.60 (COCH3), 

20.40 (COCH3), 20.31 (COCH3). HRMS (ES+) (m/z): 434.0912 ([M+Na]+); 

C15H17N5O9Na requires 434.0918 (-1.3822 ppm). 

 

6-(4-(3-Chloropropyl)-1H-1,2,3-triazol-1-yl)-2’,3’,5’-tri-O-acetyl uridine 40 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine (0.10 g, 0.24 mmol, 1 eqv.) was dissolved in a 

mixture of tBuOH (1 mL) and distilled H2O (1 mL). To this solution was added 5-

chloro-1-pentyne (28 μL, 0.28 mmol, 1.2 eqv.), a 0.1 M aqueous CuSO4
.5H2O 

solution (122 μL, 5 mol%) and a 0.5 M aqueous sodium ascorbate solution (49 μL, 

10 mol%). The resulting reaction mixture was stirred vigorously at room temperature 

overnight. TLC showed staring material to still be present so more 5-chloro-1-

pentyne (28 μL, 0.25 mmol), 0.1 M aqueous CuSO4
.5H2O solution (122 μL, 5 mol%) 

and 0.5 M aqueous sodium ascorbate solution (49 μL, 10 mol%) were added. The 

reaction was left to stir for 5 days and then diluted with water (20 mL) and extracted 

with EtOAc (3 x 20 mL). The organic extract was dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue obtained was purified by 

flash column chromatography (90% Hex/10% EtOAc – 40% Hex/60% EtOAc) to 

yield the desired product as a white solid (52 mg, 42%). Rf = 0.55 (20% Hex/80% 

EtOAc) 1H NMR (400 MHz, CDCl3): δ (ppm) 9.37 (1H, br s, NH), 7.74 (1H, s, 

NCHC), 5.83-5.80 (2H, m, H5 and H2’), 5.49 (1H, app t, J 7.4, H3’), 4.90 (1H, d, J 

2.4, H1’), 4.45 (1H, dd, J 11.8 and 3.0, H5’), 4.21 (1H, dd, J 11.8 and 6.6, H5’’), 

4.17-4.12 (1H, m, H4’), 3.62 (2H, t, J 6.2, CH2CH2CH2Cl), 2.99 (2H, t, J 7.4, 

CH2CH2CH2Cl), 2.27-2.20 (2H, m, CH2CH2CH2Cl), 2.08 (3H, s, COCH3), 2.06 (3H, 

s, COCH3), 2.03 (3H, s, COCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 170.84 (CO), 

170.17 (CO), 169.57 (CO), 161.10 (quat C), 148.78 (quat C), 147.58 (quat C), 

145.45 (quat C), 123.80 (NCHC), 101.21 (C5), 90.99 (C1’), 79.95 (C4’), 73.42 (C2’), 
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70.11 (C3’), 63.22 (C5’), 43.96 (CH2CH2CH2Cl), 31.47 (CH2CH2CH2Cl), 22.57 

(CH2CH2CH2Cl), 20.88 (COCH3), 20.61 (COCH3), 20.46 (COCH3). HRMS (ES+) 

(m/z): 514.1332 ([M+H]+); C20H25ClN5O9 requires 514.1335 (-0.5835 ppm).  

 

6-(4-Phenyl-1H-1,2,3-triazol-1-yl)-2’,3’,5’-tri-O-acetyl uridine 41 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine (0.1 g, 0.24 mmol, 1 eqv.) was dissolved in a 

mixture of tBuOH (0.5 mL) and distilled H2O (0.5 mL). To this solution was added 

phenylacetylene (29 μL, 0.26 mmol, 1.1 eqv.), a 0.1 M aqueous CuSO4
.5H2O 

solution (122 μL, 5 mol%) and a 0.5 M aqueous sodium ascorbate solution (49 μL, 

10 mol%). The reaction was stirred at room temperature overnight. Further 

phenylacetylene (29 μL, 0.26 mmol, 1.1 eqv.), 0.1 M aqueous CuSO4
.5H2O solution 

(122 μL, 5 mol%) and 0.5 M aqueous sodium ascorbate solution (49 μL, 10 mol%) 

were added and the reaction was stirred for another 3 days. All solvent was then 

removed in vacuo and the crude material was purified by flash column 

chromatography (60% Hex/40% EtOAc – 50% Hex/50% EtOAc). The desired 

product was isolated as a white solid (64 mg, 52%). 1H NMR (400 MHz, CDCl3): δ 

(ppm) 9.34 (1H, br s, NH), 8.16 (1H, s, NCHC), 7.90-7.88 (2H, m, Ar-H), 7.51-7.42 

(3H, m, Ar-H), 5.92 (1H, d, J 1.6, H5), 5.85 (1H, dd, J 6.8 and 2.4, H2’), 5.51 (1H, 

dd, J 7.6 and 7.2, H3’), 4.94 (1H, d, J 2.4, H1’), 4.46 (1H, dd, J 12.0 and 3.2, H5’), 

4.21 (1H, dd, J 12.0 and 6.4, H5’’), 4.16-4.13 (1H, m, H4’), 2.09 (3H, s, COCH3), 

2.05 (3H, s, COCH3), 1.99 (3H, s, COCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 

170.84 (CO), 170.32 (CO), 169.60 (CO), 161.05 (quat C), 148.78 (quat C), 148.71 

(quat C), 145.40 (quat C), 129.50 (Ar-C), 129.34 (2 x Ar-C), 128.77 (quat C), 126.13 

(2 x Ar-C), 121.95 (NCHC), 101.49 (C5), 91.17 (C1’), 79.93 (C4’), 73.49 (C2’), 70.06 

(C3’), 63.17 (C5’), 20.88 (COCH3), 20.61 (COCH3), 20.46 (COCH3). HRMS (ES+) 

(m/z): 536.1395 ([M+Na]+); C23H23N5O9Na requires  536.1388 (+1.3056 ppm). 
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6-Methoxy carbonyl triazole- 2’,3’,5’-tri-O-acetyl uridine 42 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine (160 mg, 0.39 mmol, 1 eqv.) was dissolved in a 

mixture of tBuOH (1 mL) and distilled H2O (1 mL). Methyl propiolate (35 μL, 0.39 

mmol, 1 eqv.), a 0.1 M aqueous CuSO4
.5H2O solution (192 μL, 5 mol%) and a 0.5 M 

aqueous sodium ascorbate solution (100 μL, 13 mol%) were added and the reaction 

was stirred overnight. TLC showed the reaction to be progressing so more methyl 

propiolate (35 μL, 0.39 mmol, 1 eqv.), 0.1 M aqueous CuSO4
.5H2O solution (192 μL, 

5 mol%) and 0.5 M aqueous sodium ascorbate solution (100 μL, 13 mol%) were 

added and the reaction was stirred overnight once more. All solvent was then 

removed in vacuo. The crude residue was dissolved in distilled H2O (30 mL) and 

extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with 

distilled H2O (2 x 20 mL) and dried over Na2SO4. The crude material was purified by 

flash column chromatography (80% Hex/20% EtOAc – 40% Hex/60% EtOAc) to 

yield the desired product as an off-white solid (49 mg, 25%). 1H NMR (400 MHz, 

CD3OD): δ (ppm) 8.98 (1H, s, NCHC), 6.07 (1H, s, H5), 5.85 (1H, dd, J 6.8 and 2.8, 

H2’), 5.54 (1H, app t, J 7.4, H3’), 4.89 (1H, d, J 2.4, H1’), 4.43 (1H, dd, J 11.8 and 

3.0, H5’), 4.19-4.09 (2H, m, H4’ and H5’’), 3.97 (3H, s, OCH3), 2.06 (3H, s, COCH3), 

2.04 (3H, s, COCH3), 2.03 (3H, s, COCH3). 13C NMR (100 MHz, CD3OD): δ (ppm) 

172.50 (CO), 171.68 (CO), 171.24 (CO), 163.49 (quat C), 161.57 (quat C), 150.70 

(quat C), 145.90 (quat C), 141.23 (quat C), 132.58 (NCHC), 103.22 (C5), 91.82 

(C1’), 80.76 (C4’), 74.43 (C2’), 70.89 (C3’), 63.64 (C5’), 52.94 (OCH3), 20.63 

(COCH3), 20.39 (COCH3), 20.25 (COCH3). HRMS (ES+) (m/z): 518.1138 ([M+Na]+); 

C19H21N5O11Na requires 518.1130 (+1.5541 ppm). 
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6-(3-(Methoxy)-3-oxopropanamido)-2’,3’,5’-tri-O-acetyl uridine 43 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine (0.1 g, 0.24 mmol, 1 eqv.) was dissolved in a 

mixture of tBuOH (0.5 mL) and distilled H2O (0.5 mL). To this solution was added 

methyl propiolate (24 μL, 0.27 mmol, 1.1 eqv.), a 0.1 M aqueous CuSO4
.5H2O 

solution (122 μL, 5 mol%) and a 0.5 M aqueous sodium ascorbate solution (49 μL, 

10 mol%). The reaction was stirred at room temperature overnight. TLC showed 

only starting material so another equivalent of methyl propiolate (24 μL, 0.27 mmol, 

1.1 eqv.), 0.1 M aqueous CuSO4
.5H2O solution (122 μL, 5 mol%) and 0.5 M 

aqueous sodium ascorbate solution (49 μL, 10 mol%) was added. The reaction was 

stirred for 2 days and monitored by TLC. More methyl propiolate (0.21 mL, 2.40 

mmol, 10 eqv.), 0.1 M aqueous CuSO4
.5H2O solution (122 μL, 5 mol%) and 0.5 M 

aqueous sodium ascorbate solution (49 μL, 10 mol%) were added and the reaction 

mixture was stirred for a further 2 days. All solvent was then removed in vacuo and 

the crude material was purified by flash column chromatography (70% Hex/30% 

EtOAc – 50% Hex/50% EtOAc). The title compound was isolated as an off-white 

solid (40 mg, 34%). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.57 (1H, br s, NH), 9.25 

(1H, br s, NH), 6.28 (1H, s, H5), 6.01 (1H, d, J 4.0, H1’), 5.58 (1H, dd, J 7.0 and 4.2, 

H2’), 5.45 (1H, app t, J 7.2, H3’), 4.45 (1H, dd, J 12.2 and 7.8, H5’), 4.39 (1H, dd, J 

12.2 and 3.4, H5’’), 4.24 (1H, td, J 7.5 and 3.3, H4’), 3.78 (3H, s, OCH3), 3.66-3.46 

(2H, ABq, J 17.2, COCH2CO), 2.11 (3H, s, COCH3), 2.10 (3H, s, COCH3), 2.07 (3H, 

s, COCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 171.44 (quat C), 171.14 (quat C), 

169.78 (quat C), 169.45 (quat C), 163.30 (quat C), 163.19 (quat C), 149.98 (quat C), 

145.43 (quat C), 95.58 (C5), 88.51 (C1’), 80.01 (C4’), 73.22 (C2’), 69.78 (C3’), 

63.27 (C5’), 53.15 (OCH3), 42.42 (COCH2CO), 20.88 (COCH3), 20.72 (COCH3), 

20.50 (COCH3). HRMS (ES+) (m/z): 508.1195 ([M+Na]+); C19H23N3O12Na requires 

508.1174 (+4.1329 ppm). 
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Benzyl Propiolate 

 

Propiolic acid (0.62 mL, 10.1 mmol, 1 eqv.) was added to acetone (50 mL) followed 

by potassium carbonate (2.07 g, 15.0 mmol, 1.5 eqv.) and benzyl bromide (1.55 mL, 

13.0 mmol, 1.3 eqv.). The resulting reaction mixture was stirred at room 

temperature overnight. All solvent was removed and the crude material was 

dissolved in distilled H2O (30 mL) and extracted with Et2O (3 x 30 mL). The 

combined organic extracts were dried over Na2SO4 and purified by column 

chromatography (100% Hex – 90% Hex/10% EtOAc). The title compound was 

isolated as a clear liquid (0.36 g, 22%). 1H NMR (400 MHz, CDCl3): δ (ppm) 7.39-

7.35 (5H, m, Ar-H), 5.22 (2H, s, CH2Ph), 2.89 (1H, s, HCC). 13C NMR (400 MHz, 

CDCl3): δ (ppm) 152.68 (quat C), 134.66 (quat C), 128.87 (Ar-C), 128.83 (2 x Ar-C), 

128.72 (2 x Ar-C), 75.18 (HCC), 74.68 (quat C), 68.06 (CH2Ph). 

 

6-(3-(Benzyloxy)-3-oxopropanamido)-2’,3’,5’-tri-O-acetyl uridine 44 

 

6-Azido-2’,3’,5’-tri-O-acetyl uridine (0.1 g, 0.24 mmol, 1 eqv.) was dissolved in a 

mixture of tBuOH (0.5 mL) and distilled H2O (0.5 mL). To this solution was added 

benzyl propiolate (38 μL, 0.24 mmol, 1 eqv.), a 0.1 M aqueous CuSO4
.5H2O solution 

(122 μL, 5 mol%) and a 0.5 M aqueous sodium ascorbate solution (49 μL, 10 

mol%). The reaction was stirred at room temperature for 4 days at which point TLC 

showed no remaining starting material. All solvent was removed in vacuo and the 

crude material was purified by flash column chromatography (90% Hex/10% EtOAc 

– 50% Hex/50% EtOAc). The title compound was isolated as a white solid (59 mg, 

44%). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.41 (1H, br s, NH), 9.22 (1H, br s, NH), 

7.40-7.34 (5H, m, Ar-H), 6.32 (1H, d, J 1.2, H5), 6.05 (1H, d, J 4.4, H1’), 5.58 (1H, 

dd, J 7.2 and 4.4, H2’), 5.43 (1H, app t, J 7.2, H3’), 5.24-5.17 (2H, ABq, J 12.0, 
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CH2Ph), 4.42 (1H, dd, J 12.2 and 8.2, H5’), 4.31 (1H, dd, J 12.2 and 3.0, H5’’), 4.22 

(1H, td, J 7.8 and 2.7, H4’), 3.72-3.50 (2H, ABq, J 16.8, COCH2CO), 2.12 (3H, s, 

COCH3), 2.08 (3H, s, COCH3), 2.08 (3H, s, COCH3). 13C NMR (100 MHz, CDCl3): δ 

(ppm) 171.44 (quat C), 171.14 (quat C), 169.78 (quat C), 168.95 (quat C), 163.15 

(quat C), 162.97 (quat C), 149.97 (quat C), 145.35 (quat C), 134.61 (quat C), 128.96 

(Ar-C), 128.89 (2 x Ar-C), 128.55 (2 x Ar-C), 95.48 (C5), 88.24 (C1’), 80.13 (C4’), 

73.11 (C2’), 69.71 (C3’), 68.17 (CH2Ph), 63.16 (C5’), 42.74 (COCH2CO), 20.92 

(COCH3), 20.71 (COCH3), 20.55 (COCH3). HRMS (ES+) (m/z): 584.1500 ([M+Na]+); 

C25H27N3O12Na requires 584.1487 (+2.2255 ppm).  

 

6-Methoxy uridine 46 

 

6-(4-(3-Chloropropyl)-1H-1,2,3-triazol-1-yl)-2’,3’,5’-tri-O-acetyl uridine (74 mg, 0.14 

mmol) was dissolved in NH3 (7 M) in MeOH (2 mL) and stirred in a sealed vial at 

room temperature for 36 hours. All solvent was removed in vacuo and the crude 

material was purified by flash column chromatography (5% MeOH/95% DCM – 10% 

MeOH/90% DCM). The title product was isolated as a white solid (20 mg, 52%). 1H 

NMR (400 MHz, CD3OD): δ (ppm) 6.11 (1H, d, J 3.2, H1’), 5.15 (1H, s, H5), 4.57 

(1H, dd, J 5.8 and 3.4, H2’), 4.25 (1H, app t, J 6.4, H3’), 3.93 (3H, s, OCH3), 3.83-

3.79 (2H, m, H4’ and H5’), 3.65 (1H, dd, J 12.8 and 6.0, H5’’). 13C NMR (100 MHz, 

CD3OD): δ (ppm) 166.29 (quat C), 164.55 (quat C), 151.49 (quat C), 90.61 (C1’), 

85.51 (C4’), 79.52 (C5), 73.44 (C2’), 70.83 (C3’), 63.21 (C5’), 58.20 (OCH3). HRMS 

(ES-) (m/z): 273.0727 ([M-H]-); C10H13N2O7 requires 273.0728 (-0.3662 ppm). 
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2’,3’,5’-Tri-O-acetyl uridine 47 

 

Uridine (3.00 g, 12.3 mmol, 1 eqv.) and DMAP (0.03 g, 0.25 mmol, 0.1 eqv.) were 

dissolved in anhydrous pyridine (75 mL) and cooled to 0 oC. Acetic anhydride (3.95 

mL, 41.9 mmol, 3.4 eqv.) was then added dropwise with stirring, after which the 

reaction mixture was allowed to warm to room temperature. After 3 hours, TLC 

showed no remaining starting material. The reaction was quenched with H2O (30 

mL) and then partitioned between CHCl3 (100 mL) and H2O (100 mL). The organic 

layer was washed with 1 M HCl (100 mL) and brine (100 mL) and dried over 

Na2SO4. All solvent was removed in vacuo and the resulting residue was co-

evaporated twice with toluene. The crude material was purified by flash column 

chromatography (30% Hex/ 70% EtOAc – 100% EtOAc) to yield the desired product 

as a white foam (3.91 g, 86%). Rf = 0.60 (100% EtOAc). 1H NMR (400 MHz, CDCl3): 

δ (ppm) 9.15 (1H, br s, NH), 7.40 (1H, d, J 8.4, H6), 6.05 (1H, d, J 4.4, H1’), 5.80 

(1H, dd, J 8.2 and 1.8, H5), 5.36-5.30 (2H, m, H2’ and H3’), 4.40-4.32 (3H, m, H4’, 

H5’ and H5’’), 2.15 (3H, s, COCH3), 2.14 (3H, s, COCH3), 2.11 (3H, s, COCH3). 13C 

NMR (100 MHz, CDCl3): δ (ppm) 170.26 (CO), 169.78 (CO), 169.77 (CO), 162.82 

(CO), 150.31 (CO), 139.41 (C6), 103.57 (C5), 87.59 (C1’), 80.08 (C4’), 72.85 (C2’), 

70.32 (C3’), 63.28 (C5’), 20.91 (COCH3), 20.64 (COCH3), 20.55 (COCH3). HRMS 

(ES+) (m/z): 393.0908 ([M+Na]+); C15H18N2O9Na requires 393.0905 (+0.7632 ppm). 

 

5-Bromo-2’,3’,5’-tri-O-acetyl uridine 48185 

 

2’,3’,5’-Tri-O-acetyl uridine (1.00 g, 2.70 mmol, 1 eqv.) was dissolved in anhydrous 

DMF (8 mL). 1,3-Dibromo-5,5-dimethylhydantoin (0.42 g, 1.47 mmol, 0.55 eqv.) was 

added and the resulting clear, yellow reaction mixture was stirred for 1 hour. Cold 
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H2O (30 mL) was then added and the reaction mixture was extracted with DCM (3 x 

30 mL). The organic extracts were washed with saturated NaHCO3 solution (30 mL) 

and brine (30 mL) and dried over Na2SO4. All solvent was removed in vacuo to 

leave a thick, yellow oil which was purified by flash column chromatography (50% 

Hex/50% EtOAc – 45% Hex/55% EtOAc) to yield a white foam (1.05 g, 87%). Rf = 

0.36 (40% Hex/60% EtOAc). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.27 (1H, br s, 

NH), 7.83 (1H, s, H6), 6.10-6.06 (1H, m, H1’), 5.34-5.31 (2H, m, H2’ and H3’), 4.41-

4.32 (3H, m, H4’, H5’ and H5’’), 2.21 (3H, s, COCH3), 2.12 (3H, s, COCH3), 2.10 

(3H, s, COCH3). 13C NMR (400 MHz, CDCl3): δ (ppm) 170.20 (CO), 169.77 (CO), 

169.72 (CO), 158.61 (CO), 149.65 (CO), 138.65 (C6), 98.08 (C5), 87.42 (C1’), 

80.40 (C4’), 73.23 (C2’), 70.21 (C3’), 63.07 (C5’), 21.04 (COCH3), 20.63 (COCH3), 

20.52 (COCH3). HRMS (ES+) (m/z): 471.0011 and 473.0004 ([M+Na]+); 

C15H17BrN2O9Na requires 471.0010 and 472.9992 (+0.2123 and +2.5370 ppm). 

 

6-Cyano-2’,3’,5’-tri-O-acetyl uridine 49179 

 

5-Bromo-2’,3’,5’-tri-O-acetyl uridine (1.00 g, 2.23 mmol, 1 eqv.) was dissolved in 

anhydrous DMF (10 mL). NaCN (0.17 g, 3.47 mmol, 1.6 eqv.) was added and the 

reaction mixture was stirred overnight at room temperature. Cold water (30 mL) was 

added and then the product was extracted with DCM (3 x 30 mL). The organic 

extracts were washed with brine (3 x 30 mL) and then dried over Na2SO4. All 

solvent was removed in vacuo and the crude material was purified by flash column 

chromatography (70% Pet. Ether/30% EtOAc – 50% Pet. Ether/50% EtOAc) to yield 

the desired product as a white solid (0.46 g, 52%). Rf = 0.19 (60% Pet. Ether/40% 

EtOAc). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.46 (1H, br s, NH), 6.31 (1H, s, H5), 

5.82 (1H, d, J 3.6, H1’), 5.64 (1H, dd, J 7.0 and 3.4, H2’), 5.42 (1H, app t, J 7.4, 

H3’), 4.51 (1H, dd, J 11.8 and 2.6, H5’), 4.29 (1H, td, J 7.1 and 2.5, H4’), 4.23 (1H, 

dd, J 12.0 and 6.4, H5’’), 2.12 (6H, s, 2 x COCH3), 2.09 (3H, s, COCH3). 13C NMR 

(100 MHz, CDCl3): δ (ppm) 170.81 (CO), 170.49 (CO), 169.70 (CO), 160.22 (quat 

C), 148.37 (quat C), 127.45 (quat C), 113.38 (C5), 110.70 (quat C), 92.91 (C1’), 

79.92 (C4’), 73.06 (C2’), 69.75 (C3’), 62.88 (C5’), 20.83 (COCH3), 20.56 (COCH3), 
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20.45 (COCH3). HRMS (ES+) (m/z): 418.0851 ([M+Na]+); C16H17N3O9Na requires 

418.0857 (-1.4351 ppm). 

 

6-(1H-Tetrazol-5-yl)-2’,3’,5’-tri-O-acetyl uridine 50171 

 

6-Cyano-2’,3’,5’-tri-O-acetyl uridine (0.20 g, 0.51 mmol, 1 eqv.), NaN3 (40 mg, 0.62 

mmol, 1.2 eqv.) and NH4Cl (33 mg, 0.62 mmol, 1.2 eqv.) were dissolved in 

anhydrous DMF (3 mL). The reaction mixture was heated to 95 oC for 5 hours then 

stirred at room temperature overnight. All solvent was then removed under reduced 

pressure and the material obtained carried through to the next step without further 

purification. 1H NMR (400 MHz, CD3OD): δ (ppm) 6.07 (1H, d, J 2.4, H1’), 6.01 (1H, 

s, H5), 5.93 (1H, dd, J 6.6 and 2.6, H2’), 5.59 (1H, app t, J 7.4, H3’), 4.42 (1H, dd, J 

11.6 and 3.2, H5’), 4.17 (1H, dd, J 11.8 and 5.8, H5’’), 4.13-4.09 (1H, m, H4’), 2.06 

(3H, s, COCH3), 2.05 (3H, s, COCH3), 2.04 (3H, s, COCH3). 13C NMR (100 MHz, 

CD3OD): δ (ppm) 172.61 (CO), 171.64 (CO), 171.39 (CO), 164.95 (quat C), 156.82 

(quat C), 152.01 (quat C), 148.16 (quat C), 104.94 (C5), 93.03 (C1’), 80.25 (C4’), 

74.34 (C2’), 71.26 (C3’), 64.02 (C5’), 20.66 (COCH3), 20.48 (COCH3), 20.35 

(COCH3). HRMS (ES+) (m/z): 461.1034 ([M+Na]+); C16H18N6O9Na requires 461.1027 

(+1.5181 ppm). 

 

6-(1H-Tetrazol-5-yl) uridine 51 

 

6-(1H-Tetrazol-5-yl)-2’,3’,5’-tri-O-acetyl uridine (carried through crude) was 

dissolved in NH3 (7 M) in MeOH (2 mL) and stirred in a sealed vial for 5 hours, over 

which time a white precipitate formed. The reaction mixture was then filtered and 
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the white solid obtained was triturated several times with Et2O and dried under 

vacuum. The desired product was isolated as a white solid (62 mg, 39% over 2 

steps). 1H NMR (400 MHz, D2O): δ (ppm) 6.03 (1H, s, H5), 5.43 (1H, d, J 3.2, H1’), 

4.73 (1H, dd, J 6.4 and 3.2, H2’), 4.23 (1H, app t, J 7.0 H3’), 3.82-3.76 (2H, m, H4’ 

and H5’), 3.63 (1H, dd, J 11.8 and 6.4, H5’’). 13C NMR (100 MHz, D2O): δ (ppm) 

164.93 (quat C), 151.39 (quat C), 147.10 (quat C), 105.15 (C5), 93.68 (C1’), 83.15 

(C4’), 71.65 (C2’), 69.15 (C3’), 61.49 (C5’). Signal not observed: 1 x quat C. HRMS 

(ES-) (m/z): 311.0744 ([M-H]-); C10H11N6O6 requires 311.0746 (-0.6429 ppm).  

 

6-Cyanouridine 52 

 

6-Cyano-2’,3’,5’-tri-O-acetyl uridine (0.20 g, 0.51 mmol) was dissolved in NH3 (7 M) 

in MeOH (4 mL) and stirred in a sealed vial for 36 hours. All solvent was then 

removed in vacuo and the crude residue was purified by flash column 

chromatography (100% CHCl3 – 10% EtOH/90% CHCl3) to yield the desired product 

as a thick, pale yellow oil (0.10 g, 73%). 1H NMR (400 MHz, CD3OD): δ (ppm) 6.47 

(1H, s, H5), 5.88 (1H, d, J 4.4, H1’), 4.65 (1H, dd, J 6.6 and 4.6, H2’), 4.26 (1H, app 

t, J 6.2, H3’), 3.93 (1H, td, J 6.2 and 3.6, H4’), 3.82 (1H, dd, J 12.0 and 3.6, H5’), 

3.74 (1H, dd, J 11.4 and 6.0, H5’’). 13C NMR (CD3OD): δ (ppm) 162.92 (quat C), 

150.73 (quat C), 128.80 (quat C), 114.59 (C5), 112.52 (quat C), 95.19 (C1’), 86.67 

(C4’), 73.12 (C2’), 70.94 (C3’), 63.28 (C5’). HRMS (ES-) (m/z): 268.0578 ([M-H]-); 

C10H10N3O6 requires 268.0575 (+1.1192 ppm). 
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5’-tert-Butyldiphenylsilyl-2’,3’-isopropylidene uridine 53 

 

2’,3’-Isopropylidene uridine (1.95 g, 6.86 mmol, 1 eqv.) was added to anhydrous 

DCM (20 mL) and cooled to 0 oC. Imidazole (0.96 g, 14.1 mmol, 2 eqv.) and 

TBDPSCl (2.7 mL, 10.4 mmol, 1.5 eqv.) were added and the reaction mixture was 

warmed to room temperature. After 2 hours, TLC indicated complete absence of 

starting material. All solvent was removed in vacuo to leave a crude residue which 

was re-dissolved in EtOAc (60 mL) and washed with H2O (40 mL) and brine (40 

mL). The organic layer was dried over Na2SO4 and all solvent removed under 

reduced pressure. The crude material was purified by flash column chromatography 

(80% Pet. Ether/20% EtOAc – 60% Pet. Ether/40% EtOAc) to yield the desired 

product as a white foam (3.03 g, 85%). Rf = 0.44 (5% MeOH/95% CHCl3). 1H NMR 

(400 MHz, CDCl3): δ (ppm) 8.79 (1H, br s, NH), 7.65-7.61 (4H, m, Ar-H), 7.57 (1H, 

d, J 8.4, H6), 7.47-7.36 (6H, m, Ar-H), 5.98 (1H, d, J 2.8, H1’), 5.43 (1H, d, J 8.4, 

H5), 4.82 (1H, dd, J 6.4 and 3.2, H3’), 4.73 (1H, dd, J 6.4 and 2.8, H2’), 4.28-4.26 

(1H, m, H4’), 4.00 (1H, dd, J 11.6 and 2.4, H5’), 3.85 (1H, dd, J 12.0 and 3.6, H5’’), 

1.58 (3H, s, CH3), 1.35 (3H, s, CH3), 1.09 (9H, s, 3 x CH3). 13C NMR (100 MHz, 

CDCl3): δ (ppm) 163.08 (CO), 150.10 (CO), 140.68 (C6), 135.75 (2 x Ar-C), 135.52 

(2 x Ar-C), 132.97 (Ar-C), 132.45 (Ar-C), 130.30 (Ar-C), 130.23 (Ar-C), 128.11 (2 x 

Ar-C), 128.07 (2 x Ar-C), 114.55 (quat C), 102.60 (C5), 91.72 (C1’), 86.51 (C4’), 

85.12 (C2’), 80.26 (C3’), 64.07 (C5’), 27.41 (CH3), 27.10 (3 x CH3), 25.53 (CH3), 

19.45 (quat C). HRMS (ES+) (m/z): 545.2079 ([M+Na]+); C28H34N2O6SiNa requires 

545.2078 (+0.1834 ppm). 
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6-Methoxy carbonyl-5’-tert-butyldiphenylsilyl-2’,3’-isopropylidene uridine 54 

 

Anhydrous diisopropylamine (0.31 mL, 2.21 mmol, 2.3 eqv.) was dissolved in 

anhydrous THF (6 mL) and cooled to 0 oC. 2.5 M n-BuLi (0.88 mL, 2.20 mmol, 2.3 

eqv.) was added dropwise and the resulting LDA solution was stirred for 20 minutes 

at 0 oC. The LDA solution was then cooled to -78 oC and a solution of 5’-TBDPS-

2’,3’-isopropylidene (0.50 g, 0.96 mmol, 1 eqv.) in anhydrous THF (6 mL) was 

added to it. The reaction mixture was stirred at -78 oC for 1 hour then a solution of 

methyl chloroformate (0.09 mL, 1.16 mmol, 1.2 eqv.) in anhydrous THF (3 mL) was 

added. The reaction mixture was maintained at -78 oC for 4 hours and then 

quenched by the addition of AcOH (0.3 mL). The reaction was warmed to room 

temperature and then diluted with EtOAc (40 mL) and washed with saturated 

NaHCO3 solution (20 mL) and brine (20 mL). The organic layer was dried over 

Na2SO4 and all solvent was removed in vacuo. The crude product was purified by 

flash column chromatography (5% EtOAc/95% Toluene – 30% EtOAc/70% 

Toluene) to yield the desired product as a white solid (0.16 g, 29%). Rf = 0.37 (30% 

EtOAc/70% Toluene). 1H NMR (400 MHz, CDCl3): δ (ppm) 8.25 (1H, br s, NH), 

7.68-7.64 (4H, m, Ar-H), 7.44-7.31 (6H, m, Ar-H), 6.06 (1H, s, H5), 5.91 (1H, app s, 

H1’), 5.12 (1H, app d, J 6.8, H2’), 4.70 (1H, app t, J 5.6, H3’), 4.21-4.17 (1H, m, 

H4’), 3.84 (1H, dd, J 10.8 and 5.2, H5’), 3.81 (3H, s, OCH3), 3.77 (1H, dd, J 10.8 

and 7.6, H5’’), 1.55 (3H, s, CH3), 1.33 (3H, s, CH3), 1.04 (9H, s, 3 x CH3). 13C NMR 

(100 MHz, CDCl3): δ (ppm) 162.08 (CO), 161.44 (CO), 149.59 (CO), 145.11 (C6), 

135.83 (2 x Ar-C), 135.79 (2 x Ar-C), 133.56 (Ar-C), 133.49 (Ar-C), 129.85 (Ar-C), 

129.80 (Ar-C), 127.82 (2 x Ar-C), 127.70 (2 x Ar-C), 114.60 (quat C), 106.13 (C5), 

93.27 (C1’), 88.63 (C4’), 84.82 (C2’), 81.67 (C3’), 64.69 (C5’), 53.92 (OCH3), 27.39 

(CH3), 26.93 (3 x CH3), 25.49 (CH3), 19.36 (quat C). HRMS (ES+) (m/z): 603.2134 

([M+Na]+); C30H36N2O8SiNa requires 603.2133 (+0.1658 ppm). 
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6-Carboxy-5’-tert-butyldiphenylsilyl-2’,3’-isopropylidene uridine 55 

 

6-Methoxy carbonyl-5’-TBDPS-2’,3’-isopropylidene uridine (0.16 g, 0.28 mmol, 1 

eqv.) was dissolved in a mixture of THF (4 mL) and distilled H2O (4 mL). LiOH (16 

mg, 0.67 mmol, 2.4 eqv.) was added and the reaction mixture was stirred for 2 

hours at which point TLC indicated no starting material remained. AcOH (0.5 mL) 

was added to quench and neutralise the reaction and all solvent was removed in 

vacuo. The crude residue was purified by flash column chromatography (3% 

MeOH/97% DCM – 12% MeOH/88% DCM) to give the desired product as a white 

solid (0.13 g, 82%). 1H NMR (400 MHz, CD3OD): δ (ppm) 7.69-7.65 (4H, m, Ar-H), 

7.44-7.30 (6H, m, Ar-H), 6.01 (1H, app s, H1’), 5.73 (1H, s, H5), 5.17 (1H, d, J 6.4, 

H2’), 4.81 (1H, dd, J 6.2 and 4.6, H3’), 4.20-4.15 (1H, m, H4’), 3.88-3.86 (2H, m, H5’ 

and H5’’), 1.49 (3H, s, CH3), 1.31 (3H, s, CH3), 1.02 (9H, s, 3 x CH3). 13C NMR (100 

MHz, CD3OD): δ (ppm) 166.35 (CO), 151.88 (CO), 136.77 (2 x Ar-C), 136.69 (2 x 

Ar-C), 134.68 (Ar-C), 134.55 (Ar-C), 130.84 (Ar-C), 130.78 (Ar-C), 128.76 (2 x Ar-

C), 128.61 (2 x Ar-C), 114.62 (quat C), 100.43 (C5), 95.29 (C1’), 91.14 (C4’), 86.19 

(C2’), 83.69 (C3’), 66.24 (C5’), 27.63 (CH3), 27.31 (3 x CH3), 25.55 (CH3), 19.98 

(quat C). Signals not observed: 1 x CO and C6. HRMS (ES-) (m/z): 565.2021 ([M-H]-

); C29H33N2O8Si requires 565.2012 (+1.5924 ppm). 

 

6-Carboxyuridine 56 

 

6-Carboxy-5’-TBDPS-2’,3’-isopropylidene uridine (87 mg, 0.15 mmol) was 

suspended in distilled H2O (1 mL) and cooled to 0 oC. A 50% aqueous TFA solution 

(1 mL) was added and the reaction mixture was then warmed to room temperature 

and stirred for 3 hours. The reaction mixture was concentrated in vacuo and purified 
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by flash column chromatography (10% MeOH/90% DCM – 30% MeOH/70% DCM 

with 1% AcOH). The desired product was isolated as an off-white solid (21 mg, 

49%). 1H NMR (400 MHz, D2O): δ (ppm) 5.78 (1H, s, H5), 5.57 (1H, d, J 3.2, H1’), 

4.75 (1H, dd, J 6.6 and 3.4, H2’), 4.36 (1H, app t, J 6.8, H3’), 3.97-3.93 (1H, m, H4’), 

3.89 (1H, dd, J 12.4 and 2.8, H5’), 3.77 (1H, dd, J 12.4 and 6.4, H5’’). 13C NMR (100 

MHz, D2O): δ (ppm) 167.29 (quat C), 166.22 (quat C), 154.91 (quat C), 151.22 (quat 

C), 98.64 (C5), 94.59 (C1’), 83.74 (C4’), 71.97 (C2’), 69.16 (C3’), 61.48 (C5’). 

HRMS (ES-) (m/z): 287.0525 ([M-H]-); C10H11N2O8 requires 287.0521 (+1.3935 

ppm). 

 

6-Methoxy carbonyl-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 57 

 

Anhydrous diisopropylamine (0.91 mL, 6.49 mmol, 2.6 eqv.) was dissolved in 

anhydrous THF (4 mL) and cooled to -78 oC. 1.6 M n-BuLi (4.10 mL, 6.56 mmol, 2.6 

eqv.) was added and the resulting LDA mixture was stirred at -78 oC for 20 mins. A 

solution of 5’-TBDMS-2’,3’-isopropylidene uridine (1.00 g, 2.51 mmol, 1 eqv.) in 

anhydrous THF (3 mL) was added and the reaction mixture was stirred for 1 hour at 

-78 oC. A solution of methyl chloroformate (0.23 mL, 2.98 mmol, 1.2 eqv.) in 

anhydrous THF (2 mL) was added and the reaction mixture was maintained at -78 

oC for 4 hours. The reaction was quenched by the addition of a saturated solution of 

NH4Cl (1 mL). The reaction was then diluted with EtOAc (50 mL) and washed with a 

saturated NaHCO3 solution (50 mL) and brine (50 mL). The organic layer was dried 

over Na2SO4 and concentrated in vacuo to leave a crude residue. The crude was 

purified by flash column chromatography (100% Hex – 60% Hex/40% EtOAc) to 

yield the desired product as a white solid (0.34 g, 30%). Rf = 0.43 (30% EtOAc/70% 

Toluene). 1H NMR (400 MHz, CDCl3): δ (ppm) 9.59 (1H, br s, NH), 6.08 (1H, app s, 

H5), 5.90 (1H, s, H1’), 5.17 (1H, app d, J 6.4, H2’), 4.73 (1H, app t, J 5.6, H3’), 4.12-

4.08 (1H, m, H4’), 3.94 (3H, s, OCH3), 3.83-3.74 (2H, m, H5’ and H5’’), 1.54 (3H, s, 

CH3), 1.34 (3H, s, CH3), 0.87 (9H, s, 3 x CH3), 0.04 (6H, s, 2 x SiCH3). 13C NMR 

(100 MHz, CDCl3): δ (ppm) 162.35 (CO), 162.05 (CO), 150.06 (CO), 145.26 (C6), 
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114.45 (quat C), 106.13 (C5), 93.50 (C1’), 88.85 (C4’), 84.83 (C2’), 81.61 (C3’), 

64.01 (C5’), 54.01 (OCH3), 27.36 (CH3), 26.05 (3 x CH3), 25.47 (CH3), 18.59 (quat 

C), -5.13 (SiCH3), -5.16 (SiCH3). HRMS (ES+) (m/z): 479.1823 ([M+Na]+); 

C20H32N2O8SiNa requires 479.1820 (+0.6261 ppm). 

 

6-Hydroxamic acid-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 58187 

 

6-Methoxy carbonyl-5’-TBDMS-2’,3’-isopropylidene uridine (0.34 g, 0.74 mmol, 1 

eqv.) was dissolved in a 1.5 M solution of hydroxylamine in MeOH (5 mL, 10 eqv.) 

and stirred in a sealed reaction vial for 2 days. All solvent was then removed in 

vacuo and the crude residue obtained was purified by flash column chromatography 

(0.5% MeOH/99.5% DCM – 5% MeOH/95% DCM) to yield the desired product as 

an off-white solid (70 mg, 21%). 1H NMR (400 MHz, CD3OD): δ (ppm) 5.80 (1H, d, J 

1.2, H1’), 5.75 (1H, s, H5), 5.24 (1H, dd, J 6.6 and 1.4, H2’), 4.78 (1H, dd, J 6.6 and 

4.6, H3’), 4.03 (1H, td, J 6.3 and 4.7, H4’), 3.82-3.80 (2H, m, H5’ and H5’’), 1.50 

(3H, s, CH3), 1.33 (3H, s, CH3), 0.90 (9H, s, 3 x CH3), 0.07 (3H, s, CH3), 0.07 (3H, s, 

CH3). 13C NMR (100 MHz, CD3OD): δ (ppm) 164.84 (quat C), 161.08 (quat C), 

151.65 (quat C), 149.14 (quat C), 115.05 (quat C), 103.98 (C5), 94.65 (C1’), 90.30 

(C4’), 85.94 (C2’), 83.43 (C3’), 65.05 (C5’), 27.52 (CH3), 26.38 (3 x CH3), 25.53 

(CH3), 19.20 (quat C), -5.08 (SiCH3), -5.20 (SiCH3). HRMS (ES+) (m/z): 480.1771 

([M+Na]+); C19H31N3O8SiNa requires 480.1773 (-0.4165 ppm). 
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6-Hydroxamic acid uridine 59 

 

6-Hydroxamic acid-5’-TBDMS-2’,3’-isopropylidene uridine (95 mg, 0.21 mmol) was 

suspended in distilled H2O (1 mL) and cooled to 0 oC. A 50% aqueous TFA solution 

(1 mL) was added and the reaction mixture was warmed to room temperature and 

stirred for 2 hours. The reaction was then concentrated in vacuo and purified by 

flash column chromatography (10% MeOH/90% DCM – 20% MeOH/80% DCM) to 

yield the desired product as an off-white solid (61 mg, 96%). 1H NMR (400 MHz, 

CD3OD): δ (ppm) 5.77 (1H, s, H5), 5.58 (1H, d, J 3.2, H1’), 4.69 (1H, dd, J 5.8 and 

3.8, H2’), 4.28 (1H, app t, J 6.0, H3’), 3.88-3.84 (1H, m, H4’), 3.80 (1H, dd, J 12.0 

and 2.8, H5’), 3.70 (1H, dd, J 12.0 and 6.0, H5’’). 13C NMR (100 MHz, CD3OD): δ 

(ppm) 164.97 (quat C), 161.29 (quat C), 151.86 (quat C), 150.05 (quat C), 104.10 

(C5), 95.56 (C1’), 86.39 (C4’), 73.47 (C2’), 71.00 (C3’), 63.48 (C5’). HRMS (ES-) 

(m/z): 302.0635 ([M-H]-); C10H12N3O8 requires 302.0630 (+1.6553 ppm). 

 

6-Diethyl phosphonate-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 

60188 

 

Anhydrous diisopropylamine (0.91 mL, 6.49 mmol, 2.6 eqv.) was dissolved in 

anhydrous THF (4 mL) and cooled to -78 oC. 1.6 M n-BuLi (4.10 mL, 6.56 mmol, 2.6 

eqv.) was added and the resulting LDA mixture was stirred at -78 oC for 20 mins. A 

solution of 5’-TBDMS-2’,3’-isopropylidene uridine (0.99 g, 2.48 mmol, 1 eqv.) in 

anhydrous THF (3 mL) was added and the reaction mixture was stirred for 1 hour at 

-78 oC. A solution of diethyl chlorophosphate (0.44 mL, 3.04 mmol, 1.2 eqv.) in 

anhydrous THF (2 mL) was added and the reaction mixture was maintained at -78 

oC for 4 hours. The reaction was quenched by the addition of a saturated solution of 
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NH4Cl (1 mL). The reaction was then diluted with EtOAc (50 mL) and washed with a 

saturated NaHCO3 solution (50 mL) and brine (50 mL). The organic layer was dried 

over Na2SO4 and concentrated in vacuo to leave a crude residue. The crude was 

purified by flash column chromatography (90% Hex/10% EtOAc – 50% Hex/50% 

EtOAc) to yield the desired product as a white solid (0.45 g, 34%). 1H NMR (400 

MHz, CDCl3): δ (ppm) 10.50 (1H, s, NH), 6.37 (1H, d, J 14.0, H5), 6.06 (1H, app s, 

H1’), 5.08 (1H, dd, J 6.6 and 1.0, H2’), 4.68 (1H, dd, J 6.4 and 4.8, H3’), 4.23-4.11 

(4H, m, 2 x CH2CH3), 4.03-3.99 (1H, m, H4’), 3.75-3.67 (2H, m, H5’ and H5’’), 1.42 

(3H, s, CH3), 1.31 (6H, t, J 7.2, 2 x CH2CH3), 1.22 (3H, s, CH3), 0.76 (9H, s, 3 x 

CH3), -0.08 (3H, s, SiCH3), -0.08 (3H, s, SiCH3). 13C NMR (100 MHz, CDCl3): δ 

(ppm) 162.24 (d, J 19.7, CO), 150.31 (d, J 12.3, CO), 145.47 (d, J 189.9, C6), 

113.53 (quat C), 112.21 (d, J 10.7, C5), 94.39 (C1’), 89.14 (C4’), 84.15 (C2’), 81.92 

(C3’), 64.63 (d, J 5.6, CH2CH3), 64.37 (d, J 6.2, CH2CH3), 64.04 (C5’), 27.04 (CH3), 

25.74 (3 x CH3), 25.29 (CH3), 18.19 (quat C), 15.96 (d, J 6.0, CH2CH3), 15.90 (d, J 

6.1, CH2CH3), -5.36 (SiCH3), -5.43 (SiCH3). 31P NMR (162 MHz, CDCl3): δ (ppm) 

5.61. HRMS (ES+) (m/z): 557.2069 ([M+Na]+): C22H39N2O9PSiNa requires 557.2055 

(+2.5125 ppm). 

 

6-Diethyl phosphonate uridine 61 

 

6-Diethyl phosphonate-5’-TBDMS-2’,3’-isopropylidene uridine (0.38 g, 0.71 mmol) 

was suspended in distilled H2O (3 mL) and cooled to 0 oC. A 50% aqueous TFA 

solution (2 mL) was added and the reaction mixture was warmed to room 

temperature and stirred for 2 hours. The reaction was then concentrated under 

reduced pressure and the crude material purified by flash column chromatography 

(3% MeOH/97% DCM – 8% MeOH/92% DCM). The desired product was isolated as 

a white solid (0.24 g, 89%). 1H NMR (400 MHz, CD3OD): δ (ppm) 6.37 (1H, d, J 

14.4, H5), 5.86 (1H, d, J 2.8, H1’), 4.70 (1H, dd, J 6.4 and 3.2, H2’), 4.35 (1H, app t, 

J 6.4, H3’), 4.32-4.24 (4H, m, 2 x CH2CH3), 3.86 (1H, td, J 6.4 and 2.9, H4’), 3.81 

(1H, dd, J 12.0 and 2.8, H5’), 3.68 (1H, dd, J 12.0 and 6.0, H5’’), 1.42 (6H, td, J 7.1 

and 2.5, 2 x CH2CH3). 13C NMR (100 MHz, CD3OD): δ (ppm) 163.88 (d, J 19.6, CO), 



Chapter 5  Experimental 

151 
 

151.80 (d, J 12.2, CO), 146.95 (d, J 191.4, C6), 113.49 (d, J 10.5, C5), 97.08 (d, J 

2.7, C1’), 86.06 (C4’), 73.35 (C2’), 71.20 (C3’), 66.21 (d, J 6.4, CH2CH3), 66.15 (d, J 

6.5, CH2CH3), 63.73 (C5’), 16.46 (d, J 3.0, CH2CH3), 16.40 (d, J 3.2 CH2CH3). 31P 

NMR (162 MHz, CD3OD): δ (ppm) 6.18. HRMS (ES-) (m/z): 379.0911 ([M-H]-); 

C13H20N2O9P requires 379.0912 (-0.2638 ppm). 

 

6-(3-Hydroxyprop-1-yn-1-yl)-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene 

uridine 64 

 

6-Iodo-5’-TBDMS-2’,3’-isopropylidene uridine (0.30 g, 0.57 mmol, 1 eqv.) was 

dissolved in degassed, anhydrous Et3N (6 mL). To this solution was added 

Pd(PPh3)2Cl2 (20 mg, 5 mol%), CuI (6 mg, 5 mol%) and propargyl alcohol (43 μL, 

0.74 mmol, 1.3 eqv.). The resulting reaction mixture was stirred at room 

temperature overnight. All solvent was removed in vacuo and the crude residue 

produced was re-dissolved in EtOAc (50 mL) and washed with H2O (50 mL). The 

aqueous layer was extracted further with EtOAc (3 x 30 mL) and then the combined 

organic extracts were dried over Na2SO4. The crude material was concentrated 

under reduced pressure and purified by flash column chromatography (60% 

Hex/40% EtOAc – 50% Hex/50% EtOAc) to give a pale yellow solid as product 

(0.25 g, 97%). Rf = 0.11 (60% Hex/40% EtOAc). 1H NMR (400 MHz, CDCl3): δ 

(ppm) 9.83 (1H, s, NH), 6.21 (1H, s, H1’), 5.95 (1H, s, H5), 5.17 (1H, dd, J 6.4 and 

0.8, H2’), 4.81 (1H, dd, J 6.2 and 4.6, H3’), 4.52 (2H, d, J 5.6, CH2OH), 4.17-4.13 

(1H, m, H4’), 3.81-3.80 (2H, m, H5’ and H5’’), 3.20 (1H, t, J 5.8, CH2OH), 1.54 (3H, 

s, CH3), 1.33 (3H, s, CH3), 0.87 (9H, s, 3 x CH3), 0.05 (6H, s, 2 x SiCH3). 13C NMR 

(100 MHz, CDCl3): δ (ppm) 162.90 (CO), 149.74 (CO), 137.98 (quat C), 113.97 

(quat C), 108.02 (C5), 101.80 (quat C), 93.81 (C1’), 89.64 (C4’), 84.29 (C2’), 82.04 

(C3’), 75.62 (quat C), 64.23 (C5’), 51.18 (CH2OH), 27.33 (CH3), 26.06 (3 x CH3), 

25.47 (CH3), 18.59 (quat C), -5.12 (SiCH3), -5.13 (SiCH3). HRMS (ES+) (m/z): 

475.1884 ([M+Na]+); C21H32N2O7SiNa requires 475.1871 (+2.7358 ppm). 
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6-(3-Hydroxyprop-1-yn-1-yl) uridine 66 

 

6-(3-Hydroxyprop-1-yn-1-yl)-5’-TBDMS-2’,3’-isopropylidene uridine (0.11 g, 0.24 

mmol) was suspended in distilled H2O (1 mL) and cooled to 0 oC. A 50% aqueous 

TFA solution (1 mL) was added and the reaction mixture was allowed to warm to 

room temperature and stir for 2 hours. The reaction mixture was then concentrated 

under reduced pressure and the crude material was purified by flash column 

chromatography (5% MeOH/95% DCM – 12% MeOH/88% DCM) to yield the 

desired product as a white solid (62 mg, 87%). 1H NMR (400 MHz, CD3OD): δ 

(ppm) 6.09 (1H, d, J 4.0, H1’), 5.94 (1H, s, H5), 4.74 (1H, dd, J 6.0 and 4.0, H2’), 

4.46 (2H, s, CH2OH), 4.32 (1H, app t, J 6.2, H3’), 3.89 (1H, td, J 6.0 and 3.2, H4’), 

3.80 (1H, dd, J 12.0 and 3.2, H5’), 3.68 (1H, dd, J 12.0 and 6.0, H5’’). 13C NMR (100 

MHz, CD3OD): δ (ppm) 164.47 (CO), 151.53 (CO), 139.75 (quat C), 108.64 (C5), 

102.95 (quat C), 95.91 (C1’), 86.35 (C4’), 75.92 (quat C), 72.92 (C2’), 71.29 (C3’), 

63.64 (C5’), 51.03 (CH2OH). HRMS (ES-) (m/z): 297.0728 ([M-H]-); C12H13N2O7 

requires 297.0728 (0.0000 ppm). 

 

6-((Trimethylsilyl)ethynyl)-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene 

uridine 67 

 

6-Iodo-5’-TBDMS-2’,3’-isopropylidene uridine (0.15 g, 0.29 mmol, 1 eqv.) was 

dissolved in degassed, anhydrous Et3N (3.5 mL). To this solution was added 

Pd(PPh3)2Cl2 (20 mg, 10 mol%), CuI (5 mg, 10 mol%) and TMS acetylene (95 μL, 

0.69 mmol, 2.4 eqv.). The reaction mixture was stirred at room temperature 

overnight. All solvent was then removed in vacuo and the crude residue was 

dissolved in EtOAc (30 mL). The reaction mixture was washed with water (30 mL) 
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and the aqueous layer was then extracted with EtOAc (2 x 30 mL) and the 

combined organic extracts were washed further with brine (30 mL). H2O2 (~10 

drops) was added to the organic extracts which were then washed once more with 

brine (20 mL) and dried over Na2SO4. The crude material was concentrated under 

reduced pressure and purified by flash column chromatography (100% Hex – 80% 

Hex/20% EtOAc) to yield the desired product (90 mg, 63%). Rf = 0.35 (70% 

Hex/30% EtOAc). 1H NMR (400 MHz, CDCl3): δ (ppm) 8.73 (1H, br s, NH), 6.32 

(1H, d, J 1.2, H1’), 5.93 (1H, d, J 2.4, H5), 5.19 (1H, dd, J 6.4 and 1.6, H2’), 4.79 

(1H, dd, J 6.6 and 4.2, H3’), 4.19-4.15 (1H, m, H4’), 3.84-3.77 (2H, m, H5’ and H5’’), 

1.53 (3H, s, CH3), 1.35 (3H, s, CH3), 0.89 (9H, s, 3 x CH3), 0.29 (9H, s, 3 x SiCH3), 

0.06 (6H, s, 2 x SiCH3). 13C NMR (100 MHz, CDCl3): δ (ppm) 162.12 (CO), 149.57 

(CO), 137.86 (C6), 113.88 (quat C), 111.17 (quat C), 107.90 (C5), 94.48 (C1’), 

93.89 (quat C), 89.42 (C4’), 84.12 (C2’), 82.36 (C3’), 64.26 (C5’), 27.38 (CH3), 26.12 

(3 x CH3), 25.73 (CH3), 18.65 (quat C), -0.71 (3 x SiCH3), -5.06 (SiCH3), -5.09 

(SiCH3). HRMS (ES+) (m/z): 517.2162 ([M+Na]+); C23H38N2O6Si2Na requires 

517.2161 (+0.1933 ppm). 

 

6-Ethynyl-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 68 

 

6-((Trimethylsilyl)ethynyl)-5’-TBDMS-2’,3’-isopropylidene uridine (0.10 g, 0.20 mmol, 

1 eqv.) was dissolved in MeOH (1.5 mL). To this solution was added potassium 

carbonate (36 mg, 0.26 mmol, 1.3 eqv.) and the resulting reaction mixture was 

stirred for 1 hour. The reaction mixture was then diluted with water (10 mL) and 

extracted with EtOAc (3 x 10 mL). The organic extracts were dried over Na2SO4 and 

concentrated in vacuo. The crude material was purified by flash column 

chromatography (100% Hex – 60% Hex/40% EtOAc) to yield the desired product as 

a pale yellow solid (73 mg, 86%). Rf = 0.18 (70% Hex/30% EtOAc). 1H NMR (400 

MHz, CDCl3): δ (ppm) 9.24 (1H, br s, NH), 6.26 (1H, d, J 1.2, H1’), 6.02 (1H, d, J 

2.4, H5), 5.19 (1H, dd, J 6.4 and 1.2, H2’), 4.82 (1H, dd, J 6.4 and 4.4, H3’), 4.18-

4.14 (1H, m, H4’), 3.84-3.76 (3H, m, H5’, H5’’ and CCH), 1.55 (3H, s, CH3), 1.34 
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(3H, s, CH3), 0.88 (9H, s, 3 x CH3), 0.05 (6H, s, 2 x SiCH3). 13C NMR (100 MHz, 

CDCl3): δ (ppm) 162.14 (CO), 149.58 (CO), 137.28 (C6), 113.97 (quat C), 109.16 

(C5), 94.04 (C1’), 90.91 (CCH), 89.70 (C4’), 84.31 (C2’), 82.12 (C3’), 73.81 (CCH), 

64.21 (C5’), 27.38 (CH3), 26.09 (3 x CH3), 25.52 (CH3), 18.62 (quat C), -5.09 

(SiCH3), -5.10 (SiCH3). HRMS (ES+) (m/z): 445.1768 ([M+Na]+); C20H30N2O6SiNa 

requires 445.1765 (+0.6739 ppm). 

 

6-(1H-1,2,3-Triazol-5-yl)-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 

69194 

 

6-Ethynyl-5’-TBDMS-2’,3’-isopropylidene uridine (41 mg, 0.10 mmol, 1 eqv.) was 

dissolved in a mixture of anhydrous DMF (0.9 mL) and anhydrous MeOH (0.1 mL). 

CuI (1 mg, 5.25 μmol, 5 mol%) was then added followed by TMS azide (0.02 mL, 

0.15 mmol, 1.5 eqv.). The reaction mixture was heated to 100 oC and stirred 

overnight. Once TLC showed complete absence of starting material, the reaction 

was cooled to room temperature and all solvent was removed in vacuo. The crude 

material was purified by flash column chromatography (0.5% MeOH/99.5% DCM – 

5% MeOH/95% DCM) to yield the desired product (9 mg, 19%). 1H NMR (400 MHz, 

CD3OD): δ (ppm) 8.21 (1H, s, CCHN), 5.90 (1H, s, H5), 5.83 (1H, app s, H1’), 5.32 

(1H, dd, J 6.4 and 0.8, H2’), 4.08 (1H, td, J 6.6 and 4.0, H4’), 3.87-3.80 (2H, m, H5’ 

and H5’’), 1.43 (3H, s, CH3), 1.32 (3H, s, CH3), 0.90 (9H, s, 3 x CH3), 0.07 (3H, s, 

SiCH3), 0.06 (3H, s, SiCH3). Signal not observed: H3’ (correlation present but peak 

hidden under water peak). 13C NMR (100 MHz, CD3OD): δ (ppm) 164.98 (quat C), 

152.26 (quat C), 148.13 (quat C), 114.53 (quat C), 105.03 (C5), 94.48 (C1’), 91.12 

(C4’), 85.81 (C2’), 83.84 (C3’), 65.30 (C5’), 27.40 (CH3), 26.38 (3 x CH3), 25.47 

(CH3), 19.25 (quat C), -5.07 (SiCH3), -5.14 (SiCH3). Signals not observed: 2 x C 

from triazole. HRMS (ES+) (m/z): 488.1942 ([M+Na]+); C20H31N5O6SiNa requires 

488.1936 (+1.2290 ppm). 

 

 



Chapter 5  Experimental 

155 
 

6-(1H-1,2,3-Triazol-5-yl) uridine 71 

 

6-(1H-1,2,3-Triazol-5-yl)-5’-TBDMS-2’,3’-isopropylidene uridine (9 mg, 19.3 μmol) 

and 6-(1H-1,2,3-triazol-5-yl)-2’,3’-isopropylidene uridine (10 mg, 28.5 μmol) were 

suspended in a 30 % aqueous TFA solution (1 mL) and stirred for 2 hours. The 

reaction mixture was then concentrated in vacuo and the crude residue was purified 

by flash column chromatography (5% MeOH/95% DCM – 12% MeOH/88% DCM). 

The desired product was isolated as a pale yellow solid (10 mg, 67%). 1H NMR (400 

MHz, CD3OD): δ (ppm) 8.26 (1H, s, CCHN), 5.91 (1H, s, H5), 5.52 (1H, d, J 3.2. 

H1’), 4.77 (1H, dd, J 6.0 and 3.6, H2’), 4.31 (1H, app t, J 6.2, H3’), 3.85-3.79 (2H, m, 

H4’ and H5’), 3.71-3.66 (1H, m, H5’’). 13C NMR (400 MHz, CD3OD): δ (ppm) 165.00 

(quat C), 152.31 (quat C), 149.06 (quat C), 140.17 (quat C), 130.66 (CCHN), 105.03 

(C5), 95.41 (C1’), 86.16 (C4’), 73.05 (C2’), 71.48 (C3’), 63.85 (C5’). HRMS (ES-) 

(m/z): 310.0792 ([M-H]-); C11H12N5O6 requires 310.0793 (-0.3225 ppm). 

 

6-Ethynyl uridine 72 

 

6-Ethynyl-5’-TBDMS-2’,3’-isopropylidene uridine (68 mg, 0.16 mmol) was 

suspended in a 30% aqueous TFA solution (2 mL) and stirred at room temperature 

for 2 hours. The reaction mixture was then concentrated under reduced pressure 

and the crude residue purified by flash column chromatography (5% MeOH/95% 

DCM – 10% MeOH/90% DCM). The desired product was isolated as an off-white 

solid (33 mg, 77%). 1H NMR (400 MHz, D2O): δ (ppm) 6.23 (1H, s, H5), 6.21 (1H, d, 

J 3.6, H1’), 4.85 (1H, dd, J 6.4 and 4.0, H2’), 4.40 (1H, app t, J 6.6, H3’), 3.99 (1H, 

td, J 6.3 and 3.1, H4’), 3.90 (1H, dd, J 12.4 and 2.8, H5’), 3.77 (1H, dd, J 12.4 and 

6.0, H5’’). Signal not observed: CCH.13C NMR (100 MHz, D2O): δ (ppm) 164.78 
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(CO), 150.72 (CO), 137.91 (C6), 109.07 (C5), 93.66 (C1’), 83.75 (C4’), 71.39 (C2’), 

69.21 (C3’), 61.35 (C5’). Signals not observed: CCH and CCH. HRMS (ES-) (m/z): 

267.0621 ([M-H]-); C11H11N2O6 requires 267.0623 (-0.7489 ppm). 

 

6-Aminouridine 78 

 

6-Azidouridine (0.2 g, 0.70 mmol, 1 eqv.) was dissolved in EtOH (5 mL) and the 

mixture was purged with N2. 10% Pd/C (75 mg, 10 mol%) was added and the 

reaction mixture was placed under a H2 atmosphere and left to stir overnight. The 

reaction mixture was filtered through Celite® and all solvent removed in vacuo to 

give the desired product as a white solid (0.17 g, 94%). 1H NMR (400 MHz, 

CD3OD): δ (ppm) 6.41 (1H, d, J 7.2, H1’), 4.62 (1H, app t, J 7.0, H2’), 4.25 (1H, dd, 

J 6.4 and 3.2, H3’), 4.01-3.99 (1H, m, H4’), 3.78-3.77 (2H, m, H5’ and H5’’). Signal 

not observed: H5. 13C NMR (100 MHz, CD3OD): δ (ppm) 158.63 (quat C), 152.90 

(quat C), 89.90 (C1’), 86.92 (C4’), 71.39 (C2’), 71.18 (C3’), 61.80 (C5’). Signals not 

observed: 2 x quaternary carbons. HRMS (ES+) (m/z): 282.0694 ([M+Na]+); 

C9H13N3O6 requires 282.0697 (-1.0636 ppm). 

 

6-Amino-5’-tert-butyldimethylsilyl-2’,3’-isopropylidene uridine 79 

 

6-Azido-5’-TBDMS-2’,3’-isopropylidene uridine (0.12 g, 0.27 mmol, 1 eqv.) was 

dissolved in EtOH (5 mL) and the mixture was purged with N2. 10% Pd/C (0.03 g, 10 

mol%) was added and the reaction mixture was placed under a H2 atmosphere and 

left to stir overnight. The reaction mixture was filtered through Celite® and 

concentrated to yield the desired product (95 mg, 85%). 1H NMR (400 MHz, CDCl3): 
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δ (ppm) 9.30 (1H, br s, NH), 6.54 (1H, d, J 4.0, H1’), 5.68 (2H, br s, NH2), 5.07 (1H, 

dd, J 6.6 and 4.2, H2’), 4.95 (1H, s, H5), 4.84-4.81 (1H, m, H3’), 4.04-4.03 (1H, m, 

H4’), 3.96-3.82 (2H, m, H5’ and H5’’), 1.55 (3H, s, CH3), 1.33 (3H, s, CH3), 0.89 (9H, 

s, 3 x CH3), 0.09 (3H, s, SiCH3), 0.08 (3H, s, SiCH3). 13C NMR (100 MHz, CDCl3): δ 

(ppm) 163.54 (quat C), 155.81 (quat C), 150.60 (quat C), 115.59 (quat C), 88.98 

(C1’), 84.38 (C4’), 82.16 (C2’), 80.35 (C5), 78.69 (C3’), 62.08 (C5’), 27.34 (CH3), 

26.08 (3 x CH3), 25.55 (CH3), 18.71 (quat C), -5.32 (SiCH3), -5.37 (SiCH3). HRMS 

(ES+) (m/z): 436.1868 ([M+Na]+); C18H31N3O6SiNa requires 436.1874 (-1.3756 ppm). 
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5.4 Computational protocols for results and discussion 3 

The molecular docking program GOLD was used to validate the binding of an 

existing inhibitor, BMP, and to investigate the binding ability of the eleven final 

compounds synthesised.198 Default settings provided by GOLD were used unless 

otherwise stated. The visualisation program PyMOL was used to view crystal 

structures and binding poses generated by GOLD.200 The molecular modelling 

program Spartan ’16 was used to construct the eleven final compounds as their 5’ 

monophosphate ready for docking into the ODCase crystal structure.197 

Protocol 1 - Visualisation of ODCase crystal structure in complex with the 

known inhibitor BMP 

The crystal structure of ODCase in complex with the known inhibitor BMP was 

downloaded from the protein data bank (PDB code: 1X1Z).201 The 1X1Z PDB file 

was loaded into PyMOL which showed both chains of the dimer with a BMP ligand 

in each active site.200,201 It was decided to delete the ligand from monomer B and 

concentrate on the active site of monomer A. Water molecules that had polar 

contacts with the BMP ligand were identified (eight in total) and all others were 

deleted along with three glycerols. The edited 1X1Z dimer was saved as .pdb file. 

Protocol 2 – Modelling of compounds for docking 

Spartan ’16 was used to model the eleven final compounds as their 5’ 

phosphates.197 In addition, BMP was also modelled so it could be redocked into the 

edited crystal structure obtained in Protocol 1 to validate binding. An energy 

minimisation was performed on all structures using the molecular mechanics force 

field (MMFF) and they were then saved as .sdf files. 

Protocol 3 - Validation of docking 

The edited 1X1Z file, obtained from Protocol 1, was loaded into GOLD and all 

hydrogen atoms were added.198 Eight water molecules (HOH402, HOH403, 

HOH406, HOH407, HOH408, HOH409, HOH411 and HOH461) were extracted. 

Ligand A, the crystallographic BMP molecule, was then extracted. The binding site 

was defined as being all atoms within 6 Å of where the BMP molecule was bound. 

The BMP molecule constructed according to Protocol 2 was then loaded using the 

‘Select Ligands’ option and 25 GA runs were specified. The crystallographic BMP 

molecule was set as a reference ligand. In ‘Configure Waters’, the eight water 

molecules were set to toggle and spin states. Under ‘Fitness & Search Options’, 
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docking was selected with ChemPLP chosen as the scoring function. The 

parameter file was set to default and early termination was not allowed. The search 

efficiency was increased to 200% in ‘GA settings’ and the output files were set to 

save as one file, in the SD format, in the relevant directory with no lone pairs set to 

save. 

Protocol 4 - Docking of final compounds 

The edited 1X1Z file, obtained from Protocol 1, was loaded into GOLD and all 

hydrogen atoms were added.198 Eight water molecules (HOH402, HOH403, 

HOH406, HOH407, HOH408, HOH409, HOH411 and HOH461) were extracted. 

Ligand A, the crystallographic BMP molecule, was then extracted. The binding site 

was defined as being all atoms within 6 Å of where the BMP molecule was bound. 

In turn, the file for each of the final compounds obtained from Protocol 2 was then 

loaded using the ‘Select Ligands’ option and 25 GA runs were specified. The 

crystallographic BMP molecule was set as a reference ligand. In ‘Configure Waters’, 

the eight water molecules were set to toggle and spin states. Under ‘Fitness & 

Search Options’, docking was selected with ChemPLP chosen as the scoring 

function. The parameter file was set to default and early termination was not 

allowed. The search efficiency was increased to 200% in ‘GA settings’ and the 

output files were set to save as one file, in the SD format, in the relevant directory 

with no lone pairs set to save. 
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Chapter 7 Appendices 

Appendix A: Masses obtained from HPLC-MS 

8-Nitroguanosine 13 

 

Figure 53 Mass peak from HPLC-MS for 8-nitroguanosine 13 

8-Aminoguanosine 16 

 

Figure 54 Mass peak from HPLC-MS for 8-aminoguanosine 16 

8-Nitroguanine 

 

Figure 55 Mass peak from HPLC-MS for 8-nitroguanine 

Guanosine 7 

 

Figure 56 Mass peak from HPLC-MS for guanosine 7 
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8,5’-O-Cycloguanosine 17 

 

Figure 57 Mass peak from HPLC-MS for 8,5’-O-cycloguanosine 17 

8-Deuteroguanosine 21 

 

Figure 58 Mass peak from HPLC-MS for 8-deuteroguanosine 21 
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Appendix B: HPLC traces of eleven final compounds 

6-Ethynyl uridine 72 

 

Figure 59 HPLC trace of 6-ethynyl uridine 72 

6-Aminouridine 78 

 

Figure 60 HPLC trace of 6-aminouridine 78 
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6-Azidouridine 38 

 

Figure 61 HPLC trace of 6-azidouridine 38 

6-Carboxyuridine 56 

 

Figure 62 HPLC trace of 6-carboxyuridine 56 

6-Cyanouridine 52 

 

Figure 63 HPLC trace of 6-cyanouridine 52 
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6-Hydroxamic acid uridine 59 

 

Figure 64 HPLC trace of 6-hydroxamic acid uridine 59 

6-Iodouridine 29 

 

Figure 65 HPLC trace of 6-iodouridine 29 

6-Diethyl phosphonate uridine 61 

 

Figure 66 HPLC trace of 6-Diethyl phosphonate uridine 61 
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6-(3-Hydroxyprop-1-yn-1-yl) uridine 66 

 

Figure 67 HPLC trace of 6-(3-hydroxyprop-1-yn-1-yl) uridine 66 

6-(1H-1,2,3-Triazol-5-yl) uridine 71 

 

Figure 68 HPLC trace of 6-(1H-1,2,3-triazol-5-yl) uridine 71 

6-(1H-Tetrazol-5-yl) uridine 51 

 

Figure 69 HPLC trace of 6-(1H-Tetrazol-5-yl) uridine 51
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