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TRANSITION ASYMPTOTICS OF TOEPLITZ DETERMINANTS AND

EMERGENCE OF FISHER-HARTWIG REPRESENTATIONS

KASIA KOZLOWSKA AND JANI A. VIRTANEN

Abstract. We compute the transition asymptotics (double-scaling limits) of Toeplitz determinants
generated by symbols ft possessing Fisher-Hartwig singularities. The symbols ft that we consider
depend on a parameter t such that ft has one Fisher-Hartwig singularity when t > 0 and two
Fisher-Hartwig singularities when t = 0. Unlike in the other studies of the transition asymptotics
of Toeplitz determinants, our setting involves the emergence of Fisher-Hartwig representations
as t → 0. We use the Riemann-Hilbert problem for orthogonal polynomials and its connection to
Painlevé transcendents to obtain the asymptotics. We apply our results to study a special correlator
known as the emptiness formation probability (EFP) for the one-dimensional anisotropic XY spin-
1/2 chain in a transverse magnetic field, and describe its transition between different regions in the
phase diagram across critical lines.

1. Introduction

For a function f ∈ L1 = L1(T) of the unit circle T and n ∈ N, the n × n Toeplitz matrix Tn(f)
with symbol f is defined by setting

(1) Tn(f) = (fj−k)
n−1
j,k≥0 =


f0 f−1 f−2 · · · f−(n−1)

f1 f0 f−1 · · · f−(n−2)

f2 f1 f0 · · · f−(n−3)
...

...
...

. . .
...

fn−1 fn−2 fn−3 · · · f0

 ,

where fk = 1
2π

∫ 2π
0 f(eiθ)e−ikθdθ are the Fourier coefficients of the function f . The determinant

of Tn(f) is denoted by Dn(f). Despite their simple definition, matrices of the form (fj−k) have
played an important role in mathematics and its applications since 1910 when Toeplitz used them
to illustrate Hilbert’s spectral theory.

The study of Toeplitz determinants began in the 1910s, when Pólya conjectured that if f is
positive and continuous, then

(2) lim
n→∞

1

n
logDn(f) = (log f)0 = V0 =

1

2π

∫ 2π

0
log f(eiθ)dθ,

which was proved by Szegő in 1915. For a positive symbol f , each eigenvalue λ
(n)
k of the Toeplitz

matrix Tn(f) is positive and (2) is equivalent to

lim
n→∞

log λ
(n)
1 + · · ·+ log λ

(n)
n

n
= (log f)0 = V0,
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2 KOZLOWSKA AND VIRTANEN

where V (z) = log f(z). Alternatively, the large n limit in (2) can be written as follows

(3) Dn(f) = exp {nV0 + o(n)} as n→∞.

The precise nature of the error term o(n) is important in applications, such as the two-dimensional
Ising model, whose magnetization can be expressed as a large n limit of Toeplitz determinants. More
than three decades after his first limit theorem, Szegő became aware of Onsager and Kaufman’s
work on the Ising model, and in 1952 he proved his strong limit theorem (for positive symbols
that have a derivative in a Hölder class), which finally provided the error term. Over the years,
the result was generalized to complex-valued matrix symbols in Krein algebras (see Section 10.4
of [2]) and to the case in which symbols are measures (see Chapter 6 of [25]). We formulate the
result for scalar symbols. If f is continuous, has no zeros, has no winding,

∑
n∈Z |fn| < ∞ and∑

n∈Z(|n|+ 1)|fn|2 <∞, then the strong Szegő limit theorem (SSLT) implies that

(4) Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k + o(1)

}
.

For a detailed account of the fascinating history of Toeplitz determinants with citations to the
original works, see, e.g., [2, 7, 25].

1.1. Fisher-Hartwig symbols. A number of problems in statistical mechanics require more gen-
eral symbols than the continuous symbols above. In 1968 Fisher and Hartwig [13] singled out
symbols, which may possess zeros, integrable singularities and non-zero winding numbers. These
symbols can be written in the form

(5) f(z) = eV (z)z
∑m
j=0 βj

m∏
j=0

|z − zj |2αjgzj ,βj (z)z
−βj
j , z = eiθ, θ ∈ [0, 2π),

for some m = N ∪ {0}, where each zj = eiθj , 0 = θ0 < θ1 < · · · < θm < 2π,

(6) gzj ,βj (z) =

{
eiπβj if 0 ≤ arg z < θj ,

e−iπβj if θj ≤ arg z < 2π,

and

(7) Reαj > −1/2, βj ∈ C, j = 0, . . . ,m,

and V is analytic in a neighborhood of the unit circle. Functions of the form (5) are called Fisher-
Hartwig symbols. Observe that the condition Reαj > −1

2 implies that f ∈ L1. Clearly, f has
a zero at zj if Reα > 0; a pole at zj if Reα < 0; and a discontinuity of oscillating type at zj if

Reα = 0 and Imα 6= 0. Also, note that, for j > 0, zβjgzj ,βj (z) is continuous at 1, so the strength
of each jump of f at zj is determined by βj .

The leading order asymptotics of Toeplitz determinants with Fisher-Hartwig symbols were com-
puted by Ehrhardt in his PhD thesis in 1997 (see also [12]). To state his result, we need the
following seminorm

(8) |||β||| = max
j,k
|Reβj − Reβk|,

where 1 ≤ j, k ≤ m if α0 = β0 = 0, and 0 ≤ j, k ≤ m otherwise. If m = 0, we set |||β||| = 0. We also
need the Wiener-Hopf factorization

(9) eV (z) = b+(z)eV0b−(z), b+(z) = e
∑∞
k=1 Vkz

k
, b−(z) = e

∑−1
k=−∞ Vkz

k

where Vk denote the Fourier coefficients of the function V .
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Theorem 1. Let f be Fisher-Hartwig, V (z) ∈ C∞(T), |||β||| < 1, Reαj > −1
2 and αj ± βj 6=

−1,−2, . . . for j, k = 0, 1, . . . ,m. Then as n→∞,

Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k

}
m∏
j=0

b+(zj)
−(αj−βj)b−(zj)

−(αj+βj)

(10)

× n
∑m
j=0(α2

j−β2
j )

∏
0≤j<k≤m

|zj − zk|2(βjβk−αjαk)

(
zk
zjeiπ

)αjβk−αkβj m∏
j=0

Gαj ,βj (1 + o(1)) .

Here, the product over j < k is set to 1 if m = 0 and

(11) Gαj ,βj =
G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
,

where G is the Barnes’ G-function.

In [6, 8] Theorem 1 is proved using a Riemann-Hilbert approach and generalized for less smooth
functions V of finite degree of smoothness satisfying the condition

(12)

∞∑
k=−∞

|k|s|Vk| <∞

for s such that

(13) s >
1 +

∑m
j=0

[
(=αj)2 + (Reβj)

2
]

1− |||β|||
.

In [6], the authors also prove the result for |||β||| = 1 if V (z) ∈ C∞(T), i.e. the generalised F-H, or
Tracy-Basor conjecture which stems from F-H representations.

1.2. Basor-Tracy conjecture and Fisher-Hartwig representations. Basor and Tracy [1]
computed the asymptotics of Toeplitz determinants with a symbol f of two jump singularities
at z0 = 1 and z1 = eiπ = −1 with β0 = 1/2 and β1 = −1/2, so that the seminorm, |||β||| = 1.
They noticed that the asymptotic behavior was not of the form in (10), but a linear combination
of asymptotics (10) for two different Fisher-Hartwig determinants. The symbol in the first set of
asymptotics corresponded to the original f and the other to the symbol with jumps at 1 and −1
with β0 = −1/2 and β1 = 1/2 respectively. The symbol of the second set of asymptotics only
differed from the original one by a constant. This is a property of Fisher-Hartwig symbols called
Fisher-Hartwig representations (see the definition and discussion below). This property applies to
any F-H symbol, however it only manifests itself in the asymptotics when |||β||| = 1.

Definition 2. Let f be Fisher-Hartwig. If αj 6= 0 or βj 6= 0 or both are nonzero, we replace βj
by βj + nj =: β̂j , nj ∈ Z, where nj satisfy the condition

∑m
j=0 nj = 0, but are otherwise arbitrary

integers. The resulting function f(z;n0, . . . , nm) is called a Fisher-Hartwig representation of f .

All Fisher-Hartwig representations of the symbol f differ only by multiplicative constants, and
it follows that

(14) f(z) =

m∏
j=0

z
nj
j × f(z;n0, . . . , nm).

We denote by M the set of all Fisher-Hartwig representations of f for which

(15)
m∑
j=0

(Reβj + nj)
2



4 KOZLOWSKA AND VIRTANEN

is minimal. Note that M is finite and there is an algorithm for describing M explicitly (see the
proof of Lemma 1.12 of [6]). A Fisher-Hartwig representation is called degenerate if αj + (βj + nj)
or αj − (βj + nj) is a negative integer for some j. The set M is called nondegenerate if it contains
no degenerate Fisher-Hartwig representations.

Lemma 3. For β = (β0, β1, . . . , βm), define the orbit of β by

(16) Oβ =

β̂ : β̂j = βj + nj ,

m∑
j=0

nj = 0

 .

Then one and only one of the following conditions holds:

(i) There is a β̂ ∈ Oβ such that |||β||| < 1, in which case β̂ is unique and it is the unique element

of M = {β̂}.
(ii) There is a β̂ ∈ Oβ such that |||β||| = 1, in which case there are at least two such β̂ parameters

and all of them are obtained from each other by a repeated application of the following rule:
add 1 to a β̂j with the smallest real part and subtract 1 from a β̂j with the largest. Moreover,

M = {β̂ ∈ Oβ : |||β||| = 1}.

All of the representations of the symbol f with |||β||| = 1, which correspond to all permutations
of the β-parameters on the boundary of the strip −1/2 + q < Re z < 1/2 + q for some q ∈ R, z ∈ C,
contribute to the final asymptotics. The Basor-Tracy conjecture was finally proved in [6].

Theorem 4. (Basor-Tracy Conjecture) Let f be Fisher-Hartwig, Reαj > −1/2, βj ∈ C, j =
0, . . . ,m. Let M be nondegenerate. Then, as n→∞,

(17) Dn(f) =
∑
M

 m∏
j=0

z
nj
j

n

R(f(z;n0, . . . , nm))(1 + o(1)),

where each R(f(z;n0, . . . , nm)) is given by Fisher-Hartwig asymptotics for Dn(f(z;n0, . . . , nm)) in
(10) (without the error term).

1.3. Double-scaling limits. Let ft ∈ L1 for t ≥ 0. By a double-scaling limit of Toeplitz determi-
nants Dn(ft) we mean an asymptotic expansion of Dn(ft) valid uniformly for 0 ≤ t < t0 for some
sufficiently small t0, as n→∞. In general, double-scaling limits (of not necessarily Toeplitz deter-
minants) are of great interest in mathematics and in physics. We mention two previous results that
are closely related to our present work. In [3], the double-scaling limits of Toeplitz determinants
Dn(ft) were computed in the case that ft is sufficiently smooth for t > 0 (as in the SSLT) and f0

has one Fisher-Hartwig singularity. In [4], the double-scaling limits of Dn(ft) were computed in the
case that ft has two Fisher-Hartwig singularities at eit and e−it when t > 0 and f0 has one Fisher-
Hartwig singularity at 1. Both of these results have important applications, e.g., in random matrix
theory and mathematical physics. See also [28] for discussion on double-scaling limits. Our work is
concerned with the double-scaling limits of Dn(ft) in the case that ft has one fixed Fisher-Hartwig
singularity on T \ {1} independent of t and one additional Fisher-Hartwig singularity emerges as
t→ 0. For the precise statements of our main results, see Section 4. In the next section we discuss
applications to quantum spin chain models, and in particular we describe the phase transitions of
the XY model using double-scaling limits of Toeplitz determinants.

2. Applications

2.1. The Ising model. In 1924 Ernst Ising showed that the one-dimensional Ising model with
nearest-neighbor forces exhibits no phase transition; see [23, Chapter III]. The difference between
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the one-dimensional and two-dimensional Ising models is enormous. In one dimension both the
free energy and the 2-spin correlation function can be exactly computed in closed form in the
presence of a magnetic field h. By contrast, in two dimensions we need to rely on approximations.
In the 1950s, Onsager and Kaufman studied the 2-spin correlation function 〈σ00σnn〉 of the two-
dimensional Ising model (with the cyclic boundary conditions on the 2M × 2N lattice and h = 0)
whose magnetization M is given by

(18) M2 = lim
n→∞

〈σ00σnn〉 = lim
n→∞

lim
M,N→∞

1

Z(T )

∑
{σ}

σ00σnne
−E({σ})/T ,

where

E({σ}) =

M−1∑
j=−M

N−1∑
k=−N

(J1σjkσjk+1 + J2σjkσj+1k)

is the total energy corresponding to each spin configuration σ given by σjk ∈ {±1}, J1, J2 > 0, and

Z(T ) =
∑
{σ}

e−E({σ})/T

is the partition function at temperature T . For further details on the 2D Ising model, see [23].
As seen above, the correlation function is a huge sum of products and it is a remarkable fact

that it can be expressed as a Toeplitz determinant. More precisely, using the notation in [3],

(19) 〈σ00σnn〉 = ent/2Dn(ft)

where

(20) ft(z) = (z − et)−1/2(z − e−t)1/2z−1/2eiπ/2, et = sinh
2J1

T
sinh

2J2

T
.

We denote the critical temperature of the system by Tc. For the symbol f in (20), temperatures
T < Tc correspond to t > 0; T = Tc to t = 0; and T > Tc to t < 0. Suppose first that t > 0. Then

(log ft)±k = ± 1

2k
e−tk and (log ft)0 = −1

2
t.

Using the strong Szegő limit theorem, see (4), we can easily compute the magnetization for tem-
peratures T < Tc and obtain

M2 = (1− e−2t)1/4(1 + o(1)) =

(
1−

(
sinh

2J1

T
sinh

2J2

T

)−2
)1/4

(1 + o(1))

as n→∞.
When t = 0, ft(e

iθ) = e−i
1
2

(θ−π) has a Fisher-Hartwig singularity, and Theorem 1 implies

Dn(0) = Cn−1/4(1 + o(1))

as n→∞, where C =
√
πG(1

2)2 and G is the Barnes’ G-function.
To describe the phase transition of the 2D Ising model, one needs to compute the transition

asymptotics of Dn(ft) as both n→∞ and t→ 0 simultaneously. These asymptotics were computed
in [3] and also follow from our main result by setting α1 = β1 = 0.
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Σ+

Σ0

Σ−

γ

Ω+

Ω−

Ω0

h

1

−1

ΓI

ΓE

Figure 1. Phase diagram of the XY model for γ ≥ 0. There are three critical lines:
Ω+: h = 1, Ω0: γ = 0, |h| < 1, Ω−: h = −1 and three non-critical domains: Σ+:
h < −1, Σ0: −1 < h < 1, Σ−: h > 1. The line ΓI when γ = 1 represents the Ising
model in transverse magnetic field. On the line ΓE when γ2 + h2 = 1 the ground
state of the theory is a product of single spin states.

2.2. The XY model. The one-dimensional XY model [14], which is a generalization of the 1D
Ising model, was introduced by Matsubara and Matsuda [22] in 1956 as a model of a quantum
lattice gas. It is one of the simplest nontrivial integrable models with rich phase-diagram where
most quantities can be calculated exactly. The critical behavior of this model was investigated in
detail between 1968 and 1974 by Betts and his collaborators, who emphasized the relevance of this
model to the study of insulating ferromagnets. See also [21]. The XY model has gathered a lot
of attention within groups studying quantum entanglement with works such as Vidal et al. [27],
Jin and Korepin [19], and Keating and Mezzadri [20]. For further references on the XY model in
statistical mechanics, see the references in the recent monograph of Franchini [14].

In [15], Franchini and Abanov investigated how the change between regions over critical lines
in the phase diagram (see Figure 1) influences the asymptotics of a special correlator called the
Emptiness Formation Probability (EFP) for the 1-dimensional, anisotropic XY spin-1/2 chain in a
transverse magnetic field h. The Hamiltonian of this model is given by

(21) H =
N∑
i=1

[(
1 + γ

2

)
σxi σ

x
i+1 +

(
1− γ

2

)
σyi σ

y
i+1

]
− h

N∑
i=1

σzi ,

where σαi , with α = x, y, z are the Pauli matrices, which describe the spin operators on the i-
th lattice site of the spin chain and the boundary conditions are chosen to be periodic; that is,
σαi = σαi+N with (N >> 1). The EFP is given by,

(22) P (n) ≡ 1

Z
Tr

eH/T
n∏
j=1

1− σzi
2

 ,
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where Z = Tr
{
eH/T

}
is the partition function and T is the temperature. The majority of the

paper [15] deals with the case when T = 0. In that case,

P (n) ≡ 〈0|
n∏
i=1

1− σzi
2
|0〉,

and P (n) is then the probability that n consecutive spins are all aligned downward in the ground
state |0〉.

After reformulating (21), using spinless fermions and other transformation techniques of sta-
tistical mechanics, the authors arrive at fermionic correlators in the thermodynamic limit given
by

(23) Fjk ≡ i〈ψjψk〉 = −i〈ψ∗jψ∗k〉 =

∫ 2π

0

1

2
sinϑqe

iq(j−k) dq

2π

and

(24) Gjk ≡ 〈ψjψ∗k〉 =

∫ 2π

0

1 + cosϑq
2

eiq(j−k) dq

2π
,

where ψi are the spinless fermions (cf. Jordan-Wigner transformation),

(25) eiϑq =
1

εq
(cos q − h+ iγ sin q),

and

(26) εq =

√
(cos q − h)2 + γ2 sin2 q.

The EFP can be expressed as

P (n) = Pf(M),

where

Pf(M) ≡
∑
P

(−1)PMp1p2Mp3p4 . . .Mp2n−1p2n

is called the Pfaffian. Here the sum is taken over all possible permutations P = {p1, p2, . . . , p2n} of
the set {1, 2, . . . , n} and (−1)P denotes the parity of the permutation. The matrix M is a 2n× 2n
skew-symmetric matrix of correlation functions given by

M =

(
−iF G
−G iF

)
,

where F and G are n× n matrices with entries given by Fjk and Gjk in (23) and (24). One of the
properties of the Pfaffian gives that

P (n) = Pf(M) =
√

det(M).

After performing a unitary transformation one arrives at

M′ = UMU∗ =

(
0 Sn
−S∗n 0

)
, U =

1√
2

(
I −I
I I

)
,

where I is a unit n× n matrix and Sn = G + iF, S∗n = G− iF. The unitary transformation does
not change the determinant and so

det(M) = det(M′) = det(Sn) det(S∗n) = |det(Sn)|2.
Thus,

P (n) = |det(Sn)|,
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where the matrix Sn is an n× n Toeplitz matrix with the symbol

(27) σ(q) =
1

2
+

cos q − h+ iγ sin q

2
√

(cos q − h)2 + γ2 sin2 q
,

q ∈ (0, 2π] and h is the external magnetic field (for critical lines in the phase diagram, see Figure 1).
If γ = 0, the problem is isotropic and exhibits a Gaussian behavior, instead of exponential, which
can be seen using Widom’s theorem with a power law prefactor (see [24]). Suppose that γ 6= 0.
Since Sn = G + iF, (23) and (24) imply that

(28) σ(q) =
1

2

(
1 + eiϑq

)
, eiϑq = cosϑq + i sinϑq,

from which we obtain (27) according to (25) and (26).

2.2.1. Region Σ− corresponding to h < −1. In this region, for γ 6= 0 and h < −1, the symbol (27)
is analytic for all q and we can use the SSLT (4) to get the asymptotics. We write q(θ) for q(eiθ)
and we may emphasize the dependence on h or t by writing σ(θ, h) or σ(θ, t) respectively. In this
region, if h = h(t) = −et with t > 0, then, as t → 0, h approaches −1 from h < −1; that is,
transition from Σ− to Σ0.

We can factorise another analytic function (for t > 0) out of σ(θ, t),

(29) T−1(θ, t) =
(
eiθ + et

)
e−3πi/2, θ ∈ (0, 2π),

to write simply

(30) σ(θ, t) = T−1(θ, t)eV (θ,t),

where eV (θ,t) is an analytic function left after the factorization. Function eV (θ,t) depends on t, but
the limit t→ 0 does not affect its analyticity. Observe that T−1(θ, t)→ F−1(θ) as t→ 0, where

(31) F−1(θ) = |eiθ + 1|eiθ/2g−1,1/2(eiθ)e−iπ/2,

and gzj ,βj (z) is defined in (6). The function F−1(θ, t) has a pure Fisher-Hartwig singularity at
z = −1 with α1 = 1/2 and β1 = 1/2. Using (84) and (88) with θ1 = π, we get

T−1(θ, 0) =
(
eiθ + 1

)2(1/2)
e−iθ/2e−πig−1,−1/2(eiθ)g−1,1/2(eiθ)e−πi/2eiθ/2

=

(
eiθ + 1

)2(1/2)

(e−iθeil1)
1/2

g−1,1/2(eiθ)e−πi/2eiθ/2 = F−1(θ)

since eil1(−1/2) = e−πig−1,−1/2(eiθ), where l1 is as in (84). Thus, we cross the critical line h = −1
and arrive at the next non-critical region Σ0.

2.2.2. Region Σ0 corresponding to −1 < h < 1. For −1 < h < 1 the symbol has one Fisher-Hartwig
singularity at θ = π with strength β = 1

2 , α = 1
2 as seen from (31). We can factorize the singularity

out of σ(θ, h). The function F−1
−1 (θ)σ(θ, h) is analytic for −1 < h < 1 as shown on the plots in

Figure 3.
As h → 1 we see an emergence of a second singularity at z = 1 or θ = 0. In this region we can

think of h = e−t with t > 0 (note that t here is different from the one in the previous region), and
t→ 0 corresponds to the limit as h approaches 1 from h < 1. By taking the limit t→ 0 we arrive
at the region Σ+. As in Σ−, we define

(32) T1(θ, t) =
(
eiθ − e−t

)
e−iθ, θ ∈ (0, 2π).
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(a) h = −2 (b) h = −1.1 (c) h = −1

(d) h = −0.9 (e) h = 0 (f) h = 0.9

(g) h = 1 (h) h = 1.1 (i) h = 2

Figure 2. Plots of |σ(θ, h)| (blue) and arg σ(θ, h) (red) for different values of h
with γ = 1

(a) h = −0.8 (b) h = 0.5 (c) h = 0.9

Figure 3. Plots of |F−1
−1 (θ)σ(θ, h)| (blue) and argF−1

−1 (θ)σ(θ, h) (red) with γ = 1;
showing no jumps in argument and boundedness, and non-vanishing in absolute
value for −1 < h < 1.

(a) h = 1.2 (b) h = 1.5 (c) h = 5

Figure 4. Plots of |F−1
−1 (θ)F−1

1 (θ)σ(θ, h)| (blue) and argF−1
−1 (θ)F−1

1 (θ)σ(θ, h)
(red) with γ = 1; showing no jumps in argument and boundedness, and non-
vanishing in absolute value for h > 1.
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Compare this function to at in (38) with α0 = 1/2 and β0 = −1/2. We can write

(33) σ(θ, t) = T1(θ, t)F−1(θ)eṼ (θ,t),

where eṼ (θ,t) is an analytic function left after the factorization. Notice that this is exactly the

symbol in (38) below with z1 = −1, α0 = 1/2, β0 = −1/2, α1 = 1/2, β1 = 1/2. Again, eṼ (θ,t)

depends on t, but the limit t→ 0 does not affect its analyticity. As t→ 0,

(34) T1(θ, t)→ F1(θ) = |eiθ − 1|e−iθ/2eiπ/2.

Observe that F1(θ, t) with (5) has a pure singularity at z = 1 with α0 = 1/2 and β0 = −1/2. Using
(84) again, we get

T1(θ, 0) =

(
eiθ + 1

)2(1/2)

(eiθeiπ)
1/2

e−iθ/2eiπ/2 = F1(θ)

Thus, we cross the critical line h = 1 and arrive at the next non-critical region Σ+.

2.2.3. Region Σ+ corresponding to h > 1. For h > 1, the symbol σ(θ, h) has two Fisher-Hartwig
singularities at θ = 0 and θ = π. Let θ0 = 0 and θ1 = π. The corresponding strengths are β0 = −1

2 ,

α0 = 1
2 , β1 = 1

2 , α1 = 1
2 . Using the notation in (31) and (34), we can write the symbol as

σ(θ, t) = F−1(θ, t)F1(θ, t)eV̂ (θ,h).(35)

To see eV̂ (θ,h) is analytic for h > 1, we look at the plot of F−1
−1 (θ)F−1

1 (θ)σ(θ, h) in Figure 4 and
notice that the function has no jumps in its argument and its absolute value does not vanish or
blow up.

However, this symbol has another representation, which corresponds to the seminorm of β-
parameters; that is, if

(36) F β̂−1(θ) = |eiθ + 1|e−iθ/2g−1,−1/2(eiθ)eiπ/2,

and

(37) F β̂1 (θ) = |eiθ − 1|eiθ/2e−iπ/2,

then

σ(θ, t) = e−iπF β̂−1(θ, t)F β̂1 (θ, t)eV̂ (θ,h).

By the Tracy-Basor conjecture, the asymptotics of the Toeplitz determinant are obtained from the
two representations according to Theorem 4.

2.2.4. Transition between the regions. It is natural to seek information about the transition between
Σ0 and each of the two regions Σ±, and describe what happens close to the critical points. As
mentioned above, the results of [3] provide uniform asymptotics of the Toeplitz determinant with a
symbol that can be written in the form (30) after rotating the problem in [3] by π. This transition
can thus be used to describe the change between the regions Σ− and Σ0. Our results describe
the transition between Σ0 and Σ+, which involve the emergence of an additional singularity and
|||β||| = 1 on the critical line. This transition is described in Theorem 6 with z1 = −1, α0 = 1/2,
β0 = −1/2, α1 = 1/2, β1 = 1/2, which is exactly the symbol in (33) above.
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3. The Symbol

We start with one Fisher-Hartwig singularity positioned at the point z1 = eiθ1 , θ1 ∈ (0, 2π) and
one that emerges, at z0 = 1 as t→ 0. Locally, around the point z = 1, we have the situation which
was described in [3]. For t ≥ 0 and z ∈ T, we write the symbol as follows:

ft(z) = f(z; t) = at(z)× zβ1 |z − z1|2α1gz1,β1(z)z−β11(38)

= eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0) × zβ1 |z − z1|2α1gz1,β1(z)z−β11 ,

where
at(z) = eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0)

has an emerging singularity at t = 0 with strengths α0 and β0, and

eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0)

is analytic in C \ ([0, e−t]∪ [et,+∞]) for t > 0. Also, note that for t > 0, ft has one Fisher-Hartwig
singularity with strengths α1 and β1; while for t = 0, ft has two singularities with strengths αj and
βj for j = 0, 1. In both cases, ft can be represented in the form (5).

Using Fisher-Hartwig asymptotics, it is easy to find the asymptotics of Dn(ft) for a fixed t.
Indeed, the Fourier coefficients of log a(z; t) are given by

(log at)0 = V0 + t(α0 + β0) and (log at)±k =

(
V±k − (α0 ± β0)

e−tk

k

)
for k ∈ N and the Wiener-Hopf factorization of at is given by

log at(z) = log at,+(z) + (log at(z))0 + log at,−(z),

where

log at,+(z) =
∞∑
k=1

(log at(z))k z
k, log at,−(z) =

∞∑
k=1

(log at(z))−k z
−k.

By Theorem 1, we have

(39) Dn(ft) = exp {n (log at(z))0} exp

{ ∞∑
k=1

k (log at)k (log at)−k

}
× exp {−(α1 − β1) log at,+(z1)− (α1 + β1) log at,−(z1)}n(α2

1−β2
1)Gα1,β1(1 + o(1))

as n→∞.
For the ease of notation in what follows, we denote the following interaction constants between

two singularities (compare with (10)),

(40) I(zj,k, βj,k) := |zj − zk|2(βjβk−αjαk)

(
zk
zjeiπ

)αjβk−αkβj
Gαj ,βjGαk,βk ,

with j < k, and

(41) E(zj , βj) := exp {−(αj − βj)V+(zj)− (αj + βj)V−(zj)} .
When t = 0, the symbol has two Fisher-Hartwig singularities and we have to consider two cases.

If |||β||| < 1, Theorem 1 implies that

Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k

}
E(z0, β0)E(z1, β1)× n

∑1
j=0(α2

j−β2
j )I(z0,1, β0,1)(1 + o(1)).(42)

If |||β||| = 1, the symbol possesses two Fisher-Hartwig representations (see Definition 2) and we
need to apply Theorem 4 to obtain the asymptotics. The trivial representation corresponds to β0
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and β1. Without loss of generality, we may assume Reβ0 < Reβ1, in which case the nontrivial
representation corresponds to β̃0 = β0 + 1 and β̃1 = β1 − 1. By (17),

Dn(f) =

[
exp

{
nV0 +

∞∑
k=1

kVkV−k

}
E(z0, β0)E(z1, β1)n

∑1
j=0(α2

j−β2
j )I(z0,1, β0,1)

+
(
z−1

1

)n
exp

{
nV0 +

∞∑
k=1

kVkV−k

}
E(z0, β̃0)E(z1, β̃1)× n

∑1
j=0(α2

j−β̃2
j )I(z0,1, β̃0,1)

]
(1 + o(1)) .

This case will be considered in more detail in Section 9.
Notice that taking the limit as t → 0 in (39) does not agree with (42). In the next section, we

provide the asymptotic expansion for Dn(ft) that holds uniformly for all sufficiently small t.

4. Statement of results

Our main results (Theorems 5 and 6) describe the asymptotic behavior of Toeplitz determinants
Dn(ft) as n→∞ and t→ 0 simultanously, where the symbol ft is of the form

ft(z) = f(z; t) = at(z)× zβ1 |z − z1|2α1gz1,β1(z)z−β11

= eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0) × zβ1 |z − z1|2α1gz1,β1(z)z−β11 ,

and V is analytic in a neighborhood of the unit circle. Our results can be used to study the
emptiness formation probability for the one-dimensional anisotropic XY spin chain in a transverse
magnetic field, and in particular we obtain a full description of the transition between different
regions in the phase diagram across critical lines—see Sections 2.2 and 2.2.4 above for further
details.

Theorem 5. Let ft be defined as above and suppose that α0, α1 ∈ C with Reαj > −1
2 , β0, β1 ∈ C

with |||β||| < 1. The following asymptotic expansion holds as n → ∞ with the error term o(1)
uniform for 0 ≤ t ≤ t0, where t0 is sufficiently small,

(43)

Dn(ft) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k [(log at)k]
[
(log at)−k

]}
× exp {−(α1 − β1) log at,+(z1)} exp {(α1 + β1) log at,−(z1)}

× n(α2
1−β2

1)Gα0,β0Gα1,β1Ω̃(2nt)(1 + o(1))

as n→∞, where Gαj ,βj is the product of Barnes G-functions, defined in (11), and

(44) Ω̃(2nt) = exp {Ω(2nt)} = exp

{∫ 2nt

0

σ(x)− α2
0 + β2

0

x
dx+ (α2

0 − β2
0) log 2nt

}
.

The function σ is a particular solution to the second order ODE, the Jimbo-Miwa-Okamoto σ-form
[17, 18] of the Painlevé V equation, with parameters depending on α0 and β0. It is real analytic on
(0,+∞), and its asymptotic behavior for x > 0 is given by

(45) σ(x) =


α2

0 − β2
0 +

α2
0−β2

0
2α0
{x− x1+2α0C (α0, β0)}(1 +O(x)), x→ 0, 2α0 /∈ Z,

α2
0 − β2

0 +O(x) +O(x1+2α0) +O(x1+2α0 log x), x→ 0, 2α0 ∈ Z,
x−1+2α0e−x 1

Γ(α0−β0)Γ(α0+β0)(1 +O(1/x)), x→ +∞,

where

(46) C(α0, β0) =
Γ(1 + α0 + β0)Γ(1 + α0 − β0)Γ(1− 2α0)

Γ(1− α0 + β0)Γ(1− α0 − β0)Γ(+2α0)2

1

1 + 2α0
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and Γ(z) is the Euler’s Γ-function.

The proof of this theorem is given in Section 8.

Theorem 6. Let α0, α1 ∈ C with Reαj > −1
2 , β0, β1 ∈ C be such that |||β||| = 1, and ft be defined

by (38). Denote by β̃0 = β0 + n0, β̃1 = β0 + n1 the only non-trivial Fisher-Hartwig representation
of f0. The following asymptotic expansion holds as n → ∞ with the error term o(1) uniform for
0 ≤ t ≤ t0, where t0 is sufficiently small,

(47)

Dn(ft) = R (ft(z;β0, β1)) + (zn1
1 )nR

(
ft(z; β̃0, β̃1)

)
× n−(2β0+1)

Γ(1 + α0 + β0)

K(2nt)

ent
(1− e−2t)−(2β0+1)Σ(t),

where R
(
ft(z; β̃0, β̃1)

)
is given by (43) and ft(z; β̃0, β̃1) is the symbol ft with jump strengths β̃0, β̃1.

Further, the incomplete Gamma function (see [11, Eq. 8.2.2])

K(x) = ex/2
∫ ∞
x

yα0+β0e−ydy,(48)

has the following behavior:

K(x) ∼

{
e−x/2xα0+β0 , as x→∞,
ex/2Γ(α0 + β0 + 1), as x→ 0,

and

Σ(t) =

[(
z1 − et

z1 − e−t

)α1+β̃1

exp

{
2
∞∑
k=1

Vk (sinh(tk))

}(
2t

1− e−2t

)α0−β0

+

(
z1 − et

z1 − e−t

)α1−β̃1
exp

{
−2

∞∑
k=1

V−k (sinh(tk))

}(
2t

1− e−2t

)−(α0+β0)
]
.(49)

5. A Riemann-Hilbert problem for orthogonal polynomials

Let f ∈ L1(T). A system of polynomials

φn(z) = χnz
n + . . . and φ̂n(z) = χnz

n + . . . (z ∈ T, n = 0, 1, . . .)

is said to be orthonormal with respect to f if for each n,

(50)

∫
T
φn(z)z−jf(z)

dz

2πiz
= χ−1

n δjn,

∫
T
φ̂n(z−1)zjf(z)

dz

2πiz
= χ−1

n δjn,

for j = 0, . . . , n, or, equivalently,

(51)

∫
T
φn(z)φ̂j(z

−1)f(z)
dz

2πiz
= δjn

for j = 0, . . . , n.
Note that the function f is complex-valued and the existence of ϕn is not guaranteed. However,

it is well known that if Dn(f) 6= 0 for all n ≥ N0 with some N0, then the polynomials φn and φ̂n
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satisfying (50) for n ≥ N0 exist and are given by

(52) φn(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣

f0,0 f0,1 · · · f0,n

f1,0 f1,1 · · · f1,n
...

...
. . .

...
fn−1,0 fn−1,1 . . . fn−1,n

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣
and

(53) φ̂n(z−1) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣
f0,0 f0,1 · · · f0,n−1 1
f1,0 f1,1 · · · f1,n−1 z−1

...
...

. . .
...

...
fn,0 fn,1 . . . fn,n−1 z−n

∣∣∣∣∣∣∣∣∣ ,
where fj,k = fj−k. Evaluating these determinants along the bottom row and far right column,
respectively, immediately gives the leading coefficient for both to be

(54) χn =

√
Dn

Dn+1
.

Consider the symbol ft defined in (38). It follows from Theorem 1 that Dn(ft) 6= 0 for n ≥
n0, n0 + 1, . . . with some n0, and hence a system of orthonormal polynomials φn and φ̂n with
respect to ft exist. Define a 2× 2 matrix valued function Y (n) by

(55) Y (n)(z) = Y (z) =

(
χ−1
n φn(z) χ−1

n

∫
T
φn(ξ)
ξ−z

ft(ξ)dξ
2πiξn

−χn−1z
n−1φ̂n−1(z−1) −χn−1

∫
T
φ̂n−1(ξ−1)

ξ−z
ft(ξ)dξ

2πiξ

)
for n ≥ n0. The matrix-valued function above is the unique solution to the following Riemann-
Hilbert problem:

R-H problem for Y (OPs with weight ft)

(Y1) Y : C \ T→ C2×2 is analytic.
(Y2) Let z ∈ T\{z1}. Y has continuous boundary values Y+(z) as z approaches the unit circle

from the inside, and Y−(z) from the outside, related by the jump condition

(56) Y+(z) = Y−(z)

(
1 z−nft(z)
0 1

)
, z ∈ T.

(Y3) Y (z) has the following asymptotic behavior at ininity:

(57) Y (z) = (I +O(1/z))

(
zn 0
0 z−n

)
as z →∞.

(Y4) As z → z1, z ∈ C \ T,

(58) Y (z) =

(
O(1) O(1) +O(|z − z1|2α1)
O(1) O(1) +O(|z − z1|2α1)

)
, if α1 6= 0,

and

(59) Y (z) =

(
O(1) O(1) +O(log |z − z1|)
O(1) O(1) +O(log |z − z1|)

)
, if α1 = 0, β1 6= 0.
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6. Differential identity

In this section, we derive a differential identity that links the Toeplitz determinants Dn(ft) to
the Riemann-Hilbert problem for polynomials orthogonal with respect to the weight ft defined in
(38). The differential identity is analogous to the one in [3], but with the weight of the polynomials
replaced by ft. In [3] the identity was obtained using integral and integrable Fredholm operators,
while here we use orthogonal polynomials instead.

Lemma 7. Let t > 0 and n ∈ N. Suppose that the Riemann-Hilbert problem for Y (z;n, t) in
Section 5 with ft(z) given by (38) is solvable. Then the following differential identity holds:

∂

∂t
logDn(ft) = − (α0 + β0) et

(
Y −1dY

dz

)
22

(et) + (α0 − β0) e−t
(
Y −1dY

dz

)
22

(e−t),(60)

where
(
Y −1 dY

dz

)
22

(ξ) denotes the 22 entry of the matrix obtained by multiplying the two matrices

Y −1(z) and dY
dz (z) (each entry of Y is differentiated with respect to z) together, evaluated at z = ξ.

Proof. As observed in [4], solvability of the Riemann-Hilbert problem for Y (z;n, t) is equivalent to
Dj 6= 0 for j = n− 1, n, n+ 1, which implies the solvability in a neighborhood of t. Also, as stated
in [4], the following identity (which was derived in [8] under the assumption that Dk 6= 0 for any
k ∈ N) can be derived under the weaker assumption that Dj 6= 0 for j = n− 1, n, n+ 1:

∂

∂t
logDn(ft(z)) = 2n

∂χn
∂t

χn
+

1

2πi

∫
T

∂

∂t

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
ft(z)dz.(61)

Using the Leibniz rule,

(62)
∂

∂t

∫
T
F (z)ft(z)dz =

∫
T

∂

∂t
(F (z)ft(z)) dz,

provided that the functions F (z) and ∂F (z)
∂t are analytic in a neighborhood of T. By the product

rule,

(63)

∫
T

∂F (z)

∂t
ft(z)dz =

∂

∂t

∫
T
F (z)ft(z)dz −

∫
T
F (z)

∂ft(z)

∂t
dz.

Letting F (z) = φn(z)dφ̂n(z−1)
dz − φ̂n(z−1)dφn(z)

dz and noting that by linearity, and orthogonality
conditions (50),

∂

∂t

(
1

2πi

∫
T

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
zft(z)

dz

z

)
=

∂

∂t
(−2n) = 0,(64)

we now have,

∂

∂t
logDn(ft(z)) = 2n

∂χn
∂t

χn
− 1

2πi

∫
T

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
∂ft(z)

∂t
dz.(65)

Computing the derivative gives,

∂ft(z)

∂t
=

(
−α0 + β0

z − et
et +

α0 − β0

z − e−t
e−t
)
ft(z),

thus we obtain,

∂

∂t
logDn(ft(z)) = 2n

∂χn
∂t

χn
+ (α0 + β0)

et

2πi

∫
T

F (z)ft(z)

z − et
dz − (α0 − β0)

e−t

2πi

∫
T

F (z)ft(z)

z − e−t
dz.(66)
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We are left with evaluating the following integral,

1

2πi

∫
T

F (z)ft(z)

z − ξ
dz = I1 − I2,

where ξ = et or e−t, and,

I1 =
1

2πi

∫
T

φn(z)dφ̂n(z−1)
dz

z − ξ
ft(z)dz and I2 =

1

2πi

∫
T

φ̂n(z−1)dφn(z)
dz

z − ξ
ft(z)dz.

Note first that for any polynomial of degree n ∈ Z+, pn(z) = anz
n + an−1z

n−1 + ...+ a1z + a0,

pn(z)− pn(ξ)

z − ξ
=
an(zn − ξn) + an−1(zn−1 − ξn−1) + ...+ a1(z − ξ)

z − ξ

=
an(z − ξ)(zn−1 + ξn−1)− zξn−1 + ξzn−1 + . . .

z − ξ
= anz

n−1 +O(zn−2),(67)

which also holds for n ∈ Z− by substituting z 7→ z−1 and ξ 7→ ξ−1.

Now, starting with I1, adding and subtracting dφ̂n(z−1)
dz |z=ξ in the numerator and using orthogo-

nality (50) gives,

I1 =
1

2πi

∫
−φn(z)

(
dφ̂n(z−1)

dz − dφ̂n(z−1)
dz |z=ξ

)
1
z −

1
ξ

(zξ)−1ft(z)dz +
1

2πi

∫
φn(z)dφ̂n(z−1)

dz |z=ξ
z − ξ

ft(z)dz

= nξ−1 +
dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)(zn−1 + ...)

ft(z)

zn
dz +

dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)

z − ξ
ξn
ft(z)

zn
dz,

and by comparing with the entries of the R-H problem (55),

I1 = nξ−1 + ξnχn
dφ̂n(z−1)

dz
|z=ξY12(ξ).

We now look at I2, proceeding in the same way as before we obtain

I2 =
1

2πi

∫
φ̂n(z−1)

(
nχnz

n−1 + ...
)
ft(z)

dz

z
+
dφn(z)

dz
|z=ξ

1

2πi

∫
φ̂n(z−1)

z − ξ
ft(z)dz.

By orthogonality in the first term and by using the following recurrence relation:

(68) χnφ̂n(z−1) = χn−1z
−1φ̂n−1(z−1) + φ̂n(0)z−nφn(z)

in the second, we obtain

I2 = −dY11(z)

dz
|z=ξY22(ξ) +

dφn(z)

dz
|z−ξφ̂n(0)Y12(ξ).

We now combine the two results. Using the same recurrence relation as above for φ̂n(z−1) and
collecting the Y12(ξ) terms gives,

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ)

+

{
ξ−1

(
−χn−1ξ

n−1φ̂n−1(ξ−1)
)

+ χn−1ξ
n−1dφ̂n−1(z−1)

dz
|z=ξ − nφ̂n(0)ξ−1φn(ξ)

}
Y12(ξ).
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Adding and subtracting χn−1(n− 1)ξn−2φ̂n−1(ξ−1) and noting that

dY21(z)

dz
= −χn−1(n− 1)zn−2φ̂n−1(z−1)− χn−1(zn−1)

dφ̂n−1(z−1)

dz
,

we get, using (55),

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
nξ−1Y21(ξ)− dY21(z)

dz
|z=ξ − nφ̂n(0)ξ−1χnY11(ξ)

}
Y12(ξ).

Next, we look at the term
2n ∂χn

∂t
χn

in (66). Noting that

1

2πi

∫
∂φn(z)

dt
φ̂n(z−1)ft(z)

dz

z
=

∂χn
∂t

χn
=

1

2πi

∫
∂φ̂n(z−1)

dt
φ(z)ft(z)

dz

z
,

we have

2
∂χn
∂t

χn
=

1

2πi

∫
∂

∂t

(
φn(z)φ̂n(z−1)

)
ft(z)

dz

z
.

Using (63) and that ∂
∂t

[
1

2πi

∫
T φ̂n(z−1)φn(z)ft(z)

dz
z

]
= 0,

2
∂χn
∂t

χn
= − 1

2πi

∫
φn(z)φ̂n(z−1)

∂ft(z)

dt

dz

z

= (α0 + β0)et
1

2πi

∫
φn(z)φ̂n(z−1)ft(z)

z − et
dz

z
− (α0 − β0)e−t

1

2πi

∫
φn(z)φ̂n(z−1)ft(z)

z − e−t
dz

z
.

We now evaluate 1
2πi

∫ φn(z)φ̂n(z−1)ft(z)
z−ξ

dz
z , where ξ = e±t. Using the same ideas as before, adding and

subtracting φ̂n(ξ−1) in the numerator, using (67), adding and subtracting ξn−1, using orthogonality
and (68) gives

1

2πi

∫
φn(z)

φ̂n(z−1)

z − ξ
ft(z)

dz

z
= −ξ−1 − ξ−1Y21(ξ)Y12(ξ) + φ̂n(0)χnξ

−1Y11(ξ)Y12(ξ).(69)

Finally, we combine all of the results and after cancellations we obtain,

∂

∂t
logDn(t) = − (α0 + β0) et

(
−dY11(z)

dz
|z=etY22(et) +

dY21(z)

dz
|z=etY12(et)

)
+ (α0 − β0) e−t

(
−dY11(z)

dz
|z=e−tY22(e−t) +

dY21(z)

dz
|z=e−tY12(e−t)

)
.

We thus have that,

∂

∂t
logDn(t) = − (α0 + β0) et

(
−dY

−1

dz
Y

)
22

(et) + (α0 − β0) e−t
(
−dY

−1

dz
Y

)
22

(e−t),(70)

which is exactly (60), noting that 0 = d
dz

(
Y −1Y

)
= Y −1 dY

dz + dY −1

dz Y . �

7. Asymptotic analysis of the R-H problem

In this section we will solve asymptotically the Riemann-Hilbert problem which was posed in
Section 5. In order to evaluate the asymptotics for the solution, the problem needs to undergo a
series of reversible transformations. We will be using the method of nonlinear steepest descent,
which was introduced by Deift and Zhou in the 1990s, see [10]. For an illustrative example of this
method, see [5], which proves the strong Szegő limit theorem. We proceed with the analysis in a
similar way to that in [3, 4, 6, 8].
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7.1. Normalization. The Riemann-Hilbert problem for Y lacks the right behavior at infinity. To
normalize the problem at infinity, we define a new function T by

(71) T (z) =

{
Y (z)z−kσ3 , as |z| > 1,

Y (z), as |z| < 1,

where,

(72) σ3 =

(
1 0
0 −1

)
is one of the Pauli matrices.

We now have two equivalent Riemann-Hilbert problems; in particular, if Y solves the Riemann-
Hilbert problem for orthogonal polynomials (55), then T solves the following Riemann-Hilbert
problem:

(T1) T : C \ T→ C2×2 is analytic.
(T2) T+(z) = T−(z)JT (z) for z ∈ T, where

JT (z) =

(
zk ft(z)
0 z−k

)
(T3) T (z) has the following asymptotic behavior at ininity,

(73) T (z) = I +O(1/z) as z →∞.
(T4) The asymptotic formulae close to point z1 is the same as in the problem for Y (z).

The two problems are equivalent in the sense that we can obtain a solution of one problem, using
the solution to the other, and vice versa, via simple algebraic manipulation.

Notice that the diagonal entries of the jump matrix JT in (T2) above oscillate rapidly on the
unit circle for large k. The next transformation will turn this oscillatory behavior on the unit circle
into exponential decay on a deformed contour.

7.2. Opening of the lenses. First we factorize the jump matrix JT as follows:

JT (z) = J1(z)JN (z)J2(z) =

(
1 0

z−kft(z)
−1 1

)(
0 ft(z)

−ft(z)−1 0

)(
1 0

zkft(z)
−1 1

)
.(74)

The initial contour T is now deformed as shown in Figure 5. The matrix-valued functions J1 and J2

are both invertible, and have analytic continuations (which are also invertible) to the outside and
inside of the unit disk, respectively—intersected with the annulus where the function ft is analytic.
We also note the desired decay of the off-diagonal terms in the two matrices, in the respective
regions of analytic continuation.

We use J1 and J2 to deform the problem for T by defining a new function S as follows:

(75) S(z) =


T (z), for z ∈ Ω1 ∪ Ω4,

T (z)J1(z), for z ∈ Ω2 ∪ Ω
′
2,

T (z)J−1
2 (z), for z ∈ Ω3 ∪ Ω

′
3.

The function S solves the following R-H problem:

(S1) S is analytic in C \ Σ, where Σ =
⋃1
j=0

(
Σj ∪ Σ

′
j ∪ Σ

′′
j

)
.

(S2) The boundary values are related by the following jump conditions:
S+(z) = S−(z)J1(z), z ∈ Σ0 ∪ Σ1,

S+(z) = S−(z)JN (z), z ∈ Σ
′
0 ∪ Σ

′
1,

S+(z) = S−(z)J2(z), z ∈ Σ
′′
0 ∪ Σ

′′
1 .

(S3) S(z) = T (z) = I +O(1/z) as z →∞.
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z0 = 1

z1

−
+

Σ0
−
+

Σ
′
0−

+ Σ
′′
0

+

−
Σ1

+

−
Σ
′
1

+

−
Σ
′′
1

Ω4

Ω
′
3

Ω
′
2

Ω1

Ω3

Ω2

Figure 5. Deformed contour Σ = ∪1
j=0

(
Σj ∪ Σ

′
j ∪ Σ

′′
j

)
, and regions Ωj ,Ω

′
j for the

Riemann-Hilbert problem for S. Note that T = Σ
′
0 ∪ Σ

′
1.

(S4) As z → z1, z ∈ C \ T, outside the lense (i.e. in Ω1 ∪ Ω4)

(76) S(z) =

(
O(1) O(|z − z1|2α1) +O(1)
O(1) O(|z − z1|2α1) +O(1)

)
α1 6= 0,

and

(77) S(z) =

(
O(1) O(log |z − z1|)
O(1) O(log |z − z1|)

)
α1 = 0, β1 6= 0.

The asymptotic behavior in Ω2 ∪ Ω
′
2 and Ω3 ∪ Ω

′
3 is given by applying jump conditions to

the expressions (76) and (77).

The new Riemann-Hilbert problem (S,Σ) is called a deformation of the problem (T,T) and can be
compared to the deformation of a contour in the method of evaluating a classical steepest descent
problem in complex analysis.

Let us encircle the two points z0 = 1 and z1 by ε-small disks

(78) Uzj = {z : |z − zj | < ε}, j = 0, 1.

We shall construct a global parametrix dealing with the jump condition over the unit circle and
two local parametrices around the points of intersection z0 and z1.

7.3. Global Parametrix. We consider a Riemann-Hilbert problem for N , ignoring the contours⋃1
j=0

(
Σj ∪ Σ

′′
j

)
and the neighborhoods

⋃1
j=0 Uzj . The model problem is given by

(N1) N : C \ T→ C2×2 is analytic,
(N2) N+(z) = N−(z)JN (z), for z ∈ T,
(N3) N(z) = I +O(1/z), as z →∞.
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(a) The neighborhood Uz1

0

Γ3

+
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−
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+ −
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−+
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V
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+ −

Γ8
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+ −
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+ −
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(b) Uz1 under the ζ transformation (called
ζ(Uz1)). Contour for the Ψ1 R-H problem.

Figure 6

Similarly to [3, 6], the problem is explicitly solvable and the solution is given in terms of the Szegő
function

(79) D(z) = exp

{
1

2πi

∫
T

log ft(s)

s− z
ds

}
.

Observe that

(80) N(z) =

D(z)σ3

(
0 1

−1 0

)
, for |z| < 1,

D(z)σ3 , for |z| > 1.

By evaluating the integral in (79), we can compute the following explicit formula for the Szegő
function D:

(81) D(z) =


(
z−z1
z1eiπ

)α1+β1 (
z − et

)α0+β0 e−iπ(α0+β0) exp
{∑∞

k=0 Vkz
k
}
, for |z| < 1,(

z−z1
z

)−α1+β1 (z − e−t)−α0+β0 zα0−β0 exp
{
−
∑−1
−∞ Vkz

k
}
, for |z| > 1.

We now go back to the Riemann-Hilbert problem for S where we have opened the lens and
created a contour which possesses intersections. We will look at each intersection separately. On
their own, the local parametrices at z0 and z1 are the same as in [6] and [3], respectively.

7.4. Parametrix at point z1. In this section, we are basing the analysis on the works of Deift, Its
and Krasovsky in [6, 8]. We first construct the parametrix Pz1(z) in the neighborhood Uz1 , see (78).
We again look for a sectionally analytic matrix-valued function, this time in the neighborhood Uz1
as opposed to the whole complex plane. This function will have the same jump conditions as S(z),
again only restricted to the intersection Σ ∩ Uz1 . It will also have the same behavior as z → z1 as
the function S, (76), (77). However, instead of being normalized at infinity, the new function will
satisfy the matching condition

(82) Pz1(z)N−1(z) = I + o(1) as n→∞.

Consider the following transformation (which is where the n appears),

(83) ζ = n log
z

z1
,
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where log x > 0 for x > 0, and the logarithm has a cut on the negative half of the real axis. This
transformation maps the neighborhood Uz1 , which can be seen in Figure 6a, into a neighborhood
of zero in the ζ-plane, Figure 6b. We choose the form of the Σ∩Uz1 to give straight lines under the
transformation. The function ζ is analytic and bijective, it takes an arc of the unit circle (recall

that Σ
′
0 ∪ Σ

′
1 = T ) to an interval of the imaginary axis (see Figure 6). The inside of the unit

circle corresponds to values of ζ in the sectors I, II, III, IV, whereas the outside corresponds to
ζ ∈ V, VI, VII, VIII. The pre-image of the rays Γ3 and Γ7 is added to the contour Σ ∩Uz1 to deal
with non-analyticity of |z − z1|αj , which we discuss next. As in [6, (4.13)], define

(84) hα1(z) = |z − z1|α1 = (z − z1)α1/2(z−1 − z−1
1 )α1/2 =

(z − z1)α1

(zz1eil1)α1/2
,

where z = eiθ, z1 = eiθ1 , 0 ≤ θ < 2π and θ1 6= 0. We fix the cut of (z − z1)α going along the ray
arg z = arg z1 from z1 to infinity, and we fix the branch by the condition that on the line from z1 to
the right parallel to the real axis, arg(z − z1) = 2π. For zα1/2 in the denominator, 0 < arg z < 2π.
We write

(85) (z − z1)α1 = exp {α1 log(z − z1)} = exp {α1 log |z − z1|+ α1i arg(z − z1)}

and

(86) (zz1e
il1)−α1/2 = exp

{
−iα1

2
(θ + θ1 + l1)

}
.

Thus,

(87)
(z − z1)α1

(zz1eil1)α1/2
= |z − z1|α1 exp

{
iα1(arg(z − z1)− θ

2
− θ1

2
− l1

2
)

}
,

where we need the power of the exponential to be 0. The values of l1 are then given by

(88) l1 =

{
3π, 0 < θ < θ1,

π, θ1 < θ < 2π,

which can be seen by considering different triangles in the complex plane. Alternatively, we can
write

(89)
z − z1

(zz1eil1)1/2
= exp

{
i

(
π − l1

2
+ πk

)}
∓ |z − z1|

{
− for 0 ≤ θ < θ1

+ for θ > θ1

which should equal |z − z1|, and so

exp

{
i

(
π − l1

2
+ πk

)}
=

{
−1 = eiπ for θ < θ1

1 = e0 for θ1 < θ

l1 =

{
(2k − 1)π mod 4π for θ < θ1

(2k + 1)π mod 4π for θ1 < θ

We proceed in the same way and use the same notation as in [6, Section 4.2], with j = 1. We
define an auxiliary function F1 (cf. [6, (4.15)]) by

(90) F1(z) = exp

{
1

2
log a(z; t)

}(
z

z1

)β1
2

hα1(z)×

{
e−iπα1 , ζ ∈ I, II, V, VI,

eiπα, ζ ∈ III, IV, VII, VIII,
z ∈ Uz1 ,
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(for the sectors I–VIII, see Figure 6b). It can be verified that F1 is analytic in the intersection of
each quarter ζ-plane with ζ(Uz1) and has the following jumps:

F1,+(z) =


F1,−(z)e−2πiα1 , ζ ∈ Γ1,

F1,−(z)e2πiα1 , ζ ∈ Γ5,

F1,−(z)eπiα1 , ζ ∈ Γ3 ∪ Γ7.

It is easy to see, after considering the analytic continuation in (84) of ft off the arcs between
singularities, and at, that

F1(z)2 = ft(z)e
−2πiαjg−1

z1,β1
(z), ζ ∈ I, II, V, VI,(91)

F1(z)2 = ft(z)e
2πiαjg−1

z1,β1
(z), ζ ∈ III, IV, VII, VIII.(92)

We now look for Pz1(z) in the form

(93) Pz1(z) = E(z)P (1)(z)F1(z)−σ3z±nσ3/2,

where the plus sign is taken for |z| < 1 and minus for |z| > 1, which corresponds to ζ ∈ I,II,III,IV,
and ζ ∈ V,VI,VII,VIII, respectively. The matrix E is analytic and invertible in the neighborhood
of Uz1 , and hence does not affect the jump and analyticity conditions and is chosen in order for Pz1
to satisfy the matching condition on the boundary (82).

Since Pz1 has the same jump conditions as S, it is straightforward to verify that P (1) satisfies
jump conditions with constant jump matrices. As in [6], we set

(94) P (1)(z) = Ψ1(ζ).

Then Ψ1(ζ) satisfies the Riemann-Hilbert problem outlined in Section 7.5. We substitute asymp-
totics from (119) into the condition on E (see (82)),

(95) E(z)Ψ1(ζ)F1(z)−σ3z±nσ3/2N−1(z) = I + o(1),

(with + for |z| < 1, and − for |z| > 1), to find that

(96) E(z) = N(z)ζβ1σ3F σ31 (z)z
−nσ3/2
1

(
e−iπ(2β1+α1) 0

0 eiπ(β1+2α1)

)
, for ζ ∈ I,II.

The matrix E for the remaining sectors can be computed using the relevant asymptotics which are
obtained using (119), see [6, Equations (4.42)-(4.50)] for those details.

We next obtain expansions in u = z − z1, as u → 0, which are unique to our problem.
These will be used later on to compute Laurent expansions for the asymptotic solution in the
final R-H problem for R. From (83), (81), (90), (84), and using the factorization of V (z) =
exp

{∑∞
k=0 Vkz

k
}
eV0 exp

{∑∞
k=0 V−kz

−k}, we get

(97) F1(z) = exp {log a(z1; t)/2} e−3iπα1/2z−α1
1 uα1 (1 +O(u)) , ζ ∈ I,

D(z) = uα1+β1z
−(α1+β1)
1 e−iπ(α1+β1)(z1 − et)(α0+β0)e−iπ(α0+β0) exp

{ ∞∑
k=0

Vkz
k
1

}
(1 +O(u)) ,(98)

(99) ζ(z) = n log
z

z1
= n

u

z1
+O(u2) = n

u

z1
(1 +O(u)).

Therefore,(
D(z)

ζβ1F1(z)

)2

= eV0
exp

{∑∞
k=1 Vkz

k
1

}
exp

{∑∞
k=1 V−kz

−k
k

}(1− e−tz1)(α0+β0)(1− e−tz−1
1 )−(α0−β0)
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× et(α0+β0)eiπ(α1−2β1)n−2β1(1 +O(u)), ζ ∈ I.(100)

From (96) it can be seen that detE(z) = eiπ(α1−β1) (this holds for all sections I-VIII of the ζ-plane

in fact). We also note that det Ψ1(ζ) = e−iπ(α1−β1). This can be seen from Liouville’s theorem, the
function det Ψ1(ζ) has no jumps (verifying directly from the jump conditions in (Ψ12) above), the
singularity at 0 is removable as Reα1 > −1/2 (by looking at the determinant of (113)) and the
value of the function follows from computing the determinant of (119). Those two facts, (93) and
that detAσ3 = 1 for any constant A, give detPz1(z) = 1, so Pz1(z) is invertible. Also observe that
S(z)Pz1(z)−1 is analytic in Uz1 , which is needed for the final R-H problem in Section 7.8. By looking
at (113), (114) and (76), (77), it can be seen that the singularity at z1 is at most O(|z − z1|2α1)
or O(log |z − z1|), but by the construction of Pz1(z) (which as you recall, had the same jumps as
S(z)), the matrix-valued function S(z)Pz1(z)−1 has no jumps in the neighborhood of z1, so the
singularity is removable.

We now compute the first correction term ∆1(z) in the asymptotic series in inverse powers of n
of (95),

(101) Pz1(z)N−1(z) = I + ∆1(z) + n−Reβ1σ3O(n−2)nReβ1σ3

A full series can be found by considering further terms in (119). We start by denoting by Eij
and Ψ1,ij , i, j = 1, 2, the matrix elements of E(z) and the asymptotic expansion of Ψ1(ζ) (see
(119)). In what follows, we only compute using the values valid in sector I (equivalently, where
appropriate |z| < 1); the expression for the asymptotic series extends to the whole boundary ∂Uz1
by analytic continuation by a consideration of other sectors. Multiplying out the matrices in (96)
we get E11 = E22 = 0, and

(102) E12 = D(z)ζ−β1F−1
1 z

n/2
1 eiπ(β1+2α1),

(103) E21 = −E−1
12 e

iπ(α1−β1).

Further, multiplying the matrices in (95),

(104) Pz1(z)N−1(z) =

(
E12Ψ1,22F1z

−n/2D(z)−1 −E12Ψ1,21F
−1
1 zn/2D(z)

E21Ψ1,12F1z
−n/2D(z)−1 −E21Ψ1,11F

−1
1 zn/2D(z)

)
,

and substituting in (102),(103) and using (119) for Ψ1,ij gives,

(105) ∆1(z) =
1

ζ

 −(α2
1 − β2

1) zn1
Γ(1+α1+β1)

Γ(α1−β1)

(
D(z)

ζβ1F1

)2
eiπ(2β1−α1)

−zn1
Γ(1+α1−β1)

Γ(α1+β1)

(
D(z)

ζβ1F1

)−2
e−iπ(2β1−α1) (α2

1 − β2
1)

 .

In particular,

(∆1(z))12 =
1

ζ
zn1 e

V0(1− z1e
−t)(α0+β0)(1− e−tz−1

1 )−(α0−β0) exp

{ ∞∑
k=1

Vkz
k
1

}
exp

{
−
∞∑
k=1

V−kz
−k
k

}

× et(α0−β0)n−2β1 Γ(1 + α1 + β1)

Γ(α1 − β1)
(1 +O(u)).(106)

We also note,

(107)
1

ζ
=

z1

n(z − z1)
+

1

2n
+O(z − z1), z → z1.
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7.5. Riemann-Hilbert Problem for Ψ1. Let Ψ1(ζ) be the solution of the following Riemann-
Hilbert problem on the contour Γ := ∪8

k=1Γk given in Figure 6b:

(Ψ11) Ψ1 : C \ Γ→ C2×2 is analytic.
(Ψ12) Ψ1 satisfies the following jump conditions:

(108) Ψ1,+(ζ) = Ψ1,−(ζ)

(
0 e−iπβ1

−eiπβ1 0

)
, for ζ ∈ Γ1,

(109) Ψ1,+(ζ) = Ψ1,−(ζ)

(
0 eiπβ1

−e−iπβ1 0

)
, for ζ ∈ Γ5,

(110) Ψ1,+(ζ) = Ψ1,−(ζ)eiπα1σ3 , for ζ ∈ Γ3 ∪ Γ7,

(111) Ψ1,+(ζ) = Ψ1,−(ζ)

(
1 0

e±iπ(β1−2α1) 1

)
, with

{
+ in the exponent for ζ ∈ Γ2,

− in the exponent for ζ ∈ Γ4,

(112) Ψ1,+(ζ) = Ψ1,−(ζ)

(
1 0

e±iπ(β1+2α1) 1

)
, with

{
+ in the exponent for ζ ∈ Γ8,

− in the exponent for ζ ∈ Γ6,

(Ψ13) As ζ → 0, ζ ∈ C \ Γ outside the lenses (i.e. sectors II, III, VI, VII), for α1 6= 0,

(113) Ψ1(ζ) =

(
O(ζα1) O(ζα1) +O(ζ−α1)
O(ζα1) O(ζα1) +O(ζ−α1)

)
,

and for α1 = 0, β1 6= 0,

(114) Ψ1(ζ) =

(
O(1) O(log |z|)
O(1) O(log |z|)

)
.

The behavior of Ψ1(ζ) for ζ → 0 in other sectors can be computed using the appropriate
jump conditions.

This problem was solved explicitly in [6, Section 4.2] and solutions found using confluent hyperge-
ometric functions (see the appendix of [16]). Define a function ψ(a, c; z) as a unique solution of the
confluent hypergeometric equation

(115) zw
′′

+ (c− a)w
′ − aw = 0,

satisfying the following asymptotic condition

(116) ψ(a, c; z) ∼ z−a
∞∑
n=0

(−1)n
(a)n(1 + a− c)n

n!zn
as z →∞ and

−3π

2
< arg z <

3π

2
,

where

(a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n ≥ 1.

Theorem 8. [6, Proposition 4.1] Let α1±β1 6= −1,−2, . . . . Then a solution to the above Riemann-
Hilbert problem (Ψ11)-(Ψ13) for Ψ1, 0 < arg ζ < 2π, is given by the following matrix-valued function
in sector I:

Ψ1(ζ) = Ψ
(I)
1 (ζ)(117)

=

(
ζα1ψ(α1 + β1, 1 + 2α1, ζ)eiπ(2β1+α1)e−ζ/2

−ζ−α1ψ(1− α1 + β1, 1− 2α1, ζ)eiπ(β1−3α1)e−ζ/2 Γ(1+α1+β1)
Γ(α1−β1)
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−ζα1ψ(1 + α1 − β1, 1 + 2α1, e
−iπζ)eiπ(β1+α1)eζ/2 Γ(1+α1−β1)

Γ(α1+β1)

ζ−α1ψ(−α1 − β1, 1− 2α1, e−iπζ)e−iπα1eζ/2

)
,

where ψ(a, c;x) is the confluent hypergeometric function of the second kind defined above, and Γ is
the Euler’s Γ-function. The solution in the other sectors is given by successive application of the
jump conditions from (Ψ12) to (117).

This solution is matched with N (see (82)) on the boundary ∂Uz1 for large n. The limit n →
∞, z ∈ ∂Uz1 , corresponds to ζ → ∞. Thus, an asymptotic expansion of Ψ1 is found using the
classical result for the confluent hypergeometric function (which is (116) rewritten),

(118) ψ(a, c;x) = x−a[1− a(1 + a− c)x−1 +O(x−2)], |x| → ∞, −3π/2 < arg x < 3π/2.

These asymptotics can be taken both for ψ(a, c; ζ) and ψ(a, c; e−iπζ) for ζ ∈ I (recall the branches
are fixed by the condition 0 < arg ζ < 2π. Using (118) to (117), we obtain the relevant asymptotics,
which due to the triangular structure of the jump matrices remain the same in the sectors I and II,

Ψ
(I)
1 (ζ) = Ψ

(II)
1 (ζ)(119)

=

[
I +

1

ζ

(
α2

1 − β2
1

Γ(1+α1−β1)
Γ(α1+β1) eiπ(β1+4α1)

−Γ(1+α1+β1)
Γ(α1−β1) e−iπ(β1+4α1) −(α2

1 − β2
1)

)
+O(ζ−2)

]

× ζ−β1σ3e−ζσ3/2
(
eiπ(2β1+α1) 0

0 e−iπ(β1+2α1)

)
,

ζ →∞, ζ ∈ I,II, α1 ± β1 6= −1,−2, . . . .

The asymptotics in the remaining sectors can be found using the relevant jump matrices.

7.6. Parametrix at point z0 = 1. Before proceeding with the local parametrix near the point z0,
we first look at the Riemann-Hilbert problem for Ψ(z)—the problem for Painlevé V—which will
play a crucial role in finding the solution to the problem for the local parametrix. This problem was
presented and solved in [3, Section 1.3], we provide a short summary of it here for the benefit of the
reader. We will also use some of the details from [3, Section 4.1,4.2] to compute some additional
details that are relevant to solving our problem.

The parametrix Pz0 will be constructed for 0 < t < t0, where t0 is sufficiently small. Similarly to
the paramtetrix at z1, it will satisfy the same jump conditions as the R-H problem for S(z) in the
neighborhood Uz0 of z0, which has a sufficiently small, fixed radius. And we will have a matching
condition with the R-H problem for N(z) on the boundary of Uz0 (referred to as ∂Uz0 , which will
be determined by an analytic (in Uz0) matrix function E(z)).

The Parametrix at z0. Assume that Ψ0(ζ) solves the R-H problem for Ψ0 defined in Section 7.7
and define

(120) Φ(λ;x) = e
x
4
σ3x−β0σ3Ψ0

(
λ

x
+

1

2
;x

)
G(λ;x)

1
2
σ3e±

πi
2

(α0−β0)σ3 , for ±=λ > 0,

where

(121) G(λ;x) =
(
λ+

x

2

)−(α0−β0) (
λ− x

2

)α0+β0
eλe−πi(α0−β0), x > 0,

which is analytic in C \ ((−∞,−x/2] ∪ [x/2,+∞)). We choose −π < arg(λ + x/2) < π and
0 < arg(λ − x/2) < 2π. The matrix function Φ = Φ(λ;x) solves the following R-H problem for
x > 0.

Riemann-Hilbert problem for Φ
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+ −

+ −

+ −

+ −

0
x/2−x/2
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1 G−1
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)(
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)

(
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1 G−1

0 1

)

Σ̂1Σ̂2

Σ̂3 Σ̂4

Figure 7. Jump contour and jump matrices for the Φ-R-H problem

(Φ1) Φ : C \ ∪4
j=1e

πi(2j−1)/4R+ → C2×2 is analytic, with the rays eπi(2j−1)/4R+ oriented as
shown in Figure 7.

(Φ2) Φ has continuous boundary values on ∪4
j=1e

πi(2j−1)/4R+ \ {0}, and they are related by
the following jump conditions,

(122) Φ+(λ) = Φ−(λ)

(
1 G(λ;x)−1

0 1

)
, as λ ∈ eπi/4R+ ∪ e7πi/4R+,

(123) Φ+(λ) = Φ−(λ)

(
1 0

−G(λ;x) 1

)
, as λ ∈ e3πi/4R+ ∪ e5πi/4R+

(Φ3) Φ has the following behavior as λ→∞,

(124) Φ(λ) = I +O(λ−1).

(Φ4) Φ is bounded near 0.

Proposition 9 ([3, Proposition 3.1]).
• If Reα0 > −1/2, the R-H problem for Φ is uniquely solvable for all but possibly a finite

number of positive x−values {x1, . . . , xk}, where xj = xj(α0, β0) and k = k(α, β)
• If α0 > −1/2 and Reβ0 = 0, the R-H problem for Φ is uniquely solvable for all x > 0.
• If Reα0 > −1/2, the asymptotic condition (124) for Φ is valid uniformly for x ∈ (0,+∞)

provided that x remains bounded away from the set {x1, . . . , xk}.

We now transform the jump matrices for Φ into the jump matrices for S near z0 = 1. First,
notice that the off-diagonal entries of the jump matrices for Φ have branch points at ±x/2, and the
ones for S have the branch points at e±t. We thus define a conformal map λ in the neighborhood
of z0 by

(125) λ(z) =
x

2t
log(z), z ∈ Uz0 ,

which maps e−t to −x/2, et to x/2 and 1 to 0. Again, we take the branch of the logarithm such
that log z > 0 for z > 1, and the branch cut is along the negative real axis. We also need that
eλ(z) = zn and so

(126) x = 2nt.

We choose the contours Σ1 and Σ2 near 1, such that λ maps Σ1 ∪ Σ2 onto the jump contour
∪4
j=1e

πi(2j−1)/4R+ for Φ. We look for the parametrix Pz0 of the form

(127) Pz0(z) = E(z)Φ(λ(z); 2nt)W (z),
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where E is analytic in Uz0 and W is given by

(128) W (z) =

{
−G(λ(z))−

1
2
σ3z

n
2
σ3ft(z)

− 1
2
σ3σ3, for |z| < 1,

G(λ(z))−
1
2
σ3z

n
2
σ3ft(z)

1
2
σ3σ1, for |z| > 1.

Note that W is analytic in Uz0 \T, as λ(et) = x/2 and λ(e−t) = −x/2, and the branch points of G
cancel out with the branch points of f .

If E is analytic in Uz0 then Pz0 satisfies the same jump conditions as the matrix S with the jump
conditions given in the R-H problem for S.

The R-H problem for Φ is not solvable for a finite set of values {x1, . . . , xk} and thus we need
the condition that x = 2nt is distinct from each xk; for more details, see [3, Theorem 1.1].

We now fix the matrix E in a way that makes the parametrix Pz0 agree with the R-H problem
for N on the boundary of Uz0 . Note that

|λ(z)| = |n log z| = n| log z| > cn for z ∈ ∂Uz0 , and c > 0.

Thus, if 2nt stays bounded away from {x1, . . . , xk} as n → ∞, then by Proposition 9, we can use
the asymptotic behavior of Φ in (124) to get

(129) Pz0(z) = E(z)(I +O(n−1))W (z) as z →∞

uniformly for 0 < t < t0 and z ∈ ∂Uz0 . If t0 is sufficiently small, we can assume that the points e±t

lie inside Uz0 at a distance which is bounded from below from ∂Uz0 . By (121) and (128),

(130) W (z) = n−β0



(
O(1) 0

0 O(1)

)
, |z| < 1,(

0 O(1)

O(1) 0

)
, |z| > 1,

as n→∞ uniformly for 0 < t < t0 and uniformly for z ∈ ∂Uz0 \ T. We set

(131) E(z) = N(z)W (z)−1,

it can be verified using the jumps for N and W across T that E is analytic in the whole neighborhood
U z0 of 1. Using (80) and (130), we have

(132) E(z) =

(
0 O(1)
O(1) 0

)
nβ0σ3

as n → ∞ uniformly for 0 < t < t0 and z ∈ ∂Uz0 . Therefore, using (129), we obtain the following
asymptotics for the matching condition for z ∈ ∂Uz0 :

(133) Pz0(z)N(z)−1 = E(z)(I +O(n−1))E(z)−1 = I + n−β0σ3O(n−1)nβ0σ3 as n→∞

uniformly for 0 < t < t0 and if 2nt is away from the set {x1, . . . , xk}.
We also note here that SP−1

z0 is analytic in the neighborhood of Uz0 , which we need for the final
R-H problem in Section 7.8. Since Pz0 has the same jumps as S inside Uz0 , it follows that any
singularity at z = 1 is removable.

Similarly to the parametrix at z1, we will now compute the first correction term ∆1 in the
asymptotic series in inverse powers of n

(134) Pz0(z)N−1(z) = I + ∆1(z) + n−Reβ0σ3O(n−2)nReβ0σ3 .
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Using (80), (127), and (131), we get
(135)

Pz0(z)N−1(z) =

D(z)σ3

(
0 1

−1 0

)
W (z)−1Φ(λ(z);x)W (z)

(
0 −1

1 0

)
D(z)−σ3 , for |z| < 1,

D(z)σ3W (z)−1Φ(λ(z);x)W (z)D(z)−σ3 , for |z| > 1.

Denote the elements of Φ(λ(z);x) by Φij(z) for i, j = 1, 2 and write G(z) for G(λ(z). By (128),
(136)

Pz0(z)N−1(z) =



(
Φ22(z) D(z)2G−1(z)znft(z)

−1Φ21(z)

D(z)−2G(z)z−nft(z)Φ12(z) Φ11(z)

)
for |z| < 1(

Φ22(z) D(z)2G−1(z)znft(z)Φ21(z)

D(z)−2G(z)z−nft(z)
−1Φ12(z) Φ11(z)

)
for |z| > 1

We now look at the behavior of these as z → e∓t in the two cases |z| < 1 and |z| > 1. We denote
by u = z − e∓t and take u→ 0. First recall the Szegő function (79) and (81), and observe

D(z) =

{(
1− z−1

1 e−t
)α1+β1 (

1− e−2t
)α0+β0 et(α0+β0) exp

{∑∞
k=0 Vke

−tk} (1 +O(u)), z→e−t
|z|<1,(

1− z1e
−t)−(α1−β1) (

1− e−2t
)−(α0−β0)

exp
{
−
∑∞

k=1 V−ke
−tk} (1 +O(u)), z→et

|z|>1.

(137)

By (121),

G(λ(z);x = 2nt) = n2β0
(

log
z

e−t

)−(α0−β0) (
log

z

et

)α0+β0
zne−iπ(α0−β0),

=

{
n2β0u−(α0−β0)(2t)α0+β0e−tne−t(α0−β0)e−2πiβ0(1 +O(u)), u→0

z→e−t,
n2β0uα0+β0(2t)−(α0−β0)etne−t(α0+β0)e−iπ(α0−β0)(1 +O(u)), u→0

z→et.
(138)

Now considering the symbol (38) and (84),

(139) f(z; t) =


eV (e−t)(1− z−1

1 e−t)2α1(1− e−2t)α0+β0uα0−β0et(α1−β1)

×e2tα0eiπ(α1−β1)zα1−β1
1 (1 +O(u)), u→0

z→e−t,
eV (et)(1− z1e

−t)2α1(1− e−2t)α0+β0uα0+β0et(α1+β1)

×e−iπ(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (1 +O(u)), u→0

z→et.

In what follows, we only need one of the entries of ∆1(z); the other elements can be easily computed
similarly using the information above. Combining the above with (127), we get

(∆1(z))12 = (1− z−1
1 e−t)2β1(1− e−2t)α0+β0 exp

{ ∞∑
k=0

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}
× et(α0+β0)e−t(α1−β1)e−2πiβ0e−iπ(α1−β1)z

−(α1−β1)
1 (2t)−(α0+β0)n−2β0

× Φ21

(
λ(z → e−t);x = 2nt

)
(1 +O(u)) as z → e−t(140)

and

(∆1(z))12 = (1− z1e
−t)2β1(1− e−2t)−(α0−β0) exp

{
−
∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=0

Vke
tk

}
× et(α0+β0)et(α1+β1)e−2πiβ0e−iπ(α1+β1)z

−(α1+β1)
1 (2t)α0−β0n−2β0

× Φ21

(
λ(z → et);x = 2nt

)
(1 +O(u)) as z → et.(141)
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It remains to find the appropriate asymptotics for Φ(λ, x). We will find two asymptotic expansions
of the form

(142) Φ(λ′) = I +
C1

λ′
+O

(
(λ′)−2

)
as λ′ →∞.

One of these will hold uniformly for 0 < x < δ and the other will hold uniformly for x > C,
where δ, C > 0 and λ′(z) = λ(z)± x

2 . After that, judging by the similarities in the two asymptotic
expansions, we will attempt to find a constant C1 that will asymptotically match both cases.

Asymptotics for Φ as x→∞. We use the following expansion given in Section 4.1 of [3]:

(143) Φ̃(ζ) = Φ(xζ = λ;x) = I +
C̃1

ζ
+O(ζ−2) as ζ →∞,

where

(144) C̃1 =

(
x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O

(
1
x

))
−x−1+α0−β0e−x/2 e−2πiβ0

Γ(α0+β0)

(
1 +O

(
1
x

))
x−1+α0+β0e−x/2 e2πiβ0

Γ(α0−β0)

(
1 +O

(
1
x

)) −x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O

(
1
x

)) )
.

Via the transformation ζ 7→ λ
x , we get

(145) Φ21(λ;x) = xα0+β0e−x/2
e2πiβ0

Γ(α0 − β0)
λ−1

(
1 +O

(
1

x

))
+O

(
x2

λ2

)
as λ→∞

uniformly for x > C > 0. Translating λ by ±x
2 makes no difference, and so

(146) Φ21(λ′;x) = xα0+β0e−x/2
e2πiβ0

Γ(α0 − β0)

(
λ′
)−1

(
1 +O

(
1

x

))
+O

(( x
λ′

)2
)

as λ′ →∞

uniformly for x > C > 0.

Asymptotics for Φ as x → 0. We use the approach in Section 4.2 of [3] to find asymptotics of Ψ0

and Φ as x → 0. Recall the R-H problem for Ψ0 in (165)-(173), which is intimately connected to
the function Φ(λ(z);x) via (120).

We now use (199) to find asymptotics of Ψ̂(λ̂) (a transformation of the R-H problem for Ψ0

defined in Section 7.7) as λ̂ := λ − x
2 → ∞. We rewrite (120) and (121) using λ = λ̂ + x

2 (see the
discussion below (178)). We obtain,

(147) Φ
(
λ = λ̂+

x

2
;x
)

= ex/4σ3x−β0σ3Ψ

(
λ̂

x
+ 1;x

)
G
(
λ̂+

x

2
, x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3 ,

and

(148) G
(
λ̂+

x

2
;x
)

=
(
λ̂+ x

)−(α0−β0)
λ̂α0+β0eλ̂ex/2e−iπ(α0−β0).

Now using (178) and (199),

Φ(λ̂;x) = e−x/4σ3Ψ̂(λ̂;x)G
(
λ̂+

x

2
;x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3

= e−x/4σ3R̂(λ̂)M(λ̂)G
(
λ̂+

x

2
;x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3 for λ̂ ∈ C \ Uε.

Using the asymptotic behavior of R̂(λ̂) = I +O(λ̂−1) and writing G = G(λ̂+ x
2 ), we obtain

Φ(λ̂;x) =

e−x/4 (M11(1 +O(λ̂−1)) +M21O(λ̂−1)
)

e−x/4
(
M12(1 +O(λ̂−1)) +M22O(λ̂−1)

)
ex/4

(
M11(1 +O(λ̂−1)) +M21O(λ̂−1)

)
ex/4

(
M12(1 +O(λ̂−1)) +M22O(λ̂−1)

) 
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×

(
G

1
2 e

iπ
2

(α0−β0) 0

0 G−
1
2 e−

iπ
2

(α0−β0)

)

=

e−x/4G 1
2 e

iπ
2

(α0−β0)M11

(
(1 + M21

M11
O(λ̂−1)

)
e−x/4G−

1
2 e−

iπ
2

(α0−β0)M12

(
(1 + M22

M12
O(λ̂−1)

)
ex/4G

1
2 e

iπ
2

(α0−β0)M21

(
(1 + M11

M21
O(λ̂−1)

)
ex/4G−

1
2 e−

iπ
2

(α0−β0)M22

(
(1 + M12

M22
O(λ̂−1)

)  .

(149)

We can find the asymptotics of each Mij as λ̂→∞, but we only concentrate on finding the details
of M21 (finding details of every Mij shows that the ratios above are O(1)). By (194) and (195),

(150) M21 = eiπ(β0+3α0)e−λ̂/2λ̂−α0ψ
(

1− α0 + β0, 1− 2α0, λ̂
)
eiπ(β0−3α0) Γ(1 + α0 + β0)

Γ(α0 − β0)
.

Using the asymptotics for the confluent hypergeometric function ψ from (118), we obtain

(151) M21 = e2iπβ0e−λ̂/2
Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−β0 λ̂−1

(
1 +O(λ̂−1)

)
.

Thus, by (148), (149), and (151),

Φ21(λ̂) = ex/4e2iπβ0(λ̂+ x)

(
α0−β0

2

)
λ̂

(
α0+β0

2

)
eλ̂/2ex/4e−λ̂/2

Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−β0 λ̂−1

(
1 +O(λ̂−1)

)
= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)

λ̂−(α0−β02

)(
1 +

x

λ̂

)−(α0−β0
2

)
λ̂
α0−β0

2

 λ̂−1
(

1 +O(λ̂−1)
)

= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−1

(
1 +O(λ̂−1)

)
as λ̂→∞,(152)

uniformly for 0 < x < δ, δ > 0. A simple translation λ̂ 7→ λ̃− x shows that

Φ21(λ̃) = ex/4G1/2
(
λ̃− x;x

)
eiπ/2(α0−β0)M21(λ̃− x)

(
1 +O(λ̃−1)

)
= ex/4

(
λ̃
−
(
α0−β0

2

)
(λ̃− x)

(
α0+β0

2

)
eλ̃/2e−x/4e−iπ/2(α0−β0)

)
eiπ/2(α0−β0)e2iπβ0e−λ̃/2

× Γ(1 + α0 + β0)

Γ(α0 − β0)

(
λ̃− x

)−1−β0 (
1 +O(λ̃−1)

)
= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)

λ̃−(α0−β02

)(
λ̃

(
1− x

λ̃

))(α0−β0
2

)
λ̃−1

(
1− x

λ̃

)−1
(1 +O(λ̃−1)

)

= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̃−1

(
1 +O(λ̃−1)

)
as λ̃→∞

(153)

uniformly for 0 < x < δ, δ > 0.

Expression for a fixed x. The function

(154) K(x) = ex/2
∫ ∞
x

yα0+β0e−ydy

has the following behavior:

(155) K(x) ∼

{
e−x/2xα0+β0 , as x→∞,
ex/2Γ(α0 + β0 + 1), as x→ 0.
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We can use K to write down an expression for Φ21(λ′;x) with fixed x, that is asymptotically valid
for small and large values of x. From (146), (152), (153) we obtain,

(156) Φ21(λ′;x) =
e2πiβ0

Γ(α0 − β0)
K(x)

(
λ′
)−1

+O
((
λ′
)−2
)

as λ′ →∞.

We also note that if x = 2nt, λ̂ = n log z
et and λ̃ = n log z

e−t and for t fixed,

(157)
1

λ̂
=

et

n(z − et)
+

1

2n
+O(z − et), z → et,

and similarly,

(158)
1

λ̃
=

e−t

n(z − e−t)
+

1

2n
+O(z − e−t), z → e−t.

Combining the results from (140), (141), (152), and (153), we obtain the final expression for
(∆1(z))12 in the expansion of Pz0(z)N−1(z) in inverse powers of n, for z → e−t,

(∆1(z))12 = λ̂−1(1− z−1
1 e−t)2β1(1− e−2t)α0+β0 exp

{ ∞∑
k=0

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(α1−β1)e−iπ(α1−β1)z
−(α1−β1)
1 (2t)−(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt),(159)

and for z → et,

(∆1(z))12 = λ̃−1(1− z1e
−t)2β1(1− e−2t)−(α0−β0) exp

{
−
∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=0

Vke
tk

}

× et(α0+β0)et(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (2t)α0−β0 n−2β0

Γ(α0 − β0)
K(2nt).(160)

7.7. Riemann-Hilbert Problem for Painlevé V. We consider the second order ODE
(161)(

x
d2σ

dx2

)2

=

(
σ − xdσ

dx
+ 2

(
dσ

dx

)2

+ 2α0
dσ

dx

)2

− 4

(
dσ

dx

)2(dσ
dx

+ α0 + β0

)(
dσ

dx
+ α0 − β0

)
,

which is the σ-form of the Painlevé V equation,

(162) uxx =

(
1

2u
+

1

u− 1

)
u2
x −

1

x
ux +

(u− 1)2

x2

(
Au+

b

u

)
+
Cu

x
+D

u(u+ 1)

u− 1
,

which was produced by Jimbo, Miwa, Okamoto (see [17, 18]). For our R-H problem, we have

(163) A =
1

2
(α0 − β0)2, B = −1

2
(α0 + β0)2, C = 1 + 2β0, D = −1

2
.

The function σ(x) in the solution of (161) can be constructed explicitly in terms of the R-H
problem below. We consider Γ = ∪6

j=1Γj ⊂ C as the contour for this problem (see Figure 8), where

(164)
Γ1 = 1

2 + eiπ/4R+, Γ2 = 1
2 + ei3π/4R+, Γ3 = 1

2 + ei5π/4R+,

Γ4 = 1
2 + ei7π/4R+, Γ5 = (1,+∞), Γ6 = (0, 1).

The contours Γ1, . . . ,Γ5 are oriented towards infinity and Γ6 is oriented to the right. As before, we
assume that Reα0 > −1/2.
Riemann-Hilbert problem for Ψ0
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Γ6

−
+0 Γ5

−
+ 1

1
2

Γ3

− +

Γ1

−+

Γ2

+ −

Γ4

− +

(
1 eiπ(α0−β0)

0 1

)(
1 0

−e−iπ(α0−β0) 1

)

(
1 0

eiπ(α0−β0) 1

) (
1 −e−iπ(α0−β0)

0 1

)
e2πiβ0σ3e−πi(α0−β0)σ3

I
II

III

IV
V

Figure 8. Jump contour and jump matrices for the Painleve V R-H problem for Ψ0

(Ψ01) Ψ0 : C \ Γ→ C2×2 is analytic.
(Ψ02) Ψ0 has continuous boundary values on Γ\{0, 1/2, 1}, and they are related by the following

jump conditions,

(165) Ψ0,+(ζ) = Ψ0,−(ζ)

(
1 eπi(α0−β0)

0 1

)
, for ζ ∈ Γ1,

(166) Ψ0,+(ζ) = Ψ0,−(ζ)

(
1 0

−e−πi(α0−β0) 1

)
, for ζ ∈ Γ2,

(167) Ψ0,+(ζ) = Ψ0,−(ζ)

(
1 0

eπi(α0−β0) 1

)
, for ζ ∈ Γ3,

(168) Ψ0,+(ζ) = Ψ0,−(ζ)

(
1 −e−πi(α0−β0)

0 1

)
, for ζ ∈ Γ4,

(169) Ψ0,+(ζ) = Ψ0,−(ζ)e2πiβ0σ3 , for ζ ∈ Γ5,

(170) Ψ0,+(ζ) = Ψ0,−(ζ)e−πi(α0−β0)σ3 , for ζ ∈ Γ6,

(Ψ03) Ψ0 has the following asymptotic behavior as ζ →∞, for some matrices C1 = C1(x, α0, β0),
C2 = C2(x, α0, β0),

(171) Ψ0(ζ) =

(
I +

C1

ζ
+
C2

ζ2
+O(ζ−3)

)
ζ−β0σ3e−(x/2)ζσ3 .

(Ψ04) Ψ0 has the following asymptotic behavior close to the following points,

(Ψ04.1) Ψ0(ζ) = O
(
|ζ|(α0−β0)/2 |ζ|−(α0−β0)/2

|ζ|(α0−β0)/2 |ζ|−(α0−β0)/2

)
, as ζ → 0,(172)

(Ψ04.2) Ψ0(ζ) = O
(
|ζ − 1|−(α0+β0)/2 |ζ − 1|(α0+β0)/2

|ζ − 1|−(α0+β0)/2 |ζ − 1|(α0+β0)/2

)
, as ζ → 1,(173)

and Ψ0 is bounded near ζ = 1/2.

Let Lj denote the jump matrices in the jump conditions above, for j = 1, . . . , 6, corresponding to
each Γj . In all cases we have that detLj = 1, and so, for j = 1, . . . , 6,

(det Ψ0)+(ζ) = (det Ψ0)−(ζ) detLj = (det Ψ0)−(ζ).
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Γ̂6
−
+−x Γ̂5

−
+0

Γ̂3

− +

Γ̂1

−+
Γ̂2

+ −

Γ̂4

− +

(
1 eiπ(α0−β0)

0 1

)(
1 0

−e−iπ(α0−β0) 1

)

(
1 0

eiπ(α0−β0) 1

) (
1 −e−iπ(α0−β0)

0 1

)
e2πiβ0σ3e−πi(α0−β0)σ3

I′
II′

III′

IV′
V′

Figure 9. Jump contour and jump matrices for the Ψ̂ R-H problem

Thus, det Ψ0(ζ) is analytic in C, and so det Ψ0(ζ) = 1 since det Ψ0(ζ) = 1 + O(ζ−1) as ζ → ∞.
Now using (171), we have trC1 = 0. We denote the elements of the matrix C1 by

(174) C1(x) =

(
q(x) r(x)
t(x) −q(x)

)
.

We define two functions v and u in terms of the matrix elements of C1 by setting

(175) v(x) =
α0 + β0

2
− q(x)− xr(x)t(x)

and

(176) u(x) = 1 +
xt

(2β0 + 1− x)t(x) + xt′(x)
.

By [3, Section 4.3], the following solution to the Painlevé V equation plays a crucial role in describing
transition asymptotics:

(177) σ(x) =

∫ +∞

x
v(ξ)dξ,

which is well defined because of the asymptotic behavior of v given as

v(x) =


−α2

0−β2
0

2α0

(
1− (2α0 + 1)x2α0C(α0, β0)

)
(1 +O(x)), x→ 0, 2α0 /∈ Z,

O(1) +O(x2α0) +O(x2α0 log x), x→ 0, 2α0 ∈ Z,
−x−1+2α0e−x 1

Γ(α0−β0)Γ(α0+β0)(1 +O(1/x)), x→ +∞,

where C(α0, β0) is defined in (46).
Let us denote by Ψ0,I, . . . ,Ψ0,V the analytic continuation of Ψ0 from the relevant sectors I,. . . ,V

in Figure 8 to C \ [0,+∞). Consider the following function,

(178) Ψ̂(λ̂;x) := e(x/2)σ3x−β0σ3 ×



Ψ0,I(
λ
x + 1;x) for λ̂ in region I′,

Ψ0,II(
λ
x + 1;x) for λ̂ in region II′,

Ψ0,III(
λ
x + 1;x) for λ̂ in region III′,

Ψ0,IV(λx + 1;x) for λ̂ in region IV′,

Ψ0,V(λx + 1;x) for λ̂ in region V′,

and write λ̂(z) := λ(z)− x
2 . The contour is translated by a half in the ζ-plane and then by realizing

that ζ(z) = λ(z)
x (which is not the same as in the R-H problem for Ψ1), it is transformed into a
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contour in the λ̂-plane (see Figure 9 and compare with Figure 8). Observe that the intersection of

the contour lines is now at λ̂ = 0 as opposed to ζ = 1
2 , i.e. λ = x

2 .

The following R-H problem for Ψ̂ follows directly from the Ψ0 problem (Ψ01)-(Ψ04).

Riemann-Hilbert Problem for Ψ̂

(Ψ̂1) Ψ̂ : C \ Γ̂→ C2×2 is analytic. Here Γ̂ := ∪6
j=1Γ̂j and

Γ̂1 = eiπ/4R+, Γ̂2 = e3iπ/4R+, Γ̂3 = e5iπ/4R+,

Γ̂4 = e7iπ/4R+, Γ̂5 = R+, Γ̂6 = (−x, 0).

(Ψ̂2) Ψ̂ has continuous boundary values on Γ̂ \ {−x, 0}, and they are related by the following
jump conditions,

(179) Ψ̂+(λ̂) = Ψ̂−(λ̂)

(
1 eπi(α0−β0)

0 1

)
, for λ̂ ∈ Γ̂1,

(180) Ψ̂+(λ̂) = Ψ̂−(λ̂)

(
1 0

−e−πi(α0−β0) 1

)
, for λ̂ ∈ Γ̂2,

(181) Ψ̂+(λ̂) = Ψ̂−(λ̂)

(
1 0

eπi(α0−β0) 1

)
, for λ̂ ∈ Γ̂3,

(182) Ψ̂+(λ̂) = Ψ̂−(λ̂)

(
1 −e−πi(α0−β0)

0 1

)
, for λ̂ ∈ Γ̂4,

(183) Ψ̂+(λ̂) = Ψ̂−(λ̂)e2πiβ0σ3 , for λ̂ ∈ Γ̂5,

(184) Ψ̂+(λ̂) = Ψ̂−(λ̂)e−πi(α0−β0)σ3 , for λ̂ ∈ Γ̂6,

(Ψ̂3) Ψ̂0 has the following asymptotic behavior as λ̂→∞,

(185) Ψ̂(λ̂) =
(
I +O(λ̂−1)

)
λ̂−βσ3e−(1/2)λ̂σ3 .

(Ψ̂4) Ψ̂ has the following asymptotic behavior close to the following points,

(Ψ̂4.1) Ψ̂(λ̂) = O

(
|λ̂+ x|(α0−β0)/2 |λ̂+ x|−(α0−β0)/2

|λ̂+ x|(α0−β0)/2 |λ̂+ x|−(α0−β0)/2

)
, as λ̂→ −x,(186)

(Ψ̂4.2) Ψ̂(λ̂) = O

(
|λ̂|−(α0+β0)/2 |λ̂|(α0+β0)/2

|λ̂|−(α0+β0)/2 |λ̂|(α0+β0)/2

)
, as λ̂→ 0, λ̂ ∈ I′,V′,(187)

and for λ̂ in other sectors we apply the appropriate jump conditions to (187).

As in [3], we use steepest descent techniques, and in particular, for small values of x, we construct

a global and a local parametrix, match them on the boundary of a small neighborhood of λ̂ = 0,
denoted by Uε (which contains also [−x, 0]), and show the final R-H problem is a small norm R-H
problem, and hence solvable. We summarize the key points below.

Riemann-Hilbert Problem for M (Global Parametrix for the Ψ̂ R-H problem)

(M1) M : C \ (∪5
j=1Γ̂j)→ C2×2 is analytic.
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(M2) M has continuous boundary values on (∪5
j=1Γ̂j) \ {0} related by the following jump condi-

tions:

(188) M+(λ̂) = M−(λ̂)

(
1 eπi(α0−β0)

0 1

)
for λ̂ ∈ Γ̂1,

(189) M+(λ̂) = M−(λ̂)

(
1 0

−e−πi(α0−β0) 1

)
for λ̂ ∈ Γ̂2,

(190) M+(λ̂) = M−(λ̂)

(
1 0

eπi(α0−β0) 1

)
for λ̂ ∈ Γ̂3,

(191) M+(λ̂) = M−(λ̂)

(
1 −e−πi(α0−β0)

0 1

)
for λ̂ ∈ Γ̂4,

(192) M+(λ̂) = M−(λ̂)e2πiβ0σ3 for λ̂ ∈ Γ̂5,

(M3) M has the following behavior at infinity,

(193) M(λ̂) =
(
I +O(λ̂−1)

)
λ̂−β0σ3e−(1/2)λ̂σ3 as λ̂→∞.

The problem is explicitly solvable in terms of the confluent hypergeometric function ψ defined via
(115). We give the solution as it was presented in [3, Section 4.2.1], but only for sector I′ (compare
with the analysis performed in Section 7.4), details of other sectors can be found in [3], or by
applying the appropriate jumps. We define the following matrix-valued function,

H(λ̂) :=

(
e−iπ(2β0+α0) 0

0 eiπ(β0+2α0)

)
e−(iπ/2)α0σ3

×
(

λ̂α0ψ(α0 + β0, 1 + 2α0, λ̂)eiπ(2β0+α0)

λ̂−α0ψ(1− α0 + β0, 1− 2α0, λ̂)eiπ(β0−3α0) Γ(1+α0+β0)
Γ(α0−β0)

λ̂α0ψ(1 + α0 − β0, 1 + 2α0, e
−iπλ̂)eiπ(β0+α0) Γ(1+α0−β0)

Γ(α0+β0)

λ̂−α0ψ(−α0 − β0, 1− 2α0, e−iπλ̂)eiπα0

)
× e(iπα0/2)σ3e−λ̂σ3/2, α0 ± β0 6= −1,−2, . . . ,(194)

where ψ(a, b, x) is the confluent hypergeometric function (see (115) and (116) for some of its prop-
erties), and Γ(x) is the Euler’s Γ-function. The solution to the R-H problem for M in the sector I′

is then given by,

(195) M(λ̂) = M1(λ̂) := H(λ̂)

(
1 −eiπ(α0−β0)

0 1

)
, for 0 < arg λ̂ <

π

4
,

and we denote the matrix elements of M(λ̂) by Mij , i, j = 1, 2 for future use. Also, in [3], it is

shown that for λ̂ ∈ ∂Uε,

P (λ̂;x)M(λ̂)−1 =

{
I +O(x) +O(x1+2α0), as x→ 0, if 2α0 /∈ Z,
I +O(x log x), as x→ 0, if 2α0 ∈ Z.

(196)

= I + o(1) as x→ 0,(197)

which makes the following final R-H problem small-norm for sufficiently small x.

Riemann-Hilbert problem for R̂

(R̂1) R̂ : C \ ∂Uε → C2×2 is analytic.
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Figure 10. Contour Γ = ∪1
j=0∂Uzj ∪1

j=0 Σj ∪1
j=0 Σ

′′
j

for the R and R̃ R-H problem.

(R̂2) R̂ has the following jump condition,

(198) R̂+(λ̂) = R̂−(λ̂)J(λ̂), for λ̂ ∈ ∂Uε,

where J(λ̂) = P (λ̂)M(λ̂)−1.

(R̂3) R̂(λ̂) = I +O(λ̂−1) as λ̂→∞.

The solvability of this problem implies through the invertible transformations Ψ0 → Ψ̂ → R̂ and
Ψ0 → Φ that the R-H problems for Φ and Ψ0 are solvable for 0 < x < δ. Further, from the fact

that J(λ̂) = I + o(1) and (R̂2), it follows that R̂(λ̂) = 1 + o(1) uniformly for λ̂ ∈ C \ Uε as x→ 0.

This holds at infinity, and so R̂(λ̂) = I +O(λ̂−1) as λ̂→∞ uniformly for small x.

The following function solves the R-H problem for R̂ above,

(199) R̂(λ̂) =

{
Ψ̂(λ̂)M(λ̂)−1 for λ̂ ∈ C \ Uε,
Ψ̂(λ̂)P (λ̂)−1 for λ̂ ∈ Uε.

7.8. Final Riemann-Hilbert Problem. We assume that αj ± βj 6= −1,−2, . . . for j = 0, 1. Let

(200) R(z) =


S(z)N−1(z), z ∈ C \ {Uz1 ∪ Uz0 ∪ Γ},
S(z)P−1

z1 (z), z ∈ Uz1 ,
S(z)P−1

z0 (z), z ∈ Uz0 .

As mentioned in Sections 7.4 and 7.6, SP−1
z0 and SP−1

z1 are analytic in the neighborhoods Uz0 and
Uz1 respectively. The function R satisfies the following Riemann-Hilbert problem, for which the
contour Γ is defined in Figure 10:

(R1) R : C \ Γ→ C2×2 is analytic.
(R2) R satisfies the following jump conditions:

(201) R+(z) = R−(z)JR(z) for z ∈ Γ.

The jump matrices are defined by

(202) JR(z) = N(z)Jk(z)N(z)−1 with

{
k = 1 for z ∈ Σ := Σ0 ∪ Σ1,

k = 2 for z ∈ Σ
′′

:= Σ
′′
0 ∪ Σ

′′
1 ,
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and

(203) JR(z) = Pz1(z)N−1(z) for z ∈ ∂Uz1 ,

(204) JR(z) = Pz0(z)N−1(z) for z ∈ ∂Uz0 .

Recall from (74) that J1(z) =

(
1 0

z−nft(z)
−1 1

)
, J2(z) =

(
1 0

znft(z)
−1 1

)
.

(R3) R(z) = I +O(1/z) as z →∞.

To find the solution of the R-H problem for R, we look at the asymptotic behavior of the jump
matrices as n→∞. The jump matrices have I+o(1) behavior at infinity, the problem is a so-called
small norm problem and solution is given in terms of a Neumann series (see [9, Theorem 7.8]).

The jump matrices JR on Σ and Σ
′′

can be estimated uniformly as I + O(e−εn), for a positive
constant ε using the Jk above (80) and (81) for 0 < t < t0 and x = 2nt bounded away from the set
{x1, . . . , xk}. Thus these jump matrices already behave the way we require.

On the contour ∂Uz1 , the jump matrix admits a uniform expansion in inverse powers of n,

conjugated by nβ1σ3z
−nσ3/2
1 ,

(205) JR(z) = I + ∆1(z) + ∆2(z) + · · ·+ ∆k(z) + ∆
(r)
k+1(z) for z ∈ ∂Uz1 .

For each k ∈ N and z ∈ ∂Uz1 , both ∆k(z) and ∆
(r)
k (z) are of the form

(206) z
σ3n/2
1 n−σ3β1O(1/nk)nσ3β1z

−σ3n/2
1 .

To obtain the solution, we require that JR = I + o(1). For z ∈ ∂Uz0 , we use (133) to get

Pz0(z)N(z)−1 = I + n−β0σ3O(n−1)nβ0σ3 = I + ∆1(z) + · · ·+ ∆k(z) + ∆k+1(z),

which also needs to be of order I + o(1). Combining the two cases, we have

n2 maxj |Reβj |−1 = o(1)

and so −1
2 < Reβj <

1
2 for j = 0, 1.

However, we need not stipulate that Reβj ∈ (−1
2 ,

1
2). It is possible to find a solution for

Reβj ∈ (q − 1
2 , q + 1

2), for some q ∈ R; i.e. the more general condition when |||β||| < 1. To
accommodate these cases, we consider the following transformation of the R-H problem for R
which was used in [6, Equation (4.63)]:

(207) R̃(z) = nωσ3R(z)n−ωσ3 ,

where

(208) ω =
1

2

(
min
j=0,1

Reβj + max
j=0,1

Reβj

)
.

This transformation moves all βj into the strip (−1
2 ,

1
2) making the above asymptotics of the jump

matrices of the order I + o(1). Note that the βj are moved only in the conjugation by nβj , and not
in the actual Fisher-Hartwig symbol f(z; t).

The transformation affects the jump conditions of the problem for R(z) as follows:

R̃+(z) = nωσ3R+(z)n−ωσ3 = nωσ3R−(z)JR(z)n−ωσ3

= nωσ3R−(z)n−ωσ3nωσ3JR(z)n−ωσ3 = R̃−(z)nωσ3JR(z)n−ωσ3 .

The asymptotic behavior of the jump matrices on Σ and Σ
′′

remains unchanged by the transfor-
mation, J̃R(z) = I +O(e−εn), but with a different ε.
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The jump matrices on ∂Uz0 and ∂Uz1 are now of the form

I + nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3 + · · ·+ nωσ3∆k(z)n
−ωσ3 + nωσ3∆

(r)
k+1(z)n−ωσ3 ,

and the order of each of the terms is O(n2 maxj |βj−ω|−k), which behaves as I + o(1) since −1
2 <

β0−ω < 1
2 . This means that we can find the solution to the problem for R̃ for β-parameters in the

range Reβj ∈ (q − 1/2, q + 1/2) for any q ∈ R.
Now that we have all the jump matrices of the right order, we can use [9, Theorem 7.8] to get

the Neumann series solution of the problem R̃ as follows:

(209) R̃(z) = I +
k∑
p=1

R̃p(z) + R̃
(r)
k+1(z).

Each R̃p, is computed recursively via separate, additive R-H problems. The conditions are that

each R̃p is analytic outside ∂U = ∂Uz0 ∪ ∂Uz1 , R̃p(z) → 0 as z → ∞ for all p and satisfies the
following jump condition:

(210) R̃p,+(z) = R̃p,−(z) +

p∑
i=1

R̃p−i,−(z)nωσ3∆i(z)n
−ωσ3 ,

where we set R̃0(z) = I. The first R-H problem for R̃1 satisfies the following conditions:

(R̃11) R̃1 : C \ ∂U → C2×2 is analytic.

(R̃12) R̃1 satisfies the following jump condition,

R̃1,+(z) = R̃1,−(z) + nωσ3∆1(z)n−ωσ3 for z ∈ ∂U.

(R̃13) R̃1(z)→ 0 as z →∞.

First, we recall the transformation (207), and write

(211) Rp(z) = n−ωσ3R̃p(z)n
ωσ3 , R(r)

p (z) = n−ωσ3R̃(r)
p (z)nωσ3 .

Using the Plemelj formulas and the residue theorem, we obtain the following solution to this additive
R-H problem:

R1(z) =
1

2πi

∫
∂U

∆1(x)dx

x− z
(212)

=

{
A1
z−z1 +

Aet
z−et +

Ae−t
z−e−t , z ∈ C \ ∪1

j=0Uzj ,
A1
z−z1 +

Aet
z−et +

Ae−t
z−e−t −∆1(z), z ∈ Uzj , j = 0, 1,

(213)

where the contours in the integral are oriented in the negative direction (as seen in Figure 10) and
A1, Ae±t are the coefficients in the Laurent expansion of ∆1,

(214) ∆1(z) =
Ak

z − z1
+B1 +O(z − z1), z → z1,

and

(215) ∆1(z) =
Ae±t

z − e±t
+B1 +O(z − e±t), z → e±t.

The coefficients A1, Ae±t are given below and B1, Be±t can also be computed explicitly if needed.
In Sections 7.4 and 7.6 we computed the 12 entries of ∆1 of each parametrix at the points z1, e

−t
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and et, they are given by (106), (159) and (160). Using those together with (107), (158) and (157)
respectively, we obtain the 12 elements of the matrices Az1 , Ae−t , Aet ,

Az1 =
z1

n
zn1 e

V0(1− z1e
t)(α0+β0)(1− e−tz−1

1 )−(α0−β0) exp

{ ∞∑
k=1

Vkz
k
1

}
exp

{
−
∞∑
k=1

V−kz
−k
k

}

× et(α0+β0)n−2β1 Γ(1 + α1 + β1)

Γ(α1 − β1)
(1 +O(u)),(216)

Ae−t =
e−t

n
(1− z−1

1 e−t)2β1(1− e−2t)α0+β0eV0 exp

{ ∞∑
k=1

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(α1−β1)e−iπ(α1−β1)z
−(α1−β1)
1 (2t)−(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt)

(
1 +O(n−1)

)
,(217)

Aet =
et

n
(1− z1e

−t)2β1(1− e−2t)−(α0−β0)eV0 exp

{ ∞∑
k=1

Vke
tk

}
exp

{
−
∞∑
k=1

V−ke
−tk

}

× et(α0+β0)et(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (2t)α0−β0 n−2β0

Γ(α0 − β0)
K(2nt)

(
1 +O(n−1)

)
.(218)

Next we look at the R-H problem for R̃2:

(R̃21) R̃2 : C \ ∂U → C2×2 is analytic.

(R̃22) R̃2 satisfies the following jump condition:

R̃2,+(z) = R̃2,−(z) + R̃1,−(z)nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3 for z ∈ ∂U.

(R̃23) R̃2(z)→ 0 as z →∞.

Using again the Plemelj formulas, we see that the solutions are given by evaluating the integral

(219) R̃2(z) =
1

2πi

∫
∂U

(
R̃1,−(z)nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3

) dx

x− z
,

where each ∆k(z) = O(n2 maxj |Reβj |−k) as in (4.66) and (4.74) of [6]. Therefore, since we are using

the same transformation, we have R̃
(r)
k+1(z) = O(|R̃k+1(z)|) +O(|R̃k+2(z)|) and

(220) R
(r)
3 (z) =

 O(δ/n) +O(δ2) O
(
δmaxk

n−2Re βk

n

)
O
(
δmaxk

n2Re βk

n

)
O(δ/n) +O(δ2)

 ,

where

(221) δ = max
j,k

n2 Re(βj−βk−1).

8. Proof of Theorem 5

We first assume that α0 ∈ R and β0 ∈ iR; for the general case, see Remark 12 below. Now,
to obtain the asymptotics of the Toeplitz determinant if |||β||| < 1, we need to go through reverse
transformations. We are only interested in the solution near z = et and z = e−t because this is what
the differential identity (60) calls for. In Section 7.8 we solved the final R-H problem, providing

details for the first terms in the series R(z) = I +
∑k

p=1Rp(z) + R
(r)
k+1(z). These details will be

used to find asymptotics for the determinant if the seminorm |||β||| = 1. Here however, we only
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require that R̃(z) = I+O(n−1) as n→∞ uniformly for z ∈ C\Γ , which follows from the solution
obtained in Section 7.8. Following the transformations, we obtain that

Y (z) =

{
n−ωσ3(I +O(n−1))nωσ3Pz0(z)znσ3 , z = et,

n−ωσ3(I +O(n−1))nωσ3Pz0(z), z = e−t,
(222)

=


n−ωσ3(I +O(n−1))nωσ3D(z)σ3W (z)−1Φ(z)W (z)znσ3 , z = et,

n−ωσ3(I +O(n−1))nωσ3D(z)σ3

(
0 1

−1 0

)
W (z)−1Φ(z)W (z), z = e−t.

(223)

It follows from the R-H problem for R̃(z) that the asymptotics for Y (z) as n→∞ are uniform for
0 < t < t0 for a sufficiently small t0, as long as 2nt remains bounded away from the set of numbers
{x0, x1, . . . , xk}.

It now remains to substitute the asymptotics into the differential identity. We need to evaluate
Y −1Y

′
z at the points z = et and z = e−t. Differentiating the expressions in (222) we obtain,

Y −1Y
′
z =


nσ3
z + z−nσ3P−1P

′
zz
nσ3+

+z−nσ3P−1(z)n−ωσ3(I +O(n−1))−1O(n−1)
′
zn

ωσ3P (z)znσ3 , near et,

P−1P
′
z + P−1(z)n−ωσ3(I +O(n−1))−1nωσ3P (z), near e−t.

(224)

We define a function A by

(225) A(z) =

{
G(λ(z))−1/2zn/2ft(z)

1/2, for |z| > 1,

−G(λ(z))−1/2zn/2ft(z)
−1/2, for |z| < 1.

Then

(226) W (z) =

{
A(z)σ3σ1, for |z| > 1,

A(z)σ3σ3, for |z| < 1.

We now find, using (223),

(227) P−1P
′
z =


−σ3

A
′
z
A +W−1Φ−1Φ

′
zW −W−1Φ−1σ3ΦW

(
A
′
z
A + D

′
z
D

)
, near et,

σ3
A
′
z
A +W−1Φ−1Φ

′
zW −W−1Φ−1σ3ΦW

(
A
′
z
A + D

′
z
D

)
, near e−t,

(
G−

1
2 (λ(z), 2nt)

)′
z

=
[
(α0 − β0)(n log(z) + nt)−1 − (α0 + β0)(n log(z)− nt)−1 − 1

]
× 1

2

(n
z

)
G(λ(z))−

1
2(228)

A
′
z(z) =

[
1

2
(α0 − β0)(n log(z) + nt)−1 − 1

2
(α0 + β0)(n log(z)− nt)−1

](n
z

)
A(z)(229)

+
1

2
f
′
z(z)f

−1(z)A(z)(230)

f
′
z(z) = V

′
(z)ft(z)− (α1 − β1)z−1ft(z) + 2α1(z − z1)−1ft(z)(231)

+ (α0 + β0)(z − et)−1ft(z) + (α0 − β0)(z − e−t)−1ft(z) + (−α0 + β0)z−1ft(z)(232)
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We compute the derivative of |z − z1|2α near e±t using the function hαj (z) from (84), and get

(h2
αj )
′
z = 2(hαj )

′
zhαj , where

(hαj )
′
z(z) = αj(z − zj)−1hαj (z)−

αj
2
z−1hαj (z).(233)

Using (229) and (233),
(234)

A
′
z

A
(z) =


α0+β0

4 e−t + α0−β0
4 e−t

(
1
t + e−t

sinh t

)
+ 1

2V
′
z (et)− α1−β1

2 e−t + 2α1(et − z1)−1 near et,

α0+β0
4 et

(
1
t + e−t

sinh t

)
+ α0−β0

4 et − 1
2V
′
z (e−t) + α1−β1

2 et − 2α1(e−t − z1)−1 near e−t.

Differentiating (81) gives,

(235)
D
′
z

D
(z) =

{
(−α1 + β1)

(
z1e−t

et−z1

)
− (α0 − β0) e−2t

sinh t −
∑−1

k=−∞ kVke
t(k−1) for z = et,

(α1 + β1) 1
e−t−z1 − (α0 + β0) 1

2 sinh t +
∑∞

k=0 kVke
−t(k−1) for z = e−t.

Using (227), we have(
P−1P

′
z

)
22

(et) =
A
′
z

A
(et) +

(
Φ−1Φ

′
z

)
11

(et)−
(

Φ−1σ3Φ
′
z

)
11

(et)

[
A
′
z

A
(et) +

D
′
z

D
(et)

]
,

and(
P−1P

′
z

)
22

(e−t) = −A
′
z

A
(e−t) +

(
Φ−1Φ

′
z

)
22

(e−t)−
(

Φ−1σ3Φ
′
z

)
22

(e−t)

[
A
′
z

A
(e−t) +

D
′
z

D
(e−t)

]
.

By substituting the results from above in (227) and from (224) we obtain,

et
(
Y −1Y

′
z

)
22

(et) = −n+ et(P−1P
′
z)22(et) + (Φ̂−1(t)O(1/n)Φ̂(t))22

= −n+
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV

′
z (et)− α1 − β1

2
+ α1

et

et − z1
+ et

(
Φ−1Φ

′
z

)
11

(et)

−
{
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
− (α1 − β1)

(
et + z1

2(et − z1)

)
+ α1

et

et − z1
+

1

2
etV

′
z (et)

−
−1∑

k=−∞
kVke

tk

}(
Φ−1σ3Φ

)
11

(et) + (Φ̂−1(t)O(1/n)Φ̂(t))22

and

e−t
(
Y −1Y

′
z

)
22

(e−t) = e−t(P−1P
′
z)22(e−t) + (Φ̂−1(t)O(1/n)Φ̂(t))22

= −α0 − β0

4
−
(
α0 + β0

4

)(
1

t
+

e−t

sinh t

)
+

1

2
e−tV

′
z (e−t)− α1 − β1

2
+ α1

e−t

e−t − z1

+ e−t
(

Φ−1Φ
′
z

)
22

(e−t)−
{
α0 − β0

4
+
α0 + β0

4

(
1

t
+

e−t

sinh t

)
− α1 − β1

2
+ β1

e−t

e−t − z1

−1

2
e−tV

′
z (e−t) +

∞∑
k=0

kVke
−tk

}(
Φ−1σ3Φ

)
(e−t) + (Φ̂−1(t)O(1/n)Φ̂(t))22.

Therefore,

d

dt
logDn(t) = (α0 + β0)n− α2

0 + β2
0

2
− α2

0 − β2
0

2

(
1

t
+

e−t

sinh t

)
+ β0(α1 − β1)
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+ α1

[
−(α0 + β0)

et

et − z1
+ (α0 − β0)

e−t

e−t − z1

]
− α0 + β0

2
etV

′
z (et)

+
α0 − β0

2
e−tV

′
z (e−t) + 2nw(x) + (Φ−1σ3Φ

′
z)11(et)×

(
α0 + β0

2

)
×

(
α0 + β0

2
+
α0 − β0

2

(
1

t
− e−t

sinh t

)
+ (α1 − β1) +

β1e
t

et − z1
+

∞∑
k=0

kVke
tk −

−1∑
k=−∞

kVke
tk

)

− (Φ−1σ3Φ
′
z)22(e−t)×

(
α0 − β0

2

)(
−α0 − β0

2
− α0 + β0

2

(
1

t
− e−t

sinh t

)
−(α1 − β1) +

β1e
−t

e−t − z1
+

∞∑
k=0

kVke
−tk −

−1∑
k=−∞

kVke
−tk

)
+ Φ̂−1O(1/n)Φ̂(t)

where

(236) w(x) =
α0 + β0

2

(
Φ−1Φ

′
λ

)
11

(x/2) +
α0 − β0

2

(
Φ−1Φ

′
λ

)
(−x/2).

We need the following two results, which are related to the Painlevé V function σ.

Proposition 10. [3, Proposition 4.4] Set

(237) a(ζ;x) =
(
Ψ(ζ;x)σ3Ψ−1(ζ;x)

)
11

= −
(
Ψ(ζ;x)σ3Ψ−1(ζ;x)

)
22

Then we have the following identities,

(238)
α0 − β0

2
a(0;x) = A0,11 = −v(x) +

α0 − β0

2
,

(239)
α0 + β0

2
a(1;x) = −A1,11 = −v(x) +

α0 + β0

2
.

It is also worth nothing that
[
Ψ(ζ;x)σ3Ψ−1(ζ;x)

]
diag

=
[
Φ(ζ;x)σ3Φ−1(ζ;x)

]
diag

.

Proposition 11. [3, Proposition 4.5] If we have w(x) given by (236) then,

(240) v(x) = − (xw(x))
′

(241) σ(x) = xw(x)

(242) σ(x) =

∫ +∞

x
v(ξ)dξ

Since
(
Φ(ζ;x)σ3Φ−1

)
11

(et) = a(1;x) and
(
Φ(ζ;x)σ3Φ−1

)
22

(et) = −a(0;x), we get

d

dt
logDn(t) = (α0 + β0)n− (α2

0 − β2
0)

e−t

sinh t
+ (α0 + β0)(α1 − β1)− (α1 − β1)(α0 + β0)

et

et − z1

+ (α1 + β1)(α0 − β0)
e−t

e−t − z1
+ (α0 + β0)

∞∑
k=1

kV−ke
−tk + (α0 − β0)

∞∑
k=1

Vke
−tk +

1

t
σ(x)

− v(x)

{
α0 + α0

(
1

t
− e−t

sinh t

)
+ 2β1

(
et

et − z1
+

e−t

e−t − z1

)
+ 2

∞∑
k=1

k cosh(kt)(Vk + V−k)

}
+ Φ̂−1O(1/n)Φ̂(t).
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When integrating this differential identity, we use the following integral and its two forms:

(243)

∫ t

ε

eτ

eτ − z1
dτ = log(1− z1e

−t)− log(1− z1e
−ε) + t− ε,

(244)

∫ t

ε

e−τ

e−τ − z1
dτ = − log

( z1

eiπ

)
− log(1− z−1

1 e−t) + log(e−ε − z1).

We integrate the differential identity from ε > 0 to some t, where 0 < t < t0, and 0 < ε < t. Noting

that
∫ t
ε
d
dt logDn(τ)dτ = logDn(t)− logDn(ε), we obtain

logDn(t) = logDn(ε) + (α0 + β0)n(t− ε) +
∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]

−
∞∑
k=1

kVkV−k + (α0 + β0)
∞∑
k=1

V−ke
−εk + (α0 − β0)

∞∑
k=1

Vke
−εk

+ (α0 + β0 − α0 − β0)(α1 − β1)(t− ε)− (α1 + β1)(α0 − β0) log
( z1

eiπ

)
+ (α1 − β1)(α0 + β0)

( ∞∑
k=1

zk1e
−tk

k

)
+ (α1 + β1)(α0 − β0)

( ∞∑
k=1

z−k1 e−tk

k

)
+ (α1 − β1)(α0 + β0) log(1− z1e

−ε) + (α1 + β1)(α0 − β0) log(e−ε − z1)

+

[∫ 2nt

2nε

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt) + (α2

0 − β2
0) log

(
n(1− e−2ε)

2nε

)]
− (α2

0 − β2
0) log n+Rn(t) +O(1/n),

where

Rn(t) = −
∫ t

ε
v(2nt)

{
α0 + α0

(
1

t
− e−t

sinh t

)
+ 2β1

(
et

et − z1
+

e−t

e−t − z1

)
+2

∞∑
k=1

k cosh(kt)(Vk + V−k)

}
.(245)

Also, as in [3, (5.3)], we have

(246) |Rn(t)| < C

∫ t

0
|v(2nu)|du = O(1/n), as n→∞, 0 < t < t0

using

(247) − (α2
0 − β2

0) log(1− e−2t) = (α2
0 + β2

0)

∞∑
k=1

e−2tk

k
=

∞∑
k=1

k

[
(α0 − β0)

e−tk

k

] [
(α0 + β0)

e−tk

k

]
.

Taking the limit ε→ 0, we get

logDn(t) = nV0 +

∞∑
k=1

kVkV−k − (α0 − β0)

∞∑
k=1

Vk − (α0 + β0)

∞∑
k=1

V−k − (α1 − β1)

∞∑
k=1

Vkz
−k
1

+ (α2
0 − β2

0) log n+ (α2
1 − β2

1) log n+ 2(β0β1 − α0α1) log(1− z1)

+ (α0α1 − β0β1)(log z1 + log eiπ) + (α0β1 − α1β0) log
( z1

eiπ

)
+ logGα0,β0

+ logGα1,β1 + (α0 + β0)nt+

∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]
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−
∞∑
k=1

kVkV−k + (α0 + β0)

∞∑
k=1

V−k + (α0 − β0)

∞∑
k=1

Vk − (α1 + β1)(α0 − β0) log
( z1

eiπ

)
+ (α1 − β1)(α0 + β0)

( ∞∑
k=1

zk1e
−tk

k

)
+ (α1 + β1)(α0 − β0)

( ∞∑
k=1

z−k1 e−tk

k

)
+ (α1 − β1)(α0 + β0) log(1− z1) + (α1 + β1)(α0 − β0) log(1− z1)

+

[∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

]
− (α2

0 − β2
0) log n+O(1/n).

After cancellations, we obtain the expression

logDn(ft) = nV0 + nt(α0 + β0) +

∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]

− (α1 − β1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]
− (α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]
+ (α2

1 − β2
1) log n+ logGα0,β0 + logGα1,β1

+

[∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

]
+O(1/n).(248)

Remark 12. The general case of α0, β0 ∈ C can be dealt with using the same arguments as in
[3, Theorem 1.4]. Indeed, let Reα0 > −1/2, α0 ± β0 6= −1,−2, . . . , and let sδ denote a sector
−π/2 + δ < arg x < π/2 − δ, 0 < δ < π/2. Let ft be the symbol in (38). There is a finite set
{x1, . . . , xl} ∈ sδ (with l = l(α0, β0, δ) and xj = xj(α0, β0) 6= 0) such that the expansion (43) holds
uniformly for t ∈ sδ, |t| < t0 (with t0 sufficiently small) as long as 2nt remains bounded away from

the set {x1, . . . , xl}. The function Ω̃ is defined by (44), where the path of integration is chosen in
sδ, connecting 0 with 2nt and not containing any of the points x1, . . . , xl. Moreover σ solves the
ODE mentioned in Theorem 5 and has the asymptotics in sδ given by (45).

9. Proof of Theorem 6

In this section we will make use of a lemma and the approach that was presented in [6] to prove
the Tracy-Basor conjecture (Theorem 4). We only give the particular case of this lemma here.

In this section we consider the case when the seminorm (see (8)) is equal to 1. This means that
we can write Reβ0 = q − 1/2 and Reβ1 = q + 1/2 for some q ∈ R. Without loss of generality we
may assume that <β0 < <β1. Note that the symbol (38) has only one F-H singularity for t > 0,
but two β parameters. If we translate these parameters, we will not get a F-H representation as it
was presented in Definition 2. The symbol we obtain by shifting βj will vary by more than just a
multiplicative constant; that is,

f(z; t) = eV (z)zβ1 |z − z1|2α1gz1,β1(z)z−β11 (z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0)

= eV (z)z(β1−1)+1|z − z1|2α1gz1,(β1−1)+1(z)z
−(β1−1)−1
1

× (z − et)α0+(β0+1)−1(z − e−t)α0−(β0+1)+1z−α0+(β0+1)−1e−iπ(α0+(β0+1)−1)

=
(z − e−t)

(z − et)
z−1

1 f̃(z; t),(249)

where f̃(z; t) is (38) with β0 and β1 replaced by β̃0 = β0+1 and β̃1 = β1−1, respectively. Notice that
shifting β1, which is associated with the F-H singularity still produces the multiplicative constant
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we know. Following the idea of the proof in [6, Section 6], we define a new symbol f̂(z; t) which is

given by (38) but whose β-parameters are replaced by β̂j where β̂0 = β0 and β̂1 = β1 − 1. For this

new symbol f̂(z; t), we have |||β||| < 1 and we have computed the asymptotics of the corresponding

Toeplitz matrices, which are given by (248)—with the βj parameters replaced by β̂j . We will simply

try to relate the two symbols, the original symbol f(z; t) with |||β||| = 1 and f̂(z; t), and make use

of the asymptotics we already know for f̂(z; t) in order to compute the asymptotics for f(z; t). We

can obtain the original symbol by shifting β̂1 in f̂(z; t) back by +1, which is what is called a trivial
F-H representation. Alternatively, we can shift β0 by +1 to obtain a representation corresponding
to β̃j from (249) above. Thus,

(250) f(z; t) = (−1)z−1
1 zf̂(z; t)

and

(251) f̃(z; t) = (−1)
z(z − et)

(z − e−t)
f̂(z; t).

It is sufficient to consider only one of the above relations. We pick (250) and make use of the
following lemma.

Lemma 13. [6, Lemma 2.4] Let the Toeplitz determinants Dn(f) with symbol f(z) be non-zero for
all n ≥ N0 with a fixed N0 ≥ 0. If φk(0) 6= 0, k = N0, N0 + 1, . . . , n− 1, we have

(252) Dn(zf(z)) = (−1)n
φn(0)

χn
Dn(f(z)), n ≥ N0,

where χn is the leading coefficient of the polynomial φ(z), see (50).

The proof uses Christoffel’s formula [26, Theorem 2.5] to represent new orthogonal polynomials,
say qn(z), orthogonal with respect to some weight ρ(z)f(z) (where ρ(z) is a polynomial), in terms of
polynomials φn(z), which are orthogonal with respect to the weight f(z). Using orthogonality con-
ditions (50) and relating the leading coefficients χn via (54) one can link the Toeplitz determinants
with the weights that vary by a polynomial ρ(z).

Thus, by (250) and (252), using the uniform asymptotics in Section 8 and asymptotics of the

polynomials orthogonal with respect to f̂(z; t), we get

Dn(f) = z−n1

φn(0)

χn
Dn(f̂)(253)

9.1. Asymptotics for the Orthogonal Polynomials.

Lemma 14. Let t > 0 and n ∈ N. Suppose that the R-H problem for Y (z;n, t) in Section 5 is

solvable with f̂ given by (38) with β-parameters replaced by β̂,
∣∣∣∣∣∣∣∣∣β̂∣∣∣∣∣∣∣∣∣ < 1 and αj± β̂j 6= −1,−2, . . . ,

j = 0, 1. Let φ and φ̂ be the orthogonal polynomials associated to the weight f̂(z). Then as n→∞,

φn(0)

χn
=

zn1 (1− z1e
−t)(α0+β̂0)(1− e−tz−1

1 )−(α0−β̂0) exp
{∑∞

k=1 Vkz
k
1

}
exp

{∑∞
k=1 V−kz

−k
k

}
× n−2β̂1−1 Γ(1 + α1 + β̂1)

Γ(α1 − β̂1)

+ (1− z1e
−t)2β̂1(1− e−2t)−(α0−β̂0) exp

{∑∞
k=1 Vke

tk
}

exp {
∑∞

k=1 V−ke
−tk}

et(α1+β̂1)
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× e−iπ(α1+β̂1)z
−(α1+β̂1)
1 (2t)α0−β̂0 n−2β̂0−1

Γ(α0 − β̂0)
K(2nt)

+ (1− z−1
1 e−t)2β̂1(1− e−2t)α0+β̂0

exp
{∑∞

k=1 Vke
−tk}

exp {
∑∞

k=1 V−ke
tk}

e−t(α1−β̂1)

× e−iπ(α1−β̂1)z
−(α1−β̂1)
1 (2t)−(α0+β̂0) n−2β̂0−1

Γ(α0 − β̂0)
K(2nt)

]
(1 + o(1)) .(254)

Proof. We find the asymptotics for the orthogonal polynomials in (253). Recall (55) and Y11(0) =
φn(0)/χn. Now, going through the transformations R 7→ S 7→ T 7→ Y , and using the Neumann
series solution to R, we obtain

(255) Y (z) =
[
I +R1(z) +R2(z) +R

(r)
3 (z)

]
D(z)σ3

(
0 1
−1 0

)
,

which in turn leads to,

(256)
φn(0)

χn
= Y11(0) = −D(0)−1

[
R1,12(0) +R2,12(0) +O

(
δmax

k

n−2<βk

n

)]
,

where we used (220) and δ is given by (221). By (79) or (81), D(0) = eV0et(α0+β̂0), and by (213),

(257) R1(0) = −A1

z1
− Aet

et
− Ae−t

e−t
.

Finally, it follows from (214), (215), (216), (217), and (218) that

R1,12(0) = eV0et(α0+β̂0)

[
− 1

n
zn1 (1− z1e

−t)(α0+β̂0)(1− e−tz−1
1 )−(α0−β̂0)

×
exp

{∑∞
k=1 Vkz

k
1

}
exp

{
−
∑∞

k=1 V−kz
−k
k

}n−2β̂1 Γ(1 + α1 + β̂1)

Γ(α1 − β̂1)
(1 + o(1))

− 1

n
(1− z1e

−t)2β̂1(1− e−2t)−(α0−β̂0) exp
{∑∞

k=1 Vke
tk
}

exp {−
∑∞

k=1 V−ke
−tk}

et(α1+β̂1)

× e−iπ(α1+β̂1)z
−(α1+β̂1)
1 (2t)α0−β̂0 n−2β̂0

Γ(α0 − β̂0)
K(2nt) (1 + o(1))

− 1

n
(1− z−1

1 e−t)2β̂1(1− e−2t)α0+β̂0
exp

{∑∞
k=1 Vke

−tk}
exp {−

∑∞
k=1 V−ke

tk}
e−t(α1−β̂1)

× e−iπ(α1−β̂1)z
−(α1−β̂1)
1 (2t)−(α0+β̂0) n−2β̂0

Γ(α0 − β̂0)
K(2nt) (1 + o(1))

]
.(258)

We thus obtain the asymptotics in (254). �

9.2. Asymptotics for the determinant. We use the relation between two Toeplitz determinants
we established in (253). By the properties of the Barnes G-function, G(z+1) = Γ(z)G(z) and (11),

(259) Gαj+βj+1,αj−βj−1 =
G(1 + αj + βj + 1)G(1 + αj − βj − 1)

G(1 + 2αj)
=

Γ(1 + αj + βj)

Γ(αj − βj)
Gαj+βj ,αj−βj ,

where

Gx,y =
G(1 + x)G(1 + y)

G(1 + x+ y)
.
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Write

(260) Ω̃(2nt) = exp {Ω(2nt)} = exp

{∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

}
,

(see (44) and (248)) and note that there is no shift in β0 = β̂0. By (253) and (254),

Dn(f) = exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̂0)

e−tk

k

] [
V−k − (α0 − β̂0)

e−tk

k

]}

× exp

{
−(α1 − β̂1 − 1)

∞∑
k=1

[(
Vk−(α0 + β̂0)

e−tk

k

)
zk1

]}

× exp

{
−(α1 + β̂1 + 1)

∞∑
k=1

[(
V−k−(α0 − β̂0)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1−2β̂1−1)

×Gα0,β̂0
Gα1,β̂1+1Ω̃(2nt) (1 + o(1))

+ exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̂0 + 1)

e−tk

k

] [
V−k−(α0 − β̂0)

e−tk

k

]}

× exp

{
−(α1 − β̂1)

∞∑
k=1

[(
Vk − (α0 + β̂0 + 1)

e−tk

k

)
zk1

]}
(1− etz−1

1 )α1+β̂1 exp

{ ∞∑
k=1

Vke
tk

}

× exp

{
−(α1 + β̂1)

∞∑
k=1

[(
V−k − (α0 − β̂0)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1)n−2β0−1

× z−n1 (2t)α0−β0
Gα0,β̂0+1

Γ(1 + α0 + β̂0)
Gα1,β̂1

Ω̃(2nt)K(2nt) (1 + o(1))

+ exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk−(α0 + β̂0)

e−tk

k

] [
V−k − (α0 − β̂0 − 1)

e−tk

k

]}

× exp

{
−(α1 − β̂1)

∞∑
k=1

[(
Vk − (α0 + β̂0)

e−tk

k

)
zk1

]}
(1− etz1)−(α1−β̂1) exp

{
−
∞∑
k=1

V−ke
tk

}

× exp

{
−(α1 + β̂1)

∞∑
k=1

[(
V−k − (α0 − β̂0 − 1)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1)n−2β0−1

× z−n1 (2t)−(α0+β0)
Gα0,β̂0+1

Γ(1 + α0 + β̂0)
Gα1,β̂1

Ω̃(2nt)K(2nt) (1 + o(1)) .

(261)

Recalling that β̂0 = β0 and β̂1 = β1 − 1, and using β̃0 = β0 + 1, β̃1 = β1 − 1 (see (249)),

Dn(f) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}
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× exp

{
−(α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}
n(α2

1−β2
1)

×Gα0,β0Gα1,β1Ω̃(2nt) (1 + o(1))

+ exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̃0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β̃1)

∞∑
k=1

[(
Vk − (α0 + β̃0)

e−tk

k

)
zk1

]}
(1− etz−1

1 )α1+β̃1 exp

{ ∞∑
k=1

Vke
tk

}

× exp

{
−(α1 + β̃1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}
n(α2

1−β̃2
1)n−2β0−1

× z−n1 (2t)α0−β0
Gα0,β̃0

Γ(1 + α0 + β0)
Gα1,β̃1

Ω̃(2nt)K(2nt) (1 + o(1))

+ exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β̃0)

e−tk

k

]}

× exp

{
−(α1 − β̃1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}
(1− etz1)−(α1−β̃1) exp

{
−
∞∑
k=1

V−ke
tk

}

× exp

{
−(α1 + β̃1)

∞∑
k=1

[(
V−k − (α0 − β̃0)

e−tk

k

)
z−k1

]}
n(α2

1−β̃2
1)n−2β0−1

× z−n1 (2t)−(α0+β0)
Gα0,β̃0

Γ(1 + α0 + β0)
Gα1,β̃1

Ω̃(2nt)K(2nt) (1 + o(1)) .

(262)

By manipulating the above, we arrive at a more compact expression resulting in (47) of Theorem 6.
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