Sheffield
 Hallam University

The size of Wiman-Valiron discs for subharmonic functions of a certain type

FENTON, P.C. and LINGHAM, Eleanor
Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/24259/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

FENTON, P.C. and LINGHAM, Eleanor (2016). The size of Wiman-Valiron discs for subharmonic functions of a certain type. Complex Variables and Elliptic Equations, 61 (4), 456-468.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

The size of Wiman-Valiron discs for subharmonic functions of a certain type

P.C. Fenton
University of Otago, Dunedin, New Zealand
pfenton@maths.otago.ac.nz
E.F. Lingham
De Montfort University, Leicester, United Kingdom
elingham@dmu.ac.uk

Abstract

Wiman-Valiron theory and the results of Macintyre about "flat regions" describe the asymptotic behaviour of entire functions in certain discs around maximum points. We use a technique of Bergweiler, Rippon and Stallard to describe the asymptotic behaviour of a certain type of subharmonic function, and a technique of Bergweiler to estimate the size of its Wiman-Valiron discs from above and below. The results are extended to δ-subharmonic functions.

2010 Mathematics Subject Classification: 31A05 (primary), 30B10, 30D30, 30D35 (secondary).

This work was supported by the London Mathematical Society under a Scheme 4 Grant (Ref: 41330).

1 Introduction

Given $r>0$ and an upper semi-continuous function $u: \mathbb{C} \rightarrow[-\infty, \infty)$, let $B(r, u):=\max _{|z|=r} u(z)$ be its maximum function. We recall that if u is subharmonic then $B(r, u)$ is a convex, increasing function of $\log r$. The left and right derivatives of $B(r, u)$ thus exist, and $B(r, u)$ is differentiable outside a countable set. We write

$$
\begin{equation*}
a(r, u):=\frac{d B(r, u)}{d \log r} \tag{1}
\end{equation*}
$$

taking the right derivative at points where $B(r, u)$ is not differentiable.
We say that z_{r} is a maximum point of u if $\left|z_{r}\right|=r$ and $u\left(z_{r}\right)=B(r, u)$. Slightly abusing this notation, we call z_{r} a maximum point for a holomorphic function f if it is a maximum point for the subharmonic function $\log |f|$. We denote by $D(a, r)=\{z:|z-a|<r\}$ the disc centred at a of radius r, and say that a set $F \subseteq[0, \infty)$ has logarithmic measure $\int_{F} \frac{d t}{t}$. For a subharmonic function u, we denote by μ_{u} the Riesz measure of u.

A result of Macintyre ([13], Theorem 3) says that an entire function f can be estimated on a disc near its maximum point. That is, given $\epsilon>0$, there exists
a set F of finite logarithmic measure such that

$$
\begin{equation*}
f(z) \sim\left(\frac{z}{z_{r}}\right)^{a(r, \log |f|)} f\left(z_{r}\right) \tag{2}
\end{equation*}
$$

as $r \rightarrow \infty, r \notin F$, uniformly for $z \in D\left(z_{r}, r /(\log M(r, f))^{\frac{1}{2}+\epsilon}\right)$. As Bergweiler, Rippon and Stallard point out [2, p. 372], it can be deduced from (2) that, for each $k \in \mathbb{N} \cup\{0\}$,

$$
f^{(k)}(z) \sim\left(\frac{a(r, \log |f|)}{z}\right)^{k}\left(\frac{z}{z_{r}}\right)^{a(r, \log |f|)} f\left(z_{r}\right)
$$

as $r \rightarrow \infty, r \notin F$, uniformly for $z \in D\left(z_{r}, r /(\log M(r, f))^{\frac{1}{2}+\epsilon}\right)$. This work followed results from Wiman-Valiron theory which found that sufficiently close to their maximum points, entire functions act like monomials, namely the dominant term of their Taylor power series (see [15], [14], [13]).

More recently, Bergweiler, Rippon and Stallard [2] proved a result similar to (2) where it is not required that f is entire, but only that f has a direct tract. To explain this, let D be an unbounded domain in \mathbb{C} whose boundary consists of piecewise smooth curves, and whose complement is unbounded. Let f be a complex-valued function whose domain of definition contains the closure \bar{D} of D. Then D is called a direct tract of f if f is holomorphic in D and continuous in \bar{D}, and there exists $R>0$ such that $|f(z)|=R$ for z on the boundary of D, while $|f(z)|>R$ for $z \in D$.

The main result of [2] says that for every $\tau>\frac{1}{2}$, there exists a set F of finite logarithmic measure such that, for $r \notin F$, the disc $D\left(z_{r}, r / a(r, \log |f|)^{\tau}\right)$ is contained in D and (2) holds for $z \in D\left(z_{r}, r / a(r, \log |f|)^{\tau}\right)$ as $r \rightarrow \infty$. In [1], Bergweiler investigated the size of the disc around z_{r} in which (2) holds (which can be described as a Wiman-Valiron disc), and proved results from below and above as follows. Let $\phi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ be a differentiable function satisfying

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{1}{\phi(t)} d t<\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K \leq \frac{t \phi^{\prime}(t)}{\phi(t)} \leq L \tag{4}
\end{equation*}
$$

for certain constants K and L satisfying $0 \leq K \leq 1<L<2$. Let f be a function with a direct tract D and let $z_{r} \in D$ be a maximum point of f in D. Then there exists a set F of finite logarithmic measure such that the $\operatorname{disc} D\left(z_{r}, r / \sqrt{\phi(a(r, \log |f|))}\right) \subseteq D$ and (2) holds on $D\left(z_{r}, r / \sqrt{\phi(a(r, \log |f|))}\right)$ uniformly as $r \in \infty, r \notin F$. On the other hand, if

$$
\int_{t_{o}}^{\infty} \frac{1}{\phi(t)} d t=\infty
$$

and (4) holds for $K=1$ and some $L<\frac{6}{5}$, then there exists an entire function f which has exactly one direct tract D and is such that if r is sufficiently large and $|z|=r$, then the disc $D(z, r / \sqrt{\phi(a(r, \log |f|))})$ contains a zero of f, and thus (2) cannot hold.

With these results in mind, we seek analogous results for subharmonic functions of the form

$$
\begin{equation*}
u(z)=\sum_{j=1}^{\infty} c_{j} \log \left|1-\frac{z}{z_{j}}\right|, \tag{5}
\end{equation*}
$$

where $c_{j} \in \mathbb{R}^{+}, z_{j} \in \mathbb{C}$ and $\sum_{j=1}^{\infty}\left|\frac{c_{j}}{z_{j}}\right|<\infty$. In any disc that contains no z_{j}, u can also be written in the form

$$
u(z)=\log |f(z)|
$$

where $f(z)=\prod_{j=1}^{\infty}\left(1-\frac{z}{z_{j}}\right)^{c_{j}}$. The c_{j} are the Riesz masses of u at the points z_{j}; at all other points u is harmonic and the Riesz mass is zero. Since the z_{j} are the only "problem" points of u in \mathbb{C}, we do not need to assume the existence of a direct tract as in [2] and [1].

To achieve results for u, it is necessary to impose some lower growth condition on the masses c_{j}. For if, for example, the sequence z_{j} consisted of all the rational points in the plane, then every open disc would contain a z_{j} and we could not have (2). We will assume that

$$
\begin{equation*}
\varliminf_{j \rightarrow \infty} \frac{c_{j}}{I\left(a\left(\left|z_{j}\right|, u\right)\right)^{\beta}}>0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
I(r):=\int_{r}^{\infty} \frac{1}{\phi(t)} d t \tag{7}
\end{equation*}
$$

and β is a positive constant.
We are now ready to state our first theorem.

Theorem 1 Let u be as in (5) with the growth condition (6) on the masses c_{j} of u, for some constant $\beta>0$. Let $t_{0}>0$ and let $\phi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ be a differentiable function satisfying (3) and (4) for constants $K=\min \{\beta, 1\}$ and L satisfying $1<L<3 / 2$. Let $r>0$. If $\beta<1$ there exists a set $F \subseteq[0, \infty)$ of finite logarithmic measure such that the disc $D\left(z_{r}, r / \sqrt{\phi(a(r, u))}\right)$ contains no z_{j}, and (2) holds uniformly for $z \in D\left(z_{r}, r / \sqrt{\phi(a(r, u))}\right)$, as $r \rightarrow \infty, r \notin F$.

Remark: Theorem 1 can be extended to δ-subharmonic functions, that is, functions

$$
v(z)=v_{1}(z)-v_{2}(z)
$$

where v_{1}, v_{2} are subharmonic functions of the form (5). We assume that the set $D=\{z \in \mathbb{C}: v(z)>0\}$ has an unbounded component D_{0} on which v is harmonic. The function which is v on D_{0} and 0 elsewhere, which we denote by v^{+}, is then subharmonic. The complement of D_{0} may contain islands \mathcal{I}, that is, closed bounded components of the form $\left\{z: v^{+}(z)=0\right\}$, and the growth condition we impose on v_{1} and v_{2} involves islands, rather than points, as follows. Either there are finitely many islands, or

$$
\underline{l i m}_{r_{\mathcal{I}} \rightarrow \infty} \frac{\mu_{v_{1}}(\mathcal{I})-\mu_{v_{2}}(\mathcal{I})}{I\left(a\left(r_{\mathcal{I}}, v^{+}\right)\right)^{\beta}}>0
$$

where $0<\beta<1$ and $r_{\mathcal{I}}=\sup \{|z|: z \in \mathcal{I}\}$. The proof relies on the fact that

$$
\mu_{v^{+}}(\mathcal{I})=\mu_{v_{1}}(\mathcal{I})-\mu_{v_{2}}(\mathcal{I}),
$$

but is otherwise similar to the proof of Theorem 1.
We state our second theorem as follows.

Theorem 2 Let $t_{0}>0$ and let $\phi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ be a differentiable function that satisfies (3). Let I be as defined in (7) and suppose that, given $\kappa>1$ and $\lambda>0$,

$$
\begin{equation*}
1 \leq \frac{r \phi^{\prime}(r)}{\phi(r)}-\frac{(1+(\kappa-1) / \lambda) r}{\phi(r) I(r)} \leq \frac{r \phi^{\prime}(r)}{\phi(r)} \leq L \tag{8}
\end{equation*}
$$

for $r \geq t_{0}$, where $1<L<6 / 5$. Then there exists a subharmonic function of the form (5), with

$$
\begin{equation*}
c_{j}=(1+o(1))\left(I\left(a\left(\left|z_{j}\right|, u\right)\right)\right)^{\kappa / \lambda} \quad(j \rightarrow \infty) \tag{9}
\end{equation*}
$$

for which, for all large r, there are no Wiman-Valiron discs of radius greater than

$$
\begin{equation*}
\frac{r}{\sqrt{\phi(a(r, u)) I(a(r, u))^{1-1 / \lambda}}} . \tag{10}
\end{equation*}
$$

Corollary 1 Theorem 1 fails if $\beta>1$.

Assuming Theorem 2 for the moment, let us prove Corollary 1. The function

$$
\begin{equation*}
\phi(r)=\eta^{-1} r \cdot \log r \cdot \log _{2} r \cdots \log _{l} r \cdot\left(\log _{l+1} r\right)^{1+\eta} \tag{11}
\end{equation*}
$$

where $\eta>0, l$ is a positive integer and $\log _{l}$ is the l-times iterated logarithm, satisfies (3) and, for any $\lambda>0$ and $\kappa>1$, satisfies (8) for all large t. For in that case $I(r)=\left(\log _{l+1} r\right)^{-\eta}$ and

$$
\begin{align*}
\frac{r \phi^{\prime}(r)}{\phi(r)} & -\frac{(1+(\kappa-1) / \lambda) r}{\phi(r) I(r)} \\
& =1+\frac{1}{\log r}+\ldots+\frac{1}{\log r \log _{2} r \cdots \log _{l} r}+\frac{1-(\kappa-1) \eta / \lambda}{\log r \log _{2} r \cdots \log _{l+1} r} . \tag{12}
\end{align*}
$$

Thus, for this ϕ, the result of Theorem 2 holds for any $\kappa>1$ and $\lambda>0$. If $\beta>1$ we may choose κ and λ satisfying $\kappa / \lambda=\beta$ with $\kappa>1$ and $\lambda<1$, and then (10) contradicts the conclusion of Theorem 1.

Remarks: 1. The case $\beta=1$ is open.
2. Suppose that $0<\beta<1$ and that in Theorem 2 we choose $\kappa>1$ arbitrarily and $\lambda=\kappa / \beta$. The difference between the radii in Theorem 1 and Theorem 2 is $\sqrt{I(a(r, u))^{1-\beta / \kappa}}$. To get some idea of the significance of this factor, consider ϕ of (11). The radius of the disc in Theorem 1 is

$$
\left.\eta^{-1} t \cdot \log t \cdot \log _{2} t \cdots \log _{l} t \cdot\left(\log _{l+1} t\right)^{1+\eta}\right|_{t=a(r, u)}
$$

and in Theorem 2 is

$$
\left.\eta^{-1} t \cdot \log t \cdot \log _{2} t \cdots \log _{l} t \cdot\left(\log _{l+1} t\right)^{1+\beta \eta / \kappa}\right|_{t=a(r, u)}
$$

Numerous applications of the theories of Wiman-Valiron and Macintyre exist, in areas including complex dynamics ([2], [5], [9]), complex differential equations ([6], [10], [11], [16]) and the zero distribution of derivatives ([3], [12]). We note also that functions of the form (5) are connected to the electrostatic fields generated by positively charged wires which meet the complex plane at the points z_{j} [4].

2 Proof of Theorem 1

First, with u given by (5), we have $a(r, u) \rightarrow \infty$ as $r \rightarrow \infty$. For otherwise $B(r, u)=O(\log r)$ and therefore $\mu_{u}(D(0, r))=O(1)$ as $r \rightarrow \infty$, which gives that $\sum_{j \in \mathbb{N}} c_{j}<\infty$. By (6) the c_{j} would be bounded below, and this would mean that there are only finitely many c_{j}, which is a contradiction.

We need two lemmas. The first is based on a well-known result about real functions and can be found in ([2], Lemma 6.10).

Lemma 3 Let $v: \mathbb{C} \rightarrow[-\infty, \infty)$ be subharmonic, and let $\epsilon>0$. Then there exists a set $F \subseteq[1, \infty)$ of finite logarithmic measure such that

$$
a(r, v) \leq B(r, v)^{1+\epsilon}
$$

for $r \geq 1, r \notin F$.

The second lemma summarises, with a small change, the lemmas and discussion in ([1], Section 2). The change we make concerns two functions, σ_{1} and σ_{2}, that occur in the proof of Lemma 2.2 of [1]. Rather than (in the notation of [1]) $\sigma_{1}=\sigma_{2}=V^{K / 2} \sqrt{\psi}$, we take $\sigma_{1}=\sqrt{\psi}$ and $\sigma_{2}=V^{K} \sqrt{\psi}$; the proof is unchanged except that the restriction on the constant L needs to be strengthened (from $L<2$ to $L<3 / 2$).

Lemma 4 Let $t_{0}>0$, let $v: \mathbb{C} \rightarrow[-\infty, \infty)$ be a subharmonic function, and let $\phi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ be a differentiable function satisfying (3) and (4) for certain constants $0<K<1<L<3 / 2$. Then there exists a set $F \subseteq\left[t_{0}, \infty\right)$ of finite logarithmic measure such that

$$
B(s, v) \leq B(r, v)+a(r, v) \log \frac{s}{r}+I(a(r, v))^{K}
$$

for

$$
\left|\log \frac{s}{r}\right| \leq \frac{1}{\sqrt{\phi(a(r, v))}}
$$

uniformly as $r \rightarrow \infty, r \notin F$.

We apply Lemma 4 with $K=\beta$ and L satisfying $1<L<3 / 2$, and we apply Lemma 3 for $\epsilon=\beta$. Let F be the union of the exceptional sets of these lemmas. We put $\rho=2 r / \phi(a(r, u))^{\beta / 2}$ whenever r is so large that $a(r, u) \neq 0$. Let C be a positive constant sufficiently large that for all large r and any $z_{j} \in D\left(z_{r}, C \rho\right)$ we have

$$
\begin{equation*}
c_{j}>(\log C)^{-1} I\left(a\left(\left|z_{j}\right|, u\right)\right)^{\beta}, \tag{13}
\end{equation*}
$$

which is possible by (6). We consider the function

$$
\begin{equation*}
v(z)=u(z)-u\left(z_{r}\right)-a(r, u) \log \frac{|z|}{r}=u(z)-B(r, u)-a(r, u) \log \frac{|z|}{r} \tag{14}
\end{equation*}
$$

For $z \in \bar{D}\left(z_{r}, C \rho\right)$ we have

$$
\left|\frac{z-z_{r}}{z_{r}}\right| \leq\left|\frac{C \rho}{r}\right|=\frac{2 C}{\phi(a(r, u))^{\beta / 2}}=o(1)
$$

as $r \rightarrow \infty$, by (4) and since $a(r, u) \rightarrow \infty$. Thus since $\beta<1$,

$$
\left|\log \frac{|z|}{r}\right|=|\log | 1+\frac{z-z_{r}}{z_{r}}| | \leq 2\left|\frac{z-z_{r}}{z_{r}}\right| \leq \frac{4 C}{\phi(a(r, u))^{\beta / 2}} \leq \frac{1}{\sqrt{\phi(a(r, f))}}
$$

for large r, and the hypotheses of Lemma 4 are satisfied. Since

$$
v(z) \leq B(|z|, u)-B(r, u)-a(r, u) \log \frac{|z|}{r}
$$

by (14), we conclude from Lemma 4 applied to u that

$$
\begin{equation*}
v(z) \leq I(a(r, u))^{\beta} \tag{15}
\end{equation*}
$$

as $r \rightarrow \infty, r \notin F$.
For large r, we have $0 \notin D\left(z_{r}, \rho\right)$ so that the difference of v and u as defined in (14) is harmonic in $D\left(z_{r}, \rho\right)$, and hence their Riesz measures in the disc coincide. Thus

$$
\begin{equation*}
\mu_{v}\left(D\left(z_{r}, \rho\right)\right)=\sum_{z_{j} \in D\left(z_{r}, \rho\right)} c_{j} \tag{16}
\end{equation*}
$$

where the z_{j} are matched with the c_{j} in (5).
On the other hand, we have $\mu_{v}\left(D\left(z_{r}, \rho\right)\right) \log C \leq \int_{0}^{C \rho} \frac{\mu_{v}\left(D\left(z_{r}, t\right)\right)}{t} d t$, and by (15) and the fact that $v\left(z_{r}\right)=0$,

$$
\begin{aligned}
\int_{0}^{C \rho} \frac{\mu_{v}\left(D\left(z_{r}, t\right)\right)}{t} d t & =\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(z_{r}+C \rho e^{i \zeta}\right) d \zeta-v\left(z_{r}\right) \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} I(a(r, u))^{\beta} d \zeta \\
& =I(a(r, u))^{\beta} .
\end{aligned}
$$

Combining this with (16) gives

$$
\sum_{z_{j} \in D\left(z_{r}, C \rho\right)} c_{j} \log C \leq I(a(r, u))^{\beta} .
$$

In view of (13), we deduce that there do not exist any $z_{j} \in D\left(z_{r}, C \rho\right)$, and thus in $D\left(z_{r}, r / \sqrt{\phi(a(r, u))}\right)$.

The remainder of the proof, including the derivation of (2), reproduces the arguments in ([2], Theorem 2.2).

3 Proof of Theorem 2, preliminaries

We follow Bergweiler's intricate construction with slight changes, first introducing certain auxiliary functions in terms of which the example of Theorem 2 is defined. The main concern in this section is to show that certain key calculations that Bergweiler makes carry over in their modified form. Wherever possible, results from [1] have been simply quoted, with appropriate references.

Let ϕ be as in the statement of Theorem 2 and define $\Psi, \chi:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ by

$$
\begin{equation*}
\Psi(t)=\lambda \phi(t) I(t)^{1+(\kappa-1) / \lambda} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(t)=\lambda \phi(t) I(t)^{1-1 / \lambda} \tag{18}
\end{equation*}
$$

where λ and κ are constants satisfying $\lambda>2$ and $\lambda / 2 \geq \kappa>1$, and $I(t)$ is given by (7). Note that

$$
\begin{equation*}
\int_{t_{0}}^{t} \frac{d s}{\Psi(s)}=\frac{1}{\kappa-1}\left(I(t)^{-(\kappa-1) / \lambda}-I\left(t_{0}\right)^{-(\kappa-1) / \lambda}\right), \quad \int_{t}^{\infty} \frac{d s}{\chi(s)}=I(t)^{1 / \lambda} \tag{19}
\end{equation*}
$$

From the first of these we have

$$
\begin{equation*}
I^{\prime}(t)=-\frac{\lambda I(t)^{1+(\kappa-1) / \lambda}}{\Psi(t)} . \tag{20}
\end{equation*}
$$

In what follows it is helpful to know that $I(t) \leq 1$ for $t \geq t_{0}$, which can always be achieved by taking a somewhat larger value of t_{0}. Let us suppose that this has been done.

As in [1], we define $A_{1}:[1, \infty) \rightarrow\left[t_{0}, \infty\right)$ by

$$
\begin{equation*}
\log t=\int_{t_{0}}^{A_{1}(t)} \frac{1}{\Psi(s)} d s \tag{21}
\end{equation*}
$$

From the first part of (19) we have

$$
\begin{equation*}
I\left(A_{1}(t)\right)=\left((\kappa-1) \log \left(C_{1} t\right)\right)^{-\lambda /(\kappa-1)}, \tag{22}
\end{equation*}
$$

where $C_{1}=\exp \left\{(\kappa-1)^{-1} I\left(t_{0}\right)^{-(\kappa-1) / \lambda}\right\}$. We also introduce

$$
\begin{equation*}
A_{2}(t):=t A_{1}^{\prime}(t), A_{3}(t):=t A_{2}^{\prime}(t), A_{0}(t):=\int_{1}^{t} A_{1}(s) \frac{d s}{s} \tag{23}
\end{equation*}
$$

Differentiating (21), we have

$$
\begin{equation*}
A_{2}(t)=\Psi\left(A_{1}(t)\right) ; \tag{24}
\end{equation*}
$$

also (see [1], (3.4))

$$
\begin{equation*}
A_{3}(t) \geq A_{2}(t) \geq A_{1}(t) \geq t, \quad t \geq 1 \tag{25}
\end{equation*}
$$

and (see [1], (3.10))

$$
\begin{equation*}
A_{2}(t)=o\left(A_{0}(t)^{\frac{L}{2-L}}\right) \tag{26}
\end{equation*}
$$

as $t \rightarrow \infty$, where L is the number of (8). Define $G:[1, \infty) \rightarrow[0, \infty)$ by

$$
\begin{equation*}
G(t)=\int_{1}^{t} \sqrt{\chi\left(A_{1}(s)\right)} \frac{d s}{s} \tag{27}
\end{equation*}
$$

and let $H:[0, \infty) \rightarrow[1, \infty)$ be the inverse function. We have, using (17), (18), $(24),(25)$ and the fact that $I \leq 1$,

$$
\begin{equation*}
\frac{H(t)}{H^{\prime}(t)}=\sqrt{\chi\left(A_{1}(H(t))\right)}=\sqrt{\frac{\Psi\left(A_{1}(H(t))\right)}{I\left(A_{1}(H(t))\right)^{\kappa / \lambda}}}=\sqrt{\frac{A_{2}(H(t))}{I\left(A_{1}(H(t))\right)^{\kappa / \lambda}}} \geq 1 \tag{28}
\end{equation*}
$$

Also, observing that from (20) and (24),

$$
I^{\prime}\left(A_{1}(t)\right)=-\frac{\lambda I\left(A_{1}(t)\right)^{1+(\kappa-1) / \lambda}}{A_{2}(t)}
$$

we obtain after some calculation, and using (23),

$$
\begin{align*}
\frac{d}{d t}\left(\frac{H(t)}{H^{\prime}(t)}\right) & =\frac{d}{d t}\left(\sqrt{\frac{A_{2}(H(t))}{I\left(A_{1}(H(t))\right)^{\kappa / \lambda}}}\right) \\
& =\frac{A_{3}(H(t))}{2 A_{2}(H(t))}+\frac{\kappa}{2} I\left(A_{1}(H(t))\right)^{(\kappa-1) / \lambda} \tag{29}
\end{align*}
$$

Since $\left(H / H^{\prime}\right)^{\prime}=1-H H^{\prime \prime} /\left(H^{\prime}\right)^{2}$, we have from (29),

$$
\begin{equation*}
\frac{H^{\prime \prime}(t)}{H^{\prime}(t)}=\sqrt{\frac{I\left(A_{1}(H(t))\right)^{\kappa / \lambda}}{A_{2}(H(t))}}\left(1-\frac{A_{3}(H(t))}{2 A_{2}(H(t))}-\frac{\kappa}{2} I\left(A_{1}(H(t))\right)^{(\kappa-1) / \lambda}\right) . \tag{30}
\end{equation*}
$$

From (29), (25) and the fact that $I \leq 1$ we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{H(t)}{H^{\prime}(t)}\right) \leq(\kappa+1) \frac{A_{3}(H(t))}{2 A_{2}(H(t))} \tag{31}
\end{equation*}
$$

We need a related estimate, for $\frac{d}{d t}\left(I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right)\right)$. Using (20), (24) and (31) we have, for r fixed and t such that $H(t) \leq r$,

$$
\begin{aligned}
&\left|\frac{d}{d t}\left(I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right)\right)\right| \\
&= \left\lvert\,-\kappa\left(I\left(A_{1}(H(t))\right)\right)^{(2 \kappa-1) / \lambda} \log \left(\frac{r}{H(t)}\right)\right. \\
& \left.+I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\left(\log \left(\frac{r}{H(t)}\right) \frac{d}{d t}\left(\frac{H(t)}{H^{\prime}(t)}\right)-1\right) \right\rvert\, \\
& \leq\left(\kappa+(\kappa+1) \frac{A_{3}(H(t))}{2 A_{2}(H(t))}\right) \log r+1 .
\end{aligned}
$$

Since, as Bergweiler has shown (see [1], (3.15) and (3.2)), $A_{3} / A_{2} \leq L c^{1 / L} A_{2}^{1-1 / L}$, where $c=\Psi\left(t_{0}\right) t_{0}^{-L}$ and L is the number of (8), the preceding estimate gives

$$
\begin{equation*}
\left|\frac{d}{d t}\left(I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right)\right)\right| \leq \Lambda A_{2}(r)^{1-1 / L} \log r+1 \tag{32}
\end{equation*}
$$

for $H(t) \leq r$, where $\Lambda=\kappa+L(\kappa+1) c^{1 / L} / 2$.
Finally, from (30) we have (as in [1] between formulas (3.13) and (3.14))

$$
\left|\frac{H^{\prime \prime}(t)}{H^{\prime}(t)}\right| \leq \frac{1}{2}(\kappa+3) \frac{A_{3}(H(t))}{A_{2}(H(t))^{3 / 2}}=o(1)
$$

as $t \rightarrow \infty$, and we deduce from this (cf [1], (3.14)) that

$$
\begin{equation*}
H^{\prime}(t+s)=(1+o(1)) H^{\prime}(t) \tag{33}
\end{equation*}
$$

as $t \rightarrow \infty$, uniformly for $0 \leq s \leq 1$.
4 Proof of Theorem 2
Consider

$$
\begin{equation*}
u(z)=\sum_{j=1}^{\infty} c_{j} \log \left|1+\left(\frac{z}{H(j)}\right)^{\left[\frac{H(j)}{H^{\prime}(j)}\right]}\right| \tag{34}
\end{equation*}
$$

where $\left[\frac{H(j)}{H^{\prime}(j)}\right]$ means the integer part of $\frac{H(j)}{H^{\prime}(j)}$, and with the notation of the preceding section,

$$
\begin{equation*}
c_{j}=I\left(A_{1}(H(j))\right)^{\kappa / \lambda} \tag{35}
\end{equation*}
$$

Since the terms of the series (34) are subharmonic and the series converges locally uniformly (as will be evident from our subsequent calculations), u is subharmonic.

As in [1] we write

$$
A_{j}=\log \left(1+\left(\frac{r}{H(j)}\right)^{\left[\frac{H(j)}{H^{\prime}(j)}\right]}\right)
$$

for $r \geq 0$, and

$$
S_{1}=\sum_{j=1}^{[G(r)]} c_{j} A_{j}, \quad S_{2}=\sum_{j=[G(r)]+1}^{[G(\rho r)]} c_{j} A_{j}, \quad S_{3}=\sum_{j=[G(\rho r)]+1}^{\infty} c_{j} A_{j},
$$

where G is as in (27) and $\rho=1+A_{1}(r) /\left(2 A_{2}(r)\right)$. Then

$$
\begin{equation*}
B(r, u) \leq S_{1}+S_{2}+S_{3} \tag{36}
\end{equation*}
$$

and we estimate S_{1}, S_{2} and S_{3} in turn.
For S_{1}, since $H(j) \leq r$ for $j \leq G(r)$ we have, using (28), (32) and Bergweiler's Lemma 3.1 of [1],

$$
\begin{align*}
S_{1} \leq & \sum_{j=1}^{[G(r)]} I\left(A_{1}(H(j))\right)^{\kappa / \lambda}\left(\left[\frac{H(j)}{H^{\prime}(j)}\right] \log \left(\frac{r}{H(j)}\right)+\log 2\right) \\
\leq & \sum_{j=1}^{[G(r)]} I\left(A_{1}(H(j))\right)^{\kappa / \lambda} \frac{H(j)}{H^{\prime}(j)} \log \left(\frac{r}{H(j)}\right)+G(r) \log 2 \\
\leq & \int_{0}^{G(r)} I\left(A_{1}(H(j))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right) d t \\
& +\left(\Lambda A_{2}(r)^{1-1 / L} \log r+1\right) G(r)+G(r) \log 2 \\
= & \int_{0}^{G(r)} I\left(A_{1}(H(j))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right) d t \\
& +O\left(G(r) A_{2}(r)^{1-1 / L} \log r\right) \tag{37}
\end{align*}
$$

as $r \rightarrow \infty$. With the change of variable $s=H(t)$ we obtain

$$
\begin{align*}
\int_{0}^{G(r)} & I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right) d t \\
= & \int_{1}^{r} I\left(A_{1}(s)\right)^{\kappa / \lambda} s G^{\prime}(s)^{2} \log \left(\frac{r}{s}\right) d s \\
= & \int_{1}^{r} I\left(A_{1}(s)\right)^{\kappa / \lambda} \chi\left(A_{1}(s)\right) \log \left(\frac{r}{s}\right) \frac{d s}{s} \\
= & \int_{1}^{r} \Psi\left(A_{1}(s)\right) \log \left(\frac{r}{s}\right) \frac{d s}{s} \\
= & \int_{1}^{r} A_{2}(s) \log \left(\frac{r}{s}\right) \frac{d s}{s} \\
= & \int_{1}^{r} A_{1}^{\prime}(s) \log \left(\frac{r}{s}\right) d s \\
= & A_{0}(r)-t_{0} \log r \tag{38}
\end{align*}
$$

in view of (23), the last step following after integrating by parts. Concerning the error term in (37) we have, from (22) and (24), and using $\chi=\Psi / I^{\kappa / \lambda}$,

$$
\begin{equation*}
G(r) \leq \sqrt{\chi\left(A_{1}(r)\right)} \log r=O\left(\sqrt{A_{2}(r)}(\log r)^{\frac{3 \kappa-2}{2 \kappa-2}}\right) \tag{39}
\end{equation*}
$$

as $r \rightarrow \infty$, and $A_{0}(r)=\int_{1}^{r}\left(A_{1}(s) / s\right) d s \geq r-1$ from (25), so that

$$
\begin{equation*}
\log r \leq(1+o(1)) \log A_{0}(r) \tag{40}
\end{equation*}
$$

as $r \rightarrow \infty$. Thus, using (26),

$$
\begin{align*}
G(r) A_{2}(r)^{1-1 / L} \log r & =O\left(A_{2}(r)^{(3 L-2) /(2 L)}(\log r)^{(3 \kappa-2) /(2 \kappa-2)}\right) \\
& =O\left(A_{0}(r)^{(3 L-2) /(4-2 L)}(\log r)^{(3 \kappa-2) /(2 \kappa-2)}\right) \\
& =o\left(A_{0}(r)\right) \tag{41}
\end{align*}
$$

as $r \rightarrow \infty$. Combining (37), (38) and (41), and using the fact that $L<6 / 5$, we conclude that

$$
\begin{equation*}
S_{1} \leq(1+o(1)) A_{0}(r) \quad(r \rightarrow \infty) \tag{42}
\end{equation*}
$$

Turning to S_{2}, we have, using (27) and (24), and since $H(j)>r$,

$$
\begin{aligned}
S_{2} & \leq I\left(A_{1}(r)\right)^{\kappa / \lambda} G(\rho r) \log 2 \\
& \leq I\left(A_{1}(r)\right)^{\kappa / \lambda} \sqrt{\chi\left(A_{1}(\rho r)\right)} \log (\rho r) \log 2 \\
& =I\left(A_{1}(r)\right)^{\kappa /(2 \lambda)} \sqrt{\Psi\left(A_{1}(\rho r)\right)} \log (\rho r) \log 2 \\
& \leq \sqrt{A_{2}(\rho r)} \log (\rho r) \log 2 .
\end{aligned}
$$

As Bergweiler shows ([1], p. 28), $\sqrt{A_{2}(\rho r)} \log (\rho r)=o\left(A_{0}(r)\right)$ as $r \rightarrow \infty$, and thus

$$
\begin{equation*}
S_{2}=o\left(A_{0}(r)\right) \quad(r \rightarrow \infty) \tag{43}
\end{equation*}
$$

Finally, for S_{3}, since $H(j) \geq \rho r$ for $j \geq G(\rho r)$,

$$
\begin{aligned}
S_{3} & \leq \sum_{j=[G(\rho r)]+1}^{\infty} c_{j}\left(\frac{r}{H(j)}\right)^{\left[\frac{H(j)}{H^{\prime}(j)}\right]} \\
& \leq \rho \sum_{j=[G(\rho r)]+1}^{\infty} I\left(A_{1}(H(j))\right)^{\kappa / \lambda} \exp \left(-\tau \frac{H(j)}{H^{\prime}(j)}\right)
\end{aligned}
$$

where $\tau=\log \rho \geq 0$. Thus, since, from (31), H/H' is increasing,

$$
S_{3} \leq \rho\left(1+\int_{G(\rho r)}^{\infty} I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \exp \left(-\tau \frac{H(t)}{H^{\prime}(t)}\right) d t\right)
$$

Making the change of variable $s=H(t)$, and using (28) and the fact that $\chi\left(A_{1}\right) \geq \Psi\left(A_{1}\right)=A_{2}$ and $I \leq 1$, we have

$$
\begin{align*}
S_{3} & \leq \rho\left(1+\int_{\rho r}^{\infty} I\left(A_{1}(s)\right)^{\kappa / \lambda} \sqrt{\chi\left(A_{1}(s)\right)} \exp \left(-\tau \sqrt{\chi\left(A_{1}(s)\right)}\right) \frac{d s}{s}\right) \\
& =\rho\left(1+\int_{\rho r}^{\infty} I\left(A_{1}(s)\right)^{\kappa /(2 \lambda)} \sqrt{A_{2}(s)} \exp \left(-\tau \sqrt{\chi\left(A_{1}(s)\right)}\right) \frac{d s}{s}\right) \\
& \leq \rho\left(1+\int_{\rho r}^{\infty} \sqrt{A_{2}(s)} \exp \left(-\tau \sqrt{A_{2}(s)}\right) \frac{d s}{s}\right) \tag{44}
\end{align*}
$$

As in [1], p. 29, we deduce from (44) that $S_{3}=o\left(A_{0}(r)\right)$, and combining this, (42), (43) and (36), we obtain

$$
\begin{equation*}
B(r, u) \leq(1+o(1)) A_{0}(r) \quad(r \rightarrow \infty) \tag{45}
\end{equation*}
$$

To establish the reverse inequality, we use Jensen's inequality and Lemma 3.1 of [1], and obtain

$$
\begin{align*}
B(r, u) \geq & \sum_{j=1}^{[G(r)]} c_{j}\left[\frac{H(j)}{H^{\prime}(j)}\right] \log \left(\frac{r}{H(j)}\right) \\
\geq & \int_{G(r)-[G(r)]}^{G(r)} I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\left(\frac{H(t)}{H^{\prime}(t)}-1\right) \log \left(\frac{r}{H(t)}\right) d t \\
& +O\left(G(r) \sup _{0<t<G(r)}\left|F^{\prime}(t)\right|\right) \tag{46}
\end{align*}
$$

where

$$
F(t)=I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\left(\frac{H(t)}{H^{\prime}(t)}-1\right) \log \left(\frac{r}{H(t)}\right)
$$

Since, for $H(t) \leq r$,

$$
\begin{aligned}
& \left|\frac{d}{d t}\left(I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \log \left(\frac{r}{H(t)}\right)\right)\right| \\
& \quad=\left(\kappa I\left(A_{1}(H(t))\right)^{(2 \kappa-1) / \lambda} \log \left(\frac{r}{H(t)}\right)+I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\right) \frac{H^{\prime}(t)}{H(t)} \\
& \quad \leq \kappa \log r+1
\end{aligned}
$$

from (20) and (28), we have, taking account of (32) and (26),

$$
\left|F^{\prime}(t)\right| \leq(\Lambda+\kappa) A_{2}(r)^{1-1 / L} \log r+2=o\left(A_{0}(r)^{(L-1) /(2-L)} \log r\right)
$$

as $r \rightarrow \infty$. We deduce from (41) that

$$
\begin{equation*}
G(r) \sup _{0<t<G(r)}\left|F^{\prime}(t)\right|=o\left(A_{0}(r)\right) \tag{47}
\end{equation*}
$$

as $r \rightarrow \infty$. Also, from (40),

$$
\int_{0}^{1} I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\left(\frac{H(t)}{H^{\prime}(t)}-1\right) \log \left(\frac{r}{H(t)}\right) d t=O(\log r)=O\left(\log A_{0}(r)\right)
$$

From this, (46) and (47),

$$
B(r, u) \geq \int_{0}^{G(r)} I\left(A_{1}(H(t))\right)^{\kappa / \lambda}\left(\frac{H(t)}{H^{\prime}(t)}-1\right) \log \left(\frac{r}{H(t)}\right) d t+o\left(A_{0}(r)\right)
$$

as $r \rightarrow \infty$. We have

$$
\int_{0}^{G(r)} I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \frac{H(t)}{H^{\prime}(t)} \log \left(\frac{r}{H(t)}\right) d t=(1+o(1)) A_{0}(r)
$$

as $r \rightarrow \infty$, from (38) and (40), and with the change of variable $s=H(t)$,

$$
\begin{aligned}
& \int_{0}^{G(r)} I\left(A_{1}(H(t))\right)^{\kappa / \lambda} \log \left(\frac{r}{H(t)}\right) d t \\
& \quad=\int_{1}^{r} I\left(A_{1}(s)\right)^{\kappa / \lambda} \log \left(\frac{r}{s}\right) G^{\prime}(s) d s \\
& \quad \leq \int_{1}^{r} \log \left(\frac{r}{s}\right) G^{\prime}(s) d s=\int_{1}^{r} \frac{G(s)}{s} d s \leq G(r) \log r=o\left(A_{0}(r)\right)
\end{aligned}
$$

as $r \rightarrow \infty$, from (39) and (40). It follows that $B(r, u) \geq(1+o(1)) A_{0}(r)$, and combining this with (45) we conclude that

$$
B(r, u)=(1+o(1)) A_{0}(r)
$$

and, as in ([1], p. 30), that

$$
\begin{equation*}
a(r, u)=(1+o(1)) A_{1}(r) \tag{48}
\end{equation*}
$$

as $r \rightarrow \infty$

In the context of Theorem $2, H(j)=\left|z_{j}\right|$ and so, from (35) and (48), $c_{j}=$ $I\left((1+o(1)) a\left(\left|z_{j}\right|, u\right)\right)^{\kappa / \lambda}$ as $j \rightarrow \infty$. From (8) we have $r_{2} / r_{1} \leq \phi\left(r_{2}\right) / \phi\left(r_{1}\right) \leq$ $\left(r_{2} / r_{1}\right)^{L}$ for $r_{2} \geq r_{1} \geq t_{0}$, and it follows from this that $\int_{r}^{(1+o(1)) r} \phi(t)^{-1} d t=$ $o\left(\int_{r}^{2 r} \phi(t)^{-1} d t\right.$ as $r \rightarrow \infty$. Thus $I((1+o(1)) r)=(1+o(1)) I(r)$ as $r \rightarrow \infty$, and we have (9).

Bergweiler's argument ([1], section 3.3), which requires (33), shows that for all large z, a disc centred at z with radius $d(|z|)=9|z| / \sqrt{\chi(a(r, u) / 2)}$ contains one of the singularities of u, and thus no Wiman-Valiron disc can have radius greater that $d(|z|)$. Since $\chi=\lambda \phi I^{1-1 / \lambda}$, and since, arguing as in the preceding paragraph, $\phi(r / 2) \geq$ const $\cdot \phi(r)$, and also $I(r / 2)>I(r)$, we have $d(|z|) \leq$ const $\cdot|z| / \sqrt{\phi(a(r, u)) I(a(r, u))^{1-1 / \lambda}}$. If we first obtain this result for a value slightly smaller than λ, and with κ adjusted so that the ratio κ / λ remains constant, the conclusion of Theorem 2 follows.

References

[1] W. Bergweiler, The size of Wiman-Valiron disks, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 13-33.
[2] W. Bergweiler, P.J. Rippon, G.M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. London Math. Soc. (3) 97 (2008), no. 2, 368-400.
[3] J.G. Clunie, On a hypothetical theorem of Pólya, Complex Variables Theory Appl. 12 (1989), 87-94.
[4] J. Clunie, A. Eremenko and J. Rossi, On equilibrium points of logarithmic and Newtonian potentials, J. London Math. Soc. (2) 47 (1993), 309-320.
[5] A.E. Eremenko, On the iteration of entire functions, in Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ. 23, PWN, Warsaw, 1989, pp. 339-345.
[6] A. Eremenko, L.W. Liao, T.W. Ng, Meromorphic solutions of higher order Briot-Bouquet differential equations, Math. Proc. Cambridge Philos. Soc. 146 (2009), 197-206.
[7] W.H.J. Fuchs, A Phragmén-Lindeløf theorem conjectured by D.J. Newman, Trans. Amer. Math. Soc. 267 (1981), 285-293.
[8] W.K. Hayman and P.B. Kennedy, Subharmonic Functions Vol. 1, Academic Press London etc. (1976), xvii +284 pp.
[9] X.H. Hua and C.C. Yang, Dynamics of transcendental functions, Asian Math. Ser. 1 Gordon and Breach Science Publishers, Amsterdam, 1998.
[10] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, UTB fd́dotur Wissenschaft: Grosse Reihe. Birkhauser Verlag Basel, 1985.
[11] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics 15, Walter de Gruyter \& Co., Berlin, 1993.
[12] J.K. Langley, Proof of a conjecture of Hayman concerning f and $f^{\prime \prime}, J$. London Math. Soc. (2) 48 (1993), no. 3, 500-514.
[13] A.J. Macintyre, Wiman's method and the "flat regions" of integral functions, Q. J. Math., Oxf. Ser. 9 (1938), 81-88.
[14] G. Valiron, Lectures on the general theory of integral functions, Edouard Privat Toulouse, 1923.
[15] A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Betrage bei gegebenem Argumente der Funktion, Acta Math. 41 (1916), 1-28.
[16] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Ergebnisse der Mathematik und ihrer Grenzgebiete 8, Springer-Verlag, Berlin, second edition, 1968.

