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Abstract

Wiman-Valiron theory and the results of Macintyre about “flat regions” describe
the asymptotic behaviour of entire functions in certain discs around maximum
points. We use a technique of Bergweiler, Rippon and Stallard to describe the
asymptotic behaviour of a certain type of subharmonic function, and a technique
of Bergweiler to estimate the size of its Wiman-Valiron discs from above and
below. The results are extended to δ-subharmonic functions.
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1 Introduction

Given r > 0 and an upper semi-continuous function u : C → [−∞,∞), let
B(r, u) := max|z|=r u(z) be its maximum function. We recall that if u is sub-
harmonic then B(r, u) is a convex, increasing function of log r. The left and
right derivatives of B(r, u) thus exist, and B(r, u) is differentiable outside a
countable set. We write

a(r, u) :=
dB(r, u)

d log r
, (1)

taking the right derivative at points where B(r, u) is not differentiable.

We say that zr is a maximum point of u if |zr| = r and u(zr) = B(r, u). Slightly
abusing this notation, we call zr a maximum point for a holomorphic function
f if it is a maximum point for the subharmonic function log |f |. We denote by
D(a, r) = {z : |z − a| < r} the disc centred at a of radius r, and say that a set
F ⊆ [0,∞) has logarithmic measure

∫
F
dt
t . For a subharmonic function u, we

denote by µu the Riesz measure of u.

A result of Macintyre ([13], Theorem 3) says that an entire function f can be
estimated on a disc near its maximum point. That is, given ε > 0, there exists
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a set F of finite logarithmic measure such that

f(z) ∼
(
z

zr

)a(r,log |f |)
f(zr) (2)

as r → ∞, r /∈ F , uniformly for z ∈ D(zr, r/(logM(r, f))
1
2+ε). As Bergweiler,

Rippon and Stallard point out [2, p. 372], it can be deduced from (2) that, for
each k ∈ N ∪ {0},

f (k)(z) ∼
(
a(r, log |f |)

z

)k (
z

zr

)a(r,log |f |)
f(zr)

as r → ∞, r /∈ F , uniformly for z ∈ D(zr, r/(logM(r, f))
1
2+ε). This work fol-

lowed results from Wiman-Valiron theory which found that sufficiently close to
their maximum points, entire functions act like monomials, namely the domi-
nant term of their Taylor power series (see [15], [14], [13]).

More recently, Bergweiler, Rippon and Stallard [2] proved a result similar to
(2) where it is not required that f is entire, but only that f has a direct tract.
To explain this, let D be an unbounded domain in C whose boundary consists
of piecewise smooth curves, and whose complement is unbounded. Let f be a
complex-valued function whose domain of definition contains the closure D of
D. Then D is called a direct tract of f if f is holomorphic in D and continuous
in D, and there exists R > 0 such that |f(z)| = R for z on the boundary of D,
while |f(z)| > R for z ∈ D.

The main result of [2] says that for every τ > 1
2 , there exists a set F of finite

logarithmic measure such that, for r /∈ F , the disc D(zr, r/a(r, log |f |)τ ) is
contained in D and (2) holds for z ∈ D(zr, r/a(r, log |f |)τ ) as r → ∞. In [1],
Bergweiler investigated the size of the disc around zr in which (2) holds (which
can be described as a Wiman-Valiron disc), and proved results from below and
above as follows. Let φ : [t0,∞)→ (0,∞) be a differentiable function satisfying∫ ∞

t0

1

φ(t)
dt <∞ (3)

and

K ≤ tφ′(t)

φ(t)
≤ L (4)

for certain constants K and L satisfying 0 ≤ K ≤ 1 < L < 2. Let f be
a function with a direct tract D and let zr ∈ D be a maximum point of f
in D. Then there exists a set F of finite logarithmic measure such that the
disc D(zr, r/

√
φ(a(r, log |f |))) ⊆ D and (2) holds on D(zr, r/

√
φ(a(r, log |f |)))

uniformly as r ∈ ∞, r /∈ F . On the other hand, if∫ ∞
to

1

φ(t)
dt =∞
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and (4) holds for K = 1 and some L < 6
5 , then there exists an entire function

f which has exactly one direct tract D and is such that if r is sufficiently large
and |z| = r, then the disc D(z, r/

√
φ(a(r, log |f |))) contains a zero of f , and

thus (2) cannot hold.

With these results in mind, we seek analogous results for subharmonic functions
of the form

u(z) =

∞∑
j=1

cj log

∣∣∣∣1− z

zj

∣∣∣∣ , (5)

where cj ∈ R+, zj ∈ C and
∑∞
j=1

∣∣∣ cjzj ∣∣∣ < ∞. In any disc that contains no zj , u

can also be written in the form

u(z) = log |f(z)|,

where f(z) =
∏∞
j=1

(
1− z

zj

)cj
. The cj are the Riesz masses of u at the points

zj ; at all other points u is harmonic and the Riesz mass is zero. Since the zj are
the only “problem” points of u in C, we do not need to assume the existence of
a direct tract as in [2] and [1].

To achieve results for u, it is necessary to impose some lower growth condition
on the masses cj . For if, for example, the sequence zj consisted of all the rational
points in the plane, then every open disc would contain a zj and we could not
have (2). We will assume that

lim
j→∞

cj
I(a(|zj |, u))β

> 0 (6)

where

I(r) :=

∫ ∞
r

1

φ(t)
dt (7)

and β is a positive constant.

We are now ready to state our first theorem.

Theorem 1 Let u be as in (5) with the growth condition (6) on the masses cj
of u, for some constant β > 0. Let t0 > 0 and let φ : [t0,∞) → (0,∞) be a
differentiable function satisfying (3) and (4) for constants K = min{β, 1} and
L satisfying 1 < L < 3/2. Let r > 0. If β < 1 there exists a set F ⊆ [0,∞) of
finite logarithmic measure such that the disc D(zr, r/

√
φ(a(r, u))) contains no

zj, and (2) holds uniformly for z ∈ D(zr, r/
√
φ(a(r, u))), as r →∞, r /∈ F .

Remark: Theorem 1 can be extended to δ-subharmonic functions, that is, func-
tions

v(z) = v1(z)− v2(z),
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where v1, v2 are subharmonic functions of the form (5). We assume that the
set D = {z ∈ C : v(z) > 0} has an unbounded component D0 on which v is
harmonic. The function which is v on D0 and 0 elsewhere, which we denote
by v+, is then subharmonic. The complement of D0 may contain islands I,
that is, closed bounded components of the form {z : v+(z) = 0}, and the
growth condition we impose on v1 and v2 involves islands, rather than points,
as follows. Either there are finitely many islands, or

lim
rI→∞

µv1(I)− µv2(I)

I(a(rI , v+))β
> 0,

where 0 < β < 1 and rI = sup{|z| : z ∈ I}. The proof relies on the fact that

µv+(I) = µv1(I)− µv2(I),

but is otherwise similar to the proof of Theorem 1.

We state our second theorem as follows.

Theorem 2 Let t0 > 0 and let φ : [t0,∞)→ (0,∞) be a differentiable function
that satisfies (3). Let I be as defined in (7) and suppose that, given κ > 1 and
λ > 0,

1 ≤ rφ′(r)

φ(r)
− (1 + (κ− 1)/λ)r

φ(r)I(r)
≤ rφ′(r)

φ(r)
≤ L, (8)

for r ≥ t0, where 1 < L < 6/5. Then there exists a subharmonic function of the
form (5), with

cj = (1 + o(1))(I(a(|zj |, u)))κ/λ (j →∞), (9)

for which, for all large r, there are no Wiman-Valiron discs of radius greater
than

r√
φ(a(r, u))I(a(r, u))1−1/λ

. (10)

Corollary 1 Theorem 1 fails if β > 1.

Assuming Theorem 2 for the moment, let us prove Corollary 1. The function

φ(r) = η−1r · log r · log2 r · · · logl r · (logl+1 r)
1+η, (11)

where η > 0, l is a positive integer and logl is the l-times iterated logarithm,
satisfies (3) and, for any λ > 0 and κ > 1, satisfies (8) for all large t. For in
that case I(r) = (logl+1 r)

−η and

rφ′(r)

φ(r)
− (1 + (κ− 1)/λ)r

φ(r)I(r)

= 1 +
1

log r
+ ...+

1

log r log2 r · · · logl r
+

1− (κ− 1)η/λ

log r log2 r · · · logl+1 r
. (12)
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Thus, for this φ, the result of Theorem 2 holds for any κ > 1 and λ > 0. If
β > 1 we may choose κ and λ satisfying κ/λ = β with κ > 1 and λ < 1, and
then (10) contradicts the conclusion of Theorem 1.

Remarks: 1. The case β = 1 is open.
2. Suppose that 0 < β < 1 and that in Theorem 2 we choose κ > 1

arbitrarily and λ = κ/β. The difference between the radii in Theorem 1 and

Theorem 2 is
√
I(a(r, u))1−β/κ. To get some idea of the significance of this

factor, consider φ of (11). The radius of the disc in Theorem 1 is

η−1t · log t · log2 t · · · logl t · (logl+1 t)
1+η|t=a(r,u)

and in Theorem 2 is

η−1t · log t · log2 t · · · logl t · (logl+1 t)
1+βη/κ|t=a(r,u).

Numerous applications of the theories of Wiman-Valiron and Macintyre exist, in
areas including complex dynamics ([2], [5], [9]), complex differential equations
([6], [10], [11], [16]) and the zero distribution of derivatives ([3], [12]). We
note also that functions of the form (5) are connected to the electrostatic fields
generated by positively charged wires which meet the complex plane at the
points zj [4].

2 Proof of Theorem 1

First, with u given by (5), we have a(r, u) → ∞ as r → ∞. For otherwise
B(r, u) = O(log r) and therefore µu(D(0, r)) = O(1) as r → ∞, which gives
that

∑
j∈N cj < ∞. By (6) the cj would be bounded below, and this would

mean that there are only finitely many cj , which is a contradiction.

We need two lemmas. The first is based on a well-known result about real
functions and can be found in ([2], Lemma 6.10).

Lemma 3 Let v : C → [−∞,∞) be subharmonic, and let ε > 0. Then there
exists a set F ⊆ [1,∞) of finite logarithmic measure such that

a(r, v) ≤ B(r, v)1+ε

for r ≥ 1, r /∈ F .

The second lemma summarises, with a small change, the lemmas and discussion
in ([1], Section 2). The change we make concerns two functions, σ1 and σ2,
that occur in the proof of Lemma 2.2 of [1]. Rather than (in the notation of [1])
σ1 = σ2 = V K/2

√
ψ, we take σ1 =

√
ψ and σ2 = V K

√
ψ; the proof is unchanged

except that the restriction on the constant L needs to be strengthened (from
L < 2 to L < 3/2).
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Lemma 4 Let t0 > 0, let v : C → [−∞,∞) be a subharmonic function, and
let φ : [t0,∞) → (0,∞) be a differentiable function satisfying (3) and (4) for
certain constants 0 < K < 1 < L < 3/2. Then there exists a set F ⊆ [t0,∞) of
finite logarithmic measure such that

B(s, v) ≤ B(r, v) + a(r, v) log
s

r
+ I(a(r, v))K

for ∣∣∣log
s

r

∣∣∣ ≤ 1√
φ(a(r, v))

,

uniformly as r →∞, r /∈ F .

We apply Lemma 4 with K = β and L satisfying 1 < L < 3/2, and we apply
Lemma 3 for ε = β. Let F be the union of the exceptional sets of these lemmas.
We put ρ = 2r/φ(a(r, u))β/2 whenever r is so large that a(r, u) 6= 0. Let C be
a positive constant sufficiently large that for all large r and any zj ∈ D(zr, Cρ)
we have

cj > (logC)−1I(a(|zj |, u))β , (13)

which is possible by (6). We consider the function

v(z) = u(z)− u(zr)− a(r, u) log
|z|
r

= u(z)−B(r, u)− a(r, u) log
|z|
r
. (14)

For z ∈ D(zr, Cρ) we have∣∣∣∣z − zrzr

∣∣∣∣ ≤ ∣∣∣∣Cρr
∣∣∣∣ =

2C

φ(a(r, u))β/2
= o(1)

as r →∞, by (4) and since a(r, u)→∞. Thus since β < 1,∣∣∣∣log
|z|
r

∣∣∣∣ =

∣∣∣∣log

∣∣∣∣1 +
z − zr
zr

∣∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣z − zrzr

∣∣∣∣ ≤ 4C

φ(a(r, u))β/2
≤ 1√

φ(a(r, f))

for large r, and the hypotheses of Lemma 4 are satisfied. Since

v(z) ≤ B(|z|, u)−B(r, u)− a(r, u) log
|z|
r

by (14), we conclude from Lemma 4 applied to u that

v(z) ≤ I(a(r, u))β (15)

as r →∞, r /∈ F .

For large r, we have 0 /∈ D(zr, ρ) so that the difference of v and u as defined in
(14) is harmonic in D(zr, ρ), and hence their Riesz measures in the disc coincide.
Thus

µv(D(zr, ρ)) =
∑

zj∈D(zr,ρ)

cj (16)
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where the zj are matched with the cj in (5).

On the other hand, we have µv(D(zr, ρ)) logC ≤
∫ Cρ
0

µv(D(zr,t))
t dt, and by (15)

and the fact that v(zr) = 0,∫ Cρ

0

µv(D(zr, t))

t
dt =

1

2π

∫ 2π

0

v(zr + Cρeiζ)dζ − v(zr)

≤ 1

2π

∫ 2π

0

I(a(r, u))βdζ

= I(a(r, u))β .

Combining this with (16) gives∑
zj∈D(zr,Cρ)

cj logC ≤ I(a(r, u))β .

In view of (13), we deduce that there do not exist any zj ∈ D(zr, Cρ), and thus

in D(zr, r/
√
φ(a(r, u))).

The remainder of the proof, including the derivation of (2), reproduces the
arguments in ([2], Theorem 2.2).

3 Proof of Theorem 2, preliminaries

We follow Bergweiler’s intricate construction with slight changes, first intro-
ducing certain auxiliary functions in terms of which the example of Theorem
2 is defined. The main concern in this section is to show that certain key cal-
culations that Bergweiler makes carry over in their modified form. Wherever
possible, results from [1] have been simply quoted, with appropriate references.

Let φ be as in the statement of Theorem 2 and define Ψ, χ : [t0,∞) → (0,∞)
by

Ψ(t) = λφ(t)I(t)1+(κ−1)/λ (17)

and
χ(t) = λφ(t)I(t)1−1/λ (18)

where λ and κ are constants satisfying λ > 2 and λ/2 ≥ κ > 1, and I(t) is given
by (7). Note that∫ t

t0

ds

Ψ(s)
=

1

κ− 1

(
I(t)−(κ−1)/λ − I(t0)−(κ−1)/λ

)
,

∫ ∞
t

ds

χ(s)
= I(t)1/λ. (19)

From the first of these we have

I ′(t) = −λI(t)1+(κ−1)/λ

Ψ(t)
. (20)
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In what follows it is helpful to know that I(t) ≤ 1 for t ≥ t0, which can always
be achieved by taking a somewhat larger value of t0. Let us suppose that this
has been done.

As in [1], we define A1 : [1,∞)→ [t0,∞) by

log t =

∫ A1(t)

t0

1

Ψ(s)
ds. (21)

From the first part of (19) we have

I(A1(t)) = ((κ− 1) log(C1t))
−λ/(κ−1)

, (22)

where C1 = exp{(κ− 1)−1I(t0)−(κ−1)/λ}. We also introduce

A2(t) := tA′1(t), A3(t) := tA′2(t), A0(t) :=

∫ t

1

A1(s)
ds

s
. (23)

Differentiating (21), we have

A2(t) = Ψ(A1(t)); (24)

also (see [1], (3.4))

A3(t) ≥ A2(t) ≥ A1(t) ≥ t, t ≥ 1, (25)

and (see [1], (3.10))

A2(t) = o
(
A0(t)

L
2−L

)
(26)

as t→∞, where L is the number of (8). Define G : [1,∞)→ [0,∞) by

G(t) =

∫ t

1

√
χ(A1(s))

ds

s
, (27)

and let H : [0,∞)→ [1,∞) be the inverse function. We have, using (17), (18),
(24), (25) and the fact that I ≤ 1,

H(t)

H ′(t)
=
√
χ(A1(H(t))) =

√
Ψ(A1(H(t)))

I(A1(H(t)))κ/λ
=

√
A2(H(t))

I(A1(H(t)))κ/λ
≥ 1. (28)

Also, observing that from (20) and (24),

I ′(A1(t)) = −λI(A1(t))1+(κ−1)/λ

A2(t)
,

we obtain after some calculation, and using (23),

d

dt

(
H(t)

H ′(t)

)
=

d

dt

(√
A2(H(t))

I(A1(H(t)))κ/λ

)

=
A3(H(t))

2A2(H(t))
+
κ

2
I(A1(H(t)))(κ−1)/λ. (29)
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Since (H/H ′)′ = 1−HH ′′/(H ′)2, we have from (29),

H ′′(t)

H ′(t)
=

√
I(A1(H(t)))κ/λ

A2(H(t))

(
1− A3(H(t))

2A2(H(t))
− κ

2
I(A1(H(t)))(κ−1)/λ

)
. (30)

From (29), (25) and the fact that I ≤ 1 we have

d

dt

(
H(t)

H ′(t)

)
≤ (κ+ 1)

A3(H(t))

2A2(H(t))
. (31)

We need a related estimate, for
d

dt

(
I(A1(H(t)))κ/λ

H(t)

H ′(t)
log

(
r

H(t)

))
. Using

(20), (24) and (31) we have, for r fixed and t such that H(t) ≤ r,∣∣∣∣ ddt
(
I(A1(H(t)))κ/λ

H(t)

H ′(t)
log

(
r

H(t)

))∣∣∣∣
=

∣∣∣∣− κ(I(A1(H(t))))(2κ−1)/λ log

(
r

H(t)

)
+ I(A1(H(t)))κ/λ

(
log

(
r

H(t)

)
d

dt

(
H(t)

H ′(t)

)
− 1

) ∣∣∣∣
≤
(
κ+ (κ+ 1)

A3(H(t))

2A2(H(t))

)
log r + 1.

Since, as Bergweiler has shown (see [1], (3.15) and (3.2)), A3/A2 ≤ Lc1/LA1−1/L
2 ,

where c = Ψ(t0)t−L0 and L is the number of (8), the preceding estimate gives∣∣∣∣ ddt
(
I(A1(H(t)))κ/λ

H(t)

H ′(t)
log

(
r

H(t)

))∣∣∣∣ ≤ ΛA2(r)1−1/L log r + 1 (32)

for H(t) ≤ r, where Λ = κ+ L(κ+ 1)c1/L/2.

Finally, from (30) we have (as in [1] between formulas (3.13) and (3.14))∣∣∣∣H ′′(t)H ′(t)

∣∣∣∣ ≤ 1

2
(κ+ 3)

A3(H(t))

A2(H(t))3/2
= o(1)

as t→∞, and we deduce from this (cf [1], (3.14)) that

H ′(t+ s) = (1 + o(1))H ′(t) (33)

as t→∞, uniformly for 0 ≤ s ≤ 1.

4 Proof of Theorem 2

Consider

u(z) =

∞∑
j=1

cj log

∣∣∣∣1 +

(
z

H(j)

)[ H(j)

H′(j)

]∣∣∣∣, (34)
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where
[ H(j)
H′(j)

]
means the integer part of H(j)

H′(j) , and with the notation of the

preceding section,
cj = I(A1(H(j)))κ/λ. (35)

Since the terms of the series (34) are subharmonic and the series converges
locally uniformly (as will be evident from our subsequent calculations), u is
subharmonic.

As in [1] we write

Aj = log

(
1 +

(
r

H(j)

)[ H(j)

H′(j)

])
,

for r ≥ 0, and

S1 =

[G(r)]∑
j=1

cjAj , S2 =

[G(ρr)]∑
j=[G(r)]+1

cjAj , S3 =

∞∑
j=[G(ρr)]+1

cjAj ,

where G is as in (27) and ρ = 1 +A1(r)/(2A2(r)). Then

B(r, u) ≤ S1 + S2 + S3, (36)

and we estimate S1, S2 and S3 in turn.

For S1, since H(j) ≤ r for j ≤ G(r) we have, using (28), (32) and Bergweiler’s
Lemma 3.1 of [1],

S1 ≤
[G(r)]∑
j=1

I(A1(H(j)))κ/λ
([

H(j)

H ′(j)

]
log

(
r

H(j)

)
+ log 2

)

≤
[G(r)]∑
j=1

I(A1(H(j)))κ/λ
H(j)

H ′(j)
log

(
r

H(j)

)
+G(r) log 2

≤
∫ G(r)

0

I(A1(H(j)))κ/λ
H(t)

H ′(t)
log

(
r

H(t)

)
dt

+ (ΛA2(r)1−1/L log r + 1)G(r) +G(r) log 2

=

∫ G(r)

0

I(A1(H(j)))κ/λ
H(t)

H ′(t)
log

(
r

H(t)

)
dt

+O
(
G(r)A2(r)1−1/L log r

)
(37)
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as r →∞. With the change of variable s = H(t) we obtain∫ G(r)

0

I(A1(H(t)))κ/λ
H(t)

H ′(t)
log

(
r

H(t)

)
dt

=

∫ r

1

I(A1(s))κ/λsG′(s)2 log
(r
s

)
ds

=

∫ r

1

I(A1(s))κ/λχ(A1(s)) log
(r
s

) ds

s

=

∫ r

1

Ψ(A1(s)) log
(r
s

) ds

s

=

∫ r

1

A2(s) log
(r
s

) ds

s

=

∫ r

1

A′1(s) log
(r
s

)
ds

= A0(r)− t0 log r, (38)

in view of (23), the last step following after integrating by parts. Concerning
the error term in (37) we have, from (22) and (24), and using χ = Ψ/Iκ/λ,

G(r) ≤
√
χ(A1(r)) log r = O

(√
A2(r) (log r)

3κ−2
2κ−2

)
(39)

as r →∞, and A0(r) =
∫ r
1

(A1(s)/s) ds ≥ r − 1 from (25), so that

log r ≤ (1 + o(1)) logA0(r) (40)

as r →∞. Thus, using (26),

G(r)A2(r)1−1/L log r = O
(
A2(r)(3L−2)/(2L)(log r)(3κ−2)/(2κ−2)

)
= O

(
A0(r)(3L−2)/(4−2L)(log r)(3κ−2)/(2κ−2)

)
= o(A0(r)) (41)

as r →∞. Combining (37), (38) and (41), and using the fact that L < 6/5, we
conclude that

S1 ≤ (1 + o(1))A0(r) (r →∞). (42)

Turning to S2, we have, using (27) and (24), and since H(j) > r,

S2 ≤ I(A1(r))κ/λG(ρr) log 2

≤ I(A1(r))κ/λ
√
χ(A1(ρr)) log(ρr) log 2

= I(A1(r))κ/(2λ)
√

Ψ(A1(ρr)) log(ρr) log 2

≤
√
A2(ρr) log(ρr) log 2.
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As Bergweiler shows ([1], p. 28),
√
A2(ρr) log(ρr) = o(A0(r)) as r → ∞, and

thus
S2 = o(A0(r)) (r →∞). (43)

Finally, for S3, since H(j) ≥ ρr for j ≥ G(ρr),

S3 ≤
∞∑

j=[G(ρr)]+1

cj

(
r

H(j)

)[ H(j)

H′(j)

]

≤ ρ
∞∑

j=[G(ρr)]+1

I(A1(H(j)))κ/λ exp

(
−τ H(j)

H ′(j)

)
,

where τ = log ρ ≥ 0. Thus, since, from (31), H/H ′ is increasing,

S3 ≤ ρ

(
1 +

∫ ∞
G(ρr)

I(A1(H(t)))κ/λ exp

(
−τ H(t)

H ′(t)

)
dt

)
.

Making the change of variable s = H(t), and using (28) and the fact that
χ(A1) ≥ Ψ(A1) = A2 and I ≤ 1, we have

S3 ≤ ρ
(

1 +

∫ ∞
ρr

I(A1(s))κ/λ
√
χ(A1(s)) exp

(
−τ
√
χ(A1(s))

) ds
s

)
= ρ

(
1 +

∫ ∞
ρr

I(A1(s))κ/(2λ)
√
A2(s) exp

(
−τ
√
χ(A1(s))

) ds
s

)
≤ ρ

(
1 +

∫ ∞
ρr

√
A2(s) exp

(
−τ
√
A2(s)

) ds
s

)
. (44)

As in [1], p. 29, we deduce from (44) that S3 = o(A0(r)), and combining this,
(42), (43) and (36), we obtain

B(r, u) ≤ (1 + o(1))A0(r) (r →∞). (45)

To establish the reverse inequality, we use Jensen’s inequality and Lemma 3.1
of [1], and obtain

B(r, u) ≥
[G(r)]∑
j=1

cj

[
H(j)

H ′(j)

]
log

(
r

H(j)

)

≥
∫ G(r)

G(r)−[G(r)]

I(A1(H(t)))κ/λ
(
H(t)

H ′(t)
− 1

)
log

(
r

H(t)

)
dt

+O

(
G(r) sup

0<t<G(r)

|F ′(t)|

)
, (46)

where

F (t) = I(A1(H(t)))κ/λ
(
H(t)

H ′(t)
− 1

)
log

(
r

H(t)

)
.
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Since, for H(t) ≤ r,∣∣∣∣ ddt
(
I(A1(H(t)))κ/λ log

(
r

H(t)

))∣∣∣∣
=

(
κI(A1(H(t)))(2κ−1)/λ log

(
r

H(t)

)
+ I(A1(H(t)))κ/λ

)
H ′(t)

H(t)

≤ κ log r + 1,

from (20) and (28), we have, taking account of (32) and (26),

|F ′(t)| ≤ (Λ + κ)A2(r)1−1/L log r + 2 = o
(
A0(r)(L−1)/(2−L) log r

)
as r →∞. We deduce from (41) that

G(r) sup
0<t<G(r)

|F ′(t)| = o(A0(r)) (47)

as r →∞. Also, from (40),∫ 1

0

I(A1(H(t)))κ/λ
(
H(t)

H ′(t)
− 1

)
log

(
r

H(t)

)
dt = O(log r) = O(logA0(r)).

From this, (46) and (47),

B(r, u) ≥
∫ G(r)

0

I(A1(H(t)))κ/λ
(
H(t)

H ′(t)
− 1

)
log

(
r

H(t)

)
dt+ o(A0(r))

as r →∞. We have∫ G(r)

0

I(A1(H(t)))κ/λ
H(t)

H ′(t)
log

(
r

H(t)

)
dt = (1 + o(1))A0(r)

as r →∞, from (38) and (40), and with the change of variable s = H(t),∫ G(r)

0

I(A1(H(t)))κ/λ log

(
r

H(t)

)
dt

=

∫ r

1

I(A1(s))κ/λ log
(r
s

)
G′(s)ds

≤
∫ r

1

log
(r
s

)
G′(s)ds =

∫ r

1

G(s)

s
ds ≤ G(r) log r = o(A0(r))

as r → ∞, from (39) and (40). It follows that B(r, u) ≥ (1 + o(1))A0(r), and
combining this with (45) we conclude that

B(r, u) = (1 + o(1))A0(r)

and, as in ([1], p. 30), that

a(r, u) = (1 + o(1))A1(r) (48)
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as r →∞.

In the context of Theorem 2, H(j) = |zj | and so, from (35) and (48), cj =
I((1 + o(1))a(|zj |, u))κ/λ as j → ∞. From (8) we have r2/r1 ≤ φ(r2)/φ(r1) ≤
(r2/r1)L for r2 ≥ r1 ≥ t0, and it follows from this that

∫ (1+o(1))r

r
φ(t)−1dt =

o(
∫ 2r

r
φ(t)−1dt as r →∞. Thus I((1 + o(1))r) = (1 + o(1))I(r) as r →∞, and

we have (9).

Bergweiler’s argument ([1], section 3.3), which requires (33), shows that for all
large z, a disc centred at z with radius d(|z|) = 9|z|/

√
χ(a(r, u)/2) contains

one of the singularities of u, and thus no Wiman-Valiron disc can have radius
greater that d(|z|). Since χ = λφI1−1/λ, and since, arguing as in the preceding
paragraph, φ(r/2) ≥ const · φ(r), and also I(r/2) > I(r), we have d(|z|) ≤
const · |z|/

√
φ(a(r, u))I(a(r, u))1−1/λ. If we first obtain this result for a value

slightly smaller than λ, and with κ adjusted so that the ratio κ/λ remains
constant, the conclusion of Theorem 2 follows.
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