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Fig. 1.  Multi-view camera pose estimation. 
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Abstract—Camera tracking is an important issue in many 

computer vision and robotics applications, such as, augmented 

reality and Simultaneous Localization And Mapping (SLAM). In 

this paper, a feature -based technique for monocular camera 

tracking is proposed. The proposed approach is based on 

tracking a set of sparse features, which are successively tracked 

in a stream of video frames. In the developed system, camera 

initially views a chessboard with known cell size for few frames to 

be enabled to construct initial map of the environment. 

Thereafter, Camera pose estimation for each new incoming 

frame is carried out in a framework that is merely working with 

a set of visible natural landmarks. Estimation of 6-DO F camera 

pose parameters is performed using a particle  filter. Moreover, 

recovering depth of newly detected landmarks, a linear 

triangulation method is used. The proposed method is applied on 
real world videos and positioning error of the camera pose is less 

than 3 cm in average that indicates effectiveness and accuracy of 

the proposed method. 

Keywords—Camera Tracking; Particle Filter; 3D 

reconstruction; visual SLAM. 

I.  INTRODUCTION 

Purpose of the vision-based camera tracking is to estimate 
pose of the camera from a sequence of input images often in 
the form of video frames. Monocular Simultaneous 
Localization And Mapping (SLAM) and construction of the 3D 
representation of explored scene, have recently become popular 
field of research. Augmented reality and robot navigation are 
two major applications, which seriously utilize camera tracking 
and 3D reconstruction. 

Unlike range scanners and RGB-D cameras, which produce 
favorable information about depth of observed scene, a 
monocular camera is a bearing-only sensor that only provides 
2D measurements of a 3D environment. On the other hand, 
Euclidean estimation of camera pose, at least some information 
about depth of a sparse set of scene landmarks is necessary. 

If loop closure is not exploited or no information in shape 
of known markers or fiducials are received from the scene, 
then the problem is considered as a dead reckoning technique. 
Thus, estimation of the camera pose and the 3D position of 
newly added features are calculated in accordance to previous 
estimations. This condition for long-range sequences may lead 
to uncontrolled accumulation of error. 

In general, there are two main strategies  to address the 
problem of camera tracking, feature-based methods and direct 
methods. In feature-based methods, the problem carries out in 
two steps. First, a limited number of features are extracted from 
images according to a saliency criterion. Second, camera pose 
and 3D geometry of the observed environment is estimated 
using the extracted features in previous step. Conversely, in 
direct methods, all  the pixels within an image are exploited to 
estimate the camera position and orientation. Moreover, when 
the number of extracted features is low due to lack of texture, 
using direct methods provides more information about 
geometry of the environment. 

A. Pose parameters 

As depicted in Fig. 1, a moving camera captures images of 

environment from arbitrary positions. The main goal of the 
proposed system is to estimate position and orientation of the 

camera at each position with respect to the world referential 
system.  

c wX RX t   (1)  

,c wX X  are the coordinates of the point with respect to  

camera and world coordinate systems, respectively. In the 

proposed system, it is aimed to estimate camera pose for 
successive frames of a captured video. 

Structure of this paper is as follows: Related works are 
discussed in section II. In section III, the proposed approach 



 
Fig. 2. Overview of proposed method. 

will be explained in details. Experimental results are presented 
in section IV. Conclusions and future works are included in 
section V. 

II. RELATED WORKS 

Camera tracking in unknown environments is a challenging 
task in computer vision and robotic research communities. 
Absence of markers or any pre-calibrated features in the scene 
produces cumulative error for camera pose parameters. Loop 
closure techniques [1, 2] may compensate for camera trajectory 
drift, but they are only desirable for situations where the 
camera revisits previously observed areas. It is necessary to 
detect and initialize new features once camera explores new 
regions for retrieving camera pose. In the reported work, 
detecting loops is not addressed. The reported work is focused 
on propagation of scene depth information to newly detected 
features as the camera observes new regions. 

It is well known that receiving no information about depth 
of extracted scene features produces drift in camera trajectory 
and increases cumulative error. That is, for freely moving 
camera, captured images provide information about geometry 
of scene that can be recovered up to a scale factor using multi-
view geometry. In this way, dealing with this problem, some 
researches put markers or fiducials with known structures in 
the scene to control cumulative error [3, 4]. Using multiple 
markers in the scene could also increase accuracy of camera 
pose parameters [5]. 

Exploiting reference-calibrated images is another technique 
for controlling growth of the camera pose error [6, 7]. 
Calibrated images are those with known 3D coordinates for a 
sparse set of features. 

Generally, there are two main solutions to address the 
problem of camera tracking, i.e. Structure from Motion (SfM) 
and stochastic filtering. SfM approaches are mainly relied on 
techniques developed in multi-view geometry. In the core of 
these techniques, there is a group of algorithms appropriately 
explained on the basis of epipolar geometry [8]. Algorithms 
extended for camera pose estimation as well as techniques 
presented for 3D reconstruction were mostly applied on a small 
set of images. However, there are some reported works that are 
extended for longer image sequences  [9, 10]. Moreover, they 
are often implemented in offline manner. Refining estimated 
parameters of the camera and 3D coordinates of the mapped 
features, often require additional optimization stage. Bundle 
Adjustment (BA) [11] and pose map [12] are two main 
strategies for this purpose.  

In stochastic filtering approaches, problem is solved using 
the notion of dynamic systems. In this group of solutions the 
internal state of a dynamic system constitutes the parameters of 
camera motion. Furthermore, the state transition of the system 
is usually a linear relation based on physical nature of rigid 
body motion in 3D space and feature correspondences are 
utilized to form an observation model of the system. Mostly, 
due to nonlinear nature of the observation model, variants of 
Kalman filter such as Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) are used for pose estimation 
[13, 14]. Particle Filter (PF) is another solution in the context 
of dynamic systems which is utilized for this purpose [15]. 

III. PROPOSED SYSTEM 

In Fig. 2 the overall scheme of the proposed system is 
illustrated. After arrival of new incoming frame, the process of 
camera pose estimation is performed in two stages, obtaining 
matched features and estimation of camera pose parameters. To 
provide robust matchings, extraction of salient and repetitive 
feature points is necessary. Feature detection and tracking are 
elaborated in subsequent sections. Thereafter, the extracted 
feature points should be matched with that of previous image. 
However, from previous image, only those features with 
known positions should be considered. Obtained matched pairs 
that are robust enough are used for estimation of camera pose 
parameters. 

A. PF Implementation 

In the proposed framework, PF is employed to estimate 
posteriori density for camera pose parameters. 6-DOF camera 
pose that consist of translation and rotation of camera with 
respect to world coordinate system, constitutes the state of PF 
and is denoted by xk = [tk wk], where tk is the translation vector 
and the rotation matrix is encoded in wk. wk represents a 
rotation around the vector wk with rotation angle equal to |wk|. 
In the developed PF a constant position and orientation model 
is considered for state transition between time steps. Here it is 
assumed that camera pose only undertakes a Gaussian random 

walk with mean xk - 1 and covariance matrix 
x as described in 

Eq. (1). 

k k-1 k-1 x
p(x | x ) N(x , )   (1) 

Let 
1 2 nk

Z = {z , z ,..., z }  is a set of 3D points in the scene 

that are already initialized in the constructed map. Since 
camera is freely moving within a 3D space, in each frame, 
some feature points may go out of the camera’s field of view 
and in return some new features are detected and further 
initialization is needed. This fact requires that Zk to be updated 



 
Fig. 3. Definition of world coordinate system and detected corners 
of the chessboard. 

continuously. It is also assumed that 
1 2 nk

= {u ,u ,...,u }U  is the 

associated observed feature points in frame k  obtained through 
feature tracking procedure. Moreover, according to pinhole 

camera model for camera state xk, the projection of 
i k

z Z on 

frame k  is calculated using Eq. (2). 

   k

i k k i ky P K R z t  iz  (2) 

where zi is homogenious representation of zi and Pk is the 
camera projection matrix in frame k . Furthermore, K is the 
camera calibration matrix, Rk is the rotation matrix obtained 

from wk
 
using Rodrigues’ formula [16] and tk is the translation 

vector. 

Implementing PF is aimed on successive estimation of the 
posteriori density p(xk | yk ,Zk). This density is approximated as 
a weighted sum of samples drawn from state space as shown in 
Eq. (3). 

m

k k

i=1

i i

k k kp(x | y Z )= w, (x - x )  (3) 

Here, m is the number of particles and
 
x

i
k is the i-th sample 

drawn from state apace. w
i
k is weight of the x

i
k
 
that is 

proportional to conditional likelihood p(yk|xk,zk). Given x
i
k, the 

i-th particle in frame k, w
i
k is computed by Eq. (4). 

n

k k

i=1

i i i T i

k k i k i kw p(y | x Z ) exp(- (u ) (u ), - y - y )   (4) 

Computed particle weights are scaled in such a way that 
m

i

k

i=1

w = 1 . Camera pose is then computed as the weighted 

sum of particles. It is evident that these weights constitute a 
probability distribution. In the next frame, the particles are 
sampled according to their weights  through importance 
sampling. 

B. System Initialization 

In the reported work, a chessboard with known and equal 
cell sizes that is placed on a desk was used to estimate camera 
pose for initial few frames (about 10-15 frames). As depicted in 

Fig. 3, origin of the world coordinate system is aligned to one 
corner of the chessboard. Since size of the chessboard 
cells are known, they are selected as feature points with 
known 3D position in the world coordinate system. From these 
corner points and their projections on each frame, a collection 
of 3D-2D correspondences are supplied within each frame that 
makes it possible to calculate the camera pose with high 
precision. At the same time, extracted natural feature points 
detected in the first frame are tracked. Recovering depth 
information for the detected landmarks in the first frame 
completes the map initialization phase. In the reported work, 
only natural landmarks are used to retrieve camera pose 
parameters. 

C. Feature extraction, tracking and initialization 

In the proposed approach, FAST feature points [17] are 
detected and then tracked. Feature point tracking is a 

significant problem in camera tracking. Correlation window is 
the basic approach for tracking feature points in a sequence of 
consecutive video frames. However, in the reported work, a 
pyramidal technique for feature tracker is used [18]. Using this 
method to track each feature, a pyramidal representation for 
window with specified width centered at the associated feature 
is first constructed. Process of feature tracking is performed 
from the coarsest level to the finest one. At each level, the 
motion vector for each feature is calculated using the well-
known Lucas-Kanade method for optical flow computation 
[19]. Result of the previous level is set as initial guess for the 
iterative registration of Lucas-Kanade method in the next level. 
Output of the aforementioned tracking method is a motion 
vector that represents displacement of the tracked feature. 
Number of pyramid levels is usually dependent on image 
resolution, however, for VGA quality images , 3 or 4 pyramid 
levels are convenient values. 

An important property of the proposed system is the ability 
to add new natural landmarks to the map and then to estimate 
their 3D coordinates. Once a new feature is detected, it cannot 
be initialized immediately. This is due to the fact that, a single 
image does not hold any information about the depth of its 
points. In other words, it is  necessary to track feature points 
along subsequent frames. Moreover, due to narrow-baseline 
nature of successive frames in a given video, linear 
triangulation of newly extracted features in two successive 
frames leads to remarkable error in depth calculation. To deal 
with this problem, a delayed initialization routine is employed. 
In other words, once a new feature is detected, its position is 
recorded. On subsequent frames, the feature is tracked and it is 
initialized once distance of its position on current frame from 
its position on the frame that was detected the first time, 
exceeds a predetermined threshold. In the reported 
experiments, this threshold set to 20 pixels. 

IV. EXPERIMENTAL RESULTS 

Experiments were carried out on two image sequences that 
are detailed in TABLE I. Sequences are captured at 30 frames 
per second rate. Observed scenery is a computer desk cluttered 
with various objects  to generate images with rich textures . 



 
Fig. 4. Estimated and Ground-Truth camera trajectory on XY Plane 
for (a) Seq 1 (b) Seq 2. 

These rich textures enable the algorithm to extract required 
feature points. Furthermore, a chessboard pattern with known 
and equal cell sizes is embedded in the scene. The chessboard 
acts as a planar marker that its cells corners can be easily 
detected. Since the upper left corner of chessboard is 
considered as the origin of world coordinate system (Fig. 3), 
positions of the other cells corners are obtained effortlessly. 
Hence, by detecting projection of this points on captured 
images, a collection of 3D-2D feature correspondences is 
provided. Using these 3D-2D accurate feature 
correspondences, the Ground-Truth camera pose with high 
precision is calculated that enables us to evaluate performance 
of the proposed approach. Additionally, it is assumed that the 
camera is already calibrated. Camera calibration is performed 
using a technique presented by Zhengyou [20]. In TABLE II, 
intrinsic parameters of the camera are presented. 

TABLE I.  SPECIFICATON OF USED SEQUENCES 

 Resolution Number of Frames 

Seq 1 640x480 1043 

Seq 2 1280x72 1230 

Fig. 4 shows the estimated camera trajectory against 
ground-truth in XY plane. As shown, in both sequences the 
camera center location is smoothly tracked along the camera 
path. In Fig. 5, components of the estimated camera position 
against ground-truth data are depicted. As it is shown, despite 
the long length of the input video sequences, camera moving 
path is tracked with high accuracy. 

Furthermore, results produced by the reported approach  are 
compared versus other tracking algorithms using camera pose 
estimations by EKF, UKF and EPnP [21] methods and the 
underlying results are reported in TABLE III. The presented 
results are in terms of Root Mean Square Error (RMSE) of 
translation and rotation components of camera pose along all 
sequences frames. One can see that the proposed PF-based 
approach outperforms the other nonlinear filtering approaches 
(EKF and UKF) as well as the EPnP method. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, a feature-based camera tracking approach in 
unknown environments is reported. A PF framework that 
operates on the basis of tracked FAST feature points is  
employed to estimate the 6-DOF state of the camera. 
Moreover, for better handling of camera quick motions, a 
pyramidal scheme for feature tracking system is used. 

A significant property of the proposed system is that, it 
does not require any known marker in the scene while the 
algorithm is running. Of course, it should be kept in mind that 
when the number of video frames is increased the cumulative 
error for orientation and translation of camera will increase as 
well. This issue will introduce drift in camera trajectory, which 
directly affects triangulation accuracy. To overcome this 
problem, it is required to either acquire some information from 
the scene or try to close the loop. Intention is to consider the 
latter case as for the future work. 

TABLE II.  INTRINSIC PARAMETERS OF CAMERA 

Projection Parameters 
Scaling factors Principal point coordination 

fx = 517.89   fy = 515.43 ox = 321.65   oy = 237.88 

Distortion parameters 
Radial distortion coefficients Tangential distortion coefficients 

k 1 = 0.324  k 2 = -1.277 p1 = 0   p2 = 0 

TABLE III.  RMSE OF TRANSLATION AND ORIENTATION 

Pose 

Estimation 
Method 

Seq 1 Seq 2 
RMSE of 

Translation 

(mm) 

RMSE of 

Rotation 

(deg) 

RMSE of 

Translation 

(mm) 

RMSE of 

Rotation 

(deg) 

PF 16.7 3.5 25 6.4 

EKF 197 7.2 243.4 20.5 

UKF 92.8 8.3 291.2 24.3 

EPnP 200.7 3.7 186.2 4.1 

 



 
Fig. 5. Estimated camera pose against Ground-Truth data (a) Seq 1 (b) Seq 2. 
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