

### Comparison of cation-ordered P21/c leucite structures with stoichiometry K2X2+Si5O12 (X = Mg, Fe, Co, Zn)

BELL, Anthony and HENDERSON, Michael

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/23311/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

### **Published version**

BELL, Anthony and HENDERSON, Michael (2017). Comparison of cation-ordered P21/c leucite structures with stoichiometry K2X2+Si5O12 (X = Mg, Fe, Co, Zn). In: British Crystallographic Association Spring Meeting, Lancaster, UK, 10 - 13 Apr 2017. British Crystallographic Association. (Unpublished)

### Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

## MANCHESTER 1824

# Comparison of cation-ordered $P2_1/c$ leucite structures with stoichiometry $K_2X^2+Si_5O_{12}$ (X = Mg, Fe, Co, Zn)

# A.M.T.Bell<sup>1</sup>(Anthony.Bell@shu.ac.uk) and C.M.B.Henderson<sup>2</sup>.

1. MERI, Sheffield Hallam University, Sheffield, S1 1WB. 2. SEES, University of Manchester, Manchester, M13 9PL.

### Introduction

Synthetic anhydrous analogues of the silicate framework minerals **leucite** (KAlSi<sub>2</sub>O<sub>6</sub>) and **pollucite** (CsAlSi<sub>2</sub>O<sub>6</sub>) can be prepared with the general formulae A<sub>2</sub>BSi<sub>5</sub>O<sub>12</sub> and ACSi<sub>2</sub>O<sub>6</sub>, where A is a monovalent alkali metal cation, B is a divalent cation and C is a trivalent cation. These structures all have the same topology with B and C cations partially substituting onto tetrahedrally coordinated sites (T-sites) in the silicate framework and charge balancing A cations sitting in extra-framework channels. The A cations can be replaced by ion exchange and these materials are of potential technological interest as storage media for radioactive Cs from nuclear waste [1].

We have used X-ray and neutron powder diffraction to determine and Rietveld [2] refine the crystal structures of many different leucite analogues [3-11], one of these was for  $K_2MgSi_5O_{12}$  [5], this was the first known leucite structure with ordered T-site cations and was determined from synchrotron X-ray powder diffraction data on the old Daresbury SRS [12, 13]. In this poster we report the Rietveld refinements of the crystal structures of three more cation ordered leucite analogues,  $K_2X^2+Si_5O_{12}$  where X = Fe, Co or Zn.

### **Synthesis**

The samples were made from appropriate stoichiometric mixtures of  $K_2CO_3$ ,  $SiO_2$ ,  $Fe_2O_3$  (X = Fe), CoO (X = Co) and ZnO (X = Zn). For X = Fe the sample was reduced from  $Fe^{3+}$  to  $Fe^{2+}$  [14].

### Data collection and analysis

All samples were mounted on low-background silicon wafers prior to ambient temperature X-ray powder diffraction data. Data were collected for the X = Fesample on a PANalytical X'Pert Pro MPD using Cu K $\alpha$  Xrays and an X'Celerator area detector. For the other two samples data were collected on a PANalytical Empyrean diffractometer with a PIXCEL-3D area detector. For X =Zn, Cu K $\alpha$  X-rays were used and for X = Co, Co K $\alpha$  Xrays were used. Analyses of the powder diffraction data showed that in all samples the major phase was isostructural with the  $P2_1/c$  structure of  $K_2MgSi_5O_{12}$  [5]. Rietveld refinements were done using FULLPROF [15], using the structure of K<sub>2</sub>MgSi<sub>5</sub>O<sub>12</sub> as a starting model with X cations replacing Mg. However, for X = Co a second mica phase with the stoichiometry  $KCo_3(CoSi_3O_{10})OH_2$  (based on  $KCo_3(AlSi_3O_{10})OH_2$  [16]) was included in the refinement as a 4.7(1) wt.% minor phase. For X = Fe and Zn single-phase refinements were done.

Figures 1, 2 and 3 show the Rietveld difference plots for these structures. Table 1 shows the comparison of some refined structural parameters for  $K_2MgSi_5O_{12}$  and X=Fe, Zn and Co. Ionic and crystal radii are from Shannon [17]. The tetrahedral angle variance [18] shows the distortion of tetrahedral units in the silicate framework. Figure 4 shows a VESTA structure [19] plot for  $K_2FeSi_5O_{12}$ , this shows how the Si and Fe framework cations are ordered onto separate T-sites.

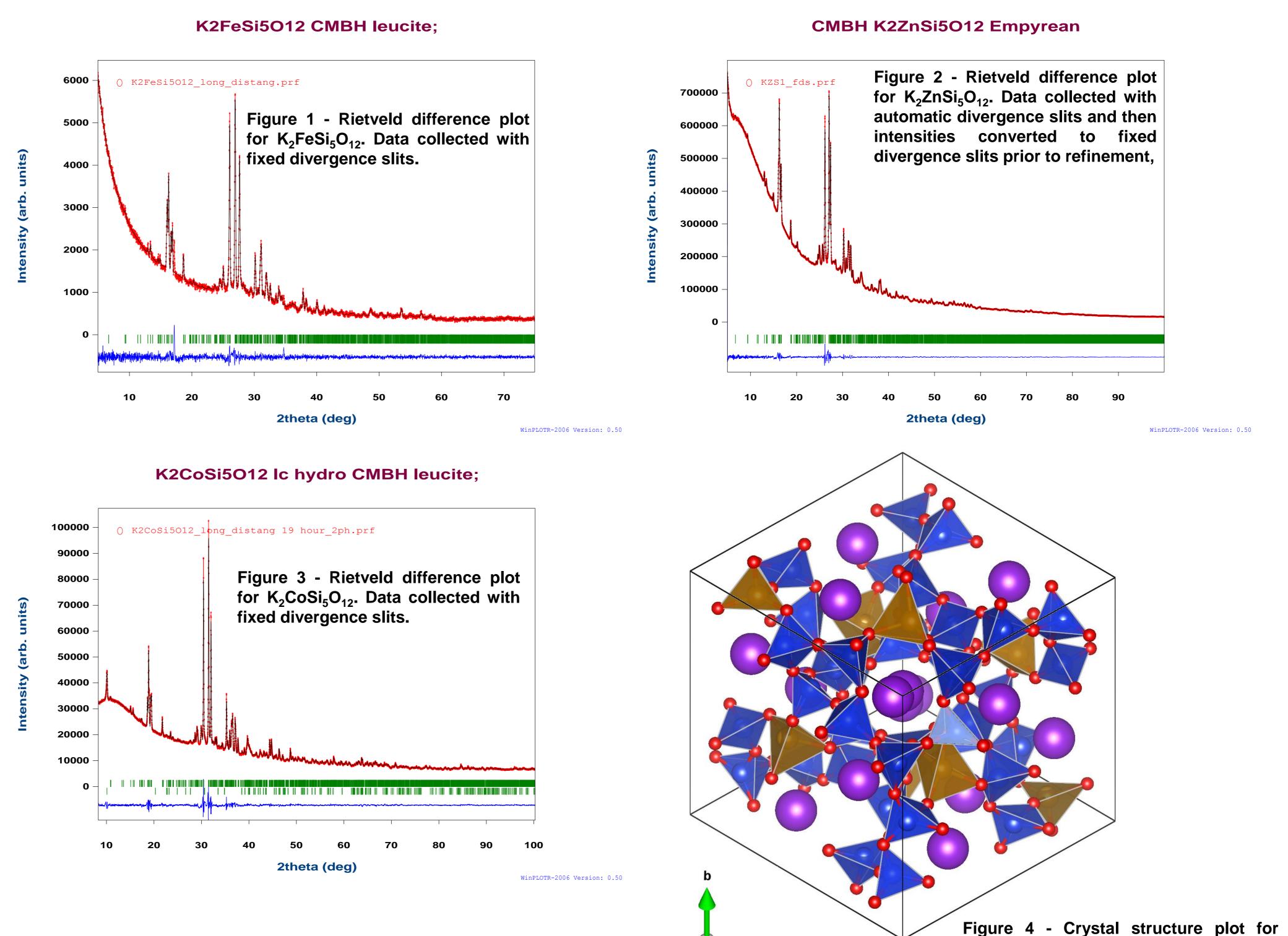



Table 1 - comparison of refined structural parameters

| X                    | Mg          | Fe           | Zn          | Со         |
|----------------------|-------------|--------------|-------------|------------|
| a (Å)                | 13.168(5)   | 13.2574(5)   | 13.1773(2)  | 13.1878(1) |
| b (Å)                | 13.652(1)   | 13.6739(6)   | 13.6106(2)  | 13.6350(2) |
| c (Å)                | 13.072(5)   | 12.9240(5)   | 13.0248(2)  | 12.9876(1) |
| β (°)                | 91.69(5)    | 93.048(3)    | 91.70(6)    | 91.999(8)  |
| V (Å <sup>3</sup> )  | 2348(2)     | 2339.6(2)    | 2334.98(6)  | 2333.96(4) |
| λ (Å)                | 1.52904     | 1.540598     | 1.540598    | 1.78901    |
| instrument           | SRS 8.3     | X'Pert       | Empyrean    | Empyrean   |
| ionic radius (Å)     | 0.71        | 0.77         | 0.74        | 0.72       |
| crystal radius (Å)   | 0.57        | 0.63         | 0.60        | 0.58       |
| mean <i>X</i> -O (Å) | 1.90(1)     | 1.96(2)      | 1.89(1)     | 1.93(1)    |
| mean K-O (Å)         | 3.349(6)    | 3.35(2)      | 3.364(6)    | 3.305(8)   |
| O-Si-O variance      | 20.9(9.9)   | 183.1(130.9) | 48.5(23.7)  | 65.9(33.1) |
| O-X-O variance       | 40.4(8.8)   | 230.3(125.1) | 62.6(56.0)  | 75.3(82.6) |
| mean Si-O-Si (°)     | 140.9(10.7) | 142.0(13.9)  | 144.7(12.6) | 138.3(9.2) |
| mean Si-O-X (°)      | 130.6(9.8)  | 124.6(10.7)  | 128.1(12.5) | 125.8(8.8) |

# Discussion

units.

K<sub>2</sub>FeSi<sub>5</sub>O<sub>12</sub>. Purple spheres represent K<sup>+</sup>

cations, red spheres O<sup>2-</sup> anions, blue

tetrahedra represent SiO<sub>4</sub> units and

light brown tetrahedra represent FeO<sub>4</sub>

Crystal structures have been refined for X = Fe, Zn and Co. These refined structures have complete T-site cation ordering and are isostructural with the  $P2_1/c$  structure of  $K_2MgSi_5O_{12}$ . Replacing Mg with a larger X cation causes a greater distortion of the  $SiO_4$  and  $XO_4$  tetrahedra the silicate framework. However, the refined structures with X cations also have a smaller unit cell volume than  $K_2MgSi_5O_{12}$ , the mean Si-O-X angles suggest a more collapsed framework for the structures with X cations compared to  $K_2MgSi_5O_{12}$ . It is interesting to compare the lattice parameter errors on data collected with

It is interesting to compare the lattice parameter errors on data collected with modern detectors to those determined from a 25 year old synchrotron X-ray powder diffraction dataset!

### Conclusions

Three new crystal structures for have been refined for the synthetic leucite analogues  $K_2X^2+Si_5O_{12}$  where X = Fe, Co or Zn. These refined structures have complete T-site cation ordering and are isostructural with the  $P2_1/c$  structure of  $K_2MgSi_5O_{12}$ . However, replacing the  $Mg^2+$  cations in this structure with the larger  $Fe^2+$ ,  $Fe^2+$ ,  $Fe^2+$ , or  $Fe^2+$ , or  $Fe^2+$  cations causes a greater distortion of the tetrahedral units and more collapsed silicate framework structures.

References:- [1] Gatta, G. D. et al. (2008). Phys. Chem. Miner. 35, 521–533. [2] Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. [3] Bell, A. M. T. & Henderson, C. M. B. (1994). Acta Cryst. C50, 984–986. [4] Bell, A. M. T. & Henderson, C. M. B. (1994). Acta Cryst. C50, 1531–1536. [5] Bell, A. M. T. et al. (1994). Acta Cryst. B50, 31–41. [6] Bell, A. M. T. et al. (1994). Acta Cryst. B50, 560–566. [7] Bell, A. M. T. & Henderson, C. M. B. (1996). Acta Cryst. C52, 2132–2139. [8] Bell, A. M. T. & Henderson, C. M. B. (2009). Acta Cryst. B65, 435–444. [9] Bell, A. M. T. et al. (2010). Acta Cryst. B66, 51–59. [10] Bell, A. M. T. & Henderson, C. M. B. (2012). Mineral. Mag. 76, 1257–1280. [11] Bell, A. M. T. & Henderson, C. M. B. (2016). Acta Cryst. E72, 249–252. [12] Cernik, R. J. et al. (1990). J. Appl. Cryst. 23, 292-296. [13] Collins, S. P., et al. (1992). Rev. Sci. Instrum. 63(1) 1013-1014. [14] Henderson, C. M. B., et al. (2016). Journal of Non-Crystalline Solids 451, 23-48. [15] Rodríguez-Carvajal, J. (1993). Phys. B: Condens. Matter, 192, 55–69. [16] Redhammer, G. J. & Roth, G. (2002). American Mineralogist 87, 1464-1476. [17] Shannon, R. D. (1976). Acta Cryst. A32, 751-767. [18] Robinson, K., et al. (1971). Science, 172, 567-570. [19] Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.