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Abstract

Newton’s method for steady laminar flows over aerofoils is examined 
as a prelude to the study of more demanding unsteady flows. A simple 
and fast method for approximating the .Jacobian is proposed and various 
conjugate gradient techniques are evaluated for the solution of the linear 
.system. Rapid convergence is demonstrated on two test cases.
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1 Introduction
The quadratic convergence of Newton’s method makes it attractive for 
the solution of the nonlinear algebraic equations which arise from implicit 
discretisations in computational fluid dynamics (CFD). In this report we 
examine a Newton-type method originally developed for hypersonic cone 
flows in [1] [2] [3] with reference to aerofoil flows. Below, a brief sur­
vey of the applications of Newton’s method to Euler and Navier-Stoke’s 
calculations is given.

A variety of techniques relating to the calculation of the Jacobian and 
the solution of the linear system were developed in [1] [2] [3]. For gen­
erality, the .Jacobian was calculated by a finite-difference approximation. 
The step size can be chosen to retain cjuadratic convergence. If proper 
account is taken of which residuals depend on which unknowns [4] [1] then 
the number of function evaluations can be limited to .5x.5x4 for the stencils 
used in the present work. The problem of solving the linear was tackled 
in [3] where GMRES was used together with a preconditioning strategy 
which was designed to be easily parallelisable. A block diagonal precon­
ditioner was employed together with a diagonal damping factor to obtain 
fast convergence of the GMRES solution. An outer iterative loop was used 
to regain the solutiorr to the original systenr. These techniques were all 
applied to a hypersonic corre test problem and fast convergence was noted 
when compared to a local time-stepping method.

Newton s method was applied to the Navier-Stokes equations for aero­
foil flows in [.5] [6] . The scheme used an implicit time-stepping procedure 
equivalent to Newton’s method with a damping factor inversely propor­
tional to the time step and the analytical Jacobian was calculated. A 
sparse, direct solver was applied and mesh sequencing was found to speed 
up the rate of convergence with coarse grid solutions being used to provide 
initial solutions on finer grids. Tests were performed on flows over NACA 
0012 aerofoils and the method was found to have the robustness of explicit 
methods whilst retaining fast convergence once a sufficiently good solution 
had been reached.

In [7] the use of the iterative solver GMRE.S along with incomplete LF 
decomposition (ILU) preconditioning was investigated with the schemes 
of [5] [6] . A Baldwin-Lomax turbulence model was used although its 
contribution to the Jacobian was neglected. The ILU preconditioner was 
found to work well for test cases consisting of inviscid transonic flow over 
an aerofoil, laminar viscous subsonic flow over a NACA 0012 aerofoil at a 
Reynold’s number of -5000 and transonic turbulent flow over an RAE2822 
aerofoil at a Reynolds number of fi.5x lO1’.



The calculation of the Jacobian represents an obstacle to the successful 
application of Newton’s method. As remarked above, an efficient finite 
difference calculation is used in this paper. A similar approach was used 
in [8] and results were obtained for transonic compressible flow over an 
Onera M6 wing and for incompressible flow around a sphere, over a flat 
plate and around a ship’s hull. A direct way of tackling the complexity of 
the Jacobian calculation was used in [9] where the symbolic manipulation 
package MACSYMA was used to calculate analytical expressions for the 
derivatives which were then output directly to FORTRAN code. The 
method was tested on flat plate and wedge flows.

An intere.sting application of Newton’s method has been to the study of 
non-uniqueness for the solutions of the nonlinear algebraic discrete equa­
tions arising from CFD. In [10] a number of solutions were obtained for 
the Euler and Navier-Stokes equations and their stability was examined. 
The problems studied were inviscid and viscous flow in a nozzle, flows over 
a NACA 0012 aerofoil and flows around a cylinder. The linear systems 
obtained were all small enough to allow direct solution although the com­
ment is made that sparse matrix solvers should be more widely utilised in 
CFD. Similar non-uniqueness effects were noted in [11] for solutions of the 
characteristic form of the Euler equations for nozzle flows.

In this report Newton’s method is considered as a means of quickly 
solving the nonlinear discrete equations once a suitable starting solution 
has been obtained. This is different in philosophy from the approaches 
of [7] [9] [8] where the contribution from the time derivative makes the 
method robust from the point of view of choosing a starting solution but 
also compromises the quadratic convergence obtained by the straight New­
ton's method. In section 2 a brief formulation of the discretisation is given, 
the calculation of the Jacobian is discussed in section 3 and the solution 
of the linear system is examined in section 4. Results for two laminar test 
problems are given in section 5.

2 Explicit and Implicit Discretisation
The two-dimensional laminar Navier-Stokes equations are given in C'artesiai 
coordinates by

dw Of 0(j OR OS
------1—- —- =-----1-----dt O.r Oy 0.V Oy
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The symbols p, a, i>, e, p, p, k, T represent the fluid density, the two 
components of velocity, energy, pressure, viscosity, heat conductivity and 
temperature respectively. The constants 7 and cv stand for the ratio of 
the specific heats and the specific heat at constant volume respectively. 
The viscosity is assumed to vary with temperature by Sutherland's law. 
In this paper the thin-layer form of the non-dimensionalised eqnations are 
solved in general curvilinear coordinates. The non-dimensionalisation is 
with respect to the freestream temperature, Mach number and velocity.

To summarise the solution procedure, the convective terms are discret- 
ised by Osher’s approximate Riemann Solver [12] with a MUSCL interpol­
ation [1.3] providing 2nd or 3rd order accuracy. When a limiter is required 
in the following, the Van Albada. limiter [14] is used. The viscous terms 
are centrally differenced and Riemann invariants are used to impose far 
field boundary conditions. The explicit method can be written in the form

W’i’»+i _= wn ——R,{wn) 
Ax (2)

where Rs denotes the steady residual obtained from the discretisation. 
Newton’s method for solving the steady equations is given by

dRs
dw tr"+1 - ic") = -Rt(w"). (3)

and the local time stepping form of 2 is used to give a starting solu­
tion. The question of what constitutes a good enough starting solution is 
answered empirically and varies from flow to flow. However, as a general 
rule the residual of the stead\- ecpiations must usually be reduced by two 
orders from the free stream residual before Newton's method converges. 
If convergence is achieved then the residual falls rapidly with typically 
less than four steps required to obtain an accurate approximation to the 
steady discrete equations.



For an efficient method there are two important issues that must be 
addiessed. First, the Jacobian of the discretisation is recjuired. Osher’s 
flux function is differentiable and so represents a suitable choice for the 
inviscid approximation. This is not the case with Roe’s flux function but 
published results indicate that the lack of differentiability is not severe 
enough to effect the convergence. The complicated nature of the functions 
means that an analytical form for the Jacobian is very cumbersome to cal­
culate and encode by hand in a computer program. However, the analyt­
ical expressions have been used for Roe’s flux function [5] and an efficient 
code development procedure using symbolic manipulation to calculate the 
derivatives together with a code optimiser/generator was introduced in 
[9]. Foi Osher s scheme, the use of this method would still be awkward 
due to the large number of conditionals present in the algorithm. The use 
of a finite difference approximation overcomes the problems of complexity 
in calculating the Jacobian but can be expensive. In the present work 
an efficient method of approximating the Jacobian by finite-differences is 
used and the details are given below in section .3

The second main problem associated with Newton’s method is the need 
to solve a large system of linear equations at each step. The system in the 
present case is sparse and both direct solvers [.5] [6]and iterative solvers 
[(] have been used in the past. In this paper iterative conjugate gradient 
type methods are used which are preconditioned by an incomplete LU 
decomposition. A comparison is made between four methods and different 
preconditioners in section 4.

3 Approximation of the Jacobian
As discussed above the use of a finite difference appro.ximation to the Jac­
obian of the discretisation is attractive because of the simplicity of the 
calculation and the implementation. However, the process is computa­
tionally intensive and so efficient methods mu.st be used if the resulting 
computer code is not to be quick to develop but too slow to use.

In [4] the problem of computing a finite difference appro.ximation 1o 
a sparse Jacobian is addressed. To fi.x ideas assume that the function 
whose Jacobian .4 we wish to approximate is denoted by R. The following 
algoutlim can be used to minimise the number of function evaluations 
required:

• select a set of the indices S of the components of ic 
such that Ai j = OVi, j £ S. i 7^ j

• perturb wi'^i £ S



• evaluate R for the perturbed argument and calculate the 
finite difference approximation to the terms Atij
for 1 < i < n and Vj € S where n is the dimension of w.

• repeat the last two steps for a different 5 until all of the 

components of A have been evaluated.
Note that in each cell there are four unknowns, only one of which may be 
perturbed for each function evaluation. The total number of evaluations 
required is 3 X .3 X 4 for the first order method and is .5x5x4 for the second 
order method. It can be seen that the evaluation is indeed expensive. This 
method considers the cell-based residuals and was used in [2].

However, a more efficient procedure arises from decomposing the re­
sidual flux by flux. We shall consider the numerical fluxes fil,,j+i/2 
I'i j+i/2- The method for fi+1/2j i- similar to that used for gij+i/2- 
,J The viscous flux vij+1/2 depends on the values in cells (i,j) and (i,j-Hl). 

It is fairly straightforward to calculate and encode the contributions to 
the Jacobian due to the relatively simple central difference approximations

used. . „
For the convective terms the complicated nature of the numerical fluxes

arising from Osher's scheme makes analytical expressions unattractive. If
MUSCL interpolation is used then the flux giJ+1/2 depends on values in
the cells (i,j-l), (i,j), (i,j+l) and (>d+2)- We can denote tluS by

ifi,j + l/2 = ffiJ + l/2(U’i,j-l’ U’ij, U'iJ + U U’iJ+2)

which in turn can be rewritten as

9i.j + l/2 = ffi,J + l/2(U’l:nV) (5)

when

and

To calculate the derivatives oi rj,J+U2 the chain rule is used to yield 

d(Ji.j + ll2 = %.; + l/2 dlL'l + d(Ji.j + in-dwr

U'l u'r
(b)

The derivatives of the MUSCL interpolation can be evaluated analytic- 
allv and the symbolic algebra package REDUCE has been used to quickly 
generate efficient code. The REDUCE code and the resulting FORTEAA 
code are shown below in appendix .\ and they illustrate the advantage of 
symbolic manipulation in code development. The calculation of the terms



mesh Residual-based Flux-based speed up
64 X 16 83.4 3.3 10.1
128 X .32 137.6 15.5 8.8

Table 1: Comparison of CPU times in seconds for the residual-based and 
flux-based methods for calculating the Jacobian on different meshes.

•n dgij+i/2/dwi by finite differences requires four evaluations of Pij+i/2 
and similarly for dgij+1/divr, leading to eight evaluations in total.

The derivatives for each flux can be added into the Jacobian as they 
are calculated. The flux-based method requires an ecjuivalent of eight 
function evaluations instead of the one-hundred required for the cell-based 
method. In theory the new method should be over twelve times faster. 
This neglects the computaticn of the MUSCL derivatives which turns out 
to be fast compared to one function evaluation. The actual comparison for 
several mesh sizes is given in 1. The theoretical speed up is not observed 
due to the cost of additional multiplications in composing the chain rule 
and seaiching for the correc ; place in the matrix to place the derivative 
approximations. However, the speed up is still by a factor of around ten.

4 The Linear Solver
The use of an implicit method invariably gives rise to a large sparse system 
of lineal equations. This is true whether Newton’s method is being used to 
solve the exact discrete nonli iear system of equations very accurately or if 
a linearisation is used as part of the discrete scheme. In this section various 
iterative solvers and preconditioners are examined so that the substantial 
work required to solve the linear system arising from the finite difference 
Newton’s method can be minimised.

4.1 Sparse Data Structure and the matrix gen­
eration

The data structure used in the present study was chosen for its utility 
in programming iterative solvers and preconditioners and its use allowed 
several existing subroutines to be used.

The matrix information is stored in six vectors with the first three 
refering to the part of the matrix above the diagonal and the last three 
to the lower part. For the upper part, the matrix values are stored in a 
vectoi of reals with their col rmns being stored in a corresponding vector
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96 84 72 24 12

95 83 71 23 11

94 82 70 22 10

93 81 69 21 9

92 80 68 20 8

\ 1 91 79 67 19 7

/v 90
78 66 18 6

89 77 65 17 5

88 76 64 16 4

87 75 63 15 3

86 74 62 14 2

85 73 61 13 1

Figure 1: Ordering of the cells for the linear system.

of integers. The starting point in these vectors for each row is stored in 
a third vector of integers. The storage for the lower part of the matrix is 
similar except that the role of the rows and columns is interchanged.

The generation of the matrix values requires a mapping between the 
cells in the finite volume discretisation and the unknowns in the linear 
system. It is important to minimise the band width in order to limit 
the fill-in required for an effective preconditioner. Following the ordering 
in previous hypersonic cone flows, one possibility is to number the cells 
from the lower downstream boundary around the aerofoil to the upper 
downstream boundary. The resulting band width is 4 x .3 X /n where In 
is the number of cells around the cone. An alternative ordering is also 
shown in figure 1 and has a band width of 4 x 3 x For the cone flows, 
where typically In and .In are of a similar size there is nothing to choose 
between the two and the first ordering was tlie one used. Howerer. in the 
present case In is larger than .In and so the second ordering is used.

The pointer structure for the matrix is the same for all Newton steps 
and so is generated once at tie start of the simulation. .-\s matrix elements 
are calculated they are substituted into the vector of values after a search 
through the column or row pointers in the appropriate row or column to 
find the exact position.



4.2 Iterative Solvers and Preconditiouers
The iterative soivera tested tvere the conjugate gradient type methods

SV5te"'|.C.alled B,CG H-5)' CGSTAB (16), CGS [17] and 
OMRES (18 . A preconditioiier is usually essential for the successful use 
of these methods. The general idea is to replace the problem

with the problem

Ax = b

CAx = Cb

(7)

(8)
where C ^ A"1. The better C apprordmates A~l, the closer the precon- 
clitioned matiix is to the identity matrix.
its ,?„"e "TZ Ty 0f *e,,eriti"8 C is approximately factorise A into 

upper £7 and lower L parts and to iimit the entries with reference to
sparsity pattern of A. Non-zero entries in L and U that are zero in A

The LU d fi" ■Tlle •aSe Wl,ere "° lill'i" iS allOWed is calIed ILU0 "'h“u
the LU decomposition is defined by

(LUhj = 0 if Aij = 0
if i1 0 (9)

isat^ris t1 r ,he leVel 0f m!'in all0"'ed' tl,e ClOSer the approximate factor- 
Ta d 1 eXa:t at "K COSl °f ^rea‘- atorage repuirements for 

d and the greater computation required for forming matrix-vector 
pioducts in the conjugate gradient solution. An algorithm for defining 
inci easing levels of fill-in was given in [19], ^

Another way of approximating the inverse of A is to find the exact 
ve.se of a matrix consisting of a limited number of diagonals of A. In 

the p.esent case the diagonal blocks of A represents a convenient aoprox 
.mat,on to A and this is easily inverted to yield C. However, this wi
Xd To r d effeCT Pr“0"dili0"w “d >" [3J » positive number was 
added to the diagonal to obtain convergence of the iterative solver and
an mile, iteration was used to regain Ihe .soliitioi. of the original linear

4.3 Comparison of the Conjugate Gradient Solv- 
ers
Tlie four iterative solvers were tested on several systems arising from New-

i'LTc'pU t"efP'0:,0f;"e |0rm 0f ,,,e update
g rust CPU time for the four methods is sliowii in figures 2 - .5 for a svv

arising from one of the test cases of the next section. It can be seen

10



-6.0

-8.0 ■

work untts

Figure 2: The convergence for BICG with ILUO for a linear system arising from. 
Newton's method. The convergence criterion used is for the discrete L2 norm of 
the eg update to be reduced below lO-8 and a maximum number of iterations is 
set for each method. The matrix arises from the flow over a NACA0012 aerofoil 
with Mach number 0.5, Reynolds number 5000 and zero incidence.

that no .solver lias a major advantage for this case when the solution times 
are compared with the preconditioning time of around 500 work units1.
The GMRES method reduces the residual more smoothly than the other 
three methods. For all of the cases examined no single method was seen 
to have a major influence on the convergence of the flow solution.

4.4 Comparison of Preconditioners
The crucial element for solving the linear systems arising from Newton’s 
method by conjugate gradient algorithms is the preconditioner. The bal­
ance for ILU preconditioners is between accurate LlT decompositions which 
reduce the number of conjugate gradient steps rec[uired for com ergem e 
but which increase the cost of each step, are costly to compute and re- 
cpiire more storage and more approximate LU decompositions which lead 
to more conjugate gradient steps at a reduced cost per step and memory 
recpiirement.

It has been recognised that, in general. larger linear .systems present

1a work unit in this paper is defined a.s the time for one step of the explicit finite difference 
method

11
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Figure 3: The convergence for CGSTAB with ILUO for a linear system arising 
from Newton's method.

-5.0

-8.0

-7.0

-8.0 -

-9.0
0.0 20.0 40.0

work units
60.0 80.0

Figure 4: The convergence for CGS with ILUO for a linear system arising from 
Newton's method.
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40.0
work units

Figiue o. The convergence for GMRES ivith ILUO for a linear system arising 
from Newton's method.

more difficulties for conjugate gradient methods. This means that higher 
levels of fill-in are required when solving systems arising from CFD applic­
ations on finer meshes. The results from the present study are summarised 
in table 2. There are two main conclusions to be drawn:

• on the 128 by .32 and 64 by 16 meshes ILUO is sufficient 
to achieve a solution of the linear system quickly

• on finer meshes higher levels of fill-in are required at a 
rapidly increasing memory cost.

The published applications of Newton’s method to aerofoil flows have all

mesh preconditioner BICG steps entries in ILU
64 by 16 ILUO 73 72320
128 by 32 ILUO 367 296192
192 by 48 ILUO NC 071616
192 by 48 ILUl NC 1240848
192 by 48 ILU2 75 2071296

Table 2: Convergence of the linear solver for various mesh resolutions. The 
conjugate gradient method that urns used weis BICG. Here, NC denotes that the 
solution did not converge.

1.3



Figure 6: NACA0012 grid with resolution 128 x 32.

involved the damped method a term arising from the time derivative be­
ing added to the diagonal. This term not only makes the method more 
robust from the point of view of the starting solution but also makes the 
linear system easier to solve. However, the loss of quadratic convergence is 
disappointing when considering the overall attractiveness of the method.

5 Results
In this section we present results to demonstrate the speed up that is 
achieved by using Newton’s method and also the accuracy that can be at­
tained on coarse meshes using Osher’s method. The two test problems used 
are laminar flow over a NACA0012 aerofoil at a freestream Mach number 
of 0.5. The first case is at zero angle of attack and the second is at 3°. 
Both cases feature separated flow at t’le trailing edge and are standard 
test problems for laminar Navier-Stokes algorithms. .\11 of the com])iita- 
tions presented in this section were performed on an IBM RS6000/320H 
workstation. The mesh generation was done using the Eagle elliptic sys­
tem [20] which pro^red to be very satisfactory. The mesh used for the two 
ca.ses is shown in figure 6. A spacing of 5.0e-4 was used next to the aerofoil 
and the far field was located 15 chord lengths away.

The convergence for case one is shown in figure 7 and shows that a 
considerable speed up is achieved by using Newton's method. The flat 
part of the convergence graph for the explicit initialisation confirms that

14
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-2.0 ■

■4.0 ■

switch point
-6.0 -

-8.0 -

2000.0 4000.0 6COO.O 8000.0 1 0000.0
work unit!

Figure 7: Convergence for floiv over a NACA0012 aerofoil at freest ream Mach 
number of 0.5 and zero incidence. The switch point between the explicit method 
and Newton's method is indicated by the arrow.

an efficient method for generating the starting solution is essential to the 
competitiveness of the overall method. Similar behaviour is observed in 
figure 8 for case two.

The pressure distribution for case or e is shown in figure 9 and plots 
of the pressure and density contours are shown in figures 10 and 11. The 
separated region is evident and separatior occurs at 82 percent of the chord 
length. This value is in excellent agreement with previous results. The 
comparison of the aerodynamic coefficients with previous results is shown 
in table -3. The present results are in excellent agreement and it is noted 
that the results obtained by Osher’s scheme and by Roe’s scheme in [6] on 
meshes with resolution 128 X 32 are comparable with results obtained on 
finer meshes by other methods.

The pressure distribution for ca.se t\vj is shown in figure 12 and plots 
of the pressure and density contours are shown in figures 13 and 14. The 
separated region is again evident and tie separation point on the upper 
surface is at 46 percent of the chord length which is in excellent agreement 
with previous results. The comparison cf the aerodynamic coefficients is 
shown in table 4 and satisfactor\- agreen ent is obser\ed.

15



switch point

2000.0 4000.0 6COO.O 8000.0 1 0000.0
work units

Figure 8: Convergence for flow over a NACA0012 aerofoil at freestream Mach 
number of 0.5 and an incidence of 3°. The switch point between the explicit 
method and Newton's method is indicated bg the arrow.

S -0.S

-1.5
0.0 0.2 0.4 ).6

x/c
0.8 1.0

Figure 9; Pressure distribution for flow ovt ■ a NACAOOU aerofoil at freestn 
Mach number oj ().■) anel zero incidence.

earn
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\ / /

Figure 10: Pressure contours for flow over a NACA0012 aerofoil at freestream 
Alacli number of 0.5 and zero incidence.

Figure il: Density ̂ contours for flow over a NACAOOU aerofoil at freestream 
Aleica number of 0.5 and zero incielence.

/



Author grid C1 cv
present 128 X 32 0.0227 0.0.3.32

Morton et al [21] 193 X 49 0.0226 0.0.322
Swanson and Turkel [22] 512 X 128 0.0224 0.0.3.30

Venkat [6] 128 X 32 0.02.30 0.0.325
Venkat [6] 256 X 64 0.0225 0.0.329

Table 3: Comparison of aerodynamic coefficients for Mach 0.5 flow over a
NACA0012 aerofoil at zero incidence.

Figure 12: Pressure distribution for flow over a NACA0012 aerofoil at freestream 
Mach number of 0.5 and an incidence of 3°.

.Author grid C'o
present 128 X 3i: 0.0237 0.0327 0.0482

Swanson and Tiirkel [22] 512 X 12S 0.0263 0.0.327 0.04.54
Venkat [6] 128 X 3i; 0.0262 0.0321 0.0464

Table 4: Comparison of aerodynamic coefficients for Mach 0.5 flo
NACA0012 aerofoil at a = 3.0°.

w over a

18



Figure 13: Pressure contours for flow over a NACA0012 aerofoil at freestreani 
Mach number of 0.5 and an incidence of'5°.

Figure 14: Density contours for flow over a JSACA0012 aerofoil at free ■•street in 
Mach number of 0. 5 and an incidence of 31'.
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6 Conclusions
Newton's method provides a competitive way of solving the nonlinear al­
gebraic eeiuations which arise from CFD discretisations if

1. a good starting for Newton’s method is known

2. the required Jacobians can be evak.ated

3. the linear system at each step can be solved quickly.

In this report, issues (2) and (3) have been considered.
In section 3 a method was proposed which made use of easily obtain­

able analytical expressions to considerably speed up the calculation of the 
Jacobian. Osher’s flux function was differentiated numerically because 
of the difficulties of deriving and encoding analytical expressions. The 
MUSC'L interpolation was differentiated analytically and the chain rule 
was used to provide the necessary derivatives for the Jacobian. This ap­
proach made the Jacobian calculation ten times faster than the equivalent 
fully numerical approach. With the increasing power of symbolic compu­
tation it is becoming simpler to perform complicated algebraic calculations 
and output results to a high level computer code in an efficient format. It 
seems likely that this will totally remove the need to derive any derivatives 
numerically for Newton’s method.

The solution of the linear system provides the main obstacle for success­
ful applications. Four conjugate gradient type algorithms were compared 
in section 4 with little advantage becoming apparent for any single one of 
the methods. However, preconditioning was found to be crucial to success. 
The level of preconditioning required was found to be dependent on the 
mesh size used. Storage problems were encountered on the finest mesh.

The problems considered in this report were laminar. This effectively 
restricted the flows to subsonic as well due to the lack of a transonic steady 
laminar test case. The extension to turbulent flows needs careful consid­
eration. Various turbulent test cases have been tackled successfully using 
the Baldwin-Lomax model and the Johnson-King model. These are un­
suitable for use with Newton's method due to their lack of differentiability 
and the large stencil that they imohe. A more promising api^roach would 
be to use the h — ( model.

In summary, Newton's method is an efficient way of accelerating con­
vergence when a sufficiently good preconditioner can be calculated. Serious
storage problems can be encountered on fine meshes. It should be noted/
that each Newton step is costly and so the quadratic convergence has to 
be retained to limit the number of iterations required. The cost of each 
iteration means that implicit solvers for unsteady problems are unlikely to

20



be competitive without some simplification of the method or the solution 
of the linear system. Methods for unsteady flow problems will be discussed 
in future reports.
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A Symbolic Calculation of MUSCL de­
rivatives
The symbolic package REDUCE was used to calculate the derivatives of 
the MUSCL interpolation for the Jacobian calculation and and its code 
optimisation package GENTRAN was used to generate efficient code. This 
is done by extracting common expressions. The REDUCE code used was 
of the form

% reduce code
% to calculate derivatives of MUSCL interpolation 
% with Von Albada limiter
%
dl2:=u.3-u2$
dll:=u2-ul$
sl:=(2.0*dll*dl2+epsr)/(dll*dll+dl2*dl2+epsr);
dell:=(1.0-xk*sl)*dll+(1.0+xk*sl)*dl2;
ul:=u2+0.2.5*sl*dell;

dr2:=u4-u.3$
diT:=u3-u2$
sr:=(2.0*diT:t:dr2+epsr)/(diT*drl+dr2:,!dr2+epsr); 
delr :={1.0+xk*sr) *dr l+( 1.0-xk*sr) *dr2; 
ur:=u.3-0.2.5*sr*delr;

optimize jacl(l):=:df(ul,ul),
jacl(2):=

jacr(l):=
jacr(2):=
jacr(3):=

df(ul,u2),
df(ul,u3),
df(ur,u2),
df(ur,u3),
df(ur,u4) } iname a;

and the Fortran code that is produced is

% fortran code 
%
%
A3=U3-U2
A4=U2-U1
A65=A3*A3+EPSR
A.'3=A65+A4*A4
A46=A5*A.5
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A38=U2*XK

JACL(1)=(A98*A89-(A5*(A71*(2.0*A61+A59+A58+3.0*A47-(4.0*A41)- 
. (8.0*
. A.37)+A48)+A98*A91+A97*A85)))/A6
A.30=U3-(2.0*U2)+U1
A94=2.0*U3*U2
A60=A94+A47*XK
A9.rj=6.0*A37
JACL(2)=(A5*(2.0*A46+A30*(A8-5-A91)+A71*(A61+A60+A59+A47-
. (6.0*A41)-
. A48-A95))+A89*A.30)/(2.0*A53)
.JACL(3)=(A5*(A71*(A58+A47+8.0*A41+4.0*A.37+3.0*A48-(2.0*A60)- 
. A59)4-
. A97*A91+A98*A85)-(A97*A89))/A6
A17=U.3-U4
A18=A65+A17*A17

.JACR(1)=(A18*(A96*A84-(A97*A90)-(A70*(A77+A3*(A97-A93)- 
. (A17*(A97+
. A93)))))-(A97*A88))/A19 
A64=U4-(2.0*U3)
A29=-A64-U2
•J ACR(2) = (A88* A29-( A18* (A29* (A84-A90) + A70* (A94-A42-A56+A32+
. 6.0*A33+
. A64*U4+U4*XK*(4.0*U2+U4-(6.0*U3))-A95)-(2.0*A50))))/(2.0*A52) 
A92=2.0*XK*A3
JACR(3)=(A18*(A70*(A76+A3*(A92-A96)+A17*(A96+A92))+A97*A84- 
. (A96*
. A90))-(A96*A88))/A19
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