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Abstract

An unfactored implicit method for the unsteady, turbulent Navier- 
Stokes equations is adapted for pitching aerofoil flows. The mesh is moved 
rigidly with the aerofoil. Parameter tests on the method are presented. 
Test cases examined are from the AGARD aeroelastic configurations and 
involve the NACA0012 and NACA64A010 aerofoils. Detailed comparisons 
with experiment are presented.
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1 Introduction
All iiiiportaiit part of the design process for aircraft is the deiiionstratioii 
that the flight envelope lies outside regions of aeroelastic instability. Due 
to the cost of aeroelastic wind tunnel experiments, computational tools 
should have an important role to play in this area. However, simulation 
technicpies for unsteady flow lag well behind the development of codes for 
steady flows where convergence acceleration by multigrid. Newton itera­
tions or a variety of other methods has reached an advanced stage where 
studies of three dimensional flows governed by the Navier-Stokes equations 
are being reported in the literature with increasing frequency.

The basis of most aeroelastic and many unsteady aerodynamic stud­
ies has been the the low frequency transonic small disturbance equations. 
The code LTRAN, developed by Ballhaus and Goorjian, which uses an 
Alternating Direction Implicit approach to solve the equation in multi di­
mensions provided a major breakthrough in computational aerodynamics. 
Adaptions to the code have included the addition of high frequency terms 
and a coupling with boundary layer codes to account for viscous effects 
leading to off-shoots such as XTRAN from the US airforce and ATRAN 
from NASA Ames research centre. Extensive studies using these codes 
have been published including the aeroelastic response of aerofoils in 1978 
[1], the three-dimensional flow around rigid [2] and flexible [.3] wings in 
1982, the extensive flutter analysis of F-.5 [4] and B-1 [5] wings in 1985 
and 1986 respectively and for the aeroelastic response of a complete F- 
16C aircraft in 1988 [6].

One of the principal disadvantages of a code like LTR AN is its inability 
to cope with strong shockwaves. To model this flow feature satisfactorally 
the lowest level of model required is the Euler equations. Magnus and 
Yoshihara published a solution of the Euler equations in 1976. As com­
putational methods have matured and computing facilities improved it 
has become more common to solve the unsteady Euler equations. During 
the 1980's significant efforts have been published by the research teams of 
Lerat, Whitfield and .Jameson. In 1991 results were published for the un­
steady flow around a rigid rectangular wing [7] as part of the development 
process for the NASA Ames code ENSAERO. Three-dimensional aeroe­
lastic results were obtained by the NASA Langley code CFL3D in 1991. 
Both of these codes use a Beam-Warming approximate factorisation. An 
unfactored method was used in [8] to yield results for rigid LANN and 
NORA wings and in [9] for an F-5 wing.

The Navier-Stokes equations have remained relatively untouched for 
unsteady applications despite the need to model fully separated and mixed
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separated-attached flows. Notable unsteady Navier-Stokes calculations in­
clude the study of Aileron Buzz [10] published by Steger and Bailey, Levy 
et al [11] [12] who studied shock induced oscillations over a rigid aerofoil 
and Chyu et al [13] who examined the flow over a pitching NACA64A010 
aerofoil, a flowr that has become a standard test case for Euler and Navier- 
Stokes codes. From 1990 Guruswaniy and co-workers have reported results 
obtained with the three-dimensional Euler/Navier-Stokes code ENSAERO 
[14] [15] [16] [7] [17]. Applications include the aeroelastic flow over F-5 and 
delta wings. In 1990 an application of the Lockheed code ENS3D was re­
ported to examine the flutter response of a wing-fuselage section. These 
studies are mostly based on the Beam-Warming approximate factorisation 
method which utilises central differences and artificial dissipation although 
there is an indication that upwind methods are becoming increasingly pop­

ular.
During the 1980's significant advances were made in algorithms for the 

Euler and Navier-Stokes eciuations and for the solution of Unear algebraic 
systems. The development of upwind schemes of the flux-vector split­
ting or approximate Riemann solver type for the Euler equations led to 
very satisfactory ways of treating shockwaves and had the additional ben­
efit that when some of these methods were incorporated in Navier-Stokes 
codes, boundary layers could be well resolved due to their low numerical 
dissipation.

A crucial element of some steady and most unsteady CFD codes is the 
efficient solution of a large sparse linear system. This is usually achieved 
by some form of approximate factorisation which introduces an additional 
source of error into the solution procedure with consequences for accuracy 
and efficiency. However, the Alternating Direction Implicit method has 
proved very popular and successful with its incorporation in the Beam- 
Warming algorithm and in codes such as LTRAN and ARC3D. More re­
cently an approximate LIT factorisation which is based on a flux vector 
splitting has been successfully used. Conjugate gradient methods pro­
vide an efficient method for solving the exact linear system to a required 
tolerance and they have been used successfully for steady problems. The 
preconditioning strategy is crucial to their success and in [18] the ADI fac­
torisation was used to provide a preconditioner. This method, called AF- 
CGS (Approximate Factorisation Conjugate Gradient Squared), proved 
successful on a number of rigid test problems.

It is clear from reported aeroelastic studies that efficient Navier-Stokes 
codes are required for many applications. Due to the intensive computing 
required by such codes efficient numerical algorithms together with im­
proved computing power are required for the use of Navier-Stokes codes





for three-dimensional geometries to become routine. In the present paper 
the development of an unfactored method based on upwind methods and 
conjugate gradient solvers is continued. We present comparisons with ex­
perimental data for the AFCGS code applied to pitching aerofoil flows. 
The test cases are selected from the AGARD standard aeroelastic config­
urations.

In the following section a brief description of the AFCGS method is 
given. For the full details the reader is referred to [18]. Results are then 
presented for five AGARD test cases for the NACA0012 and NACA(j4A010 
aerofoils.

2 AF-CGS Method
The thin-layer Navier-Stokes equations in generaUsed co-ordinates are 
given by

dvf di dz (1)

where
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and .7 is the determinant of the Jacobian of the transformation x = 
and y = Here p, u, v, e, p, Pr, Re, c, 7 denote density,

the two components of velocity, energy, pressure, the Praudtl number, the 
Reynolds number, the speed of sound and the constant ratio of the specific 
heats respectively. The viscosity is composed of a part due to the natural 
viscosity of the fluid and a term to account for turbulence. Sutherland’s 
law is used to describe the variation of the fluid viscosity with temperature.





The Baldwin-Lomax model is used to provide a value for the turbulent vis­
cosity. Since none of the flows examined herein involve massive separation 
no modification of the turbulence model is used.

To solve this system of partial differential equations a finite volume 
scheme is used which has various features. For the spatial terms Osher s 
method is used. For general geometries the details of Osher’s method 
are described in [19]. A MUSCL interpolation is used to provide second 
or third order accuracy and the Von Albada Hmiter prevents spurious 
oscillations from occuring around shock waves. Central differencing is em­
ployed for the viscous terms. Far-field boundary conditions are imposed 
by Riemann-invariants and no vortex correction is applied due to the un- 
steadyness of the flow.

The temporal discretisation is based on the backward Euler method. 
An efficient mixed analytic and finite difference procedure is used to gen­
erate the required .Jacobian of the spatial discretisation. The linear system 
obtained is solved by the conjugate gradient squared (CGS) method with 
the alternating direction implicit approximate factorisation providing a 
precoiiditioner. The reader is refered to [18] for full details.

The problems wre consider herein relate to pitching aerofoils. Since 
no deformation of the aerofoils is considered the mesh can be rotated 
rigidly with the aerofoil. Defining the starting mesh points by {.r =
[y = yo}i,j the transformed mesh at time ti is given by

{,(• = r0co.s{a(ty) - cvq) + l{l - co.?(ao))}ij 

{y = r0siu{o:(ti) - a0) + lsin(ao)}i,j

where the aerofoil pitches about the point (/,0), the initial incidence is op 
and Vn = Xn + Vn • The mesh velocities can be easily evaluated given

Ui.j Ut.j i’U,,; ^ ^ ^ 1 r -1

an analytical form for a. No-slip boundary conditions on the aerofoil can 
then be imposed.

3 AF-CGS parameter tests
In this section we shall examine the AF-CGS method applied to moving 
aerofoil flows with regard to optimising the number of time steps per cycle 
of the motion and the tolerance of the CGS solution. The choice of the 
time step is determined by a balance between minimising the number of 
steps whilst retaining a well-preconditioned linear system for the conjugate 
gradient solution. The other point of interest is the effect on the accuracy 
of the choice of time step and also of the CGS tolerance which should be 
chosen to be large enough to yield a stable method without compromising 
accuracy.
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To test these points experimental runs were carried out for an AGARD 
pitching aerofoil test case (case 5 in table 1 below) for various combinations 
of the parameters. The same mesh was used for each case. First, to 
examine the effect on accuracy of the time step and the CGS-tolerance 
the pressure distribution is plotted in figure 1 at one time for three cases 
involving 150 and 500 time steps per cycle and tolerances of 10_1 and 
lO"2. It can be seen that the distributions for each of the conditions are 
identical and so it is concluded that the solution arising from 150 steps 
per cycle and a tolerance of 10_1 is a good one on this mesh.

Secondly, the CPU time to compute three non-dimensional time units 
of the flow on a SUN SPARCstationlO was noted for varying time steps 
and tolerances for the AF-CGS method and these are compared In figure 2 
with the time reciuired by ADI which proved unstable for up to 700 steps 
per cycle. There is a clear minimum for the AF-CGS curves indicating 
the balance in chosing the time step which was discussed above. It is clear 
that for larger time steps there is a significant saving in CP U time by using 
a higher tolerance for the CGS solution. For smaller time steps the CGS 
iteration frequently converges after only one step and so the setting of a 
higher tolerance becomes redundant.

From the results presented in this section it is clear that 100-200 steps 
per cycle and a tolerance of lO-1 yields the most efficient method without 
compromising accuracy.

A brief mesh refinement study was carried out to verify that the so­
lution obtained on a 70 by 32 mesh is adequate. The comparison with a 
solution obtained on a 12S by 40 mesh is shown in figure 3. The solution on 
the finer mesh has a better resolved shock wave but apart from this there 
is little difference between the sets of results and hence it is concluded that 
the coarser grid gives reasonably converged results.

4 AGARD Test Cases
The AGARD sub-committee on aeroelasticity defined test cases to act as 
standard flows for computer code evaluation and verification. In this paper 
we present results for several of these test cases for pitching aerofoils. The 
motion is defined by the angle of attack as a function of time and the 
centre of rotation xc which is given herein as a distance along the chord 
as a percentage of the chord length. The angle of attack is defined as

ofT) = Om + aosin(kT) (2)

where r = tl/\\n{ is the non-dimensional time.





tol=1.0e-l,steps=150

Figure 1: Effect of CGS tolerance and time step on the pressure distribution for 
A GA RD NA CA 64AOI0 ct6.





2000.0 r

-a ADI stable

ADI unstable
1500.0

1000.0

500.0

800.0600.0400.0200.0

time steps per cycle

Figure 2: CPU time required to compute three non-dimensional time units on a 
SPARCstation 10 for the AF-CGS and ADI methods. The dotted line indicates 
that ADI is unstable at these time steps.





o = 1.00°

a = -1.06°

a = -1.01°

Q = 0.2F

a = 0.74°

Q = -0.73°

Q = -0.59°

a = 0.87°

Figure 3: —Cp vs x/c for case 5. x-experiment, solid line - mesh 70 by 32, clashed 

line 128 by 40
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number aerofoil 4/inf Re X lO6 f-hn k xc
1 NACA0012 0.60 4.8 2.89 2.41 0.1616 0.25
2 NACA0012 0.60 4.8 3.16 4.-59 0.1622 0.25
3 NACA0012 0.60 4.8 4.86 2.44 0.1620 0.25
4 NAG AGO 12 0.7.55 5.5 0.016 2.51 0.1628 0.25
5 NACA64A010 0.796 12.56 0. 1.0 0.204 0.248

Table 1: Test cases examined in this paper.

The cases considered, which are listed in table 1, are selected because 
detailed pressnre distributions are available at a number of points during 
the cycle. All of the results are obtained on a 71 by 33 C-mesh which was 
generated by the Eagle grid generation package. The far field is located 
at 10 chords. The AFCGS method is used throughout with the CGS 
tolerance set at 10_1. The number of time steps per cycle for each case 
is 1-50. Detailed comparisons for all the cases are shown for the pressure 
distributions at eight separate times during one cycle. Data for case .5 was 
only available for the upper surface. The results are discussed in section 
5.

Cases 1-5 represent attached flows. Several computational studies of 
these cases have been published. Transonic small-disturbance results were 
presented in [20] for case -5. Full potential results for case -5 were given in 
[21] and detailed pressure distribution comparisons for case 1 in [22] where 
excellent agreement was achieved. The Euler equations were solved in [23] 
for case 1. in [9] for case -5 and in [24] for cases 1.4 and -5. Detailed pressure 
comparisons were made in each case and improved shock resolution is 
notable over the full potential results. Finally. Euler and Navier-Stokes 
results were presented in [2-5] for case 4 from which it was suggested that 
the mean corrected experimental angle of attack for this case should be 
higher. All of the results reported show good agreement with experiment 
because the shock strength is weak enough for the full potential ec|uations 
and there is no large scale separation for the Euler equations. Hence these 
test cases should not represent a serious challenge for a Navier-Stokes code 
but it is important to establish that the code can indeed deal with these 
cases since aeroelastic applications to aerofoils are based on these flows. It 
is also interesting to evaluate the efficiency of the unfactored time-stepping 
approach. Further tests are required to establish the ability of the code, 
and especially the turbulence model, to deal with large scale separation.
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a = 4.56°

a = 5.09° Q = 4.17°

a = 2.62°

U M M «J

a = 1.16°

M 4J M M «J »

a = 0.48° « = l-290

Figure 4: —Cv vs xjc for case 1. x-experiment, line- computed
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a = 5.32° Q = 7.36°

a - 6.80° a = 3.88°

a = 0.86° a = -1.30c

o = -0.57° a = 2.38°

Figure 5; —Cp vs x/c case 2. x-experiment, line - computed
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a = 5.94° a = 6.96°

a = 6.59° o = 5.12°

a = 3.51° cx = 2.44°

a = 2.67° a = 4.27‘

Figure 6: —Cp vs xjc for case 3. x-experimeiit, line - computed
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a = 1.07(

o = 2.02°

= -1.24°

Q = -2.01°

o = 2.34°

tt = 0.53°

a = -2.41°

a = -0.56°

Figure 7: -Cp vs x/c for case 4. x-experiment, line - computed
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o = 1.00°

o = -i.oe0

a = -1.01c

a = 0.74°

a = -0.73°

Q. = -0.59°

O' = 0.21° Q' = 0.87°

Figure 8; -Cp vs x/c for case 5. x-experiment, line - computed
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5 Discussion
The detailed pressure distribution comparisons are shown in figures 4- 8.
In general good agreement with the experimental data of [26] is noted.

For case 1 the position and strength of the shock which forms on the 
upward part of the motion1 is well predicted. There is some diagreement 
with experiment at the leading edge during the downward part of the 
cycle. The shock resolution is slightly worse than for the Euler results 
of [23] and [24] but this can be ascribed to the coarser grid used in the 
present work. The comparison away from the shock is in closer agreement 
with experiment than the Euler solutions.

The AF-CGS code has some difficulty in locating the shockwave during 
the upward part of the motion for case 2 with the shock being predicted

upstream of the experimental position.
Case 3 is well predicted with excellent resolution of the shockwave.

Small discrepancies aorund the leading edge during the downward part of 

the motion are again noted.
The shock location for case 4 during the upward part of the motion 

is slightly upsteam of experiment but is in close agreement during the 
downward part of the motion as for case 2. This is consistent with the 
results in [2.1}] where the discrepancies are attributed to w'all effects. Almost 
identical pressure distributions to those in [25] are achieved on a much 

coarser grid in the present study.
Good agreemeiit with experiment is achieved for case 5. The results 

are very similar to the Euler solution of [24] confirming that no significant 

viscous effects are present for this flow.

6 Conclusions
An efficient unfactored fully implicit method has been tested for standard 
AGARD pitching aerofoil flows. It was found that the method was stable 
for a time step which is 4-5 times bigger than an approximately factored 
algorithm. This increases the efficiency of the present method by a factor 
of four over the approximate factorisation method with the additional 

advantage of increased robustness.
The method was verified for several test cases involving pitching NAG AGO 12 

and NACA64A010 aerofoils. Excellent agreement was noted with both 
experiment and previous computations which were all performed on finer 
meshes. These cases represent attached flow and so are not in general rep-

1In this section the aerofoil motion is described in terms of the movement of the nose i.e. 
the upward motion denotes the ca.se where a is increa.sing.
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resentative of the flow problems wliich need to be studied by solving the 
Navier-Stokes equations. However, it is anticipated that the main problem 
in dealing with separated flow would be with the turbulence model and 
not with the solution algorithm.
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