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ABSTRACT
Bioinformaticians have implemented different strategies to distinguish cancer driver
genes from passenger genes. One of the more recent advances uses a pathway-oriented
approach. Methods that employ this strategy are highly dependent on the quality and
size of the pathway interaction network employed, and require a powerful statistical
environment for analyses. A number of genomic libraries are available in R. DriverNet
and DawnRank employ pathway-based methods that use gene interaction graphs in
matrix form. We investigated the benefit of combining data from 3 different sources
on the prediction outcome of cancer driver genes by DriverNet and DawnRank.
An enriched dataset was derived comprising 13,862 genes with 372,250 interactions,
which increased its accuracy by 17% and 28%, respectively, compared to their original
networks. The study identified 33 new candidate driver genes. Our study highlights the
potential of combining networks and weighting edges to provide greater accuracy in
the identification of cancer driver genes.

Subjects Bioinformatics, Computational Biology, Statistics, Computational Science
Keywords Driver genes, Interaction network, Algorithm, Gene expression, Mutation, Weighted
network, Cancer, Graph

INTRODUCTION
Cellular signaling pathways are composed of a number of proteins between which
information is transmitted via chemical reactions. This flow of signals between
cells and within cells allows them to respond appropriately to biological needs.
Such processes form extremely complex and carefully regulated pathways that
branch out to reach a number of effector proteins. As a consequence of this, a
single protein is able to influence multiple cellular processes such as cell division,
protein synthesis, and cell death. Each component may modify signals it receives
before passing them on to downstream targets. Interactions include protein–protein
binding, protein degradation, phosphorylation, and protein–DNA binding. Intracellular
pathways do not operate in isolation, but are cross-linked to other pathways that together
form a huge web.
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Figure 1 Interaction network of 12 different genes. Each line depicts an interaction between two genes.
G4 is shown to interact directly with three other genes, and indirectly with all the others. Referred to as the
12-node network.

Cancer is characterized by uncontrolled cell proliferation. It develops when genetic aber-
rations disrupt a number of signaling processes that promote the bypassing of normal re-
strictions that keep cell proliferation in check. An understanding ofmutated genes that drive
the formation of cancer is important in the discovery of new drugs and the recommendation
of targeted treatment regimes for patients.

Pathway databases are constructed fromdata obtained frompublications by the scientific
community. They range in size and scope from mathematical models such as BioModels
(Chelliah & Laibe, 2013) to much larger, community-curated reaction databases such as
Reactome (Croft et al., 2014); the National Cancer Institute Pathway Information Database
(PID) (Schaefer et al., 2009); and, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2012). Whilst a number of commercial pathway knowledge bases are
available for performing traditional pathway analysis (Khatri, Sirota & Butte, 2012), factors
such as cost, data format, sharing restrictions, and terms of use impose limitations thatmake
them less attractive as sources of data for network analysis. At present, all biological pathway
databases are incomplete. Database consolidation has been challenging (Fearnley et al.,
2014), but possible by the adoption of the Proteomics Standards Initiative—Molecular In-
teraction (PSI-MI) format, and the more simplified tabular format, MITAB (Kerrien et al.,
2007). Different network modeling techniques applied on experimental data in predicting
interactions (Kumar & Ranganathan, 2013) have also contributed in producing repositories
of large-scale pathway reaction and interaction data. In the development of pathway-based
tools and methods, these interaction networks are often represented as graphs for analysis.
As a result, the number of interaction networks in graph format is growing, and integration
is considered at the graph level.
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Figure 2 Bipartite graph constructed from the 12-node network in Fig. 1. Blue nodes represent mu-
tated genes. Those in red represent significantly expressed genes in three different samples while the green
nodes are not significantly expressed.

In this paper we seek to determine if combining interaction graphs improves the identifi-
cation of cancer driver genes by DriverNet andDawnRank. They were both developed using
the R environment, which provides powerful data analysis and graphical features. DriverNet
met the standards set by Bioconductor (Gentleman et al., 2004). We combined graphs from
DriverNet (Bashashati et al., 2012), VarWalker (Jia & Zhao, 2014), and DawnRank (Hou
& Ma, 2014) for our analyses.

DriverNet
DriverNet uses a greedy algorithm to identify driver genes from a bipartite graph combining
mutation frequency and differential expression. It utilizes the protein functional interaction
network constructed by Wu, Feng & Stein (2010), which was constructed from various
sources of information such as curated pathways with non-curated data including protein–
protein interactions, gene co-expression, protein domain interaction, gene ontology (GO)
annotations, and text-mined protein interactions. These provide various small molecules,
proteins, complexes, post-translationally modified proteins, and nucleic acid sequences
which are mapped onto the genome using online repositories such as UniProt (2010)
and Entrez Genes (Maglott et al., 2011). It determines which interactions form part of the
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Figure 3 Matrix illustration of randomwalk with restart. In Eq. (1) V is the proximity vector
(V1. . .V12), r is the restart probability of 0.1. Matrix A represents the network. P is the vector where
the 4th element is 1, as the walker is at G4 at time 0. The solution shows nearby nodes with higher scores.
The red values (0.13 and 0.10) were determined to be closer to G4.

network by using a Bayes classifier, and eliminates those that do not fit. DriverNet predicts
driver genes by considering the effect of mutated genes on the gene expression levels of
interacting partners.

Using threshold cut-off values genes are categorized as expressed or not. In Fig. 2,
blue nodes partition of the bipartite graph represent mutated genes whilst nodes in red
represent their expression status for different patients. Genes in red are significantly
expressed. The gene interaction network connects nodes between the two sets. In the
identification of candidate driver genes, the guiding principle is to select as many red nodes
as possible using the fewest number of blue nodes. At each stage of the greedy algorithm,
mutated genes with the highest number of significant connections (such as G4 in Fig. 2)
are selected as candidate driver genes.

VarWalker
VarWalker uses a Random Walk with Restart (RWR) algorithm. The network it uses was
constructed using the Human Protein Reference Database (Keshava Prasad et al., 2009), a
manually curated resource. It includes protein–protein interactions, catalytic reactions, and
protein translocation events that have been evaluated against other repositories of human
protein–protein interaction data in the public domain (Mathivanan et al., 2006). This net-
work shows
the Cancer Genome Census (CGC) genes (Futreal et al., 2004) tend to be located more
closely to each other than other genes. Specifically, 71%of CGC genes are directly connected
and 26% have a shortest path of two. VarWalker uses this trait to nominate candidate
driver genes by ascertaining consensus across multiple samples for mutated genes that
converge. An initial gene filtering process removes long genes that are more frequently
mutated due to size.

The RWR method calculates a vector V that represents the proximity between a given
node and all other nodes in the network by solving Eq. (1) in Fig. 3. The gene network
is represented by a matrix A (see Fig. 3), if a gene i links to a gene j, i.e. i–j, then Aij<>0.
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In this case, its value would be the probability of moving to node j from i. If gene i
does not link to gene j, then Aij = 0. In Fig. 1, from G4, it is possible to move directly
to one of the three other nodes. The probability of moving to a directly connected
node is proportional to the number of outgoing nodes from G4, in this case 1/3. The
RWR is applicable as a proximity metric because after a sufficiently long time interval,
the probability of being at G4 at a random time provides a measure of the proximity
between G4 and all the other nodes. Figure 3 is the matrix representation of this equation
for the 12-gene network in Fig. 1.

V= (1− r)AV+ rP. (1)

In this example a restart probability value of 0.1 is used for r . The 12 by 12 matrix A
presented in Fig. 3 is derived from the 12-node network in Fig. 1. P is the vector in which
the ith element holds the probability that the walker is at node i at time 0. In this case we
start at G4, so the fourth element of P is 1, and all others are zero (see Fig. 3). The value of V
is then calculated, to satisfy Eq. (1). The solution of this equation is vector V given in Fig. 3:

V= (0.13,0.10,0.13,0.22,0.13,0.05,0.05,0.08,0.04,0.03,0.04,0.02).

This solution indicates nearby nodes (G1, G3, and G5) with higher scores of 0.13.We can
also determine G9 and G11 are equally distant from G4. With a large network, this can be
computationally intensive, thus, thismatrix solution canbe replaced by an iterative solution.

DawnRank
DawnRank selects potential driver genes based on their impact on the overall differential ex-
pression of its downstream genes in the interaction network. In this network, all redundant
edges are collapsed to single edges when aggregating networks from different databases.
With this method an individual patient sample is used rather than a large cohort, so drivers
are identified on a personalized level. This single patient approach is totally independent
of the mutation frequency, and can therefore be considered focused on finding more
infrequent or rare drivers. It classifies rare and even patient-specific mutations. This is the
use of the ‘long tail phenomenon’ when selecting driver genes, which considers cancer
mutations as being characterized by a small number of frequently mutated genes and a
large number of infrequently mutated genes. Selected genes are compared to CGC and Pan
Cancer standard driver gene list (Cancer Genome Atlas Research et al., 2013; Tamborero et
al., 2013) for validation.

DawnRank uses the PageRank family of algorithms to rank genes based on incoming
links. PageRank (Page et al., 1999) was developed to measure the human interest in web
pages. It is used by Google’s search engine to rank web pages. To illustrate this, consider a
sub-network fromour 12-node network in Fig. 1 as shown in Fig. 4A. Each of the 4 genesG1,
G3, G4, and G5 is initially given the same rank. The initial rank for each of the 4 genes
is therefore 0.25. Fig. 4A illustrates the topology of this simplified network at initial state
t = 0. The next iteration involves updating the rank of each gene by adding up the rank of
each incoming gene divided by the number of outgoing links from it. This is illustrated in
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Figure 4 (A) Initial state t = 0, a rank of 1 is divided equally between all 4 nodes. To get to (B) next
state t = 1, ranks are updated by adding up ranks of all incoming genes divided by the number of outgoing
links from each of them.

Fig. 4B. Thus, new ranks shown in Fig 5 are calculated as follows:

G1=G3/2= 0.25/2= 0.125;G3=G1/2= 0.25/2= 0.125;
G4=G1/2+G3/2+G3/1= 0.25/2+0.25/2+0.25/1= 0.375;G5= 0.

The ranks of genes may be weighted so that a gene is given a higher rank, even though
there are fewer links to it, if more important genes link to it. The output of the PageRank
algorithm is a list of genes and their rankings based on the gene network configuration. A
high PageRank score for a mutated gene in cancer indicates that the gene is more likely to
be a driver.

For DawnRank’s implementation of the PageRank algorithm the initial rank value for
each gene would be 1/11,648, as the network of genes consists of 11,648 members. A gene
linked to many other genes with high ranks receives a high rank. This process is modeled
using states, the transitions from one state to another depending only on the current state
rather than a preceding state. This is the Markov property, where each iteration is equally
probable. The difference in the ranks between time t = 0 and t = 1 is computed recursively
as rt+1 and rt , until it converges to an insignificant value (epsilon). It can also stop after a
set number of iterations, which is 100 for DawnRank.

METHODS
Interaction network construction
Network data files from the DriverNet, DawnRank and VarWalker packages were used.
These were transformed into individual graphs and combined using the igraph library
(Csardi & Nepusz, 2006) as shown in the dataflow diagram in Fig. 6.
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Figure 5 Page Rank results at state t = 1 after one iteration where ranks are recalculated as outlined in
Fig. 4.

For each of the three individual networks and the combined network we computed an
interaction score assuming independence. To infer these interaction scores, we combined
for each interaction between gene Gi and gene Gj, two scores:

• Qij is the number of graphs the interaction between gene Gi and gene Gj occurs in,
represented on a common scale [0, 1]. This is where qij= 0 represents no information
about the interaction, and qij = 1 represents strong evidence for the interaction as it
occurs in all the graphs;
• Rij is a count of the number of v-structures the edge Gi->Gj is part of in the network
projected onto a common scale [0, 1] (see Fig. 7).

Qij and Rij were represented as matrices, with genes identifying both rows and columns,
qij and rij are the scores for the interaction between gene Gi and gene Gj. These two were
combined as Sij as in Eq. (2). This schema for combining scores allows us to adjustw between
[0, 1] depending on the confidence in each of these contributors to the final weighting.
For our implementation we used equal weighting by setting w to 0.5

Sij=wQij+ (1−w)Rij. (2)
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Figure 6 Construction and testing of weighted combined network. Each interaction in the combined
network was weighted. Low scoring interactions were removed. This new weighted network was used by
DriverNet and DawnRank in the prediction of driver genes. These were analysed against the published list
of driver genes from Vogelstein et al. (2013).

Assessing the linear bias correction
In order to quantify the impact of the dependency on the interaction scores, we compared
the sumof the interactions from the individual graphs to those produced from the combined
network for those interactions common in all three networks. The individual scores were
summed as in Eq. (3) across the 3 graphs, and projected onto a common scale [0, 1].

Sum=
∑

Si. (3)

Eq. (4) was used to calculate the bias.We applied a linear regression between the summed
values and the calculated values using Eq. (2) for the combined network.

Combined network=α∗ sum+β. (4)

The parameters α and β represent the bias for the interaction weights of the combined
network.
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Figure 7 Two V-structures. A V-structure configuration exists in the network based on the paths among
a group of any 3 genes. Two of the genes directly linked into the third. The edge G1->G4 forms part of
both of these V-structures G1->G4<-G3 and G1->G4<-G5.

Testing the weighted network
Interactions with a weight less than or equal to the cut-off value of 0.17 were discarded.
The resultant network was used to analyse the prediction of driver genes by DriverNet and
DawnRank.

Data consisting of 504 samples of breast cancer (BRCA) initially fromTCGAwere derived
from DawnRank. These included somatic mutation and differential gene expression data
between the cancer and normal transcriptome. Driver genes were predicted by DawnRank
using its standard network and the weighted combined network. Mutation and expression
datasets consisting of 178 cervical cancer samples were downloaded from the Catalogue of
Somatic Mutation in Cancer (COSMIC) (Forbes et al., 2011). These were transformed into
two binary matrices where the rows were patients and the columns were genes. For the
purpose of our analysis, expression values between the range−2 and 2were considered to be
normal. Thus in the expressionmatrix, if a z-score value was >2.0 or <−2 the binary matrix
element was set to 1 (TRUE), otherwise it was set to 0 (FALSE). Glioblastoma Multiforme
(GBM) samples from The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research,
2008) were used from DriverNet. These were represented by 2 matrices with 200 rows and
1,255 columns. Driver genes were predicted using DriverNet for GBM and cervical cancer.

The analysis included sensitivity, specificity, accuracy and receiver operating charac-
teristic (ROC) with Area under the curve (AUC) measures (Zhu, Zeng & Wang, 2010).

Genes predicted as candidate driver genes were classified as true positives if they were
present in the 125 driver genes from Vogelstein et al. (2013). Details on this analysis can be
found in Supplementary Files.

RESULTS AND DISCUSSION
The methods employed by the packages DriverNet, VarWalker and DawnRank to predict
cancer driver genes involve the use of well-established algorithms that are very different.
There are also significant differences in the pathway data sources used for the construction
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Table 1 Characteristics of packages used to predict cancer driver genes.

DawnRank VarWalker DriverNet

Base algorithm PageRank RandomWalk with Restart Greedy optimisation on bipartite graph
Data type Expression mainly Mutation only Mutation and expression
Data source TCGA TCGA TCGA
Reference list CGC, Pan Cancer CGC CGC

Table 2 Network characteristics of packages used to predict cancer driver genes.

DawnRank network VarWalker network DriverNet network Weighted
combined network

Pathway data
source

Reactome, NCI-Nature,
Kegg, PDI

Human Protein Reference
Database (HPRD)

Reactome, NCI-Nature, Kegg,
Panther Pathways, Cell Map,
NCI-BioCarta, TRED

Interactions with a weight
greater than 0.17

Nodes 11,648 8,768 1,255 13,862
Interactions 211,794 73,182 130,153 372,250
Density 0.00156 0.0009 0.0827 0.00193
Diameter 14 14 6 9

Table 3 Comparison of sensitivity, specificity, and accuracy of driver gene prediction using the standard network and the weighted combined
network for DriverNet and DawnRank.

Parameter Standard network Weighted combined network

Sensitivity 0.8274 0.9796
Specificity 0.5400 0.2393

Glioblastoma
multiforme
(DriverNet) Accuracy 0.8159 0.9734

Sensitivity 0.74440 0.91713
Specificity 0.58000 0.52991

Cervical
(DriverNet)

Accuracy 0.7378 0.9139
Sensitivity 0.68284 0.96719
Specificity 0.61429 0.36752

Breast
(DawnRank)

Accuracy 0.6796 0.9621

of their interaction networks, and in their use of gene mutation and expression data (see
Tables 1 and 2). All packages use mutation data of tumor samples, but only DawnRank
and DriverNet use gene expression data. Whereas DawnRank uses mainly expression
data, DriverNet uses a combination of both. One would therefore expect there to be wide
variations in their prediction of cancer driver genes. Our analysis shows this to be the case,
when looking at the accuracy measures in Table 3.

The differences in these networks were highlighted by considering how they overlap.
All of the graphs partly overlap, but only 6% of the interactions are reported in more
than one of the graphs. We considered the five different subgroups among the 3 graphs
(Fig. 8), which included: unique genes and interactions; those reported in DawnRank and
Varwalker but not in DriverNet; those reported in Varwalker and DriverNet but not in
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Figure 8 Venn diagram of the 3 networks and how they overlap (A) number of interactions (B) num-
ber of genes.

DawnRank; those reported in DriverNet and DawnRank but not in Varwalker; and also
those reported in all three packages.

The Human Protein Reference Database (HPRD) used for the construction of the
VarWalker network is not used by either of the other 2 packages (see Table 2). There
are differences in the methods employed by DriverNet (Wu, Feng & Stein, 2010) and
DawnRank (Ciriello et al., 2012) to determine pairwise interactions though there are
some similarities in the pathway data used. Differences in the methods employed lead to
significant differences in the number of nodes and interactions (see Table 2).

The use of the weighted combined network made a significant improvement to the
prediction of driver genes using Vogelstein’s list as a reference (see Table 3). The accuracy
increased from 81% to 97% for GBM and from 73% to 91% for cervical cancer by
DriverNet. The largest accuracy increase was reported for breast cancer by DawnRank, a
28% increase from 68% to 96%.

DawnRank showed a larger improvement with its area under the ROC curve increasing
from 0.6599 to 0.8241for breast cancer (Fig. 9A). A total of 235 driver genes were identified
using GBM tumor samples with the DriverNet network compared to 308 for the combined
network, an increase of 31%. The figures for cervical cancer were much higher, 337 and
1,201, respectively, an increase of more than 200%. These lists of genes are higher than
Vogelstein’s list of 125, which usedmutation characteristics to identify candidate oncogenes
and tumor suppressor genes.

The potential of the weighted combined network to generate higher numbers of driver
genes using the CGC list was also apparent, there being 7 more for GBM, and 102 more for
cervical cancer. Three of these genes CBLC, CNOT3 and BMPR1A were common to both
cancer types and were uniquely predicted using the combined network. When compared
to Vogelstein’s list, 33 additional driver genes were predicted for cervical cancer using the
weighted combined network. A total of 60 overlapping genes were predicted as driver genes
across DawnRank breast cancer samples and Drivernet GBM samples, 20 of these were
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Figure 9 (A) ROC-DawnRank results (black) vs DawnRank results with weighted combined network
(red). Area Under the Curve-AUC 0.6599 vs 0.8241. (B) ROC-DriverNet results with unweighted com-
bined network (blue) vs DriverNet results with interactions above a cutoff weight of 0.17 (red). Area Un-
der the Curve-AUC 0.6816 vs 0.7108.

present in Vogelstein’s list. Of the remaining 40, we found seven to be identified by the
CGC, the other 33 we have marked as candidate driver genes, requiring further study.

Our analysis also indicates that a larger network does not always produce better
performance in the identification of cancer driver genes. A better quality network based on
our weighting outperformed the unweighted network. In Fig. 9B, we see DriverNet produce
better results when the low weighted interactions were removed. In the calculation of the
weights assessing the linear bias correction given in Eq. (4),α andβ took on values−0.07439
and 0.39795 respectively. We know each interaction weight is always greater than zero,
so when summing positive values, the resultant weights are always greater than zero. The
corrected combined weighting resulted in 18,541 interactions falling below the cut-off with
a resultant network of 13,862 genes with 372,250 interactions.

CONCLUSIONS
Gene interaction datasets have been constructed from databases such as KEGG, GO,
NCBI, and Reactome. This is a limitation because the databases used are incomplete. The
effectiveness of the use of interaction networks for the prediction of driver genes is heavily
dependent on the quality of the gene interaction network. Our results confirm that the
size and topological patterns of the interaction network directly impact the quality of the
results generated by DriverNet and DawnRank. We found this increased the accuracy of
the identification of driver genes by 17% and 28%, respectively. We have demonstrated the
value of combining networks, which may be beneficial to other pathway-based methods.
This network is also available to developers working on new gene interaction base solutions.
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Our approach of combining graphs and weighing their interactions can be used to improve
other network graphs.
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