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ABSTRACT
Simulations are used to generate plausible realisations of soil and climatic variables
for input into an enterprise land suitability assessment (LSA). Subsequently we
present a case study demonstrating a LSA (for hazelnuts) which takes into account
the quantified uncertainties of the biophysical model input variables. This study
is carried out in the Meander Valley Irrigation District, Tasmania, Australia. It is
found that when comparing to a LSA that assumes inputs to be error free, there
is a significant difference in the assessment of suitability. Using an approach that
assumes inputs to be error free, 56% of the study area was predicted to be suitable
for hazelnuts. Using the simulation approach it is revealed that there is considerable
uncertainty about the ‘error free’ assessment, where a prediction of ‘unsuitable’ was
made 66% of the time (on average) at each grid cell of the study area. The cause
of this difference is that digital soil mapping of both soil pH and conductivity have
a high quantified uncertainty in this study area. Despite differences between the
comparative methods, taking account of the prediction uncertainties provide a
realistic appraisal of enterprise suitability. It is advantageous also because suitability
assessments are provided as continuous variables as opposed to discrete classifica-
tions. We would recommend for other studies that consider similar FAO (Food and
Agriculture Organisation of the United Nations) land evaluation framework type
suitability assessments, that parameter membership functions (as opposed to discrete
threshold cutoffs) together with the simulation approach are used in concert.

Subjects Agricultural Science, Ecosystem Science, Environmental Sciences, Soil Science,
Computational Science
Keywords Digital soil assessment, Digital soil mapping, Land suitability assessment,
Soil mapping

INTRODUCTION
It is often stated that a useful outcome from digital soil mapping (DSM) is the ability to

quantify and map prediction uncertainties. Yet, as pointed out by Grunwald (2009) in

a review of DSM studies, they are often not actually quantified or mapped. Or if they

are, they are not really incorporated into any further analysis. It is believed they could be

invaluable for a digital soil assessment (Carre et al., 2007) project. We use them in this study

specifically for digital land resource or enterprise suitability assessment.
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It has been observed in recent times, an increasing activity in land resource assessments

that incorporate some sort of digital soil (and sometimes climate) mapping. Recent

examples include Kidd et al. (2012) in Tasmania, Australia; Harms et al. (2015) in

Queensland, Australia; and Van Zijl et al. (2014) in Mozambique. One reason perhaps

for this activity is that one can derive with digital soil and climate modeling, very attribute

specific mapping. This facilitates the opportunity for deriving quite complex suitability

frameworks. These frameworks can oftentimes be specific to a particular enterprise

(Kidd et al., 2012). While the suitability assessment framework design has not really

progressed much more from the land evaluation guidelines prepared by the Food and

Agriculture Organization of the United Nations (FAO, 1976), it is clear the suitability

assessment approach is enhanced by the developments in digital soil mapping practice.

An incremental advance in this area therefore is to incorporate the quantifications of

uncertainty of the mapping that feed into these land or enterprise suitability assessments. It

is believed that by doing this, more honest appraisals of suitability can be communicated,

together with better material to use for decision making as to where efforts should be

directed for improving subsequent and ongoing soil and climate mapping.

The aim of the following work is to demonstrate and evaluate one approach via a case

study for incorporating input data (biophysical information) uncertainties into a land

resource assessment workflow and compare with the more traditional workflow that

considers the inputs to be error free.

Brief review of land suitability evaluation
For a contextual background we provide a brief overview of land and enterprise suitability

evaluation. Rossiter (1996) and Mueller et al. (2010) have discussed the key concepts.

Henceforth, we use the term land suitability assessment (LSA) as a collective term for its

other connotations such as land evaluation, enterprise suitability evaluation or assessment

or any such similar term that more-or-less conforms to the definition given by Van Diepen

et al. (1991) as “all methods to explain or predict the use potential of land”. While there

is a blurry concept of what ‘land’ is or means, we take its meaning from Triantafilis

& McBratney (1993), paraphrasing from Brinkman & Smyth (1973) as “all reasonably

stable, or predictably cyclic attributes of the biosphere above and below the earth surface,

including those of the atmosphere, the soil and underlying geology, the hydrology, floral

and faunal populations, and the result of previous human activity in which the effects

significantly influence present or future land uses by man (sic)”.

Soil generally features heavily in a LSA with the reason possibly traceable to the rudi-

mentary beginnings of soil science (and pedology) and subsequent grouping and classifica-

tion of soils on the basis of their productivity (Brevik & Hartemink, 2010). Incorporation of

climate information into LSA is also apparent. Climatic information can include variables

such as temperature and precipitation (Zabel, Putzenlechner & Mauser, 2014), to other

more complexly derived variables such as frequency of frost occurrence (e.g., Kidd et al.,

2012). Less common is the incorporation of socioeconomic factors (D’Haeze et al., 2005).

In general, greater understanding is needed in the area of coupled human and biophysical
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systems (Stuart et al., 2015). Intuitively, socioeconomic factors would feature heavily in

a LSA because they compel activity despite biophysical constraints. Some factors include

commodity price changes, institutional reforms and reforming of trade practices and

agreements amongst governments and organisations. However, it is not altogether clear

how these types of factors can be incorporated in the more common biophysical centric

LSAs as they are often very localized to a particular area, and difficult to track.

LSA projects are practiced throughout the world due principally to the need for better

management of natural resources which are finite—yet the pressures and demands

emplaced upon them are increasing—for example, through human population increase.

Underlying this is a fundamental need to determine whether a given site or locality

would be productive or unproductive for a given land use, and then secondly evaluate

its biophysical status to determine what the limitations are, and what the land may be

best suited for. Broad global LSA programs include agro-ecological zoning (Fischer & Sun,

2001) and the Fertility Capability Classification (Buol et al., 1975). More recently a global

high resolution LSA for a number of arable cropping enterprises together with future

projections was presented by Zabel, Putzenlechner & Mauser (2014).

Mueller et al. (2010) describe numerous examples of LSA programs that are nationally

rolled out throughout the world. There are also LSA projects that are quite locally situated.

For example, LSA projects have been developed in both Northern Australia (Queensland)

and Tasmania respectively as described in Harms et al. (2015) and Kidd et al. (2012) for

enhancing agricultural pursuits in those areas.

While LSA may have had its origins in the early development of soil science and

agricultural land capability classifications, the terminology and general framework were

formalized with the land evaluation guidelines prepared by the Food and Agriculture

Organization of the United Nations (FAO) in 1976 (FAO, 1976). These guidelines have

strongly influenced and continue to guide LSA projects throughout the world. They

have also informed the development of automated LSAs via such software as ALES

(Automated land Evaluation System, Rossiter, 1990) and MicroLEIS (De la Rosa et al.,

2009) as examples. At its core, the FAO framework is a crop specific LSA system with a

5-class ranking of suitability (FAO Land Suitability Classes) from 1: Highly Suitable to

5: Permanently Not Suitable. Given a suite of biophysical information from a site, each

attribute is evaluated against some expert-defined thresholds for each suitability class. The

final evaluation of suitability for the site is the one in which is most limiting. There are a

number of variants to this approach such as the number of suitability classes, the weighting

attributed to the inputs, and also the degree of complexity of the crop specific suitability

criteria. This last variant is usually determined by availability of data, which is also related

to spatial scale at which the LSA is applied. As we have seen recently however in Zabel,

Putzenlechner & Mauser (2014) and with high resolution global soil mapping efforts such

as the GlobalSoilMap project (Arrouays et al., 2014), the scale issue will not be as important

into the future. A further generalisation of the FAO framework is evidenced by the

incorporation of fuzzy threshold values for suitability parameters, as opposed to discrete

threshold values (Lark & Bolam, 1997; Triantafilis & McBratney, 1993; Zabel, Putzenlechner

Malone et al. (2015), PeerJ, DOI 10.7717/peerj.1366 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1366


& Mauser, 2014). Fuzzy cut-offs are intuitively sensible because one cannot easily justify

(as an example) that a crop will or will not grow if a subsoil has pH of 5.4 as opposed to

5.5, given the complexity of soil and the interactions of other soil physical and chemical

parameters in the system. These ideas are explored in Lark & Bolam (1997) with examples.

Other LSA frameworks include parametric grading systems that may be multiplicative

or additive which ultimately rate the suitability of a land on a continuous scale rather

than as discrete classes. The Storie index rating (Storie, 1932) of soils is an example of

a multiplicative parametric LSA. A more data driven approach to the Storie Index for

digital soil applications is described in O’Geen, Southard & Southard (2008). An additive

parametric system was developed for NSW, Australia by Zhang (1989). The last LSA

frameworks to be discussed are those associated with crop growth and ecosystem models

that estimate local productivity of specific crops given soils and weather information

(Mueller et al., 2010). These models are more sensitive to temporal variation, which

make them a more dynamic LSA approach to those discussed already. While this may

seem advantageous, their dynamic behavior can only be realized given appropriate input

information which is often difficult to obtain. Mueller et al. (2010) describes a number of

candidate models of this type that are applicable at different scales from global to local

extents. The widespread application of these models in LSA projects is limited due to their

sophistication and inflexibility about input data requirements as many are designed for a

specific purpose and applicable only to their origin.

Other than fuzzy classification methods (Triantafilis & McBratney, 1993; Zabel,

Putzenlechner & Mauser, 2014), the assumption of LSAs is that the input data and

parameter thresholds are free of error. However, soil is complex and can vary quite

erratically in the context of space and time (Webster, 2000), and subsequent model-based

predictions of soil phenomena are anything but ‘error free’ (Brown & Heuvelink, 2005).

In noting this, Harms et al. (2015) provided additional mapping of a confidence measure

(based on Mahalanobis distance calculations) of the suitability classifications. They were

able to state explicitly where suitability classifications were likely to be good and where they

were likely to be uncertain. Indeed this is helpful and a good step forwards, but possibly

a more direct way to derive a measure of land suitability is to incorporate the measures of

prediction uncertainty into the final assessment.

MATERIALS AND METHODS
The case study is situated in the Meander Valley, in north-east Tasmania (Fig. 1). This

area, together with the Midlands irrigation district in central Tasmania is a focus site of

the ‘Wealth from Water’ (WfW) project that commenced in November 2010 (Kidd et al.,

2012). The Meander study area has diverse soils and landscapes; the eastern extremities

are part of the Launceston tertiary Basin (Doyle, 1993), with mainly duplex profiles (sharp

change in texture between the A and B horizons, and sodic subsoils (exchangeable sodium

% > 6), Sodosols (Australian Soil Clasification (ASC) Isbell, 2002)); Lixisols or Solonetz

(World Reference Base (WRB) IUSS Working Group WRB, 2007)). Productive areas of

deep, gradational Tertiary Basalt soils are formed around Deloraine (Ferrosols (ASC);
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Figure 1 Study area map. Locality map of the Meander Valley study area, Tasmania.

Nitisols or Acrisols (WRB)), and highly complex, poorly drained alluvial soils to the south

near Meander (Hydrosols, Kandosols, Chromosols (ASC); Gleysols, Fluvisols and Lixisols

(WRB) (Spanswick & Zund, 1999).

Current land use is mainly grazing, cereal and vegetable cropping in the east, and

dairying in the west and south, with forestry and conservation in rocky and mountainous

areas. Average annual rainfall is approximately >800 mm/yr.

The aim of the WfW project was to develop a LSA for a number of agricultural

enterprises to support irrigated agricultural expansion across the state (Kidd et al., 2012).

Kidd et al. (2014a) and Kidd et al. (2014b) describe the varied functions of this project

which have included extensive soil sampling and climate monitoring, together with digital

soil and climate modeling to support an LSA for 20 listed agricultural enterprises.

This case study describes an LSA for hazelnuts in the Meander Valley with two

contrasting approaches. The first approach (Approach 1) is an LSA that considers the

input variables to be error free. While the second approach (Approach 2) is an LSA

which takes into consideration the prediction uncertainties of the input variables. The

commonality between both approaches is the underlying assessment—it being based on

the FAO most limiting factor model of land evaluation. As with all agricultural enterprises

investigated for the WfW project, hazelnut suitability thresholds were determined by

experts from the Tasmanian Government Department of Primary Industries, Parks,

Water and Environment (DPIPWE), together with input from the Tasmanian Institute of

Agriculture as well as from research trial information, existing literature and consultation

with industry experts. The suitability thresholds are related to biophysical information

pertaining predominantly to soil and climatic information, and are tabulated in Table 1.

Soil and climate variables were predicted using digital soil mapping methods (McBratney,

Malone et al. (2015), PeerJ, DOI 10.7717/peerj.1366 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1366


Table 1 Hazelnut suitability parameters. Suitability parameters and thresholds for hazelnuts. Sourced from DPIPWE (2015).

Soil variables Climate variables

Suitability

class

Soil

depth

(cm)

Soil pH

(1:5 soil water)

top 15 cm of

soil

Soil

conductivity

(dS/m) top

15 cm of soil

Soil texture

(% clay) top

15 cm of soil

Soil drainage Stoniness

(>2mm) of the

top 15 cm of

soil

Incidence

of frost

(Probability

of zero days in

June, July or

August where

temperature

reaches −6 ◦C)

Mean

maximum

monthly

temperature.

Mean January

or February

max temp

(◦C)

Rainfall

(March mean)

Chill hour

requirements

(chill hours 0–7 ◦C

April–August

inclusive)

Well suited >50 cm 5.5–6.5 <0.15 10–30 Well to

moderately

well drained

<10% ≥ 80% 20–30 <50 mm >1,200

Suited 40–50 cm 30–50 Imperfectly

drained

10–20% 60–80% 30–33 and

18–20

600–1,200

Marginally

Suited

30–40 cm 6.5-7.1 40–60% 33–35

Unsuited <30 cm <5.5 or >7.1 >0.15 >50 or <10 Poor to very

poorly drained

>20% <40% >35 or <18 >50 mm <600

M
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n
e
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eerJ,D
O

I10.7717/p
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6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1366


Table 2 Model diagnostics. Metadata and model diagnostics of digital soil and climate mapping relevant to LSA for hazelnuts.

Variable Number of
observations

Model used Residual modeling
(variograms)

Validation
statistics

PICP

Soil depth (cm) 1. 432 (144)
2. 56 (20)

1. Binomial logistic
regression
2. Cubist model regression kriging
(1 rule)

2. Yes 1. OA = 87%,
Kappa = 0
2. RMSE = 16.2,
CCC = 0.31

2. 92%

Soil pH (1:5 soil water) top
15 cm of soil

432 (144) Cubist model regression kriging
(1 rule)

Yes RMSE = 0.44,
CCC = 0.25

92%

Soil conductivity (dS/m) top
15 cm of soil

426 (143) Cubist model regression kriging
(1 rule)

Yes RMSE = 0.12,
CCC = 0.09

81%

Soil texture (% clay) top 15 cm of soil 269 (94) Cubist model regression kriging
(1 rule)

Yes RMSE = 7.77,
CCC = 0.38

90%

Soil drainage 431 (144) Cubist model regression kriging
(1 rule)

Yes RMSE = 0.70,
CCC = 0.52

91%

Stoniness class (>200 mm) of the top
15 cm of soil

1. 432 (144)
2. 46 (18)

1. Binomial logistic regression
2. Ordinal logistic regression

1. OA = 85%,
Kappa = 0.15
2. OA = 34,
Kappa = 0

Incidence of frost (Probability
of zero days in June, July or August
where temperature reaches −6 ◦C)

1. 129 (44)
2. 14 (5)

1. Binomial logistic regression
2. Multiple linear regression model

2. No 1. OA = 91%,
Kappa = 0.30
2. RMSE = 25,
CCC = 0

2. 60%

Mean maximum monthly
temperature. Mean January or
February
max temp (◦C)

129 (44) Cubist regression model
(1 rule)

No RMSE = 0.60,
CCC = 0.62

88%

Rainfall (March mean) 21 Multiple linear regression No RMSE = 3.23,
CCC = 0.69

90%

Chill hour requirements (chill hours
0–7 ◦C April-August inclusive)

129 (44) Cubist regression model
(2 rules)

Yes RMSE = 54,
CCC = 0.84

82%

Mendonca Santos & Minasny, 2003). Details of the methods used for preparing and mod-

eling the soil variable data are described in Kidd et al. (2012), while the approaches used

for the climate variables are described in Webb et al. (2014) and Webb et al. (2015). A short

description of the modeling approaches used for each soil and climate variable follows in

the next section, but the main details are summarized in Table 2, together with the model

validation diagnostics of both the predictions and quantifications of uncertainty.

Digital soil and climate modeling for land suitability assessment
An extensive soil sampling and climate modeling program was established in the Meander

Valley in 2010 (Kidd et al., 2012; Kidd et al., 2015). In total 576 soil cores were extracted

from various locations throughout the area and analysed for a number of physical

and chemical soil properties both in the laboratory and with chemometric techniques

dependent on mid-infrared soil spectral calibrations (Kidd et al., 2015). Climate and

temperature monitoring throughout the Meander was carried out over 2010 and 2011

using a network of distributed temperature sensors (Webb et al., 2014), and calibrated
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to long-term climate data (Webb et al., 2015). Rainfall information was sourced from

Australian Bureau of Meteorology monitoring sites located within and surrounding

the study area (Webb et al., 2014). Soil sampling and climate monitoring network were

conducted and installed respectively by field officers of the Tasmanian Government. For

many sites that were situated on public or Government administered land, no permission

was required for sampling or installation of temperature sensors. For sites that were

situated on private landholdings, Government officers sought permission for access. In

the rare situation where permission was not granted, the sampling or monitoring site was

moved to an alternative and agreeable location.

The common workflow for all digital soil and climate variable mapping entailed:

1. The randomized splitting of observational data into calibration and validation datasets.

Here a 75% and 25% split was used respectively for calibration and validation datasets.

For consistency, the same calibration and validation datasets (soil, climate, rainfall) were

used for all target variables, before removal of missing values.

2. Environmental covariates were sourced from DPIPWE and other government

repositories which included derivatives from a digital elevation model (STRM DEM

(Gallant et al., 2011)), gamma radiometric information (Minty et al., 2009), and spectral

indices derived from Landsat 7 ETM+ satellite. Soil modeling involved using principal

components of all sourced covariates, while principal components of the digital eleva-

tion model derivatives (only) were used for the climate variables (Webb et al., 2015).

3. Modeling of continuous variables was based on a regression kriging framework that

entailed Cubist regression tree modeling (Quinlan, 1992) followed by model residual

modeling (with variograms) and kriging. Spherical or exponential models were con-

sidered only. Visual criteria of the global variogram of residuals were used to determine

whether regression kriging should be pursued or not. Otherwise regression modeling

was used only. Categorical variable modeling entailed either the fitting of binomial or

ordinal logistic models, dependent on the nature of the target variable information.

4. Prediction uncertainties for continuous variables were quantified using an empirical

approach as described in Malone et al. (2014) where the model errors within each

partition of a Cubist model were used to form geographically specific error distributions

(via leave-one-out cross validation) in order to estimate 90% prediction intervals. For

categorical variables, the prediction probabilities were used as measures of uncertainty.

5. Validation statistics for continuous variables included the root mean square error

(RMSE) and Lin’s concordance correlation coefficient (CCC; Lin, 1989). The prediction

interval coverage probability (PICP, Shrestha & Solomatine, 2006) was used to evaluate

the efficacy of the 90% prediction intervals. The PICP is the proportion of actual

observations that are encapsulated by their prediction interval, and ideally will be

equivalent the level of confidence associated with the prediction interval. For categorical

variables, overall accuracy and kappa statistic (Congalton, 1991) were used. Validation

statistics are reported for both calibration and validation datasets. The PICP is reported

for the validation data set only.
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All maps of the biophysical properties (together with uncertainties) used for the

hazelnut LSA are supplied as Supplemental Information 1 to this research. Some details

specific to each modeling variable are as follows.

Soil depth
Soil depth was modeled in a two-step procedure. The first step was binomial modeling of

whether soil depth greater than 1.5 m or not. The rationale behind this was that soil coring

was done to a maximum of 1.5 m depth, or depth-to-lithic contact, whichever was first.

The second step involved regression kriging modeling of soil depth where soil depth was

less than 1.5 m. The outputs from both steps were used for the LSA, which is discussed

further on.

The two-step modeling procedure described in this study has been used previously by

Gastaldi, Minasny & McBratney (2012) for mapping the occurrence and thickness of soil

horizons. In that study, the first step involved modeling the occurrence of horizon classes,

while the second step involved modeling the depth of the soil horizons.

Soil pH, EC and clay
A mass-preserving soil depth spline (Bishop, McBratney & Laslett, 1999) was used to

harmonise observed soil profile data in order to impute data for the 0–15 cm depth

intervals for all locations. Spatial modeling was performed using regression kriging

framework.

Soil drainage
Digital soil mapping of soil drainage was carried out as in the method described by Kidd

et al. (2014a) and Kidd et al. (2014b). Essentially this method codifies the descriptive soil

drainage classification as detailed in The National Committee on Soil and Terrain (2009)

into an ordinal value. The numerical classes were then spatially modeled as a continuous

variable using regression kriging.

Stoniness
Soil stoniness or percentage of coarse fragments greater than 2 mm was modeled in a

two-step procedure, much for the same reasons as for soil depth. Here the first step was

a binomial logistic regression model which considered the presence vs. absence of coarse

fragments. The second step entailed an ordinal logistic regression of the coarse fragment

incremental percentage classes (6) as described in The National Committee on Soil and

Terrain (2009).

Incidence of frost
The method for estimating the probability of frost incidence at each location is described

in Webb et al. (2014) and Webb et al. (2015). Spatial modeling occurred as a two-step

procedure because many sites had no incidence of frost occurrence. Subsequently the first

step entailed a binomial logistic regression of presence vs. absence of frost occurrence

followed by the second step of regression kriging of frost occurrence probability using the

sites where information relating to this was recorded.
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Temperature, rainfall and chill hour requirements
These were all spatially modeled as continuous variables. A multiple linear regression

model was used for rainfall modeling, due to the small number of rainfall observations.

The validation statistics reported are from a leave-one-out-cross validation. The PICP for

the validation of prediction uncertainties is based on the calibration data. Cubist regression

models were used for temperature and chill hours, with residual kriging being appropriate

for chill hours only.

Approach 1. Land suitability assessment without considering
prediction uncertainties
Raster maps of each of the hazelnut LSA variables were interrogated pixel-by-pixel from

which an assessment of suitability was derived using the most limiting factor approach.

For variables that were modeled as a two-step procedure (soil depth, stoniness, frost inci-

dence), a positive condition invoked the interrogation of the map from second part of the

two-step procedure. Using the soil depth variable as an example, if a pixel on the prediction

map recorded a positive score (likely presence that depth to lithic contact is less than 1.5 m)

contact, the second map was interrogated to estimate the depth to the lithic contact.

Approach 2. Land suitability assessment in consideration of
prediction uncertainties
The basis of the approach is a simulation of possible realisations (pixel-by-pixel) of the

input variables before assessing the suitability using the most limiting factor approach.

For the continuous variables the prediction intervals were sampled with an assumption

of normal distribution upon each realisation. For the categorical variables, sampling

from either the binomial or multinomial distributions of the prediction probabilities

was performed. In consideration of variables subject to the two-step model procedure,

the second condition was invoked where a presence or occurrence of the phenomenon

in question was found for a given sample. If the condition was invoked, the probability

distribution of the second variable was sampled.

There were two issues to consider in this approach. The first was an issue of computation

where compared to approach 1, the computation time can increase dramatically with

increasing number of realisations. Besides using multi-core compute facilities, Latin

Hypercube Sampling (LHS) was used to sample from the multivariate distributions of

the continuous variables. LHS sampling is a more efficient sampling approach to random

sampling if the objective is to ensure the multivariate distributions are sampled entirely

(Pebesma & Heuvelink, 1999).

The second issue was one of rationality in terms of the multivariate information

generated from each realisation. The rationality here was the maintenance of correlations

between the LSA variables. Subsequently a modified LHS was used where the correlation

matrix of the sample is corrected to match that of the data that is being sampled. The

correction was made through the use of the Huntington–Lyrintzis algorithm (Huntington

& Lyrintzis, 1998). Implementation of correlation matrix corrected LHS was performed

using of the LHScorcorr function in the pse R package (Chalom & Prado, 2014).
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In this study 100 realisations were made in order to estimate probabilities of each

suitability class at each map pixel. The probabilities were estimated as the number of

occurrences of each suitability class divided by the total number of realisations. Further

analysis of these outputs is presented in the results.

Software
The entire workflow of this study was implemented in the R scripting language (R

Core Team, 2015) except for the creation of map products which were created using

ArcGIS (ESRI Inc.). Specifically, custom functions were built for the hazelnut LSA. The

raster (Hijmans, 2015) package with associated rgdal (Bivand, Keitt & Rowlingson, 2015)

and sp (Bivand, Pebesma & Gomez-Rubio, 2013) packages were used for handling and

manipulating all GIS processes. Cubist models were implemented from the Cubist (Kuhn

et al., 2014) package and the multinomial and ordinal logistic modeling were carried out

using the nnet and MASS packages respectively (Venables & Ripley, 2002). Variogram

modeling entailed the usage of geostatistical functions from gstat (Pebesma, 2004). Many

of the processes, including applying models spatially and applying the LSA in the presence

of prediction uncertainties were distributed across multiple compute nodes (8) to improve

the computation efficiency. This was done using specialist R packages parallel (R Core

Team, 2015) and doParallel (Revolution Analytics & Weston, 2014).

RESULTS
The suitability map for hazelnuts calculated without considering uncertainty is shown

in Fig. 2. This map indicates that approximately 6% of the study area has the biophysical

characteristics that are well suited for hazelnuts. 56% was classified as suitable, while 20%

and 18% respectively were classified as marginally suited and unsuited. The classification

of ‘unsuited’ within the area was predominantly on the basis of soil pH. Those areas where

unsuited is classified have a predicted low topsoil pH (<5.5). The areas where marginal

suitability was classified occur where the incidence of frost is reasonably common i.e., there

is between 40 and 60% likelihood that there will be no days in June, July or August (South-

ern Hemisphere Winter) where temperature reaches −6 ◦C. From this analysis, there were

very few situations where there were multi-factor issues causing limitations. One exception

however was in the northern peninsula area where both soil pH and frost limitations

were predicted. Maps showing the limitation classifications for each soil and climate LSA

parameter are to be found in the Supplemental Information 2 of this research manuscript.

The main outputs from approach 2 are the four maps shown in Fig. 3. This shows the

probability maps for each suitability class: (3A) well suited, (3B) suited, (3C) marginally

suited and (3D) unsuited. The mean probability for each suitability class (in the same

sequential order as before) is 6%, 21%, 7%, and 66% respectively. From this result, taking

into consideration the prediction uncertainties of the LSA parameters changes the overall

assessment that was made using approach 1. The principle reason for a high likelihood

of an unsuitable classification from approach 2 is because of the magnitude of the input

data uncertainties (which are not taken into account in approach 1), and how they are

propagated through the LSA.
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Figure 2 Error free suitability classification. Hazelnut suitability classification assuming LSA inputs are
error free.

Figure 3 Hazelnut suitability class probabilities. Hazelnut suitability class probabilities (A) Well suited,
(B) suited, (C) marginally suited, (D) unsuited.
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Figure 4 shows maps of the probabilities to which each LSA parameter contributes to

an ‘unsuitable’ assessment for hazelnut suitability. For illustrative purposes, a probability

threshold of 0.6 was used to delineate from Fig. 3D, areas where it is reasonably certain that

hazelnut suitability is low. It is clear from Fig. 4 that the main contributors are soil pH (4F)

and soil conductivity (4D). Soil texture (4B) and rainfall (4G) impart a minor contribution

to the unfavorable suitability estimate. Figure 5 shows the comparison between approach

1 and approach 2 in terms of the contribution of soil conductivity (5A and 5C) and

soil pH (5B and 5D) to the suitability estimates. Figures 5C and 5D are the same as in

Figs. 4D and 4F respectively. From approach 1, soil conductivity imparts no limitation,

but from approach 2 it clearly is a main contributor. The reason for this is simple: the

spatial prediction of soil conductivity is currently highly uncertain. The RMSE of the soil

conductivity map was 0.12 dS/m, while the threshold to delineate between well suited and

unsuited was 0.15 dS/m. Subsequently, a large number of realisations using approach 2

would sample values above this threshold. This is similarly the case for soil pH, but to a

lesser degree. Here the RMSE of the soil pH map was 0.44, and coupled with relatively

narrow threshold criteria for suitability classification, there is going to be a relatively

high likelihood that it will contribute unfavorably to suitability estimates. Despite the

magnitude of uncertainty, areas where soil pH is a limitation on Fig. 5B are also observable

from Fig. 5D. The difference is that the spatial extent of soil pH limitation in Fig. 5B is less

constrained than in Fig. 5D.

As with approach 1, there was not a widespread incidence of multifactor issues from

approach 2. Figure 6 illustrates this which shows the probability of situations where more

than one LSA parameter contributes to an unfavorable suitability prediction. Mostly where

the probability is high, it is soil pH and conductivity that are the main contributing factors.

Some areas in the middle of the study area (to the southern edge), soil texture is also a

contributing factor, together with pH and conductivity.

GENERAL DISCUSSION
This research has been a case study to explore an enterprise LSA given uncertain input

variables. Taking into account the biophysical variable prediction uncertainties is a slight

sophistication to many LSA analyses which mainly consider inputs to be error free. One

caveat to this is that the workflow becomes more computationally demanding—due to the

requirement to run multiple realisations—and creates a significant number of items which

need to be managed accordingly. For example the spatial modeling and uncertainty quan-

tification of LSA inputs requires a significant amount of effort and organisation. Some of

this workflow can be made more efficient however through parallel and high performance

computing abilities which are becoming more prolific in scientific studies today.

It has been demonstrated (using the LSA for hazelnuts) that the prediction uncertainties

of inputs can significantly alter the LSA outlook compared to the situation where they

are not considered (approach 1). In this study, optimistic results from approach 1

were counter-matched with less favorable outcomes for approach 2, despite the same

information being used. As stated in Harms et al. (2015), by explicitly quantifying the
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Figure 4 Probabilities of each soil and climate variable causing hazelnuts to be unsuitable for estab-
lishment. Probabilities of each soil and climate variable causing hazelnuts to be unsuitable for establish-
ment, (A) chill hours, (B) clay content, (C) soil drainage, (D) soil conductivity, (E) frost occurrence, (F)
soil pH, (G) rainfall, (H) soil depth, (I) temperature, (J) rock fragments.
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Figure 5 Contribution of soil conductivity and pH to assessment of unsuitability for hazelnuts. Con-
tribution of soil conductivity and pH to assessment of unsuitability for hazelnuts (A) and (B) assuming
inputs are error free, (C) and (D) taking account of the associated prediction uncertainties.

Figure 6 Probability of multiple factors. Probability of multiple factors that contribute towards unsuit-
ability for hazelnut establishment.
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uncertainty of the LSA inputs, an ability to assess the quality of suitability assessments

can be realized. This is important for strategic decision making regarding land resource

management. Consequently this research highlights the importance of soils (Bouma &

McBratney, 2013)—in this situation for a LSA—yet it has been made apparent that more

needs to be done to improve the predictive grasp of soil spatial predictive functions that

will act as inputs for associated biophysical models. It has been considered before that some

ways of doing this include additional soil sampling and discovery of more informative

predictive covariates (Malone et al., 2014). This may well be true for most cases, and

as Thomas et al. (2015) point out, digital soil mapping is a dynamic exercise, where a

prediction model (and map) is never final. With new information, new calibrations and

updates can be made (Kempen, Brus & De Vries, 2015) with the long view that upon each

iteration, one gets a better and more sure grasp of the phenomenon being modeled.

The LSA for hazelnuts in this study using approach 2 serve a purpose and use despite

the known issue of some uncertain inputs. It was established that in consideration of the

other LSA variables besides soil pH and conductivity, there do not appear to be any major

limitations for hazelnuts. A pragmatic solution for a landholder to gain utility from the

suitability mapping would be to conduct further testing of these soil attributes if they are

believed to be an issue. Relative to other soil attributes the cost of measuring soil pH and

conductivity is minimal.

Despite the need to make improvements in both digital soil and climate modeling,

this study has perhaps illustrated the limitations of using discrete thresholds for LSA

parameter suitability criteria. With the example used in this study, the multiple realisations

do not consider or adjust for those values that are near and just slightly breach the criteria

that would give an unfavorable suitability outcome. The severity of the limitation in

terms of management potential needs considering. For example, soil pH, if close to a

threshold, can easily be managed by the application of lime. Whereas a limitation such

as frost would be harder to manage. An approach such as parametric weighting could

provide a more realistic suitability framework. Furthermore, while there is no disputing

the expertise of the practitioners who develop biophysical parameter thresholds, another

(intuitive) approach is to develop membership functions rather than discretized functions

of the parameters thresholds when designing an enterprise LSA (Zhang et al., 2015). This

would effectively incorporate the uncertainty in defining what the threshold values might

be. This approach will in turn, circumvent those situations of borderline classification

that clearly can have misleading outcomes on the overall suitability assessment. As was

previously established, membership functions for LSA are not unheard of, with the recent

study by Zabel, Putzenlechner & Mauser (2014) being one such example. Ultimately, due

consideration of this additional source of uncertainty (threshold uncertainty) would make

a modest improvement upon the continuous suitability assessments made in this study,

despite the uncertainties of the LSA inputs.

CONCLUSIONS
• Taking account of the uncertainties adds to the overall LSA because one can actually

assess the reliability of the assessment.
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• Because the input variables are generated through a digital soil mapping approach, there

is an ability to continually update the mapping as a means to improve accuracy, which

will in turn, yield a more reliable LSA.

• Consideration of the biophysical variable uncertainties can have a significantly different

LSA outcome to when they are not.

• With the approach proposed in this study, it is possible to identify and assess the

magnitude to which biophysical variables contribute most to a classification of

‘unsuitable’ in a LSA.

• Truly incorporating uncertainties into an LSA would also include the incorporation of

membership functions rather than discrete thresholds for each of the biophysical input

variables.

• While there are many variants of a LSA, they are fundamentally quite similar. Therefore

we would suggest they could all be adapted for simulation studies as shown in this study

in order to derive continuous rather than discrete assessments of land suitability.
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