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ABSTRACT
Mutating residues has been a common task in order to study structural properties of
the protein of interest. Here, we propose and validate a simple method that allows the
identification of structural determinants; i.e., residues essential for preservation of the
stability of global structure, regardless of the protein topology. Thismethod evaluates all
of the residues in a 3D structure of a given globular protein by ranking themaccording to
their connectivity andmovement restrictions without topology constraints. Our results
matched up with sequence-based predictors that look up for intrinsically disordered
segments, suggesting that protein disorder can also be described with the proposed
methodology.

Subjects Biochemistry, Biophysics, Computational Biology, Molecular Biology
Keywords Molecular dynamics, Shannon dynamical entropy, Intrinsic disorder,
Thermodynamics

INTRODUCTION
It is widely known that highly conserved residues in multiple sequence alignments of
proteins are considered as key residues essential for protein structure and function including
protein folding, phylogeny and evolutionary processes (Phillips, Janies & Wheeler, 2000;
Edgar & Batzoglou, 2006; Pierri, Parisi & Porcelli, 2010). Nevertheless, neutral mutations
can accomplish great modifications to the structural properties of the protein by modifying
its thermodynamic stability or biological function as seen in extremophiles in order to
adapt to their environment (Jaenicke & Böhm, 1998; Rothschild & Mancinelli, 2001; Reed et
al., 2013). Proteins can be considered as molecular entities with a tridimensional structure
which are exposed to solvent and, frequently, interacting with other macromolecules.
Each amino acid residue in a protein and each nucleotide base in a nucleic acid can be
seen as a node and due to their high connectivity they represent hubs. Therefore, network
analyses applied on protein structures attempt to assess the location of essential hubs
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that are necessary for the preservation of the stability of the global structure (Vendruscolo
et al., 2002). Several mathematical approaches have been described which have helped
to identify these hubs, each one employing different considerations such as geometrical
approximations, thresholds, and information theory (Costa et al., 2007; Böde et al., 2007).
Other approaches combine network parameters with protein properties, e.g., Relative
Solvent Accesibility (RSA), to optimize the hierarchization of each residue within the
structure (Li, Wang & Wang, 2008). In addition, the structural relevance of each residue can
be assessed by ranking the theoretical scores obtained from mathematical approximations
applied over protein structures (Greene & Higman, 2003; Amitai et al., 2004).

Because protein structures are not rigid molecular assemblies, X-ray structure
determinations provide a ‘‘snapshot’’ of a ‘‘ground state,’’ which is assumed to represent
the lowest energy conformation in a crystal lattice (Karplus & Kuriyan, 2005; Rodríguez-
Rodríguez et al., 2012). Molecular dynamics simulations is an in silico tool that can provide
information on detailed atomic motions at different time-scales, which have been increased
through the development ofmore powerful hardware (Kepleis et al., 2009;Dror et al., 2012).
Taking advantage of these technological advances, we sought to demonstrate that joining
this important parameter with network analyses will allow the compilation of a simple
method for ranking structure determining residues involved in protein stabilization. The
problem of classifying each node according to its structural relevance is far from being
trivial because of various reasons. For example, some residues that are not located at the
hydrophobic core are known to have a long-distance effect on the structure, even in the
case of a neutral mutation (Tokuriki et al., 2008; Pace et al., 2011). Our hypothesis is that
the rigidness and the connectivity of each residue, irrespectively of its solvent exposure, can
be associated to a specific theoretical score that can be used as a ranking parameter, where
highly connected residues with restricted movement should have the greatest effects on the
overall stability of globular proteins. Among all network descriptors, we selected Shannon
dynamical entropy as a connectivity parameter (Demetrius & Manke, 2004; Costa et al.,
2007). In this study, somewell-knownprotein structureswere unbiased chosenwith the goal
of developing a simple method to identify, in a hierarchical way, those amino acid residues
that are determinant in the structural stability of a protein. This approach basically combines
molecular dynamics with a network analysis based on the Shannon dynamical entropy.

MATERIALS AND METHODS
Statistics
Principal component analysis was performed using the R software (R Core Development
Team, 2013). The thermal unfolding experiments of the 6aJL2 mutants were repeated in
triplicate.

Crystallographic structures
The PDB codes, size, and protein class of the selected structures are as follows: chymotrypsin
inhibitor (2CI2; 65 residues; 16% α+21% β); 6aJL2 (2W0K; chain A, 111 residues; 5%
α+46% β); apoflavodoxin (1FTG; 168 residues; 35% α+19% β); dimeric Arc repressor
(1ARR; 108 residues; 62% α+9% β); DNA-binding domain of human estrogen receptor
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α in complex with the estrogen response element DNA duplex (1HCQ; chains A, B; 128
residues; 26% α+9% β, and chains C and D, 56 nucleotides); cold shock protein from
Bacillus subtilis (1CSP; 67 residues; 4% α+55% β); cold shock protein from B. caldolyticus
(1C9O, 66 residues; 4% α+62% β); and the largely disordered N-terminus of suppressor
of cytokine signaling 5 mammalian suppressor of Janus Kinase interaction region (2N34,
70 residues; 12% α). Minor structural modifications were performed on PDB files such as
fulfilling N-terminal domains and incomplete lateral chains by using Swiss PDB software
(Guex & Peitsch, 1997). Furthermore, all nodes were renumbered in continuous order
avoiding repetitions; i.e., in PDB 2CI2 the first residue begins as residue 19. Consequently,
all residues were systematically renumbered so the first residue was identified as residue 1
and so forth. Solvent-exposed area was calculated with the NOC software (Chen, Cang &
Nymeyer, 2007).

Grade
Residues can be regarded as nodes and contacts as edges. Hence, an edge was defined when
any two non-hydrogen atoms from a pair of residues are within distance of 5 Å. To study
the topology of the residue contact network, we measured the degree of node-i, Ki, as the
number of neighbors of node-i. Chain A of crystallographic structures was selected. In the
case of quaternary structures, all the structure was considered to measure the grade of each
node but only chain A was selected for further comparisons.

Molecular dynamics
The query protein was prepared using the Protein Preparation Wizard in Maestro 9.2
package (Schrödinger LCC, NY, USA) and included in a 10-Å water box that contained
14513 SPC-type water molecules for 2CI2, 16667 for 6aJL2, 20051 for 1FTG, 20990 for
1ARR, 28142 for 1HCQ, 12219 for 1CSP, and 12033 for 1C9O. Neutralizing ions were
added, and other metal ions already present in the protein structure were left at the
same place. The simulated annealing calculations and data analysis were conducted using
the Desmond and Maestro programs, respectively (Maestro-Desmond Interoperability
Tools, version 3.0; Schrödinger, NY, USA). The OPLS_2005 force field was used for
every molecular dynamics simulation. Cubic periodic boundary conditions were used for
most of the proteins (53.9 × 53.9 × 53.9 Å3 for 2CI2, 56.8 × 56.8 × 56.8 Å3 for 6aJL2,
60.9× 60.9× 60.9 Å3 for 1FTG, 61.2× 61.2.9× 61.2 Å3 for 1ARR, 51.1× 51.1× 51.1 Å3

for 1CSP, and 50.8 × 50.8 × 50.8 Å3 for 1C9O); due to the size of the complex 1HCQ,
rectangular cuboid boundary conditions were used (58.5 × 59 × 91 Å3 for 1HCQ).
Each simulation was adjusted with an NPT ensemble by weak coupling to an external
bath temperature at constant pressure of 1 atm and relaxation time of 2 ps, regulated by
Berendsen barostat (Berendsen et al., 1984). All short-range interactions were computed
using a 9 Å cutoff, and for long-range interactions (electrostatic and Van der Waals), a
smooth particle mesh Ewald method with a tolerance of 1× 10−9 was applied (Essmann et
al., 1995 ). To ensure that our simulations started from local minima, a simulated annealing
algorithm was performed. This method started the simulation at high temperature
(400 K) to overcome thermodynamic and conformational barriers, followed by gradual
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cooling (annealing) to reach low energy regimes. It is widely used for the optimization
of structures from experimental methods, comparative protein modeling, or studying the
conformational dynamics of protein or peptide folding and unfolding (Mori & Okamoto,
2009). The full system was heated at 10 K for 30 ps, 100 K for 100 ps, 300 K for 200 ps,
400 K for 300 ps, and 400 K for 500 ps and then cooled to 298 K for 1,000 ps. To ensure that
heating at 400 K did not affect protein or protein/DNA structure, the RMSD of heavy atoms
(C, N, O, S, P) derived from the annealed structure was compared against corresponding
crystallographic structure. If RMSD standard deviation was ≤1.0 Å, then it was assumed
that the annealing algorithm did not changed the whole structure or denature it. In fact,
since the displacement of heavy atoms above 1 Å is considered as a conformational change,
the algorithm can be trusted in finding the local minimum. A lineal interpolation step
between two adjacent time points was employed. After the sixth step, a production of 25 ns
was achieved with an integration time of 1 fs. The entire analysis was performed using
trajectory coordinates, and the energies were written to a disk every 1.2 ps. A frame was
extracted every 0.25 ns throughout the simulation, and the overall frames were saved as a
PDB file.

Dynamical entropy
An analytical algorithm encoded in the Perl language was developed to generate three files
using the 100-frames PDB-file as the template. In the first step, a single file is generated
for each model, and this single file contains the atom coordinates, the corresponding
molecular weight, and the name of the node (amino acid or nucleotide base). The second
step calculates the coordinates of the center of mass of the node. The third step calculates
the distance between the center of mass of each pair of nodes and their normalized distance
described by Eq. (1),

dij =
dij

rvdWi+ rvdWj

(1)

where dij is the normalized distance, dij is the distance between the center of mass of
node i and that of node j, and rvdW is the Van der Waals radius of the respective node
considering all their atoms. For amino acid residues, values of their Van der Waals radiuses
comprehending the whole residue were obtained from Darby & Creighton (1993). For
nucleotide bases, values were obtained from Voss & Gerstein (2005). The mean distance
between each pair of nodes of the 100 structures sampled was calculated. Since the next
steps involve eigenvector and eigenvalue measurement properties, the mean value of the
inverse normalized distance was calculated, so the largest weight represents the closest
distance between a pair of nodes and the smallest weight represents the longest distance.

A weighted adjacency matrix A= (aij)≥ 0 of size N × N , where N is the number of
nodes, was constructed. In this case, matrix A is symmetric (aij = aji) and undirected.
Following the mathematical strategy described in Demetrius & Manke (2004) we now
assume that the stochastic process is given by a Markov Matrix P = pij where pij ≥ 0 and
6jpij = 1. The stationary distribution of matrix P is described by Eq. (2),

πP =π (2)
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where π is defined as the left-hand eigenvector associated with the largest eigenvalue solved
with Mathcad 15TM software. The dynamical entropy of this process of each node, Hi, is
described by Eq. (3),

Hi=−
∑
j

πipij logpij (3)

where the term pij logpij is the standard Shannon entropy.

6aJL2 mutants
The synthesis of single-point mutants of 6aJL2 (Arg25His, Ile30Gly, Tyr36Phe, and
Gln6Asn) was performed using recursive PCR (Prodromou & Pearl, 1992). The obtained
DNAs were cloned into the pSyn1 expression vector (Schier et al., 1995). All of the
constructions were verified by nucleotide sequencing (Sanger, Nicklen & Coulson, 1977).
The variants were expressed in Escherichia coli BL21 (DE3) and purified as described
previously (Del Pozo-Yauner et al., 2008). The protein purity was verified using SDS-PAGE
electrophoresis, and the protein concentration was determined spectrophotometrically
at 280 nm in 6.5 M GdnHCl and 20 mM sodium phosphate buffer, pH 7.5, using molar
extinction coefficients calculated from the amino acid sequence using the ProtParam
software, which is available at the ExPASy website (Artimo et al. al., 2012).

Unfolding
Samples containing 50 µg/ml of protein in phosphate-buffered saline (PBS), pH 7.5, were
placed into a 3-ml quartz cuvette. Changes in the tryptophan fluorescence were measured
using a LS50B Perkin Elmer spectrofluorometer with an excitation wavelength of 295 nm
(2.5-mm bandwidth) and an emission wavelength of 355 nm (5-mm bandwidth). The
temperature was increased from 298 to 350 K at a rate of 1 K/min and then samples were
cooled to 298 K at the same rate. The data were analyzed using the thermal unfolding
Eq. (4), which was obtained from Eftink (1995).

FTrp=
(yn+mnT )+ (yd+mdT )e

(
1Hm
RTm
−
1Hm
RT

)

1+e
(
1Hm
RTm
−
1Hm
RT

) (4)

where FTrp is the tryptophan fluorescence, T is the temperature, Tm is the temperature of
the midpoint, 1Hm is the enthalpy at Tm, yn and mn describe the pre-transition phase,
and yd and md describe the post-transition phase. Non-linear regression was performed
using the OriginPro8TM software. The change in the Gibbs energy of the wild-type versus
the mutant (11G) was calculated for temperature- and denaturant-induced unfolding
processes using the following equations.

Thermal unfolding (Becktel & Schellman, 1987), Eq. (5):

11G=
1HmWT

TmWT
(TmMUT−TmWT) (5)

whereWT refers to the wild-type values andMUT refers to themutant values of themelting
temperature Tm, and 1Hm is the enthalpy value.
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Chemical unfolding (Creighton, 1990), Eq. (6):

11G=mWT(CmMUT−CmWT) (6)

wheremWT is the transition slope of the wild-type, and Cm is the denaturant concentration
at which 1G= 0.

RESULTS AND DISCUSSION
Many of the residues located at the hydrophobic core are considered essential (deleterious if
mutated), but it is hard to identify which one will be lethal through simple visual inspection
of a protein structure. In most cases reported so far, mutations increase the amount of
unstable conformers, rendering a protein more susceptible to external perturbations; and
this is more likely if the mutations are located at the inner core of the protein (Jackson et
al., 1993; Baldwin & Matthews, 1994; Lei & Duan, 2004; Kumar & Nussinov, 2001; Reed et
al., 2013). Additionally, evaluating the role of each position by replacing the corresponding
residue with any other amino acid becomes a more challenging task as the protein becomes
bigger. Therefore, we sought to generate a simple method to assess proteins independently
of their structural complexity (secondary, tertiary or even quaternary structure).

We selected several proteins with diverse topologies that have been thermodynamically
characterized to evaluate the effects of the incorporation of some single-point mutations
near neutral pH. Chymotrypsin inhibitor, 6aJL2, apoflavodoxin, arc repressor, estrogen
receptor/DNA estrogen/response element complex (ECR), cold shock protein of B.
caldolyticus (Csp C), cold shock protein of B. subtillis (Csp S), and the largely disordered
N-terminus domain of Janus Kinase interaction region were the representative proteins
chosen for this study (see Methods section for PDB details). Not only these proteins
were selected because they exhibit different folds, but also because they were analyzed
using distinct experimental procedures that provided different thermodynamic parameters
covering two-state and three state unfolding pathways. Most of the selected proteins have
been thermodynamically evaluated elsewhere through denaturation experiments using
single-point mutants (Milla, Brown & Sauer, 1994; Itzhaki, Otzen & Fersht, 1995; Perl &
Schmid, 2001; Banci et al., 2004; Campos et al., 2004a; Campos et al., 2004b; Wunderlich,
Martin & Schmid, 2005; Wunderlich & Schmid, 2006; Gribenko & Makhatadze, 2007; Del
Pozo-Yauner et al., 2008; Deegan et al., 2010; Hernández-Santoyo et al., 2010; Van den
Bedem, 2013;Del Pozo-Yauner et al., 2014).11G value represents the effect of a determined
mutation on the stability compared to the wild-type protein structure. On the other hand,
the estrogen receptor complex (ERC) was assessed by determining the affinity constant
(KD) against its target DNA. The percentage difference in terms of KD determines the
variation level in affinity between the wild-type ER homodimer and its mutant homodimer
when binding to its target DNA sequence. Both, percentages lower than 100 in KD and
negative 11G values indicate less stable structures.

We compared these experimental data with a network parameter- Grade (see File
S1). This parameter is defined as the number of neighbors of each node when any two
non-hydrogen atoms from residues i and j are within a cutoff distance (Li, Wang & Wang,
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Figure 1 Contrasting of network parameter grade against experimental values. Each point in the
graphics represents scores determined from the number of contacts surrounding the residue where the
mutation was performed (see File S1). (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc
repressor; (E) DNA-binding domain of the estrogen receptor w ; (F) cold shock protein from B. subtilis;
and (G) cold shock protein from B. caldolyticus.

2008). According to Fig. 1, there is a higher probability to affect the stability if the selected
node is highly surrounded in a cutoff distance of 5 Å. However, this parameter does not
provide a full hierarchization of each node; some nodes can share same grade-value but
exhibit a different impact on the stability. Another caveat is that size matters, because
bigger residues, such as tryptophan or phenylalanine, tend to make more interactions than
smaller residues, such as glycine or alanine (see File S1). Furthermore, proteins are not
rigid structural assemblies since most of their contacts are in a dynamical condition. Thus,
we suggest that the molecular dynamics of a protein should be gathered with more precise
network analyses in order to properly assess the influence of determined mutations on the
stability of the protein structure.

As a first step to assess this assumption, the crystallographic structures were subjected
to 25 ns of molecular dynamics simulations as described in the Methods section. The
completion of this process was confirmed by inspecting the Root Mean Square Deviation
(RMSD) values of the main chain indicating the convergence to a stationary structural
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Figure 2 Backbone RMSD. RMSD difference between the backbone of the crystallographic structure
and the corresponding structure present at the indicated time of molecular dynamics; this difference was
calculated using Desmond. There is an observable change after the first few nanoseconds of the dynam-
ics simulations, during which the structure is ‘‘heated,’’ but the protein remains stable after that moment.
(A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E) DNA-binding domain
of the estrogen receptor; (F) cold shock protein from B. subtilis; and (G) cold shock protein from B. cal-
dolyticus.

movement at 300 K (Fig. 2). Every 0.25 ns, a structure was extracted by means of generating
one hundred frames over all the simulation time in order to obtain a good representation
of the possible movements of both the lateral and the main chains. Next, a network analysis
was performed for each frame. In accordance with definitions, each protein residue and
each nucleotide base were considered as individual nodes. The center ofmass was calculated
based on all of the atoms of the node. The interaction strength between a pair of nodes
was measured in terms of the distance between their mass centers which was subsequently
normalized by the summation of their Van der Waals radii considering all their atoms, as
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Table 1 Statistics of theoretical scores—SDRIs. Skewness, kurtosis, and the normality of the SDRI dis-
tribution measured with Shapiro–Wilk test. SDRI distribution of globular proteins shows a good distribu-
tion unlike unstructured peptide. Analysis was performed using SigmaPlot11.0 software (Systat Software,
San Jose, CA).

Protein Skewness Kurtosis Shapiro–Wilk

Chymotrypsin inhibitor 0.16 –0.59 0.98
6aJL2 0.74 –0.03 0.95
Apoflavodoxin 0.80 0.12 0.95
Arc repressor 0.51 0.02 0.97
Complex estrogen/Receptor –0.11 –0.19 0.99
Cold shock protein BS 0.53 –0.67 0.94
Cold shock protein BC 0.61 –0.54 0.94
Unstructured peptide 1.75 2.15 0.71

stated in Materials and Methods section (values less than 1 imply that the interaction is
very strong).

We selected dynamical Shannon entropy as an approach to estimate connectivity being
aware that the results describe probabilistic values. The next step in the calculation process
included the use of eigenvector properties for which, the greater value, the more important
interaction. The inverse value of the mean normalized distance for the 100 frames was
calculated and rounded up to four decimals. At this point, we would like to emphasize
that this strategy makes a cutoff distance unnecessary. Then, each of these values was
incorporated into a square matrix that was, in turn, converted into a row stochastic
matrix. Assuming that the microscopic process of the network is Markovian, the matrix
was solved consistently using a dynamical entropy equation corresponding to a Markov
process (Demetrius & Manke, 2004; Costa et al., 2007). Each node is now associated with
a dynamical entropic value (Hi), which can be interpreted as a connectivity parameter
with a probabilistic character. We also presume that the movement restriction of each
node, which is represented by its Root Mean Square Fluctuation (RMSF) value derived
from the molecular dynamics, is associated with its dynamical entropic value. Therefore,
each node was scored by dividing its entropic value by its respective RMSF value, and this
score indicates the relative importance of each node within its respective structure (see File
S2). These theoretical scores were identified as structural-determining residue identifier
(SDRI). By normalizing SDRIs and plotting them against their sequence, SDRIs were
distributed throughout the structure (Fig. 3). Distribution statistics- skewness, kurtosis,
and Shapiro–Wilk test showed that globular proteins are near normal distribution unlike
the unstructured peptide which is described hereinafter (Table 1). Interestingly, structures
in complex—Arc repressor and Complex Receptor DNA, showed fewer residues with low
SDRI values compared to the other analyzed structures, suggesting that both are notably
less disordered.

We compared the distribution of the non-normalized SDRIs obtained in our study with
scores from the structure-based flexibility as well as the sequence-based intrinsic disorder
predisposition of the query proteins. The structural flexibility of these proteins was obtained
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Figure 3 Contrasting of SDRIs against their corresponding sequence. Each point in the graphics rep-
resents normalized SDRIs from the theoretical analysis according to their sequence position (see File S2).
Values near 0 indicate flexible and lesser connected residues while values near 1 indicate rigid and well-
connected residues: (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E)
complex of estrogen receptor α/DNA estrogen response element; (F) cold shock protein from B. subtilis;
(G) cold shock protein from B. caldolyticus; and (H) the JAK interaction region of SOCS5.

by utilizing the FlexPred tool that predicts the absolute fluctuations per-residue from a
three-dimensional structure using the B–factors of a query protein (Jamroz, Kolinski
& Kihara, 2012). The intrinsic disorder propensities per-residue of these proteins was
obtained by using PONDR R© VSL2B predictor, which is one of the more accurate stand-
alone disorder predictors (Fan & Kurgan, 2014; Peng et al., 2005; Peng & Kurgan, 2012).
Results of these comparisons are shown in Fig. 4 and clearly illustrated that these three
computational tools, SDRI, FlexPred, and PONDR R© VSL2B, can ‘‘see’’ different, although
related, features in a protein. Note that we used (1–SDRI) function instead of SDRI when
representing the SDRI values to compare data from these three tools ‘‘in phase’’ to highlight
intrinsic disorder instead of structural rigidness. These results suggested that there is a good
agreement between the structural flexibility calculated from the protein crystal structure
and the propensity of a protein to preserve disorder. Furthermore, it seemed that residues
essential for the preservation of the stability of global protein structure are typically located
within highly ordered and less flexible domains. In terms of spectral analysis, the visual
inspection of plots shown in Fig. 4 suggested that, inmany cases, the propensity for intrinsic
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Figure 4 Evaluating intrinsic disorder and structural flexibility.Distributions of predicted intrinsic dis-
order propensity evaluated by PONDR R© VSL2B (black curves), predicted structural flexibility estimated
by FlexPred (blue curves) and (1-SDRI) function ranking structure determining residues (red or pink
curves) for a set of query proteins: (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc
repressor; (E) DNA-binding domain of the estrogen receptor α; (F) cold shock protein from B. subtilis;
(G) cold shock protein from B. caldolyticus; and (H) the JAK interaction region of SOCS5. Propensities
for intrinsic disorder and (1-SDRI) function are scaled from 0 to 1. Since formation of two complexes—
dimeric Arc repressor and a complex between the estrogen receptor DNA-binding domain and the DNA
estrogen response element—resulted in a dramatic reduction of the amplitude of the (1-SDRI) function,
corresponding plots (D and E) also include expanded (1- SDRI) curves shown in pink.
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Figure 5 Contrasting of SDRIs against their corresponding experimental values. Each point in the graphics represents a single-mutation experi-
ment compared with the scores from the theoretical analysis (see File S3). In the case of homodimers, only the values for chain A are shown. Statis-
tical data is shown in terms of eigenvectors: DIM1 refers to SDRIs (Hi∗RMSF−1i ), and DIM2 refers to the experimental values,11G (DDG) or KD
percentage difference. (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E) complex of estrogen receptor α/DNA estro-
gen response element; (F) cold shock protein from B. subtilis; and (G) cold shock protein from B. caldolyticus.

disorder results in broad bands that define global appearance of the curves, whereas the
outputs of (1-SDRI) and FlexPred add fine structural resolution to the resulting plots.
Additionally, for some regions, noticeable disagreements can be found among the outputs
of these three tools, which can be attributed to the particular considerations of each tool.
Nevertheless, these important observations suggested that intrinsic disorder propensity,
predicted from amino acid sequence, serves as an important background defining global
flexibility of a protein 3D-structure which is fine-tuned by long-distance interactions taking
place in a folded molecule.

A more efficient way to exploit SDRIs was to visualize each node according to its
theoretical score; the higher SDRI the more important is the residue to preserve the
structure. In homodimeric domains (arc repressor and ERC) both monomers showed the
same distribution. In our analysis, the residues with highest SDRI values corresponded
to structure-determinant residues (Fig. 5). Complementarily, heat maps based on these
values facilitated the localization of essential residues or segments involved in a protein’s
biological function (Fig. 6). Despite that linear statistics parameters (R-squared and
Pearson Correlation Coefficient) showed low correlation between SDRIs and experimental
values (Table 2), visual inspection of Fig. 5 strongly suggested that a pattern was followed.
Therefore, we performed a statistical scrutiny applying Principal Component Analyses
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Figure 6 Ranking heat map. The highest SDRI, representing a highly connected node with restricted
movement, is shown in blue, and the lowest theoretically scored node, which is barely connected and ex-
hibits a high degree of movement, is represented in yellow (see File S2). The structures were prepared us-
ing the PyMOL software. (A) Chymotrypsin inhibitor (PDB entry 2CI2); (B) 6aJL2 (PDB entry 2W0K);
(C) apoflavodoxin (PDB entry 1FTG); (D) arc repressor (PDB entry 1ARR); (E) complex of estrogen re-
ceptor α/DNA estrogen response element (PDB entry 1HCQ); (F) cold shock protein from B. subtilis, and
(G) cold shock protein from B. caldolyticus.

Table 2 Statistics of SDRIs versus experimental results. Coefficient of determination (R2) and Pearson
correlation coefficient analysis describe mild correlation between SDRIs and experimental values. Analysis
was performed using SigmaPlot11.0 software (Systat Software, San Jose, CA).

Protein R2 Pearson correlation
coefficient

Chymotrypsin inhibitor 0.25 –0.50
6aJL2 0.22 –0.54
Apoflavodoxin 0.28 –0.55
Arc repressor 0.24 –0.50
Complex estrogen/Receptor 0.29 –0.54
Cold shock protein BS 0.06 –0.12
Cold shock protein BC 0.08 –0.21

(PCA) to identify data patterns of apparently uncorrelated variables (Abdi & Williams,
2010). Results were represented as circular biplots allowing us to examine the correlation
between variables SDRI and experimental data as vectors (see Fig. 5 and Fig. S2). Based on
biplots from PCA results and due to the angle between variables SDRIs and thermodynamic
data, it can be emphasized that the present method is able to estimate the effect of a single-
point mutation on protein structure depending on the importance of a given residue
irrespective of its position. The results confirmed our hypothesis that the most connected
and the most rigid residues are the most influential on the structural stability of the protein
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despite their involvement in any kind of structural organization. For example, the worst
effects in Arc repressor were observed in five mutants (VA22, EA36, IA37, VA41, and
FA45) that showed little or no cooperation in denaturation experiments (Milla, Brown &
Sauer, 1994). Remarkably, these mutations were performed on residues that matched with
high SDRI values (6, 4, 1, 2, and 19, respectively).

The next comparison was between the SDRIs of two structures that have different
thermodynamic stability in spite of their high sequence and high structural homology.
We selected the Cold shock protein from thermophilic B. subtilis (Csp S) and from
hyperthermophilic B. caldolyticus (Csp C) bacteria. Csp C and Csp S share a sequence
homology >80%, but the hyperthermophilic variant, Csp C, is more stable than its
thermophilic counterpart. Perl and Schmidt generated mutants in Csp S by directing
them to Csp C sequence (see Fig. S1) (Perl & Schmid, 2001). Our results show that Csp
S stabilizing mutations were performed over low connected and highly flexible residues,
residues with low SDRIs. Most stabilizing mutations of Csp S, that were directed to the
sequence of the hyperthermophilic variant- Csp C, were those incorporated on the surface
bonding flexible residues through the formation of salt bridges. Likewise, Tokuriki and
Tawfik reported that mutations on surface residues of their analyzed proteins resulted in
low destabilizing effects while mutations on core residues caused stronger destabilizing
effects (Tokuriki & Tawfik, 2009).

We are particularly interested in the characterization of 6aJL2, an immunoglobulin
light chain variable domain, based on the fact that 6a is the most implicated germ line in
AL amyloidosis disease (Comenzo et al., 2001). Destabilizing mutations of 6aJL2 enhances
its propensity to generate protein fibers. Strikingly, the crystallographic structures of
destabilizing mutants exhibited a low RMSD difference when overlapped against the
wild-type structure (Hernández-Santoyo et al., 2010). To experimentally demonstrate
our hypothesis, we selected four residues with low RSA values but different SDRIs to
perform single-point mutations: Gln6Asn, Arg24His, Tyr36Phe, and Ile29Gly (SDRIs
0.5055, 0.3273, 0.3274, and 0.2057, respectively). Despite that the greatest destabilization
impact was detected when the size of the lateral chain was minimized, as observed with
mutant Ile29Gly (RSA 2.2%, 11G=−3.61 kcal mol−1), mutant Gln6Asn (RSA 12%,
11G=−3.34 kcal mol−1) was more relevant due to the neutrality of the change. The
lateral chain size-reduction by one methylene had a remarkable impact on the protein
stability. We selected residue Gln6 in 6aJL2 because it is a highly conserved residue in
immunoglobulin light chains sequence alignments (Williams et al., 1996). Opposite to
this neutral mutation, Tyr36Phe did not affect the structure suggesting that the hydroxyl
group of the tyrosine is not playing a relevant role (RSA 0.6%,11G=−0.04 kcal mol−1).
While Arg24His (RSA 10%, 11G=−2.70 kcal mol−1) performed in this work was
more destabilizing than reported mutation Arg24Gly (11G=−1.52 kcal mol−1) (Del
Pozo-Yauner et al., 2008), other effects should be considered like Phe2 reorientation to the
upper hydrophobic core to compensate the absence of the Arg24 guanidinium group (Del
Pozo-Yauner et al., 2014). Interestingly, Phe2 is not among the residues with higher SDRIs
in 6aJL2 pointing out that compensatory effects might be attributable to the flexibility of
the lateral chain.
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This prompted us to assess about the role of residues or protein segments with the
lowest SDRIs. Since proteins can interact with other proteins and other macromolecular,
important residues not only maintain the connectivity along the tertiary structure but
also maintaining quaternary structure as seen in the complex of the estrogen receptor
with DNA by modifying the affinity (Deegan et al., 2010). We found that the most flexible
and unconnected regions were associated with active site functions, as in the case of
apoflavodoxin, to which the cofactor, flavin mononucleotide, binds (Genzor et al., 1996).
In chymotrypsin inhibitor, the larger loop, which is flexible and unconnected, harbors the
active site (Jackson et al., 1993). However, not all mutations can enhance the stability while
preserving the original function of a protein. In the case of T4 lysozyme, somemutants were
found to be more stable but resulted in losses of the protein’s original function (Shoichet et
al., 1995). If the purpose is to modify the function of a protein, potential mutations should
be assessed by other means, such as evolutionary multiple sequence alignment (Alexander
et al., 2009; Halabi et al., 2009). If the aim is only to increase the protein stability, a good
approach could be locating the less structurally important residues and generating changes
that benefit the formation of salt bridges as shown in apoflavodoxin.Mutations localized on
the surface and designed to establish salt bridges were able to increase the overall stability
in apoflavodoxin (Campos et al., 2004b). Remarkably, these mutations were performed on
the low-scored SDRI residues.

Since folding requires certain flexibility degree, we analyzed the relationship between
kinetic data with SDRIs. Other experiments performed in chymotrypsin inhibitor were
folding/unfolding kinetics (Fig. 7) (Itzhaki, Otzen & Fersht, 1995). In this case, the SDRIs
showed a better correlation with the 11G unfolding kinetic values (75% from the PCA
analysis) than the11G folding kinetic values (57% from the PCA analysis). We would like
to reiterate that folding is a dynamic rearrangement of the network because longer times
and other conditions are required for better simulations of the protein folding/unfolding
pathways.

Our last validation was performed over an intrinsically disordered peptide, resolved
by NMR in solution, which only showed a small structured portion of the peptide
(Chandrashekaran et al., 2015). Before applying the network strategy described here,
the RMSD of each one of the 20 frames was calculated by comparing them against the
first frame (Fig. 8A). It was evident that there is a remarkable structural motion freedom
at the N-terminus, even higher than those obtained by molecular dynamics of the other
proteins described here (Figs. 2, 4 and 8B). In order to follow the methodology proposed
here, RMSF values of the main chain of each residue were calculated using RCI server
(Berjanskii & Wishart, 2013). An important difference compared to globular proteins was
the distribution statistics of the SDRIs, having the highest value dispersion dissimilar to
a normally distributed population (Table 1 and Fig. 4H). The most connected and less
flexible residues were located in the hairpin, shown in Fig. 8C, which contributes to the
scaffolding functionality allowing phosphorylation of Ser211. Also, the plasticity of the
disordered N-terminus would enable this peptide to bind multiple components of the
signaling pathway in which it is involved (Chandrashekaran et al., 2015).
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Figure 7 Comparison of SDRIs with the kinetic unfolding and kinetic refolding processes of the chy-
motrypsin inhibitor.Unfolding kinetics exhibited a better correlation with SDRIs as shown in circular bi-
plots. DIM1 refers to SDRIs (Hi∗RMSF−1i ), and DIM2 refers to the experimental values,11G (DDG) or
KD percent difference (see File S3). (A)11G Unfolding kinetics, uDDG in circular biplot; (B)11G Re-
folding kinetics, fDDG in circular biplot.

It should be noticed that applying this methodology on proteins with high structural
motion might not provide enough information to predict which residues will interact
with ligands. Unstructured peptides can be analyzed by other means (Kosol et al., 2013;
Shaw et al., 2010). We simulated the unbound estrogen receptor and, despite the drastic
change on the ranking position and the SDRIs, it is not evident which segments of the
estrogen receptor dimer will recognize precise DNA sequence (see File S4). Furthermore,
we decided to extend 6aJL2 simulation time to 50 ns and we only detected subtle, but not
significant, changes on SDRIs for this globular protein (see File S4). Thus, appropriate
molecular dynamics simulation accomplished on globular proteins is an essential step
for this methodology. Moreover, our results agreed with sequence-based predictors that
look up for the intrinsically disordered segments regardless protein complexity. SDRI
values displayed a versatile mathematical parameter since function (1-SDRI) might be
applicable to highlight disordered segments. Such disordered segments may increase the
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Figure 8 Applying SDRI approach over an unstructured peptide. Largely disordered N-terminus of
suppressor of cytokine signaling 5 mammalian suppressor of Janus Kinase interaction region. (A) RMSD
values by comparing each frame against first frame from PDB 2N34. (B) RMSF values of each residue
showing that hairpin domain is more rigid than the rest of the protein. (C) Ranking heat map where the
highest SDRI is shown in blue and the lowest SDRI is represented in yellow (see File S2).

capability of organisms to tolerate environmental challenges by diversifying the properties
of their proteins to recognize several molecular partners such as cofactors, DNA, or other
proteins. Higher SDRI values imply higher probabilities to modify protein stability, but
there is a higher tendency to destabilization. As reported by Tokuriki & Tawfik (2009),
one of the evolutionary implications of protein destabilization is that other functions or
adaptations may be achieved. Finally, under the scenario of analyzing uncommon foldings
or even structures bearing non-natural amino acids, our method might be suitable to assess
structure stability since it does not depend on previous information such as an evolutionary
multiple sequence alignment. In conclusion, we have validated a method for the analysis
of globular proteins by ranking each one of their residues according to their structural
relevance from a theoretical score- SDRI.
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