
*For correspondence:

d.stjohnston@gurdon.cam.ac.uk

Present address: †The

Weatherall Institute of Molecular

Medicine, University of Oxford,

Oxford, United Kingdom; ‡Max

Planck Institute for

Developmental Biology,
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Abstract bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis

onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at

stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the

oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in

shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion

experiments demonstrate that the RNA is stably anchored at the anterior, independently of

microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring.

Super-resolution imaging reveals that bicoid mRNA forms 110–120 nm particles with variable RNA

content, but constant size. These particles appear to be well-defined structures that package the

RNA for transport and anchoring.

DOI: 10.7554/eLife.17537.001

Introduction
mRNA localisation is a widely-used mechanism for targeting proteins to the regions of the cell where

they are required and is often coupled to translational repression to prevent expression of the

encoded protein until after its transcript is localised (Lécuyer et al., 2007; Jambor et al., 2015).

This is particularly important during axis formation in organisms such as Drosophila and Xenopus

where mRNAs localise during oogenesis to provide the primary patterning signals for the embryo. In

Drosophila, the anterior-posterior axis is determined by the microtubule-dependent localisation of

bicoid (bcd) and oskar (osk) mRNAs to the anterior and posterior poles of the oocyte, respectively

(Pokrywka and Stephenson, 1991; Clark et al., 1994; Roth et al., 1995). bcd mRNA is translation-

ally repressed during oogenesis and is only translated when the egg is laid, providing a local source

of Bcd protein, which diffuses to form a morphogen gradient that patterns the anterior half of the

embryo (Ephrussi and St Johnston, 2004). By contrast, osk mRNA is translated when it reaches the

posterior of the oocyte to produce long and short isoforms of Oskar protein (Markussen et al.,

1995; Rongo et al., 1995). Long Oskar anchors its own RNA, whereas short Oskar nucleates the

polar granules, leading to the posterior recruitment of the germ line determinants and the abdomi-

nal determinant, nanos mRNA (Wang and Lehmann, 1991; Ephrussi and Lehmann, 1992;

Vanzo and Ephrussi, 2002).

Both bcd and osk mRNAs are transcribed in the nurse cells within the germline cyst and are then

transported along microtubules through the ring canals into the oocyte by Dynein (Clark et al.,

2007; Mische et al., 2007). The localisation of osk mRNA to the posterior of the oocyte requires the

plus end-directed microtubules motor protein, Kinesin-I (Brendza et al., 2000). Live imaging of
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fluorescently-labelled osk mRNA reveals that it forms particles that undergo rapid movements in all

directions with a slight posterior bias, indicating that the RNA takes a biased random walk to the

posterior cortex, where it is then anchored (Zimyanin et al., 2008). Since almost all osk mRNA

movements depend on Kinesin-I, the microtubule cytoskeleton appears to be largely disordered,

with a small excess of microtubule plus ends pointing posteriorly. This is consistent with measure-

ments of the direction of growing microtubule plus ends, which reveal that most grow from the ante-

rior/lateral cortex and extend in random directions with a weak orientation bias that is stronger

close to the posterior pole (Parton et al., 2011).

How bcd mRNA is targeted to the anterior of the oocyte at mid-oogenesis is less well under-

stood. Disrupting the Dynein/Dynactin complex by over-expressing Dynamitin causes either a poste-

rior spreading or complete delocalisation of bcd mRNA, suggesting that the RNA is localised by

Dynein-dependent, minus end-directed transport along microtubules (Clark et al., 1997;

Duncan and Warrior, 2002; Januschke et al., 2002). However, as Dynein is also required for bcd

mRNA transport into the oocyte, it is hard to distinguish direct from indirect effects. Furthermore,

injected naı̈ve bcd mRNA accumulates at the nearest region of the anterior/lateral cortex to its site

of origin and not specifically at the anterior, consistent with the observation that microtubules ends

are anchored or nucleated from all of the cortex except the very posterior pole (Cha et al., 2001).

Only pre-treatment with nurse cell cytoplasm renders in vitro transcribed RNA competent to localise

specifically to the oocyte anterior, and this conditioning requires the the pseudonuclease Exuperan-

tia (Exu) (Cha et al., 2001). The role of Exu in the localisation of bcd mRNA requires its homo-dimer-

isation and RNA binding (Lazzaretti et al., 2016). Finally, computer simulations of the microtubule

network in the anterior region of the oocyte suggest that it has little orientation bias, making it

unlikely that RNA movement towards microtubules minus ends can account for the rapid anterior

accumulation of the RNA (Trong et al., 2015).

The number of genes required for bcd mRNA localisation increases as oogenesis proceeds, sug-

gesting distinct mechanisms localise the RNA at different stages. exu is required at all stages of

localisation, whereas swallow, the g-tubulin ring complex (g-TURC), staufen and the ESCRT-II com-

plex are only needed from stage 10b onwards (Berleth et al., 1988; St Johnston et al., 1989;

eLife digest Molecules of messenger RNA, or mRNA for short, contain the instructions needed

to make proteins. Many mRNAs are only found in certain parts of the cell to ensure that the

corresponding proteins are only produced where they are actually needed. The mRNAs are

delivered to their final location in the cell by motor proteins that move along tracks made of

filaments called microtubules.

In female fruit flies, a mRNA called bicoid is transported to front end of a developing egg cell,

while another mRNA called oskar is moved to the rear end. When the egg is fertilized, the region

that contains bicoid mRNA develops into the head of the embryo, while the other end gives rise to

the abdomen. A motor protein called kinesin-1 transports the oskar mRNA to the rear end, but how

bicoid mRNA moves to the front end is not clear.

Trovisco et al. used microscopy to study how bicoid mRNA moves. The experiments show that

another motor protein called Dynein moves bicoid mRNA along microtubules. However, unlike oskar

mRNA, bicoid mRNA moves along microtubules in all directions and is not biased towards the front

end of the cell. Trovisco et al. hypothesized that when bicoid mRNA reaches the front end of the

egg it is trapped there by other factors.

Further experiments found that bicoid mRNA is indeed anchored at the front end of the cell. The

mRNA does not seem to be trapped at the ends of the microtubules along which it is transported,

nor does it form large clumps. Instead, it forms small, well-defined particles that remain the same

size as the egg develops. The findings of Trovisco et al. raise the possibility that bicoid mRNA is

packaged into these particles in order to be transported and anchored at the front end of the egg

cell. Future work is needed to understand how particles containing bicoid mRNA are tethered at the

front end of the egg cell and whether other mRNAs are also packaged in a similar manner.

DOI: 10.7554/eLife.17537.002
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Ferrandon et al., 1994; Irion and St Johnston, 2007; Schnorrer et al., 2000, 2002; Weil et al.,

2006). The g-TURC forms a new microtubule organising centre (MTOC) in the middle of the anterior

cortex at this stage and this coincides with the re-localisation of bcd mRNA from an anterior ring

into a central disc adjacent to the MTOC. Furthermore, live imaging of stage 10b-12 oocytes reveals

that bcd mRNA particles move towards the anterior in a Dynein-dependent manner (Weil et al.,

2006, 2008). Since the RNA localisation is labile, it has been proposed that it is not anchored at the

anterior at this stage and continually diffuses away, to be re-localised by Dynein-mediated transport

(Weil et al., 2008).

Here we use fast live imaging, fluorescence recovery after photo-bleaching, photo-conversion

and super-resolution microscopy to investigate the mechanism of the initial localisation of bcd

mRNA to the anterior at stage 9. Our results indicate that at this stage the mRNA is not localised by

continual directed transport, but by random active transport and anterior anchoring.

Results
In order to visualise bcd mRNA in living oocytes, we took advantage of the MS2-system for fluores-

cently labelling RNA in vivo, in which the RNA contains multiple MS2 stem-loops that are bound by

the MS2 coat protein (MCP) coupled to a fluorescent reporter (Bertrand et al., 1998;

Forrest and Gavis, 2003; Weil et al., 2008). The original genomic bicoid-MS2 transgenes

expressed full-length bcd mRNA from its endogenous promoter fused to 6 copies of the MS2 stem

loop (Weil et al., 2006), but the relatively low numbers of MCP-GFP bound per RNA and the low

expression levels made the RNA hard to image, particularly in fast moving particles. We therefore

generated a construct in which the maternal a4 tubulin promoter drives the expression of the bcd

3’UTR fused to 11 copies of the MS2 stem-loop (bcdMS2), as the 3’UTR is sufficient for all steps in

bcd RNA localisation (Macdonald and Struhl, 1988). The removal of the coding region allowed us

to express this RNA at higher levels without disrupting embryonic development by expanding the

Bcd morphogen gradient (Namba et al., 1997). Co-expression of bcdMS2 with MCP-GFP (bcd*GFP)

gave strong labelling of bcd mRNA, which showed an identical localisation to the endogenous tran-

script at all stages of oogenesis (Figure 1A–B, data not shown).

Kinesin-I antagonises the Dynein-dependent transport of bcd mRNA
Fast, high magnification wide-field imaging of bcd*GFP in stage 9 oocytes revealed many small RNA

particles that moved at speeds of up to 2.2 mm/sec (Figure 1C–D, Video 1). All movements were

abolished by treatment with the microtubule-depolymerising drug, Colcemid, whereas the actin

depolymeriser, Cytocholasin D, caused premature cytoplasmic streaming but had no effect on parti-

cle motility (Figure 1—figure supplement 1A, Video 2, data not shown). These results are consis-

tent with the observation that bcd mRNA localisation at all stages of oogenesis is disrupted by

microtubule-depolymerising drugs, and supports the view that particle movements play a role in

delivering the mRNA to the oocyte anterior (Pokrywka and Stephenson, 1991; Weil et al., 2006).

The bcd mRNA particles in oocytes with one copy of bcdMS2 moved with an average velocity of

0.64 mm/sec, which is significantly faster than osk mRNA particles (0.47 mm/sec) imaged under equiv-

alent conditions (Zimyanin et al., 2008) (Table 1, Table 1—source data 1, Figure 1D). This differ-

ence was even more marked when we imaged egg chambers expressing two copies of bcdMS2,

with the mean velocity increasing to 0.78 mm/s (Table 1, Table 1—source data 1, Figure 1D). This

increase is presumably because the signal from the fastest particles is spread across more camera

pixels per frame (6 pixels for particles moving at 2 mm/s, imaged for 0.25 s), making them harder to

detect. Doubling their brightness therefore increases the efficiency of detection of the fastest

particles.

The observation that bcd mRNA particles move at nearly twice the average speed of osk mRNA

particles suggests that they are transported by different motor proteins. The most likely candidate

for a motor that transports bcd mRNA is cytoplasmic Dynein, since putative microtubule minus end

markers are enriched anteriorly (Clark et al., 2007, 1997). It is not possible to test null mutations in

Dynein components, as these block oocyte determination. We therefore used a combination of

hypomorphic alleles of the Dynein heavy chain, Dhc6-10/Dhc8-1, that has previously been shown to

reduce the speed of mRNA movement towards the microtubule minus ends in the embryo

(Bullock et al., 2006). bcd mRNA particles moved with a mean velocity of 0.50 mm/sec in Dhc6-10/
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Figure 1. bcd mRNA is actively transported by cytoplasmic Dynein along microtubules. (A–B) Confocal microscopy images of stage 9 egg chambers

showing that the endogenous (A; FISH) and transgenic bcd mRNA (B; bcd*GFP) have the same anterior-lateral localization (arrowheads); DNA (DAPI) in

blue. (B) Left – mid-sagittal plane, with bcd*GFP in green and actin (Phalloidin-TRITC) in red; middle – mid-sagittal plane, with bcd*GFP alone; right –

maximum intensity projection over half of the oocyte volume, showing the anterior-lateral ring of bcd*GFP. (C) Time-projection of high-magnification,

wide-field live imaging of bcd*GFP particles; the green arrows highlight moving particles; the blue line marks the oocyte anterior; insets are

magnifications of the dashed white boxes. (D) Speed distribution of fast osk mRNA (black; Zimyanin et al, 2008) or bcd mRNA particles (red - one

copy of bcd*GFP; blue - two copies of bcd*GFP). (E) Boxplot of the speeds of bcd mRNA particles in wild-type and mutant oocytes. (F) Speed

distribution of fast bcd mRNA particles in wild-type and Khc27 mutant oocytes. (G) Time-projection of high-magnification, wide-field live imaging of

bcd*GFP particles in wild-type and mutant oocytes; yellow circles highlight static particles, red circles highlight moving particles and the blue line

indicates the oocyte anterior; the percentages show the mobile fraction of bcd mRNA particles during 5 s intervals. (H) Dlic-GFP in wild-type, Khc27 and

Khc23 mutant stage 9 oocytes.

DOI: 10.7554/eLife.17537.003

The following figure supplement is available for figure 1:

Figure supplement 1. bcdmRNA is actively transported by cytoplasmic Dynein along microtubules.

DOI: 10.7554/eLife.17537.004

Trovisco et al. eLife 2016;5:e17537. DOI: 10.7554/eLife.17537 4 of 34

Research article Cell Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.17537.003
http://dx.doi.org/10.7554/eLife.17537.004
http://dx.doi.org/10.7554/eLife.17537


Dhc8-1 compared with 0.78 mm/sec in wild-type

oocytes (Table 1, Table 1—source data 1,

Figure 1E, Figure 1—figure supplement 1C).

We observed a similar reduction in the velocities

of bcd mRNA particles in Dhc8-1/+ heterozygotes

(59% of wild-type; Table 1, Table 1—source

data 1, Figure 1E, Figure 1—figure supplement

1C), suggesting that Dhc6-10 has little effect on

motor speed and that Dhc8-1 has a dominant

negative effect. Consistent with this, homozygous

mutant germline clones of Dhc8-1 showed an

even greater reduction in particle velocity to 39%

of the wild-type speed (Table 1, Table 1—source

data 1, Figure 1E, Figure 1—figure supplement

1C). Thus, this allele produces a functional motor

protein that still moves, but significantly more

slowly than the wild-type protein. The strong

reduction in the speed of bcd mRNA particles in

Dhc8-1 homozygotes indicates that the majority

are transported by Dynein. The Dhc8-1 mutant also significantly reduces the amount of bcd mRNA

localised to the anterior (Figure 1—figure supplement 1D). This does not seem to be due to

reduced frequency of movement because the mobile fraction of bcd mRNA particles is unaffected in

Dhc6-10/Dhc8-1 mutants (26% in wild-type versus 22% in mutant; Table 2, Table 2—source data 1,

Figure 1G). Thus, slower Dynein-dependent transport, presumably both from the nurse cells into the

oocyte and within the oocyte, impairs the delivery of bcd mRNA to the oocyte anterior.

Null mutations in the Kinesin heavy chain (Khc) also disrupt the localisation of bcd mRNA, with

the majority of oocytes showing spreading of the RNA along the anterior and lateral cortex

(Januschke et al., 2002) (Figure 1—figure supplement 1E). It is unclear whether this phenotype

arises because Kinesin-I plays a direct role in the transport and/or anchoring of bcd mRNA. Kinesin-I

transports Dynein to the oocyte posterior, indicating that the two motors can associate in the same

complex, and Kinesin-I could therefore affect bcd mRNA indirectly, for example by recycling Dynein

to the oocyte posterior for further rounds of minus end-directed transport, or by modulating the

activity of Dynein (Januschke et al., 2002; Palacios and St Johnston, 2002). To test the role of

Kinesin-I directly, we analysed the movement of bcd mRNA particles in germline clones of the null

allele, Khc27(Brendza et al., 2000). Surprisingly, the velocity of bcd mRNA particle movements was

significantly increased in the absence of Kinesin-I, with an average speed of 0.98 mm/sec, compared

to 0.64 mm/sec in wild-type (Table 1, Table 1—

source data 1, Figure 1E–F, Figure 1—figure

supplement 1C). This increase could be

explained if a fraction of the bcd mRNA particles

are transported at low speeds by Kinesin-I, so

that its loss raises the average velocity by remov-

ing the slow population of moving particles. If so,

one would expect the fraction of mobile particles

to be reduced in Khc27. In wild-type, approxi-

mately 20% of the bcd mRNA particles move

over a five second period (Table 2, Table 2—

source data 1, Figure 1G), which is nearly twice

the proportion observed for osk mRNA

(Zimyanin et al., 2008). In Khc27 mutants, the

mobile fraction more than doubled to 47%

(Table 2, Table 2—source data 1, Figure 1G).

Thus, both the speed and frequency of bcd

mRNA particle motility are increased in the

absence of Kinesin-I, making it highly unlikely that

this motor is responsible for a significant

Video 1. (related to Figure 1C) – bcd mRNA

assembles into particles that undergo fast active

transport. High-magnification, wide-field live imaging

of bcd*GFP in stage 9 oocytes. The right panel shows

the fast moving RNA particles as coloured tracks.

Images were acquired at a rate of 0.64 s/frame.

DOI: 10.7554/eLife.17537.005

Video 2. (related to Figure 1—figure supplement 1C)

– bcd mRNA particles undergo microtubule-dependent

active transport. High-magnification, wide-field live

imaging of bcd*GFP in stage 9 oocytes, with and

without depolymerisation of microtubules. Left – mock;

Right – Colcemid (400 mg/ml). The fast moving RNA

particles are shown as coloured tracks. Images were

acquired at a rate of 0.18 s/frame.

DOI: 10.7554/eLife.17537.006
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proportion of the movements. Furthermore, bcd mRNA particles showed virtually no reversals of

movement in either wild-type or Khc27 mutants (1.9% versus 1.5%, respectively), suggesting the

RNA does not alternate between transport by motors of opposing polarity.

Another way to test the role of Kinesin-I is to analyse two mutants, Khc17 and Khc23, with single

amino acid changes in the motor domain that reduce the speed of Kinesin-I movement without

affecting its other properties (Brendza et al., 1999; Serbus et al., 2005; Zimyanin et al., 2008).

Like the null allele, germline clones of Khc17 and Khc23 also caused a significant increase in the mean

velocity of bcd mRNA particle movements (0.89 mm/sec and 1.0 mm/sec, respectively) (Table 1,

Table 1—source data 1, Figure 1E). This rules out the possibility that Kinesin-I is responsible for the

slow movements of bcd mRNA particles, as this would result in a decrease in the average velocity in

the mutants. Kinesin-I must therefore act by some other mechanism to reduce the speed of move-

ment by another motor, presumably Dynein, for example by engaging in a tug of war. The slow

allele, Khc23, has little effect on the fraction of mobile particles (25%), compared to 47% in the null

allele (Table 2, Table 2—source data 1, Figure 1G), indicating that the effects on speed and fre-

quency are separable. One possible explanation for this difference is that the slow allele still trans-

ports the Dynein/Dynactin complex to the posterior pole of the oocyte, albeit more slowly, whereas

the null allele does not (Januschke et al., 2002) (Figure 1H). The absence of Dynein transport to the

Table 1. Parameters of fast bcd mRNA in wild-type and mutant oocytes.

Genotype
(2x
bcd*GFP)

Tracks
(n)

Movies
(n)

Oocytes
(n)

Anterior
Mov (%/
n)

Binomial
P-value a)

Speed
±S.E.
M. (mm/
s)

Wilcoxon
P-value b)

Mixed-
effects
P-value c)

Track
distance ±S.
E.M. (mm)

Anterior
displacement
±S.E.M. (mm/s)

Wilcoxon
P-value d)

Wild-type 1181 32 9 52.6 /
621

0.040 * 0.78 /
0.01

1.41 / 0.03 0.02 / 0.02 0.200

Dhc6-10/8-1 669 7 5 50.8 /
340

0.350 0.50 /
0.01

<2.2E-16 *** 6.90E-10 *** 1.61 / 0.05 0.01 / 0.01 0.500

exu1 215 17 4 53.0 /
114

0.207 0.47 /
0.02

<2.2E-16 *** 3.10E-09 *** 1.39 / 0.07 0.03 / 0.02 0.230

Genotype
(1x
bcd*GFP)

Tracks
(n)

Movies
(n)

Oocytes
(n)

Anterior
Mov (%/
n)

Binomial
P-value a)

Speed
±S.E.M.
(mm/s)

Wilcoxon
P-value b)

Mixed-
effects
P-value c)

Track
distance ±S.
E.M. (mm)

Anterior
displacement
±S.E.M. (mm/s)

Wilcoxon
P-value d)

Wild-type 450 22 13 54.4 /
245

0.033 * 0.64 /
0.01

0.98 / 0.05 0.02 / 0.02 0.135

Khc27 GLC 921 14 6 53.7 /
495

0.013 * 0.94 /
0.01

<2.2E-16 *** 1.60E-06 *** 1.55 / 0.04 0.01 / 0.02 0.272

Khc17 GLC 639 21 12 53.2 /
340

0.057 0.89 /
0.02

<2.2E-16 *** 2.00E-04 *** 1.60 / 0.05 0.02 / 0.02 0.401

Khc23 GLC 612 15 5 53.9 /
330

0.029 * 1.01 /
0.02

<2.2E-16 *** 2.20E-06 *** 1.67 / 0.06 0.06 / 0.03 0.044 *

Dhc8-1/+ 141 7 4 - - - - - - 0.38 /
0.02

3.61E-16 *** 3.00E-04 *** 1.15 / 0.08 0.06 / 0.02 - - -

Dhc8-1

GLC
43 16 7 - - - - - - 0.25 /

0.02
<2.2E-16 *** 3.10E-07 *** 0.72 / 0.06 -0.05 / 0.03 - - -

a) Binomial test for the frequency of anterior-directed movements being >50% (one-tailed)

b) Wilcoxon rank sum test for speed comparisons - comparison to wild-type (2x bcd*GFP or 1x bcd*GFP)

c) Mixed-effects linear model (LMER) test for speed comparisons – comparison to wild-type (2x bcd*GFP or 1x bcd*GFP). Fixed Effect: Genotype; Ran-

dom Effects: Variability between oocytes and movies

d) Wilcoxon 1-sample test for the net anterior displacement. Null hypothesis: mean=0 (two-tailed)

*p<0.05; **p<0.01; ***p<0.001

- - - Not applicable / Not done

DOI: 10.7554/eLife.17537.007

Source data 1. Tracking of bcd*GFP particles in wild-type and mutant stage 9 oocytes. Includes the data in: Table 1; Figure 1 panels D–F; Figure 2,

panels A–E; Figure 2—figure supplement 1, panel C.

DOI: 10.7554/eLife.17537.008
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posterior in the null mutant will therefore increase the concentration of Dynein at the anterior of the

oocyte, which could account for the more than doubling of the frequency of particle movement in

this region.

The localisation of bcd mRNA at all stages depends on Exu protein (Berleth et al., 1988) and we

therefore also examined the behaviour of bcd mRNA particles in the mutant, exu1, which reduces

the affinity of Exu to RNA (Lazzaretti et al., 2016). Very few particles were visible in exu1 homozy-

gous oocytes, and these moved significantly less frequently than normal (7%) and at a reduced

speed (Table 1, Table 1—source data 1, Table 2, Table 2—source data 1, Figure 1E,G, Figure 1—

figure supplement 1C). Thus, Exu is required for both the formation of bcd mRNA particles and

their efficient transport on microtubules, consistent with the dimerisation of Exu (possibly leading to

the dimerisation of bcd mRNA) and the results obtained from bcd mRNA injections (Cha et al.,

2001; Lazzaretti et al., 2016). The residual bcd mRNA motility in the mutant may explain why a

small amount of RNA is still diffusely localised at the anterior of exu mutant oocytes (Figure 1—fig-

ure supplement 1F).

Lack of a strong directional bias in bcd mRNA particle movement
We next assessed the directionality of bcd mRNA particle movements to determine if it could

account for the anterior accumulation of the mRNA. We found only a slight excess of movements

towards the anterior compared to the posterior over a region up to 40 mm from the anterior of the

oocyte (52.6% versus 47.4%, p=0.04) (Figure 2A). The particles were tracked on near-surface optical

sections, where they were better detected, but a similarly weak directional bias was also observed in

deeper optical sections (Figure 2—figure supplement 1A–B). The velocity of the movements in

each direction was not significantly different, and the net displacement was also not significantly dif-

ferent from zero (Table 1, Table 1—source data 1, Figure 2A–C). To test whether this bidirectional

movement reflected motors moving in opposite directions along a strongly polarised microtubule

cytoskeleton, or mainly unidirectional transport along a weakly polarised cytoskeleton, we measured

the velocity in each direction in slow Dynein mutants. All Dhc mutant combinations reduced the

velocity of posterior movements to the same extent as of anterior movements (Figure 2B,D). Thus,

Dynein is responsible for the majority of particle movements both towards and away from the ante-

rior cortex, and the absence of a strong bias in the direction of bcd mRNA transport is due to the

very weak polarisation of the microtubule cytoskeleton in this anterior region. This is in good agree-

ment with tracking of plus-ends of microtubules (Parton et al., 2011) and computer simulations of

the oocyte microtubule network, which predict almost no bias in the orientation of microtubules

near the anterior and a stronger bias in the posterior (Trong et al., 2015). The exu mutant caused a

similar reduction in speed in both directions (Figure 2B), whereas Khc mutants increased the speed

in both directions, consistent with the unpolarised nature of the microtubule network at the anterior

(Figure 2D–E).

Table 2. Mobile fraction of bcd mRNA particles in wild-type and mutant oocytes.

Genotype Oocytes Mobile fraction/5 s T-test P-value a)

bcd*GFP/+ 5 0.22 ± 0.03

bcd*GFP/+;Khc27 GLC 5 0.47 ± 0.02 0.0004 ***

bcd*GFP/+;Khc23 GLC 4 0.25 ± 0.02 0.624

bcd*GFP/bcd*GFP;Dhc6-10/8-1 4 0.26 ± 0.05 0.556

bcd*GFP/bcd*GFP;exu1 4 0.07 ± 0.01 0.006 **

a) T-test for comparison of mobile fractions (two-tailed) - comparisons to bcd*GFP/+ (wild-type)

**p<0.01; ***p<0.001

DOI: 10.7554/eLife.17537.009

Source data 1. Mobile fraction of bcd*GFP particles in wild-type and mutant stage 9 oocytes. Includes the data in:

Table 2; Figure 1, panel G.

DOI: 10.7554/eLife.17537.010
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We classified the particle movements according to their distance from the anterior cortex to

determine if the bias varies across this region (Figure 2A). This revealed that there is a strong ante-

rior bias of 12% in the movements of particles that are more than 10 mm from the anterior cortex

(39.6% versus 27.6%), but this decreases to 6% in the region 5–10 mm from the anterior and reverses

in the 0-5 mm region (20.8% versus 23.9%) to give a 3% excess of movements away from the anterior

(Figure 2A). Similar results were obtained when tracking bcd mRNA particles deeper in the oocyte

(Figure 2—figure supplement 1A–B, Figure 2—source data 1). Our analysis therefore indicates

that although Dynein-dependent transport is required for bcd mRNA localisation, it is not sufficient

to explain its robust anterior accumulation, because Dynein moves the RNA in and out of the anteri-

ormost region at similar rates. This is incompatible with a model in which bcd mRNA is maintained

by continuous anteriorly-directed transport, as has been proposed to occur at later stages of oogen-

esis (Weil et al., 2006). Instead, the data suggest that bidirectional transport facilitates the delivery

Figure 2. Fast bcd mRNA particles have little directional bias towards the oocyte anterior. (A) Directionality of the fast bcd*GFP particles imaged near

the cortex of stage 9 oocytes; i) Windchart of the frequency of movements per angle interval; the upper semi-circle shows all particles whereas the

lower semi-circle shows particles according to their distance from the oocyte anterior; ii) Frequency and average speed of bcd*GFP particles moving

towards the anterior or posterior of the oocyte; iii) Frequency table of bcd*GFP particles moving in anterior, posterior or lateral directions. (B–C)

Average speed (mean ± S.E.M., 9 oocytes) (B) and speed distribution (C) of bcd*GFP particles moving towards the anterior (black bar) or posterior (red

bar) of wild-type oocytes. (D–E) Average speed (mean ± S.E.M., 6 oocytes) (D) and speed distribution (E) of bcd*GFP particles moving towards the

anterior (black bar) or posterior (red bar) of Khc27 mutant oocytes. (F–H) Confocal images of microtubules (a-tub; F), endogenous bcd mRNA (RNA

FISH; G) or endogenous hts mRNA (RNA FISH; H) in wild-type and shot2A2 mutant oocytes.

DOI: 10.7554/eLife.17537.011

The following source data and figure supplement are available for figure 2:

Source data 1. Tracking of bcd*Tom particles in wild- stage 9 oocytes.

DOI: 10.7554/eLife.17537.012

Figure supplement 1. Fast bcd mRNA particles have little directional bias towards the oocyte anterior.

DOI: 10.7554/eLife.17537.013
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Figure 3. Localised bcd mRNA is anchored at the anterior of the oocyte. (A–E) Confocal time-series of FRAP experiments at the anterior of stage 9

oocytes (A–C) and the corresponding fluorescence recovery curves (D–E). (A–B) Egg chambers expressing bcd*GFP were treated with Colcemid (B,

400 mg/ml) or control vehicle alone (A) 20 min prior to photobleaching. (C) Egg chamber expressing only MCP-GFP. (D–E) Graphs of FRAP of bcd*GFP

or MCP-GFP alone, before (D) or after (E) removal of the fast-recovering, nonspecific component. (F–K) Confocal time-series of photo-converted

localised bcd*Dendra2 (F,I), osk*Dendra2 (G) and hts*Dendra2 (H) and the corresponding fluorescence decay graphs after removal of the fast-

recovering, nonspecific component (J–K). Dashed lines mark the outline of the oocyte; arrows indicate the photobleached or photo-converted regions

and the insets are the corresponding close-ups. *** F-test P value <0.0001. N.S. Statistically not significant.

DOI: 10.7554/eLife.17537.014

Figure 3 continued on next page
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of bcd mRNA particles to the anterior where they are specifically sequestered by some other

mechanism.

To further test whether bcd mRNA localisation is independent of a polarised microtubule cyto-

skeleton, we examined the phenotype of shot2A2 (Chang et al., 2011). shot2A2 disrupts the anchor-

ing of microtubules to the anterior/lateral cortex of the oocyte, resulting in a largely unpolarised

microtubule network and the failure to localise osk mRNA to the posterior

(Figure 2F) (Nashchekin et al., 2016). bcd mRNA localises normally in shot2A2 mutant oocytes,

despite the lack of directional bias in microtubule orientation (Figure 2G). For comparison, we ana-

lysed the behaviour of hu-li tai shao (hts) mRNA, which also localises anteriorly, but to a somewhat

broader region than bcd mRNA and with different genetic requirements (Ding et al., 1993). Unlike

bcd mRNA, the anterior enrichment of hts mRNA is largely lost in shot2A2 (Figure 2H). Thus, hts

mRNA localises by a different mechanism to bcd mRNA that depends on the weakly polarised micro-

tubule cytoskeleton in the vicinity of the anterior.

Anterior anchoring of bcd mRNA
The proposal that there is a mechanism that retains or anchors bcd mRNA once it reaches the ante-

rior predicts that the mRNA should be relatively stable at the anterior, whereas the continual trans-

port model predicts a rapid turn-over of the localised RNA. To distinguish between these

possibilities, we performed Fluorescent Recovery After Photobleaching (FRAP) experiments on local-

ised bcd mRNA in stage 9 oocytes. The rate of recovery was best fit by two exponential curves, sug-

gesting the existence of fast and slow recovering populations (Figure 3A,D, Video 3). Furthermore,

only the slow population was affected by microtubule-depolymerisation with Colcemid (Figure 3B,

D, Video 3), which abolishes the active transport of bcd mRNA particles (Figure 1—figure supple-

ment 1A, Video 2). The fast population is therefore likely to correspond to highly-diffusive, nonspe-

cific signal, most likely from autofluorescent background and/or free MCP-GFP. Consistent with this,

FRAP on the cytoplasm of nurse cells, which have very low levels of bcd mRNA, or at the anterior of

oocytes expressing MCP-GFP alone, yielded very fast recoveries that fit single exponential curves

(Table 3, Table 3—source data 1, Figure 3C–D). We therefore used the recovery in the nurse cells

to fit the FRAP data to a bi-exponential and then removed the nonspecific, fast component (see

Material and Methods). The remaining specific signal recovered to 33% over an hour in untreated

oocytes, a value that is reduced to 10% by Colcemid treatment (Table 3, Table 3—source data 1,

Figure 3 continued

The following source data and figure supplement are available for figure 3:

Source data 1. Photo-conversion data for bcd*Dendra2 and grk*Dendra2 (only timepoints 10 min and 60 min after photo-conversion).

DOI: 10.7554/eLife.17537.015

Figure supplement 1. Localised bcd mRNA is anchored at the anterior of the oocyte.

DOI: 10.7554/eLife.17537.016

Table 3. FRAP kinetics of localised bcd mRNA.

Sample Mobile fraction @ 20 min Fluorescence Half-time (min) Oocyte (n)

MCP-GFP - St9 0.76 3.7 6

bcd*GFP / Nurse cell - St9 0.71 2.0 8

Sample Mobile fraction @ 55 min Fluorescence Half-time (min) Oocytes (n) F-test P-value a)

bcd*GFP - St9 - Mock 0.33 52.2 9

bcd*GFP - St9 - Colcemid 0.10 75.6 9 <0.0001

a) F-test for pairwise comparison of fluorescence recovery curves - comparisons to bcd*GFP/+ (wild-type)

DOI: 10.7554/eLife.17537.017

Source data 1. FRAP data for MCP-GFP and bcd*GFP in stage 9 oocytes.
Includes the data in: Table 3; Figure 3, panels D–E.

DOI: 10.7554/eLife.17537.018
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Figure 3E). Thus, most bcd mRNA is stably

anchored at the anterior cortex at stage 9, and

the limited recovery is predominantly due to

microtubule-dependent delivery of mRNA.

The FRAP experiments cannot distinguish

whether the recovery is due to the de novo deliv-

ery of newly-synthesised bcd mRNA or to the

recycling of previously localised RNA from out-

side the bleached region, as predicted by the

continual transport model. To distinguish

between these possibilities, we generated a

transgene expressing MCP fused to the photo-

convertible protein Dendra2 (MCP-Dendra2) so

that we could label only the RNA that is already

localised (Gurskaya et al., 2006;

Chudakov et al., 2007). 63% of photo-converted

bcd mRNA (bcd*Dendra2) remained localised in

the same small region over a 55 min period, in

good agreement with the FRAP data (Table 4,

Table 4—source data 1, Figure 3F,J, Video 4).

Moreover, there was very little spreading of the photo-converted RNA along the anterior margin,

arguing against continual re-localisation of the RNA (Figure 3F).

We also analysed the behaviour of MS2-tagged hts mRNA labelled with MCP-Dendra2 (hts*Den-

dra2). Unlike bcd mRNA, photo-converted hts*Dendra2 showed marked spreading along the ante-

rior cortex and was significantly more labile, with less than half (41%) of the signal remaining by the

end of the time course (Figure 3H,I, Video 5). Both the spreading and the lower retention of local-

ised hts mRNA are consistent with the idea that its anterior enrichment depends on continual trans-

port, unlike bcd RNA at stage 9 of oogenesis.

As bcd RNA has been proposed to be localised by continual active transport beginning at stage

10b, we examined if the retention of localised bcd mRNA varies during oogenesis, by performing

similar photo-conversion experiments on stage 10b, stage 13 and stage 14 oocytes. The RNA is sig-

nificantly more mobile at stage 10b, with only 36% remaining in the ROI after 55 min (Figure 3K),

consistent with the results of Weil et al. (2006). Stage 13 showed similar levels of retention to stage

9, but the RNA was significantly more stable at stage 14, coincident with the formation of larger

aggregates (Figure 3J–K) (Weil et al., 2008). bcd mRNA therefore appears to be localised by a dis-

tinct mechanism at stage 10b, when fast cytoplasmic streaming starts and the RNA relocalises from

an anterior ring into a central disc (Theurkauf et al., 1992; Schnorrer et al., 2000, 2002).

Video 3. (related to Figure 3A–B) – Anteriorly-

localised bcd mRNA has slow and limited turn-over.

FRAP of anteriorly-localised bcd*GFP in stage 9

oocytes, with and without depolymerisation of

microtubules. Left – Control; Right – Colcemid (400 mg/

ml). Confocal images were acquired every 5 min, for

60 min.

DOI: 10.7554/eLife.17537.019

Video 4. (related to Figure 3F) – Localised bcd mRNA

is stably anchored at the oocyte anterior. Photo-

conversion of anteriorly-localised bcd*Dendra2 in a

stage 9 oocyte. Left – Unconverted bcd*Dendra2 in

green, photo-converted in red; Right – Photo-

converted bcd*Dendra2 alone. Confocal images were

acquired every 5 min, for 55 min.

DOI: 10.7554/eLife.17537.022

Video 5. (related to Figure 3H) – Localised hts mRNA

is less stable at the oocyte anterior and spreads

laterally. Photo-conversion of anteriorly-localised

hts*Dendra2 in a stage 9 oocyte. Left – Unconverted

hts*Dendra2 in green, photo-converted in red; Right –

Photo-converted hts*Dendra2 alone. Confocal images

were acquired every 5 min, for 55 min.

DOI: 10.7554/eLife.17537.023
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Since our results suggest that bcd mRNA is anchored in some way at the anterior of the oocyte at

stage 9, we compared its behaviour to that of osk and gurken (grk) mRNAs, which are both

anchored to the cytoskeleton after their localisation (Delanoue et al., 2007;

Vanzo and Ephrussi, 2002). Although osk RNA is more stably anchored than bcd mRNA, with 80%

of the signal remaining at the end of the experiment (Figure 3G,I), grk and bcd mRNAs showed

almost identical retention rates (Figure 3—figure supplement 1C–D, Figure 3—source data 1).

The greater retention of osk mRNA compared to bcd and grk mRNAs could reflect distinct anchor-

ing mechanisms, but might also be due to different conditions at the posterior of the oocyte relative

to anterior, where bcd and grk RNAs localise. To directly test of the effects of position within the

oocyte, we examined bcd mRNA stability in strong grk mutants, in which bcd mRNA localises to

both anterior and posterior poles (González-Reyes et al., 1995; Roth et al., 1995). Photo-con-

verted bcd mRNA at the posterior of grk mutants yielded decay kinetics indistinguishable from those

of RNA at the anterior of wild-type oocytes (Figure 3—figure supplement 1E–F, Table 4, Table 4—

source data 1). Thus, the stability of localised bcd mRNA is intrinsic and not a consequence of the

local geometry of the oocyte.

We next investigated mechanisms that might retain bcd mRNA at the anterior cortex. grk mRNA

is anchored at the dorsal anterior corner of the oocyte by the binding of static Dynein to minus ends

of microtubules, a mechanism that also anchors pair rule transcripts apically in the blastoderm

embryo (Delanoue and Davis, 2005; Delanoue et al., 2007). We therefore tested whether the ante-

rior retention of bcd mRNA is microtubule-dependent by culturing the egg chambers in the pres-

ence of Colcemid. Although the microtubules were completely depolymerised after ten minutes, as

monitored with the microtubule binding protein, Tau-GFP, bcd mRNA labelled with MCP-Tomato

(bcd*Tom) remained tightly localised after 1 hr (Figure 4A, Video 6). Furthermore, performing the

same experiment with photo-converted RNA revealed that the immobile fraction increased from

65% to 78% in the absence of microtubules (Table 4, Table 4—source data 1, Figure 4B–C). Thus,

the anchoring of bcd mRNA is microtubule-independent, and microtubule-dependent processes

enhance its depletion from the anterior cortex. It is notable that bcd mRNA is as stably localised as

osk mRNA in the absence of microtubules, with only about 20% loss over the period of 55 min. hts

Table 4. Photo-conversion kinetics of localised mRNAs.

Sample Mobile fraction @ 20 min Fluorescence Half-time (min) Oocytes (n)

bcd*Dendra2 / Nurse cell - St9 0.93 3.2 10

mRNA Mobile fraction @ 55 min Fluorescence Half-time (min) Oocytes (n) F-test P value

bcd*Dendra2 - St9 0.37 26.0 10

osk*Dendra2 - St9 0.20 173.6 5 <0.0001 a)

hts*Dendra2 - St9 0.59 31.7 10 <0.0001 a)

bcd*Dendra2 - St10 0.64 16.1 8 <0.0001 a)

bcd*Dendra2 - St13 0.39 24.5 7 0.81 a)

bcd*Dendra2 - St14 0.24 138.5 10 <0.0001 a)

bcd*Dendra2 / grk2E12/2B6 - St9 0.40 33.2 11 0.91 a)

bcd*Dendra2 / 2x bcdMS2 - St9 0.44 51.4 5 0.4 a)

mRNA Mobile fraction @ 55 min Fluorescence Half-time (min) Oocytes (n) F-test P value

bcd*Dendra2 - St9 - Mock 0.35 27.9 5 0.86 a)

bcd*Dendra2 - St9 - Colcemid 0.22 152.1 5 <0.0001 a),b)

a),b) F-test for pairwise comparison of fluorescence recovery curves. Comparisons to (a) bcd*Dendra2 - St9 or (b) bcd*Dendra2 - St9 - Mock

DOI: 10.7554/eLife.17537.020

Source data 1. Photo-conversion data for all samples (MCP-Dendra2; bcd*Dendra2, osk*Dendra2 and hts*Dendra2 in wild-type stage 9 oocytes;
bcd*Dendra2 in stages 10b, 13 and 14 wild-type oocytes; bcd*Dendra2 in wild-type stage9 oocytes expressing 2 copies of the bcdMS2 transgene;
bcd*Dendra2 in grk mutant stage9 oocytes; bcd*Dendra2 in wild-type stage 9 oocytes treated with Colcemid or mock Control). Includes the data in:

Table 4; Figure 3, panels J-K; Figure 3—figure supplement 1, panels B, F; Figure 4, panel C.

DOI: 10.7554/eLife.17537.021
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Figure 4. bcd mRNA is not anchored on microtubules at the anterior of stage 9 oocytes. (A–B) Confocal time-series of stage 9 egg chambers

expressing bcd*TOM and Tau-GFP (A) or bcd*Dendra2 (B) treated with the microtubule-depolymerising drug, Colcemid (mock or 400 mg/ml); the

arrows indicate anteriorly localised bcd*TOM (A) or photo-converted bcd*Dendra2 (B) and the insets are the corresponding close-ups. (A) Colcemid

was added to medium 15 min after the beginning of imaging; Images on the right are maximum intensity projections over the Z-dimension, showing

Figure 4 continued on next page
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mRNA was more sensitive than bcd mRNA to the depletion of microtubules at stage 9, with only a

small amount of RNA remaining localised (Figure 4D).

By contrast to stage 9, treating stage 10b egg chambers with Colcemid led to the loss of most

bcd mRNA from the anterior, except for a small amount around the oocyte nucleus (Figure 4E). This

is consistent with the lower anterior retention of photo-converted bcd mRNA at stage 10b. This

reduction in stability coincides with the assembly of new MTOC in the middle of the anterior cortex

and the relocalisation of the RNA from an anterior ring to a central disc (Schnorrer et al., 2000,

2002). The microtubule-dependence of bcd mRNA retention is transient, however, and microtubule

depolymerisation had little effect on the stability of the localisation at stage 11 and stage 13

(Figure 4E).

bcd RNA is not anchored to microtubules
Although Colcemid depolymerises all detectable microtubules in the oocyte, short ’stumps’ of

microtubules may persist where the minus ends are attached to the cortex, which could provide

anchors for bcd mRNA. We therefore examined the distribution of bcd mRNA particles relative to

the microtubule minus ends, using the microtubule minus end-binding protein Patronin as a marker

(Goodwin and Vale, 2010;

Hendershott and Vale, 2014). Although both

Patronin-labelled microtubule minus ends and

bcd mRNA particles are most concentrated at

the anterior corners of the oocyte, they very

rarely overlap (Figure 4F). Analysing their distri-

butions using the van Steensel method gives a

Pearson’s correlation coefficient of 0.1 at zero

displacement, indicating that only a very small

proportion of bcd mRNA particles co-localise

with microtubule minus ends (Figure 4G, Fig-

ure 4—source data 1) (van Steensel et al.,

1996). We obtained similar results when using

the microtubule-associated protein, Tau, as

marker for stable microtubule ends in the pres-

ence of Colcemid (Figure 4—figure supplement

1A–B, Figure 4—source data 2) (Parton et al.,

2011). The small degree of co-localisation makes

it unlikely that the RNA is anchored to minus

ends by static Dynein.

Since microtubules do not appear to anchor

bcd mRNA, we turned to cortical actin, which has

Figure 4 continued

the anterior-lateral ring of bcd*TOM. (B) Colcemid was added to the medium 20 min prior photo-conversion of localised bcd*Dendra2. (C) Graph of

the fluorescence decay of photo-converted Dendra2 (B), after removal of the fast-recovering, nonspecific component; ***F-test p value <0.0001. (D)

Confocal imaging of endogenous hts mRNA (FISH) in stage 9 (left - single confocal section; right - maximum intensity projection of the full volume of

the oocyte) and stage 10b egg chambers after 90 min treatment with Colcemid (mock or 400 mg/ml); DNA (DAPI) in blue; asterisk indicates the oocyte

nucleus. (E) Confocal images of bcd*TOM in stage 10b, 11 and 13 egg chambers after 90 min treatment with Colcemid (mock or 400 mg/ml); asterisks

indicate the oocyte nucleus. (F–G) High magnification wide-field two-colour imaging of bcd*GFP and the minus-end microtubule marker, mCherry-

Patronin, in stage 9 oocytes (F), and the corresponding Van Steensel co-localisation analysis (G).

DOI: 10.7554/eLife.17537.024

The following source data and figure supplement are available for figure 4:

Source data 1. Van Steensel co-localisation analyses of bcd*GFP and mCherry-Patr.

DOI: 10.7554/eLife.17537.025

Source data 2. Van Steensel co-localisation analyses of bcd*Tom and Tau-GFP.

DOI: 10.7554/eLife.17537.026

Figure supplement 1. bcdmRNA is not anchored on microtubules at the anterior of stage 9 oocytes.

DOI: 10.7554/eLife.17537.027

Video 6. (related to Figure 4A) – Localised bcd mRNA

is anchored at the oocyte anterior independently of

microtubules. Confocal live imaging of bcd*Tom and

the microtubule marker, Tau-GFP, in stage 9 oocytes,

with and without depolymerisation of microtubules.

Top – mock control; Bottom – Colcemid (400 mg/ml).

Colcemid was added 15 min after the start of imaging.

Confocal images were acquired every 5 min.

DOI: 10.7554/eLife.17537.028
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been implicated in keeping the RNA localised at later stages (Weil et al., 2006, 2010). To explore

an earlier role of actin on bcd mRNA localisation, we cultured stage 9 oocytes in the presence of the

actin depolymerising drug, Cytochalasin D. The treatment interfered with the cytoplasmic actin

mesh, as it induced premature cytoplasmic streaming (data not shown) (Dahlgaard et al., 2007), but

did not significantly affect the cortical actin or the distribution of bcd mRNA (Figure 5A). Since the

drug treatment experiment was not conclusive, we applied two-colour Stimulated Emission

Figure 5. bcd mRNA is not directly anchored on cortical actin at the anterior of stage 9 oocytes. (A) Confocal imaging of stage 9 egg chambers

expressing bcd*GFP (green) and labelled for actin (Phalloidin-TRITC, red), after 90 min treatment with the actin-depolymerising drug, Cytochalasin D

(mock or 10 mg/ml). (B–C) STED super-resolution mid-sagittal (B) or surface (C) images of stage 9 egg chambers expressing bcd*GFP (stained with GFP-

Booster-ATTO647N, green) and labelled for actin (Phalloidin-ATTO590, red); spectral unmixing was applied to the images; the blue line indicates the

oocyte anterior.

DOI: 10.7554/eLife.17537.029
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Depletion (STED) super-resolution microscopy to investigate whether bcd mRNA is anchored on

actin, but detected virtually no co-localisation between them (Figure 5B–C). These data suggest that

cortical actin is unlikely to act as a direct anchor for bcd mRNA during stage 9.

In many cases, RNAs are retained in a specific location by their incorporation into large particles,

such as the polar granules at the posterior of the Drosophila oocyte or the P granules in C. elegans

(Little et al., 2015; Trcek et al., 2015; Elbaum-Garfinkle et al., 2015). bcd mRNA has been shown

to be associated with P-bodies, which may act to prevent its translation during oogenesis

(Weil et al., 2012). This raises the possibility that sequestration in P-bodies also plays a role in

anchoring bcd mRNA at the anterior. We observed that bcd mRNA particles partially co-localise

with P-bodies, particularly at the very anterior of the oocyte. First, van Steensel co-localisation analy-

sis of bcd mRNA (bcd*GFP) and the P-body component, Trailerhitch (Tral-mRFP), gave Pearson’s

correlation coefficients of 0.3 and 0.2 at the very anterior and adjacent cytoplasm of the oocyte,

respectively (Figure 6A–B, Figure 6—source data 1). Second, two-colour STED super-resolution

microscopy revealed that bcd mRNA particles are enriched within P-bodies, particularly in the larger

aggregates, but are also found free in the cytoplasm (Figure 6C). P-bodies are ubiquitous in the

cytoplasm, however, and are most abundant in the posterior pole plasm (Figure 6D). Thus, incorpo-

ration of bcd RNA into P-bodies could play a role in retaining the RNA at the anterior, but there

must be some additional mechanism to ensure that the RNA is only sequestered once it has reached

its destination.

Figure 6. bcd mRNA partially co-localise to P-bodies at the anterior of stage 9 oocytes. (A–B) High magnification wide-field imaging of bcd*GFP

(green) and the P-body component, Tral-mRFP (red) (A), and the corresponding Van Steensel co-localisation analysis (B) in stage 9 oocytes. (C) STED

super-resolution imaging of a stage 9 egg chamber expressing bcd*GFP (GFP-Booster-ATTO647N, green) and immuno-labelled for the P-body

component Me31B (ATTO590, red); spectral unmixing was applied to the image; the blue line indicates the oocyte anterior. (D) Confocal image of a

wild-type stage 9 oocyte expressing bcd*GFP (green) and Tral-RFP (red). (E) Confocal imaging of endogenous bcd mRNA (RNA FISH) in wild-type and

Ge-1D5 mutant stage 9 oocytes.

DOI: 10.7554/eLife.17537.030

The following source data is available for figure 6:

Source data 1. Van Steensel co-localisation analyses of bcd*GFP and Tral-mRFP.

DOI: 10.7554/eLife.17537.031
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Figure 7. bcd mRNA assembles into stereotypical particles. (A–F) STED super-resolution imaging of mRNA particles labeled with GFP (A–D) or single

molecule fluorescence in situ hybridization (smFISH) (E–F). (A,C,D) bcd*GFP in wild-type stage 9 (A) and stage 14 oocytes (C, confocal mode on the left,

STED mode on the right), and exu1/exuVL stage 9 oocytes (D). (B) hts*GFP in wild-type stage 9 oocytes. (E–F) smFISH of endogenous bcd mRNA in

stage 9 and stage 14 oocytes. The blue lines indicate the oocyte anterior; the insets are close-ups of the dashed boxes, confocal mode on the left,

STED mode on the right. (G–H) Boxplots of the sizes of RNA particles labelled with MCP-GFP (G) or smFISH (H). (G) bcd*GFP, grk*GFP and hts*GFP in

stage 9 oocytes. (G’) bcd*GFP particles from wild-type and exu1/exuVL stage 9 oocytes. (G’’) bcd*GFP particles in wild-type oocytes at stage 9 and the

isolated particles at stage 14. (G’’’) bcd*GFP particles in stage 9 oocytes expressing one or two copies of the bcdMS2 transgene. (H) bcd RNA particles

in wild-type oocytes at stage 9 and isolated or clustered particles at stage 14. (H’) Stage 9 oocytes expressing only endogenous bcd RNA or one or two

additional copies of the bcdMS2 transgene. (I) Relative amounts of bcd 3’UTR (RT-qPCR) in ovaries expressing only endogenous bcd mRNA (yw) or one

or two additional copies of the bcdMS2 transgene (2 primer pairs, mean ± S.E.M., 3 biological replicates). (J–K) Scatterplots of particle sizes versus

distance from the anterior in stage 9 oocytes. (J) MCP-GFP-labelled transgenic bcdMS2. (K) smFISH-labelled endogenous bcd RNA. *p<0.05; **p <0.01.

DOI: 10.7554/eLife.17537.032

The following figure supplement is available for figure 7:

Figure supplement 1. bcd mRNA assembles into stereotypical particles.

DOI: 10.7554/eLife.17537.033
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To test the role of P-bodies more directly, we examined bcd mRNA localisation in germline

clones of a null mutation in the core P-body component, Ge-1, which has been reported to disrupt

P-body structure (Fan et al., 2011). The localisation of bcd mRNA appeared normal in Ge-1D5

clones, however, suggesting that P-body integrity is not required for bcd mRNA anchoring

(Figure 6E).

Table 5. Analyses of mRNA particle properties.

Genotype Particles (n)

Particle
size ±S.E.
M. (nm)

Mixed-
effects test P-
value a)

Mixed-
effects test P-
value b)

Summed fluorescence ±S.
E.M. (a.u.)

Mixed-
effects
test P-
value c)

Mixed-
effects
test P-
value d)

MS2-
labelling

bcd*GFP - St9 732 111.9 ± 1.1 - - - 0.14 - - - - - - - - -

grk*GFP - St8-9 376 106.5 ± 1.6 0.41 - - - - - - - - - - - -

hts*GFP - St9 284 76.6 ± 1.0 0.002 ** 0.56 - - - - - - - - -

bcd*GFP / exu1

- St9
224 97.9 ± 1.8 0.046 * - - - - - - - - - - - -

bcd*GFP - St14
(isolated)

165 109.6 ± 2.5 0.56 - - - - - - - - - - - -

bcd*GFP – St9 /
1x bcdMS2

293 100.2 ± 1.5 0.07 0.78 155.1 ± 5.3 - - - 0.11

bcd*GFP – St9 /
2x bcdMS2

292 105.3 ± 1.6 0.19 - - - 149.3 ± 5.1 0.50 - - -

smFISH bcd - St9
e n d o g e n o u s
(yw)

901 125.9 ± 1.0 - - - <0.0001 *** 204.4 ± 5.4 - - - 0.13

bcd – St14
(isolated)
endogenous
(yw)

749 116.3 ± 1.2 0.044 * - - - 687.7 ± 30.0 <0.0001 *** - - -

bcd – St14
(clustered)
endogenous
(yw)

125 124.6 ± 2.6 0.84 - - - - - - - - - - - -

bcd – St9
endogenous +
1x bcdMS2

935 128.6 ± 1.0 0.28 - - - 264.8 ± 7.4 <0.0001 *** - - -

bcd – St9
endogenous +
2x bcdMS2

1509 124.6 ± 0.8 0.74 - - - 328.5 ± 7.4 <0.0001 *** - - -

a) Mixed effects linear model (LMER) test for comparison of RNA particle sizes (FWHM). Fixed effect: mRNA / Genotype; Random effect: variability

between oocytes. Compared to bcd*GFP - St9 or bcd - St9 endogenous (yw)

b) Mixed effects linear model (LMER) test to analyse the effect of the distance from the anterior on the RNA particle sizes (FWHM). Fixed effect: Dis-

tance from anterior; Random effect: variability between oocytes.

c) Mixed effects linear model (LMER) test for comparison of the summed fluorescence of RNA particles. Fixed effect: mRNA / Genotype; Random effect:

variability between oocytes. Compared to bcd*GFP - St9 / 1x bcdMS2, or bcd - St9 endogenous (yw)

d) Mixed effects linear model (LMER) test for comparison of the summed fluorescence of RNA particles. Fixed effect: Distance from anterior; Random

effect: variability between oocytes

- - - Not applicable / Not determined

a.u. arbitrary units

*p<0.05; **p<0.01; ***p<0.001

DOI: 10.7554/eLife.17537.034

Source data 1. Properties of RNA particles from STED super-resolution imaging. Includes the data in: Table 5; Figure 7, panels G–K; Figure 8, panles

A–D.

DOI: 10.7554/eLife.17537.035
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Figure 8. The RNA content of the bcd mRNA particles increases during oogenesis and with higher gene dosage. (A–B) Scatterplots of the summed

fluorescence intensities of bcd RNA particles versus distance from the anterior at stage 9. (A) GFP-labelled transgenic bcdMS2. (B) smFISH-labelled

endogenous bcd RNA (yw genotype). (C–D) Boxplots of the summed fluorescence intensities of bcd RNA particles. (C) smFISH-labelled bcd RNA

particles from stage 9 oocytes expressing only endogenous bcd mRNA (yw) or one or two additional copies of the bcdMS2 transgene. (D) smFISH-

labelled bcd RNA particles from stage 9 and stage 14 (isolated) oocytes expressing only endogenous bcd mRNA (yw). ***p<0.001.

DOI: 10.7554/eLife.17537.036
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Exu is required for the assembly of bcd mRNPs
The highly structured 3’UTR of bcd mRNA contains dimerisation/oligomerisation domains (stem-

loop III) that are required for its efficient transport and apical localisation in the syncytial

blastoderm embryo (Ferrandon et al., 1997; Wagner et al., 2001; Snee et al., 2005). This raises

the possibility that the RNA is retained at the anterior by aggregating into larger and less diffusive

particles. We therefore used STED microscopy to visualise MS2/MCP-labelled RNA particles with

high resolution. Imaging of stage 9 oocytes revealed that bcd, grk and hts mRNAs form regular par-

ticles (Figures 5B-C,6C,7A–B, data not shown). We then used a fluorescence intensity curve fitting

method to estimate the sizes of the particles (see Material and Methods, Figure 7—figure supple-

ment 1A). bcd and grk mRNAs particles averaged 112 nm and 106 nm, respectively, whereas hts

mRNA particles were significantly smaller, averaging 77 nm (Table 5, Table 5—source data 1,

Figure 7A-B,G).

bcd mRNA forms larger aggregates at stage 14 of oogenesis, but super-resolution imaging

revealed that these are still composed of small, discrete RNA particles (Figure 7C). As the particles

in clusters are about 200 nm apart in the XY dimension (224 nm and 202 nm mean distance to near-

est neighbour in stage 9 and 14 oocytes, respectively), each ~700 nm optical Z-section is likely to

include more than one particle. This causes a high and irregular background, leading to overestima-

tion of fluorescence intensities and unreliable curve fittings. Nevertheless, the estimated size of iso-

lated bcd mRNA particles at stage 14 was comparable to those in stage 9 oocytes (Table 5,

Table 5—source data 1, Figure 7G). This suggests that bcd mRNA particles remain relatively homo-

geneous in size throughout oogenesis, despite of their clustering into large, semi-ordered aggre-

gates at stage 14.

To confirm these findings, we also performed STED imaging on endogenous bcd RNA labelled

by single molecule FISH (smFISH) with probes spanning the 3’UTR. This technique also revealed that

bcd RNA forms particles that remain approximately the same size throughout oogenesis, although

they appear slightly larger than those seen with MS2-GFP labelling, presumably because smFISH

labels the entire bcd 3’UTR, not just the MS2 sites in the RNA (Table 5, Table 5—source data 1,

Figure 7E–F). To explore if particle remodelling plays a role in anchoring bcd mRNA at the anterior,

we compared the properties of particles at different distances from the anterior margin of stage 9

oocytes. The average size of bcd mRNA particles measured by both MS2-labelling and smFISH did

not change substantially with the distance from the anterior (Table 5, Table 5—source data 1,

Figure 7J–K), arguing against their coalescence upon localisation.

The uniform size of bcd mRNA particles, regardless of their location or the stage of oogenesis,

was unexpected and suggests that the RNA is incorporated into a well-defined structure rather than

assembling into aggregates of variable size depending on the RNA concentration. We tested this

hypothesis by comparing the sizes of the particles formed by the endogenous RNA in wild-type

oocytes with those formed in oocytes expressing either one or two additional copies of bcdMS2,

which raises the RNA levels to 1.75x and 3.25x the endogenous level, respectively (Figure 7I). The

size of the bcd RNA particles remained constant with increasing RNA concentration (Table 5,

Table 5—source data 1, Figure 7G–H), but we observed significantly more particles (172%) in

oocytes expressing 2 copies of bcdMS2 compared to just the endogenous RNA alone. Consistent

with this, extra bcdMS2 RNA did not affect the decay kinetics in photo-conversion experiments, indi-

cating that the diffusion characteristics of the particles were also constant under differing RNA con-

centrations (Figure 7—figure supplement 1B). These experiments demonstrate that the size of bcd

mRNA particles is insensitive to the concentration of mRNA, supporting the view that the RNA is

assembled into a distinct structure of uniform size. Indeed, the only condition that altered the size of

the bcd mRNA particles was the exu1 mutant, which strongly reduces the affinity of Exu for RNA

(Lazzaretti et al., 2016). In this case, the few particles that were detected were slightly, but signifi-

cantly, smaller (98 nm versus 112 nm) (Table 5, Table 5—source data 1, Figure 7D–E). Thus, Exu

may provide part of the scaffolding for the assembly of bcd mRNA particles.

To determine whether the particles also contain the same amount of RNA throughout oogenesis

and at different bcd gene dosages, we used the summed fluorescent intensities of the particles as

a measure of their RNA content. The average fluorescent intensity of the particles detected by both

MS2-labelling and smFISH did not change with distance from the anterior, reinforcing the conclusion

that the particles do not fuse upon localisation and anchoring at the anterior (Figure 8A–B). By
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contrast, the mean fluorescence intensity of the particles increased when bcd mRNA levels were

raised by expressing one or two copies of the bcdMS2 transgene, with 30% and 60% more fluores-

cence, and thus more RNA, per particle respectively (Table 5, Table 5—source data 1, Figure 8C).

Furthermore, stage 14 particles contained more than 3 times as much RNA as those at stage 9

(Table 5, Table 5—source data 1, Figure 8D). It has previously been shown that most bcd RNA

enters the oocyte during nurse cell dumping at stage 10b-12 (Weil et al., 2006), suggesting that

much of this extra RNA is incorporated into pre-existing RNA particles. Thus, the bcd RNA particles

have a variable RNA content, despite their constant size.

Discussion
It has been generally assumed that bcd mRNA is localised by directed transport along a polarised

microtubule cytoskeleton (Wolpert et al., 2015; St Johnston, 2005). Indeed, studies on the later

stages of oogenesis indicate that the RNA is continually transported towards microtubule minus

ends by Dynein and then is increasingly more anchored as oogenesis progresses

(Pokrywka and Stephenson 1991; Weil et al., 2006, 2008). Here we provide evidence that the

RNA is localised by a different mechanism at other stages.

Figure 9. Diagram of the steps in bcd mRNA localisation during oogenesis. (A) Stage 9 of oogenesis: bcd mRNA localises to the anterior-lateral

margins of the oocyte (i), forming a ring when viewed end on (ii). Close-up: bcd mRNA is assembled into Exu-dependent particles that are actively

transported by Dynein along an unpolarised microtubule cytoskeleton; On reaching the anterior, bcd RNA particles are anchored independently of

microtubules, possibly by docking to P-bodies. (B) Stage 10b of oogenesis: Following the reorganisation of microtubule minus-ends, bcd mRNA re-

localises from the anterior-lateral margin to form a disc at the centre of the anterior cortex of the oocyte. (C) Stage 14 of oogenesis: bcd mRNA

particles cluster into large aggregates at the oocyte cortex.

DOI: 10.7554/eLife.17537.037
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Live imaging of fluorescently-labelled bcd mRNA in stage 9 oocytes revealed that the RNA forms

particles that undergo frequent active movements along microtubules. The speed was strongly

reduced in Dhc mutants, consistent with bcd mRNA being transported predominantly by Dynein.

Furthermore, bcd mRNA moved significantly more frequently and faster in a null mutant in Khc.

Since Kinesin-I transports Dynein to the oocyte posterior, the more frequent movements in the Khc

null mutant may be explained by the higher levels of Dynein at the anterior of the oocyte, which

should increase the probability of its binding to bcd RNPs. This cannot account for the increased

velocity of bcd mRNA particle movements, however, as this also occurs in the “slow” Khc alleles,

which still localise Dynein posteriorly. Thus, Kinesin-I somehow slows down Dynein through a mecha-

nism that depends on its full motor activity. One possibility is that Kinesin-I engages in a tug of war

with Dynein and therefore exerts a drag that slows down Dynein movement. Interestingly, inhibition

of Dynein increases both the velocity of Kinesin-I-driven ooplasmic streaming and osk mRNA particle

transport, indicating that this antagonistic relationship between Dynein and Kinesin-I is reciprocal

(Serbus et al., 2005; Zimyanin et al., 2008).

osk mRNA is transported to the posterior of the oocyte by Kinesin-I-dependent movements along

a weakly polarised microtubule network, in which approximately 15% more of the microtubules have

their plus-ends pointing posteriorly than anteriorly (Zimyanin et al., 2008; Parton et al., 2011). We

found that bcd mRNA particles show a reciprocal anterior bias near the middle of the oocyte, with

12% more movements towards the anterior cortex than away from it. This supports the idea that

bcd mRNA is mainly transported towards microtubule minus ends by Dynein. The bias becomes

increasingly weak close to the anterior, however, and even reverses in the region 0-5 mm from the

anterior cortex. Since the small bias in the anterior region is unaffected in the Khc null mutant and

there are virtually no directional reversals, it is not due to bidirectional transport along a polarised

microtubule network. Instead, there seem to be approximately equal numbers of microtubules point-

ing anteriorly and posteriorly near the anterior, with most microtubules running parallel to the ante-

rior cortex. This fits well with experimental measurements of microtubule polarity in the oocyte, in

which the orientation bias decreases from posterior to anterior, and with 3-dimensional computer

simulations of the microtubule organisation, which give negligible orientation bias close to the ante-

rior (Parton et al., 2011; Trong et al., 2015). Thus, directed transport cannot account for the local-

isation of bcd mRNA to the very anterior of the oocyte, although it can deliver the mRNA to a

broader anterior region.

In light of these observations, we propose that bcd mRNA is localised by rapid, bidirectional

Dynein-dependent transport in and out of the anterior region, coupled to some mechanism that spe-

cifically retains or anchors the RNA at the anterior cortex (Figure 9A). This random transport and

anterior anchoring model predicts that the RNA will only turn over slowly at the anterior cortex. This

is confirmed by FRAP and photo-conversion experiments, which show that more than 60% of the

RNA remains stably localised at the anterior over a period of 55 min. This turn-over rate is the same

as that measured for grk mRNA, which has previously been shown to be specifically anchored at its

localisation site above the oocyte nucleus (Delanoue et al., 2007; Jaramillo et al., 2008). Further

support for non-directional transport and anterior anchoring comes from the observation that bcd

mRNA is more efficiently retained at the anterior when the microtubules are depolymerised, indicat-

ing that microtubule-based transport plays a role in removing the RNA from the anterior, as well as

delivering it.

Unlike bcd mRNA, the behaviour of hts mRNA at stage 9 fits well with the predictions of the con-

tinual active transport model. It is localised to a broader anterior region than bcd mRNA, turns-over

significantly more rapidly than bcd RNA in photo-conversion experiments and spreads along the

anterior margin after photoconversion. Furthermore, hts mRNA localisation is strongly reduced after

90 min of Colcemid treatment and in the shot2A2 mutant, in which the oocyte microtubule cytoskele-

ton is not polarised, whereas bcd mRNA localisation is largely unaffected in both conditions. Thus,

the contrast between the two RNAs reinforces the view that bcd mRNA cannot be explained solely

by directed transport and must involve an anterior anchoring step.

This model may help to explain the observations of Cha et al. (2001), who showed that bcd

mRNA injected into the oocyte localises to the nearest region of anterior/lateral cortex, whereas

RNA that is exposed to nurse cell cytoplasm before injection localises specifically to the anterior.

Although the authors proposed that the “nurse cell-conditioned” RNA gains the capacity to discrimi-

nate between microtubules emanating from the anterior and lateral cortex, a simpler explanation is
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that both untreated and conditioned RNA are transported by Dynein along microtubules, but only

the latter becomes competent to be retained at the anterior. The untreated RNA therefore concen-

trates near microtubule minus ends, much like hts RNA (which is more biased towards the anterior

than injected RNA because it enters from the nurse cells), whereas the conditioned RNA localises

specifically to the anterior. Thus, factors such as Exu loaded on the RNA in the nurse cells may

licence the RNA for anterior anchoring (Figure 9A).

The retention of bcd mRNA at the anterior varies over the course of oogenesis, with the RNA

being much less stably localised at stage 10b. This fits well with the observations of Weil et al.,

2006, who measured very similar fluorescence recovery rates at stage 10b to those reported here.

This decrease in anterior retention coincides with a redistribution of the RNA from an anterior ring

to a disc at the centre of the anterior cortex, and with the formation of a new MTOC in this region

(St Johnston et al., 1989; Schnorrer et al., 2002; Vogt et al., 2006). Thus, the anterior anchoring

mechanism seems to be specifically inactivated at this stage to allow the remodelling of the RNA dis-

tribution (Figure 9B). During this period, bcd mRNA localisation is consistent with continual active

transport along the polarised microtubule network formed by the new anterior MTOC. This is only

transient, however, as the RNA becomes more stable at the anterior at stage 13, and is very effi-

ciently anchored at stage 14, which is important to keep bcd mRNA localised until fertilisation, so

that it can act as the source of the Bcd morphogen gradient in the embryo (Figure 9C).

The mechanism that retains bcd RNA at the anterior is unclear. We can rule out anchoring by

Dynein to microtubule minus ends, as has been reported for grk mRNA in the oocyte and pair-rule

transcripts in the embryo (Delanoue and Davis, 2005; Delanoue et al., 2007), since the anterior

retention of bcd mRNA is not microtubule-dependent and the RNA does not co-localise with micro-

tubules. The mRNA could be tethered to cortical actin, which would be consistent with the anchor-

ing defect in late oocytes seen in swallow mutants, which disrupt the actin cortex (Weil et al., 2010).

However, bcd RNA does not show a significant co-localisation with F-actin, although this tethering

could be indirect. Another possibility is that the RNA is maintained at the anterior by sequestering it

in P-bodies (Weil et al., 2012) (Figure 9). P-bodies are ubiquitous throughout the oocyte, and there

would therefore have to be some mechanism that induces bcd RNA incorporation into these struc-

tures specifically at the anterior.

Super-resolution imaging revealed that bcd mRNA forms 110–120 nm particles throughout

oogenesis, regardless of whether the RNA is localised or not. Even the large aggregates of RNA at

stage 14 are still formed of individual particles of similar size, although their protein composition is

different from stage 9, as Staufen and ESCRT-II are recruited to bcd mRNA only at stage 10b

(Martin et al., 2003; Weil et al., 2006) (Figure 9). Importantly, over-expression of the mRNA does

not alter particle size, but instead leads to more particles, which have higher average RNA content.

The same occurs at stage 14 of oogenesis, when the bcd mRNA content of the oocyte is much

higher following nurse cell dumping. Thus, bcd mRNA seems to assemble into a structure of defined

size, almost like a virus particle, which can incorporate more or less mRNA molecules depending on

availability. An exu mutant that affects RNA binding affinity causes a large reduction in the number

of detectable bcd mRNA particles and a small, but significant reduction in the size of the few par-

ticles that form. This suggests that Exu, which forms homodimers that probably bind two bcd mRNA

molecules (Lazzaretti et al., 2016), plays a role in scaffolding the assembly of the particles (Fig-

ure 9). Loss of Exu also strongly reduces both the speed and frequency of bcd mRNP movement, as

well as its anterior anchoring at all stages of oogenesis. Particle formation may therefore be a pre-

requisite for all of these processes, explaining the pleiotropic effects of exu mutants.

The invariant size of bcd RNA particles make them fundamentally different from other well-char-

acterised RNA granules, such as the P-granules in C. elegans, which form by the aggregation of

RNA and proteins into droplets that phase-separate from the surrounding cytoplasm

(Brangwynne et al., 2009; Saha et al., 2016). P-granules have variable size that depends on the

RNA concentration and readily fuse with each other when juxtaposed. By contrast, bcd RNA par-

ticles stay the same size as the RNA concentration increases, even though they incorporate more

RNA, and they do not appear to fuse when tightly clustered in aggregates. The exact nature of the

particles will require the identification of more of their components, but their behaviour is compati-

ble with a model in which they consist of a rigid protein framework that contains multiple RNA-bind-

ing sites. In future, it will be interesting to determine whether other localised RNAs are packaged

into similar structures.
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Materials and methods

Drosophila stocks and genetics
The bcdMS2 transgene was generated by inserting 11 MS2-binding sites (C-loop

form) (Lowary and Uhlenbeck, 1987) into the SpeI restriction site at the 5’-terminus of bcd 3’UTR

(FlyBase ID: FBgn0000166), which was cloned downstream of the maternal a4 tubulin promoter. The

htsMS2 transgene was generated by cloning the cDNA of the N4 isoform of hts (Flybase ID:

FBgn0263391; Whittaker et al., 1999), excluding the 5’UTR and start codon, downstream of the

maternal a4 tubulin promoter and inserting 10 MS2-binding sites between the SpeI and NotI restric-

tion sites at the 5’-terminus of the 3’UTR. The hsp83-MCP-Dendra2 transgene is identical to the

hsp83-MCP-GFP transgene (Forrest and Gavis, 2003) except that the EGFP sequences are replaced

by Dendra2 sequences (Evrogen, Russia). The osk-NLS-MCP-Tomato transgene was generated by

inserting the cDNA of tdTomato (Shaner et al., 2004) after NLS-MCP, which was cloned from

hsp83-NLS-MCP-GFP (Forrest and Gavis, 2003). For germline-specific expression, the NLS-MCP-

Tomato fusion was cloned downstream of the osk promoter, cloned from an osk rescue construct

(gift from Anne Ephrussi).

The mRNA-MS2 fusion transgenes were recombined with hsp83-NLS-MCP-GFP, osk-NLS-MCP-

Tomato or hsp83-NLS-MCP-Dendra2. Germline clones (GLC) were generated using the ovoD/FLP

system by heat-shocking second to third instar larvae for 2 hr at 37˚C for 3 consecutive days

(Chou and Perrimon 1996).

Other fly strains used were:

y1w1 (Bloomington stock 1495);

osk-(MS2)10 (Zimyanin et al., 2008);

shot2A2 (Chang et al., 2011);

cn, exu1, bw ([Schüpbach and Wieschaus, 1986], Bloomington stock 1989);

cn, exuVL, bw (Hazelrigg et al., 1990);

FRT42B, c, Khc27 (Brendza et al., 2000);

FRT42B, c, Khc17 (Brendza et al., 2000);

FRT42B, c, Khc23(Brendza et al., 2000);

Dhc64C6–10 ([McGrail and Hays, 1997], Bloomington stock 8747);

Dhc64C8–1 (Gepner et al., 1996);

Dhc64C6.10, FRT2A (Gift from U. Abdu);

Tau-GFP (Micklem et al., 1997);

grk-(MS2)12, MCP-GFP (grk*GFP) (Jaramillo et al., 2008);

Ubq-Dlic-GFP (Baumbach et al., 2015);

grk2B6, grk2E12 (Neuman-Silberberg and Schüpbach, 1993);

UAS:mCherry-Patr (Nashchekin et al., 2016);

nanos:GAL4-VP16 ([Van Doren et al., 1998], Bloomington stock 64277);

Tral-mRFP trap line (Lowe et al., 2014);

Me31B-GFP trap-line (Buszczak et al., 2007);

FRT2A, Ge-1D5 (Fan et al., 2011).

Immunological/staining methods
Immunofluorescence
Ovaries from 48–72 hr old females were dissected in PBS-T (PBS + 0.2% Tween-20) and fixed in 4%

formaldehyde in PBS-T for 20 min. For analyses of stage 14 oocytes, ovaries from 72–96 hr old virgin

females were dissected into Modified Robb’s medium and fixed in Cacodylate Fixative for 20 min

(McKim et al., 2009).

The fixed samples were then incubated with 5% BSA in PBS-T for 1 hr to block nonspecific anti-

gen-antibody reactions, incubated with primary antibodies in PBS-T plus 1% BSA at 4˚C for 18 hr

and then washed in PBS-T. If the primary antibody was not directly conjugated with a fluorophore,

ovaries were further incubated with fluorophore-conjugated secondary antibodies (for confocal

microscopy – 1:200, Jackson ImmunoResearch laboratories, PA, USA; for STED microscopy –

ATTO590-labelled anti-mouse antibody, 1:200, Enzo Life Sciences, UK) and then washed in PBS-T,
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before addition of Vectashield mounting medium (Vector Laboratories, CA, USA, Cat# H-1000 RRID:

AB_2336789).

The primary antibodies used were: anti-Me31B mouse monoclonal antibody (1:1000)

(Nakamura et al., 2001) (Cat# me31B RRID:AB_2568986), FITC-conjugated anti-a-Tubulin mouse

monoclonal antibody (1:100, Sigma-Aldrich, MO, USA, Cat# F2168 RRID:AB_476967) and GFP-Boos-

ters (GFP-nanobody directly conjugated to Abberior STAR RED or ATTO 647N, 1:400,

Chromotek, Germany, Cat# gba647n-100, RRID:AB_2629215). F-actin was labelled by incubating

ovaries in PBS-T with Phalloidin conjugated to either TRITC (1:500, Sigma-Aldrich, MO, USA) or

ATTO590 (1:2000, ATTO-TEC, Germany).

Conventional fluorescence in situ hybridisation (FISH)
Fluorescence in situ hybridisations (FISH) were performed according to standard protocols. The anti-

sense probes for bcd and hts RNAs were synthesised using the DIG RNA Labelling mix

(Roche, Switzerland) and the linearised plasmids: pGEM_bcd (Driever et al., 1990) (cut with BamHI)

and pNB40_htsN4 (Whittaker et al., 1999) (cut with SalI).

Single molecule FISH (smFISH)
Ovaries from 48–72 hr old females were dissected in PBS and fixed in 4% formaldehyde in PBS for

20 min. For stage 14 oocytes, ovaries from 72–96 hr old virgin females were dissected into Modified

Robb’s medium, fixed in Cacodylate Fixative for 20 min (McKim et al., 2009) and washed in PBS.

Samples were dehydrated in ethanol at 4˚C for 18 hr, incubated in wash buffer (2X saline-sodium cit-

rate (SSC), 10% formamide) for 30 min, and then hybridized with 500 nM ATTO647N-conjugated

antisense Stellaris probes for bcd RNA (Biosearch Technology, UK) in hybridization buffer (10% dex-

tran sulfate, 2X SSC, 10% formamide) at 37˚C for 4 hr. After 2 hr in wash buffer, samples were

mounted in Vectashield mounting medium (Vector Laboratories, CA, USA, Cat# H-1000 RRID:AB_

2336789).

Antisense RNA probes targeting the 3’UTR of bcd RNA:

5’-GAAACTCTCTAACACGCCTC-3’, 5’-ACAGTGGTTAACCTAAAGCT-3’, 5’-TGGTATTTGTACAA

TCAGGA-3’, 5’-CTTTCTACGCGTAGATATCT-3’, 5’-ACGGATCTTAGGACTAGACC-3’, 5’-AAAC

TTCCCTGGGAACCATT-3’, 5’-CTGCTGACTAGGCTAGTACA-3’, 5’-GATATGCACTGGAATCCGTG-

3’, 5’-GAGTTAACTGGAGTATCACT-3’, 5’-AGCGTATTGCAGGGAAAGTA-3’, 5’-CACCCAGATACA

TCTAAGGC-3’, 5’-CATATTCCCGGGCTTTAGTG-3’, 5’-TGGCCTCAAATGTAACTGGT-3’, 5’-AC

TTTCCATGGAATACGCTT-3’, 5’-ATTTCCGAAATGTGGGACGA-3’, 5’-AGAAGATTTTCTTGCTGGC

T-3’, 5’-GTACAGTTTTTAGCTATGTC-3’, 5’-ATGAGATTACGCCCAAGAGA-3’, 5’-ATGTTCGATC

TTTAAGGGTA-3’, 5’-ACACTTTGGCATAGCATAGA-3’, 5’-GCGCAAATGTTTGATTATGT-3’, 5’-TTGC

TGACTATTCTTGGTCA-3’, 5’-ACAAATGGTCTGCATTGATT-3’, 5’-TGATAGTTATTCCGTTTGGC-3’,

5’-ATGCTCTTCTTAGTGATGTA-3’, 5’-ACTTGAGGCCTAACAGATTG-3’, 5’-ACAACATCAAAGG

TGCAGCA-3’ & 5’-ATTTACCCGAGTAGAGTAGT-3’.

Drug treatments
Microtubules were depolymerised using Colcemid (Sigma-Aldrich, MO, USA). For acute depolymer-

isation of microtubules, ovaries from 48–72 hr old females were dissected in live imaging medium

(5 mg/ml insulin and 2.5% foetal calf serum in Schneider’s medium (Sigma-Aldrich, MO, USA;

adapted from Bianco et al., 2007), in a Poly-L-Lysine-coated imaging chamber (Thistle

Scientific, UK). Colcemid was then added to 400 mg/ml. The colocalisation between bcd mRNA and

microtubule minus ends was examined in flies expressing bcd*Tomato and Tau-GFP that were

starved for 2 hr and then fed fresh yeast paste containing 100 mg/ml Colcemid for 2 hr

(Pokrywka and Stephenson, 1995). We depolymerised F-actin by dissecting ovaries in live imaging

medium and then adding Cytochalasin D to 10 mg/ml (Sigma-Aldrich, MO, USA; Emmons et al.,

1995).

Confocal imaging
Confocal imaging was performed on an Olympus IX81 FV1000 laser scanning confocal microscope

(Olympus, Japan) using 40x UPlanFLN 1.3NA or 60x UPlanSApo 1.35NA oil immersion objectives
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(Olympus, Japan) and the Olympus Fluoview FV10-ASW software (Olympus, Japan, RRID:SCR_

014215).

Live imaging for particle tracking and co-localisation analyses
Ovaries from 48–72 hr old females were dissected directly onto coverslips in 10S Voltalef oil (VWR

International, PA, USA). For acute drug treatments, drugs were added for 20 min to ovaries in live

imaging medium (see above) in Poly-L-Lysine-coated imaging chambers (Thistle Scientific, UK). Ova-

ries were transferred onto coverslips and finely dissected in 10S Voltalef oil. Imaging was performed

on either a wide field DeltaVision microscope (Applied Precision, WA, USA) equipped with a Photo-

metrics 512 EMCCD camera (Photometrics, AZ, USA) and a 2x magnification tube fitted between

the unit and the camera, or on an Olympus IX81 inverted microscope (Olympus, Japan) combined

with a Yokogawa CSU22 spinning disk confocal imaging system and an iXon DV855 camera (ANDOR

Technology, UK). The softWorXs software (Applied Precision, WA, USA) was used to acquire and

deconvolve images on the DeltaVision system and MetaMorph Microscopy Automation and Image

Analysis Software (Molecular Devices, CA, USA, RRID:SCR_002368) was used to acquire images on

the spinning-disk microscope. A 100x UPlanSApo 1.4 NA oil immersion objective lens

(Olympus, Japan) was used in both systems.

Particle tracking
Moving particles were tracked manually using the MTrackJ plugin for the Fiji image analysis software

(Fiji, RRID:SCR_002285) (Meijering et al., 2012; Schindelin et al., 2012). We analysed at least 4

oocytes per sample type, and tracked all visible moving particles in each movie. The speed, distance

and directionality of each moving particle were calculated with Excel software (Microsoft, CA, USA).

For each moving particle, the speed was calculated as the mean of its velocities at each individual

timepoint, the distance from the anterior was measured from its initial position and the direction of

movement was defined by the vector between the initial and final positions.

Particle speeds in different samples were compared using the Wilcoxon rank-sum test (univariate

analyses) or a mixed-effects linear model (multivariate analyses; fixed effect variable – genotype; ran-

dom effect variables – oocyte and movie). The binomial test was used to test whether the anterior

directional bias was significantly larger than zero. To test whether the net anterior displacement of

particles was significantly larger than zero we performed the Wilcoxon 1-sample test.

The mobile fraction of mRNA particles was calculated as the proportion of particles that undergo

active movements in 5 s periods. We excluded the very anterior of the oocyte from these measure-

ments because the bcd mRNA particles were at too high a density to distinguish individual particles.

The mobile fractions of different samples were compared using the T-test. Statistical tests were per-

formed on the software R (R Project for Statistical Computing, RRID:SCR_001905) (R Core Team,

2013).

Co-localisation analyses
The background was subtracted from the two-colour images using an 8 pixel rolling-ball filter. For

the co-localisation analysis, we used ESCoP, a plugin for Fiji that implements a combination of Van-

Steensel’s cross-correlation function (van Steensel et al., 1996) and Costes’ randomisation

(Costes et al., 2004).

FRAP and Photo-conversion analyses
Ovaries from 48–72 hr old females were dissected directly onto coverslips in 10S Voltalef oil (VWR

International, PA, USA), except when treated with drugs, in which case the dissections were per-

formed in live imaging medium (see above) in a Poly-L-Lysine-coated imaging chamber (Thistle

Scientific, UK); drugs were added to the medium 20 min before imaging. Fluorescence recovery after

photobleaching (FRAP) and photo-conversion experiments were performed on an Olympus IX81

FV1000 laser scanning confocal microscope, (Olympus, Japan) equipped with the Olympus Fluoview

FV10-ASW software (Olympus, Japan, RRID:SCR_014215) and either a 60x UPlanSApo 1.35 NA oil

immersion objective (Olympus, Japan; for dissections in oil) or a 60x UPlanSApo 1.2 NA water

immersion objective (Olympus, Japan; for dissections in live imaging medium). All imaging
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conditions (laser power, bleached or photo-converted area, image dimensions, pixel scanning time

and time points) were kept constant in all samples. At least 5 oocytes were analysed per sample

type.

Curve fitting
Mean fluorescence intensities of photobleached (FRAP) or photo-converted regions of interest

(ROIs) were measured manually on Fiji (RRID:SCR_002285). Curve fitting was then performed by

non-linear least-squares fitting using the statistical software, GraphPad Prism 6 (Graphpad Software,

CA, USA, RRID:SCR_002798).

Normalisation for photobleaching during image acquisition
After substraction of the background, the fluorescence intensities of the photobleached or photo-

converted ROIs were normalised for photobleaching during image acquistion, which was calculated

as the fluorescence decay of MCP-GFP (FRAP) and of photo-converted MCP-Dendra2 (Photo-con-

version) in fixed egg chambers. These measurements were fitted to single exponential equations of

the form:

IðtÞ ¼ I0 � e
�ðp�tÞ (1)

where IðtÞ is the fluorescence intensity as a function of time ðtÞ, I0 is the initial fluorescence intensity,

and p is the rate of photobleaching (Vicente et al., 2007). The normalised datasets were then

obtained by the following equation:

NIðtÞ ¼ It=e
�ðp�tÞ (2)

where NIðtÞ is the normalised fluorescence intensity as a function of time ðtÞ, It is the measured fluo-

rescence intensity at t time, and p is the rate of photobleaching during imaging acquisition deter-

mined by Equation 1.

FRAP
FRAP data from samples with a single component/behaviour follow a single exponential equation of

the form:

NIðtÞ ¼ 1�FIM�FMOB � e
�ðlnð2Þ�t=tÞ (3)

where NIðtÞ is the normalised fluorescence intensity as a function of time ðtÞ, FIM is the immobile

fraction, FMOB is the mobile fraction, and t is the recovery half-time of the mobile fraction

(Bulinski et al., 2001; Sprague et al., 2004; Bulgakova et al., 2013). However, the fluorescence

recovery of localised bcd*GFP in stage 9 oocytes was better fit by a bi-exponential, with fast and

slow recovering populations (Figure 3A,D). Because microtubule depolymerisation only affected the

slow-recovering component of the signal and we observed very fast fluorescence recovery at the

anterior of oocytes that only expressed MCP-GFP and in the nurse cell cytoplasm of bcd*GFP egg-

chambers (Figure 3B–D), the fast component is likely to be nonspecific signal from autofluorescence

and/or free MCP-GFP. We therefore fitted the FRAP data from nurse cell cytoplasm to Equation 3,

in order to determine the recovery half-time of the nonspecific fast recovering signal (2.0 min). With

this parameter, we were then able to better fit the localised RNA FRAP data to a bi-exponential

composed of both the nonspecific signal and the RNA signal:

NIðtÞ ¼ 1�FIM�CNS � e
�ðlnð2Þ�t=tNSÞ�CRNA � e�ðlnð2Þ�t=tRNAÞ (4)

where NIðtÞ is the normalised fluorescence intensity as a function of time ðtÞ, FIM is the immobile

fraction, tNS (2.0 min) and tRNA are the decay half-times of the nonspecific and RNA signals, and CNS

and CRNA are the respective mobile fractions. This allowed us to remove the nonspecific component

and fit the remaining signal to a single exponential (Equation 3) that describes the behaviour of only

the RNA.
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Photo-conversion
Single component/behaviour photo-conversion data also follows a single exponential equation, but

of the form:

NIðtÞ ¼ FIMþFMOB � e
�ðlnð2Þ�t=tÞ (5)

where NIðtÞ is the normalised fluorescence intensity as a function of time ðtÞ, FIM is the immobile

fraction, FMOB is the mobile fraction, and t is the half-time of the mobile fraction.

Like the fluorescence recovery in the FRAP experiments, photo-conversion of Dendra2-labelled

bcd mRNA (bcd*Dendra2) at the anterior of stage 9 oocytes yielded a two-phase decay, consistent

with the existence of a rapidly-diffusing nonspecific signal and a slower specific signal. The signal

obtained by photo-conversion at the anterior of oocytes expressing only MCP-Dendra2 or in nurse

cells of bcd*Dendra2-expressing egg chambers decayed very rapidly (Figure 3—figure supplement

1A-B). We therefore fitted the photo-conversion data from the nurse cell cytoplasm to Equation 5,

in order to determine the decay half-time of the nonspecific signal (3.2 min). With this parameter, we

were then able to better fit the photo-conversion data of localised RNA to a bi-exponential that

included both the nonspecific signal and the RNA signal:

NIðtÞ ¼FIMþCNS � e
�ðlnð2Þ�t=tNSÞþCRNA � e�ðlnð2Þ�t=tRNAÞ (6)

where NIðtÞ is the normalised fluorescence intensity as a function of time ðtÞ, FIM is the immobile

fraction, tNS (3.2 min) and tRNA are the decay half-times of the nonspecific and RNA signals, and CNS

and CRNA are the respective mobile fractions. This allowed us to subtract the nonspecific component

and fit the remaining signal to a single exponential (Equation 5) that describes the behaviour only of

the RNA.

Compensation for MS2-MCP dissociation
The photo-conversion measurements were also corrected for the low, but significant, dissociation of

MCP-Dendra2 from the RNA loops of MS2. The Koff for MCP bound to the version of the MS2

stem-loop (C-loop) used in our constructs (U5C) is 0.0017*min�1 (Lowary and Uhlenbeck, 1987),

which translates into a loss of 9% of the signal after 55 min. To compensate for this dissociation, we

applied the following single exponential to the RNA photo-conversion data (already normalised for

photobleaching during image acquisition and after removal of the nonspecific component):

MIðtÞ ¼NIt=e
�ðp�tÞ (7)

where MIðtÞ is the fluorescence intensity normalised for MS2-MCP dissociation as a function of time

ðtÞ, NIt is the RNA fluorescence intensity at t time, and p is the 0.0017*min-1 off-rate (Koff) between

MCP and the MS2 C-loop.

Stimulated emission depletion (STED) super-resolution imaging
Super-resolution imaging was performed on a custom STED microscope built around the IX83 Olym-

pus frame (Olympus, Japan). The microscope design is a variant of a STED system described in detail

previously (Bottanelli et al., 2016). Imaging was performed with either a 100x UPlanSApo 1.4 NA

oil immersion objective lens (Olympus, Japan) or a 100x UPlanSApo 1.35 NA silicone oil immersion

objective lens (Olympus, Japan) over a region of 15 � 15 mm with square pixels of 14.6 nm

(1024 � 1024 pixels).

Estimation of mRNA particle size, fluorescence intensity and mean distance
to nearest neighbour
To measure the size and fluorescence intensity of RNA particles, as well as their mean distance to

the nearest neighbour, we created Profiler, a plugin for Fiji that maps intensity maxima in a 32-bit

STED image and fits a Lorentzian function to the X-axis and Y-axis line profiles centred on each maxi-

mum using the ImageJ Minimizer class. The Lorentzian function was chosen as the best approxima-

tion of the STED system Point Spread Function. The plugin Graphic User Interface allows the

definition of the profile radius, which was set to 146 nm (10 pixels), the profile width across which
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the mean intensity values are taken, which was set to 3 pixels, noise tolerance for maxima detection,

which was set to 2. The full width at half maximum (FWHM) of each curve was used as an estimate

for the corresponding particle diameter. Noise and touching objects were excluded based on the r2

values of the fitted functions being <0.8 and the ratio between X-axis and Y-axis FWHMs being >2.

Regions of high particle density were excluded because the optical sections were larger than the

average RNA particle size (~700 nm versus 70–120 nm), which means that several particles can be

superimposed along the z-axis, leading to overestimation of fluorescence intensities and flawed

curve fittings.

The summed fluorescence intensity of each particle was used as read-out of mRNA content. Each

particle area was defined as the circle/oval area fitting the X-axis and Y-axis FWHMs, over which the

background-subtracted summed fluorescence was calculated. Only datasets from images acquired

with equivalent, and thus comparable, parameters of laser power and data acquisition were

analysed.

The RNA particle properties were not analysed in nurse cells because of the small number of par-

ticles detected.

A mixed-effects linear model was used for the statistical comparison of the mRNA particle sizes

and summed fluorescence intensities, with mRNA or genotype as the fixed effect variable and vari-

ability between oocytes as the random effect variable. The effect of distance from the oocyte ante-

rior on the particle size and summed fluorescence was evaluated by applying a mixed-effects linear

model, with distance from the anterior of the oocyte as the fixed effect variable and the variability

beween oocytes as the random effect variable. All statistical tests were performed on the software R

(R Project for Statistical Computing, RRID:SCR_001905) (R Core Team, 2013).

Profiler also includes a ‘clumps’ mode to measure the mean distance to the nearest neighbour of

intensity maxima within a region of interest, which was used to estimate the proximity of particles in

particle-dense areas.

Two-colour STED imaging
GFP-labelled mRNAs were immuno-stained with ATTO647N-coupled GFP nanobodies

(Chromotek, Germany), whereas F-actin or P-bodies were stained with ATTO590 (ATTO590-conju-

gated Phalloidin, Sigma-Aldrich, MO, USA, or anti-Me31B primary mouse antibody followed by

ATTO590-conjugated anti-mouse secondary antibody, ATTO-TEC, Germany). These were then

imaged sequentially, using either a 590 nm or a 640 nm laser to excite each fluorophore. Because

STED intrinsically leads to bleed-through of shorter wave-length fluorescence into longer wave-

length channels, we applied the Spectral Unmixing plugin for Fiji (Joachim Walter; http://rsb.info.

nih.gov/ij/plugins/spectral-unmixing.html) to retrieve only the specific signal from each component.

The unmix matrices were generated by imaging samples excited with the 590 nm laser but only

labelled with ATTO647N or excited with the 647 nm laser but only labelled with ATTO590.

Reverse transcriptase and real-time quantitative PCR
Total RNA was extracted from the ovaries of twenty 48–72 hr old females using the RNeasy kit

(Qiagen, Germany). 100 ng of total RNA was then reverse-transcribed using the qPCRBIO cDNA

Synthesis Kit (PCR Biosystems, UK), using a combination of poly-dT and random hexanucleotide pri-

mers. Real-time PCR was performed on the reverse transcribed samples to independently amplify

two regions in the bcd mRNA 3’UTR as well as one region in the internal control, DHFR RNA. The

primer pairs used were:

bcd 3’UTR 1: 5’-GATGTATCTGGGTGGCTGCT-3’ & 5’-CCGAAATGTGGGACGATAAC-3’

bcd 3’UTR 3: 5’-CACTAAAGCCCGGGAATATG-3’ & 5’-TTTCTTGCTGGCTCGGAATA-3’

DHFR: 5-CTGAGCACCACACTTCAGGA-3’ & 5-TGGTAATGTACAGCCGGTGA-3’

Amplifications were performed using the qPCRBIO SyGreen Mix Hi-ROX Kit (PCR

Biosystems, UK) and the StepOne Plus Real-Time PCR system (Applied Biosystems, CA, USA).

The relative amounts (fold change) of bcd RNA in samples were then quantified by the compara-

tive CT method (Schmittgen and Livak, 2008), using the threshold cycles (CT) calculated by the

inbuilt StepOne Real-Time PCR software (Applied Biosystems, CA, USA, StepOne Software, RRID:

SCR_014281):

Foldchange¼ 2
�DDCT ¼ 2

½ðCT geneof interest�CT internalcontrolÞsampleA�ðCT geneof interest�CT internalcontrolÞsampleB � (8)
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Quantitations represent three biological replicates and two technical replicates, and were per-

formed on the softwares Excel (Microsoft, CA, USA) and R (R Project for Statistical Computing,

RRID:SCR_001905) (R Core Team, 2013).
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