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ABSTRACT
Background. Understanding species distribution, especially areas of overlapping
habitat between sympatric species, is essential for informing conservation through
natural habitat protection. New protection strategies should simultaneously consider
conservation efforts for multiple species that exist within the same landscape, which
requires studies that include habitat overlap analysis.
Methods.We estimated the potential habitat of cervids, which are typical ungulates in
northern China, using the present locations of red deer (Cervus elaphus; N = 90) and
roe deer (Capreolus capreolus; N = 106) in a Maximum Entropy (MaxEnt) model. Our
study area was a human-dominated landscape in the Tieli Forestry Bureau located at
the southern slope of the Lesser Xing’an Mountains. We grouped 17 environmental
predictor variables into five predictor classes (terrain, habitat accessibility, land cover,
vegetation feature, and interference), which were used to build habitat suitability
models.
Results.Habitat accessibility and human interferences were found to have the strongest
influence on habitat suitability among the five variable classes. Among the environ-
mental factors, distance to farmland (26.8%), distance to bush-grass land (14.6%),
elevation (13.5%), and distance to water source (12.2%) were most important for red
deer, distance to farmland (22.9%), distance to settlement (21.4%), elevation (11.6%),
and coverage of shrub-grass (8%) were most important for roe deer. Model accuracy
was high for both species (mean area under the curve (AUC) = 0.936 for red deer and
0.924 for roe deer). The overlapping habitat comprised 89.93 km2 within the study area,
which occupied 94% of potentially suitable habitat for red deer and 27% for roe deer.
Conclusions. In terms of habitat suitability, roe deer showed greater selectivity than
red deer. The overlapping habitat was mostly located in the eastern mountains. The
southwestern plain was not a suitable habitat for deer because it was close to Tieli City.
Regarding management measures, we suggest that priority protection should be given
to the potential areas of overlapping deer habitats found in this study.
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disturbance, Deer management, Northeastern China

How to cite this article Wu et al. (2016), Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer
(Capreolus capreolus) in northeastern China. PeerJ 4:e1756; DOI 10.7717/peerj.1756

https://peerj.com
mailto:liyh@iae.ac.cn
mailto:\hfill \penalty -\@M huym@iae.ac.cn
mailto:\hfill \penalty -\@M huym@iae.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.1756
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.1756


INTRODUCTION
Degradation of natural habitats as a result of landscape fragmentation and habitat
destruction was recognized as the main reason for reduction of large mammal populations
(Bonnot et al., 2013; Couturier et al., 2014; Jorge et al., 2013; Menard et al., 2014). Many
traditional conservationmeasures target endemic or threatened species, such as the Siberian
tiger (Panthera tigris altaica) and giant panda (Ailuropoda melanoleuca), which coexist in
similar habitats with some common species; however, these approaches are insufficient for
regional biodiversity conservation. Therefore, we should consider conservation efforts for
multiple species that simultaneously exist within the same area (York et al., 2011).

Research that elucidates habitat overlap between or among multiple species can be
meaningful and important for such protection strategies. Currently, habitat overlap analysis
mainly focuses on the following three kinds of relationships among sympatric species: (1)
competitive relationships, in particular between invasive and native species, for example,
two snake species native to eastern North America, Nerodia fasciata and N. sipedon,
disturbed declining native amphibian, fish, and reptile populations when introduced to
California (Rose & Todd, 2014); (2) symbiotic relationships between species that can exist
harmoniously within the same habitat, such as occurs with Dreissena polymorpha (zebra
mussel) and D. rostriformis bugensis (quagga mussel) (Quinn, Gallardo & Aldridge, 2014);
and (3) predatory relationships. Despite these efforts, research on habitat overlap is still
deficient, especially for target species with similar ecological niches.

The aim of habitat overlap analysis is to reveal the distribution pattern of species (Wilson
et al., 2013). Traditionally, it has been difficult to obtain field data for such analyses from
mountainous sites or large-scale study areas because of the large amounts of time and effort
needed (Stehman & Salzer, 2000). For example, the line transect method is often used in
flat or homogenous habitat areas because it is difficult to obtain a sufficient number of
samples in mountains or forests. In recent years, with the progress of ‘‘3S’’ technologies—
remote sensing, geographical information system (GIS), and global positioning system
(GPS)—models have been developed to predict and evaluate the potential distribution
areas of target species (Araujo et al., 2011; Brown, 2014; Chitale, Behera & Roy, 2014; Elith
& Leathwick, 2009; Fourcade et al., 2013; Vieilledent et al., 2013; Ward & Morgan, 2014).
These quantitative models (e.g., species distribution models, SDMs) are valuable tools to
assess habitat suitability for species at landscape scales. Among them, themaximum entropy
(MaxEnt) model has been used worldwide and shown to have several advantages. First,
it has better prediction ability compared with other SDMs (Costa et al., 2010; Elith et al.,
2006; Pena et al., 2014). Second, it can achieve high prediction accuracy with sparse species-
occurrence datasets and is thus more suitable for studying distributions of endangered
wildlife (Silva et al., 2014). Third, it has proven suitable for performing habitat overlap
analysis for multi-species (Silva et al., 2014; Quinn, Gallardo & Aldridge, 2014; Holzmann
et al., 2015). However, the realized niches of species are always changing because of a
variety of environmental factors, such as interspecific interactions and human influences.
Therefore, it is difficult to correctly extrapolate SDM results in a realistic environment
(Holzmann et al., 2015). Despite this, the MaxEnt model is still the ideal choice for studying
overlapping habitat distributions of wildlife when species-occurrence data are lacking.
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The Lesser Xing’an Mountains are ideal study areas, comprising more than 30,000 km2

of forest area that provides good habitat for wildlife. In this region, cervids are the most
common herbivores and they have close relationships with predators and vegetation
characteristics. Previous studies reported that the presence of viable populations of deer
were essential for the persistence of Siberian tigers and leopards (Panthera pardus orientalis)
(Tian et al., 2011; Wang et al., in press). Wang et al. (in press) provided the most direct and
comprehensive evidence that Amur tigers and leopards were returning to China in large
numbers, and the Lesser Xing’an Mountains were potential habitat for the two felids to
migrate back to China from Russia, but resettlement was unlikely because of cattle grazing,
human disturbances, and deer absence. In recent years, deer populations have faced serious
threats due to habitat destruction, which has historically occurred at high intensities (Jiang,
Zhang & Ma, 2005).

In the past, four common species of cervids were abundant in the Lesser Xing’an Moun-
tains: moose (Alces alces), sika deer (Cervus nippon), red deer (Cervus elaphus), and roe deer
(Capreolus capreolus). Based on local forestry workers’ experience, moose (nationally pro-
tected animal, Category II) disappeared since the 1990s and sika deer (nationally protected
animal, Category I) mainly exist in captivity. Wild cervid populations have now been
reduced to red deer and roe deer. The population density of red deer in the Lesser Xing’an
Mountains was only 0.1–0.2/km2 in 2000. There was a 30–40% reduction in the number
of red deer, and a stable roe deer population density from 1990 to 2000 (Liu et al., 2000).
Thus, red deer and roe deer were chosen as our target species.

Conservation of these declining populations would be enhanced by understanding
potential habitat overlap for cervids. Earlier research in the region showed that the
various cervid species have similar behavioral characteristics, dietary habits, and habitat
preferences (Jiang, 2004; Li, 2005). However, little information is available on the
population distribution and patterns of habitat use for deer. Understanding deer habitat
use, especially the overlapping habitat of closely related species, is essential for informing
habitat protection approaches. In addition, better understanding the habitat distribution
of deer is of particular importance for conservation of Siberian tigers and Amur leopards
in northeastern China and the Russian Far East (Tian et al., 2014; Wang et al., in press).

We used a recent species presence location dataset and 17 environmental predictors to
simulate the potential distribution of habitat and explore relationships between species
presence environmental features using a MaxEnt approach (Phillips, Anderson & Schapire,
2006). The main objectives of this study were to: (1) map the overlapping habitat of red
deer and roe deer in a human-dominated landscape; (2) determine which key factors
influence the distribution of deer species; and (3) explore the influence of habitat types and
potential impacts of human disturbance on habitat suitability.

MATERIALS & METHODS
Study area
Our chosen study area was the Tieli Forestry Bureau (TFB) with a total area of 2,058.42
km2 (Fig. 1). The TFB is located on the southern slope of the Lesser Xing’an Mountains
(47◦02′–47◦36′N, 127◦57′–128◦12′E) where forest covers nearly 70% of the landscape.
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Figure 1 Location of the Tieli Forestry Bureau study area in the Lesser Xing’anMountains.

From east to west, the topography changes from mountains to hills, and the elevation
ranges from 1,137 m to 224 m a.s.l. The mean summer temperature is 20 ◦C and the mean
winter temperature is −21 ◦C. Typical broadleaf–conifer mixed forest (Ma et al., 2014)
supports more than 100 species of wild animals, such as black bears (Ursus thibetanus), red
deer, grey cranes (Grus grus), mandarin ducks (Aix galericulata), and lynx (Felis lynx).

In recent years, logging has decreased and was finally banned in 2003. A state-owned
forest tenure reform program was initiated in the TFB in 2006. This program involves the
selection of commercial forests for management using 50-year contracts with individuals
who are designated as land managers at specific sites. The policy has improved the
enthusiasm of local foresters and enriched the management patterns of understory planting
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(Li et al., 2013), but this human pressure disturbed the natural habitats of deer (Li et al.,
2014).

Target species
Characterization of cervid distributions in the TFB is important for three reasons. First,
population abundance is very low (0.11/km2) because of long-term excessive logging and
hunting, and some species have become extinct in several localities (Qin & Zhang, 2009).
Second, human activities (e.g., conversions of forest into cropland) have a substantial effect
on reducing abundance and distribution of suitable habitat. Third, they play important
ecological roles in forest systems, because they are the major food source for predators and
represent a large proportion of ungulate species. Therefore, cervids are ideal target species
for a case study on SDMs.

Sampling design and species occurrence data
To collect occurrence records, we used the distance sampling method (Thomas et al.,
2010; Waltert et al., 2008) to design ‘‘Z’’ glyph survey routes (1.5–2 km per line, 32
total lines sampled by walking). Along each route, we recorded direct observations,
footprints, repose imprints, feces, tracks, and fur, which were clear evidence of deer
presence. Depending on observer experience, information about individual deer could be
gained based on morphological features such as body size, footprint patterns, and track
size. More importantly, a variety of traces can be simultaneously observed in the field, and
animal species can be determined based on the specific characteristics of various traces.
Field investigations were conducted in the last 3 years (summer 2013, summer and winter
2014, and winter 2015). In total, 196 records were obtained in the field, and their positions
were recorded by GPS (90 for red deer and 106 for roe deer, Fig. 2). GPS points were
unified in a geographic coordinate system (Beijing_1954) and converted to the format of
SDMs as input data within ArcGIS 9.3 (ESRI INC, 2008).

Species ecology and environmental data acquisition
Red deer and roe deer are two closely related species that occupy nearly the same habitat
(e.g., broad-leaved forest and bush-grass land) at a local scale. The suitable habitats of these
target species partly overlap and the behavioral ecology and habitat requirements are similar
(Jiang, 2007). To estimate the environmental niche, we grouped environmental factors into
five major categories: terrain, habitat accessibility, land cover, vegetation feature, and
interference factors. No bioclimatic predictors were used because these datasets were
usually coarsely scaled (Turner et al., 2003) and more suited to regional or continental
SDMs (Elith & Leathwick, 2009; Gillespie et al., 2008).

Terrain factors
Terrain variables were derived from a digital elevation model (DEM), which was generated
with digital line graphic data (from the National Administration of Surveying, Mapping
and Geoinformation of China) at a scale of 1:50,000 and 5-m contour in plains and 10-m
contour in mountainous areas. We calculated elevation, slope, aspect, irradiation aspect,
surface roughness, and standard deviation of elevation. The irradiation aspect value ranged
from 0 to 1 (0 means to accept solar minimum and 1 to accept solar maximum).
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Figure 2 Records of deer presence in the Tieli Forestry Bureau used to model the current distribution
of the species.

Habitat accessibility factors
Habitat type data, derived from 3-m-resolution Google Earth imagery (path/row: 117/27,
high-resolution Spot 5 satellite images), were used to produce the habitat type map. After
investigations in the field, the mean monitoring accuracy was validated as 86%. As a
result, habitat type factors included five major habitat types: broad-leaved forest (57%),
mixed forest (18%), coniferous forest (15%), farmland (7%), and bush-grass land (2%).
By calculating the distance to major habitats, we revealed important habitat accessibility
variables, which can reflect the accessibility of different habitats for deer. Additionally,
distance to a water source was also taken into account.

Land cover factors
We measured land cover classes as the cover of the habitat type map using 1:100,000-scale
land use maps. Land cover classes were taken into account because they describe the
landscape characterization over a wide geographic range.
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Vegetation feature factors
Four vegetation feature covariates—forest stand type, forest age, height of tree, and coverage
of shrub-grass—were obtained from 1:100,000-scale forest maps, which were sourced from
government sectors at the TFB. These four predictor variables clearly reflect the vertical
structure and vegetation characteristic of habitats for deer.

Interference factors
Human activity data were collected to explore the influence of interference factors on
habitat distribution. In our study, interference factors included distance to settlement,
distance to road, and distance to forest management area. These human activity-related
factors usually had some interference effects, so several buffers were established based on
a range of potential impacts. As far as we know, suitable habitat is most strongly affected
by visual disturbance, noise, and pollutants, which leads to an animal’s avoidance of roads
and settlements. Numerous mammals were reported to suffer higher mortality in close
proximity to roads and settlements (Li et al., 2014). Large mammals were shown to move
their home range and avoid areas within 100–200 m from roads and 500–1,000 m from
settlements (Forman & Alexander, 1998; Trombulak & Frissell, 2000; Li et al., 2014; Zeng,
Sui & Wu, 2005), which reduces suitable habitat area. Furthermore, based on our field
investigations, we found that the visible distance was about 200 m from the road on both
sides. Additionally, human activities generally occur near the residential area within a
radius of 500 m. Therefore, we defined buffer zones (200-m width for roads and 500-m
radius for settlements) and calculated distances to each of them.

The state-owned forest tenure reform program involves the selection of commercial
forests for management at specific sites. Forest workers usually cultivate agaric (Auricularia
auricula) or ginseng (Panax ginseng ) at these sites. The policy enriched the management
patterns of understory planting. However, with the increase of forestry work intensity and
frequency, this human pressure disturbed the natural habitats of deer (Li et al., 2014; Li
et al., 2013). Additionally, forest management was taken into consideration because it
describes diverse human activities (e.g., understory planting) and produces landscape
heterogeneity. Data on forest management areas were drawn from government sectors for
the TFB, including size and location information. Because no vector spatial data (e.g., shp.
in GIS) were available at such a spatiotemporal scale, our model could not entirely reflect
reality. Our solution was to use a circular buffer (equal in area to the size of each specific
site) to represent the forest management areas.

Finally, we used ArcGIS 9.3 to interpolate environmental factors into raster-
based spatial distribution data and calculated correlation coefficients to avoid the
effect of multicollinearity among variables (Dormann et al., 2013). Three pairs of the
aforementioned pairwise variables were highly correlated (|r |> 0.80) (Hu & Liu, 2014),
resulting in a set of 17 environmental predictor variables. Table 1 lists the resolutions, data
sources, and calculation methods of these indices.

Modeling species distribution
MaxEnt 3.3.3e (http://www.cs.princeton.edu/~schapire/maxent/; Phillips, Anderson &
Schapire, 2006) was used to determine a suitable deer habitat. It is currently one of the
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Table 1 Environmental predictors used for modeling. Standard deviation of elevation reflects the roughness of the location.

Factors class Predictor variables Initial
resolution

Source Calculation method

Elevation
Slope
Aspect

DEMs
Terrain

Standard deviation of elevation

30 m

National Adminis-
tration of Surveying,
Mapping and Geoin-
formation of China Statistical analysis

Land cover Land cover classes 30 m Land use maps
Distance to water source
Distance to farmland
Distance to bush-grass land
Distance to coniferous forest
Distance to broad-leaved forest

Habitat
accessibility

Distance to mixed forest

3 m Google earth imagery

Forest stand type
Forest age

Vegetation
feature

Coverage of shrub–grass

Forest maps

Distance to settlement 500 m buffer zone
Distance to road

3 m Google earth imagery
200 m buffer zoneInterference

Distance to management area Forestry Bureau Circular buffer zone

most commonly used SDM algorithms, and its popularity has increased over the past
decade owing to its robust distribution estimates (Elith et al., 2006). We used default values
for convergence threshold (10−5) and maximum iterations (500), randomly splitting the
data into 75% training data and 25% testing data, and 10,000 background points for each
MaxEnt run. Area under the curve (AUC) was used to measure model performance and
mean area under the receiving operating characteristic (ROC) curve. AUC values ranged
from 0.5 (for random probability) to 1 (for perfect ability to predict presence; Phillips
& Dudik, 2008). All selected variables were unified a resolution of 90 m, and respective
calculations were done in ArcGIS 9.3. Finally, we used these 17 predictor variables to
generate two model results: one for red deer and another for roe deer.

Identifying overlapping habitat areas
To map the overlapping habitat of red deer and roe deer, the Youden index was applied
(Vega Garcia et al., 1995) to determine the cut-off point for each model. The ROC curve
was obtained by plotting sensitivity versus specificity for various probability thresholds,
and the Youden index was calculated by the following formula: sensitivity+ specificity—1.
Good performance is characterized by a maximal Youden index (Catry et al., 2009; Vega
Garcia et al., 1995). Then, we divided the habitat map into suitable (≥threshold value) and
unsuitable (<threshold value) habitat based on the maximal Youden index for each species,
and assigned 1 for suitable and 0 for unsuitable habitat.

Next, the two reclassified habitat maps were overlapped to generate the final potential
habitat suitability map. The pixel value of the map varied from 0 (unsuitable for any
species) to 2 (overlapping habitat).
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Figure 3 Distribution of suitable cervid habitat. 0, Unsuitable for two species; 1, suitable for one species
but unsuitable for the other; 2, suitable for both species, i.e., overlapping habitat.

(i) (00) = 0: unsuitable for two species;
(ii) (01 or 10) = 1: suitable for one species but unsuitable for the other;
(iii) (11) = 2: suitable for both species, e.g., the overlapping habitat.
Finally, we calculated the area of major landscape types in the overlapped habitat with the
support of ArcGIS 9.3 (ESRI INC, 2008) and R 3.0.1 (http://www.r-project.org/).

RESULTS
Potential suitable habitat analysis
The testing average AUC for 10 replicate runs of the models was 0.936 ± 0.017 for red
deer and 0.924 ± 0.018 for roe deer, indicating that the model predictions were better
than chance (AUC = 0.5) and the model could be used to predict the species-occurrence
pattern. The optimal cut-off values for red deer and roe deer models were 0.195 and 0.170,
respectively. The suitable habitat area was 95.70 km2 for red deer and 329.87 km2 for
roe deer, indicating that roe deer had greater habitat selectivity than red deer in the TFB.
The final potential habitat suitability map (Fig. 3) revealed that the unsuitable habitat
occupied 1,587.51 km2, or 77.7% of the TFB. The overlapping habitat represented 89.93
km2 of the study area, which included 94% of potential suitable habitat for red deer. The
potential habitat modeled for roe deer constituted 329.87 km2, of which 27% also contained
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Figure 4 Importance of environmental variables for the MaxEnt models for (A) red deer and (B) roe
deer.

overlapping habitat. Results demonstrated that the most highly suitable habitat was located
in the eastern mountainous region. The southwestern plain area was not suitable because
it was close to Tieli City.

Environmental factors
Results revealed that the most important environmental variable for predicting potential
habitat distribution for red deer was distance to farmland (Fig. 4A; accounted for 26.8%
of the distribution) followed by distance to bush-grass land (14.6%), elevation (13.5%),
distance to water source (12.2%), and distance to settlement (9.2%). For roe deer, the most
important variables were distance to farmland (22.9%), distance to settlement (21.4%),
elevation (11.6%), coverage of shrub-grass (8%), and distance to water source (6.9%; Fig.
4B). Out of the above factors, distance to farmland, elevation, and distance to settlement
were important variables for both species.

Response curves revealed the direction of the effect of the four most important factors
in each model on the potential distribution of deer (Fig. 5). We found that the probability
of occurrence decreased in areas with longer distance to farmland. In areas with longer
distances to the water source or settlements, the probability of occurrence first increased
and then decreased. Occurrence probability sharply increased with increasing distance
from a water source (>1.3 km) or settlements (>5.5 km for red deer and 6 km for roe
deer). The occurrence probability sharply decreased at a specific elevation (>320 m). We
also found that vegetation feature factors contributed little to habitat suitability for deer.

Proportion of habitat types in suitable habitat classes
Based on raster calculations, comparison of major habitat types in each suitable habitat
category showed that farmland was themain habitat type for deer (Fig. 6). It was found that,
with a reduced probability of occurrence, farmland covered a fluctuant percentage of areas
(21% of overlapping, 12% of suitable, and 21% of unsuitable habitats). This trend was re-
versed in broad-leaved forests (41% of overlapping, 46% of suitable, and 41% of unsuitable
habitats), which is a landscape with low human interference. In general, the overlapping
habitat area consisted of a high proportion of broad-leaved forest (41%) and farmland
(21%). Broad-leaved forest and mixed forest occupied the main areas of habitat overlap.
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Figure 5 Response curves of MaxEnt models. These curves were generated for the most important variables (the top four in each model, first line
for red deer and second line for roe deer) and show the mean response of the cross-validated models with 10 replicate runs (red) and mean± one
standard deviation (blue).

Figure 6 Proportion of habitat types that occur in suitable habitat classes. 0, Unsuitable for two
species; 1, suitable for one species but unsuitable for the other; 2, suitable for both species, i.e., overlapping
habitat.

DISCUSSION
Habitat overlap analysis and environmental factors
The MaxEnt models showed that 27% of roe deer distribution overlaps with predicted
red deer distribution, indicating that the niches of the two species are similar. About 94%
of the red deer distribution was predicted to be suitable for roe deer, indicating that the
realized niche of red deer is smaller. The overlap between the two species in farmland and
human settlements was significantly lower than that in broad-leaved forests. This is likely
because broad-leaved forests offer deer plentiful food and safety from predators. Indeed,
Bonnot et al. (2013) noted that a large portion of deer tend to mostly reside in forests.
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The important factors in themodels for both species were distance to farmland, elevation,
and distance to settlement, indicating that the distributions of both species are limited
by similar factors. It is possible that deer distribution is largely affected by distance to
farmland, because farmland could provide high nutrition food. We found that the distance
to road had little influence on the predicted distribution of deer in this study. Our finding
is consistent with those of other studies; for example, Piekielek & Hansen (2012) argued
that some roads can be natural wildlife corridors and do not pose a significant disturbance.
For terrain factors, Li (2005) also found that altitude and aspect are the main contributors
to habitat selection of deer in Heilongjiang Province, China. We found that slope had
little impact (with the contributions of 0.4% for red deer and 1.5% for roe deer) on
deer distribution, which can be explained by the gentle topography in our study area. In
summary, deer prefer the following habitat characteristics: low altitude (about 320 m),
far away from residential areas, near farmland and a water source, and suitable coverage
of shrub–grass (65–70%). Nevertheless, finer-scale analysis of distribution could present
different results; however, this needs to be evaluated with further quantitative research.

Effects of habitat types on habitat suitability
Broad-leaved forest and farmland are the two most important habitat types selected by
deer in our study (Fig. 4), a result that is consistent with those of previous studies. Bonnot
et al. (2013) indicated that roe deer prefer living in forests during the day and feeding in
farmland at night, which may reduce the risk of being hunted. Behdarvand et al. (2014)
found that environmental variables related to anthropogenically influenced land, such as
irrigated farms, were most important for predicting wolf-attack risk. We suggest that both
habitat types and structures affect deer habitat selection.

Advantages and limitations
MaxEnt software has proven to be a robust tool in analyses that include current species
data with limited biological information (Gogol-Prokurat, 2011; Pena et al., 2014; Phillips,
Anderson & Schapire, 2006). In our study, effective occurrence was recorded in field
investigations during 2013–2015. Our models performed well when predicting potential
distribution, and our findings were more accurate compared with historical data modeling.
Past studies supported this view and showed that current species data could improve the
accuracy and credibility of results (Brambilla & Saporetti, 2014; Razgour, Hanmer & Jones,
2011; Zeng et al., 2015). Because the accuracy of historical data can be called into question,
it cannot be used with confidence in simulations to represent the current distribution state
of target species.

However, we admit that this method has limitations, such as that the data sources were
not comprehensive enough across the study area. In our study, the sampling was somewhat
concentrated near roads, and high elevation areas may have been underrepresented. Such
biases may exacerbate statistical problems when models are based on small sample sizes,
although our models had robust predictions. In general, it is hard to avoid non-systematic
sampling or sampling biases when constructing SDMs (Stolar & Nielsen, 2015). However,
Wisz et al. (2008) suggested that MaxEnt had moderate sample size sensitivity combined
with excellent predictive ability. MaxEnt was the best and generally outperformed other
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methods for evaluating low sample sizes. Hu & Liu (2014) pointed out that, although the
availability of presence records is a considerable limitation for the application of ecological
niche models for threatened species, MaxEnt is recognized to be accurate and stable across
all tested sample-size categories.

In addition, we could not fully examine snow as a factor in our study, because its
impact was not obvious and data acquisition was difficult on such a spatial scale. However,
there have been reports showing that snow becomes an influencing factor for deer at
depths greater than 50 cm or in alpine areas (Dou et al., 2013; Ohashi et al., 2014; Ossi
et al., 2015). However, in our field investigations, the average snow depth was 5–20 cm
and the maximum value was 40 cm. We found that red deer would still feed in suitable
foraging areas by pushing the upper snow aside. Generally, we observed that snow did not
hinder the daily activities of the deer. Future surveys would benefit from more data, which
would allow for better characterization of the suitable overlapping habitat between red
deer and roe deer and a better understanding of the factors that shape their distributions.
Other important variables to include in future models could be habitat fragmentation and
interspecific interactions.

Management and conservational implications
The Lesser Xing’an Mountain forest has suffered from intense harvesting (including
over-hunting of wildlife) since the Japanese invasion in the 1930s. Such a long history
of human-driven unsustainable exploitation has resulted in the degradation of wildlife
populations and increased sensitivity to disturbance. In addition, many non-forestry land
transformations have occurred in the southern TFB areas over the last 30 years, although
no quantitative data for landscape change are available at such a spatiotemporal scale.
It is obvious that people have been cultivating farmland, building roads and expanding
settlements, which have caused the destruction of natural habitats, inevitably transforming
the TFB area into a farming–forestry ecosystem. Although recent years have seen few
predators and ample food supplies, deer population density has remained very low
(Jiang, Zhang & Ma, 2005; Jiang, 2007), a finding we suggest is caused by continued illegal
hunting. At the same time, development of agriculture and under-forestry economy (such
as understory planting) has led to increasingly isolated large patches, which should be
protected. Large herbivores are still very vulnerable to negative anthropogenic effects. For
example, results from our roe deer model (Fig. 4B) show that the total contribution of
interference factors was 26.8%, which consisted of distance to settlement (21.4%), distance
to management area (4.8%), and distance to road (0.6%). In our opinion, the population
decline of deer in northeastern China is primarily driven by poaching, which could not be
considered in the simulation.

Under conditions of low population density, an understanding of individual species is
usually gained by studying habitat distribution. The predicted distribution generated by
our study will thus help elucidate the state of cervid habitats. Previous research showed
that cervids have similar behavioral characteristics and habitat preferences (Jiang, Zhang
& Ma, 2005; Zhang & Zhang, 2010). Jiang (2004) demonstrated that red deer and roe deer
feed on the same plant species in winter, whereas red deer and elk (Elaphurus davidianus)
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consistently overlapped with regard to height of vegetation for feeding. These findings
indicate that cervids have similar dietary habits. Our research demonstrates that habitat
overlap exists between red deer and roe deer. Overlapping habitats of similar species
(e.g., red deer and roe deer) might also be used by rare species (e.g., sika deer and elk; Hu
& Jiang, 2010).

CONCLUSIONS
Using MaxEnt to study the occurrence of red deer and roe deer allowed us to elucidate
habitat suitability within the study area and assess the relative influence of environmental
factors on their distribution patterns. Our results demonstrated that the most highly
suitable habitat was located in the eastern mountainous region of the TFB, and distance
to farmland, elevation, and distance to settlement variables were important for deer. To
maintain biodiversity, we suggest that local governments preserve large areas of natural
habitat for conservation of multiple species, especially potential overlapping habitats.

ACKNOWLEDGEMENTS
We thank all the members of the landscape ecology group for assistance with fieldwork.
We also thank Professor Yu Chang, Sabuj Bhattacharyya and two anonymous reviewers
who provided insightful comments on the paper.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by and conducted under the auspices of the National Natural
Science Foundation of China (No. 41271201, 41371198, 41201185). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 41271201, 41371198, 41201185.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• WenWu conceived and designed the experiments, performed the experiments, analyzed
the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures
and/or tables.
• Yuehui Li conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, reviewed drafts of the paper.
• Yuanman Hu conceived and designed the experiments.

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1756


Data Availability
The following information was supplied regarding data availability:

The raw data is supplied as Supplemental Information.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.1756#supplemental-information.

REFERENCES
AraujoMB, Alagador D, CabezaM, Nogues-Bravo D, ThuillerW. 2011. Climate

change threatens European conservation areas. Ecology Letters 14:484–492
DOI 10.1111/j.1461-0248.2011.01610.x.

Behdarvand N, Kaboli M, Ahmadi M, Nourani E, Mahini AS, Aghbolaghi MA. 2014.
Spatial risk model and mitigation implications for wolf-human conflict in a highly
modified agroecosystem in western Iran. Biological Conservation 177:156–164
DOI 10.1016/j.biocon.2014.06.024.

Bonnot N, Morellet N, Verheyden H, Cargnelutti B, Lourtet B, Klein F, Hewison
AJM. 2013.Habitat use under predation risk: hunting, roads and human dwellings
influence the spatial behaviour of roe deer. European Journal of Wildlife Research
59:185–193 DOI 10.1007/s10344-012-0665-8.

Brambilla M, Saporetti F. 2014.Modelling distribution of habitats required for different
uses by the same species: implications for conservation at the regional scale. Biologi-
cal Conservation 174:39–46 DOI 10.1016/j.biocon.2014.03.018.

Brown JL. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic,
biogeographic and species distribution model analyses.Methods in Ecology and
Evolution 5:694–700 DOI 10.1111/2041-210X.12200.

Catry FX, Rego FC, Bacao F, Moreira F. 2009.Modeling and mapping wildfire
ignition risk in Portugal. International Journal of Wildland Fire 18:921–931
DOI 10.1071/WF07123.

Chitale VS, Behera MD, Roy PS. 2014. Future of endemic flora of biodiversity hotspots
in India. PLoS ONE 9:e115264 DOI 10.1371/journal.pone.0115264.

Costa GC, Nogueira C, Machado RB, Colli GR. 2010. Sampling bias and the use of eco-
logical niche modeling in conservation planning: a field evaluation in a biodiversity
hotspot. Biodiversity and Conservation 19:883–899 DOI 10.1007/s10531-009-9746-8.

Couturier T, Besnard A, Bertolero A, Bosc V, Astruc G, CheylanM. 2014. Factors deter-
mining the abundance and occurrence of Hermann’s tortoise Testudo hermanni in
France and Spain: fire regime and landscape changes as the main drivers. Biological
Conservation 170:177–187 DOI 10.1016/j.biocon.2013.12.028.

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, Marquez JRG, Gruber
B, Lafourcade B, Leitao PJ, Munkemuller T, McClean C, Osborne PE, Reineking
B, Schroder B, Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: a review
of methods to deal with it and a simulation study evaluating their performance.
Ecography 36:27–46 DOI 10.1111/j.1600-0587.2012.07348.x.

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1756/supplemental-information
http://dx.doi.org/10.7717/peerj.1756#supplemental-information
http://dx.doi.org/10.7717/peerj.1756#supplemental-information
http://dx.doi.org/10.1111/j.1461-0248.2011.01610.x
http://dx.doi.org/10.1111/j.1461-0248.2011.01610.x
http://dx.doi.org/10.1016/j.biocon.2014.06.024
http://dx.doi.org/10.1016/j.biocon.2014.06.024
http://dx.doi.org/10.1007/s10344-012-0665-8
http://dx.doi.org/10.1016/j.biocon.2014.03.018
http://dx.doi.org/10.1111/2041-210X.12200
http://dx.doi.org/10.1071/WF07123
http://dx.doi.org/10.1071/WF07123
http://dx.doi.org/10.1371/journal.pone.0115264
http://dx.doi.org/10.1007/s10531-009-9746-8
http://dx.doi.org/10.1016/j.biocon.2013.12.028
http://dx.doi.org/10.1111/j.1600-0587.2012.07348.x
http://dx.doi.org/10.7717/peerj.1756


DouHL, Jiang GS, Stott P, Piao RZ. 2013. Climate change impacts population dynamics
and distribution shift of moose (Alces alces) in Heilongjiang Province of China.
Ecological Research 28:625–632 (in Chinese) DOI 10.1007/s11284-013-1054-9.

Elith J, Graham CH, Anderson RP, DudikM, Ferrier S, Guisan A, Hijmans RJ,
Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion
G, Moritz C, NakamuraM, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ,
Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS,
Zimmermann NE. 2006. Novel methods improve prediction of species’ distributions
from occurrence data. Ecography 29:129–151
DOI 10.1111/j.2006.0906-7590.04596.x.

Elith J, Leathwick JR. 2009. Species Distribution Models: Ecological explanation and
prediction across space and time. Annual Review of Ecology Evolution and Systematics
40:677–697 DOI 10.1146/annurev.ecolsys.110308.120159.

Forman RTT, Alexander LE. 1998. Roads and their major ecological effects. Annual
Review of Ecology and Systematics 29:207–231 DOI 10.1146/annurev.ecolsys.29.1.207.

Fourcade Y, Engler JO, Besnard AG, Roedder D, Secondi J. 2013. Confronting expert-
based and modelled distributions for species with uncertain conservation status:
A case study from the corncrake (Crex crex). Biological Conservation 167:161–171
DOI 10.1016/j.biocon.2013.08.009.

Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S. 2008.Measuring and
modelling biodiversity from space. Progress in Physical Geography 32:203–221
DOI 10.1177/0309133308093606.

Gogol-Prokurat M. 2011. Predicting habitat suitability for rare plants at local spa-
tial scales using a species distribution model. Ecological Applications 21:33–47
DOI 10.1890/09-1190.1.

Holzmann I, Agostini I, DeMatteo K, Ignacio Areta J, MerinoML, Di Bitetti MS. 2015.
Using species distribution modeling to assess factors that determine the distribution
of two parapatric Howlers (Alouatta spp.) in South America. International Journal of
Primatology 36:18–32 DOI 10.1007/s10764-014-9805-1.

Hu J, Jiang Z. 2010. Predicting the potential distribution of the endangered Przewalski’s
gazelle. Journal of Zoology 282:54–63 DOI 10.1111/j.1469-7998.2010.00715.x.

Hu JH, Liu Y. 2014. Unveiling the conservation biogeography of a data-deficient
endangered bird species under climate change. PLoS ONE 9(1):e84529
DOI 10.1371/journal.pone.0084529.

Jiang GS, ZhangMH,Ma JZ. 2005. The fragmentation and impact factors of red deer
habitat in Wandashan region, Heilongjiang Province, China. Acta Ecologica Sinica
25:1691–1698 (in Chinese).

Jiang GS. 2004. Impacts of habitat fragmentation on red deer distribution in Wandashan
Mountains, Hei Longjiang Provinee, China. Masters dissertation. Harbin: Northeast
Forestry University (in Chinese).

Jiang GS. 2007. Ecological effects of human disturbances on moose and roe deer and
their adaptation meehanisms at multiple spatial scale. PhD dissertation. Harbin:
Northeast Forestry University (in Chinese).

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 16/19

https://peerj.com
http://dx.doi.org/10.1007/s11284-013-1054-9
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1146/annurev.ecolsys.29.1.207
http://dx.doi.org/10.1016/j.biocon.2013.08.009
http://dx.doi.org/10.1016/j.biocon.2013.08.009
http://dx.doi.org/10.1177/0309133308093606
http://dx.doi.org/10.1177/0309133308093606
http://dx.doi.org/10.1890/09-1190.1
http://dx.doi.org/10.1890/09-1190.1
http://dx.doi.org/10.1007/s10764-014-9805-1
http://dx.doi.org/10.1111/j.1469-7998.2010.00715.x
http://dx.doi.org/10.1371/journal.pone.0084529
http://dx.doi.org/10.7717/peerj.1756


Jorge M, Galetti M, Ribeiro MC, Ferraz K. 2013.Mammal defaunation as surrogate of
trophic cascades in hotspot. Biological Conservation 163:49–57
DOI 10.1016/j.biocon.2013.04.018.

Liu ZM, Zhou XB, ZhangMH, Yu XC, Jia XB, Lan CM. 2000. Terrestrial Wildlife
Resources in State-owned Forest Areas in Heilongjiang, China. Harbiin: Heilongjiang
Forest Industry Bureau.

Li YH,WuW, Li NN, Bu RC, Hu YM. 2013. Effects of forest ownership regime on
landscape pattern and animal habitat: a review. The Journal of Applied Ecology
24:2056–2062 (in Chinese).

Li YH,WuW, Xiong ZP, Hu YM, Chang Y, Xiao DN. 2014. Effects of forest roads on
habitat pattern for sables in Da Hinggan Mountains, northeasten China. Chinese
Geographical Science 24:587–598 DOI 10.1007/s11769-014-0674-5.

Li YK. 2005. The impact of timber harvest on wapiti winter habitat selection. Masters
dissertation. Harbin: Northeast Forestry University (in Chinese).

Ma J, Hu YM, Bu RC, Chang Y, Deng HW, Qin Q. 2014. Predicting impacts of climate
change on the aboveground carbon sequestration rate of a temperate forest in
Northeastern China. PLoS ONE 9(4) DOI 10.1371/journal.pone.0096157.

Menard N, Rantier Y, Foulquier A, QarroM, Chillasse L, Vallet D, Pierre J, Butet A.
2014. Impact of human pressure and forest fragmentation on the endangered Bar-
bary macaque Macaca sylvanus in the Middle Atlas of Morocco. Oryx 48:276–284
DOI 10.1017/S0030605312000312.

Ohashi H, YoshikawaM, Oono K, Tanaka N, Hatase Y, Murakami Y. 2014. The impact
of sika deer on vegetation in Japan: setting management priorities on a national scale.
Environmental Management 54:631–640 DOI 10.1007/s00267-014-0326-7.

Ossi F, Gaillard JM, Hebblewhite M, Cagnacci F. 2015. Snow sinking depth and forest
canopy drive winter resource selection more than supplemental feeding in an
alpine population of roe deer. European Journal of Wildlife Research 61:111–124
DOI 10.1007/s10344-014-0879-z.

Pena JCD, Kamino LHY, Rodrigues M, Mariano-Neto E, De Siqueira MF. 2014.
Assessing the conservation status of species with limited available data and disjunct
distribution. Biological Conservation 170:130–136 DOI 10.1016/j.biocon.2013.12.015.

Phillips SJ, Anderson RP, Schapire RE. 2006.Maximum entropy modeling of species
geographic distributions. Ecological Modelling 190:231–259
DOI 10.1016/j.ecolmodel.2005.03.026.

Phillips SJ, DudikM. 2008.Modeling of species distributions with Maxent: new
extensions and a comprehensive evaluation. Ecography 31:161–175
DOI 10.1111/j.0906-7590.2008.5203.x.

Piekielek NB, Hansen AJ. 2012. Extent of fragmentation of coarse-scale habitats in and
around US National Parks. Biological Conservation 155:13–22
DOI 10.1016/j.biocon.2012.05.003.

Qin Y, ZhangMH. 2009. Review of researches of Red Deer (Cervus elaphus) and
perspects in China. Chinese Journal of Wildlife 30:100–104 (in Chinese).

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 17/19

https://peerj.com
http://dx.doi.org/10.1016/j.biocon.2013.04.018
http://dx.doi.org/10.1007/s11769-014-0674-5
http://dx.doi.org/10.1371/journal.pone.0096157
http://dx.doi.org/10.1017/S0030605312000312
http://dx.doi.org/10.1017/S0030605312000312
http://dx.doi.org/10.1007/s00267-014-0326-7
http://dx.doi.org/10.1007/s10344-014-0879-z
http://dx.doi.org/10.1007/s10344-014-0879-z
http://dx.doi.org/10.1016/j.biocon.2013.12.015
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
http://dx.doi.org/10.1016/j.biocon.2012.05.003
http://dx.doi.org/10.7717/peerj.1756


Quinn A, Gallardo B, Aldridge DC. 2014. Quantifying the ecological niche overlap
between two interacting invasive species: the zebra mussel (Dreissena polymorpha)
and the quagga mussel (Dreissena rostriformis bugensis). Aquatic Conservation-Marine
and Freshwater Ecosystems 24:324–337 DOI 10.1002/aqc.2414.

Razgour O, Hanmer J, Jones G. 2011. Using multi-scale modelling to predict habitat
suitability for species of conservation concern: The grey long-eared bat as a case
study. Biological Conservation 144:2922–2930 DOI 10.1016/j.biocon.2011.08.010.

Rose JP, Todd BD. 2014. Projecting invasion risk of non-native Watersnakes (Nerodia
fasciata and Nerodia sipedon) in the western United States. PLoS ONE 9:e100277
DOI 10.1371/journal.pone.0100277.

Silva VDE, Pressey RL, Machado RB, VanDerWal J, Wiederhecker HC,Werneck FP,
Colli GR. 2014. Formulating conservation targets for a gap analysis of endemic
lizards in a biodiversity hotspot. Biological Conservation 180:1–10
DOI 10.1016/j.biocon.2014.09.016.

Stehman SV, Salzer DW. 2000. Estimating density from surveys employing unequal-area
belt transects.Wetlands 20:512–519
DOI 10.1672/0277-5212(2000)020<0512:EDFSEU>2.0.CO;2.

Stolar J, Nielsen SE. 2015. Accounting for spatially biased sampling effort in presence-
only species distribution modelling. Diversity and Distributions 21:595–608
DOI 10.1111/ddi.12279.

Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB,
Marques TA, BurnhamKP. 2010. Distance software: design and analysis of distance
sampling surveys for estimating population size. Journal of Applied Ecology 47:5–14
DOI 10.1111/j.1365-2664.2009.01737.x.

Tian Y,Wu JG, Smith AT,Wang TM, Kou XJ, Ge JP. 2011. Population viability of the
Siberian tiger in a changing landscape: going, going and gone? Ecological Modelling
222:3166–3180 DOI 10.1016/j.ecolmodel.2011.06.003.

Tian Y,Wu JG,Wang TM, Ge JP. 2014. Climate change and landscape fragmentation
jeopardize the population viability of the Siberian tiger (Panthera tigris altaica).
Landscape Ecology 29:621–637 DOI 10.1007/s10980-014-0009-z.

Trombulak SC, Frissell CA. 2000. Review of ecological effects of roads on terrestrial and
aquatic communities. Conservation Biology 14:18–30
DOI 10.1046/j.1523-1739.2000.99084.x.

TurnerW, Spector S, Gardiner N, FladelandM, Sterling E, Steininger M. 2003. Remote
sensing for biodiversity science and conservation. Trends in Ecology & Evolution
18:306–314 DOI 10.1016/S0169-5347(03)00070-3.

Vega Garcia C,Woodard PM, Titus SJ, AdamowiczWL, Lee BS. 1995. A logit model for
predicting the daily occurrence of human caused forest-fires. International Journal of
Wildland Fire 5:101–111 DOI 10.1071/WF9950101.

Vieilledent G, Cornu C, Sanchez AC, Pock-Tsy JML, Danthu P. 2013. Vulnerability of
baobab species to climate change and effectiveness of the protected area network
in Madagascar: Towards new conservation priorities. Biological Conservation
166:11–22 DOI 10.1016/j.biocon.2013.06.007.

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 18/19

https://peerj.com
http://dx.doi.org/10.1002/aqc.2414
http://dx.doi.org/10.1016/j.biocon.2011.08.010
http://dx.doi.org/10.1371/journal.pone.0100277
http://dx.doi.org/10.1371/journal.pone.0100277
http://dx.doi.org/10.1016/j.biocon.2014.09.016
http://dx.doi.org/10.1672/0277-5212(2000)020<0512:EDFSEU>2.0.CO;2
http://dx.doi.org/10.1111/ddi.12279
http://dx.doi.org/10.1111/ddi.12279
http://dx.doi.org/10.1111/j.1365-2664.2009.01737.x
http://dx.doi.org/10.1111/j.1365-2664.2009.01737.x
http://dx.doi.org/10.1016/j.ecolmodel.2011.06.003
http://dx.doi.org/10.1007/s10980-014-0009-z
http://dx.doi.org/10.1046/j.1523-1739.2000.99084.x
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.1071/WF9950101
http://dx.doi.org/10.1016/j.biocon.2013.06.007
http://dx.doi.org/10.7717/peerj.1756


Waltert M, Meyer B, Shanyangi MW, Balozi JJ, Kitwara O, Qolli S, Krischke H,
MuehlenbergM. 2008. Foot surveys of large mammals in woodlands of western
Tanzania. Journal of Wildlife Management 72:603–610 DOI 10.2193/2006-456.

Wang T, Feng LM,Mou P,Wu JG, Smith JLD, XiaoWH, Yang HT, Dou HL, Zhao
XD, Cheng YC, Zhou B,WuHY, Zhang L, Tian Y, Guo QX, Kou XJ, Han XM,
Miquelle DG, Oliver CD, Xu RM, Ge JP. Amur tigers and leopards returning to
China: direct evidence and a landscape conservation plan. Landscape Ecology In
Press DOI 10.1007/s10980-015-0278-1.

Ward D, Morgan F. 2014.Modelling the impacts of an invasive species across landscapes:
a step-wise approach. PeerJ 2:e435 DOI 10.7717/peerj.435.

Wilson JW, Sexton JO, Jobe RT, Haddad NM. 2013. The relative contribution of terrain,
land cover, and vegetation structure indices to species distribution models. Biological
Conservation 164:170–176 DOI 10.1016/j.biocon.2013.04.021.

WiszMS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Nceas PSDWG. 2008.
Effects of sample size on the performance of species distribution models. Diversity
and Distributions 14:763–773 DOI 10.1111/j.1472-4642.2008.00482.x.

York P, Evangelista P, Kumar S, Graham J, Flather C, Stohlgren T. 2011. A habitat
overlap analysis derived from Maxent for Tamarisk and the South-western Willow
Flycatcher. Frontiers of Earth Science 5:120–129 DOI 10.1007/s11707-011-0154-5.

Zeng H, Sui DZ,Wu XB. 2005.Human disturbances on landscapes in protected
areas: a case study of the Wolong Nature Reserve. Ecological Research 20:487–496
DOI 10.1007/s11284-005-0065-6.

Zeng Q, Zhang YM, Sun GQ, Duo HR,Wen L, Lei GC. 2015. Using species distribution
model to estimate the wintering population size of the endangered scaly-sided
Merganser in China. PLoS ONE 10:e0117307 DOI 10.1371/journal.pone.0117307.

Zhang Y, ZhangMH. 2010. Evalution system with FAHP of deer habitats in Northeast
China. Chinese Journal of Wildlife 31:42–44 (in Chinese).

Wu et al. (2016), PeerJ, DOI 10.7717/peerj.1756 19/19

https://peerj.com
http://dx.doi.org/10.2193/2006-456
http://dx.doi.org/10.1007/s10980-015-0278-1
http://dx.doi.org/10.7717/peerj.435
http://dx.doi.org/10.1016/j.biocon.2013.04.021
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.1007/s11707-011-0154-5
http://dx.doi.org/10.1007/s11284-005-0065-6
http://dx.doi.org/10.1007/s11284-005-0065-6
http://dx.doi.org/10.1371/journal.pone.0117307
http://dx.doi.org/10.7717/peerj.1756

