
Synchronous Counting and
Computational Algorithm Design

Danny Dolev1, Janne H. Korhonen2, Christoph Lenzen3,
Joel Rybicki2, and Jukka Suomela2

1 School of Engineering and Computer Science,
The Hebrew University of Jerusalem

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki

3 Computer Science and Artificial Intelligence Laboratory, MIT

Abstract. Consider a complete communication network on n nodes,
each of which is a state machine with s states. In synchronous 2-counting,
the nodes receive a common clock pulse and they have to agree on which
pulses are “odd” and which are “even”. We require that the solution is
self-stabilising (reaching the correct operation from any initial state) and it
tolerates f Byzantine failures (nodes that send arbitrary misinformation).
Prior algorithms are expensive to implement in hardware: they require a
source of random bits or a large number of states s. We use computational
techniques to construct very compact deterministic algorithms for the
first non-trivial case of f = 1. While no algorithm exists for n < 4, we
show that as few as 3 states are sufficient for all values n ≥ 4. We prove
that the problem cannot be solved with only 2 states for n = 4, but there
is a 2-state solution for all values n ≥ 6.

1 Introduction

Synchronous Counting. In the synchronous C-counting problem, n nodes
have to count clock pulses modulo C. Starting from any initial configuration, the
system has to stabilise so that all nodes agree on the clock value.

clock

node 3
node 2
node 1
node 0

stabilisation 2-counting

Each node is a finite state machine with s states, and after every state transition,
each node broadcasts its current state to all other nodes—effectively, each node
can see the current states of all other nodes. An algorithm specifies (1) the new
state for each observed state, and (2) how to map the internal state of a node to
its output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/19525023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Byzantine Fault Tolerance. In a fault-free system, the C-counting problem
is trivial to solve. For example, we can designate node 0 as a leader, and then
all nodes (including the leader itself) can follow the leader: if the current state
of the leader is c, the new state is c+ 1 mod C. This algorithm will stabilise in
time t = 1, and we only need s = C different states.

However, we are interested in algorithms that tolerate Byzantine failures.
Some number f of the nodes may be faulty. A faulty node may send arbitrary
misinformation to non-faulty nodes, including different information to different
nodes within the same round. For example, if we have nodes 0, 1, 2, 3 and node 2
is faulty, node 0 might observe the state vector (0, 1, 1, 1), while node 1 might
observe the state vector (0, 1, 0, 1).

Our goal is to design an algorithm with the following guarantee: even if we
have up to f faulty nodes, no matter what the faulty nodes do, the system will
stabilise so that after t rounds all non-faulty nodes start to count clock pulses
consistently modulo C. We will give a formal problem definition in Section 4.

clock

node 3
node 2
node 1
node 0

stabilisation 2-counting

Contributions. Both randomised and deterministic algorithms for synchronous
counting have been presented in the literature (see Section 2). However, prior
algorithms tend to be expensive to implement in hardware: they require a source
of random bits or complicated circuitry.

In this work, we use a single parameter s, the number of states per node, to
capture the complexity of an algorithm. We employ computational techniques to
design 2-counting algorithms that have the smallest possible number of states.
Our focus is on the first non-trivial case of f = 1.

The case of n = 1 is trivial, and by prior work it is known that there is no
algorithm for 1 < n < 4. We give a detailed analysis of 2-counting for n ≥ 4:

– there is no deterministic algorithm for f = 1 and n = 4 with s = 2 states,
– there is a deterministic algorithm for f = 1 and n ≥ 4 with s = 3 states,
– there is a deterministic algorithm for f = 1 and n ≥ 6 with s = 2 states.

With such a small state space, the algorithms are easy to implement in hardware.
For example, a straightforward implementation of our algorithm for f = 1, n = 4,
and s = 3 requires just 2 bits of storage per node, and a simple lookup table
with 81 entries.

Our results are related to synchronous 2-counting, but we can compose b
copies of a 2-counter to construct a 2b-counter (see Section 3 for details).

Structure. Section 2 covers related work and Section 3 discusses applications of
synchronous 2-counters. Section 4 gives a formal definition of the problem, and
Section 5 gives a graph-theoretic interpretation that is helpful in the analysis
of counting algorithms. In Section 6 we show that we can increase n for free,
without affecting the parameters f , s, or t; this enables us to focus on small
values of n. Section 7 demonstrates the use of computers in algorithm design,
and Section 8 shows how we can use computers to construct compact proofs of
the non-existence of algorithms for given values of n, f , and s.

2 Related Work

Randomised Algorithms. Randomised algorithms for synchronous 2-counting
are known, with different time–space tradeoffs.

The algorithm by Dolev and Welch [9] requires only s = 3 states, but the
stabilisation time is t = 2O(f). Here we are assuming that n = O(f); for a large
n, we can run the algorithm with O(f) nodes only and let the remaining nodes
follow the majority.

The algorithm by Ben-Or et al. [2] stabilises in expected constant time.
However, it requires Ω(2f) states and private channels (i.e., the adversary has
limited information on the system’s state).

Deterministic Algorithms. The fastest known deterministic algorithm is due
to Dolev and Hoch [7], with a stabilisation time of O(f). However, the algorithm
is not well suited for a hardware implementation. It uses as a building block
several instances of algorithms that solve the Byzantine consensus problem—a
non-trivial task in itself. The number of states is also large, as some storage is
needed for each Byzantine consensus instance.

Consensus Lower Bounds. Binary consensus is a classical problem that has
been studied in the context of Byzantine fault tolerance; see, e.g., the textbook by
Lynch [15] for more information. It is easy to show that synchronous 2-counting
is at least as difficult to solve as binary consensus.

Lemma 1. If we have a 2-counting algorithm A that stabilises in time t, we
can design an algorithm that solves binary consensus in time t, for the same
parameters n and f .

Proof. We can find configurations x(0) and x(1) with the following properties:

– For any a = 0, 1 and j = 0, 1, 2, . . . , if we initialise the system with configu-
ration x(a) and run A for j rounds, all nodes output (a+ j) mod 2.

In essence, x(0) and x(1) are some examples of configurations that may occur
during 2-counting.

First assume that t is even. Each node i receives its input a for the binary
consensus problem. We use the element i of x(a) to initialise the state of node i.

Then we run A for t rounds. Finally, the output of algorithm A forms the output
of the binary consensus instance. To see that the algorithm is correct, we make
the following observations: (1) All non-faulty nodes produce the same output at
time t, regardless of the input. (2) If all inputs had the same value a, we used
x(a) to initialise all nodes, and hence the final output is a.

For an odd t, we can use the same approach if we complement the inputs. In
summary, A can be used to solve binary consensus in time t. ut

Now we can invoke the familiar lower bounds related to the consensus problem:

– no algorithm can tolerate f ≥ n/3 failures [18],
– no deterministic algorithm can solve the problem in t < f + 1 rounds [10].

Pulse Synchronisation. Both 2-counting and pulse synchronisation [6,9] have
a superficially similar goal: produce well-separated, (approximately) synchronised
clock pulses in a distributed system in a fault-tolerant manner. However, there
are also many differences: in pulse synchronisation the task is to construct a clock
pulse without any external reference, while in 2-counting we are given a reference
clock and we only need to construct a clock that ticks at a slower rate. Also the
models of computation differ—for pulse synchronisation, a relevant model is an
asynchronous network with some bounds on propagation delays and clock drifts.

A 2-counting algorithm does not solve the pulse synchronisation problem, and
a pulse synchronisation algorithm does not solve the 2-counting problem. However,
if one is designing a distributed system that needs to produce synchronised clock
ticks in a fault-tolerant manner, either of the approaches may be applicable.

Computational Algorithm Design. The computational element of our work
can be interpreted as a form of algorithm synthesis. In prior work, similar
approaches have been proposed to synthesise protocols for both shared-memory
and message-passing protocols [5, 16] by solving the satisfiability of certain
temporal logic formulas.

In our work, we construct distributed algorithms with the help of modern
SAT solvers [4]. Recently, such tools have been used in related problems, e.g., for
finding small logic circuits [11,12,14].

3 Applications

Counters as Frequency Dividers. We can visualise a C-counter as an elec-
tronic circuit that consists of n components (nodes); see Fig. 1. Each node i has a
register xi that stores its current state—one of the values 0, 1, . . . , s− 1. There is
a logical circuit g that maps the current state to the output, and another logical
circuit Ai that maps the current states of all nodes to the new state of node i.
At each rising edge of the clock pulse, register xi is updated.

If the clock pulses are synchronised, regardless of the initial states of the
registers, after t clock pulses the system has stabilised so that the outputs are
synchronised and they are incremented (modulo C) at each clock pulse.

node 0

node 1

x0
input 0

gA0

x1 gA1

output 0

input 1

output 1

Fig. 1. A 2-counter for n = 2, viewed as an electronic circuit.

In particular, if we have an algorithm for 2-counting, it can be used as a fre-
quency divider : given synchronous clock pulses at rate 1, it produces synchronous
clock pulses at rate 1/2.

From 2-Counters to C-counters. We can compose b layers of 2-counters to
build a clock that counts modulo 2b; see Fig. 2. A composition of self-stabilising
algorithms is self-stabilising [8]. For the purposes of the analysis, we can wait
until layer i− 1 stabilises, use this as the initial state of layer i, and then argue
that the nodes on layer i receive a synchronous clock pulse and hence they will
eventually stabilise.

2-counter

clock rate 1 clock rate 1/2

2-counter

clock rate 1/4

Fig. 2. Composition of 2-counters.

Fault-Tolerant Counting. Assume that we have n nodes that are supposed
to count events that can be observed by all nodes. However, some nodes might
occasionally miss some events, and we may have transient failures. A synchronous
C-counter provides an elegant solution to the problem: observations of the events
are interpreted as clock pulses. A node that misses an event is merely one kind
of faulty behaviour; if there are at most f such nodes, all other nodes will keep
counting correctly. Moreover, if we have at most f nodes whose current counter
values are incorrect, these nodes will eventually catch up with the others.

Counters in Mutual Exclusion. With a C-counter we can implement mutual
exclusion and time division multiple access in a fairly straightforward manner.
If we have C = n nodes and one shared resource (e.g., a transmission medium),
we can let node i to access the resource when its own counter has value i. Care
is needed with the actions of faulty nodes, though—for further information on
achieving fault-tolerant mutual exclusion, see, e.g., Moscibroda and Oshman [17].
Again 2-counting is of particular interest, as it may be leveraged by more complex
mutual exclusion algorithms.

4 Problem Formulation

We will now formalise the C-counting problem and introduce the definitions that
we will use in this work. Throughout this work, we will follow the convention
that nodes, states, and time steps are indexed from 0. We use the notation
[k] = {0, 1, . . . , k − 1}.

Simplifications. As our focus is on 2-counters, we will now fix C = 2; the
definitions are straightforward to generalise.

In prior work, algorithms have made use of a function that maps the internal
state xi of a node to its output g(xi). However, in this work we do not need
any such mapping: for our positive results, an identity mapping is sufficient, and
for the negative result, we study the case of s = 2 which never benefits from a
mapping. Hence we will now give a formalisation that omits the output mapping.

Algorithms. Fix the following parameters:

– n = the number of nodes,

– f = the maximum number of faulty nodes,

– s = the number of internal states.

An algorithm A specifies a state transition function Ai : [s]n → [s] for each node
i ∈ [n]. Here [s]n is the set of observed configurations of the system.

Projections. Let F ⊆ [n], |F | ≤ f be the set of faulty nodes. We define the
projection πF as follows: for any observed configuration s, let πF (s) be a vector
x such that xi = ∗ if i ∈ F and xi = si otherwise. For example,

π{2,4}((0, 1, 0, 1, 1)) = (0, 1, ∗, 1, ∗).

This gives us the set VF = πF ([s]n) of actual configurations. Two actual configu-
rations are particularly important:

0F = πF ((0, 0, . . . , 0)), 1F = πF ((1, 1, . . . , 1)).

Executions. Let x,y ∈ VF . We say that configuration y is reachable from x if
for each non-faulty node i /∈ F there exists some observed configuration ui ∈ [s]n

satisfying πF (ui) = x and Ai(ui) = yi. Intuitively, the faulty nodes can feed
such misinformation to node i that it chooses to switch to state yi. We emphasise
that ui may be different for each i; the misinformation need not be consistent.

An execution of an algorithm A for given set of faulty nodes F is an infinite
sequence of actual configurations X = (x0,x1,x2, . . .) such that xr+1 is reachable
from xr for all r.

Stabilisation. For an execution X = (x0,x1,x2, . . .), define its t-tail X[t] =
(xt,xt+1,xt+2, . . .). We say that X stabilises in time t if one of the following
holds:

X[t] = (0F ,1F ,0F , . . .) or X[t] = (1F ,0F ,1F , . . .).

We say that an algorithm A stabilises in time t if for any set of faulty nodes F
with |F | ≤ f , all executions of A stabilise in time t.

5 Projection Graphs

Before discussing how to find an algorithm (or prove that an algorithm does not
exist), let us first explain how we can verify that a given algorithm is correct.
Here the concept of a projection graph is helpful.

Fix the parameters s, n, and f , and consider a candidate algorithm A that is
supposed to solve the 2-counting problem. For each set F ⊆ [n] of faulty nodes,
construct the directed graph GF (A) = (VF , RF (A)) as follows:

1. The set of nodes VF is the set of actual configurations.
2. There is an edge (u,v) ∈ RF (A) if configuration v ∈ VF is reachable from

configuration u ∈ VF . In general, this may produce self-loops.

Note that the outdegree of each node in GF (A) is at least 1. Directed walks in
GF (A) correspond to possible executions of algorithm A, for this set F of faulty
nodes. To verify the correctness of algorithm A, it is sufficient to analyse the
projection graphs GF . The following lemmas are straightforward consequences of
the definitions.

Lemma 2. Algorithm A stabilises in some time t iff for every F , graph GF (A)
contains exactly one directed cycle, 0F 7→ 1F 7→ 0F .

Lemma 3. Algorithm A stabilises in time t iff the following holds for all F :

1. In GF (A), the only successor of 0F is 1F and vice versa.
2. In GF (A), every directed walk of length t reaches node 0F or 1F .

Lemma 4. Let A be an algorithm. Consider any four configurations x,u,v,w ∈
VF with the following properties: (x,u) ∈ RF (A), (x,v) ∈ RF (A), and wi ∈
{ui, vi} for each i /∈ F . Then (x,w) ∈ RF (A).

6 Increasing the Number of Nodes

It is not obvious how to use computational techniques to design an algorithm that
solves the 2-counting problem for a fixed f = 1 but arbitrary n ≥ 4. However, as
we will show next, we can generalise any algorithm so that it solves the same
problem for a larger number of nodes, without any penalty in time or space
complexity. Therefore it is sufficient to design an algorithm for the special case
of f = 1 and n = 4.

Lemma 5. Fix n ≥ 4, f < n/2, s ≥ 2, and t ≥ 1. Assume that A is an
algorithm that solves the 2-counting problem for n nodes, out of which at most
f are faulty, with stabilisation time t and with s states per node. Then we can
design an algorithm B that solves the 2-counting problem for n+ 1 nodes, out of
which at most f are faulty, with stabilisation time t and with s states per node.

Proof. The claim would be straightforward if we permitted the stabilisation time
of t+ 1. However, some care is needed to avoid the loss of one round.

We take the following approach. Let p be a projection that removes the last
element from a vector, for example, p((a, b, c)) = (a, b). In algorithm B, nodes
i ∈ [n] simply follow algorithm A, ignoring node n:

Bi(ui) = Ai(p(ui)).

Node n tries to predict the majority of nodes 0, 1, . . . , n− 1, i.e., what most of
them are going to output after this round:

– Assume that node n observes a configuration un. For each i ∈ [n], define
hi = Ai(p(un)). If a majority of the values hi is 1, then the new state of
node n is also 1; otherwise it is 0.

To prove that the algorithm is correct, fix a set F ⊆ [n+ 1] of faulty nodes,
with |F | ≤ f . Clearly, all nodes in [n] \ F will start counting correctly at the
latest in round t. Hence any execution of B with n ∈ F trivially stabilises within
t rounds; so we focus on the case of F ⊆ [n], and merely need to show that also
node n counts correctly.

Fix an execution X = (x0,x1, . . .) of A, and a point of time r ≥ t. Consider
the state vector xr−1. By assumption, A stabilises in time t. Hence the successors
of xr−1 in the projection graph must be in {0F ,1F }.

The key observation is that only one of the configurations 0F and 1F can be
the successor of xr−1. Otherwise Lemma 4 would allow us to construct another
state that is a successor of xr−1, contradicting the assumption that A stabilises.

We conclude that for all rounds r ≥ t and all nodes i ∈ [n] \F , the value hi is
independent of the states communicated by nodes in F . Since the values hi are
identical and n− f > f , node n attains the same state as other correct nodes in
rounds r ≥ t. ut

7 Computer-Designed Algorithms

In principle, we could now attempt to use a computer to tackle our original
problem. By the discussion of Section 6, it suffices to discover an algorithm with
the smallest possible s for the special case of n = 4 and f = 1. We could try
increasing values of s = 2, 3, Once we have fixed n, f , and s, the problem
becomes finite: an algorithm is a lookup table with ` = nsn entries, and hence
there are s` candidate algorithms to explore. For each candidate algorithm, we
could use the projection graph approach of Section 5 to quickly reject any invalid
algorithm.

Unfortunately, the search space is huge. As we will see, there is no algorithm
with n = 4 and s = 2. For n = 4 and s = 3, we have approximately 10154

candidates. We use two complementary approaches to tackle the task:

1. Narrow down the search space by considering restricted classes of algorithms.
2. Encode the problem as a Boolean formula and apply SAT solvers.

While SAT solvers are not a panacea, it is not uncommon to see modern general-
purpose SAT solvers outdo carefully engineered application-specific algorithms.

Cyclic Algorithms. We will consider two classes of algorithms—general algo-
rithms (without any restrictions) and cyclic algorithms. We say that algorithm
A is cyclic if

Ai((xi, xi+1, . . . xn−1, x0, x1, . . . , xi−1)) = A0((x0, x1, . . . , xn−1))

for all i and all x. That is, a cyclic algorithm is invariant under cyclic renaming
of the nodes.

There is no a priori reason to expect that the most efficient algorithms are
cyclic. However, cyclic algorithms have many attractive features: for example, in
a hardware implementation of a cyclic algorithm we only need to take n copies of
identical modules. Furthermore, the search space is considerably smaller: we only
need to define transition function A0. For n = 4 and s = 3, we have approximately
1038 candidate algorithms.

Cyclic algorithms are also much easier to verify. The projection graphs GF (A)
are isomorphic for all |F | = 1 and hence it is sufficient to check one of them.

Encoding. At a high level, we take the following approach.

1. Fix the parameters s, n, f , t, and the algorithm family (cyclic or general).
2. Construct a Boolean circuit C that verifies whether a given algorithm A is

correct. The circuit receives the transition table of A encoded as a binary
string.

3. Translate circuit C to an equivalent Boolean formula F .
4. Use SAT solvers to find a satisfying assignment a of F .
5. Translate a to an algorithm A that passes the verification of circuit C.

Table 1. Positive results. The size of the search space is approximately 2b.

Parameters SAT instance Solver running time (s)

s n f t family b variables clauses picosat lingeling plingeling

2 6 1 8 384 78546 336098 — — 140000
2 7 1 8 cyclic 128 37230 171626 — 47 48
2 8 1 4 cyclic 256 79423 436929 410 17 12
3 4 1 7 cyclic 129 10338 42030 4 3 3
3 5 1 4 1926 374871 1712779 — — 140000
3 5 1 6 cyclic 386 66793 304091 — 3000 1200
3 6 1 3 cyclic 1156 319726 1753824 11000 450 530
4 4 1 5 cyclic 512 62272 269892 64000 320 77
4 5 1 5 cyclic 2048 760892 3691498 — 41000 25000

In essence, circuit C applies Lemma 3 to verify A. More concretely, it is a hard-
wired implementation of a computer program that performs the following steps
(in parallel for all possible sets F):

1. Construct the projection graph GF (A).
2. Verify that there are no self-loops in GF .
3. Verify that the only successor of 0F is 1F and vice versa.
4. For each d = 1, 2, . . . , t, find the subset BF (d) ⊆ VF of states with the

following property: for each u ∈ BF (d) there is a directed walk of length d
in GF that starts from u and does not traverse 0F or 1F .

5. Verify that set BF (t) is empty.

For cyclic algorithms, we identify equivalent transitions in the input and simplify
the circuit accordingly.

Results. The Boolean circuits were constructed with a program written in C++.
We used Junttila’s bc2cnf tool, version 0.35 [13] to convert the circuit to a SAT
instance, and then we experimented with two SAT solvers: lingeling, version
ala-b02aa1a [4], and picosat, version 954 [3]. We ran our experiments on a
computing cluster in which each node had 2 processors (Intel Xeon E5540), 2× 4
cores, and 32 GB RAM. In this environment plingeling, the parallel version of
lingeling, automatically uses up to 8 threads and up to 16 GB memory.

The positive results are reported in Table 1, along with some statistics. The b
column indicates how many bits are needed to encode an algorithm—equivalently,
it is the base-2 logarithm of the size of the search space, rounded up.

The key findings are a cyclic algorithm for s = 3, n = 4, and f = 1, and a
non-cyclic algorithm for s = 2, n = 6, and f = 1. The table also gives example of
space-time tradeoffs: we can often obtain faster stabilisation if we use a larger
number of states.

For the sake of comparison, we note that the fastest deterministic algorithm
from prior work [7] stabilises in time t = 13 for f = 1 and it requires a large state

space. Our algorithms achieve the stabilisation time of t = 5 for s = 4 and t = 7
for s = 3.

Machine-readable versions of all positive results, together with a Python script
that can be used to verify the correctness of the algorithms, are freely available
online [1]. Selected examples of the algorithms are also given in Appendix A.

8 Computer-Designed Lower Bounds

We can use the approach of Section 7 to discover not only positive but also
negative results. If we use a SAT encoding that applies Lemma 2 instead of
Lemma 3, we can use the same approach to prove, for example, that the case of
s = 2, n < 6, and f = 1 is not solvable for any stabilisation time t.

However, such an approach would not admit easy independent verification.
It is true that modern SAT solvers are able to produce, e.g., resolution proofs
showing the unsatisfiability of the propositional formula. However, these proofs
tend to be long, and more importantly, require us to prove that (1) the encoding
exactly captures the problem at hand and (2) the computer program that outputs
the formula is correct. Hence we apply different techniques.

Using C++, we implemented a backtracking algorithm that analyses the case
of s = 2, n = 4, and f = 1. The algorithm produces a proof that shows that
there is no solution.

The proof is a case analysis with 106 cases, each of them easy to verify. A
machine-readable version of the proof is freely available online [1]. We have also
provided a simple Python script that can be used to check that the proof is indeed
correct: all possible cases are covered and the contradiction that we exhibit for
each case is verified.

While it is straightforward to construct some proof (in principle, an exhaustive
enumeration of all candidate algorithms would suffice), it is difficult to come
up with a small proof that is short enough for a (very patient) human being to
verify. Briefly, the key milestones are as follows.

1. An exhaustive enumeration: 264 cases.
2. Trivial cases eliminated: 232 cases.
3. A straightforward backtracking search: ≈ 10000 cases.
4. A heuristic rule that attempts to find the best possible branching order for

the backtracking search: 243 cases.
5. Merging cases that can be covered with a single proof: 106 cases.

While a long proof is easy to construct, the short proofs required extensive
computations in a cluster environment (in total several years of CPU time).

9 Conclusions

In this work, we have used computational techniques to study the synchronous
counting problem. At first sight the problem is not well-suited for computational

algorithm design—we need to reason about stabilisation from any given starting
configuration, for any adversarial behaviour, in a system with arbitrarily many
nodes. Nevertheless, we have demonstrated that computational techniques can be
used in this context, both to discover novel algorithms and to prove lower-bound
results.

Our computational results were constructed with a fairly complicated tool-
chain. However, the end results are compact, machine readable, and easy to verify
with a straightforward script.

Our algorithms outperform the best human-designed algorithms: they are
deterministic, small (2 ≤ s ≤ 3), fast (3 ≤ t ≤ 8), and easy to implement in
hardware or in software—a small lookup table suffices. In summary, our work
leaves very little room for improvement in the case of f = 1. The general case
of f > 1 is left for future work; we are optimistic that the algorithms designed
in this work can be used as subroutines to construct algorithms that tolerate a
larger number of failures.

Acknowledgments. Many thanks to Matti Järvisalo for discussions and advice
related to SAT encoding and SAT solvers.

DD: Danny Dolev is Incumbent of the Berthold Badler Chair in Computer
Science. This research project was supported in part by The Israeli Centers of
Research Excellence (I-CORE) program, (Center No. 4/11), by grant 3/9778 of
the Israeli Ministry of Science and Technology, and by the ISG (Israeli Smart
Grid) Consortium, administered by the office of the Chief Scientist of the Israeli
Ministry of Industry and Trade and Labor.

JHK, JR, JS: This work is supported in part by the Helsinki Doctoral
Programme in Computer Science – Advanced Computing and Intelligent Systems,
by the Academy of Finland (grants 132380 and 252018), and by the Research
Funds of the University of Helsinki.

CL: This material is based upon work supported by the National Science
Foundation under Grant Nos. CCF-AF-0937274, CNS-1035199, 0939370-CCF
and CCF-1217506, the AFOSR under Award number FA9550-13-1-0042, and the
German Research Foundation (DFG, reference number Le 3107/1-1).

References

1. Computer-generated proofs, https://github.com/suomela/counting (primary),
https://bitbucket.org/suomela/counting (backup)

2. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In: Proc. 27th Symposium on Principles of Distributed
Computing (PODC 2008). pp. 385–394. ACM Press, New York (2008)

3. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4, 75–97 (2008)

4. Biere, A.: Lingeling and friends entering the SAT challenge 2012. In: Proceedings of
SAT Challenge 2012; Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2012-2, pp. 33–34. University of Helsinki
(2012)

https://github.com/suomela/counting
https://bitbucket.org/suomela/counting

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc. 3rd Workshop on Logic of Programs
(LOP 1981). LNCS, vol. 131, pp. 52–71. Springer, Berlin (1982)

6. Daliot, A., Dolev, D., Parnas, H.: Self-stabilizing pulse synchronization inspired by
biological pacemaker networks. In: Proc. 6th Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS 2003). LNCS, vol. 2704, pp. 32–48.
Springer, Berlin (2003)

7. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite Byzantine
attacks. In: Proc. 21st Symposium on Distributed Computing (DISC 2007). LNCS,
vol. 4731, pp. 193–207. Springer, Berlin (2007)

8. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge, MA (2000)
9. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. Journal of the ACM 51(5), 780–799 (2004)
10. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive

consistency. Information Processing Letters 14(4), 183–186 (1982)
11. Fuhs, C., Schneider-Kamp, P.: Synthesizing shortest linear straight-line programs

over GF(2) using SAT. In: Proc. 13th Conference on Theory and Applications of
Satisfiability Testing (SAT 2010). LNCS, vol. 6175, pp. 71–84. Springer, Berlin
(2010)

12. Järvisalo, M., Kaski, P., Koivisto, M., Korhonen, J.H.: Finding efficient circuits for
ensemble computation. In: Proc. 15th Conference on Theory and Applications of
Satisfiability Testing (SAT 2012). LNCS, vol. 7317. Springer, Berlin (2012)

13. Junttila, T., Niemelä, I.: Towards an efficient tableau method for Boolean circuit
satisfiability checking. In: Proc. 1st Conference on Computational Logic (CL 2000).
LNCS, vol. 1861, pp. 553–567. Springer, Berlin (2000)

14. Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using
SAT-solvers. In: Proc. 12th Conference on Theory and Applications of Satisfiability
Testing (SAT 2009). LNCS, vol. 5584, pp. 32–44. Springer, Berlin (2009)

15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
16. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic

specifications. ACM Transactions on Programming Languages and Systems 6(1),
68–93 (1984)

17. Moscibroda, T., Oshman, R.: Resilience of mutual exclusion algorithms to transient
memory faults. In: Proc. 30th Symposium on Principles of Distributed Computing
(PODC 2011). pp. 69–78. ACM Press, New York (2011)

18. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. Journal of the ACM 27(2), 228–234 (1980)

A Algorithm Listings

In this appendix, we give two examples of our algorithms—machine-readable
versions of all algorithms, verification code, and some illustrations are available
online [1].

Table 2 gives a cyclic algorithm for n = 4. The rows are labelled with (x0, x1),
the columns are labelled with (x2, x3), and the values indicate A0((x0, x1, x2, x3)),
that is, the new state of the first node in the observed configuration x.

Table 3 shows a non-cyclic algorithm for n = 6. Again, the rows are labelled
with the first half (x0, x1, x2) of the observed state x and the columns are labelled
with the second half (x3, x4, x5) of the observed state x. The values show the
new state for each node: A0(x), A1(x), . . . , A5(x).

Table 2. Cyclic algorithm for s = 3, n = 4, f = 1, and t = 7.

00 01 02 10 11 12 20 21 22

00 1 1 1 1 2 1 1 1 1
01 1 1 1 0 2 0 1 1 0
02 1 1 1 1 0 0 1 1 1
10 1 0 0 1 0 0 1 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
20 1 1 1 1 1 1 1 1 1
21 1 1 1 1 0 0 1 1 0
22 1 1 1 0 0 0 1 1 1

Table 3. Algorithm for s = 2, n = 6, f = 1, and t = 8.

000 001 010 011 100 101 110 111

000 111111 111111 111111 110101 111011 111111 111111 110101
001 111111 110111 111101 000001 111011 100011 101001 000100
010 111111 111111 111111 110101 001000 001000 001000 000000
011 101111 100011 101001 000000 001000 000000 001000 000000
100 111111 011100 110101 000000 111111 011100 100011 000000
101 110111 000000 000000 000000 100011 000000 000000 000000
110 111111 011100 100011 000000 001000 001000 000000 000000
111 100111 000000 000000 000000 000000 000000 000000 000000

	Synchronous Counting and Computational Algorithm Design

