
Peer Assessment in Experiential Learning
Assessing Tacit and Explicit Skills in Agile Software Engineering Capstone Projects

Fabian Fagerholm, Arto Vihavainen
Department of Computer Science, University of Helsinki

P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014, Finland

fabian.fagerholm@helsinki.fi, arto.vihavainen@cs.helsinki.fi

Abstract—To prepare students for real-life software engineer-
ing projects, many higher-education institutions offer courses that
simulate working life to varying degrees. As software engineering
requires not only technical, but also inter- and intrapersonal
skills, these skills should also be assessed. Assessing soft skills
is challenging, especially when project-based and experiential
learning are the primary pedagogical approaches. Previous work
suggests that including students in the assessment process can
yield a more complete picture of student performance. This paper
presents experiences with developing and using a peer assessment
framework that provides a 360-degree view on students’ project
performance. Our framework has been explicitly constructed to
accommodate and evaluate tacit skills that are relevant in agile
software development. The framework has been evaluated with
18 bachelors- and 11 masters-level capstone projects, totaling
176 students working in self-organized teams. We found that the
framework eases teacher workload and allows a more thorough
assessment of students’ skills. We suggest including self- and
peer assessment into software capstone projects alongside other,
more traditional schemes like productivity metrics, and discuss
challenges and opportunities in defining learning goals for tacit
and social skills.

Keywords—Peer assessment; assessment metrics; self-
assessment; case study; capstone project; experiential learning;
project-based learning; tacit skills; teamwork; computer science
education; agile software engineering.

I. INTRODUCTION

It is well known that there exists a gap between what
engineering students learn and what is expected from them as
they graduate [1], [2], [3]. The expectation gap [4] is especially
visible in software engineering education, where practices
learned while studying may even have to be unlearned later [5].

Among the expected skills are the abilities to read so-
cial cues, regulate emotional expression, and to engage in
constructive dialogue with project stakeholders to discover
tacit knowledge. These so-called soft skills are particularly
important in software engineering projects that rely more on
informal communication than document-driven and plan-based
approaches. They are important for building and maintaining
cohesion in development teams, working with external teams,
and for involving other project participants and stakeholders in
the software development process.

The gaps in communication and teamwork skills of new
engineers were discussed already in the 1990s [6], and the
most relevant skills required from entry-level IT personnel still
include personal attributes such as problem solving, critical

and creative thinking, and team skills and communication [7].
Teamwork and communication is also emphasized in the
emerging agile methodologies, where interaction between
individuals is valued over processes and tools [8]. Ultimately,
students should grow into members of their communities of
practice [9], adopting the tacit skills required to function in the
field. This is a notable challenge for higher education.

Teamwork is usually practiced in several projects in higher
education. Perhaps the most notable project is the capstone
project, which is often the culmination of a degree program.
Capstone projects are typically made for real customers in
as realistic settings as possible, given the constraints of the
educational institution. Capstone projects provide an opportu-
nity to assess higher-order cognitive dimensions of learning as
well as affective and skill-based dimensions [10]. Even if the
end product of a project is the most valuable deliverable for a
customer, the whole project can be a continuous and valuable
learning process for the students.

As students direct their activities based on the given
assessment criteria [11], the assessment design plays a key
role in what students will focus on. In a software engineering
capstone project, the assessed skills and knowledge should
contain: (1) elementary software engineering related skills such
as requirements analysis, design, development, and validation;
(2) tool related skills such as the use of a version control
system, development tools, and process management tools; and
(3) process related skills such as process knowledge and how
a selected process is followed. How the students utilize and
benefit from these skills in a teamwork setting is moderated
by several tacit, soft, and social skills.

In this paper, we present ongoing work on an assessment
framework that can be used as a decision support tool to assess
tacit skills together with explicit skills in capstone project
environments. The framework has been built to help focus
students’ attention to important team-related aspects, and to
help teachers assess student performance in capstone projects.

This paper is structured as follows. In Section II, we give an
overview of our educational context and the learning objectives
of our capstone courses, as well as discuss our motives to
develop a new framework. In Section III, we describe related
work on assessment of project-based education as well as
self- and peer assessment, and in Section IV, we describe the
framework. The evaluation of the framework is discussed in
Section V through a multiple case study, and finally, in Section
VI, we conclude this paper and outline future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/19524947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fabian.fagerholm@helsinki.fi
mailto:arto.vihavainen@cs.helsinki.fi


II. BACKGROUND

Computer Science studies at the University of Helsinki
are divided into a three-year bachelor’s degree, and a two-
year higher master’s degree. The bachelor’s degree is a
comprehensive computer science degree, which prepares the
students for both working life and future studies. There is no
“specialization track” within the bachelor’s studies: every student
takes courses on e.g. math, software engineering, distributed
systems, as well as algorithms and machine learning.

If the students choose to pursue a master’s degree, they
have a variety of specialization tracks to choose from. Our
focus is on the software engineering specialization track, in
which students deepen their understanding on e.g. software
processes and quality, agile methodologies and coaching, as
well as software architecture.

A. Capstone Projects

Both the bachelor’s and master’s degrees contain a capstone
project. The bachelor’s degree studies culminate in either a 7-
or a 14-week Software Engineering Project, during which the
students work in 4–5-person teams on a project from e.g. an
industry partner or a research group. The 7-week version is a
full-time project, where the students are collocated at one of
our labs, while the 14-week version is a part-time project, and
can be partially distributed. Although the students are mentored
by staff, they handle all project aspects in a self-organized
manner, including project management and setting customer
expectations.

The capstone project for the software engineering spe-
cialization track is the Software Factory Project [12], [13],
which simulates a teamwork environment in contemporary
software development organizations. Its design aims to shift
responsibility of all aspects of project operation to the student
team, in order to ensure that students are exposed to the realities
of software development.

The Software Factory Project is similar to the bachelor’s-
level capstone project, but with some characteristics that make
it more challenging. The project usually begins with more ill-
defined goals. Part of the purpose is to discover, together with
the customer, even which software the project is to produce,
and how the software can bring value to the customer and
end user. Some of the projects also operate in a distributed
environment together with other Software Factory nodes at
separate universities.

B. Motivation and Learning Objectives

The motivation for assessing teamwork and tacit skills arose
initially during the design and development of the Software
Factory Project. The tacit skills are of particular importance in
such courses, and thus were set as important learning objectives
of the project. One of the challenges was to design an approach
to assess not only project deliverables and productivity, but
also performance in terms of tacit and team skills. The lessons
learned in the Software Factory were incorporated, together
with results from a multi-year improvement effort [14], into
the Software Engineering Project.

The main learning objective for both capstone projects was
originally defined as “the ability to become a member of a

software development team, function as part of it, contribute
to its development, and work as part of it towards its current
mission or purpose”. In addition, the software engineering
project has a specific learning objective rubric, which outlines
the principal themes in the course and what is required for each
level of student assessment. The rubric follows the principles of
constructive alignment [15], and outlines software development
related skills, as well as management and tool usage.

The effort that students put on learning is heavily determined
by the assessment criteria [16], [17]. However, neither the rubric
nor the main learning objective supported assessing soft skills.
As the main learning objective of the capstone projects consists
of a set of distinct sub-objectives, assessment requires that each
of them is identified and assessed independently, preferably
using a small number of traits that cover the knowledge and
skills required to do well in each part of an activity [17].

Our framework is based on the cognitive domain of Bloom’s
revised taxonomy [18], [19], which provides guidelines for
agreeing on assessment and learning objectives for a course.
It outlines six levels (remembering, understanding, applying,
analyzing, evaluating, and creating), which are ordered from
simpler to more complex; the original idea was that mastering
a “higher” category requires the mastery of the previous
categories.

Based on the six levels defined by the cognitive domain
in Bloom’s revised taxonomy, we outlined the following team
skills that each participant focuses on: presence, activity,
eagerness, devotion, contribution, and expert maturity. In
addition, the bachelor’s-level software engineering projects put
additional focus on the participant behavior and its influence
on process and result. A more comprehensive description of
these team skills is given in Section IV.

III. RELATED WORK

Several studies have examined self- and peer assessment
of teamwork in regular courses, and assessment of teamwork
in projects, including capstone-like courses. Here, we briefly
present some of the issues examined and results found.

One of the most fundamental questions regarding assessment
is that of its purpose. Naturally, assessment can serve multiple
purposes simultaneously; it can help rank students with respect
to their performance, allowing selection to be made in different
stages of an educational system, and it can provide important
feedback to students regarding their study performance. When
assessment is tied to specific learning objectives, students’
activities can be directed towards activities that build knowledge
and skills that are deemed relevant.

Assessment can be used on the systemic level to evaluate
learning programs in terms of how well they support achieve-
ment of learning outcomes [20]. The nature of capstone projects
as comprehensive experiences means that they allow assessing
a wide range of abilities; they are indicative of learning
program strengths and weaknesses. Analysis of capstone project
outcomes can provide valuable insights for improving learning
programs, and thus, improving student learning. Payne et al.
suggest assessing student readiness for capstone courses in
order to gather feedback on both the presence of necessary
background knowledge, skills, and dispositions, and the ability



to apply them to capstone courses [10]. They outline critical
concepts and skills that students must be taught to assure
their success in capstone courses, noting that educators and
researchers should set up continuous feedback frameworks that
could be used to transfer knowledge to core-course faculty on
the level of preparation the students believe they have for the
upcoming capstone experience.

A pertinent question is how to actually assess capstone
projects: what is to be assessed and how? One approach
is to map project deliverables and artifacts to general and
specific learning outcomes and rubrics, and then assess the
deliverables with respect to the rubric, as proposed by Murray
et al. [20]. As an example, Murray et al. describe the goals
of information systems capstone projects: students should
be able to i) understand that projects require collaboration
as well as individual effort, ii) participate as contributing
members of a development team, iii) apply teamwork skills in
development and implementation of a system, iv) demonstrate
acknowledgment of and respect for the team members, and
v) identify the qualities needed to be an an effective leader,
and explain the roles of leadership and teamwork in system
development and implementation. The artifacts used to evaluate
these outcomes include individual reports, peer evaluations, and
weekly status forms.

Self- and peer assessments appears to be viewed favorably
by many teachers and researchers in terms of how well it
includes students into the assessment process. For instance,
Fellenz finds that peer evaluation can improve the quality of
the students’ experience and increase their engagement in the
learning task [21]. However, a particular concern in assessing
teamwork skills is the accuracy of assessment. Through a
review of assessment literature, Van Duzer and McMartin [22]
identified two primary types of bias as especially relevant for
self-assessment and peer evaluation: self-enhancement, where
one’s own performance is evaluated as unreasonably optimistic,
and downward comparison, a general tendency for positive
self-bias and negative other-bias. Similar results are reported in
many works. For example, Ryan et al. compared peer and self-
evaluations of class participation against those of professors
[23]. They found that faculty grades tended to be higher than
peer grades, and that self-evaluation grades were typically
higher than faculty grades. This study used a forced ranking
system for students to rank each other while faculty did not
use forced ranking.

Van Duzer and McMartin suggest some approaches to
reduce self-enhancement and downward comparison biases [22].
Using language shared by respondents and testers in assessment
criteria helps to reduce misinterpretation and thus improves the
validity of the assessment process. Correlating self-assessments
with scores by multiple raters allows evaluation of instrument
reliability. Designing questions so that they rate past perfor-
mance, not expected future performance, improves reliability
by reducing the effect of downward comparison. Finally, asking
respondents to make comparisons with an explicit group of
known individuals rather than an abstract group when social
comparisons are required, also improves reliability. Qualitative
analysis while developing the instrument is necessary to
understand the meaning of the assessment to participants. Van
Duzer and McMartin developed a process with both quantitative
and qualitative parts for improving and tailoring teamwork skill

assessment in specific environments. They found a dramatic
improvement in sensitivity when applying the process to their
own instrument.

A number of approaches and frameworks for self- and peer
assessment have been described in the literature. Willey and
Freeman report on a tool that facilitates formative assessment
via self- and peer assessment [24]. They report that formative
feedback encouraged development of teamwork skills, and also
discouraged free-riding and sabotage, thus promoting academic
honesty. They argue that while self- and peer assessment is often
implemented as summative assessment, even better outcomes
may be achieved by using them as formative assessment. They
observe that the administrative burden of applying self- and
peer assessment can often outweigh the perceived benefit.
Furthermore, they observe that feedback is often given long
after the assessable work has been completed, which means
that students’ attention may already have shifted to other tasks.

Beyerlein et al. [25] describe an assessment framework
for capstone design courses. Their framework is based on a
conceptual model of knowledge representation and expertise
development. They strive to examine students’ performance
and growth from several perspectives. They examine growth
in personal knowledge and skills applied in problem solving.
They examine professional development through goal-driven
initiative, competence in problem-solving, integrity and pro-
fessionalism, and ongoing reflection. Also, they examine team
processes and dynamics as well as productivity by determining
whether team resources are used strategically, and decisions
made add real value to the project. They also examine how well
students are able to formulate solution requirements, consider
stakeholder needs, and formalize these into specifications. Fi-
nally, they evaluate deliverables in terms of desired functionality,
economic benefits, feasibility of implementation, and favorable
impact on society.

Another concern is students’ motivation to rate their peers.
Friedman et al. found that students who provided categorical
ratings (multiple scores on different categories or dimensions)
multiple times during a course experienced the lowest motiva-
tion to rate their peers, while students who provided holistic
ratings (a single score) multiple times reported the highest
motivation [26]. We may hypothesize that respondent fatigue
plays a role here: a small number of items is less likely to
feel overwhelming. The type of item may also be important:
describing a particular behavior and asking the respondent to
indicate its frequency is usually recommended – an approach
used, e.g., in rating a system developed by Clark et al. [27].

Finally, also related to practical concerns, is the burden
of manual work in collecting and analyzing self- and peer
assessment data. Naturally, online questionnaires and semi-
automated analysis tools can remove much of this manual
work. Some reports exist on complete systems for self- and
peer assessment management. The SPARK system, described
by Freeman and McKenzie [28], emphasizes fairness in group
work assessment and reduced administrative burden through
automation. Similarly, the CATME system, described by Ohland
et al. [29], provides automation to reduce teacher workload,
but places greater emphasis on using behavioral anchors in the
assessment itself. The SMARTER system [30] extends CATME
and attempts to link educational research with teaching faculty
actions to enhance learning of teamwork skills.



IV. FRAMEWORK FOR ASSESSING TACIT SKILLS

Our Framework for Assessing Tacit Skills consists of a
questionnaire whose items can be used (e.g. by weighted
averaging) to provide assessment decision support for teachers.
The framework enables assessment of tacit skills through
nine indicators, used for both self- and peer assessment. We
categorized the indicators to represent six different tacit skills,
and decided that the assessment should impose as little overhead
as possible for all participants and thus should be implemented
as a short online questionnaire.

The framework factors, questionnaire items, and scales are
shown in Table I. The questionnaire, which is filled in by
the students, project coach, and the client, allows rating each
student based on the questionnaire items. Once the questionnaire
has been answered, the answers are exported for further data-
analysis, where a set of scripts is used to e.g. suggest overall
grades based on a given weighting, or to indicate students that
have been free-riding.

The questionnaire is structured along six factors, beginning
from basic factors and progressing towards higher levels
of involvement and skills. The first factor, presence, is a
prerequisite for becoming a member of the development team.
The activity factor implies that a person is not only present,
but also actively involved in the project. Eagerness reflects the
attitude that the person takes towards the project: is the person
not only active but also taking initiative and displaying a positive
desire to get things done. Devotion reflects a deeper level of
commitment: the person not only takes the initiative but actually
invests effort into carrying out planned tasks. Contribution
reflects actual impact on the project, whether in the form of
code, documentation, or other deliverables, or in the form of
project management, customer communication, or support tasks.
Finally, expert maturity reflects an overall assessment of how
the person performed in their role. We purposefully chose to
leave the definition of this factor quite open and broad, in order
to allow each individual to assess it according to the specific
conditions of each particular project.

While we appreciate the objectivity and wide coverage of
the approach described by Murray et al. [20] and other similarly
detailed assessment schemes, we suspect that both students
and teachers can quickly be overwhelmed by the amount of
effort required to produce and analyze the assessment artifacts,
resulting in both less effort being available for project work
and formative assessment and guidance. It also feels counter
to the philosophy of Agile software development methodology
to employ a heavy-weight assessment framework – after all,
agile projects purposely do not define artifacts to be produced
until there is a proven need to produce them.

Three main criteria were defined for the framework. First,
the framework should ease teacher workload. The framework
should function as a support tool for teachers during assessment,
and it should support assessment of project-based courses even
when teachers cannot constantly observe students’ activities.
Second, it should allow systematic assessment of students’
skills; each factor in the framework can be thought of as
building on top of the previous factors. Finally, it should be
easy to detect attempted misuse of the framework, so that
teachers can be confident that they may use the results as valid
decision support information.

V. EVALUATION

The framework has been evaluated iteratively during its
development. It was first evaluated in several projects in the
Software Factory, and later also in the Software Engineering
Project. In this section, we report on the evaluation procedures
and present the most relevant evaluation results. We then discuss
the validity and limitations of our evaluation and present results
from evaluating the framework from a teacher perspective.

As noted, the motive for assessing tacit skills arose during
the design of the Software Factory. We first conducted a pilot
project in spring 2010 with 11 students, during which the
framework dimensions were developed. Then, the framework
was deployed to 11 consecutive Software Factory projects with
a total of 77 students. The evaluation of the framework in the
Software Engineering Project started in fall 2011, after which
a total of 18 projects with a total of 88 students have been
both evaluated by the framework and given their evaluation
of the framework. Since the latter project is mandatory for
all bachelor’s-level students, we wanted to gain reasonable
confidence that the framework worked well before deploying it
there. As part of that deployment, we found that the Software
Engineering Project students did not perceive teamwork-related
skills as important. For example, competitive situations arose
where several strong individuals attempted to pull the project
in their desired direction. For this reason, factors regarding
individual behavior in relation to the group were added.

Our evaluation strategy is laid out as follows. Ultimately,
the objective is to find out whether the framework is suitable
for the purpose of influencing learning of teamwork skills
through assessment. However, before actually determining
its effect on learning, we want to understand whether the
framework is otherwise suitable for use in capstone projects.
This includes evaluating the accuracy of assessment and utility
of the framework as a decision support tool: does the framework
adequately guard against biases such as self-enhancement
and downward comparison, does it adequately reflect rater’s
understanding of the factors, and does it produce results that
are in line with teachers’ expert evaluations, taking into account
the rich, qualitative observational data obtained when guiding
students in the capstone projects?

To perform this evaluation, we proceed as follows. We check
the association between self- and peer ratings to determine
whether a bias is visible (see Table II). Peer ratings should help
dampen bias in self-ratings. We check association between the
different rating factors. There should be discernible differences
between the factors both in self- and peer ratings; they should
not have perfect correlation. However, there should be some
association between the factors that are in fact conceptually
related.

Table II shows correlations between self- and peer assess-
ments in both the Software Factory (SF) and the Software
Engineering Project (SP). Most of these correlations are as
expected: there is a large degree of correlation but there are
differences in the gradings. However, some correlations stand
out from the others. In SF, there is quite low correlation on
eagerness, and self-ratings tend to be higher (mean: 0.863) than
peer ratings (mean: 0.743). In SP, self-ratings tend less towards
the highest grade (mean: 0.788) and peer ratings are similar
in distribution (mean: 0.786). In our interpretation, students



TABLE I. FRAMEWORK FACTORS, QUESTIONNAIRE ITEMS, AND SCALES.

Factor Questionnaire item Scale

Presence How many days per week did you work on this project? 1 – Was not present at all
How many hours did you spend on the entire project in total? (Round to nearest hour.) 2 – Was sometimes present
How much was each team member present? Also rate your own presence. 3 – Was moderately present

4 – Was nearly always present
5 – Was always present
0 – I don’t know

Activity How actively did each team member participate in the project? Also rate your own activity. 1 – Was not active at all
2 – Was somewhat inactive
3 – Was moderately active
4 – Was quite active
5 – Was very active
0 – I don’t know

Eagerness Eagerness: a positive feeling of wanting to push ahead with something. 1 – Was not eager at all
How eager was each team member to participate in the course? Also rate your own eagerness. 2 – Was a little eager

3 – Was moderately eager
4 – Was quite eager
5 – Was very eager
0 – I don’t know

Devotion Devotion: commitment to some purpose; “the devotion of his time and wealth to our project” 1 – Was not devoted at all
How devoted was each team member to the course? Also rate your own devotion. 2 – Was a little devoted

3 – Was moderately devoted
4 – Was quite devoted
5 – Was very devoted
0 – I don’t know

Contribution How much did each team member contribute to the deliverables (code, documentation, tests, 1 – Did not contribute at all
bugs, plans, or anything else that the project produced)? Also rate your own productivity. 2 – Contributed a little

3 – Contributed moderately
4 – Contributed quite much
5 – Contributed very much
0 – I don’t know

Expert Maturity Each team member has acted as a software development expert with some specific focus area. 1 – Very low expert maturity
How mature was each team member in their expert role? Also rate your own maturity. 2 – Low expert maturity

3 – Neutral expert maturity
4 – Some expert maturity
5 – High expert maturity
0 – I don’t know

Group dynamics: each member can influence the team spirit and the end result with their social behavior.
Process How did the group behavior of each member influence the sensed meaningfulness of the project work? 1 – Influenced negatively
(only BSc project) 2 – Did not influence

3 – Influenced a little
4 – Influenced quite much
5 – Influenced very much
0 – I don’t know

Result How did the group behavior of each member influence the end quality of the project work? 1 – Influenced negatively
(only BSc project) 2 – Did not influence

3 – Influenced a little
4 – Influenced quite much
5 – Influenced very much
0 – I don’t know

TABLE II. CORRELATIONS BETWEEN SELF- AND PEER RATINGS ON
DIFFERENT FRAMEWORK DIMENSIONS IN SOFTWARE FACTORY (SF) AND

SOFTWARE ENGINEERING PROJECT (SP), WITH CORRESPONDING P-VALUES.

Dimension Correlation between self- and
peer rating

p-value

Presence (SF) 0.492 < 0.001
Presence (SP) 0.457 < 0.001
Activity (SF) 0.531 < 0.001
Activity (SP) 0.544 < 0.001
Eagerness (SF) 0.279 0.017
Eagerness (SP) 0.473 < 0.001
Devotion (SF) 0.433 < 0.001
Devotion (SP) 0.333 0.002
Contribution (SF) 0.582 < 0.001
Contribution (SP) 0.376 < 0.001
Expert maturity (SF) 0.461 < 0.001
Expert maturity (SP) 0.207 0.062
Contribution to meaningfulness (SP) 0.487 < 0.001
Contribution to quality (SP) 0.370 0.002

in SP could be less inclined to penalize each other, perhaps
because their level of experience is lower and the course is
mandatory – they may not want to give low ratings to each
other on eagerness given that situation.

On devotion and contribution, the trend is similar: in SF,
the correlation is stronger than in SP. In the SP data, high
peer ratings were more common than in the SF data. In SF,
roughly one third of students rated their peers at average expert
maturity, while more than two thirds of SP students assigned
each other the two highest scores. This may indicate that the
competitiveness among students in the SF is higher. We observe
that this information allows the teacher to assess the amount
of bias in responses and that there appears to be agreement on
the meaning of the dimensions.

Next, we consider the association between the variables. In
the self-evaluation scores, presence correlates somewhat with



activity and eagerness but less with devotion, contribution, and
least with expert maturity. This could indicate that students
do see these factors as separate. Activity correlates quite
strongly with eagerness, devotion, and expert maturity. Devotion
correlates strongly with contribution and expert maturity.
Contribution correlates most strongly with expert maturity.

In the peer evaluation scores, all factors are moderately to
strongly correlated. In SF, the strongest (≥ 0.9) correlations
are i) activity with eagerness (0.930), devotion (0.932), and
contribution (0.943); ii) eagerness with devotion (0.912) and
contribution (0.911); iii) devotion with contribution (0.939);
and iv) contribution with expert maturity (0.906; p < 0.001
in all cases). In SP, the correlations are smaller but still quite
strong. The order of strength is roughly the same. We interpret
these results as supporting the intended structure of the factors.

In SP, the two added factors had moderate to low correlation
between self- and peer evaluation. On contribution to meaning-
fulness, self- and peer evaluations had a moderate correlation
(0.487), while on contribution to quality, the correlation was
lower (0.370). In the latter, there may be bias toward thinking
that one’s own contribution is the most important, and therefore
one rates the others lower.

A. Validity

The validity of the framework is limited by the fact that it
uses a questionnaire-based approach. Respondents are asked to
recall their own behavior and that of their teammates, and this
recall may not be perfect. However, more fundamentally, the
validity is ultimately relative to context in which the instrument
is deployed. The purpose of the framework is to function as a
decision support tool, and teacher judgment should be used to
determine the final assessment. As MacLellan notes, validity
concerns not the assessment instrument used or the resulting
scores as such, but rather the inferences which are derived from
them [31].

To lend more validity to such inferences, the framework
should provide a way to detect whether the data may be biased
or incorrect. The most common reason besides unintentional
bias is students’ attempts to artificially influence their grades.
We found some cases of attempted subversion, where a small
number of students systematically rated themselves with the
highest scores and others with the lowest scores. These cases
were easily detected using simple, semi-automatically produced
outlier analysis.

B. Teacher satisfaction

In our context, we have evaluated the framework with
three different teachers. While the results of this evaluation are
experiential and cannot be generalized, we find it important to
report on these experiences to enable other teachers to determine
whether our approach is of value in their context.

Our first finding relates to the goal of easing the teacher’s
workload. We found the framework to be non-intrusive and
supporting formative assessment and feedback during the
capstone courses. The framework required no extra effort during
the courses, and the teachers were able to devote their time to
in-situ instruction. At the end of the course, some administrative
effort was needed to administer the on-line questionnaire, collect

the results, and perform the required data analysis. However,
since many of these tasks were automated or semi-automated,
teachers could focus on the intellectual side of summative
assessment: interpretation of the numeric results and comparison
of them to other assessment sources, including notes taken
during the course.

One of the teachers voiced concerns regarding fairness and
comparability between students and projects. However, we
found that when used as a decision-support tool for assessment,
the framework did not introduce any fairness concerns. This
was also reflected in students’ attitudes – all students were
given the same opportunity to grade themselves and each other,
and the teacher validated the results so that unfair biases were
accounted for in the final grade. Cross-project comparability is
still an issue, however, but it is not unique to this framework.
Each capstone project is inherently different, and maintaining
the level of realism often desired in such projects means that
comparisons of performance are difficult.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we have described our tacit skills assessment
framework, which is an easy-to-use decision support utility for
evaluating students’ teamwork proficiency. The framework has
been evaluated with data from 18 bachelor’s and 11 master’s-
level capstone projects, where it has been found to provide
reasonable support for teachers in evaluating tacit, social, and
teamwork skills. We found that the framework guarded against
rater bias, that its dimensions were well understood, and that
it matched teachers’ expert ratings. Our results are relevant in
the context of project-based courses emphasizing experiential
learning and agile methodologies.

We suggest including self- and peer assessment into software
capstone projects. However, although technically possible, one
should not base assessment of students in capstone projects
only on the values provided by the self- and peer ratings. We
suggest using additional criteria that takes into account several
other data sources, such as version control system commits
and their quality. In addition, feedback on the overall project
can be obtained from the customer as well as a possible team
lead or coach. Aggregating scores into a final grade requires
experimentation and the inclusion of teacher judgment.

In case participants display behavior that is not seen as
beneficial for the team, additional assessment criteria can be
added to the framework due to it’s small size. As an example,
a few participants in our current bachelor’s level software
engineering projects have displayed a tendency for “safety
seeking”, where individuals have avoided working on tasks that
require learning new tools and practices. Additional incentives
for moving away from the comfort zone have been introduced
via a new assessment criteria “How well did the participant
handle tasks that required learning new tools and practices?”.

We are currently considering a replication study to evaluate
the framework in a Software Factory in another country, as well
as evaluating approaches to make the framework easier to use.
Other possible directions include formative assessment support,
and determining the association between framework factors
and objectively measurable metrics such as code metrics.



REFERENCES

[1] R. Martin, B. Maytham, J. Case, and D. Fraser, “Engineering graduates’
perceptions of how well they were prepared for work in industry,”
European Journal of Engineering Education, vol. 30, no. 2, pp. 167–
180, 2005.

[2] R. L. Meier, M. R. Williams, and M. A. Humphreys, “Refocusing
our efforts: Assessing non-technical competency gaps,” Journal of
Engineering Education, vol. 89, no. 3, pp. 377–385, 2000.

[3] M. Natishan, L. Schmidt, and P. Mead, “Student focus group results on
student team performance issues,” Journal of Engineering Education,
vol. 89, no. 3, pp. 269–272, 2000.

[4] E. M. Trauth, D. W. Farwell, and D. Lee, “The is expectation gap:
Industry expectations versus academic preparation,” Mis Quarterly,
vol. 17, no. 3, pp. 293–307, 1993.

[5] A. Begel and B. Simon, “Struggles of new college graduates in their
first software development job,” in ACM SIGCSE Bulletin, vol. 40, no. 1.
ACM, 2008, pp. 226–230.

[6] P. J. Denning, “Educating a new engineer,” Communications of the ACM,
vol. 35, no. 12, pp. 82–97, 1992.

[7] M. E. McMurtrey, J. P. Downey, S. M. Zeltmann, and W. H. Friedman,
“Critical skill sets of entry-level it professionals: An empirical exam-
ination of perceptions from field personnel,” Journal of Information
Technology Education, vol. 7, pp. 101–120, 2008.

[8] M. Fowler and J. Highsmith, “The agile manifesto,” Software Develop-
ment, vol. 9, no. 8, pp. 28–35, 2001.

[9] E. Wenger, Communities of Practice: Learning, Meaning, and Identity,
ser. Learning in Doing. Cambridge University Press, 1998.

[10] S. L. Payne, J. Flynn, and J. M. Whitfield, “Capstone Business Course
Assessment: Exploring Student Readiness Perspectives.” Journal of
Education for Business, vol. 83, no. 3, pp. 141–146, 2008.

[11] J. Biggs and C. Tang, Teaching for quality learning at university. Open
university press, 2011.

[12] F. Fagerholm, N. Oza, and J. Münch, “A Platform for Teaching Applied
Distributed Software Development: The Ongoing Journey of the Helsinki
Software Factory,” Collaborative Teaching of Globally Distributed
Software Development, 2013.

[13] P. Abrahamsson, P. Kettunen, and F. Fagerholm, “The set-up of a software
engineering research infrastructure of the 2010s,” in Proceedings of
the 11th International Conference on Product Focused Software, ser.
PROFES ’10. New York, NY, USA: ACM, 2010, pp. 112–114.

[14] M. Luukkainen, A. Vihavainen, and T. Vikberg, “Three years of
design-based research to reform a software engineering curriculum,”
in Proceedings of the 13th annual conference on Information technology
education. ACM, 2012, pp. 209–214.

[15] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
education, vol. 32, no. 3, pp. 347–364, 1996.

[16] J. Biggs and C. Tang, Teaching for Quality Learning at University, ser.
SRHE and Open University Press Imprint. McGraw-Hill Education,
2011.

[17] J. R. Frederiksen and A. Collins, “A systems approach to educational
testing,” Educational researcher, vol. 18, no. 9, pp. 27–32, 1989.

[18] B. S. Bloom, M. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl,
“Taxonomy of educational objectives: Handbook i: Cognitive domain,”
New York: David McKay, vol. 19, p. 56, 1956.

[19] L. W. Anderson, D. R. Krathwohl, and B. S. Bloom, A taxonomy for
learning, teaching, and assessing. Longman, 2005.

[20] M. Murray, J. Pérez, and M. Guimaraes, “A Model for Using a Capstone
Experience as One Method of Assessment of an Information Systems
Degree Program,” Journal of Information Systems Education, vol. 19,
no. 2, pp. 197–208, 2008.

[21] M. R. Fellenz, “Toward Fairness in Assessing Student Groupwork: a
Protocol for Peer Evaluation of Individual Contributions,” Journal of
Management Education, vol. 30, no. 4, pp. 570–591, 2006.

[22] E. Van Duzer and F. McMartin, “Methods to improve the validity
and sensitivity of a self/peer assessment instrument,” Education, IEEE
Transactions on, vol. 43, no. 2, pp. 153–158, 2000.

[23] G. Ryan, L. Marshall, K. Porter, and H. Jia, “Peer, professor and self-
evaluation of class participation,” Active Learning in Higher Education,
vol. 8, no. 1, pp. 49–61, 2007.

[24] K. Willey and M. Freeman, “Completing the Learning Cycle: The
Role of Formative Feedback When Using Self and Peer Assessment to
Improve Teamwork and Engagement.” Auckland, NZ: Australasian
Association for Engineering Education, 2006.

[25] S. Beyerlein, D. Davis, M. Trevisan, P. Thompson, and O. Harrison,
“Assessment framework for capstone design courses,” Chicago, IL, 2006.

[26] B. A. Friedman, P. L. Cox, and L. E. Maher, “An Expectancy Theory
Motivation Approach to Peer Assessment,” Journal of Management
Education, vol. 32, no. 5, pp. 580–612, 2008.

[27] N. Clark, P. Davies, and R. Skeers, “Self and peer assessment in software
engineering projects,” in Proceedings of the 7th Australasian conference
on Computing education - Volume 42, ser. ACE ’05. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2005, pp. 91–
100.

[28] M. Freeman and J. McKenzie, “SPARK, a confidential web–based
template for self and peer assessment of student teamwork: benefits
of evaluating across different subjects,” British Journal of Educational
Technology, vol. 33, no. 5, pp. 551–569, 2002.

[29] M. W. Ohland, M. Loughry, R. Carter, L. Bullard, R. Felder, C. Finelli,
R. Layton, and D. Schmucker, “The comprehensive assessment of team
member effectiveness (catme): A new peer evaluation instrument,” in
Proceedings of the 2006 ASEE Annual Conference, 2006.

[30] M. Ohland, R. Layton, M. Loughry, H. Pomeranz, D. Woehr, and
E. Salas, “Smarter teamwork: System for the management, assessment,
research, training, education, and remediation of teamwork,” 2010.

[31] E. Maclellan, “How convincing is alternative assessment for use in higher
education?.” Assessment & Evaluation in Higher Education, vol. 29,
no. 3, pp. 311–321, 2004.


	I Introduction
	II Background 
	II-A Capstone Projects
	II-B Motivation and Learning Objectives

	III Related work 
	IV Framework for Assessing Tacit Skills 
	V Evaluation 
	V-A Validity
	V-B Teacher satisfaction

	VI Conclusions and Future Work 
	References

