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“Breath is the bridge which connects life to consciousness, which unites your body 
to your thoughts.”  
Thich Nhat Hanh (1926- ) 
 
“To learn how to treat a disease, one must learn how to recognize it. The 
diagnosis is the best trump in the scheme of treatment.” 
Jean Martin Charcot (1825-1893) 
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ABSTRACT 

Background and aims  

Diabetic autonomic neuropathy is a serious complication, associated with increased 
risk of morbidity and mortality, but it is perhaps the least understood of the diabetic 
complications. The challenge lies in the early diagnosis of this often subclinical 
condition, in the time window when it would still be treatable. Notably, when detected 
with the current diagnostic tools, diabetic autonomic neuropathy has been considered 
as the result of irreversible nerve damage. Reduced baroreflex sensitivity (BRS) is a 
sensitive marker of autonomic dysfunction, and importantly, also a prognostic marker 
in cardiovascular medicine. Abnormalities in the BRS occur in conditions 
characterized by functional autonomic abnormalities such as myocardial infarction, 
heart failure, and hypertension.  

Accordingly, we hypothesized that early autonomic dysfunction in type 1 diabetes, as 
demonstrated by reduced BRS, is functional. The aim of this thesis was to elucidate 
the early markers of autonomic dysfunction in patients with type 1 diabetes of various 
durations. We reasoned that if the BRS in patients with type 1 diabetes responds to 
slow, deep breathing, a manoeuvre shown to reduce sympathetic activity, or responds 
to oxygen administration, such a finding would support a functional aetiology. We also 
studied whether autonomic dysfunction, as established by reduced BRS, progresses 
alongside increasing diabetes duration to a stage where it is no longer improved by a 
functional manoeuvre. Moreover, we aimed to elucidate the role of BRS as potentially 
a predictor of increased blood pressure (BP) level during a 5-year follow-up. 

Subjects and methods                                                                                                 

We studied 117 patients with short (8.9 ± 0.1 years) and 37 patients with long duration 
(33.7 ± 0.5 years) of type 1 diabetes, and a total of 73 age- and sex-matched, healthy 
control participants. Twelve heart-transplanted patients served as a model of cardiac 
denervation. An autonomic score was calculated from autonomic function tests. 
Spectral analysis of heart rate variability (HRV), blood pressure variability (BPV), and 
BRS came from recordings during normal (15/min) and slow, deep (6/min) controlled 
breathing. Of those with short-duration type 1 diabetes, 96 subjects were studied 
during a prospective visit by similar autonomic assessment as at baseline but in 
addition, with BRS assessed during inhalation of 100% oxygen at a flow rate of 
5L/min. In a total of 80 patients with complete data available, we compared 
autonomic indices and ambulatory BP at baseline and follow-up. 

Results 

BRS was already reduced in patients with short-duration type 1 diabetes, but even 
more reduced in those with long duration or with increasing autonomic involvement. 
Slow breathing elevated the BRS to the level of control subjects at a normal breathing 
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rate (15/min) in all patients except in those with an abnormal autonomic score. BRS 
also increased with oxygen during spontaneous breathing in diabetic but not in control 
participants, and with oxygen the difference in BRS was no longer significant. Slow 
breathing in normoxia restored the BRS to a similar extent as did oxygen. In the 
follow-up study, spontaneous BRS declined over time, but the change was not 
significant when the deterioration due to ageing was taken into account. Low BRS at 
baseline did not advance to cardiovascular autonomic neuropathy (CAN) but 
predicted an increase in night-time systolic blood pressure. Furthermore, the BRS 
response to deep breathing at baseline predicted the increase found in 24-hour 
ambulatory BP. 

Conclusions 

These results indicate that even in long-duration diabetes, any abnormal BRS is at least 
in part of functional origin. The increased baroreflex response to oxygen supports the 
hypothesis of a functional reduction in parasympathetic activity occurring in patients 
with type 1 diabetes. The follow-up study showed that the decline in spontaneous BRS 
over time in patients with type 1 diabetes seems to be mainly due to normal ageing. 
Although early autonomic dysfunction seems functional and does not necessarily 
develop into autonomic neuropathy during a 5-year follow-up, the BRS and the 
response to deep breathing at baseline are associated with a future increase in BP. 
More research and a longer follow-up time will be required to fully clarify the 
prognostic significance of BRS in type 1 diabetes. 
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1 INTRODUCTION 

In Finland and worldwide, the prevalence of type 2 diabetes has shown a dramatic 
increase, and in addition, a large number of patients are living with still-undiagnosed 
diabetes (1). In parallel, despite its being totally divergent in  pathophysiology, 
incidence of type 1 diabetes has also shown a rapid increase during the last few 
decades (2, 3), demonstrating the highest incidence in the world in Finland. During the 
10 years of the Finnish National Diabetes Prevention Program (DEHKO), treatment 
of type 2 diabetes has resulted in clear improvement in terms of glycaemic control, 
and in the management of the cardiovascular risk factors (4). However, despite 
modern insulin treatment, including insulin pumps and even the possibility of 
continuous glucose monitoring, results from treatment of type 1 diabetes in Finland 
are not as encouraging. Less than 10% of the Finnish patients with type 1 diabetes 
reach all the treatment goals comprising glycaemic control (HbA1c <7.5 %), blood 
pressure (BP) <135/85 mmHg, and lipid levels (LDL-cholesterol < 2.6 mmol/l) (4, 5). 
 
Diabetes is the leading cause of autonomic neuropathy in the developed countries. Its 
prevalence ranges from 1% to 90%, depending on diagnostic method, on 
characteristics of the patient cohort, and on the type of diabetes studied (6). Although 
autonomic neuropathy is often subclinical, it is associated with an increased risk for 
other diabetic complications and mortality (7), and might even precede or predispose 
to those complications. Notably, the American Diabetes Association states in its most 
recent recommendation: Standards of Medical Care in Diabetes—2013, that 
“screening for signs and symptoms of cardiovascular autonomic neuropathy (CAN) 
should be instituted at diagnosis of type 2 diabetes and 5 years after the diagnosis of 
type 1 diabetes. Special testing is rarely needed and may not even affect the 

management or outcomes” (8). The last sentence summarizes the picture. 
Autonomic neuropathy is still a true challenge for diabetologists due to the lack of 
easily available, sensitive, diagnostic methods; as a consequence, the possibility is 
lacking to start interventions at a stage when the disorder is still reversible. Despite 
advances in the understanding of the pathophysiology of diabetic neuropathy, the 
treatments aimed at reversing this process have been unsuccessful. 
 
Baroreflex sensitivity (BRS) integrates information from heart rate variability (HRV) 
and blood pressure variability (BPV) to provide a robust and sensitive measure that 
enables earlier detection of autonomic dysfunction than do the conventional 
autonomic function tests (9-12). Importantly, reduced BRS carries a risk of worse 
prognosis in all individuals with hypertension, renal insufficiency, post-myocardial 
infarction, heart failure, or cerebral stroke (13-17), conditions associated with 
functional alterations in cardiovascular autonomic regulation, not with organic 
neuropathy. Defining the threshold between functional versus organic, refractory 
autonomic dysfunction in patients with type 1 diabetes would mean a totally new 
approach in terms of treatment. Notably, in cardiovascular medicine, interventions 
based on the concept of functional autonomic abnormalities have improved prognosis 
(18-20), in contrast to vain attempts to treat diabetic autonomic neuropathy.  
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However, many questions still remain unanswered. To the best of our knowledge, no 
longitudinal studies explore the prognostic significance of BRS in type 1 diabetes. 
Thus, whether low BRS predicts CAN, or whether it inevitably progresses to CAN, or 
even both, is unclear. Moreover, whether it is possible to correct early autonomic 
abnormalities such as reduced BRS in patients with type 1 diabetes by any 
intervention, remains unknown. Autonomic imbalance is a key player in the aetiology 
of hypertension, but whether low BRS is the cause of and also predicts future elevated 
BP in type 1 diabetes is not evident. The aim of this thesis was therefore to 
characterize autonomic function in well-defined cohorts of patients with type 1 
diabetes and to study the possible reversibility of early diabetic autonomic dysfunction 
by testing patients’ response to functional interventions.   
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2 REVIEW OF THE LITERATURE 

2.1 Types of diabetes mellitus 

2.1.1 Type 1 diabetes 

Diabetes mellitus comprises a heterogeneous group of metabolic disorders with 
chronic hyperglycaemia as the consequence of either absolute or relative insulin 
deficiency. Under normal conditions the blood glucose level is tightly controlled by 
insulin secreted from the pancreatic beta cells. An elevated concentration of blood 
glucose stimulates the release of insulin, which in turn facilitates glucose-uptake into 
the cells of insulin-sensitive tissues (muscle, liver, fat). In type 1 diabetes, previously 
termed insulin-dependent or juvenile diabetes, the insulin-producing beta cells are 
gradually destroyed, resulting in complete insulin deficiency and subsequent 
hyperglycemia. This T-cell-mediated autoimmune cascade targeted at the beta cells is 
triggered by some infectious or other environmental factor (21) in genetically 
susceptible individuals (22, 23). 
 
Type 1 diabetes is primarily diagnosed in children or young adults (peak age at 
diagnosis is 5–9 years), although it can occur at any age. Symptoms usually develop 
rapidly over a short period of time, although beta cell destruction can begin years 
earlier. The classic triad of clinical signs of diabetes includes polydipsia, polyuria, and 
fatigue, but often also with a history of weight loss, and in more serious cases, diabetic 
ketoacidosis. 
 
Before the discovery of insulin in 1921, attempts were made to treat diabetes with diet 
alone, but within a few years of diagnosis, the patients died. The goal of modern 
insulin treatment is to mimic the physiological secretion of insulin by the pancreas 
either by multiple daily injection therapy with long-acting basal insulin and short-acting 
insulin at every meal, or by insulin-pump therapy with continuous, adjustable 
administration of insulin. In addition to insulin replacement therapy, lifestyle 
management and cardiovascular risk factor intervention are essential. During recent 
decades, islet cell or pancreas transplantation have emerged as a potential way to 
achieve independence of exogeneous insulin. These therapies still face a number of 
challenges, because recipients would need to adhere to life-long immunosuppression, 
with only a portion of the recipients remaining insulin independent during follow-up 
(24). 
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2.1.2 Other types of diabetes mellitus 

In addition to type 1 diabetes, the American Diabetes Association classifies the other 
types of diabetes into type 2 diabetes, types of diabetes due to other causes, and 
gestational diabetes (8). The other major form of diabetes, type 2, is characterized by 
hyperinsulinemia and hyperglycaemia due to insulin resistance and relative insulin 
deficiency, and a slow, progressive loss of beta-cell function. Other types of diabetes 
result from genetic defects in beta cell function (monogenic forms of diabetes such as 
various forms of maturity-onset diabetes of the young [MODY], genetic defects in 
mitochondrial DNA, as well as neonatal diabetes), genetic defects in insulin action, 
diseases of the exocrine pancreas, and drug- or chemical-induced diabetes. Gestational 
diabetes is hyperglycaemia diagnosed during pregnancy and shares a pathogenetic 
similarity with type 2 diabetes because of its being characterized by a combination of 
insulin resistance and inadequate insulin secretion. Although gestational diabetes is not 
yet overt diabetes, up to half the individuals with this disorder will develop type 2 
diabetes later in life (25).  

2.1.3 Epidemiology 

Worldwide, the prevalence of diabetes is showing a dramatic increase and has reached 
epidemic proportions, with a current estimation of 382 million people living with 
diabetes, half of them still undiagnosed (1). The major part of this increase is due to 
the rapidly rising prevalence of type 2 diabetes, which accounts for 90% of the cases in 
developed countries (1). Despite the fact that among all patients with diabetes, the 
proportion with type 1 diabetes is small, incidence of type 1 diabetes has been steadily 
increasing during the past two decades (2) with an annual average increase of 2.5% to 
3.0% worldwide (3). 
 
The incidence of type 1 diabetes shows large geographic variation, with Finland and 
Sardinia demonstrating the highest rates, and China along with Venezuela the lowest 
in the world (3, 26). In addition to the increase in overall incidence, the steepest 
increase has been for the youngest children. It is likely that genetic variation explains 
to some extent the differing incidence and prevalence rates among people with varying 
ethnicity. However, the rapidly increasing incidence over the last decades cannot be 
explained solely by genetic factors, implying that environmental factors also 
contribute. Notably, according to the most recent observations, it seems that in these 
high-incidence-rate countries, rates may have reached a “plateau” (27, 28).  
 
Despite the improved prevention and treatment of diabetic complications, expectation 
is that the prevalence of microvascular complications will increase and also shift 
towards the younger age groups, because typically a prevalence peak in microvascular 
complications occurs during the second decade of diabetes (29, 30). 
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During the last two decades, type 2 diabetes has become a growing problem also 
among children and adolescents (31), most likely due to the obesity epidemic and low 
level of physical activity among young people. What is of note is that obesity and 
features of type 2 diabetes are nowadays frequent findings also in type 1 diabetes (32). 
Thus, strategies for delaying or preventing the clinical onset of type 1 diabetes are 
essential, but in addition common strategies to prevent obesity and to promote 
physically active lifestyle are of utmost importance.  
 
Types of diabetes, other than type 1 and type 2, account for only a few percent of all 
patients. 

2.2 Long-term complications in type 1 diabetes 

The purpose of lifelong insulin replacement therapy in treatment of type 1 diabetes is 
to maintain near-to-normal blood glucose in order to prevent acute diabetic 
complications, i.e. ketoacidosis with a possible fatal outcome. Beyond this, the main 
goal is primary prevention of diabetic long-term complications. Such complications 
have a substantial impact on quality of life (33) and also account for the major part of 
all costs of diabetes treatment (34). Although modern treatment allows a normal life, 
long-term complications can result in loss of working ability, shortened life 
expectancy, and reduced quality of life (33, 35-37). 
 
Long-term complications comprise micro- and macrovascular complications. The 
former comprise diabetic nephropathy, retinopathy, and neuropathy. Macrovascular 
disease denotes cardiovascular, cerebrovascular, and peripheral arterial disease.  

2.2.1 Macrovascular disease 

Macrovascular complications of diabetes refer to accelerated atherosclerosis of large 
blood vessels, manifested mainly as coronary artery disease (CAD), peripheral arterial 
disease, and cerebrovascular disease. Atherosclerosis is the major cause of premature 
morbidity and mortality in patients with type 1 diabetes (38, 39). Although the key role 
of hyperglycaemia in the development of diabetic microvascular complications is 
convincingly established, defining the role of hyperglycaemia beyond the standard 
cardiovascular risk factors in the pathogenesis of the macrovascular complications has 
not been straightforward. 
 
Despite the notion of a clearly increased risk for macrovascular disease in type 1 
diabetes, large epidemiologic studies have failed to demonstrate an association 
between glycaemic control and CAD events. Importantly, the DCCT/EDIC finally 
confirmed the significance of early, intensive glycaemic management by showing a 
clear reduction in long-term risk for CAD after patients had undergone 6 years of 
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intensive treatment (40). It seems that hyperglycaemia plays a significant role in early 
atherogenic development of the lesions, but later the effect of glycaemic control 
becomes more multifaceted. The complex role of hyperglycaemia is supported by a 
recent study in which HbA1c variability, but not mean HbA1c, predicted incident CAD 
events in patients with type 1 diabetes (41). Risk for CAD is further modified by 
standard cardiovascular risk factors such as smoking, hypertension, dyslipidemia, 
obesity, insulin resistance (42). A major part of the CAD in type 1 diabetes is 
associated with diabetic kidney disease, so insulin resistance may prove to be a 
common pathogenetic pathway of these two conditions (43).  
 
Hypertension, and also arterial stiffness and its surrogate marker, pulse pressure (PP), 
are even earlier markers of premature arterial ageing than is manifested CAD. The 
independent relationship between BP and cardiovascular disease (CVD) is a well-
established phenomenon, noticeable even in the prehypertensive range, at BP levels as 
low as 115/75 mmHg (44). BP determined by 24-hour ambulatory blood pressure 
monitoring (ABPM) is considered a better predictor of target organ damage (45, 46) 
than is isolated office BP measurement.  Consequently, several studies have suggested 
that lack of the physiological dipping in nocturnal systolic blood pressure (SBP) is a 
sensitive marker of incipient diabetic nephropathy (47, 48). Importantly, PP increases 
prematurely in patients with type 1 diabetes (49) and predicts mortality (42), and 
predicts the first-ever CVD event in type 1 diabetes independently from renal disease 
(50). Accordingly, in addition to treatment of hypertension and other standard CVD 
risk factors, prevention of diabetic kidney disease is essential in the management and 
prevention of diabetic macrovascular complications. 

2.2.2 Diabetic nephropathy 

Diabetic nephropathy manifests histologically as glomerulosclerosis of the kidney, 
characterized by a progressively increasing leakage of albumin into the urine, elevated 
BP, and a gradual decline in renal function. Microalbuminuria is considered a marker 
of endothelial dysfunction and more generalized damage to the cardiovascular system 
(51, 52). Occurrence of proteinuria carries a 37-fold increased risk for cardiovascular 
mortality (35). Conversely, according to a study by the Finnish Nephropathy Study 
Group (FinnDiane), patients with type 1 diabetes and without chronic kidney disease 
showed similar mortality rates as the general population, regardless of diabetes 
duration (37). Furthermore, the survival of patients with type 1 diabetes and end-stage 
renal disease has improved during the last few decades (53). Previously, diabetic 
nephropathy developed in approximately one-third of patients with type 1 diabetes, 
but according to more recent studies the incidence seems to be decreasing.  
 
Established risk factors for diabetic nephropathy are poor glycaemic control, smoking, 
male gender, hypertension, dyslipidemia, and predisposing genes (54-56). Early 
detection of microalbuminuria by regular screening is essential, because treatment with 
renoprotective agents such as angiotensin-converting enzyme inhibitors and 



 

17 
 

angiotensin receptor-blockers, along with management of the other modifiable risk 
factors, has effectively retarded progression of the disease (57-59). 

2.2.3 Diabetic retinopathy 

Diabetic retinopathy is the leading cause of blindness in developed countries, despite 
advances in diabetes treatment (60). Diabetic retinopathy is rare during the first five 
years after disease onset, but after two decades of diabetes nearly all patients with type 
1 diabetes show some signs of retinopathy (61). Its earliest manifestations are 
microaneurysms and increased vascular permeability, followed by moderate to severe 
changes with intravascular clotting, defined as nonproliferative diabetic retinopathy 
(62). The most severe form of diabetic retinopathy is proliferative diabetic retinopathy, 
characterized by pathologic growth of new blood vessels in the retina and vitreous. 
Macular oedema is a sight-threatening complication caused by retinal thickening due 
to leaky blood vessels, and it can occur at any stage of diabetic retinopathy (62). 
 
Diabetes duration, poor glycaemic control, hypertension, microalbuminuria, and 
dyslipidaemia are recognized risk factors (63-66). Furthermore, pregnancy (67, 68) and 
puberty (69, 70) are associated with the presence and risk for diabetic retinopathy 
progression. Prevention and treatment of diabetic retinopathy includes strict control 
of the risk factors and regular screening to detect early and treatable changes. Laser 
photocoagulation and vitrectomy have proved effective in preventing vision loss in 
proliferative diabetic retinopathy. Consequently, findings emerge of reduction in the 
cumulative incidence of severe diabetic retinopathy in patients with type 1 diabetes 
over the recent decades (71). 

2.2.4 Diabetic neuropathy 

Diabetic neuropathy is defined by the American Diabetes Association as “the presence 
of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes 
after the exclusion of other causes” (8). Despite the fact that diabetic neuropathies 
contribute significantly to mortality and morbidity, their management is still far from 
optimal and is challenging. Neurological complications associated with diabetes had 
already been recognized over 150 years ago. As early as in 1798, John Rollo, a surgeon 
in the British Royal Artillery who pioneered in treatment of diabetes, described 
symptoms indicative of diabetic autonomic neuropathy (72). The direct link between 
the blood sugar disorder and the nerve symptoms, however, was not evident until 
Marchal de Calvi detected it in 1864. Contemporarily, in 1968, Jean-Martin Charcot, a 
French neurologist, described neuropathic arthropathies in (non-diabetic) patients 
with tabes dorsalis (demyelination of neurons secondary to an untreated syphilis 
infection). Tertiary syphilis was considered the most common cause of Charcot’s joint 
until William Jordan linked this condition to diabetes-induced neuropathy in 1936. 
Wayne Rundles from the University of Michigan was the first to give a clear 
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description of diabetic autonomic neuropathy in his study in 125 patients with diabetic 
neuropathy (73). Following the observation by Wheeler and Watkins in 1973 of the 
absence of respiratory sinus arrhythmia in diabetic patients with symptoms of 
autonomic neuropathy (74), screening methods have developed for CAN.  

2.2.4.1 Classification of diabetic neuropathies 

The diabetic neuropathies involve different parts of the nervous system and are 
heterogeneous regarding their clinical manifestations, course, risk factors, and 
underlying mechanisms. Classification of the diabetic peripheral neuropathies has 
proved challenging and a number of classifications have been introduced to assist in 
clinical evaluation. In 1986 Boulton and Ward proposed a classification based on 
various clinical presentations (75), and more recently a classification based on the 
natural history of the syndromes was introduced by Watkins (76). Currently the 
classification most used, originally suggested by Bruyn and Garland, is based on the 
location of clinical involvement and whether it is symmetrical or asymmetrical. This 
classification has been modified by others (77, 78) and recently updated by an 
international expert panel (79) (Table 1).  
 
Typical diabetic peripheral neuropathy (DPN) is a chronic, nerve-length-dependent, 
symmetrical sensorimotor polyneuropathy (DSPN) and is regarded as the most 
common form of the diabetic neuropathies (80). DPN is, together with peripheral 
arterial disease, the major underlying cause of diabetic foot ulcers, which are both 
disabling for the patient and costly to the health care system (81). In serious cases, the 
loss of protective sensation, often triggered by a minor traumatic event, may lead to 
progressive joint destruction and diabetic neuropathic osteo-arthropathy (Charcot's 
joint disease). Approximately one-third of all individuals with diabetic neuropathy 
suffer from unpleasant sensory symptoms ranging from mild paresthesias to painful 

DPN, which have a substantial impact on the quality of life (82). Diabetic 

autonomic neuropathy may affect cardiovascular, gastrointestinal, and urogenital 
systems and sudomotor function (function of the nerves that stimulate the sweat 
glands) and is often associated with the other generalized neuropathies.  
 
The atypical DPNs differ from the typical neuropathies regarding onset, course and 
manifestation, and possibly also pathomechanisms. More research is necessary prior to 
further classification and characterization (83). What has been debated is whether 
cognitive decline in type 1 diabetes reflects a central equivalent to the peripheral 
neuropathy. Degeneration of the central nervous system (CNS) manifested as 
cognitive decline, brain atrophy, and white matter lesions is associated with long term 
type 1 diabetes (84-86). This was further supported by studies demonstrating that 
cognitive decline is associated with peripheral neuropathy (87). It is of note however, 
that cognitive decline may also be influenced by other factors like depression or 
cerebrovascular disease, which are also frequent findings in long term diabetes (88, 
89). A body of evidence is also increasing that central neuropathy may modulate pain 
perception in diabetic peripheral neuropathy (90). Until now data are scarce on the 
incidence of central diabetic neuropathies, in part due to the lack of a classification.  



 

19 
 

Table 1 Classification of the diabetic neuropathies according to Tesfaye et. al (79) 

Generalized diabetic neuropathies 

� typical DPN (distal symmetrical polyneuropathy) 

� atypical DPN 

� autonomic neuropathy 

Focal and multifocal neuropathies 

� mononeuropathy 
� limb neuropathies 

� cranial neuropathy 

� multifocal neuropathy 

� mononeuritis multiplex 

� proximal motor neuropathy (amyotrophy) 

� compression and entrapment neuropathies 

2.3 Cardiovascular autonomic neuropathy (CAN) 

In developed countries, diabetes is the most common cause of autonomic neuropathy. 
CAN, the most studied form of diabetic autonomic neuropathy, is defined as 
impairment of autonomic control of the cardiovascular system in the setting of 
diabetes and after exclusion of other possible causes. Diagnostic criteria and staging 
are still under debate but according to a recent recommendation (79) the presence of 
one abnormal cardiovagal test identifies possible or early CAN; at least two abnormal 
heart rate-based tests are required for a definite or confirmed diagnosis of CAN; and 
orthostatic hypotension (asymptomatic or symptomatic), in addition to any heart rate-
based test abnormalities, identifies a condition of severe or advanced CAN. More 
advanced stages of CAN carry an increasingly worse prognosis (91). 
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2.3.1 Clinical manifestations of autonomic dysfunction 

The most typical clinical manifestations of CAN are presented in Figure 1. Due to the 
widespread distribution of the ANS, practically all organs are potentially susceptible to 
autonomic dysfunction. Autonomic dysfunction tends to be subclinical for years after 
the onset of type 1 diabetes and becomes symptomatic only at an advanced stage of 
the disorder. Thus, screening tests are essential to detect the condition at an earlier 
stage, as is also the case regarding the other diabetic complications. 
 
Screening for CAN is recommended 5 years after the diagnosis of type 1 diabetes, 
particularly in patients at greater risk for CAN due to a history of poor glycaemic 
control or clustering of other diabetic micro- or macrovascular complications, or if 
there are signs of DPN, unexplained tachycardia, orthostatic hypotension, or poor 
exercise tolerance (79).  
 
 
 
Figure 1 Clinical manifestations of autonomic neuropathy 
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2.3.2 Prevalence  

The reported prevalence of CAN varies widely depending on the methodology, the 
diagnostic criteria used, and the population studied. Assessment of prevalence is in 
addition affected by the inconsistency of diagnostic methodology, but also by type of 
diabetes studied. Particularly earlier studies have often included both patients with type 
1 and with 2 diabetes and in some cases the type of diabetes has not even been 
defined. While abnormal test results indicative of CAN may be present already at the 
diagnosis of type 2 diabetes or even in impaired glucose tolerance (92), probably due 
to a long preceding period of disturbed glucose metabolism, CAN manifested in type 
1 diabetes is considered a late finding. Nonetheless, CAN has been reported also in 
newly diagnosed type 1 diabetic patients (93, 94).  
 
In unselected, clinic-based populations including both type 1 and type 2 diabetic 
patients the reported prevalence of confirmed CAN has ranged from 16 to 20% (95, 
96). However, when different cohorts of type 1 diabetic patients have been studied, 
the prevalence for CAN has shown a wider range from 1.6% to 90%, which can be 
attributed to the tests used, to the stage of the disease, or to the presence of other 
diabetic complications (80, 95, 97-104). Overall, the reported prevalence rates increase 
with age and increasing diabetes duration. It is of note that most of the prevalence 
studies were performed decades ago; during recent years there have been reports that 
the prevalence of the other diabetic complications decreases (53, 105-107). A similar 
improvement has not yet been confirmed regarding the prevalence of CAN. 

2.3.3 Pathophysiology 

2.3.3.1 Risk factors 

Exposure to hyperglycaemia is undoubtedly established as the primary cause in 
development of diabetic neuropathy (108, 109), but this process is further modified by 
genetic and environmental factors. In the DCCT Study intensive glycaemic control, 
over a mean follow-up period of 6.5 years, reduced the CAN incidence in patients 
with type 1 diabetes by 50% (101). As observed for retinopathy and nephropathy, the 
beneficial effect of previous intensive treatment on neuropathy persisted up to 14 
years after the end of the DCCT/EDIC Study, despite later deterioration of glycaemic 
control (104). Thus, it seems that there exists a “metabolic memory” effect also for 
measures of CAN, i.e. the earlier glycaemic exposure is remembered by the nervous 
tissue (40). It is of note that according to the DCCT, only 11% of the incidence of 
diabetic microvascular complications can be explained by hyperglycaemia measured by 
HbA1c (110), but the remaining 89% was explained by other factors. HbA1c does not 
capture all the effects of hyperglycaemia, as it is insensitive to fluctuations, moreover, 
the risk for neuropathy is further modified by other risk factors. 
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Age, diabetes duration, hypertension, and presence of diabetic polyneuropathy, 
diabetic retinopathy, microalbuminuria or diabetic nephropathy are risk factors for 
development of CAN in type 1 diabetes (102, 109, 111, 112). 

2.3.3.2 Mechanisms of glucose neurotoxicity 

Neurons have a high glucose demand, and unlike muscle or adipose cells, they are not 
normally able to use free fatty acids as an energy source. Thus, in order to ensure a 
continuous energy supply, the glucose uptake of neurons and Schwann cells has 
evolved to be independent of insulin (113, 114). Unlike most other cell types, these 
cells are not able to adjust the glucose transport into the cell when exposed to 
hyperglycaemia. Consequently, the extracellular hyperglycaemia is reflected as a direct 
increase in intracellular glucose level and results in perturbed intracellular metabolism 
(115). 
 
Although not controlled by insulin, glucose transport across the blood-brain barrier, 
and into the neurons is carrier-mediated by the glucose transporters GLUT1 and 
GLUT3 (116). The blood-brain barrier offers some protection against hyperglycaemia 
in the CNS. Although the peripheral nerves have a corresponding blood-nerve barrier 
formed by endoneurial microvessels and the perineurium, data suggest that the 
peripheral nerves might be even more vulnerable to hyperglycaemia than is the CNS 
(117). 
 
It is of note that most studies on the pathological pathways of glucose neurotoxicity 
have been performed in models of diabetic somatic neuropathy. While typical DPN 
initially affects the longest axons and is characterized as distal axonopathy in both 
myelinated and unmyelinated fibres, the pathogenesis of autonomic dysfunction is not 
yet fully established. Autonomic axons may be lost together with somatic nerves as 
part of DSPN. Other possible mechanisms may be degenerative changes in the 
autonomic ganglia or reduced blood flow through loss of autonomic nerve function 
that may contribute to the progression of diabetic peripheral neuropathy (118). 
  
The hyperglycaemic milieu and metabolic derangements result in overproduction of 
reactive oxygen species (ROS) in the mitochondrial electron transport chain of the 
endothelial cells. Hyperglycaemia-induced tissue damage is thought to arise through 
four major mechanisms: the polyol pathway, accumulation of advanced glycation end 
products (AGEs) and increased expression of the AGE receptor (RAGE) and its 
activating ligands, activation of protein kinase C isoforms, and increased activity of the 
hexosamine pathway (115). Oxidative stress plays a crucial role in the development of 
diabetes complications, since all these pathways are activated by ROS. This unifying 
hypothesis of intracellular hyperglycaemia-induced tissue damage was originally 
suggested in regards to development of diabetic microvascular complications but has 
later also been linked to the pathogenesis of macrovascular disease. However, in 
diabetic macrovascular disease and cardiomyopathy the overproduction of ROS 
appears to be a consequence of increased oxidation of fatty acids, at least in part due 
to pathway-specific insulin resistance. The increased oxidation of free fatty acids 
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causes mitochondrial overproduction of ROS and ultimately activates the same 
detrimental pathways as does hyperglycaemia (119). 
  
When the normal glycolytic pathway is saturated, the glucose overload is shunted into 
the polyol (sorbitol/aldose reductase) pathway, where it is converted to sorbitol 
by the enzyme aldose reductase, and further oxidized to fructose. This process 
consumes nicotinamide adenine dinucleotide phosphate (NADPH), and results in 
decreased levels of glutathione and nitric oxide (NO), thus contributing both to 
intracellular oxidative stress and to inhibition of vascular relaxation. The accumulation 
of sorbitol may also damage the cell either by a direct toxic effect or by tissue swelling 
through an increased osmotic effect. Because Schwann cells are especially rich in 
aldose reductase, the saturation of this pathway may play a key role in these cells (120).  
 
In addition to haemoglobin, other proteins in the human body are also subject to 
glycation. Hyperglycaemia results in the formation of advanced glycation end 

products (AGEs) through non-enzymatic, irreversible reactions between 
carbohydrates and free amino groups of proteins. The glycolytic metabolite 
methylglyoxal is a major precursor of the AGEs, which are now widely accepted as 
key players in the pathophysiological process of diabetic complications. The 
intracellular glycation of macromolecules injures the nervous tissue through several 
mechanisms, including uncontrolled activation of cellular metabolism and signalling 
pathways. The AGE-modified myelin is susceptible to phagocytosis by macrophages, a 
process that may thus contribute to segmental demyelination of the peripheral nerves. 
Moreover, the AGEs modify major axonal cytoskeletal proteins, which results in 
axonal degeneration and impairment of axonal transport and regenerative activity 
(121). The receptor for advanced glycation end products (RAGE) is a multiligand 
member of the immunoglobulin superfamily of cell surface receptors. It is able to 
interact with a broad range of endogenous ligands in addition to AGEs. In conditions 
such as diabetes with increased AGE formation, the activation of RAGE induces 
production of ROS and a subsequent increase in the expression of proinflammatory 
cytokines. The activation of nuclear factor KB signalling in neurons is a potential 
mediator of neuronal dysfunction. Notably, diabetes-induced loss of pain perception is 
prevented in RAGE-deficient mice and also prevented by treatment with soluble 
RAGE (122).  
 
Intracellular hyperglycaemia and overproduction of ROS cause increased synthesis of 
diacylglycerol, which results in activation of the protein kinase C isoforms. 
Activation of these phosphorylating enzymes affects several signal transduction 
cascades and may in addition lead to vasoconstriction and reduction of neuronal blood 
flow through enhanced production of the vasoconstrictor endothelin-1 and a reduced 
level of endothelial NO synthase (123). Ultimately, this pathway results in 
accumulation of free radicals which activate poly-ADP-ribose polymerase (PARP). In 
diabetes, it seems that this relationship is bidirectional, and it also seems that PARP 
activation leads to free-radical and oxidant generation (124). Overactivity of PARP 
results in cell death by energy depletion. Several studies indicate that PARP activation 
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is a potential mechanism of neuronal cell death in ischaemic stroke and in 
neurodegenerative disorders (125, 126).  
 
The hexosamine pathway is activated when excessive amounts of glycolytic 
metabolites accumulate. Some of the fructose-6-phosphate is shunted into a diverging 
signaling pathway where it is converted by the enzyme glutamine fructose-6 phosphate 
amidotransferase, through glucosamine-6-phosphate to the major end product uridine 
diphosphate-N-acetyl-glucosamine. The metabolic effects of this pathway are thought 
to be mediated by increased O-GlcNAcylation of the transcription factor Sp1, which 
results in enhanced expression of plasminogen activator inhibitor-1 promoter in 
vascular smooth muscle cells and of transforming growth factor-β1 in arterial 
endothelial cells (127).  

2.3.3.3 Other potential mechanisms of neural damage 

According to current opinion, diabetic neuropathy develops through complex 
interactions between metabolic and vascular factors (128). Reduced nerve perfusion is 
a crucial factor in pathogenesis of diabetic nerve damage but whether it is a cause or a 
consequence is still under debate. Notably, blood vessels depend on neural regulation 
in order to maintain their normal function, and on the other hand neurons depend on 
nutrient supply through the capillaries. Irrespective of whether neural damage is 
caused by direct neuronal injury or through an impairment of the neuronal blood 
supply, the neural damage is usually seen as irreversible: intervention studies have 
failed to reverse the process. Microvascular dysfunction seems to occur early in 
diabetes, in parallel with neural dysfunction, and differing roles have been suggested 
for the microvascular dysfunction in development of neuropathy between type 1 and 
type 2 diabetes. Importantly, studies in streptozotocin-induced diabetic rats show that 
vasodilating drugs improve both nerve conduction velocity and blood flow deficits 
(129). 
 
Nerve growth factor and other members of the neurotrophin family of peptides are 
essential in the maintenance of nerve structure, function, and neuronal blood supply, 
and studies suggest their potential role also in the pathogenesis of diabetic neuropathy 
(130, 131). Insulin also has neurotrophic effects, and insulin-deficiency in type 1 
diabetes may contribute to development of neuropathy (132). Another possible 
mechanism of insulin deficiency-induced neuropathy is the absence of proinsulin C-
peptide. Replacement of C-peptide has beneficial effects on nerve conduction velocity 
and on nerve structural changes in type 1 diabetic animal models, probably through 
NO-mediated vasodilation (133). 
 
Deficiency in essential fatty acids on the one hand (134), and accumulation of free 
fatty acids on the other both have a direct toxic effect on the nerves and may therefore 
contribute to the pathogenesis of diabetic neuropathy. In addition, autoimmune 
reactions against nervous tissues (135), chronic low-grade inflammation (136, 137), 
and frequent hyperinsulinemia-induced hypoglycaemic episodes may also be potential 
mediators of diabetic nerve damage (138). Overall, it has been suggested that some 
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pathways are more involved than are others in the pathogenesis of diabetic 
neuropathy, depending on stage of the disorder (139).  
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2.4 Cardiovascular autonomic function and its assessment 

2.4.1 The autonomic nervous system (ANS) 

The autonomic nervous system (ANS) is a complex network of neurons widespread 
throughout all organs of the body. The ANS operates mainly at the subconscious level 
to maintain homeostasis, to adapt the body to physiological changes, and to evoke the 
"fight-or-flight" response (if needed). John Langley, Professor of Physiology at the 
University of Cambridge from 1903 until his death, is renowned for his studies on this 
specific part of the nervous system earlier designated as the organic, vegetative, 
sympathetic, visceral, or the involuntary nervous system. In 1898, at the suggestion of 
Richard Jebb, Professor of Greek at the University of Cambridge, Langley coined the 
term “autonomic nervous system”, since “the word implies a certain degree of 
independent action, but exercised under control of a higher power” (140). He 
identified the separate components of this nervous system, with the term 
“sympathetic” confined to the thoracic outflow of the autonomic system; he 
introduced the term “parasympathetic” to designate its cranial and sacral outflows 
(141). 
 
Today, ANS is still considered anatomically and functionally divided into two parts, 
the sympathetic and the parasympathetic system, also called the vagal (142). In 
addition, a third subsystem of neurons (NANC, for non-adrenergic, non-cholinergic 
neurons) are integrated into the ANS, primarily in the gut and lungs, and these use 
NO as a neurotransmitter (143). The two main systems work in a coordinated fashion, 
generally acting in opposition to one another. The target organs are not equally 
innervated by these two systems, however, and in some situations, effects of the 
sympathetic and parasympathetic nervous systems are complementary. 
 
Functionally the ANS is based on a reflex arch containing a visceral receptor, an 
afferent pathway, the CNS, an efferent pathway, and finally, the target organ. The 
efferent autonomic pathways consist of two-neuron chains, where a preganglionic 
neuron, originating in the CNS, synapses in the autonomic ganglia with a 
postganglionic neuron which innervates the effector organ. All parasympathetic and 
preganglionic sympathetic neurons are cholinergic, meaning that they release the 
neurotransmitter acetylcholine, whereas the majority of the postganglionic sympathetic 
neurons are adrenergic and release norepinephrine (144).  
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2.4.2 Cardiovascular autonomic regulation 

The primary task of the cardiovascular autonomic system is to maintain tissue 
perfusion. To achieve this, the control mechanism is based on complex interactions 
between cardiovascular reflex mechanisms and humoral factors (144). Importantly, the 
heart is able to function even in the absence of autonomic control, as is the case in a 
transplanted heart, but heart rate (HR) is essentially under the control of the ANS. 
Although the heart at rest is mainly under vagal modulation (145), the prevailing HR 
reflects the balance of influences both from the sympathetic and parasympathetic 
nerves. While the sympathetic innervation supplies all regions of the heart, the vagus 
provides a rich innervation to the sino-atrial node, to atrioventricular conducting 
pathways, and to the atrial myocardium (146). 
 
The arterial baroreceptor reflex plays the key role in short-term BP control (144) by 
modulating the HR and peripheral resistance. This maintains BP within the normal 
range, and buffers BP fluctuations. These baroreceptors are stretch receptors located 
in the arterial wall of the aortic arch and carotid sinuses, at the gateway to the brain, to 
ensure its sufficient blood circulation. The afferent fibers originating from these 
receptors meet at the brainstem, and their stimulation (by increased BP) induces a dual 
response, both vagal activation and sympathetic withdrawal, resulting in a rapid 
reduction in HR. The subsequent decline in BP level is due to an initial bradycardia-
induced reduction in cardiac output, followed by a slower vasodilating response that is 
secondary to the sympathetic withdrawal. Conversely, a drop in BP reduces 
baroreceptor stimulation and elicits adaptive mechanisms that counteract the BP 
change through increased sympathetic activation and vagal withdrawal (144).  

2.4.3 Cardiovascular reflex tests  

The function of the ANS can indirectly be examined by cardiovascular reflex tests. 
The basis for performing a cardiovascular reflex test is to induce a disturbance in the 
system and to monitor the cardiovascular response. Despite the development of more 
sensitive methods, the cardiovascular reflex tests (“Ewing tests”), as proposed by 
Ewing and Clarke in 1982 (147), are still considered the gold standard for clinical 
autonomic testing. It is recommended to use a set of cardiovascular reflex tests to 
avoid false-positive results. A key factor in autonomic assessment is standardization of 
confounding conditions such as time of day, room temperature, breathing pattern, and 
food intake.  

 
Antecedent hypoglycaemia may blunt cardiovascular autonomic function (148), and 
thus it is recommended to exclude hypoglycaemias prior to the autonomic testing if 
possible. Moreover, drugs with adrenergic and anticholinergic properties may have 
substantial effects on the tests and before testing should be discontinued when 
possible. Since autonomic parameters decline with age, age-specific reference values 
are necessary (149-151). Due to their reproducibility, tests measuring RR variation 
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(151-153) have also been widely useful in research. During a Valsalva maneuver, the 
intraocular pressure rises, leading to a theoretical risk for intraocular haemorrhage 
(154). What is thus recommended is avoiding the Valsalva maneuver in patients with 
proliferative retinopathy or with unknown retinal status, although large-scale studies 
have shown that the procedure of cardiovascular autonomic reflex testing is safe and 
practically never causes complications (155).  
 
The tests most widely used to evaluate cardiac parasympathetic and sympathetic 
function are presented in Table 2. Usually, the result of two abnormal tests is 
considered a clinically abnormal finding. However, a clear decrease in BP, or fainting 
as a sole finding in an active or passive orthostatic test suggests a diagnosis of CAN 
(156). 
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Table 2 Description of sympathetic and parasympathetic cardiovascular reflex tests 

Cardiovascular 
autonomic reflex tests 

Procedure Measurement 

Parasympathetic tests 

HR variation during deep 
breathing 

Subject breathes in and out at six 
breaths per minute during ECG 
monitoring 

E/I (expiration:inspiration) ratio:  
Ratio between longest RRI during 
expiration and shortest RRI during 
inspiration 

HR response to Valsalva 
manoeuvre 

Subject exhales forcibly into a 
mouth-piece against fixed 
resistance (40 mmHg) for 15 
seconds during ECG monitoring 

Valsalva ratio: ratio of longest RRI 
during the maneuver to shortest RRI 
following it 

HR response lying-to 
standing 

After supine rest, subject stands up 
during continuous ECG monitoring  

30:15 ratio: Ratio between longest RRI 
around the 30th beat and shortest RRI 
around the 15th beat after standing 

Sympathetic tests 

BP response lying-to-
standing 

After supine rest the subject stands 
up, and systolic blood pressure is 
measured after 2 min 

Difference in blood pressure values 
measured at rest and 2 minutes after 
standing up 

BP response to Valsalva 
manoeuvre 

Subject exhales forcibly into a 
mouth-piece against fixed 
resistance (40 mmHg) for 15 
seconds during beat-to-beat BP 
monitoring 

Beat-to-beat blood pressure response is 
evaluated during different phases of 
the manoeuver  

BP response to isometric 
handgrip 

Subject squeezes a handgrip 
dynamometer to establish a 
maximum. Grip is then squeezed at 
30% of maximum for 5 min 

Diastolic blood pressure response to 
isometric exercise 

HR, heart rate; BP, blood pressure; RRI, time interval between two successive R-peaks on the ECG  
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2.4.4 Heart rate variability (HRV) 

HRV refers to the phenomenon of continuous oscillation in the intervals between 
consecutive heartbeats. Quantification of HRV from short- and long-term ECG 
recordings is a non-invasive method widely used in the assessment of cardiovascular 
autonomic regulation. Short-term recordings are usually 1- to 10-min ECG recordings 
obtained in stationary laboratory conditions, whereas long-term recordings can be 
obtained for example from 24-hour ECG recordings. Standardized conditions, 
stationarity, and high-quality ECG acquisition are essential to enable precise detection 
of the R-waves and are necessary for the correct assessment of HRV (157). 
Importantly, unless controlled, respiration is a major source of HRV and may bias the 
assessment. What is of note is that the Task Force did not consider the effect of 
respiration (157), which is now acknowledged in a more recent recommendation (158). 
Accordingly, the respiratory frequency of the subject should either be recorded or the 
breathing carefully controlled. Studies have shown that paced breathing (15/min), if 
properly performed, induces no major modifications of the autonomic tone, yet it 
allows correct analysis of HRV by removing artefact effects of irregular respiration 
into the low-frequency (LF) band. With spontaneous breathing, subjects should be 
instructed to maintain regular breathing and to avoid deep breaths.  

 
Thorough visual inspection of the raw signals is a requirement for identification of any 
technical artefacts and ectopic beats, which requires editing before analysis. 
Continuous ECG signals are digitized with a minimum sampling rate of 200 Hz and 
analyzed with specific software to obtain a tachogram (time series of RRI, the time-
interval between two successive R-peaks on the ECG). Quantification of HR 
fluctuations over time is usually performed by statistical (time domain) or by spectral 
(frequency domain) analysis of the RRI. In addition to the conventional methods, 
HRV can also be analyzed with non-linear methods based on the hypothesis that the 
components involved in cardiovascular regulation may interact with each other in a 
non-linear way. 

2.4.4.1 Time-domain analysis of HRV 

Time-domain analysis provides simple indices of overall HRV, reflecting mainly 
parasympathetic activity, but it does not allow separation of the sympathetic and 
parasympathetic components of the variability (157). The most common measures 
derived from time domain analysis is SDNN, which is mathematically equal to the 
square root of the total power (TP) of HRV and reflects global RR variability, and 
RMSSD, the square root of the mean squared differences of successive normal-to-
normal RRIs. All these measures mainly explore HR parasympathetic regulation (158, 
159). 
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2.4.4.2 Frequency domain analysis of HRV 

Frequency domain analysis, also called power spectral analysis of RRI, quantifies the 
amplitude of HR fluctuations at specific oscillation frequencies. This method provides 
information on both sympathetic and parasympathetic influence on the HR (160, 161). 
Estimates of the RRI power spectra can be obtained by different algorithms, of which 
the non-parametric fast Fourier transformation (FFT) and parametric autoregressive 
modeling are the most frequently used. One advantage of the autoregressive method is 
its ability to detect the oscillatory components even from short recordings. Stationarity 
of the data is a prerequisite for both approaches; linear detrending and high-pass 
filtering are therefore usually applied to improve the quality of the data before spectral 
analysis. Spectral analysis divides the RR variation into four principal spectral 
components; HF (high-frequency, 0.15-0.40 Hz, average 0.25 Hz), LF (low-frequency, 
0.04-0.15 Hz), VLF (very-low-frequency, 0.003-0.04 Hz), and ULF (ultra-low-
frequency, below 0.003 Hz) power. The HF and LF spectral components are usually 
both given as absolute powers, and as normalized units by dividing the absolute power 
of a given component by the LF power plus the HF power multiplied by 100 (157). 
 
The influence of the sympathetic and of the parasympathetic systems on the HRV 
markedly differ. Parasympathetic modulation raises the TP of the spectrum (total 
variability) whereas the sympathetic system modulates the variability of the LF band. 
The power of HF oscillations is related to respiration. This phenomenon, respiratory 
sinus arrhythmia, because it is abolished by atropine or vagotomy, so HF is considered 
a marker of parasympathetic activity (162).  
 
The respiratory component of HR variation is mainly influenced by central impulses 
from the respiratory centre but also by BP changes secondary to respiratory 
movements mediated through arterial baroreceptors and by the reflex response to lung 
inflation, mediated through thoracic stretch receptors. The LF oscillations of the HRV 
are mediated by both sympathetic and parasympathetic activity and originate from 
baroreflex mechanisms and activity of an endogenous oscillator in the brainstem or 
the spinal cord. Fluctuations in the other lower frequencies (VLF, ULF) are believed 
to relate to other factors such as changes in activity and posture and probably reflect 
parasympathetic modulation. LF as absolute power does not reflect the sympathetic 
activity, whereas LF as a proportion of the TP provides an estimate of sympathetic 
influence on the HRV (158). During sympathetic activation such as during tilting, the 
power in all frequency components is reduced due to parasympathetic withdrawal and 
increased HR (163). The influence of respiration on HRV becomes progressively 
smaller, and as a result LF predominates over HF during sympathetic activation. The 
ratio between LF and HF often serves as an indicator of sympathovagal balance (164).  
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2.4.5 Short-term blood pressure variability 

Similar to HRV, BP is also characterized by continuous fluctuations. In 1876 Sigmund 
Mayer observed periodic fluctuations in the BP with a cycle of once per 10 seconds 
(Mayer waves). In addition to invasive, intra-arterial methods, continuous arterial BP 
can be monitored non-invasively by the beat-to-beat finger photoplethysmographic 
volume-clamp method (165). BP recordings obtained with a noninvasive volume-
clamp-based monitor are considered equivalent to those measured by intra-arterial 
methods (166). Although this method shows poor correlation with the absolute BP 
values obtained invasively, it gives a good description of BP fluctuations and enables 
spectral analysis of the oscillations (165). 
 
Short-term BPV can be quantified from continuous BP recordings by power spectral 
analysis and further dissected into the same spectral components as described for 
HRV. HF oscillations of the BPV are related to respiratory activity and reflect 
mechanical effects of stroke volume due to changes in venous return and respiration 
(157). The LF oscillations, also known as vasomotor or Mayer waves, are mainly under 
sympathetic control (167-169), but they are also modulated by arterial baroreflexes 
through changes in vascular tone and peripheral resistance (170, 171). The other 
spectral components are still poorly understood.  

2.4.6 Baroreflex sensitivity (BRS) 

BRS integrates information derived from both HR and BP. An increase in BP sensed 
by the baroreceptors reduces the firing of the sympathetic cardiac and vascular 
efferents and enhances the firing of the vagal efferents, resulting in a rapid decrease in 
HR and BP. The BP decrease is a consequence of decreased cardiac output through 
lower HR, and of vasodilation due to sympathetic withdrawal. Hence, in order to 
correctly assess the components of BRS, the sympathetic efferent activity also should 
be considered. Sympathetic BRS can be measured with simultaneous recordings of 
muscle sympathetic nerve activity (MSNA), but this technique is invasive and requires 
special equipment. Accordingly, the term baroreflex sensitivity usually denotes cardio-
vagal control of BP regulation. Several methods allow study of the baroreflex, and in 
general, all these methods estimate the response of the HR to either spontaneous BP 
fluctuations or changes induced by vasoactive agents (phenylephrine, sodium 
nitroprusside, nitroglycerine) or other interventions (Valsalva maneuver, deep 
breathing, external neck suction) (172-174). 
 
The invasive, pharmacological-based, modified Oxford method (phenylephrine 
method) is considered the gold standard of BRS estimation (175, 176). The 
phenylephrine method is based on an open-loop estimation of BRS, with the 
assumption that RRI changes are linearly related to changes in SBP. However, in 
recent years, non-invasive techniques have emerged to estimate BRS from 
spontaneous fluctuations in arterial pressure and RRIs, either during spontaneous or 
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timed breathing, or by induction of changes through slow, deep breathing or a 
Valsalva maneuver. What is noteworthy is that the non-invasive BRS measurements 
are measured under closed-loop control. The arterial baroreflex (control) senses the 
change in BP level (input), and then the activation of the baroreceptors aims to adjust 
for blood-pressure change to maintain the preferred BP level, i.e. the system output. 
The new BP level is in turn looped back to alter the control, i.e. the BRS. In a closed-
loop model it is impossible to quantify the input to the baroreflex system (the BP 
change) separately from the output of the same system (the new BP level) (177). 

2.4.6.1 Methods to estimate spontaneous BRS 

Time-domain methods 

The sequence method is the most frequently used time domain technique for 
assessment of BRS. It is based on the assumption that changes in RRIs result from 
linear, independent changes in SBP, mediated by the baroreflex arc (178). Valid 
sequences, i.e. sequences of three or more beats, in which the SBP spontaneously 
either increases or decreases followed by parallel changes in the RRI (at the minimum 
of 1 mmHg or 5 ms) are identified and their slopes determined. Usually, a correlation 
coefficient > 0.85 is required. The BRS estimate is obtained by averaging the 
regression slopes by averaging the negative and positive regression slopes separately. 

 

Spectral methods 

The spectral methods of BRS estimation are based on the assumption that a given 
change in BP is detected by the baroreceptors, followed by a reflectory change in RR 
variability of the corresponding frequency (179). Accordingly, the spectral estimates of 
BRS can be calculated as the ratio of the fluctuation in RRIs over the ratio of the 
fluctuations in BP at the same frequency. 
  
The alpha indices, BRS-αLF and BRS-αHF, are computed as the square root of 
the ratio between the spectral powers of the RRI and the SBP series in the LF (0.04-
0.15 Hz) or HF (0.15-0.4 Hz) range, respectively. The average of these two measures 
is termed the alpha coefficient. To ascertain that the RRI changes are related to the 
BP changes usually requires a coherence >0.5 between the signals. In addition, analysis 
is performed only of sequences with a negative phase value, which implies that the 
RRI changes are preceded by changes in SBP, reflecting a baroreceptor-mediated 
mechanism.  
 

Transfer function gain is based on the assumption that the baroreceptor-heart rate 
reflex is a simple linear single-input single-output system, where BRS is the change in 
RRI (output signal), caused directly by a unit change in SBP (input signal). The 
transfer function gives an estimate of the gain at the given frequency. Commonly, the 
cross-spectral transfer function BRS is computed by averaging the transfer function 
gain between the SBP and the RRI time series (SBP-RR cross-spectrum divided by the 
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SBP spectrum) across the LF range (0.04-0.15 Hz), where the coherence exceeds 0.5 
(180, 181).  
 
BRS estimates derived from the sequence and cross-spectral methods show variable 
correlation with those of the pharmacological phenylephrine method (182-185). 
Studies have, however, also shown a poor correlation between the different indices of 
spontaneous BRS, and none of the methods has shown a clearly superior performance 
over the other (186). In sum, the biological meaning and the possible prognostic 
information provided by the various estimates is unclear, and it is possible that the 
estimates reflect different aspects of cardiac baroreflex. Thus far, most of the BRS 
estimates have integrated signal requirements to ensure that the estimate is based on a 
baroreflex-mediated mechanism. However, in collaboration with a group of scientists 
from Italy, we have recently introduced a method that deviates from this approach. 
We demonstrated that the ratio between the SD of the RRI and SD of SBP gives a 
robust estimate of BRS (187), which is also associated with worse prognosis in patients 
with systolic heart failure (188). In addition, our results showed that high-pass filtering 
improved the consistency of the different BRS estimates in general.   

2.4.7 Other methods to evaluate autonomic cardiovascular 

function 

Autonomic cardiovascular function can be evaluated by a number of other indirect 
methods, the simplest being resting HR. Other ECG-derived methods are HR 
recovery after exercise (189, 190), HR turbulence, QT-interval dispersion, and T-wave 
alternans that also serve as markers of autonomic imbalance and risk for sudden 
cardiac death in conditions other than diabetes (191). The non-dipping phenomenon 
in 24-hour ABPM is regarded as a marker of autonomic dysfunction (192). 
 
Direct assessment of myocardial sympathetic innervation is possible through imaging 
with radiotracers such as MIBG (iodine-131-meta-iodobenzylguanidide). This method 
provides a sensitive and highly reproducible tool to detect early sympathetic 
dysfunction in type 1 diabetic patients (193, 194). 
 
The most direct measure of sympathetic activity is assessment of MSNA, meaning 
measurement of bursts of efferent sympathetic activity in skeletal muscle (176). It is 
the only method to directly assess the sympathetic vascular arm of the arterial 
baroreflex, but on the other hand, is both invasive and time-consuming and thus used 
only in research. 
 
Corneal confocal microscopy is a promising new non-invasive technique to assess 
structural morphology of the small nerve fibres in the cornea. Corneal nerve fiber 
damage correlates with intra-epidermal nerve fibre density and severity of diabetic 
neuropathy in patients with diabetes; it and might also provide a measurement of 
subclinical small-fibre injury (195-197). 
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Postganglionic sympathetic cholinergic sudomotor function can be evaluated with a 
quantitative sudomotor axon reflex test. Sudomotor dysfunction is one of the earliest 
detectable abnormalities in distal small fibre neuropathy (198, 199). 
 
Finally, the degree of sympathetic activity can be evaluated by measuring the plasma 
concentration of plasma catecholamines (200). Plasma level depends, however, not 
only on amount of secretion but also on the rate at which the catecholamines are 
removed from the circulation. The norepinephrine spillover technique gives an 
estimate of tissue clearance of norepinephrine by assessing the degree of dilution of a 
small amount of intravenously administered radiolabeled norepinephrine. The 
spillover rate is thought to reflect norepinephrine release from sympathetic nerve 
endings and thus, more specifically, the sympathetic activity (201). Although 
measurement of circulating catecholamines has contributed to the understanding of 
pathogenetic mechanisms, the accuracy of this method does not provide any 
additional power to the diagnosis and staging of diabetic autonomic neuropathy (158).  

2.4.8 Association between autonomic dysfunction, morbidity, and 

mortality 

Back in 1976, Ewing showed the survival disadvantage in patients with diabetes and 
CAN based on cardiovascular autonomic reflex tests (202). Thereafter, longitudinal 
studies have consistently reported an increased risk of mortality in patients with 
diabetes and autonomic neuropathy (42, 203-206). It is noteworthy that these 
associations could be in part explained by other comorbid complications. However, a 
more recent meta-analysis of published data demonstrated that impaired 
cardiovascular autonomic function, as measured by HRV, doubled the relative risk for 
silent myocardial ischaemia and mortality independently of other diabetic 
complications (7). This meta-analysis comprised studies including both type 1 and type 
2 diabetic individuals. What is, however, evident is that autonomic dysfunction is 
associated with standard cardiovascular risk factors (109, 111, 112, 207), and with 
markers for cardiovascular morbidity such as attenuation or loss of the nocturnal fall 
in 24-hour ABPM (non-dipping) (47, 192, 208), silent myocardial ischemia (7, 209), 
increased coronary artery calcification (210, 211), arterial stiffness (212-214), QT 
prolongation (215), left ventricular abnormalities (216-218), and markers of chronic 
low-grade inflammation (136, 137, 219). 
  
The association between autonomic dysfunction and other diabetic micro- and 
macrovascular complications is well established, although the temporal and causal 
relationships are still unclear. Indirect evidence indicates, however, that autonomic 
dysfunction—particularly when assessed with more sensitive methodology—occurs at 
an early stage of type 1 diabetes, and that it precedes and even predisposes to other 
diabetic late complications. In a follow-up study, autonomic dysfunction, assessed 
with pupillometry and cardiovascular function tests, was associated with a 4- to 5-fold 
risk for developing microalbuminuria or retinopathy (220). Moreover, several studies 
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show that autonomic abnormalities to independently predict progression of diabetic 
nephropathy (204, 221, 222). In addition, some studies (47, 48)—although with some 
controversy (223)—have suggested that the lack of nocturnal SBP dipping is a 
sensitive marker of incipient diabetic nephropathy.  

2.4.9 Prognostic significance of abnormal HRV and BRS in 

cardiovascular medicine 

Autonomic abnormalities are usually attributed to diabetic neuropathy, although these 
abnormalities are also reported in a number of other conditions associated with a 
functional sympatho-vagal imbalance. A depressed HRV predicts mortality in the 
general population (224, 225), in post-myocardial-infarction patients (14, 226-228), in 
heart failure (229, 230), and in chronic kidney disease (231, 232). A reduced BRS is an 
independent marker of risk of mortality and major adverse cardiovascular events in 
hypertensive patients (17). Notably, also in hypertensive patients with chronic renal 
failure and dialysis treatment, reduced BRS is an independent predictor of sudden 
death (16). Impaired BRS is a strong independent prognostic marker of survival in 
heart failure (13, 14), but also in patients having survived a myocardial infarction, even 
with preserved left ventricular function (233). Reduced BRS is furthermore associated 
with worsened short- and long-term prognosis after acute ischaemic stroke (15, 234). 

2.4.10 Role of autonomic function in pathogenesis of hypertension  

Although numerous pathophysiological factors have been implicated in development 
of essential hypertension, increased sympathetic activity (and the subsequent 
autonomic imbalance) also seems to play a key role. The sympathetic nervous system 
operates not only in short-term BP control, but also in the pathogenesis of 
hypertension and in maintenance of elevated BP level. Mechanisms behind the 
increased sympathetic activity are complex and involve alterations in baroreflex and 
chemoreflex pathways. HR, the simplest indicator of sympatho-vagal imbalance, is a 
an independent predictor of diastolic blood pressure (DBP) in young adults (235). The 
association between sympathetic over-activity and BP has been demonstrated also 
with other methods, such as MSNA (236) and plasma epinephrine level (237). 
 
Reduced HRV is associated with a higher risk for hypertension (238, 239). However, 
decreased overall HRV, increased sympathetic, and reduced vagal indices of the HRV 
are already present at an early stage of hypertension (240, 241). The close relationship 
between reduced BRS and high BP is evident (242-245), but whether low BRS is the 
cause or the consequence of elevated BP is still unclear. However, similar to HRV, 
BRS is already reduced at high-normal BP. Thus, it is possible that a blunted BRS (due 
to sympathetic activation) is one of the mechanisms allowing increased fluctuations in 
short-term BPV, hence progressively leading to resetting of the system. It is of note 
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that increased variability in SBP, assessed by visit-to-visit BPV (246, 247), or by ABPM 
(248, 249) is associated with increased risk for end-organ damage. Whether BRS or 
other autonomic indices predict hypertension in type 1 diabetes is as yet unknown.  

2.4.11 Effect of respiration and respiration rate on HRV and BRS 

By 1733, Hales had already observed that HR increases during inspiration and 
decreases during expiration. One potential role of respiratory sinus arrhythmia is to 
improve respiratory gas exchange efficiency through better matching of the alveolar 
ventilation and capillary perfusion (250). Importantly, respiration is the main source of 
fluctuations in RRI and in SBP (251). HR oscillations in the HF band (0.15-0.4 Hz), 
the typical frequency range of normal adult respiration, are vagally mediated. The 
respiratory oscillations of the HR may arise through several possible mechanisms: 
through BRS-mediated responses to fluctuations in BP, through responses to 
respiration-synchronized fluctuations in pulmonary and thoracic stretch receptors 
(252), through central cardiorespiratory coupling, and through chemoreflexes. In the 
intact heart, the mechanical stretch on the sinoatrial node seems to play only a minor 
role (174). Intra-thoracic pressure changes during the respiratory cycle modify left 
ventricular stroke volume and BP through changes in cardiac venous return, which 
results in parallel BRS-mediated changes in HR (253, 254). 

Slow breathing at 6 cycles/minute causes RR fluctuations to merge at the respiratory 
rate and increases the amplitude of the fluctuations. Studies have shown that slow, 
deep breathing increases BRS and reduces sympathetic tone in healthy individuals 
(255), as well as in conditions like heart failure (256, 257), hypertension (258), and 
chronic obstructive pulmonary disease (259). Slowing of the respiratory rate reduces 
dyspnea and improves both resting pulmonary gas exchange and exercise performance 
in patients with heart failure (260). In essential hypertension, MSNA falls during short-
term slow breathing (261). One additional mechanism behind these findings is that 
slow breathing and the increased tidal volume stimulate the Hering-Breuer reflex. This 
is an inhibitory reflex triggered by stretch receptors in the lungs that serves to prevent 
over-inflation of the lungs, elevates vagal activity and may reduce sympathetic activity. 
In sum, it seems that changes in sympathetic activity and in BRS are closely 
interrelated. Although the exact mechanisms are unclear, slow breathing seems to 
induce a generalized decrease in the excitatory pathways regulating respiratory and 
cardiovascular systems.  

2.4.12 Effect of oxygen on HRV and BRS 

The respiratory and cardiovascular systems are tightly coupled and therefore a 
modification of the respiratory component may induce changes in cardiovascular 
regulation and vice versa. The chemoreflexes are important modulators of autonomic 
activation. The peripheral chemoreceptors situated in the carotid bodies respond 
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mainly to hypoxaemia, whereas the central chemoreceptors located in the brainstem 
respond to hypercapnia. Activation of either chemoreflex normally induces 
sympathetic activation, an increase in ventilation, and depression of the BRS (262). 
Normally, baroreflex activation has the opposite effect on ventilation. Moreover, the 
arterial baroreflexes have a strong inhibitory effect on the chemoreflexes, especially on 
the peripheral chemoreflex (263).  
 
Inhaled oxygen reduces HR and raises those HRV indices that are related to 
parasympathetic activation (264-267), but not in serious autonomic neuropathies such 
as familial dysautonomia (268). Treatment with hyperbaric hyperoxia enhances 
parasympathetic modulation of HRV in healthy individuals (264), and in patients with 
type 2 diabetes (267). In addition, oxygen administration has a dose-dependent effect 
on the parasympathetic lung afferents, resulting in increased ventilation (269, 270). 
Exposure to hypoxia at high altitude induces vasodilation and reflectory sympathetic 
activation followed by BRS reduction (271). Conversely, oxygen supplementation 
raises BRS in healthy individuals (266) and in patients with CHF and COPD (265, 
272). In patients with severe obstructive sleep apnea syndrome, BRS is depressed 
probably due to sympathetic activation through hypoxia-induced chemoreceptor 
stimulation (273). Notably, inhaled oxygen has been part of the standard treatment in 
patients with acute coronary syndrome, despite the absence of conclusive evidence as 
to any beneficial (or harmful) effects of oxygen in normoxic patients with acute 
coronary syndrome (274).     

2.4.13 Natural history of autonomic dysfunction in type 1 diabetes 

Nerve function is dependent on axonal transport: a sufficient supply of metabolic 
substrates, enzymes, and structural proteins mainly originating from the cell body 
itself. This is the probable explanation for the fact that the longest nerve fibres are 
especially susceptible to neuropathy. The vagus nerve, the longest autonomic nerve, 
mediates approximately 75% of all parasympathetic activity. Thus, the earliest 
manifestation of autonomic neuropathy in patients with diabetes tends to be 
associated with parasympathetic denervation (275). One hypothesis is that diabetic 
autonomic neuropathy begins as vagal denervation that leads to autonomic imbalance. 
However, another suggestion is that a compensatory increase may already occur in 
cardiac sympathetic tone in response to subclinical peripheral denervation early in the 
course of autonomic dysfunction (276), one that augments the autonomic imbalance. 
Over time, this disorder may advance to denervation of both the parasympathetic and 
the sympathetic nervous systems (Fig. 2). Similar to vagal and peripheral neuropathy, 
cardiac sympathetic denervation also begins distally, at the apex of the ventricles, and 
progresses towards the base (277).  
 
Notably, a discrepancy seems to exist between the high prevalence of subclinical 
autonomic abnormality or of autonomic imbalance and, as yet, the fairly small 
proportion of patients with severe, symptomatic autonomic neuropathy. BRS is 
considered a more sensitive measure of autonomic function than are conventional 
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autonomic function tests (9, 10), but whether low BRS predicts a progression to CAN 
is  as yet unknown; also unknown is whether there exists a point of no return, after 
which the autonomic dysfunction progresses to a stage refractory to all interventions. 
This would indicate that autonomic dysfunction could, in its earliest phase, be 
functional and does not necessarily progress to CAN in all patients. The concept of a 
functional autonomic disorder does not diminish the importance of early diagnosis, 
given that reduced BRS is an established marker of poor prognosis in hypertension, 
renal failure, post-myocardial infarction, heart failure, and cerebral stroke, conditions 
associated with functional alterations in the ANS (13-17). Moreover, even were the 
disorder functional, it could still predispose to or predict future diabetic complications. 
Studies have demonstrated the beneficial effect of physical activity in management of 
functional autonomic abnormalities, but what is unknown is whether it is possible to 
correct these abnormalities in patients with type 1 diabetes either by short or more 
longstanding interventions. Tissue hypoxia is accepted as a potential factor in the 
pathogenesis of diabetic complications, but no studies concern its possible role in 
autonomic dysfunction in patients with type 1 diabetes.  
 

 

 
Figure 2 Progression of autonomic dysfunction in diabetes and its relation to clinical 
 abnormalities. At the earliest, subclinical stage of diabetic autonomic neuropathy, 
 the autonomic imbalance is a result of either augmentation of sympathetic tone, 
 parasympathetic denervation, or both. Over time, the disorder may advance to 
 denervation of both the parasympathetic and the sympathetic nervous systems, 
 thus often manifested as symptomatic autonomic neuropathy. 

 
BRS, baroreflex sensitivity; HRV, heart rate variability; CART, cardiovascular autonomic reflex test; CAN, 
cardiovascular autonomic neuropathy. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews 
Endocrinology. Michael Kuehl & Martin J. Stevens. “Cardiovascular autonomic neuropathies as complications 
of diabetes mellitus”, Copyright 2012 (278).  
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3 AIMS OF THE STUDY 

The specific aims of the present study were: 
 
 

1. To characterize the autonomic function (HRV and BRS) in well-defined 
cohorts of patients with short- (I-II) and long-duration (II) type 1 diabetes 
 
 

2. To learn whether early autonomic dysfunction as evidenced by low 
baroreflex sensitivity (BRS) is correctable by slow, deep breathing in short- 
(I) and long-duration (II) type 1 diabetes 

 
 

3. To determine the BRS response to slow, deep breathing in patients with 
type 1 diabetes with different levels of autonomic involvement (II) 

 
 

4. To determine how oxygen administration affects BRS and ventilation in 
patients with type 1 diabetes as compared to healthy controls (III) 

 
 

5. To determine whether autonomic indices decline more in patients with type 
1 diabetes than in healthy subjects, and whether baseline BRS predicts 
progression to CAN during a 5-year follow-up (IV) 

 
 

6. To elucidate the role of BRS as a potential predictor of increased blood 
pressure during a 5-year follow-up (IV) 
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4 SUBJECTS AND STUDY DESIGN 

The IDEAL Study (IDentification of EArly mechanisms in the pathogenesis of 
diabetic Late complications) is part of the nationwide Finnish Diabetic Nephropathy 
(FinnDiane) Study and it was carried out at the Department of Diabetes Genetics of 
Folkhälsan Research Center, University of Helsinki and at the Department of 
Medicine, Division of Nephrology, Helsinki University Central Hospital, during 2003-
2009. Type 1 diabetes was defined as C-peptide deficiency (<0.03 nmol/l) and 
initiation of permanent insulin treatment within 1 year after the diabetes diagnosis. All 
patients and control subjects gave their informed consent before their inclusion. The 
study protocol was approved by the Ethics Committee of Helsinki University Hospital 
and by the Ethics Committee of the University of Pavia, Italy (for heart-transplanted 
participants), and the study was carried out in accordance with the principles of the 
Declaration of Helsinki as revised in 2000. Clinical characteristics of the patients with 
type 1 diabetes and healthy control subjects are shown in Table 3. 

4.1 Study populations 

4.1.1 Study I 

The participants were recruited through the register of the Social Insurance Institution 
that comprises all patients entitled to special reimbursement for insulin or glucose-
lowering medication in Finland. This register covers approximately 98% of all Finnish 
patients with type 1 diabetes (279). Selection criteria were: diabetes diagnosed before 
age 35, diabetes duration of 6 to 12 years, and age at inclusion between 18 and 35 
years. A total of 400 individuals residing in the Helsinki metropolitan area fulfilled 
these selection criteria and received invitations. Of the 165 who responded, 25 were 
excluded since they had types of diabetes other than type 1, were currently pregnant, 
or failed to attend. Consequently, 140 participants were enrolled and 125 participated 
in all examinations at baseline (I). None of these patients showed clinical signs nor had 
any history of CVD. Their diabetes duration was 8.9±0.1 years. The 36 age- and 
gender-matched healthy control participants were recruited by email advertisements 
among university students and staff. Included were only those with normal fasting 
glucose and without first degree relatives with diabetes mellitus. Patients with type 1 
diabetes had significantly higher SBP than did the control subjects. Of the patients, 
6% were on antihypertensive treatment (AHT). Their serum lipid concentrations were 
equivalent except for LDL cholesterol, which in the diabetic patients was higher.  
 
Data from a third group of heart-transplanted participants were analyzed 
retrospectively. This group, studied in Italy at the University of Pavia, comprised 12 
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participants (5 men, 7 women, aged 54.7±2.4 years) who had undergone orthotopic 
heart transplantation 34.7±4.9 months earlier. They had taken part in a study 
documenting absent or only rudimentary re-innervation of the heart after heart 
transplantation (174).  

4.1.2 Study II 

For this study, we examined a group of Finnish patients with long-duration (33.7± 0.5 
years) type 1 diabetes (N=37). These patients had participated initially in another study 
in Finland and were recruited to the present study at a follow-up visit (207). They had 
been diagnosed with type 1 diabetes between 1968 and 1978 and their age at onset was 
<15 years. An age- and sex-matched control group originated in an earlier study in 
Italy of healthy individuals (N=37). Data on the patients with long-duration type 1 
diabetes and control subjects were compared and pooled with the data from patients 
with short-duration type 1 diabetes and control subjects from Study I. The group of 
12 heart-transplanted subjects served also in this study as a model of definitive cardiac 
denervation.  

4.1.3 Study III 

At the prospective visit of the Ideal Study, we restudied 96 patients (of the original 
140) with type 1 diabetes and 40 age-matched healthy controls. None of the patients 
showed clinical signs nor had any history of CVD. However, six patients had 
undergone laser treatment for diabetic retinopathy. Unfortunately, we were unable to 
restudy the original control group (I), but instead recruited new healthy volunteers. 
The healthy control subjects were recruited by email advertisements among university 
students and staff. Included were only individuals with normal fasting glucose and 
without first-degree relatives with diabetes mellitus.  

4.1.4 Study IV 

A total of 125 patients participated in the examinations at baseline in 2003-2004; 96 of 
these were restudied at the follow-up visit in 2008-2009. Overall, 80 patients had 
complete data (autonomic testing and ABPM) from both the baseline and follow-up 
visits. Data from 425 healthy controls of an age range of 16 to 60 years served as 
controls (187). Duration at follow-up was 13.8±0.2 years, with a mean follow-up time 
of 5.0±0.0 years. A total of 21 patients were using AHT (17 new patients) at the time 
of the follow-up visit, whereas none used β-blockers. Office SBP remained unchanged 
over time, but the patients with AHT had higher BP both at baseline and follow-up. 
The patients who started AHT were older (35.6±0.9 vs. 30.8±0.7 years; p<0.001) with 
a higher age at onset of diabetes (21.3±1.0 vs. 17.2±0.7 years; p<0.05). These patients 
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also had a higher total cholesterol level (p<0.05). Four patients were laser treated due 
to retinopathy during follow-up. Urinary albumin excretion rate increased marginally 
(p<0.05). No major cardiovascular events were reported during follow-up. 
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5 METHODS 

5.1 Study protocol 

Baseline and prospective visits were carried out according to the same protocol. 
During these two visits, the patients underwent a clinical examination either by a 
physician or a trained research assistant including resting ECG, laboratory testing, one 
24-hour and two overnight urine collections, ABPM, standard autonomic function 
evaluation by cardiovascular reflex tests, and assessment of HRV and BRS. Data on 
medication, cardiovascular status, and diabetic complications were obtained and 
verified from the medical files. Each participant completed a detailed questionnaire on 
life style, smoking habits, and family history.  

5.2 Autonomic testing 

Testing of autonomic function was performed under standardized conditions. Before 
the testing, the participants received both oral and written instructions. They were 
asked to abstain from alcohol for 36 h, and from caffeinated beverages and cigarettes 
for 12 h before the examination. A light meal was permitted 2 h before testing. The 
participants were investigated in a quiet room, at a temperature between 19°C and 
23°C, between 08:00 and 14:00 hours. Blood glucose was measured to exclude 
hypoglycaemia. 
 
Participants underwent a set of four cardiovascular autonomic function tests:  
[1] expiration: inspiration ratio of the RRI during slow deep-breathing [2] maximum: 
minimum 30:15 ratio of the RRI during active standing [3] SBP response to standing 
[4] maximum: minimum ratio of the RRI during a Valsalva manoeuver. Individual test 
results were graded according to Finnish age-specific reference values (150). In line 
with current recommendations, borderline CAN was defined as the presence of one, 
and definite CAN as the presence of two or more abnormal tests (79).   

5.2.1 Signal acquisition 

Autonomic testing began after a 10-minute supine rest. ECG was recorded with a 
bipolar precordial lead. Continuous BP was monitored by a plethysmographic finger-
cuff method (Finapres 2300; Ohmeda, Louisville, CO, USA). With the cuff around the 
middle finger of the right hand, the right arm was kept motionless at heart level. The 
self-adjustment procedure of the Finapres was performed immediately before the 
recordings and then turned off. At the baseline visit, timed breathing was visually 
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controlled by a trained nurse. At the follow-up visit, in addition, two respiratory 
signals were obtained by inductive plethysmography (Z-rip®, Pro-Tech, Mukilteo, 
WA, USA), from belts positioned around the chest and the abdomen. At the follow-
up visit, other values obtained were for pulse oximetry and expired carbon dioxide 
(CO2) partial pressure (Cosmo, Novametrix, Wallingford, CT, USA).   
 
These signals were simultaneously recorded in the supine position during 5 min of 
spontaneous breathing and 2 to 5 minutes of controlled breathing at a frequency 
similar to that of spontaneous breathing (15 breaths per minute), and during 1 to 2 
minutes of slow deep breathing at the rate of 6 breaths per minute. At the follow-up 
visit, each subject repeated the entire protocol while breathing 5 L/min oxygen 
delivered through a nasal cannula. Signal recordings started after the first 5 min of 
oxygen administration to allow stabilization of oxygen saturation and ventilation. The 
sequence of breathing rate (spontaneous, 15/min and 6/min) was randomized within 
each session (normoxia and hyperoxia). Signal recordings were also taken during an 
active orthostatic test (5 min in the supine and 7 min in standing position) and a 
Valsalva test (6). 
 
Recorded signals were simultaneously digitized at 12-bit resolution at a sampling rate 
of 200 Hz with a data acquisition system (WinAcq; Absolute Aliens, Turku, Finland) 
and transferred onto a computer and analyzed with a menu-driven software package. 
Only signals free from ectopic beats and artefacts were acceptable. Some recordings 
were excluded due to a technical artefact, or a large number of ectopic beats during 
recording, or due to an anamnestic hypoglycaemic episode during the preceding 24 
hours. Analysis of the HRV, BPV, and BRS was performed as described in Section 
2.4. In short, total variability, SDNN, and RMSSD served as time-domain measures of 
RRI variability. FFT provided spectral components of the HRV (I, II, IV) and 
autoregressive model in Study III. Within the follow-up data, we performed a 
correlation between FFT and autoregressive model estimates; no difference was 
detectable. We did this to justify the use of 1- to 2-minute recordings in Study IV. 
Power spectral analysis of SBP was performed with FFT to obtain systolic BPV in the 
LF band (0.04-0.15 Hz).  

5.2.2 Assessment of BRS 

Spontaneous BRS came from the same recordings of ECG and continuous BP during 
spontaneous breathing, controlled breathing, and slow deep breathing. BRS was 
determined from spontaneous fluctuations in RRI and SBP by sequence methods 
(BRS+/+ and BRS-/-), the alpha indices (BRS-αLF and BRS-αHF), and transfer 
function (BRS-TF) as described in Section 2.4.6. Furthermore, we used a new method 
(BRS-SD), based on calculation of the ratio between SD of the RRI divided by SD of 
the SBP as a measure of BRS (187). Finally, we calculated an average of all the 
methods used (BRSaverage), since none of the methods has proved superior to the 
others (186). It has been suggested that the procedure of controlled breathing by 
forcing the patient to breathe 15 breaths per minute may induce sympathetic 



 

47 
 

activation; this, however, is still unclear (259, 280). Thus, in our studies, BRS during 
spontaneous breathing served to represent the resting level. Deep breathing reduces 
sympathetic activity (257), so we calculated an increase in BRS as a response to deep 
breathing.   

5.2.3 Analysis of respiration (III)  

Signals from the inductive plethysmographic belt signals were analyzed with 
interactive software to identify the positive and negative respiratory peaks, the 
respiratory period, and the end-expiratory (end-tidal) value in the CO2 signal. The sum 
of the signals from the two belts represented the relative index of tidal volume. 
Inductive belt data allowed a semi-quantitative intra-subject analysis of ventilation, by 
comparison of relative changes in tidal volume and minute ventilation induced by 
oxygen inhalation or differing breathing patterns. The strong linear relationship 
between tidal volume and inductive belt signals produced an estimate of the 
ventilation in relative units (281). The minute ventilation obtained during spontaneous 
breathing of room air was set as 100% for each subject, and the minute ventilation or 
tidal volume in changes from that value was calculated for each recording. 
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5.3 Laboratory tests 

Venous blood samples were drawn after a light breakfast and were analyzed for 
HbA1c, lipids and serum creatinine. HbA1c concentrations were determined by 
immunoturbidometry. Serum lipids (cholesterol, triacylglycerol, HDL-cholesterol) and 
creatinine were measured by enzymatic methods. Serum LDL cholesterol was 
calculated by Friedewald’s formula. In addition, blood glucose was measured bedside 
with a Beta-glucose analyzer (HemoCue Glucose 201+; HemoCue, Ängelholm, 
Sweden). Urinary albumin concentration was measured by immunoturbidometry from 
three consecutive timed urine collections, one 24-h and two overnight collections. 
Normal albumin excretion rate (AER) was defined as an AER persistently <20 
μg/min or <30 mg/24 h, microalbuminuria as an AER≥20<200 μg/min or ≥30<300 
mg/24 h, and macroalbuminuria as an AER≥200 μg/min or ≥300 mg/ 24 h in at least 
two of three urine collections.  

5.4 Ambulatory blood pressure monitoring (ABPM)  

The 24-hour ambulatory blood pressure was monitored at baseline in a subset of the 
participants (99 patients, 29 healthy control participants) with a monitoring device 
(SpaceLab 90207; Spacelabs, Redmond, WA, USA), that uses an oscillometric method. 
The recording day was a typical weekday, and the subjects were allowed to perform 
their normal daily activities except for rigorous physical exercise. Subjects were asked 
to relax the arm at their side when the cuff was inflated. Measurements were 
performed automatically for the non-dominant arm every 20 min during the day 
(07:00-23:00 hours) and every 60 min at night (23:00-07:00 hours). Monitor accuracy 
was checked by performance of three simultaneous readings with a standard BP 
monitor at the beginning of the monitoring session. Patients kept detailed diaries of 
their daily activities and sleeping periods. For analysis, day- and night-time periods 
were defined according to individual sleeping schedule. Participants with a nocturnal 
decrease in SBP or in DBP of less than 10% of the corresponding daytime value were 
defined as non-dippers. In the follow-up study (IV), ABPM was available from both 
visits in a subset of 71 patients. A total of 21 patients initiated AHT during follow-up. 
Analysis of the association between baseline indices and the BP change during follow-
up was therefore only performed with data from the 50 patients without AHT.    
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5.5 Statistical analyses 

Data were analyzed by the statistical programs SPSS (versions 16-17) for Windows 
(SPSS, Chicago, IL, USA) or PASW Statistics 17 (PASW, Chicago, IL, USA). Data in 
tables are mean ± SEM or median (range) when appropriate. The data were tested for 
normal distribution, and variables with skewed distribution, such as power variables, 
served for statistical analysis only after logarithmic transformation. Group differences 
between type 1 diabetic patients and control participants were analyzed with the χ2 
test (for qualitative variables), and unpaired Student’s t test by ANOVA (for 
quantitative variables). Post hoc analysis was done with Tukey’s test. Analysis of 
covariance allowed adjustment for age and sex. Pearson’s correlation coefficients were 
used to evaluate associations. P-values of 0.05 or less were considered significant. Due 
to the markedly differing values seen in the heart-transplanted participants as 
compared with the other groups, only differences between 15 and 6 breaths per 
minute were tested (paired t test).  
 
Statistical differences in BRS response to intervention (6 breaths per minute vs. 15 
breaths per minute controlled breathing; supine vs. standing: breathing normal air vs. 
oxygen) between patients with type 1 diabetes and healthy control subjects were tested 
by mixed-design two- or three-level analysis of variance (factorial design to test 
differences between groups, and repeated measures to test for the effect of 
intervention). In Study II, the impact of autonomic involvement and duration was 
analyzed separately by grouping the diabetic patients according to duration of diabetes 
(short or long) or severity of CAN (CAN-0, CAN-1 or CAN-2). Furthermore, due to 
diverging ages between the two groups with diabetes of differing durations, the 
ANOVA models were reanalyzed after adjusting BRS data for age. Whenever the main 
effect or interaction was significant, a subsequent post hoc multiple comparison was 
performed with Tukey’s test. Because of the small number (5) of patients in the CAN-
2 group, no statistical analyses were performed with this group.   
  
In addition, because of more complex interactions between interventions, in Study III 
the statistical differences between groups and interventions (6/min vs. 15/min 
controlled breathing and breathing normal air vs. oxygen) were tested by means of a 
normal linear model. The continuous variables, BRS and BP, were separately modelled 
as outcome; conditions (normoxia/hyperoxia), breathing patterns (spontaneous, 
controlled  at  15  breaths/min  and  6  breaths/min),  and participant group (healthy 
control/diabetic) were included as categorical covariates (282). Sheffe’s was the test 
for significances between breathing rates. To test the simple effect of oxygen in 
diabetic and control subjects during spontaneous breathing, we used a similar mixed-
design two-level ANOVA (repeated measures to test for the effect of oxygen, and 
factorial design to test between diabetic and control subjects) as in Studies I and II. 
  
In Study IV, for a separate group of 425 healthy controls from Italy, ages 16 to 60 
years, we calculated age regression curves for each BRS index, SDNN, and mean RRI. 
For the autonomic function tests (E/I ratio, 30/15 ratio, Valsalva ratio, and lying-to-
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standing change in SBP), we obtained the age regression slopes from an earlier 
published study that had involved 120 healthy subjects aged 22 to 92 years (149). 
Equations for the linear regressions are in Table 4. Figure 3 demonstrates a scatterplot 
(age vs. BRS-SD) and regression formula obtained from our 425 healthy controls. 
Using the equations obtained in healthy subjects, we calculated the physiologic age-
dependent deterioration for each subject over the individual follow-up period 
(regression coefficient multiplied by follow-up time). To obtain age-adjusted values, 
we added the age-dependent BRS deterioration value to the value of the follow-up 
result. Thus, the difference between baseline and age-adjusted follow-up value 
reflected changes not due to aging. To evaluate the change in BRS over time, we 
performed a paired t test between baseline BRS and both the measured BRS and the 
age-adjusted BRS at follow-up. 
 

 

 

Figure 3 The baroreflex (BRS-SD), as related to age and the equation for the regression line 
 in 425 control subjects aged between 16 and 60 years.   
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Table 4 Linear regression equations for autonomic indices used in Study IV in prediction 
 of age-dependent deterioration in autonomic function. The equations are obtained
 from our own database with 425 healthy control subjects from Italy, except for 
 those marked with asterisks (*), that came from an earlier published study (149). 

Autonomic index Equation 

Mean RRI y = 0.6716x + 861.58 

E/I ratio ln y = -0.00658x + 0.614 * 

30/15 ratio ln y =  -0.00352x  + 0.308 * 

Valsalva´s ratio ln y = -0.0064x +  0.700 * 

SBP response to orthostatic test y = -0.14x + 1.5 * 

SDNN y = -0.7495x + 64.679 

BRS-αLF y = -0.2917x + 24.488 

BRS-αHF  y = -0.4964x + 40.264 

BRS-TF y = -0.3725x + 30.245 

BRS+/+ y = -0.2909x + 35.471 

BRS -/- y = -0.5732x + 47.377 

BRS-SD y = -0.3175x + 26.408 

BRSaverage 
y = -0.4216x + 35.075 (6 methods) 
y = -0.4258x + 36.735 (4 methods) 

 RRI, time interval between two successive R-peaks on the ECG; E/I ratio, expiration:inspiration ratio; 
30/15 ratio, ratio between longest and shortest RRI in orthostatic test; SBP, systolic blood pressure; 
SDNN, standard deviation of the normal-to-normal RR intervals 

 

 
 
As described in the methods section, we used a set of different BRS test methods and 
calculated an average value (I-IV). To justify this approach, we performed a test of 
consistency of the BRS prior to Study I, but using a larger database. It is of note that   
no general agreement exists regarding methodology for comparing more than two 
methods. Firstly, we analyzed the agreement between methods using an intraclass 
correlation coefficient (283) and found that when comparing all methods, the overall 
coefficient was 0.929. This result was in agreement with another approach, Cronbach's 
alpha, as suggested by Bland and Altman, which again gave 0.929 for all methods 
(284). A coefficient >0.90 we regarded as evidence of satisfactory agreement between 
methods. 
  
Consistency between methods was further analyzed by repeats of the previous tests 
and by removing the methods from the analysis one by one. Results indicate that a 
very high degree of consistency resulted from all these indices. Secondly, we compared 
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each BRS estimate against the median of the other estimates to identify any deviations 
between methods using repeated measures ANOVA, as a multidimensional extension 
of the two-method comparison of Bland-Altman plots (285). Some methods gave 
systematically higher values, but all methods provided comparable data after removing 
the systematic differences. Finally, we assessed the correlation coefficients between 
each method and the median of the other methods. Although not a measure of 
agreement, this is nevertheless commonly reported (p<0.001 for all comparisons). 
These independent statistical approaches showed that different tests gave similar 
directional results, but with systematically different values amongst the different 
methods. Moreover, this justifies the averaging of different methods but also 
underlines the fact that all measures are acceptable when applied alone, provided that 
systematic differences in different methods are taken into account. 
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6 RESULTS 

6.1 Autonomic function tests, HRV, and BPV in patients with 

type 1 diabetes and healthy controls (I, II, IV) 

6.1.1 Autonomic function tests (I, II, IV) 

Data from the conventional autonomic function tests are depicted in Table 5. In Study 
I with patients with short duration of type 1 diabetes, results of the four cardiovascular 
reflex tests did not significantly differ when compared with those of healthy control 
participants. The only exception was Valsalva´s test, which in fact showed higher 
values in the patients with short-duration type 1 diabetes, compared to these patients’ 
controls. One participant in each group (both patients and controls) fulfilled the 
diagnostic criteria for CAN (CAN-2). Due to an updated classification for CAN, in 
Study II, a total of three patients (instead of only one in Study I) with short-duration 
diabetes fulfilled the diagnostic criteria for CAN. In Study II, when the two groups 
with type 1 diabetes (short and long duration) were pooled, the autonomic score was 
normal in 126 (CAN-0), borderline in 23 (CAN-1), and abnormal in 5 patients with 
diabetes (CAN-2). The numbers of patients with short/long duration in the CAN-0 
were 101/25, in CAN-1 13/10, and in CAN-2 groups 3/2.  
 
In Study IV, of the 80 patients with type 1 diabetes, at baseline, 68 patients had no 
signs of CAN (CAN-0), whereas 11 patients had borderline (CAN-1), and one had 
evident CAN (CAN-2). At follow-up, 63 patients presented with CAN-0, 16 with 
CAN-1, and one with CAN-2. One of the patients progressed to CAN-2, and in 12 
patients the CAN score advanced. The only patient with CAN-2 at baseline reversed 
to CAN-1, and seven patients improved their autonomic scores. Thus, a total of 61 
patients had an unchanged CAN score over time. When all patients were analyzed 
together (Study IV), only the E/I ratio of the autonomic function tests declined 
significantly during follow-up, but after age adjustment the change was no longer 
significant. However, when the patients with AHT were studied separately, a 
significant decline with time occurred in both E/I and 30/15 ratios, one that persisted 
also after age adjustment (data not shown).  
 
 
 



 

54 
 

Table 5 Results of autonomic function tests in patients with type 1 diabetes and healthy 
 control subjects (I, II, IV). Data from Study IV apply only to patients with type 1 
 diabetes at baseline and at follow-up and at follow-up with age-dependent 
 deterioration removed. 

 Study II Study I Study IV 

Long-
duration 
type 1 

diabetes 

Healthy 
controls 

Short-
duration 
type 1 

diabetes 

Healthy 
controls 

Baseline 
 

Follow-
up 

 

Follow-
up 

adjusted 
 

n 37 37 117 36 80 80 80 

E/I ratio 1.22±0.02a no data 1.40±0.01 1.40±0.03 1.38±0.02 1.31±0.02c 1.36±0.02 

30/15 ratio 1.33±0.04a no data 1.67±0.03 1.65±0.03 1.64±0.03 1.59±0.04 1.61±0.04 

Valsalva ratio 1.61±0.06a no data 2.02±0.04b 1.87±0.06 2.03±0.05 1.97±0.05 2.02±0.05 

SBP change 
as response 
to standing 

2.2±1.7 no data 5.0±0.7 3.0±1.4 +0.8±1.1 +2.1±1.0 +2.8±1.0 

CAN (0/1/2) 25/10/2a no data 101/13/3 - 68/11/1 63/16/1 - 

Data are mean ± SEM. a: p<0.05 long vs. short duration of type 1 diabetes (adjusted for age and gender), 
b: p<0.05 short duration of type 1 diabetes vs. healthy controls, c: p<0.05 for change over time, baseline vs. 
follow-up; RRI, time interval between two successive R-peaks on the ECG; E/I ratio, expiration:inspiration 
ratio; 30/15 ratio, ratio between longest and shortest RRI in orthostatic test; SBP, systolic blood pressure; 
CAN-0: normal autonomic score; CAN-1: borderline autonomic dysfunction; CAN-2: autonomic neuropathy 
 

6.1.2 Time-domain and frequency domain (spectral) analysis of 

HRV and BPV (I-II) 

Results from the time-domain and spectral analyses of HRV and BPV, obtained 
during controlled breathing (15 breaths/min) are in Table 6 (I-II). It should be 
pointed out that some of the marginally statistically significant differences in HRV 
values between patients with short-duration type 1 diabetes and their matched controls 
in Study I no longer remained significant in Study II, when more groups were 
compared by post hoc tests. During controlled breathing at this near-to-normal 
breathing rate, patients with short-duration type 1 diabetes showed, in time-domain 
analysis of HRV, non-significantly lower global HRV, as evidenced by reduced SDNN 
and RMSSD, than did healthy control subjects. In spectral analysis, patients with 
short-duration type 1 diabetes had significantly reduced power in the HF band, and 
increased power in the LF band as expressed as normalized units (I). In Study II, the 
patients with long-duration diabetes had lower values for all absolute HRV indices 
than did patients with short duration (Table 6). Moreover, power in the LF band of 
the SBP tended to be higher in diabetic patients, particularly in those with the shorter 
duration, although the difference did not reach statistical significance.  
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Table 6 Time-domain and spectral analyses of HRV and BPV during controlled breathing in 
healthy control participants and in patients with type 1 diabetes of different 
durations (I-II) 

Variable Short-duration diabetes 
(8.9 years) 

Long-duration diabetes 
(33.7 years) 

 
 

Type 1 diabetes Healthy 
controls 

Type 1 diabetes Healthy 
controls 

n 117 36 37 37 

Mean RRI (ms) 897±12 939±25 911±18b 816±22 

RMSSD 42.3±2.2 55.6±1.1 24.8±3.0 no data 

SDNN 42.6±1.7 49.7±4.5 31.4±2.9c 30.9±2.2 

Ln RRI LF (ms2)   5.55±0.09 5.47±0.17 4.67±0.22d 4.83±0.15 

Ln RRI HF (ms2)  6.12±0.10 6.54±0.20 4.71±0.24b,d 5.86±0.16 

RRI LF/HF  0.93±0.12 0.47±0.06 1.63±0.35a,c 0.67±0.13 

RRI nLF (%)  37.2±1.8a 28.0±2.6 47.9±3.4b 30.0±3.5 

RRI nHF (%)  61.0±1.8a 70.7±2.6 50.2±3.5b,c 67.1±3.5 

Ln SBP LF (mmHg2) 0.97±0.10 0.61±0.13 0.74±0.14 0.70±0.08 

Data are mean ± SEM. a: p<0.05, b: p<0.01 type 1 diabetes vs. its age-matched healthy control group; c: 
p<0.05, d: p<0.01 long vs. short-duration diabetes; RRI, time interval between two successive R-peaks on 
the ECG; RMSSD, root mean square of the differences of successive RR intervals; SDNN, standard deviation 
of the normal-to-normal RR intervals; LF, low-frequency; HF, high-frequency; nLF, normalized LF; nHF, 
normalized HF; SBP, systolic blood pressure 

6.1.3 Effect on HRV and BPV of autonomic involvement (II) 

Table 7 demonstrates time-domain and spectral analyses of HRV and BPV during 
controlled breathing in healthy control participants and in patients with type 1 diabetes 
grouped by autonomic score. Due to the small number of patients (5) in the CAN-2 
group, no statistical analyses were performed regarding this group, but mean and SEM 
are given. With deteriorating autonomic score, SDNN, as well as HRV in both the LF 
and the HF bands decreased. The LF/HF ratio showed a trend toward higher values 
(compared to those of healthy controls) in those with no or mild CAN (CAN 0-1) and 
seemed to decrease again in evident CAN, but without reaching statistical significance. 
Power in the LF band of SBP also showed a trend toward increased values in those 
diabetic patients with a normal autonomic score, and declining power in patients with 
a higher autonomic score. 
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Table 7 Time domain and spectral analyses of HRV and BPV during controlled breathing in 
 healthy control participants and in patients with type 1 diabetes grouped by 
 autonomic score (II) 

Data are mean ± SEM. *:p<0.05 CAN-0 vs. CAN-1. No statistical comparisons were performed with CAN-2 
due to the small number of subjects (n=5). RRI, time interval between two successive R-peaks on the ECG; 
RMSSD, root mean square of the differences of successive RR intervals; SDNN, standard deviation of the 
normal-to-normal RR intervals; LF, low-frequency; HF, high-frequency; nLF, normalized LF; nHF, normalized 
HF; SBP, systolic blood pressure 
 
 
 

Variable All healthy 
control 

subjects 
pooled 

p-value adjusted 
for age and sex 

Patients with type 1 diabetes grouped 
by autonomic score 

Healthy 
controls 

vs. CAN-0 

Healthy 
controls 

vs. CAN-1 

CAN-0 
 

CAN-1 CAN-2 

n 73   126 23 5 

mean RRI 880±19 ns ns 905±11 916±25 730±26 

SDNN  40.3±2.8 ns ns 42.3±1.6 32.7±3.4* 11.8±1.6 

Ln RRI LF (ms2)   5.17±0.12 ns ns 5.55±0.08 4.74±0.25* 2.76±0.28 

Ln RRI HF (ms2)  6.22±0.13 ns <0.01 5.99±0.10 5.15±0.33* 3.15±0.57 

RRI LF/HF  0.56±0.08 <0.01 ns 1.06±0.12 1.35±0.51 0.93±0.36 

RRI nLF (%)  28.6±2.2 <0.01 <0.01 39.9±1.8 39.8±4.4 39.0±8.7 

RRI nHF (%)  69.1±2.2 <0.01 <0.05 58.4±1.8 58.5±4.4 55.0±8.3 

Ln SBP LF  (mmHg2) 0.66±0.07 <0.05 ns 1.04±0.08 0.57±0.20 -0.63±0.25 
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6.2 Resting BRS (I-III) 

Resting BRS was estimated by four to six methods during controlled breathing. As 
explained in the Methods section, we included a new BRS variable calculated as the 
average of four (I-II) or six (III-IV) BRS indices. Moreover, in Studies II to IV we also 
used a new index of BRS (BRS-SD), mathematically expressed as the ratio between the 
SD of RRI divided by SD of SBP as a measure of BRS (187). Figure 4 shows resting 
BRS values in patients with short-duration type 1 diabetes and healthy controls (Study 
I), estimated by all our available methods. Some of the individual measures of resting 
BRS (with most of the methods) and the BRSaverage all showed significantly lower 
values in patients with type 1 diabetes than in control participants (Fig. 4). 
 
 
 
 
Figure 4 Resting BRS estimated by various methods in patients with short-duration type 1 

diabetes and healthy control subjects obtained during controlled breathing (15 
breaths/minute). Data are mean and SEM, adjusted for age and gender (I).  
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6.3 BRS response to interventions (I-IV) 

To study the potential functional and reversible impairment of BRS in patients with 
type 1 diabetes, we studied the change in BRS induced by two functional manoeuvres: 
deep breathing and oxygen administration.   

6.3.1 BRS response to deep breathing (I-III) 

Figure 5 demonstrates changes in the average BRS induced by the respiratory 
maneuver in patients with short-duration diabetes, in healthy control subjects, and in 
heart-transplanted subjects (I). Slow, deep breathing induced a general increase in BRS 
in both type 1 diabetic patients and healthy control subjects (p within group <0.005), 
although the magnitude of the increase was lower in those with type 1 diabetes. Levels 
in diabetic patients were not statistically different from those in the control subjects at 
a normal breathing rate (15 breaths/minute), in contrast to those with definite cardiac 
denervation, who showed very low levels of resting BRS during controlled breathing, 
levels which remained unchanged with slow breathing.  
 
 
 
 
Figure 5 Effect of breathing rate on average BRS in patients with type 1 diabetes, in healthy 

control subjects, and in patients surgically denervated by heart transplation (I).  

 
Values are mean and SEM. †p < 0.005 for difference between groups, *p < 0.005 for difference within group 
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6.3.1.1 Effect of diabetes duration and age (II) 

In Study II a group of patients with long-duration type 1 diabetes was incorporated 
and analyzed together with the group from Study 1 with short-duration type 1 
diabetes. Figure 6a demonstrates the change in average BRS in response to slow, deep 
breathing in patients grouped by diabetes duration, in healthy control subjects, and in 
heart-transplanted subjects. The resting level of average BRS (15 breaths/min) was 
reduced in patients with type 1 diabetes and even lower in those with a long duration 
(p<0.001). Slow breathing raised BRS to a level not statistically different from the level 
obtained in the control subjects at resting level irrespective of the duration of type 1 
diabetes, in contrast to the heart-transplanted participants. Tested by mixed-design 
ANOVA, the main effect of the intervention (change in breathing rate), as well as the 
effect of group were highly significant (p<0.001). Interactions were also significant 
(p<0.001) between intervention and group (controls vs. short duration, p<0.05; 
controls vs. long duration, p<0.001; short duration vs. long duration, p<0.001). After 
correction for age, the results of the groups with diabetes of long or short duration 
were superimposed (Fig. 6b). The interactions between healthy controls and patients 
with long (p<0.001) and short duration (p<0.001) remained significant, but the 
interaction between duration groups disappeared. The intervention induced in all 
groups a significant increase in BRS (p<0.001), even after adjustment (Fig. 6b). 

6.3.1.2 Effect of autonomic impairment (II) 

Figure 7a. shows change in average BRS induced by slow, deep breathing in type 1 
diabetic patients stratified by CAN score (CAN -0, -1, and -2), in healthy control 
subjects and in heart-transplanted subjects.  The main effects of the intervention and 
of the levels of autonomic involvement were significant (p<0.001) as was the 
interaction between intervention and groups (p<0.05). Deep breathing induced in all 
groups, except in CAN-2 and in heart-transplanted subjects a significant increase in 
BRS (p<0.001). After adjustment for age, these results remained unchanged, and 
interactions between control subjects and CAN-0- and CAN-1-groups (p<0.001) 
remained significant (Fig. 7b). 
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6.3.2 Effect of oxygen on BRS, BP and HRV (III) 

The cardio-respiratory response to oxygen was studied by comparing values obtained 
while breathing normal room air (normoxia) with those obtained during oxygen 
administration 5 L per minute (hyperoxia), and in addition, separately during 
spontaneous breathing, controlled breathing (15 breaths/min), and slow, deep 
breathing (6 breaths/min).  
 
Table 8 shows changes in BP, HRV, and tidal volume during normoxia vs. hyperoxia 
and the different respiratory manoeuvres. Inhalation of oxygen 5L/min raised oxygen 
saturation in both groups to nearly 99% (p<0.001) on average. During controlled and 
slow, deep breathing oxygen saturation still was raised still further by oxygen 
administration, although the effect was less evident. During spontaneous breathing, 
oxygen induced a reduction in HR, and an increase in SDNN and in BP. The trend 
was similar for both groups, but the change was significant only for patients with type 
1 diabetes. Consequently, the difference in BP, already present at normoxia, increased 
during oxygen administration. Moreover, oxygen administration induced a significant 
increase in minute ventilation during spontaneous breathing only in patients with type 
1 diabetes. Breathing frequency remained unchanged, whereas patients with type 1 
diabetes showed an increase in tidal volume. The relative increase in ventilation was 
also confirmed by a reduction in end-tidal CO2.  
 
Controlled breathing at 15 breaths/min resulted in a significant increase in HR and a 
reduction in SDNN. During this controlled breathing oxygen administration induced 
only minor changes in respiratory variables. Both the controlled breathing and the 
slow, deep breathing, raised oxygen saturation (p<0.001) in normoxia. However, 
whereas controlled breathing induced a large increase in ventilation at normoxia in 
both groups (p<0.001), slow breathing induced only a weak, non-significant increase. 
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Table 8 Effect of oxygen and respiratory patterns on cardiorespiratory variables 

 Variable Spontaneous 
breathing 

Controlled breathing 
15 breaths/min 

Slow, deep breathing 
6 breaths/minute 

  Normoxia Hyperoxia Normoxia Hyperoxia Normoxia Hyperoxia 

RRI ms Type 1 diabetes 944±14 1019±17c 907±14f 958±15c,f 921±13e 960±15c,f 

Control 971±27 1029±25c 935±23e 982±23c,f 946±23 986±20c,f 

p for T1D vs healthy ns ns ns ns ns ns 

SBP (mmHg) Type 1 diabetes 130.0±1.4 137.0±1.4c 132.3±1.4e 135.2±1.5a,i 132.3±1.4d 135.3±1.6a,h 

Control 123.1±2.2 123.1±2.6 124.6±2.5 124.9±2.3 124.5±2.7 126.4±2.7 

p for T1D vs healthy <0.01 <0.0001 <0.01 <0.001 <0.01 <0.005 

DBP (mmHg) Type 1 diabetes 63.3±0.9 67.4±0.9c 63.1±0.9 65.3±0.9b,f,g 62.6±0.9 65.0±1.0b,f 

Control 58.0±1.2 57.1±1.5 56.4±1.6 55.7±1.5 56.3±1.7 55.5±1.4 g 

p for T1D vs healthy <0.001 <0.0001 <0.0001 <0.0001 <0.001 <0.0001 

SDNN (ms) Type 1 diabetes 31.5±1.7 36.0±2.5a 26.1±1.7f 29.7±2.2b,f 60.2±2.8f 62.7±3.2f,i 

Control 39.4±3.9 43.4±4.3 34.1±3.2d 36.2±3.3e 68.6±4.9f 72.7±5.3f,i 

p for T1D vs healthy ns ns ns ns ns ns 

Oxygen 
saturation (%) 

Type 1 diabetes 97.2±0.1 98.6±0.1c 97.8±0.1f 98.7±0.1c,i 97.8±0.1f 98.7±0.1c,i 

Control 97.4±0.2 98.7±0.1c 97.9±0.2f 98.8±0.1c,i 97.9±0.2f 98.8±0.1c,d,i 

p for T1D vs healthy ns ns ns ns ns ns 

Respiratory 
rate 
(breaths/min) 

Type 1 diabetes 13.0±0.3 12.9±0.3 14.9±0.0 15.0±0.0 6.0±0.0 6.0±0.0 

Control 13.0±0.6 12.5±0.6 15.0±0.0 15.0±0.0 6.0±0.0 6.0±0.0 

p for T1D vs healthy ns ns ns ns ns ns 

Tidal volume  
(% change from 
baseline) 

Type 1 diabetes 100 122.6±13.7 182.4±26.1 185.6±28.1f,h 228.4±29.2f 219.8±29.4b,f,i 

Control 100 115.7±13.0 138.1±9.6f 149.9±17.4e,h 220.5±17.1 

h f
214.6±19.9f,i 

p for T1D vs healthy ns ns ns ns ns ns 

Minute 
ventilation  
(% change from 
baseline) 

Type 1 diabetes 100 126.0±14.9 227.1±29.8 

f
233.3±31.8f,i 115.4±13.6 111.8±13.6 b,e 

Control 100 112.3±13.9 174.9±14.7 

f
197.6±31.5f,h 116.3±12.4 115.8±15.0 

p for T1D vs healthy ns ns ns ns ns ns 

End-tidal C02 
(mmHg) 

Type 1 45.1±0.5 39.1±0.8c 38.5±0.5 f 36.0±0.6c,f,i 40.0±0.6f 36.6±0.6c,f,i 

Control 43.7±0.8 37.5±1.1c 37.1±1.0 f 35.4±1.0b,e,i 40.9±1.1f 37.7±1.0c,i 

p for T1D vs healthy ns ns ns ns ns ns 

Data are mean ± SEM. a: p<0.05, b: p<0.01, c: p<0.001 for hyperoxia vs normoxia, d: p<0.05, e: p<0.01, 
f: p<0.001, vs spontaneous breathing (normoxia vs normoxia or hyperoxia vs hyperoxia), g: p<0.05, h: 
p<0.01, i: p<0.001, vs spontaneous breathing in normoxia 
T1D, type 1 diabetes; RRI, time interval between two successive R-peaks on the ECG; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; RMSSD, root mean square of the differences of successive RR 
intervals; SDNN, standard deviation of the normal-to-normal RR intervals  
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6.3.3 Interaction of oxygen and respiratory pattern: effects on the 

BRS (III) 

Confirming our results from Studies I-II, patients with type 1 diabetes showed at 
normoxia significantly lower resting BRS (p<0.05), and both higher SBP and DBP (p< 
0.05) than did the healthy control subjects. During slow, deep breathing, the induced 
change in BRS was significant (p<0.01) only in patients with diabetes. Thereby, the 
difference observed during spontaneous breathing in normoxia disappeared. 
Controlled breathing at 15 breaths/minute induced a significant reduction in the BRS 
both in patients and in healthy control subjects. 
 
BRS values obtained during spontaneous breathing correlated with BRS increase 
induced by oxygen administration (r=-0.216 p<0.05), and indicated a reverse effect for 
the higher BRS values. Addition of oxygen could not further elevate the BRS during 
slow, deep breathing, as it seems that the BRS had already reached its highest values 
during slow breathing at normoxia. During controlled breathing (15 breaths/min) and 
hyperoxia, the BRS increased, but that change failed to reach statistical significance. 
 
Figure 8 demonstrates interactions between the effects of oxygen on one hand, and 
slow, deep breathing on the other, for BRS in patients with type 1 diabetes and for 
healthy control subjects. During spontaneous breathing and normoxia, patients with 
type 1 diabetes showed a blunted BRS. However, in hyperoxia, the BRS increased 
more than in the healthy control subjects, and consequently the difference observed at 
baseline disappeared. Slow breathing raised BRS during normoxia in both groups to an 
extent similar to that in hyperoxia, and thus eliminated the difference between diabetic 
and control participants. Hyperoxia during deep breathing did not further increase the 
BRS in healthy controls, suggesting that these effects are related. 
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Figure 8 Effect of oxygen and slow breathing on baroreflex sensitivity. The figure 
demonstrates BRS in patients with type 1 diabetes and in healthy control subjects 
while breathing normal room air (normoxia) vs. inhaled oxygen 5 L per minute 
(hyperoxia), and during spontaneous breathing vs. slow breathing (6 breaths/min). 

 
Data are mean±SEM. White squares: Spontaneous breathing, black squares: Slow, deep breathing 
*p<0.05, **p<0.01, ***p<0.001
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6.4 Progression of HRV and BRS over 5 years and effect of 

age (IV)  

Table 9 shows the autonomic and BRS indices at baseline and at the follow-up visit 5 
years later in 80 patients with type 1 diabetes, grouped by initiation of AHT during 
follow-up. In addition, we calculated the expected value for each parameter at follow-
up, when the physiological ageing was taken into account. The adjustment for time (or 
the physiological aging) is explained in detail in the statistics section. Patients who 
started AHT showed a significant decline with time in E/I ratio, 30/15 ratio, SDNN, 
BRS-αHF, BRS-/-, and BRSaverage, but only the changes in E/I ratio, 30/15 ratio, and 
BRS-αHF remained significant even after age adjustment (p<0.01). In those without 
AHT, their E/I ratio and four of six BRS indices declined significantly during follow-
up, but after age adjustment, none of these changes was any longer significant.  
 

 
Table 9 Autonomic function tests and spontaneous BRS at baseline and follow-up. Follow-

up values are adjusted for follow-up time. 

 AHT + at follow-up (n=21) AHT - at follow-up (n=59) 

 Baseline 
 

Follow-up 
 

Follow-up 
adjusted 

Baseline 
 

Follow-up 
 

Follow-up   
adjusted 

Mean RRI (ms) 922±24 910±28 913±28 917±16 945±18 949±18* 

E/I ratio 1.38±0.04 1.24±0.03** 1.29±0.03†† 1.39±0.02 1.33±0.02** 1.38±0.02 

30/15 ratio 1.66±0.06 1.40±0.05** 1.43±0.05†† 1.64±0.04 1.65±0.04 1.68±0.04 

Valsalva ratio 2.10±0.10 1.98±0.09 2.03±0.10 2.10±0.06 1.98±0.06 2.03±0.10 

SBP response to standing 
(mmHg) 

0.6±1.6 3.8±2.1 3.8±2.1 0.9±1.3 1.7±1.1 2.4±1.1 

SDNN (ms) 52±5 45±5* 49±5 57±3 53±3 57±3 

BRS-αLF (ms/mmHg) 11.1±1.0 9.9±1.8 12.1±1.8 13.8±1.0 11.7±0.8 13.9±0.8 

BRS-αHF (ms/mmHg) 21.0±3.0 13.7±2.9** 16.2±2.9†† 24.5±1.2 19.2±1.6** 21.6±1.6 

BRS-TF (ms/mmHg) 10.3±0.9 8.9±1.4 10.7±1.4 12.9±0.9 11.1±0.7 12.9±0.7 

BRS +/+ (ms/mmHg) 17.0±1.7 13.3±2.2* 14.8±2.2 20.5±1.8 16.0±1.2* 17.4±1.2 

BRS -/- (ms/mmHg) 17.7±2.0 15.9±3.2 18.7±3.2 19.6±1.1 16.0±1.1** 18.8±1.0 

BRS-SD (ms/mmHg) 8.9±0.8 8.0±1.2 9.6±1.2 10.2±0.6 9.3±0.6 11.0±0.6 

BRSaverage (ms/mmHg) 14.1±1.3 11.3±1.9* 13.4±1.9 16.9±0.9 13.9±0.8** 15.9±0.8 

Data are mean ± SEM. * p<0.05, ** p<0.01 for baseline vs. follow-up , † p<0.05, †† p<0.01 for baseline vs. 
follow-up adjusted for follow-up time; AHT+, antihypertensive treatment at follow-up; AHT-, no 
antihypertensive treatment at follow-up; RRI, time interval between two successive R-peaks on the ECG; E/I 
ratio, expiration:inspiration ratio; 30/15 ratio, ratio between longest and shortest RRI in orthostatic test; SBP, 
systolic blood pressure; SDNN, standard deviation of the normal-to-normal RR intervals; 
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6.5 BRS and BP (IV) 

Various associations among spontaneous BRS and 24-hour ABPM and office BP at 
baseline were analyzed in all 71 patients with ABPM data available (Table 10). The 
BRS showed in general an inverse correlation with the ambulatory 24h and daytime 
BP, mainly with DBP and MAP. All BRS variables except BRS+/+ correlated with 
24-hour DBP (r -0.238 to -0.331, p<0.05) and all but BRS+/+ and BRS-/- with 
daytime DBP (r -0.295 to -0.400, p<0.05), whereas the correlations with night-time BP 
were non-significant. Moreover, office BPs (SBP, DBP, and MAP) correlated 
significantly with BRS-αLF (r -0.234 to -0.275, p<0.05), and BRS-TF (r -0.251 to -
0.281, p<0.05).  
 
 
Table 10 Correlations between baseline BRS indices obtained during spontaneous breathing 

and blood pressure (24-hour ambulatory blood pressure and office blood pressure).  

 BRS during spontaneous breathing 

 BRS+/+ BRS -/- BRS-αLF BRS-αHF BRS-TF 
BRS-

average 
BRS-SD 

24 h        
SBP (mmHg) -0.071 -0.071 -0.145 -0.158 -0.157 -0.123 -0.015 
DBP (mmHg) -0.184 -0.262 -0.319 -0.361 -0.353 -0.316 -0.238 

MAP (mmHg) -0.156 -0.224 -0.278 -0.331 -0.308 -0.274 -0.173 
Daytime        
SBP (mmHg) -0.127 -0.129 -0.251 -0.180 -0.255 -0.209 -0.090 
DBP (mmHg) -0.215 -0.295 -0.366 -0.373 -0.400 -0.359 -0.304 

MAP (mmHg) -0.205 -0.270 -0.359 -0.338 -0.375 -0.339 -0.245 

Night-time        

SBP (mmHg) 0.034 0.057 0.006 -0.036 -0.016 0.023 0.055 
DBP (mmHg) -0.100 -0.142 -0.177 -0.202 -0.205 -0.184 -0.090 
MAP (mmHg) -0.037 -0.059 -0.096 -0.148 -0.127 -0.096 -0.028 
Office blood pressure        
SBP (mmHg) -0.183 -0.149 -0.234 -0.109 -0.251 -0.234 -0.159 
DBP (mmHg) -0.116 -0.162 -0.250 -0.150 -0.254 -0.215 -0.177 
MAP (mmHg) -0.167 -0.177 -0.275 -0.148 -0.285 -0.253 -0.193 
PP (mmHg) -0.139 -0.063 -0.098 -0.022 -0.114 -0.126 -0.062 

Data are Pearson’s r, correlations significant at 0.05 level are bolded. SBP: systolic blood pressure; DBP: 
diastolic blood pressure; MAP: mean arterial pressure; PP: pulse pressure. 
 

 

Correlations occurred between baseline spontaneous BRS variables (BRS-αLF, BRS-
TF and BRSaverage) and the change in night-time SBP over 5 years (Fig. 9). Only 
patients without AHT were included (n=50). The lower was the BRS at baseline, the 
more the night-time SBP increased over time (r-0.348 to -0.381, p<0.05). Figure 9b 
shows that except for two subjects, none with BRS-TF >15 to 16 ms/mmHg 
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increased their night-time SBP during the 5-year follow-up. In addition to resting BRS, 
we also calculated the increase in BRS induced by deep breathing at baseline (data not 
shown). Two of the BRS methods showed a significant correlation with the increase in 
BP over time, mainly with 24-hour (BRS-αLF: r=0.323-0.346, p<0.05; BRS-SD: 
r=0.352-0.454, p<0.05) and night-time indices (BRS-αLF: r=0.303-0.434, p<0.05; 
BRS-SD: r=0.333-0.481, p<0.05), and with daytime MAP (BRS-αLF: r=0.302, p<0.05; 
BRS-SD: r=0.339, p<0.05). With the other BRS methods correlations between the 
response in BRS and BP variables were non-significant.  
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Figure 9 Correlations between baseline spontaneous BRS and the change in night-time SBP 
during 5-year follow-up.  
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7 DISCUSSION 

The findings presented in this thesis have demonstrated a marked reduction in 
spontaneous BRS in patients with type 1 diabetes irrespective of diabetes duration, 
even in the absence of any clinically detectable diabetic complications. The reduction 
in BRS co-segregated with signs of sympathetic predominance. The novel findings of 
this thesis are that diabetic patients were able to elevate their BRS in response to slow 
deep breathing, except for those with definite CAN. Thus, the vast majority of our 
patients might well have retained a component of reversible autonomic involvement 
despite their long-duration diabetes. In addition, it seems that the effect of diabetes 
duration on BRS is mainly an effect of age because, after adjustment for age, 
differences in BRS between duration groups vanished. BRS showed an inverse 
correlation with BP and in addition, during the 5-year follow-up, baseline BRS 
predicted an increase in night-time BP. Although reduced BRS does not necessarily 
advance to CAN, our results suggest that in patients with type 1 diabetes, BRS may 
play a role in development of hypertension. 

7.1 Limitations of the study 

This study examined the autonomic function in well-defined cohorts of patients with 
type 1 diabetes. Some limitations, however, deserve mention. Although the group of 
patients with shorter-duration type 1 diabetes were population-based (I, II), one major 
limitation is that these subjects had only mild autonomic involvement. It is possible 
that patients with worse glycaemic control and potential signs of diabetic 
complications despite the short duration did not volunteer for the study. The 
surprisingly low prevalence of definite CAN in patients with long-duration type 1 
diabetes (II) can be at least in part explainable by the exclusion of patients on beta-
blockers; one of the most important indications for beta blockers is CAD, and such 
patients also often suffer from other long-term complications such as neuropathy. 
Consequently, the low prevalence of CAN in the patients with long-term diabetes may 
have been due to selection or survival bias. Although the proportion of more severe 
diabetic complications was undoubtedly underrepresented, this setting allowed us to 
study the role of duration per se.  
 
All in all, the prevalence of CAN was very low compared to rates in the literature (6), 
which may have been due to patient selection, but on the other hand, that may have 
also reflected a better level of care than in earlier studies. Results therefore may differ 
in patients with more advanced disease, in whom a large proportion of organic neural 
lesions could be expected. The small number of subjects in our CAN-2 subgroup did 
not allow statistical comparisons (II), but also these results indicated that slow, deep 
breathing was unable to normalize BRS in severe neuropathy resembling the response 
in patients with a surgically denervated heart.  
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One limitation worth mentioning is our selection of an age- and gender-matched 
control group for the patients with longer duration of diabetes in Study II. These data 
came from an earlier study in Italy with healthy individuals; some effect of genetic 
differences cannot therefore be ruled out. Moreover, detailed background data from 
those Italian individuals were unfortunately unavailable. 
 
Methodology chosen (HRV, BRS) is both well documented and sensitive, and the 
measurements, after appropriate instructions and preparations, were performed 
carefully in laboratory conditions. Nonetheless, one limitation is our failure to assess in 
our laboratory the repeatability of HRV and BRS. Furthermore, at baseline (I-II) 
respiration could not be measured directly, although it was thoroughly visually 
controlled. During the follow-up visit respiration was also monitored with respiration 
belts (III-IV).  
 
One issue requiring comment is the length of the HRV and BPV recordings. The 
European Task Force (157) recommends a minimum of 2 minutes for measures 
including LF—with 5 minutes being ideal, since it is thought that spectral powers are 
highly influenced by the length of recordings. It is of note that in this 
recommendation, the Task Force assumes that what took place was spontaneous 
breathing. However, when the breathing is thoroughly controlled at a specific pace, 
breathing creates a resonance in the cardiovascular system which unifies the 
oscillations. Consequently, the outcome is much more robust than during spontaneous 
breathing and this being the case, any algorithm will be appropriate to evaluate the 
spectrum, even during a short period of time. Conversely, under conditions involving 
irregular breathing or when multiple frequencies are to be expected, the FFT 
algorithm indeed requires a better frequency definition that can be achieved only by an 
increase in the number of points, i.e. the length of the recording. The length of our 
slow, deep breathing recordings is 1 or 2 minutes. We compared these recordings in 
20 patients by calculating the RRI spectra and BRS of a 2-minute recording, and 
compared this with the first and second half of the same recording (data not shown). 
No statistical difference emerged in the spectral and BRS indices between the 
recordings of either 1 or 2 minutes. These data therefore support our view that 1-
minute recordings, when obtained during controlled respiration (6 or 15 
breaths/minute) are appropriate. 

 
Moreover, except for Study IV, our data are mainly cross-sectional, and do not allow 
for temporal analyses or conclusions regarding cause-effect relations between 
autonomic cardiovascular function and its determinants. In these studies, reversibility 
in BRS was studied with acute interventions. Whether BRS can be restored for a 
longer time period is unknown. Although our study provides longitudinal data on BRS 
in a well characterized group of patients with type 1 diabetes, a major limitation is our 
small sample size. No significant differences emerged between those individuals who 
completed follow-up and those who did not, regarding clinical characteristics, BP, or 
autonomic measures, except for a small difference in 24-hour HR and the proportion 
of smokers (data not shown). Furthermore, the association between baseline BRS 
indices and change in BP over time was studied only in patients not treated with AHT: 
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the study was therefore not designed to assess such aspects as any association between 
BRS and albuminuria. 

7.2 Early autonomic abnormalities in type 1 diabetes 

By the selection of a cohort with a mean duration of less than 10 years of type 1 
diabetes, Study I was designed to evaluate the autonomic function of the patients in 
the window before diabetic late complications appear. Studies in more heterogeneous 
groups of patients with type 1 diabetes have demonstrated reductions in various 
indices of the HRV (204, 286, 287), suggestive of a reduction in vagal activity. Those 
findings were replicated by showing a lower amount of global HRV (SDNN), by the 
relative increase in the LF components, by the relative and absolute reduction in the 
HF components of the HRV, and by the higher LF/HF ratio, as assessed by spectral 
analysis. Moreover, our findings regarding BRS also support earlier findings that 
reduced BRS is a sensitive marker of autonomic cardiovascular dysregulation in more 
heterogeneous or non-selected cohorts of patients with type 1 or type 2 diabetes (9-12, 
288), but importantly even in the absence of clinical complications, or of detectable 
alterations in autonomic function tests. Although the cross-sectional design limits 
conclusions about mechanisms and temporal relations, it may be that autonomic 
dysfunction precedes other diabetic complications and may even play a role in their 
pathogenesis. 

7.3 Significance of functional BRS alteration and effect of 

interventions 

7.3.1 Response to slow, deep breathing (I-III) 

In Study I we demonstrated for the first time, that the blunted BRS in type 1 diabetes 
can be increased to the resting level of the healthy control subjects simply by slowing 
the breathing rate to 6/min. This is the opposite of what happened in the transplanted 
heart, in which the absence of cardiac innervation resulted not only in virtually absent 
baroreflex values, but also caused no increase at all in deep breathing. The magnitude 
of the increase was highest in the healthy control subjects, slightly reduced in the 
diabetic patients, and totally absent from the subjects with denervated hearts.  
 
In Study II we extended this finding to patients with long-duration diabetes. Only 
those with a definite autonomic neuropathy were incapable of restoring the BRS by 
deep breathing. This shoves that subjects totally lacking innervation are unable to 
elevate their BRS by means of functional manoeuvres. The ability to normalize BRS by 
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deep breathing, although it is a short-acting intervention, suggests that at least these 
early changes in patients with type 1 diabetes result mainly from functional autonomic 
involvement.  

 
Conventionally, the reduced BRS and HRV associated with diabetes have been 
attributed to a loss of parasympathetic tone due to neural damage. However, similar 
findings of a reduced BRS have been documented in heart failure or hypertension. In 
these conditions, however, the cause of low resting BRS was higher sympathetic tone 
(257, 258, 289) and some functional disorder rather than neural damage. Moreover, 
both in healthy subjects and in ones with hypertension, with chronic heart failure, or 
with chronic obstructive pulmonary disease, functionally reduced BRS can be raised by 
slow breathing (255, 256, 258, 259). 
 
The effect of slow, deep breathing is mediated through a relative increase in vagal 
activity as marked by a reduction in HR and BP, and a decline in sympathetic activity. 
As a consequence, slow breathing improves the BRS by raising both the HRV and the 
BPV, but the fluctuations that are induced increase much more in the RRI than in the 
BP (187). An increase in BRS by a breathing intervention would be impossible without 
a functioning parasympathetic system, as was the case in the heart-transplanted 
patients. In our studies (II), the sympathetic predominance was also supported by the 
increased LF/HF ratio in patients with type 1 diabetes even in the absence of 
autonomic dysfunction (CAN-0). However, along with higher CAN score, the LF/HF 
ratio was again reduced, which is suggestive of a decline in sympathetic neural 
function. Taken together, our results point in the direction of an elevated resting 
sympathetic tone in early autonomic dysfunction, rather than parasympathetic damage. 
This conclusion is also supported by the changes in BRS during active standing (I).  

7.3.1.1 Sympathovagal imbalance 

Many factors other than parasympathetic neural damage could influence the BRS by 
enhancing sympathetic activity in type 1 diabetic patients. Oral carbohydrate intake 
stimulates sympathetic activity in healthy subjects (290, 291), this effect being 
suggested as mediated by insulin, although findings have been conflicting (292, 293). 
Insulin therapy may also cause its effects by stimulating the sympathetic nervous 
system and thereby depressing the vagal arm of the baroreflex (294-298). The effect of 
exogenous insulin is analogous to that of hyperinsulinemia, which is present in type 2 
diabetes as a result of insulin resistance. Importantly, a bidirectional relationship seems 
to exist between sympathetic over-activity that induces insulin resistance and 
hyperinsulinemia that produces sympathetic activation. Obesity and metabolic 
syndrome are also associated with chronic sympathetic overactivity (299-302). 
Importantly, metabolic syndrome is currently found in nearly 40% of the patients with 
type 1 diabetes (32). It is therefore possible that the development and 
pathomechanisms of diabetic neuropathy in type 1 diabetes will change in the future 
to resemble that of type 2 diabetes. Endothelial dysfunction (213, 303) and low-grade 
inflammation in patients with diabetes have also been related to autonomic imbalance 
(137, 219, 304). 
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In non-diabetic individuals, hypoglycaemia strongly activates the ANS (305). Indeed 
the islet cells are controlled by the ANS through parasympathetic and sympathetic 
nerves, and by adrenal medullary epinephrine. This activation induces glucagon 
secretion from the α-cells, which normalizes blood-sugar level. In type 1 diabetes, in 
parallel with the deficient β-cells, the glucagon response to insulin-induced 
hypoglycaemia is also impaired. The presence of autonomic neuropathy further 
reduces counterregulatory catecholamine responses to hypoglycaemia, and prior 
hypoglycaemic episodes attenuate the response of the ANS to subsequent 
hypoglycaemia, which may result in a vicious cycle of recurrent hypoglycaemia (306, 
307). Hypoglycaemia-associated autonomic failure is in most patients reversible after a 
period of avoidance of hypoglycaemias. 
 
In sum, the presence of most of the above factors is well established in type 1 
diabetes, they can all be expected to contribute to the sympathovagal balance and 
setting of the resting BRS.  

7.3.2 Effect of oxygen inhalation (III) 

Oxygen administration induced an augmented overall response in patients with type 1 
diabetes and could almost restore the blunted BRS (III). We also found an oxygen-
induced increase in SDNN, in line with findings with other patients with type 1 
diabetes, in whom HRV rose after 4 weeks of hyperbaric hyperoxia (267); to our 
knowledge, Sun et al. were the first and are thus far the only group who has studied 
the effect of hyperoxia on autonomic parameters in diabetes. Studies on healthy 
participants and patients with COPD have shown that oxygen administration reduces 
the HR and raises indices of the HRV related to parasympathetic activity (264), and 
also raises BRS (265, 266). These findings have been interpreted to mean that oxygen 
administration reduces chemoreflex activity, but this mechanism could not be 
confirmed, because neither the ventilation nor chemoreflex were assessed (265, 266).  
 
Activation of the chemoreflexes normally results in sympathetic activation, raises 
ventilation and results in depression of the BRS, whereas baroreflex activation is 
associated with parasympathetic stimulation and has the opposite effect on ventilation. 
Here we measured neither of these two variables in absolute values, but obtained an 
estimate of the ventilation in relative units from inductive belt signals. Hyperoxia 
showed a definite trend towards increased ventilation when oxygen was administered 
during spontaneous breathing. This increase in the ventilation occurs after a 
momentary reduction mediated by a vagal reflex (269, 270, 308, 309). Signs appeared 
of a more pronounced effect in diabetic participants, probably as a consequence of 
greater vagal stimulation induced by oxygen. Although resting ventilation was not 
directly measured, lower end-tidal carbon dioxide confirmed that the increase in 
ventilation was at least as large as in the control subjects.  
 
So the question arises, why did the patients with type 1 diabetes show a pronounced 
response to oxygen? Based on our findings, a logical explanation could be that 
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preexisting tissue hypoxia in connection with endothelium-related vascular changes 
may have been responsible for the early autonomic dysfunction in patients with type 1 
diabetes. Hypoxia is, in fact, a potent stimulator of the sympathetic nervous system 
and the ventilation, and acts to correct the hypoxia. Moreover, tissue hypoxia is 
recognized as a key factor in the origin and development of diabetic complications 
(310, 311).  
 
Another new finding of the present study is the marked oxygen-induced increase in 
BP seen in diabetic individuals, possibly mediated by a direct local effect. This increase 
in BP may have stimulated BRS and parasympathetic activity. Such a response is 
directly opposite to the documented effect of hypoxia resulting in direct vasodilation, 
a reflectory increase in sympathetic activity, and following that, a reduction in BRS. 
The stronger effect of oxygen seen in type 1 diabetes could therefore be due to resting 
tissue hypoxia. Alternatively, it may be an effect of ROS on a dysfunctional 
endothelium typical of diabetes. This seems however unlikely, as hypoxia also 
promotes free-radicals but causes arterial vasodilation.  
 
Slow breathing in uncomplicated type 1 diabetes raised BRS and improved oxygen 
saturation, even under normoxic conditions similar to what has become apparent in 
heart failure (256) or hypoxia-dependent diseases (259). This effect could be mediated 
by an increase in arterial oxygen pressure, as evidenced by the increased oxygen 
saturation. Accordingly, our increase in BRS evident during slow breathing showed no 
further augmentation by oxygen (Fig. 8). Hence, it is possible that BRS cannot be 
further increased after a maximal value is reached. What is also likely is that high BRS 
observed during slow breathing prevents a further increase in BP caused by oxygen in 
the control participants, whereas slow breathing failed to fully inhibit this (oxygen-
induced) increase in the diabetic patients. The response to oxygen was much less 
evident when the breathing was controlled at a faster respiratory rate (15/min). This is 
probably explained by the increase in ventilation induced by faster-paced breathing, in 
parallel with increased sympathetic activity. Increased ventilation due to voluntary 
control per se, may have blunted the effects of oxygen administration.  
 
All these findings in patients with type 1 diabetes of cardiorespiratory responses 
related to breathing pattern and inhaled oxygen, contrast with the concept of 
irreversible neural damage. Our findings indicate that hyperoxia not only modifies the 
chemoreflex stimulus, but also provides an additional parasympathetic stimulus, which 
in turn enhances ventilation. Autonomic dysfunction may be part of a more general 
modification of autonomic reflexes, one also involving altered control of ventilation. 
Respiratory and cardiovascular control are tightly intertwined. Accordingly, any 
modification of respiratory control will influence cardiovascular control, and vice 
versa, assuming that the autonomic abnormalities are reversible. Conversely, if neural 
damage is present, this interaction is minimal or nonexistent, as was shown in patients 
with severe autonomic neuropathies (268). 
 
In short, improvement shown in BRS with oxygen in patients with type 1 diabetes 
supports our findings of a mainly functional disorder in patients without 
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complications. These findings show that the autonomic imbalance in and particularly 
the reduction in BRS of patients with type 1 diabetes can be in part be reversed by 
oxygen, suggesting a possible role played by pre-existing tissue hypoxia. Hypoxia 
seems, however, to be an important factor that restricts these patients’ BRS and 
modifies their autonomic function. 

7.4 Determinants of BRS in type 1 diabetes (I-II, IV) 

In studies of healthy individuals, BRS was influenced by many factors, including age, 
gender, BP, HR, body mass index (BMI), smoking, and physical fitness (312-317). One 
study with more than 1000 healthy individuals explained approximately half the 
variation in BRS by age, HR, BP, BMI, smoking, and gender, which were independent 
predictors of the BRS in a multivariate model (315). Depression, which is a frequent 
finding in type 1 diabetes (318), is associated with reduced BRS (319, 320). Moreover, 
genetic factors seem to influence BRS (321-323). BRS has been inversely correlated 
with measures of arterial stiffness in patients with recent stroke or chronic 
haemodialysis (324, 325). Interestingly, renal transplantation normalizes BRS through 
improvement in central arterial stiffness (326). Unfortunately, we had no data on 
arterial stiffness. 
 
Determinants of BRS in type 1 diabetes are not unravelled thus far. What can be 
anticipated is that the association between the BRS and anthropometric variables 
diminishes in type 1 diabetes, and those variables associated with cardiovascular risk 
become more important and also change with increasing diabetes duration. In our 
studies, BRS was inversely associated with age and BP, but not with BMI, gender, or 
smoking (data not shown). Some of the BRS indices showed a weak and mostly non-
significant inverse correlation with HbA1c.  

7.4.1 Glycaemic control (I-II) 

Long-term poor glycaemic control has been identified as a major contributor in the 
development and progression of diabetic CAN (101, 104, 108, 109, 222, 327, 328). In 
contrast to earlier studies, Study I showed no clear association between HbA1c and the 
autonomic indices, including BRS and CAN score. This may be due to a number of 
factors, including fairly good metabolic control, relatively mild autonomic 
involvement, and a possible inherent lack of correlation between a single-measure of 
HbA1c, that reflects relatively short-term metabolic control, and dysfunction that may 
need years to develop.  
 
However, in Study II which also included patients with > 30 years of duration of type 
1 diabetes, HbA1c showed a significant, although weak, inverse association with 
autonomic indices including BRS values (data not shown). Thus, despite having only 
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one single measurement of HbA1c, our findings support the central role of glycaemic 
control in development of diabetic neuropathy, since the patients with evident CAN 
also had higher HbA1c. Importantly, a study by Larsen et al demonstrated that even 
after a 30-year diabetes duration, mean HbA1c <8.4% over 18 years was associated 
with near-normal nerve conduction (328). On the other hand reduced cardiovascular 
autonomic reactivity has been observable even in patients newly diagnosed with type 1 
diabetes (286, 329), supporting the role of factors other than long-standing 
hyperglycaemia in the pathogenesis of autonomic dysfunction. In patients with type 2 
diabetes, different forms of diabetic neuropathy may already exist at the time of 
diagnosis of type 2 diabetes (330), or even in prediabetic disorders (331). This is 
probably explained by latent long-standing exposure to glucose when the subject is 
still unaware of the diabetes diagnosis. Other factors, however, such as sympathetic 
overactivity, which is related to obesity and insulin resistance probably also play a role. 
In contrast to other microvascular complications, glucose variability in type 1 diabetes 
does not seem to influence the development of peripheral and autonomic neuropathy 
(332). 

7.4.2 Diabetes duration and BRS (II, IV) 

In Study II, we explored the effect of diabetes duration on reversibility of BRS by 
comparing two groups of diabetic patients: one of short and one of long diabetes 
duration. During 15/min controlled breathing, BRS was clearly reduced in patients 
with type 1 diabetes overall as compared to the control subjects, and BRS was 
significantly lower in patients with diabetes of long duration. Slow breathing by 
patients with type 1 diabetes raised the BRS of most of them to a level similar to that 
obtained in the control subjects at their normal breathing rate (15/min). However, 
after adjustment for age, the resting-level BRS and the response to deep breathing no 
longer differed between duration groups. The lack of association in our cohort 
between long disease duration and the presence of autonomic dysfunction is in line 
with the results of earlier studies (108, 109, 328). 
 
Studies in healthy subjects have demonstrated that BRS deteriorates with age (314, 
333, 334), but age-associated changes in sympathetic BRS are not clear because most 
of the studies have focused on cardiovagal BRS. Our patients with type 1 diabetes 
showed a decline in most of the autonomic indices, but with age-dependent 
deterioration taken into account, the remaining decline, which might have been 
ascribed to the diabetes, was no longer significant (IV). However, patients with AHT 
showed a significant drop in E/I ratio, 30/15 ratio, and BRS-αHF, even after age-
correction. The age-associated decline in BRS is most likely multifactorial, and changes 
in any segment of the cardiac baroreflex arc may play a role in the process. In addition 
to neural deficits, also arterial stiffening may contribute to age-associated reduction in 
BRS (335-337). In short, the patients with diabetes had already at baseline a lower BRS 
than did healthy controls, but it is of note that their more pronounced decline during 
follow-up was for most of the patients equivalent to a normal age-related decline.  
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7.4.3 BP and BRS (I, II, IV) 

Although the relationship between sympathetic activation, the BRS, and BP is not yet 
fully understood, earlier data suggest that impaired BRS may precede the development 
of hypertension (242, 243, 245). Potential mechanisms for the increase in BP through 
the impaired BRS are increased BPV and resetting of the BP level. In healthy 
individuals, sympathetic activation is associated with a predominance of LF power 
oscillations of the SBP (167). The LF power of SBP is also shown to increase with 
rising BP levels in healthy subjects (240). In our study (II), those diabetic patients with 
a normal autonomic score showed a trend of increased power in the LF band of the 
SBP, compared to the patients with a higher autonomic score. This finding, along with 
an increased LF/HF ratio, is suggestive of sympathetic predominance in patients with 
type 1 diabetes even in the absence of CAN, but also a trend toward increasing 
sympathetic dysfunction with higher autonomic score. 
 
In Study IV, we explored the association between spontaneous BRS and 24-h ABPM 
and office BP at baseline in all patients with ABPM data available (N=71). The 
majority of the BRS variables showed an inverse correlation with 24-hour and daytime 
BP (mainly DBP and MAP), in line with previous results in non-diabetic individuals 
(245). The associations between baseline BRS and change in BP were analyzed only in 
the patients without AHT (N=50). The baseline BRS predicted an increase in the 
night-time BP at follow-up. Moreover, the BRS response to deep breathing correlated 
with the increase in 24-hour BP indices overall. Importantly, according to a recent 
meta-analysis, night-time SBP is a stronger predictor of cardiovascular and non-
cardiovascular mortality than daytime SBP both in hypertensive patients and in 
randomly selected populations (338).  
 
The non-dipping status was not related to baseline BRS and neither did it predict an 
increase in BP or AER, in contrast to some, (48, 339) but not all (223) previous 
studies. This might be explained by the fact that the future microalbuminuric patients 
are most likely those already on AHT. These subjects were excluded from analysis 
since we analyzed the change in BP over time. In addition, the reproducibility of the 
dipping status is variable (340, 341), and moreover the use of a preset sleeping time 
might result in an over-interpretation of the nocturnal dipping phenomenon (341). 
Finally, the predictive value of the non-dipping phenomenon for microalbuminuria or 
especially in normotensive patients is still not clear. The majority of the studied 
patients were normotensive and within the normoalbuminuric range, whereas the 
relevance of non-dipping could be more evident in patients with diabetic nephropathy 
and hypertension. Regarding the AHT+-group, the association between baseline BRS 
and last AER before starting AHT could have been of interest, but unfortunately such 
data were not available.  
 
Whereas spontaneous BRS was associated with an increase in night-time BP, the delta 
BRS (BRS-SD and BRS-αLF), i.e. the BRS response to deep breathing, correlated with 
a general increase in BP. The circadian BP varies according to the daily activity and 
interactions between the sympathetic nervous system and the renin-angiotensin system 
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(342, 343). Accordingly, night-time BP is better standardized than the daytime BP, and 
thus, an increase in night-time BP may also be a more sensitive marker of sympathetic 
activation. The fact that the BRS response predicted an increase in night-time BP 
underlines the importance of a functional deficiency of the autonomic regulation. The 
results did not change after removing the participants treated with drugs affecting 
angiotensin II, confirming no relevant confounding effects of these drugs on BRS.  
 
Notably, several of the antihypertensive medications available aim at a reduction in the 
sympathetic overdrive that characterizes essential hypertension. Recently two novel, 
non-pharmacological approaches have been introduced for the management of 
resistant hypertension, i.e. carotid baroreceptor stimulation (344) and catheter-based 
sympathetic renal denervation (345). Also these interventions act on different targets 
that trigger sympathetic activation resulting in BP increase. Although both 
interventions have shown promising results in severe hypertension, both procedures 
are invasive. Moreover, their long-term BP lowering effects and the impact on end-
organ damage and on cardiovascular events are not yet clear. Interestingly, impaired 
cardiac BRS could help to identify those patients with resistant hypertension who will 
respond to renal denervation (346) 
 
Altogether, in our 5-year follow-up, we have to our best knowledge for the first time 
demonstrated that baseline BRS predicted a future increase in BP, first seen in night-
time BP. 

7.5 Prognostic significance of autonomic disorders in diabetes 

The prognostic importance of CAN diagnosed with the traditional Ewing tests is 
undoubtedly established in patients with diabetes (7, 202). Until now there is only 
scarce data on the prognostic significance of the BRS in patients with diabetes, despite 
of the fact that it has proven to be a sensitive marker of cardiovascular risk. Studies in 
patients with heart failure have consequently shown that low BRS is associated with a 
worse prognosis, although the BRS-values in these studies have been markedly lower 
than those in our patients (13, 14). Nonetheless, there is no reason to believe that BRS 
would not be a useful prognostic marker in patients with diabetes. Within the limits of 
the follow-up period of 5 years we did show a clear deterioration of the BRS. The fact 
that the deterioration could be mainly attributed to normal aging does not exclude 
some effect of neuropathy that could become evident after a longer observation time. 
Thus, the follow-up time of 5 years may not be long enough to establish a possible 
relationship between reduced BRS and a future full-blown CAN. Moreover, to 
elucidate the role of BRS as a cardiovascular risk factor probably also requires a longer 
follow-up.  
 
The deep breathing-induced BRS response correlated with the overall BP in patients 
without AHT (IV). Although the potential differences in the prognostic significance of 
the different BRS methods are unclear, a recent study demonstrated that reduced BRS 
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in hypertension was most evident using the non-invasive αLF-method (184). 
Nonetheless, in Study IV, the only method that showed a persistent and significant 
decline over time even after adjustment for age was the BRS-αHF. This decline could 
be explained by reduced respiratory sinus arrhythmia in the HF-region due to diabetes.  
 
The coexistence of nephropathy and CAN is well established, although it is presently 
not known what the causal relationship between nephropathy and neuropathy is (12, 
204, 221). In the present study BRS did not correlate with urinary albumin excretion 
rate, although the patients with evident CAN had higher urinary albumin excretion 
rate. Altogether, it is possible that the assessment of the BRS could provide a tool that 
that enables detection of patients at risk earlier than the Ewing tests, and thus allowing 
earlier interventions. 

7.6 Implications of functionality and future prospects 

Despite decades of research and numerous clinical trials, attempts to find effective 
treatment that prevents or reverses the development of diabetic neuropathy has failed 
thus far. This is probably explained by the multifactorial aetiology of diabetic 
neuropathy, but also by the fact that the clinicians recognize these patients far too late. 
Whereas it is possible that a combination therapy would be more efficient than 
blocking a single pathway, no other treatments than improvement of glycaemic 
control have proved effective to date (347). Consequently, today, the cornerstone of 
the therapy is to improve quality of life by control of the symptoms and attempts to 
prevent the progression of neuropathy through improved glycaemic control, and 
through multifactorial risk intervention. 
 
The results of this thesis, and the notion that early autonomic neuropathy could be 
functional and respond to interventions or treatment, gives a new perspective in 
comparison to the past and current literature on this topic. The importance of this 
finding is further amplified by the possibility to predict increased BP and perhaps even 
other diabetic complications. Previous studies have established that patients with 
reduced BRS due to heart failure (18, 19) and hypertension (20) benefit from physical 
exercise in terms of improved BRS. Early autonomic abnormalities seem to be 
favorably influenced by physical exercise in type 2 diabetes (348, 349), and recently 
also in adolescents with type 1 diabetes (350). Nonetheless, longer follow-up times and 
intervention studies are needed in order to clarify the role of early autonomic 
abnormalities as predictors of other diabetic complications, and whether interventions 
also could prevent these. 
 
The presence of hypoxia and signs of abnormal respiratory control and the functional 
component of these abnormalities highlight the possibility of correction using simple 
strategies like physical training. Another approach could be to train the abnormal 
respiratory regulation. While our interventions were probably short-acting, and we did 
not study for how long the improvement in BRS persists, recently it has been shown 
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in patients with COPD that the autonomic parameters and respiratory control were 
improved by interval hypoxic training (351). Interestingly, in patients with type 1 
diabetes, there are obvious signs of adaptation in the ANS marked by improved 
respiratory reflexes already after one single session of intermittent hypoxia (352). 
Further studies with longer protocol and repeated intermittent hypoxic periods will be 
carried out in the future. 
 
Based on the results from this thesis, the BRS is clearly associated with the BP in 
patients with type 1 diabetes with no signs of diabetic complications. Whether reduced 
BRS is a warning signal and predicts diabetic micro- and macrovascular complications 
and cardiovascular events is not yet known and a longer follow-up time is required. 
We aim to restudy our patients within 1-2 years and the data will probably give more 
information on the prognostic power of the BRS. Moreover, the measurement of the 
BRS requires in addition to standardized laboratory conditions, also special equipment. 
More research is also needed in order to develop appropriate equipment for bed-side 
assessment of the BRS. Our data suggest that when the testing is correctly performed 
and the respiration is thoroughly monitored, the testing is not time-consuming. 
 
Altogether, the identification of the time point in the natural history of the disease at 
which the disorder transforms into more organic dysfunction could be crucial in order 
to be able to initiate effective preventive measures when the abnormalities are still 
reversible. 
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8 SUMMARY AND CONCLUSIONS 

I In the course of type 1 diabetes, increased sympathetic activity and a reduced 
BRS are already present at an early stage. A blunted BRS can, however, be 
elevated to the same level as in healthy control subjects, as a response to slow, 
deep breathing. This finding suggests a mainly functional abnormality, at least 
at an early stage of the disease.  

  
  
II  Irrespective of the duration of type 1 diabetes, in the majority of patients 

blunted BRS was restored by slow, deep breathing. On the other hand, the 
response to slow, deep breathing in those with CAN was similar to the 
response in patients with a surgically denervated heart. Thus, it seems that the 
defect in BRS is functional and reversible throughout the course of diabetes 
until the development of definite CAN.  

   
  
III Patients with type 1 diabetes demonstrated an augmented response to oxygen 

administration by the BRS and other cardio-respiratory measures. This is 
indicative of a pre-existing resting tissue hypoxia, which may be one of the 
possible causes of functional autonomic abnormalities in such patients, and 
also be a potential link between this autonomic dysfunction and their other 
diabetic complications.  

    
  
IV Although BRS was reduced even at baseline, the decline in BRS during a 5-

year follow-up was similar to that seen in healthy subjects, thus mainly 
reflecting physiological ageing. That low BRS at baseline did not progress to 
CAN supports its possible functional aetiology. However, resting BRS at 
baseline did predict an increase in night-time SBP. Moreover, the BRS 
response to deep breathing at baseline was associated with the increase an in 
24-hour ambulatory BP.  
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