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1 ABSTRACT 

The human immune system consists of the innate and the adaptive immunity that 

together protect the body from pathogens. To complete this task, the immune system 

must be able to recognize and destroy the dangerous foreign structures but also not to 

react to host structures or innocuous foreign structures, such as proteins of food or the 

commensal microbes residing in the gut. 

 

The innate immunity includes the phagocytes, such as the macrophages and 

neutrophils, and multiple molecular defensive systems, most importantly the 

complement system. The innate immunity reacts quickly to pathogens but its 

functions remain unchanged with repeated encounters with the intruder. The adaptive 

immunity is slower in its response, but it is more specific and it has memory; upon 

repeated exposure to a given pathogen, the adaptive immunity is activated more 

rapidly. Immunological tolerance, the unresponsiveness to self antigens, is a feature 

of the adaptive immunity. The adaptive immunity includes T and B lymphocytes and 

the antibodies produced by the B lymphocytes. 

 

In spite of their interdependency, the innate and adaptive immune systems have often 

been studied separately. This thesis focuses on their interface by investigating the role 

of the innate complement system in the regulation of the adaptive immunity and of 

the T lymphocyte function in particular. We followed the immune response and the 

establishment of oral tolerance in a C3 deficient mouse model, where the function of 

the complement system is blocked. We also studied vaccination responses and 

mucosal immune homeostasis in C3 deficient human subjects. 

 

The mice were immunized with ovalbumin in Complete Freund’s adjuvant. In order 

to induce oral tolerance, some of the mice were given ovalbumin to the 

gastrointestinal tract prior to the immunizations. The ensuing immune response was 

monitored by assessing the lymphocyte fractions by flow cytometry and by 

stimulating splenocytes with ovalbumin and monoclonal antibodies in vitro, and 

measuring the proliferative response with a radioactive thymidine incorporation 

assay. The expression of cytokines and transcription factors in isolated cells and tissue 

samples was analyzed with quantitative real-time PCR. Serum antibody levels were 

determined by ELISA. 

 

We isolated leukocytes from peripheral blood samples collected from the patients and 

healthy control subjects and analyzed the lymphocyte population with flow 

cytometry. Serum antibodies specific for intestinal commensal microbes and the 

vaccine antigens tetanus toxoid and diphtheria toxoid were measured with ELISA. 

Serum samples were also analyzed for the presence of a set of key cytokines. 

 

The results indicate that complement plays a crucial role in the regulation of the 

functional differentiation of the T helper lymphocytes central to the adaptive 

immunity. Immunization with ovalbumin produced a weaker T cell proliferative 

response in the C3 deficient mouse model compared to the wild-type controls. The 

response of the T lymphocytes was also qualitative different, since the development 

of a TH1 response was particularly impaired in the absence of a functional 

complement system, whereas the TH2 response showed no difference between the 
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mouse strains. This was also reflected on the B lymphocyte response: The IgG2a and 

IgG3 response to the immunization was reduced in the C3 deficient mice but the IgE 

response was normal. 

 

In addition to the general attenuation of the adaptive immunity, the C3 deficiency 

resulted in a disturbance of the intestinal immune tolerance in both mice and men. 

The administration of a foreign protein into the gastrointestinal tract of the C3 

deficient mice failed to prevent the systemic immune response to the subsequent 

immunization with the same protein, i.e. the establishment of oral tolerance failed. 

The C3 deficient human subjects had more mucosally homing activated T 

lymphocytes in the peripheral blood and higher levels of serum IgG specific for 

intestinal commensal microbes. A further sign of the deficient immune tolerance in 

the C3 deficient human system was the lack of IgG4 response to the vaccine antigens. 

IgG3 antibodies specific for vaccine antigens were present at higher concentrations in 

the patient sera and the levels of the inflammatory cytokines IL-12 and IL-21 were 

also elevated. In contrast to the mouse, the profile of serum cytokines and antibody 

subclasses in the C3 deficient human subjects pointed at a pronounced TH1 response. 

 

The work presented in this thesis defines the complement system as a versatile 

regulator of the adaptive immunity and helper T lymphocytes. The normal functional 

differentiation of the T lymphocytes requires signals from the complement system and 

the establishment of immune tolerance both in the mucosal and systemic immune 

systems is particularly dependent on complement. The results present novel 

information on the interplay of the innate and adaptive immune systems and will 

probably affect the treatment strategies for food allergies and inflammatory bowel 

diseases. 
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2 TIIVISTELMÄ 

Ihmisen immuunijärjestelmä jakautuu luontaiseen ja hankittuun immuniteettiin, jotka 

yhdessä suojelevat kehoa taudinaiheuttajilta. Onnistuakseen tässä tehtävässä 

immuunijärjestelmän on kyettävä tunnistamaan ja tuhoamaan vaaralliset vieraat 

rakenteet ja oltava reagoimatta kehon omiin rakenteisiin ja harmittomiin vieraisiin 

rakenteisiin, kuten ruuan proteiineihin ja suoliston normaaliflooran mikrobeihin.  

 

Luontaiseen immuniteettiin kuuluvat fagosyytit, kuten makrofagit ja neutrofiilit, sekä 

erilaiset puolustusmolekyylit, tärkeimpänä näistä komplementtijärjestelmä. 

Luontainen immuniteetti reagoi nopeasti taudinaiheuttajiin, mutta sen toiminta ei 

kehity toistuvien kohtaamisten myötä. Hankittu immuniteetti reagoi hitaammin, mutta 

sen tunnistuskyky on tarkempi ja siihen liittyy immunologinen muisti; kun elimistö 

kohtaa saman taudinaiheuttajan uudelleen, aktivaatio tapahtuu nopeammin. Myös 

toleranssi, eli reagoimattomuus omiin rakenteisiin, on hankitun immuniteetin 

ominaisuus. Hankittuun immuniteettiin kuuluvat T- ja B-lymfosyytit, sekä 

jälkimmäisten tuottamat vasta-aineet. 

 

Luontainen ja hankittu immuniteetti ovat riippuvaisia toisistaan, mutta niitä on usein 

tutkittu erillään. Tässä väitöskirjassa paneudutaan niiden rajapintaan selvittämällä 

luontaiseen immuniteettiin kuuluvan komplementtijärjestelmän toiminnan vaikutuksia 

hankitun immuniteetin säätelyyn, sekä erityisesti T-lymfosyyttien toimintaan. 

Tutkimus on toteutettu seuraamalla immunisaatiovastetta ja oraalisen toleranssin 

kehittymistä hiirikannassa, jonka komplementtijärjestelmä ei toimi C3-tekijän 

puutteen vuoksi. Lisäksi tutkimme rokotusvasteita ja kartoitimme suoliston 

immuunijärjestelmän tasapainoa C3-puutteisilla potilailla. 

 

Koejärjestelyssä hiiret immunisoitiin ovalbumiinilla ja adjuvanttina käytettiin 

Complete Freund’s adjuvanttia. Oraalisen toleranssin synnyttämiseksi osalle hiiristä 

annosteltiin ovalbumiinia mahasuolikanavaan ennen immunisaatiota. Kehittynyttä 

immuunivastetta tutkittiin analysoimalla lymfosyyttipopulaatioiden koostumusta 

virtaussytometrialla ja stimuloimalla lymfosyyttejä soluviljelmässä ovalbumiinilla ja 

monoklonaalisilla vasta-aineilla, seuraten jakautumisvastetta radioaktiivisen 

tymidiinin sitoutumiseen perustuvalla koejärjestelyllä. Sytokiinien ja 

transkriptiotekijöiden ilmentymistä soluissa ja kudosnäytteissä tutkittiin 

reaaliaikaisella PCR:llä. Seerumin vasta-aineiden määrittämiseen käytettiin ELISA-

menetelmää. 

 

Potilaiden ja terveiden verrokkien verinäytteistä eristimme valkosolut ja analysoimme 

lymfosyyttipopulaatioiden koostumusta virtaussytometrialla. Suoliston 

normaaliflooraa, tetanustoksoidia ja difteriatoksoidia vastaan kehittyneitä seerumin 

vasta-aineita tutkimme ELISA-menetelmällä. Seeruminäytteistä määritettiin myös 

immuunivasteessa keskeisten sytokiinien pitoisuudet. 

 

Tutkimuksen tulokset osoittavat, että komplementti vaikuttaa hankitun immuniteetin 

keskeisten solujen, auttaja T-lymfosyyttien, toiminnalliseen erilaistumiseen 

ratkaisevasti. C3-puutteisessa hiirikannassa immunisaatio ovalbumiinilla tuotti 

heikomman T-lymfosyyttien jakautumisvasteen kuin villityypin hiirissä. T-

lymfosyyttien vaste immunisaatioon oli myös laadullisesti erilainen, sillä TH1-
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tyyppisten solujen kehitys oli erityisesti heikentynyttä komplementin puuttuessa, 

mutta TH2 vaste oli normaali. Tämä heijastui myös B-lymfosyyttien tuottamiin vasta-

aineisiin: IgG2a ja IgG3 vaste immunisaatioon oli heikentynyt C3-puutteisissa 

hiirissä, mutta IgE vaste oli normaali. 

 

Hankitun immuniteetin yleisen heikentymisen lisäksi C3-puutos aiheutti sekä hiirissä 

että ihmisissä suoliston immunologisen toleranssin häiriön. C3-puutteisille hiirille ei 

kehittynyt oraalista toleranssia, eli mahasuolikanavaan annosteltu vieras proteiini ei 

kyennyt estämään immuunivastetta myöhemmässä immunisaatiossa. C3-puutteisilla 

potilailla puolestaan oli veressään enemmän suolistoon matkalla olevia aktivoituneita 

T-lymfosyyttejä, sekä enemmän suoliston normaaliflooraan kohdistuvia IgG-luokan 

vasta-aineita. Toleranssin häiriöön viittasi myös C3-puutteisten potilaiden puuttuva 

IgG4-vaste rokotuksille. Rokoteproteiineja vastaan tuotettuja IgG3 vasta-aineita 

potilaiden seerumissa oli merkitsevästi enemmän kuin terveillä verrokeilla. Potilaiden 

seerumissa oli myös enemmän tulehduksellisia IL-12 ja IL-21 sytokiineja. Ihmisellä 

C3-puutos vaikuttaisi siis johtaneen TH1-vasteen voimistumiseen, toisin kuin hiirellä. 

 

Väitöskirjani tulokset osoittavat, että komplementtijärjestelmä säätelee hankitun 

immuniteetin ja etenkin auttaja-T-lymfosyyttien toimintaa laaja-alaisesti. T-

lymfosyyttien normaali toiminnallinen erilaistuminen tarvitsee komplementin 

aktivaation tuottamia viestejä ja etenkin toleranssin kehittyminen sekä suoliston 

alueella että immuunijärjestelmässä laajemmin häiriintyy komplementin puuttuessa. 

Löydökset tuovat uutta tietoa luontaisen ja hankitun immuniteetin yhteistoiminnasta 

ja asettavat etenkin allergioiden ja tulehduksellisten suolistosairauksien 

hoitomenetelmät uuteen valoon. 
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4 ABBREVIATIONS 

 

APC   Antigen presenting cell (professional) 

B7   Costimultatory signal molecule, multiple subtypes 

Bcl-6   B-cell lymphoma 6 

BCR   B cell (antigen) receptor 

C   Complement 

C3   Complement component 3 

C3a   Complement component 3a; soluble anaphylatoxin 

C3b   Complement component 3b; membrane-associated 

C3ctrl   C3-KO mice fed with saline, immunized with OVA 

C3dg   Complement component 3dg; membrane-associated 

C3OVA   C3-KO mice fed with OVA, immunized with OVA 

CD   Cluster of differentiation 

CD19   Coreceptor of the BCR, present on all B cells 

CD3   Coreceptor of the TCR, present on all T cells 

CD4   Binds MHC II, present on T helper cells 

CD45RO  Adhesion molecule expressed by activated/memory T cells 

CD69   Early activation marker expressed by T cells 

CD8   Binds MHC I, present on cytotoxic T cells 

CFSE   Carboxyfluorescein diacetate succinimidyl ester  

CR   Complement receptor 

CRP   C-reactive protein; one of acute phase proteins 

CTLA-4  Cytotoxic lymphocyte antigen 4 

DAF   Decay accelerating factor 
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DC   Dendritic cell 

DP   Double positive (CD4
+
CD8

+
 thymocyte) 

DT   Diphtheria toxoid 

ELISA   Enzyme-linked immunosorbent assay 

Fab   Fragment antigen binding 

Fc   Fragment crystallizable 

FDC   Follicular dendritic cell 

FoxP3   Forkhead box P3 

GATA-3  GATA-family transcription factor 3 

HLA   Human leukocyte antigen 

iC3b   Inactivated C3b; membrane-associated 

IFN   Interferon 

Ig   Immunoglobulin 

IL   Interleukin 

KO   Knock-out 

LP   Lamina propria 

mAb   Monoclonal antibody 

MAC   Membrane attack complex 

MASP-2  Mannan-binding lectin associated serine protease 2 

MCP   Membrane cofactor protein 

MHC   Major histocompatibility complex 

mRNA   Messenger RNA 

MΦ   Macrophage 

NK   Natural killer 

OVA   Ovalbumin 
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PAMP   Pathogen associated molecular pattern 

PBMC   Peripheral blood mononuclear cell 

PCR   Polymerase chain reaction 

PDT   Pertussis-Diphtheria-Tetanus vaccine 

PRR   Pattern recognition receptor 

pTα   pre-T cell receptor α-chain 

qPCR   Quantitative PCR 

RORγt   Retinoic acid receptor-related orphan receptor γt 

SP   Single positive (either CD4
+
 or CD8

+
 thymocyte) 

T-bet   TH1-specific T box transcription factor 

TAP   Transporter associated with antigen processing 

TCR   T cell (antigen) receptor 

TFH   T follicular helper 

TGF-β   Transforming growth factor β 

TH1   T helper 1 

TH17   T helper 17 

TH2   T helper 2 

TLR   Toll-like receptor 

TNF-α   Tumor necrosis factor α 

TR1   T regulatory type 1 

Treg   Regulatory T cell 

TT   Tetanus toxoid 

WT   Wild-type 

WTctrl   WT mice fed with saline, immunized with OVA 

WTOVA  WT mice fed with OVA, immunized with OVA 
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5 INTRODUCTION 

Immunology, the study of the human defense system, is associated with all other 

branches of medicine. Immunological mechanisms are involved in biological 

processes ranging from the healing of minor wounds to the protection of the organism 

from cancer or invasive pathogens. However, our knowledge of the immune system 

remains incomplete and immunological reactions are often considered unpredictable 

and impossible to control. Misguided or excessive immune reactions can lead to 

detrimental conditions such as allergy, reperfusion injury following stroke or 

myocardial infarction and even multiple organ failure following uncontrolled 

inflammatory responses to systemic infections. These conditions are difficult to 

prevent or cure by the means of the contemporary medicine, emphasizing the need for 

further study of the underlying immunological mechanisms. 

 

The beginning of the new millennium has brought about major leaps of knowledge in 

immunology: we have started to understand the interrelations between the innate and 

adaptive immune systems, and the paramount importance of the mucosal immune 

system to the human health has emerged to the attention of the scientific community. 

In addition, the application of the methods of molecular genetics in immunology has 

changed our conception of the functional differentiation of T helper cells. The 

classical view of stable T helper cell lineages has evolved to a more nuanced model 

emphasizing the plasticity of the lineages and the simultaneous and synergistic 

activity of different effector cell types. Due to the central role of the T helper cells in 

the adaptive immunity, this change of perspective has far-reaching consequences to 

the interpretation of the function of the immune system as a whole. 

 

The work presented in this thesis concentrates on the role of the complement system 

of the innate immunity in regulating the adaptive immune responses and T helper cell 

responses in particular. Experiments performed with both human and murine samples 

demonstrate that complement is required for normal T cell responses and especially 

for the induction of tolerance, both in the mucosal and systemic immune systems. 

Important differences between the murine and the human system were also observed. 
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6 REVIEW OF THE LITERATURE 

6.1 Innate immunity and the complement system 

6.1.1 First lines of defense 

The human body is protected against pathogens by a layered defense system. The first 

line of defense is formed by a continuous layer of epithelial cells joined by tight 

junctions covering all surfaces of the body. Breaching this barrier is the essential first 

step that a pathogen must take in order to establish a focus of infection and to cause 

disease. 

 

The thick, stratified epithelium of the skin is impenetrable to most microorganisms, 

and, therefore, many pathogens prefer the mucosal surfaces of the respiratory and 

gastrointestinal tract as a route of entry. These epithelia are thinner than the skin to 

allow diffusion of respiratory gases in the lungs and absorption of nutrients in the gut. 

A protective layer of mucus partly compensates for the epithelial thickness, and the 

constant flow of intestinal contents towards the end of the gastrointestinal tract and 

the continuous transport of mucus by cilia of the respiratory epithelium serve to 

mechanically remove harmful agents from the mucosal surfaces. Additional 

protective measures in the mucosal surfaces include the acidity of the stomach and 

secreted bactericidal molecules, such as defensins and lysozyme. The abundant 

commensal flora colonizing the mucosa and actively competing for space and 

nutrients with the pathogenic organisms is also an important protective factor. 

 

If a pathogen overcomes these initial obstacles and succeeds in penetrating the 

epithelium, the immune system will be activated to repel the invader. Activation of 

innate immunity leads to inflammation and is followed by an adaptive immune 

response, if the innate response fails to remove the threat by itself. As adaptive 

immunity is recruited, the innate system passes on crucial information concerning the 

type of pathogen and the infected tissue to the adaptive immunity, largely dictating 

the type of the ensuing adaptive response. 

 

The extent of the interdependency between innate and adaptive immunity has only 

started to emerge during the past decade. This thesis focuses on one interesting piece 

in this puzzle, namely, the role of the complement system in regulating the adaptive 

immune response. 

6.1.2 Complement activation 

The complement system consists of over 30 proteins, which include soluble factors 

present in serum and other bodily fluids, and membrane-bound molecules on host 

cells (Ricklin et al., 2010). Complement factors are produced as inactive proenzymes 

and remain so until they are activated. A common feature of complement activation is 

the cleavage of the inactive proenzyme into two fragments: a large fragment, which 

binds to membranes and labels the target for phagocytosis, and a small soluble 

fragment, which often has signaling potential. The large, membrane bound fragment 

also contributes to activating the next factor in the cascade.
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Complement activation occurs on cell surfaces. It can be triggered by antibody bound 

on target cell (classical pathway), direct recognition of microbial cell-surface patterns 

by complement factors (classical and lectin pathways) or spontaneous activation of 

complement factor C3 in the absence of complement inhibitors on microbial cell 

surface (alternative pathway) (Ricklin et al., 2010) (Fig.1). 

 

All activation pathways lead to the assembly of a C3 convertase enzyme, which is 

covalently linked to the cell surface (Pangburn et al., 1981; Wallis et al., 2010). This 

convertase cleaves multiple molecules of C3, which can then form additional C3 

convertases via the alternative pathway, establishing an amplification loop (Fig.2). 

This makes the complement factor C3 the most important and central factor in the 

complement cascade. In the absence of C3 all effector functions are blocked and 

deficiency in other alternative pathway components leads to severe immune 

dysfunction, whereas deficiencies in the other two activation pathways usually lead to 

relatively milder morbidities (Ghannam et al., 2008; Ram et al., 2010; Reis et al., 

2006). Not surprisingly, the alternative pathway appears to be the evolutionarily 

oldest part of the complement system, the lectin and classical pathways being later 

modifications of an already functional system based on spontaneous activation of C3 

(Rodriguez et al., 2012). 

6.1.3 Effector functions of complement 

The complement system has three major effector functions: opsonization, chemotaxis, 

and direct lysing of bacterial cells. The larger fragment of cleaved C3, called C3b, 

binds covalently to the target surface and can be recognized by complement receptors 

of phagocytes and other cells (Ricklin et al., 2010). This tagging, also known as 

opsonization, greatly enhances the ability of the phagocytes to kill the pathogen. 

 

If the C3b molecule remains associated with the activating convertase, it modifies its 

enzymatic specificity to make it a C5 convertase (Pangburn and Rawal, 2002). This 

new enzyme complex cleaves C5 to soluble C5a and membrane-associated C5b, 

which initiates the assembly of the membrane attack complex (MAC). In essence, 

MAC is a short molecular tube, which inserts into the plasma membrane of a bacterial 

cell and kills it by allowing free diffusion of ions and small molecules through the 

membrane (Muller-Eberhard, 1985) (Fig.3). 

Figure 1. Complement activation pathways. The complement system has 
three activation pathways, which all converge at the production of 
membrane-bound C3b. The classical pathway is initiated by C1q binding 
directly to microbe surface or an antibody or CRP molecule associated with 
the surface. C1q forms a complex with C1r and C1s and the latter cleaves 
C4 to C4a and C4b, which binds to the surface. C2 is then cleaved by C1s 
and the larger fragment C2a forms a C3 convertase with C4b. The lectin 
pathway is initiated in a similar manner with MBL or ficolin as the pattern-
recognition molecule and MASP-2 as the protease. The alternative pathway 
is initiated by the spontaneous hydrolysis of C3 to C3(H2O). Factor B is then 
cleaved by factor D to form the fluid phase C3 convertase C3(H2O)Bb. 
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Figure 2. Activation of the alternative pathway. The alternative pathway of 
complement is activated by spontaneous hydrolysis of C3 to C3(H2O). Factor 
B binds to C3(H2O) and is then cleaved by factor D to Ba and Bb. The short-
lived fluid phase C3 convertase C3(H2O)Bb cleaves additional C3 molecules 
to C3a and C3b. C3b binds rapidly to any nearby surface. 
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Figure 3. Amplification of complement activation. Membrane-bound C3b 
leads to amplification of the complement activation by forming a membrane-
bound alternative pathway C3 convertase C3bBb, which cleaves additional 
C3 molecules (upper panel). The convertase can be further stabilized by 
properdin (omitted for clarity). If the newly formed C3b molecule remains 
associated with the convertase, it modifies the enzymatic activity, forming a 
C5 convertase C3bBb3b (lower panel). 
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The small soluble fragments, C3a and C5a, diffuse freely away and form a 

concentration gradient leading to the site of complement activation. They are called 

anaphylatoxins, since they have a strong ability to induce inflammation (Klos et al., 

2009). They stimulate the endothelial cells of the local blood vessels to express 

leukocyte adhesion molecules and to increase permeability of the vessel wall, leading 

to recruitment of neutrophils and other leukocytes, and influx of plasma into the 

inflamed tissue. The plasma carries with it additional complement factors, which 

function to bolster the ongoing complement activation. Leukocytes use the 

anaphylatoxin gradient to find their way to the site of infection (chemotaxis). In 

addition, C5a triggers the mast cells to release inflammatory mediators from their 

preformed granules and the phagocytosis of C3b coated microbes is greatly enhanced 

when C5a binds to its receptor simultaneously with C3b binding to its own receptor 

on the surface of a macrophage (van Lookeren Campagne et al., 2007). 

6.1.4 Regulation of complement 

The rapid activation, amplification, and powerful effector functions of the 

complement system pose a threat of auto-reactivity to host cells. Therefore,  

complement activation on self is inhibited by various, often redundant, mechanisms 

(Zipfel and Skerka, 2009).  

 

Activation of the classical and lectin pathways requires active recognition of the 

target by the initiating molecules (antibody, CRP or C1q for the classical pathway; 

MBL or ficolins for the lectin pathway). The alternative pathway, on the contrary, 

does not need a target structure for activation. The intrinsic tendency of C3 to be 

hydrolyzed leads to a constant production of small amounts of active C3b in all bodily 

fluids (Bexborn et al., 2008). Activated C3b has a very short half-life and it binds 

instantly to any membrane present (Pangburn et al., 1981). On host cell surfaces the 

bound C3b is immediately inactivated to iC3b by factor I and complement regulatory 

proteins factor H, complement receptor 1 (CR1) and membrane cofactor protein 

(MCP; CD46) that function as cofactors for factor I. The Bb fragment of Factor B 

associated with C3b on host cell surfaces is displaced from the convertase complex by 

factor H, CR1 and decay accelerating factor (DAF) to prevent further complement 

activation (Lambris et al., 1996). CRIg blocks the binding of the C3 substrate to the 

C3bBb enzyme complex (Wiesmann et al., 2006) (Fig.4). 

 

Microbes lack these regulators and on their surfaces the activation continues and is 

rapidly amplified. Covalent binding of C3b to the cell surface ensures that the 

activation does not spread beyond the target. Together, these functions make the 

complement system capable of discriminating between self and non-self, which is a 

fundamental task of the immune system. 

6.2 Complement C3 deficiency in humans 

Total deficiency of complement C3 is rare in humans, with only 20 families described 

worldwide (Reis et al., 2006)(II). The pivotal role of the complement system in the 

early defense against bacterial pathogens and the central position of C3 in the 

complement cascade make the patients highly susceptible to invasive infections (Ram 

et al., 2010). Later in life, C3 deficiency often leads to different forms of 

autoimmunity (Reis et al., 2006). 
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6.2.1 Infectious complications 

The severe infections caused by C3 deficiency are manifested usually in the first years 

of life. The patients are susceptible to recurrent invasive infections caused by Gram-

negative bacteria, including Neisseria meningitidis, Haemophilus influenzae and 

Escherichia coli, and by Gram-positive bacteria, such as Streptococcus pneumoniae, 

Streptococcus pyogenes and Staphylococcus aureus. The infectious foci range from 

otitis media, sinusitis and urinary tract infections to pneumonia, meningitis and 

septicemia (Reis et al., 2006). The patients require regular prophylactic use of 

antibiotics and an extensive vaccination strategy to prevent infectious complications. 

6.2.2 Autoimmunity 

In the later years of life, patients with C3 deficiency commonly suffer from 

autoimmune manifestations. These are often associated with accumulating immune 

complexes of particulate antigen bound to immunoglobulin molecules, since C3 has a 

central role in their clearance (Klint et al., 2000). The kidney in particular is 

vulnerable to immune complex deposition leading to glomerulonephritis. Also IgA 

nephropathy and conditions resembling systemic lupus erythematosus have been 

diagnosed in C3 deficient patients (Reis et al., 2006). 
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Figure 4. Inhibition of complement activation. Complement activation is 
regulated at the level of C3b in numerous ways. Factor H, CR1 and MCP 
facilitate the inactivation of C3b by factor I into iC3b and further to C3dg. 
Factor H, CR1 and DAF displace Bb from the C3bBb complex and CRIg 
blocks the binding of the C3 substrate to the C3bBb complex. 
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6.3 The innate immune response 

6.3.1 Phagocytosis 

Opsonization of pathogens with complement fragments would not make much sense 

without the existence of phagocytes equipped with appropriate complement receptors. 

Phagocytosis is an ancient defense method originating from the ability of large single-

cell organisms to prey on smaller microbes by engulfing them. In humans, the most 

important phagocytes are the macrophages and immature dendritic cells (DCs) 

resident in tissues, and granulocytes, which are summoned to the tissue from the 

bloodstream once an intruder has been detected. The DCs are specialized to initiate an 

adaptive immune response, and their functions will be discussed later.  

 

Macrophages are the most numerous phagocytes in healthy tissues. They differentiate 

continuously from monocytes leaving the circulation, and in the absence of infection 

serve as waste disposal units, degrading apoptotic cell debris marked for quiet 

removal by iC3b (Flierman and Daha, 2007). If a pathogen emerges, macrophages are 

among the first cells to react to the imminent threat. They have multiple sets of 

pattern recognition receptors (PRRs), which bind to pathogen associated molecular 

patterns (PAMPs) (Mukhopadhyay et al., 2009). PAMPs are conserved structures 

present on many microbes but not on the body’s own cells (host cells). Phagocytic 

PRRs present on the macrophage cell surface, such as the scavenger receptors, induce 

internalization and degradation of the bound microbe. 

 

Opsonization by complement facilitates phagocytosis of all microbes but it is crucial 

in the recognition of encapsulated pathogens, which have covered their surface with a 

thick polysaccharide capsule to evade direct recognition by phagocyte PRRs 

(Cunnion et al., 2003; Zaragoza et al., 2003). Phagocytosis of these pathogens relies 

on complement receptors CR1, CR3 and CR4 present on the cell surface of 

phagocytes. 

6.3.2 Recognition of non-self: the danger-signal 

In addition to phagocytic receptors, the macrophages and DCs have other PRRs that 

activate pro-inflammatory signaling cascades in the cell after binding to their ligands. 

These include Toll-like receptors (TLRs) present on the cell surface and membranes 

of intracellular vesicles, and multiple families of intracellular receptors capable of 

sensing bacterial products (Kersse et al., 2011), viral replication in the cytosol 

(Lappalainen et al., 2013) or general cellular stress (Sheedy et al., 2013). 

 

The mammalian TLRs are the most profoundly studied class of the signaling PRRs 

and the function of the TLRs provides a feasible mechanistic explanation on the 

molecular level to the observation that the innate immune system can broadly 

recognize the type of an invading pathogen. This information is then passed on to the 

adaptive immune system to tailor the ensuing adaptive response to be as effective as 

possible against the particular invader (Abdelsadik and Trad, 2011; Qian and Cao, 

2013). 

 

In humans, 10 different TLRs have been characterized. Together, they recognize 

PAMPs from Gram-positive and Gram-negative bacteria, fungi and viruses. Those 

TLRs that are located on the cell surface recognize structures of extracellular 
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pathogens, such as the lipopolysaccharide (LPS) of Gram-negative bacteria (TLR-4) 

(Park et al., 2009) and the lipoteichoic acids of Gram-positive bacteria and fungal 

zymosan (TLR-1:TLR-2 and TLR-6:TLR-2 heterodimers) (Irvine et al., 2013). 

Intracellular TLRs present in the endosome membranes bind to viral molecules, such 

as single-stranded RNA (TLR-7) and DNA with unmethylated CpG (TLR-9) (Wei et 

al., 2009). 

 

The expression of TLRs is not limited to the macrophages and DCs. Granulocytes 

express multiple types of TLRs and natural killer (NK) cells express TLRs with viral 

specificities, in accordance with their central role in viral defense. TLR-5 recognizing 

the flagellin of flagellated bacteria is present on the cell surface of macrophages and 

DCs but also on the basal surface of the intestinal epithelial cells (Abdelsadik and 

Trad, 2011). 

 

Ligand binding to TLRs induces intracellular signaling cascades ultimately leading to 

activation of the cell and production of secondary messenger molecules, such as 

cytokines. The intracellular signaling initiated by TLRs can be modulated by 

complement, since the signaling cascades associated with C3aR and C5aR signaling 

share intracellular mediators with the TLR pathway (Song, 2012). Usually this 

probably is the case in vivo, because many TLR ligands, such as zymosan of yeast cell 

walls and lipopolysaccharide of Gram-negative bacteria, are also strong activators of 

the complement system (Harboe et al., 2012; Inzana et al., 1987). Coinciding 

complement activation can, for example, modulate the IL-12 and IL-10 production 

induced by TLR activation (Zhang et al., 2007) and, therefore, lead to profound 

changes in the ensuing adaptive immune response (Fig.5). 

 

The complement receptors were introduced above as phagocytic receptors. However, 

they also serve a function in the recognition of non-self and danger-signaling. CR1 

degrades target-bound C3b into iC3b and further to C3dg, both of which are ligands 

for the CR2 present on the B cell surface. Binding of the ligands to CR2 enhances B 

cell activation (Roozendaal and Carroll, 2007). CR3 and CR4 have multiple binding 

sites and in addition to binding to iC3b they function also as integrins, mediating cell-

cell contacts and binding to the extracellular matrix and CR3 can induce phagocytosis 

by recognizing LPS and β-glucans with its lectin-binding domain (Petty et al., 2002). 

CR3 signaling has been shown to modulate IL-12 production by the APCs (Kim et al., 

2004; Leon et al., 2006), thus regulating the T helper cell differentiation. 

 

Complement activation and ligand binding to TLRs occurs simultaneously in vivo, so 

it is not surprising that the signaling pathways initiated by them synergize with each 

other. In addition to CR3, also the anaphylatoxin receptor C5aR and C3aR mediated 

responses modulate the cytokine production of TLR activated APCs. 

  

Figure 5. Activation of macrophages. Macrophages recognize C3b-coated 
pathogens by complement receptors (CR) and pattern-recognition receptors 
(PRR). The pathogens are ingested and degraded in phagolysosomes. 
Phagocytosis is further stimulated by C5a binding to its receptor (C5aR) 
(upper panel). TLR and NOD molecules recognize pathogen associated 
molecular patterns and activate the macrophage. Signaling from complement 
anaphylatoxin receptors C3aR and C5aR synergize with TLR and NOD 
signaling leading to production of cytokines and chemokines by the 
macrophage. Peptides derived from the degraded pathogens are presented 
on the macrophage surface by MHC II molecules (lower panel). 
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6.3.3 Induced innate immunity 

Recognition of foreign structures by TLRs and other pro-inflammatory PRRs leads to 

synthesis and release of prostaglandins, leukotriens and pro-inflammatory cytokines 

by the macrophages and DCs. These mediators act in consort with complement 

anaphylatoxins C3a and C5a and histamine released from mast cells to activate the 

endothelium of the local tissue blood vessels (Movat, 1987). Within minutes from 

macrophage activation the endothelial cells start to express selectins, which recruit 

leukocytes to the tissue to fight the infection. The vessel dilates, blood flow is slowed 

down and the junctions between endothelial cells are loosened to allow the influx of 

plasma into the tissue, carrying with it additional complement proteins, antibodies and 

other defense molecules. The pathogen is prevented from spreading to the 

bloodstream by blood clotting (thrombosis) in the local vessels (Engelmann and 

Massberg, 2013). Together with the increased fluid in the tissues the partial occlusion 

of local blood vessels directs the flow of fluid into the lymph vessels and, eventually, 

to the local lymph node, where adaptive immunity will be initiated. 

 

If the invader is an extracellular pathogen, for example a bacterium replicating in the 

interstitium, the macrophages attempt to phagocytose and kill the bacteria to clear or 

at least to limit the infection until adaptive immunity is ready to take command. Their 

numbers are increased by blood-borne monocytes differentiating to macrophages in 

the tissues but they are also aided by another cell type, the neutrophilic granulocytes, 

or neutrophils, which move rapidly from the bloodstream to the inflamed tissue. 

Compared to macrophages, the neutrophils are far less sophisticated in their actions; 

their mission is to engulf and kill as many pathogens as quickly as they can. Once this 

is accomplished, they die by apoptosis, only to be replaced with new neutrophils 

continuously arriving from the blood. 

 

Phagocytosis is not effective against viruses hiding inside host cells. Recognition of 

viral structures by macrophages leads to the production of the cytokine IL-12 by the 

macrophages (Abdelsadik and Trad, 2011), leading to activation of the NK cells, 

which can directly kill virus-infected cells (Choi and Mitchison, 2013). Cytokines 

secreted by macrophages and NK cells also modulate the metabolism of the tissue 

cells to make them less susceptible to viral infection. 

6.3.4 The acute phase and clinical signs of infection 

In addition to the local effects, some cytokines secreted by macrophages have also 

systemic effects. TNF-α, IL-1β and IL-6 activate the liver to produce acute phase 

proteins, such as CRP, fibrinogen, and complement factors, and the hypothalamus 

reacts to these cytokines by increasing the body temperature to hamper the growth of 

pathogens. Reserves of neutrophils are released from the bone marrow into the 

circulation and tissue DCs are induced to mature and to migrate to the local lymph 

nodes to initiate an adaptive immune response. The classical clinical signs of 

infection, i.e. pain, redness, swelling and increased temperature, are actually signs of 

the function of the innate immunity. 
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6.4 Adaptive immunity and the role of T cells in the immune 

response 

6.4.1 Antigen uptake and processing by antigen presenting cells 

Adaptive immunity begins when a DC presents antigen to a naïve CD4
+
 T cell (Itano 

and Jenkins, 2003). Preparation of this rendezvous starts when a resident DC senses 

foreign material with its PRRs in the tissue. The foreign antigen is phagocytosed and 

degraded by the DC and the fragments are bound to MHC II molecules in the 

phagolysosomes (Schulze and Wucherpfennig, 2012). Antigens derived from the 

cytosol are actively transported to the endoplasmic reticulum and bound to MHC I 

molecules (Hulpke and Tampe, 2013). Stimulation of TLRs and other PRRs induces 

maturation of the DC and expression of costimulatory molecules (Medzhitov et al., 

1997; Steinman and Hemmi, 2006). The cell leaves the tissue and is carried in the 

lymph to a local lymph node, where the naïve T cells are waiting. 

 

The most efficient method of antigen uptake is receptor-mediated phagocytosis via 

recognition of PAMPs or opsonins, such as C3b on the surface of the pathogen. If this 

is not possible, the pathogen can still be engulfed by macrophages and DCs by means 

of macropinocytosis, the passive internalization of interstitial fluid by these cells. B 

cells can recognize specific antigen with their antigen receptor and then process and 

present it in a similar manner (Itano and Jenkins, 2003). 

 

Dendritic cells, macrophages and B cells are called professional antigen-presenting 

cells (APCs), because they present peptide fragments of extracellular antigens on 

MHC II-molecules to CD4
+
 T cells and can express costimulatory molecules, such as 

B7, required for the activation of T cells (Itano and Jenkins, 2003). Between these 

cells there is a clear distribution of work. T cell activation is the ultimate goal of DCs, 

and they are normally the only cells capable of initiating a T cell response to a 

pathogen that is encountered for the first time (Byersdorfer and Chaplin, 2001; Ingulli 

et al., 1997). The strength and quality of signals from the PRRs determine the 

expression of costimulatory molecules on the surface of the DC and the cytokine 

pattern secreted by the cell (Yamane and Paul, 2012). Macrophages and B cells, on 

the contrary, require activating signals from T cells previously activated by DCs in 

order to express costimulatory molecules on their surface (Cassell and Schwartz, 

1994; Chang et al., 1995). 

 

Macrophages aim at efficient clearing of pathogens by phagocytosis and they present 

antigen to T cells to get help in this task. The help is provided in the form of 

activating cytokines and cell surface molecules, such as CD40L, which enhance the 

bactericidal activities of the macrophage. Generally, macrophages do not travel to the 

local lymph node after encountering a pathogen, but reside in the tissue. They are 

important in supporting the effector T cells arriving in the tissue. However, 

macrophages are continuously present also in the lymph nodes, where they engulf 

pathogens arriving in the afferent lymph and degrade apoptotic lymphocytes (Witmer 

and Steinman, 1984). 

 

B cells need T cell help for the production of antibody and, most importantly, for the 

antibody class switching, which modulates the effector functions of the antibody 

produced. Due to the specificity of their antigen receptor, they are able to present to T 

cells soluble antigens that are present in low concentration. This is emphasized in the 
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case of toxins, which are soluble molecules produced by certain pathogens and are 

highly toxic to host cells even in low concentrations. In addition to the antigen 

specific B cell receptor (BCR) the B cells use CR2 to collect antigens tagged with 

iC3b and C3dg and they are able to transfer these antigens to follicular dendritic cells 

(FDCs) for presentation to other B cells (Phan et al., 2009). 

 

All three types of APCs process the antigen in a similar manner for presentation. 

Phagocytosed material is taken up in endocytic vesicles, which fuse with lysosomes. 

The vesicles are then acidified, which activates proteases, resulting in degradation of 

proteins into peptides. Then MHC II molecules are transported to the endosomes from 

the endoplasmic reticulum. In the acidic environment, with the help of auxiliary 

proteins, the peptide-binding cleft of the MHC II molecule opens up and is able to 

bind peptides residing in the vesicle. Peptide-MCH II complexes are then transported 

to the cell surface (Vyas et al., 2008). 

6.4.2 Antigen presentation to T lymphocytes 

T cells do not recognize antigen directly. They only react to peptide fragments of 

antigen processed by other cells and presented on MHC class I or class II molecules. 

Moreover, the T cell antigen receptor (TCR) binds both to the MHC molecule and the 

peptide, restricting the ability of a given T cell to recognize peptides bound to one 

type of MHC only. CD8 and CD4 are coreceptors of the TCR and they bind to MHC I 

and MHC II molecules, respectively.  

 

There are three types of human MHC class I molecules, called human leukocyte 

antigen (HLA)-A, HLA-B and HLA-C, and three types of MHC class II molecules, 

HLA-DP, HLA-DQ and HLA-DR. Of these, numerous alleles are present in the 

population, increasing the level of protection from infections on the population level. 

 

All nucleated cells are able to present peptides on MHC I molecules. These peptides 

originate from the cytosolic proteins and are generated by continuous degradation of 

all proteins produced by the cell. This degradation is a regulated process and takes 

place in the proteasome, a highly specialized molecular apparatus in the cytoplasm 

(Basler et al., 2013). The peptides are then transported to the endoplasmic reticulum 

with the help of a transport protein called TAP, and then loaded onto the MHC I 

molecules (Panter et al., 2012). Usually the peptides generated by the proteasome are 

derived from the cell’s own proteins but in the case of viral infection of the cell, also 

viral peptides will be produced and funneled for presentation by the MHC I 

molecules. In addition, cytokines produced in the presence of a viral infection 

increase the activity of the proteasome (Basler et al., 2013) and induce higher 

expression of the MHC I proteins, leading to effective recognition of the foreign 

antigen by activated CD8
+
 cytotoxic T cells and killing of the infected cells. 

6.4.3 Activation of T lymphocytes 

In order to be activated, a naïve T cell must recognize its specific peptide presented to 

it by an APC (Itano and Jenkins, 2003). This is called signal 1 and it is the sine qua 

non of antigen specific T cell activation (Murphy, 2012). In addition to this, the same 

APC must deliver signal 2, or costimulatory signal, in the form of B7 to the naïve T 

cell (Guermonprez et al., 2002). These two signals induce proliferation of the T cell, 

producing more cells with the same antigen specificity. The type of the T cell 

response will be determined by signal 3 consisting of the cytokine milieu in the lymph 
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node during the activation and partly of the strength of the TCR signaling (Zhu and 

Paul, 2010)(Fig.6). 

 

Memory T cells retain functional specialization from the original encounter with an 

antigen and a subgroup of them, the effector memory T cells, does not require 

costimulatory signals and can respond to the cognate antigen whenever it is presented, 

making memory responses to previously encountered antigens much faster (Mueller 

et al., 2013). 

 

In addition to antigen specific activation, T cells can also be activated to some extent 

in a TCR-independent manner by the cytokines produced upon inflammation (Tough 

and Sprent, 1998). However, the effect of this bystander activation to the immune 

response and its regulation have not been completely sorted out. 

 

6.4.4 CD4
+
 T lymphocyte effector functions 

Pathogens use diverse means for surviving inside the host, and, therefore, different 

defense strategies are needed for optimal clearance of different invaders. T cells are 

crucial in this process and the type of the ensuing immune response is largely dictated 

already in the first contact between a DC and a naïve T cell (Yamane and Paul, 2013). 

As noted before, the DC uses its TLRs and other PRRs to broadly recognize the type 

of the intruder and mediates this information to the activated T cells in the form of 

cytokines (Fig.7). 

6.4.4.1 Regulatory T cells 

In the absence of infection, the cytokine milieu in the lymph nodes is dominated by 

suppressive cytokines, mainly TGF-β secreted both by DCs and regulatory T cells 

(Tregs) expressing the transcription factor FoxP3 (Josefowicz and Rudensky, 2009). 

The FoxP3 expressing Treg cells can be divided in two main groups, the thymus 

derived ‘natural’ nTregs and the inducible iTregs arising from naïve T cells in the 

periphery. The nTregs are thought to have TCRs with relatively high affinity for self 

peptides (Liston and Rudensky, 2007) and their main role is to prevent autoimmunity. 

The iTregs have a different task: they develop in response to innocuous external 

antigens and commensal microbes to prevent unnecessary and potentially harmful 

responses at the outer limits of the body (Lehtimaki and Lahesmaa, 2013). 

 

In the steady state, Treg cells suppress the activation of naïve T cells and DCs by direct 

cell-cell contacts and secretion of suppressive cytokines (Sakaguchi et al., 2008). In 

addition, the DCs present self peptides on their MHC molecules in the absence of 

costimulatory signals. The naïve T cells recognizing the self-antigens are either 

deleted, made anergic (Hawiger et al., 2001), or directed to regulatory lineages, such 

as iTreg or TR1, producing IL-10 and more TGF-β and further suppressing activation 

of other T cells (Horwitz et al., 2008; Roncarolo et al., 2006). 
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Figure 6. Antigen presentation to T cells. Antigenic peptide is presented to 
the T cell (in this figure a CD4+ T helper cell) in an MHC molecule. Binding of 
the TCR to the peptide-MHC complex activates the T cell and the 
costimulatory signal in the form of B7 induces proliferation of the cell. 
Cytokines modulate the differentiation of the activated T cell. 
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6.4.4.2 TH17 cells 

Early in the immune response IL-6 is produced, especially if the pathogen is an 

extracellular, pyogenic bacterium. The combination of TGF-β and IL-6 induces the 

naïve CD4
+
 T cells recognizing their cognate antigen to differentiate to TH17 type 

helper T cells, which are efficient supporters of neutrophil activation and 

inflammation (Kroenke et al., 2008). TH17 cells express the transcription factor 

RORγt and secrete members of the IL-17 family and IL-6 (Bettelli et al., 2008). 

6.4.4.3 TH1 cells 

Intracellular pathogens, such as viruses and mycobacteria stimulate TLRs 3, 7 and 9, 

leading to production of IL-12 by the DCs and NK cells. This funnels the activated 

CD4
+
 T cells to TH1 type effector cells, characterized by the expression of the 

transcription factor T-bet and production of IFN-γ (Szabo et al., 2000). TH1 immunity 

is cell-mediated, boosting macrophage function and CD8
+
 T cell responses. TH1 cells 

induce B cell class-switching to IgG1 and IgG3 in the human immune system and 

IgG2a and IgG3 in the murine system (Murphy, 2012). 

6.4.4.4 TH2 cells 

TH2 cells are induced by IL-4 and TH2 responses are characterized by an IgE 

dominated humoral response and activation of mast cells, eosinophils and basophils 

but suppression of other cell-mediated immunity. TH2 cells produce IL-4, IL-5 and 

IL-13 and express the transcription factor GATA-3 (Zheng and Flavell, 1997). This 

branch of immunity appears to be directed against helminths and other parasites but in 

the affluent countries it is better known for its role in allergic diseases (Murphy, 

2012). 

6.4.4.5 TFH cells 

In addition to the four lineages described above, others have also been suggested. The 

follicular T helper cell (TFH) lineage has established itself in the recent literature, 

although it is still a matter of controversy, whether these cells arise directly from 

naïve CD4
+
 T cells or from cells that have already adopted a TH1, TH17 or TH2 

phenotype. Nevertheless, TFH cells are specialized to providing help to B cell 

responses in the B cell follicles (Fazilleau et al., 2009). IL-6 and IL-21 are associated 

with their induction, they secrete IL-21 and express the transcription factor Bcl-6 

(Awasthi and Kuchroo, 2009). 

6.4.4.6 Misguided T helper cell responses 

TH2 cells are notorious for their association with allergy but all Th lineages have a 

dark side of their own. TH1 responses lead to classical autoimmune diseases, if the 

response is directed against self-antigens. Misguided TH17 responses are also 

associated with autoimmunity, whereas excessive Treg activity can lead to chronic 

infections (Murphy, 2012). 

6.4.4.7 Other aspects of TH differentiation 

The cytokines elicit intracellular signaling in the TH cells via the Janus tyrosine kinase 

(JAK) – Signal-transducing activator of transcription (STAT) pathway. Activation of 

STAT1 and STAT4 leads to TH1 differentiation, whereas STAT6, STAT3 and STAT5 

are associated with TH2, TH17 and iTreg differentiation, respectively (Lönnberg et al., 

2013). In addition to the cytokine milieu, another important factor affecting the T 
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helper cell lineage choice is the strength of the TCR signaling. Strong TCR signals 

tend to favor the induction of TH1, TH17 and TFH lineages, whereas weaker TCR 

signaling due to low concentration of antigen or peptides binding to the TCR with low 

affinity tilt the balance towards the production of TH2 or Treg responses. However, the 

plasticity of the lineages makes it somewhat difficult to split the T helper cells into 

strict categories, since the lineage choice is not fixed: cells can invert to another 

lineage and intermediate phenotypes exist (O'Shea and Paul, 2010). 

6.4.5 Effects of complement on T cell immunity 

Complement activation or the lack of it can modulate T cell function in at least three 

different ways: by modifying the function of DCs and other APCs, by affecting 

chemotaxis of both APCs and T cells themselves (Ricklin et al., 2010) and directly by 

binding to receptors specific for different complement cleavage products present on 

the T cell surface (Fuchs et al., 2009; Heeger et al., 2005; Zaffran et al., 2001). On the 

systemic level, mice deficient in C3 produce impaired antiviral T cell responses (Fang 

et al., 2007; Kopf et al., 2002; Suresh et al., 2003) and display delayed rejection of 

skin allografts (Marsh et al., 2001; Peng et al., 2006). It has been suggested by some 

reports that C3 produced locally by the antigen presenting DC plays a crucial role in 

the induction of effector T helper cells (Peng et al., 2006). 

 

Closer analysis of the influence of complement in the functional differentiation of T 

helper cells has revealed that TH1 and TR1 responses are particularly dependent on 

complement. Ligation of the complement regulator CD46 (membrane cofactor 

protein, MCP) simultaneously with TCR stimulation on human CD4
+
 cells has been 

shown to induce differentiation to the TH1 lineage or to TR1 lineage, depending on the 

activation conditions (Cardone et al., 2010). CD46 has an intracellular signaling 

domain that can directly mediate changes in the cell (Astier et al., 2000) and recently 

it has also been suggested that CD46 forms a complex with a Notch-signaling 

pathway component Jagged-1 on the cell surface (Le Friec et al., 2012). Ligation of 

CD46 with complement cleavage products would then release Jagged-1 for activation 

of Notch-pathway. The four mammalian Notch proteins (Notch1-Notch4) are all 

expressed by CD4
+
 T cells and there are two groups of ligands for them, the Delta-

like ligands and the Jagged ligands. An in-depth review of the pathway is beyond the 

scope of this text. In brief, Notch ligands expressed by DCs affect the functional 

differentiation of CD4
+
 T cells in many ways and the Delta-like ligands appear to 

favor differentiation to the TH1 lineage, whereas the Jagged ligands promote TH2 

responses (Amsen et al., 2009). 

  

Figure 7. T helper cell differentiation. The functional differentiation of 
activated CD4+ T cells is directed by the local cytokine milieu. The crucial 
cytokines and signature transcription factors are presented in the figure. IL-
12 drives the differentiation of TH1 cells, which express T-bet and produce 
IFN-γ; IL-4 favors TH2 differentiation, GATA-3 expression and production of 
more IL-4 by the TH2 cells. TGF-β alone leads to differentiation of FoxP3 
expressing Treg cells, whereas TGF-β and IL-6 together induce the 
differentiation of Th17 cells expressing the transcription factor RORγt. The 
TFH cells express the transcription factor Bcl-6 and produce IL-21. However, 
the independency of the TFH lineage and the inducing cytokines (IL-6 and IL-
21 have been suggested) are a matter of some controversy (see text for 
details). 
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The exact intracellular signaling mechanisms following CD46 ligation are unknown 

and its effects can be partly mediated by Notch-signaling, as described above. 

Nevertheless, it is clear that CD46 mediates signals of complement activation to T 

cells, functioning as a costimulator of TCR signaling and promoting the induction of 

the TR1 phenotype. Intriguingly, the CD46-induced TR1 cells also express mucosal 

homing markers, such as the integrin α4β7, suggesting a role for complement in 

regulating the balance between T effector responses and tolerance in the mucosal 

immune system (Alford et al., 2008; Kemper et al., 2003). 

 

In the mouse CD46 expression is limited to the testis and another protein, Crry, 

carries out the complement regulatory MCP function of human CD46 (Li et al., 

1993). Crry ligation has shown to be costimulatory to the murine T cells (Fernandez-

Centeno et al., 2000) but analysis of its role in the induction of a regulatory phenotype 

in T cell has produced conflicting results (Alford et al., 2008; Ojeda et al., 2011). 

6.4.6 The humoral immune response 

Humoral immunity is based on the production of antigen-specific immunoglobulins or 

antibodies. They are soluble molecules that recognize and bind to their specific 

antigen with their Fab-sites, leaving a functional Fc part free for association with 

leukocyte Fc-receptors. Antibodies are produced by plasma cells differentiating from 

activated B cells. There are multiple subclasses of antibodies, which differ in their 

effector functions and the optimal clearance of a certain pathogen requires a particular 

set of antibodies (Schroeder and Cavacini, 2010). 

 

IgG is the most abundant antibody class in human serum and it is further divided to 

subclasses of lowering concentration as follows: IgG1 binds readily to Fc receptors on 

phagocytes and other cells, inducing phagocytosis and strongly enhancing 

inflammatory effector mechanisms; IgG2 is mainly directed against polysaccharide 

antigens and has weaker binding affinity to Fc receptors; IgG3 is an efficient activator 

of the classical pathway of complement; IgG4 has negligible affinity to Fc receptors 

and it is associated with tolerogenic responses and repeated exposure to an antigen 

(Meiler et al., 2008; Nimmerjahn and Ravetch, 2008; Schroeder and Cavacini, 2010). 

Production of IgG1 and IgG3 is associated with a TH1 type response, whereas IgG4 is 

associated with a TH2 or regulatory T cell response (Aalberse et al., 2009; van de 

Veen et al., 2013). 

 

IgM is produced early in the immune response and it can be produced to some extent 

without the help of T cells. The individual antigen binding sites of the IgM molecule 

have relatively low affinity for the antigen since the IgM producing B cells usually 

have not gone through the affinity maturation process (described below). The IgM 

molecule has a pentameric structure, which compensates for the lower affinity of the 

individual binding sites. Naïve B cells express IgM and IgD as their antigen receptors 

on the cell surface prior to the class switching process induced by T cells. IgD is not 

produced in soluble form and its role in the B cell function remains somewhat obscure 

(Schroeder and Cavacini, 2010). 

 

The two remaining antibody classes are IgA and IgE. IgA is associated with mucosal 

surfaces and tolerance, and most of it is secreted as a dimer across the mucosal 

epithelia (Woof and Mestecky, 2005). IgE binds to mast cells and is associated with 

TH2 type immunity and allergy (Erb, 2007). 
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6.4.6.1 The Role of T cells in immunoglobulin class switching 

B cell affinity maturation and immunoglobulin class-switching are driven by helper T 

cells. During the follicular reaction, activated B cells continuously compete with each 

other for T cell help in the form of CD40L (Lane et al., 1992). Proliferating B cells 

accumulate random mutations in their antigen receptor genes, leading to changes in 

the affinity of the receptor to the antigen (Shlomchik and Weisel, 2012). Those B 

cells that gain a higher affinity to antigen are able to collect more antigen and present 

its fragments to helper T cells, getting more CD40 signaling and increasing 

proliferation. This leads to increased affinity of the produced antibodies but at the 

same time also the function of the antibodies is modified in a process called 

immunoglobulin class switching. Cytokines produced by the helper T cells make the 

B cells to change the constant region of the antibody molecule from the IgM initially 

expressed by naïve B cells to other subtypes. TH1 cells usually induce production of 

IgG1 and IgG3 in humans and IgG2a and IgG3 in mice, whereas TH2 cells induce 

switching to IgE production by the B cells (Murphy, 2012) (Fig.8). 

6.4.6.2 Complement, antigen, and follicular dendritic cells 

B cell activation is facilitated by complement in two ways. First, C3b degradation 

fragments bind to CR2 receptors on the B cell, delivering a costimulatory signal to the 

B cell upon antigen binding to BCR (Dempsey et al., 1996). Second, antigen bound to 

CR2 receptors on follicular dendritic cells (FDCs) enhances B cell affinity 

maturation, antibody class-switching and generation of B cell memory (Roozendaal 

and Carroll, 2007). 

6.5 Regulation of adaptive immunity 

6.5.1 Development of T cells and central tolerance 

T cells develop in the thymus from lymphocyte precursors originating from the bone 

marrow. Upon arrival in the thymus the cells are committed to the T cell lineage in 

response to signals delivered by the thymic stromal cells (Zlotoff and Bhandoola, 

2011) and are thereafter called thymocytes, until they leave the thymus as naïve T 

cells. 

 

The function of T cells is based on the ability of the T cell population to recognize 

peptides from any foreign intruder but remaining tolerant to self. Each T cell has a 

single, MHC restricted functional specificity, but due to the extreme diversity of the 

TCR repertoire of the T cell population, peptides derived from almost any foreign 

protein can be recognized by some T cells (Arstila et al., 1999). These characteristics 

of the T cell population stem from the elaborate development of the thymocytes in the 

thymus. 

 

Thymocyte development begins with the recombination of the TCR gene segments. 

The TCR β-locus is recombined first and the ensuing protein product is tested for its 

ability to pair with a surrogate α-chain, pTα, on the cell surface (Brady et al., 2010). 

The random recombination process creates great diversity in the produced β-chains 

but also a lot of wasting; most of the recombinations are nonproductive, leading to 

apoptosis of the cell. The γδ T cells, which are beyond the scope of this text, also 

diverge from the αβ-lineage at this point.
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Figure 8. B cell affinity maturation and immunoglobulin class switching. 
B cell affinity maturation is driven by T helper cells. The proliferating B cells 
continuously compete for T cell help in the form of CD40 signaling and 
cytokines. Those B cells that manage to increase the affinity of their BCR for 
the antigen are able to capture and present more antigen to the T cells, 
leading to higher rate of proliferation of those B cells. Simultaneously, the 
cytokines produced by T cells drive the immunoglobulin class switching by B 
cells. 
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Thymocytes with successfully recombined TCR β-chains then proliferate for a few 

cycles and start to express CD4 and CD8 on their surface. At this point they are called 

double-positive (DP) thymocytes and they start to recombine the TCR α-locus 

(Carpenter and Bosselut, 2010). In the α-locus multiple successive recombinations 

can be made and the recombination process continues until the cell dies by neglect in 

the absence of signals or is positively selected by the binding of the αβ TCR to a self 

peptide-MHC complex. If the recognized MHC molecule is type I, then the 

thymocyte loses the expression of CD4 and becomes a CD8 single-positive (SP) cell, 

whereas recognition of an MHC II molecule leads to a CD4 SP phenotype. Positive 

selection also leads to the cessation of the recombination of the α-locus. 

 

Positive selection is required for the testing of the functionality of the TCR, but the 

thymocytes are also tested for their potential autoreactivity in a process called 

negative selection (Klein et al., 2009). In addition to the proteins necessary for cell 

function, the thymic epithelial cells produce peripheral proteins for presentation by 

thymic DCs to the thymocytes (Derbinski et al., 2001). Thymocytes binding with high 

affinity to a self peptide-MHC complex are negatively selected and die by apoptosis, 

purging the T cell repertoire of highly autoreactive cells and leading to central 

tolerance. 

 

However, there lies a thin line between purging autoreactivity and loss of 

functionality. Too vigorous elimination of all autoreactivity from the mature TCR 

repertoire would lead to decreased ability to respond to foreign peptides with minor 

differences from self peptides. Therefore, the TCR repertoire includes also 

autoreactive clones but these are usually kept in check by peripheral mechanisms. In 

addition, some autoreactive thymocytes are programmed to the Treg lineage, 

suppressing other autoreactive T cells in the periphery (Sakaguchi et al., 2010). 

 

Humans have a functional T cell population already at birth and the thymus continues 

to produce T cells after birth, peaking at puberty. After this the thymus begins to 

involute and the T cell population is thought to maintain its numbers by low-level 

proliferation in the periphery. In the mouse the T cell population is established during 

the first few days after birth; thymectomy at birth results in an almost complete lack 

of T cells in the mouse. 

 

B cells develop in the bone marrow, where recognition of interstitial self antigen by 

the BCR leads to death of the B cell precursor. This negative selection will remove 

cells recognizing native extracellular self antigens from the B cell repertoire, but the 

cells are not tested for reactivity against intracellular antigens or fragmented self 

antigens (Hentges, 1994). 

6.5.2 Peripheral tolerance 

The central tolerance cannot prevent all autoimmunity, and peripheral measures are 

important in avoiding self-reactivity. Perhaps most importantly, naïve lymphocytes 

are isolated from tissue antigens by preventing their entry to tissues (Mueller, 2010). 

Instead, they recirculate continuously in the bloodstream and enter peripheral 

lymphoid tissues, searching for their cognate antigen presented by a DC. If the DC 

has not been activated by recognition of PAMPs, it will induce the T cells recognizing 

peptides carried on its MHC molecules to adopt a regulatory phenotype or to go to a 

permanent state of unresponsiveness called anergy (Hawiger et al., 2001). 
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Furthermore, self peptides presented by DCs activate thymus-derived Treg to secrete 

suppressive cytokines in the peripheral lymph nodes (Sakaguchi et al., 2008), further 

bolstering the tolerogenic state (Fig.9). The importance of the peripheral tolerance is 

highlighted in the mucosal immune system, which is the topic of the next section. 

6.6 Mucosal immunity 

6.6.1 The original vertebrate immune system 

It has been proposed that the adaptive immune system of the vertebrates has originally 

evolved in the mucosal tissues (Rodriguez et al., 2012) and it has been estimated that 

up to 70% of all lymphoid cells reside in the mucosal immune system (Pabst et al., 

2008). The gastrointestinal tract is a particularly challenging environment for adaptive 

immunity due to the continuous exposure to commensal microbes and protein 

antigens derived from food. The intestinal immune system should remain tolerant to 

these innocuous antigens but still keep up the ability to respond rapidly to pathogens 

lurking among the abundant harmless antigens.  

6.6.2 Organization of the intestinal immune system 

The organized lymphoid tissues of the intestine include the Peyer’s patches of the 

small intestine and isolated lymphoid follicles, which are found both in the small and 

the large intestine. The epithelium covering these structures contains highly 

specialized epithelial cells known as the M-cells, capable of transporting antigen from 

the gut lumen to the underlying lymphoid tissue (Mowat, 2003). The subepithelial 

dome of the Peyer’s patch is rich in DCs, T cells and B cells and below it there are B 

cell follicles surrounded by T cell areas (Debard et al., 2001). The isolated lymphoid 

follicles are smaller than Peyer’s patches and contain mainly B cells (Hamada et al., 

2002)(Fig.10). 

 

In addition to the organized lymphoid tissues, lymphoid cells are found scattered all 

over the intestinal tissue. DCs, macrophages, T cells, B cells and plasma cells are 

present in the connective tissue (lamina propria) underlying the intestinal epithelium 

and lymphocytes are found also in the epithelium. Lymphatic vessels collect lymph 

originating from the lamina propria, the Peyer’s patches and the lymphoid follicles to 

the mesenteric lymph nodes, which connect the mucosal immune system to the 

systemic immunity (Wagner et al., 1998). 

6.6.3 Mucosal tolerance 

T cells are the key to tolerance also in the mucosal system. In the human system, the 

T cell population is already established at birth, so the central tolerance cannot purge 

the T cell repertoire from cells recognizing antigens derived from food or commensal 

microbes. Therefore, mucosal tolerance relies mainly on peripheral mechanisms, most 

importantly the induction of iTregs and TR1 cells. Dendritic cells in the lamina propria 

are conditioned by TGF-β and retinoic acid (RA) to favor tolerance and once they 

travel to the mesenteric lymph nodes, they induce naïve T cells to differentiate to 

regulatory cells with mucosal homing markers integrin α4β7 (Alpan et al., 2001; 

Meyer et al., 2012). These T cells then travel to the lamina propria, where they are 

further supplied and replenished by signals from macrophages sampling the gut lumen 

for antigen (Hadis et al., 2011). 
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6.6.4 Oral tolerance 

Oral tolerance is a special form of tolerance, leading to both intestinal and systemic 

unresponsiveness of the immune system to a protein antigen administered orally 

before systemic challenge. The phenomenon was first described in 1946 (Chase, 

1946) and has thereafter been extensively studied in murine models (Mowat, 2003). It 

can be reached with repeated small doses of antigen leading to a regulatory T cell 

response, or with a single high dose of antigen, leading to deletion and apoptosis of 

the antigen-responding cells. In the mouse, oral tolerance manifests as reduced 

antigen-induced T cell proliferation and lower levels of antigen-specific 

immunoglobulins, IgE in particular (Weiner et al., 2011). 

 

The underlying mechanism of the systemic tolerance in oral tolerance is not fully 

understood. It is possible that the protein antigen disseminates systemically via the 

bloodstream and ends up in peripheral lymph nodes or even thymus. In the absence of 

danger-signals, this would lead to tolerogenic presentation of the antigen by DCs and 

induction of regulatory T cells. Another possibility is that some of the mucosally 

induced regulatory T cells spread to other lymphoid tissues either after leaving the 

mesenteric lymph nodes or after a round of further proliferation in the lamina propria 

(Hadis et al., 2011). 

Figure 9. Inhibition of T cell activation by regulatory T cells. Treg cells 
inhibit the activation of autoreactive T cells by binding to B7 molecules with 
their CTLA-4 molecules, blocking the B7-CD28 costimulatory signaling and 
by secreting suppressive cytokines TGF-β and IL-10. 
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The ability to induce tolerance by the oral route is a promising way for treating 

autoimmune diseases. Experimental mouse models of human disease have been 

successfully treated with oral antigen, leading to amelioration of the symptoms or 

even prevention of the onset of the disease (Mayer and Shao, 2004; Zhang et al., 

1991). 

 

Only quite recently have experiments with human subjects shown that similar 

mechanisms of tolerance to orally administered protein antigen function in humans. 

Based on results from experimental work with the neoantigen KLH, it would appear 

that human oral tolerance centers more on T cell responses, whereas antibodies to oral 

antigen are still produced (Husby et al., 1994). 

 

Unfortunately, attempts to treat human autoimmune disease with oral tolerization 

have failed. Oral administration of insulin to patients with type 1 diabetes has failed to 

induce clinically significant tolerance (Monetini et al., 2004; Pozzilli et al., 2000). 

One explanation to this failure is that murine models of autoimmune disease have 

usually been treated with oral antigen before or at the induction of disease, whereas in 

humans the treatment comes at a time when a full immune response has already 

developed. However, even a study, where relatives of diabetic patients were treated 

with oral insulin, failed to reduce the incidence of diabetes in this high-risk group 

(Hanninen and Harrison, 2004). 

6.6.5 Tolerance to commensal organisms 

Tolerance to the intestinal commensal organisms is based on both anatomical and 

immunological factors. The commensal bacteria do not possess virulence factors 

required for penetration of the mucosal epithelium and are normally confined to the 

gut lumen (Sansonetti, 2011). Their antigens are presented to the immune system in 

the Peyer’s patches by the means of M cell mediated transportation. The DCs in the 

Peyer’s patches present the commensal antigens to T cells, inducing differentiation to 

the Treg lineage and expression of mucosal homing markers. B cells are programmed 

to produce IgA and to home to mucosal tissues (Kelsall, 2008). Since the produced 

IgA is mostly transported to the gut lumen and the responding lymphocytes are kept 

in the mucosal tissues, the systemic immunity ignores the commensal antigens in the 

steady state. Therefore, the systemic immunity remains capable of responding to the 

commensal organisms, in case they would spread into the circulation (Slack et al., 

2009). 

Figure 10. Organization of the mucosal immune system. 
The organized lymphoid tissues of the intestine include Peyer’s patches, 
isolated lymphoid follicles and the mesenteric lymph nodes (mLN, not 
shown). The Lymphoid follicles contain mainly B cells, whereas the Peyer’s 
patches have a T cell area and B cell follicles. The subepithelial dome of the 
Peyer’s patch (lower panel) is rich in DCs and the overlying epithelium 
contains M cells specialized for transport of luminal antigens. In addition to 
the organized lymphoid tissues, also the lamina propria contains DCs and 
numerous lymphocytes. Lymphocytes are also present in the epithelium. 
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7 AIMS OF THE STUDY 

 

In this study, we wanted to clarify the role of the complement system in shaping and 

regulating the adaptive immunity on the systemic level. The specific aims were: 

 

(1) To study the role of complement system in the induction of an adaptive immune 

response to a protein antigen in a strongly proinflammatory context in a C3 deficient 

mouse model. 

 

(2) To define the effect of complement on the induction of oral tolerance in the C3 

deficient mouse model. 

 

(3) To characterize the state of the mucosal tolerance in two Finnish C3 deficient 

human patients. 

 

(4) To analyze the differentiation pattern of T helper cells and the adaptive immunity 

in response to vaccination with tetanus and diphtheria toxoids on the systemic level in 

a unique set of samples from eight C3 deficient human patients. 
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8 MATERIALS AND METHODS 

8.1.1 Patient samples 

Blood samples from the studied two Finnish C3 deficient patients were collected 

during their regular follow-up hospital admissions. Archived serum samples collected 

from these two patients and six other C3 deficient patients from different countries 

were used for measurements of serum levels of complement proteins and 

immunoglobulins. Blood and sera collected from healthy donors were used as 

controls. The controls were age-matched with the patients whenever possible, but due 

to the young age of the patients the matching was not perfect in every occasion. 

8.1.2 Mice 

The animals used in the study were C3-KO mice in the C57bl/6 background with 

wild-type C57bl/6 mice as controls. The knockout mouse strain has been generated by 

professor Marcela Pekna and colleagues, and is described in detail elsewhere (Bykov 

et al., 2006; Pekna et al., 1998). In brief, embryonic stem cells from the 129Ola 

mouse strain were transfected with a gene construct, where the exon 24 of the mouse 

C3 gene had been replaced with a neomycin resistance cassette (neo). Cells that had 

incorporated the construct in their genome were selected by culturing them in the 

presence of the antibiotic G418, which blocks protein synthesis in cells not expressing 

the neo. Surviving stem cells were injected into C57bl/6 blastocysts and implanted 

into the uterus of pseudopregnant C57bl/6 mice. The resulting chimeric offspring 

were bred with C57bl/6 mice and the heterozygous C3+/- mice in the next generation 

were intercrossed to produce homozygous C3-/- mice with a mixed 129Ola/C57bl/6 

background. These mice were then backcrossed to the C57bl/6 genetic background 

for multiple generations. 

8.1.3 Induction of oral tolerance in the experimental animals 

To induce oral tolerance in the mouse model, the animals were given repeated 

intragastric doses of 1mg ovalbumin (OVA, Grade V, Sigma-Aldrich) in 

physiological saline or saline only. The intragastric gavage was repeated altogether 

eight times during a period of four weeks. 

8.1.4 Immunization of the experimental animals 

After a resting period of two weeks the OVA-fed animals were immunized with 50μg 

OVA in complete Freund’s adjuvant and boosted with 50μg OVA in incomplete 

Freund’s adjuvant. For immunization studies, the mice were immunized in a similar 

manner but with varying doses of 50μg, 100μg and 150μg of OVA and without prior 

oral administration of antigen. 

8.1.5 Immunohistochemistry 

Local mucosal T cell response in the OVA-fed mice was assessed by staining sections 

of the jejunum with anti-CD3 antibody. CD3 is part of TCR co-receptor complex and 

is expressed by all T cells. Tissue samples were embedded in Tissue Tek OCT-

compound (Sakura Finetek) and frozen immediately in liquid nitrogen. Sections of the 

samples were fixed on slides in -20°C acetone and stained with a monoclonal rat anti-

mouse antibody (Caltag) followed by a secondary antibody and peroxidase based 

detection of positively stained cells. The density of CD3
+
 cells in the lamina propria 
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was counted by using an Olympus BX50 microscope (Olympus), and expressed as 

cells per square millimeter. 

8.1.6 Cell isolation 

Mouse spleens were collected aseptically and homogenized mechanically. Red blood 

cells were lysed by incubating the cells in RBC-lysing buffer (Sigma-Aldrich) or 

aqua. Cells from peripheral lymph nodes were released from the tissue mechanically. 

 

Human peripheral blood mononuclear cells (PBMCs) were isolated from heparinized 

blood samples with Ficoll-Paque PLUS (GE Healthcare) density gradient 

centrifugation. The cells were either used directly for analysis by various methods 

described below or cryopreserved for later use with the CTL-Cryo™ ABC Media Kit 

(Cellular Technology Limited). 

8.1.7 Cell culture 

Primary cell culture with mouse splenocytes and human PBMCs was performed on 

96- and 24-well tissue culture plates. Mouse splenocytes were stimulated with OVA 

(10μg/ml), plate-bound anti-mouse CD3 mAb (BD Biosciences), or anti-mouse Crry 

mAb (BD Biosciences) or both antibodies. Human cells were stimulated with plate-

bound anti-human CD3 mAb (BD Biosciences) with or without soluble anti-human 

CD28 mAb (BD Biosciences) or with soluble tetanus toxoid (TT). 

 

Antigen-specific stimulation of mouse splenocytes with OVA was performed in 

Dulbecco’s modified Eagle medium (DMEM; in-house product, Haartman Institute) 

supplemented with 10% fetal calf serum (FCS; Invitrogen), 10 mM HEPES, 2 mM L-

glutamine, 50μM 2-mercaptoethanol, 100 μg/ml streptomycin, and 100 U/ml 

penicillin (all from Sigma–Aldrich), whereas CD3/Crry stimulation was carried out in 

serum-free conditions with CTL-wash medium (Cellular Technology Limited) 

supplemented with glutamine, mercaptoethanol and antibiotics as above. 

 

Medium for human PBMC stimulation assays was RPMI supplemented with 10% 

pooled inactivated human AB-serum. HEPES, glutamine, mercaptoethanol and 

antibiotics were included as above. 

8.1.8 Proliferation assay 

After 3 days (anti-CD3 stimulations) or 5 days (antigen-specific stimulations) of cell 

culture the wells were pulsed with tritiated thymidine (3.7 × 10
4
 Bq per well; GE 

Healthcare). The samples were harvested 6 hours later with a Skatron harvester 

(Newington), and the amount of thymidine incorporated into the DNA of proliferating 

cells analyzed with a Microbeta liquid scintillation counter (Wallac) using OptiScint 

HiSafe scintillation fluid (PerkinElmer). The results are shown either as counts per 

minute (cpm) so that the background cpm value observed in unstimulated wells has 

been subtracted from the cpm of stimulated wells, or as a stimulation index, where the 

cpm value measured in the stimulated wells has been divided with the cpm of 

unstimulated wells. 

8.1.9 Flow cytometry 

The flow cytometry experiments presented in this study have been carried out with 

three different cytometers: the FACScan and the FACSAria (BD Biosciences) and the 

Cyan ADP (DAKO Cytomation). Analyses were carried out from mouse splenocytes 
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and human PBMCs both freshly after isolation and after the above-mentioned 

stimulations in cell culture. 

 

The surface markers on the target cells were first stained with monoclonal antibodies 

conjugated to fluorescent molecules either directly or in some cases via the use of 

secondary antibodies or biotinylated primary antibodies followed by streptavidin with 

a fluorescent label. The cells were then permebilized to allow staining of intracellular 

antigens. For staining panels targeted on antigens residing in the cytosol or 

endoplasmic reticulum and intracellular vesicles, such as cytokines, the IC-fix buffer 

set (eBioscience) was used. For staining of nuclear antigens, such as transcription 

factors, the FoxP3 fixation and permeabilization kit (eBioscience) was used. 

 

In mouse experiments the studied surface antigens were CD4 (T helper cells), CD8 

(Cytotoxic T cells) and CD19 (B cells). Intracellular staining of murine splenocytes 

was carried out with anti-mouse T-bet (TH1 cells), GATA-3 (TH2 cells), FoxP3 (Treg 

cells) and IL-17a (TH17 cells). In some experiments, mouse splenocytes were labeled 

with CFSE (CellTrace CFSE Cell Proliferation Kit, Invitrogen) prior to stimulation to 

allow the identification of proliferating cells with the flow cytometer at the end of the 

cell culture. 

 

For human PBMCs, monoclonal antibodies to CD4, CD8, integrin α4 and β7 

(mucosally homing cells), CD69 (activated cells), CD45RO (activated/memory cells), 

CD25 (activated/regulatory cells) and CD127 were used for surface staining and 

intracellular staining for FoxP3, CTLA-4, IL-10, IFN-γ, IL-4, IL-17 and TGF-β1 were 

carried out in various combinations. 

8.1.10 RNA isolation and cDNA synthesis 

Mouse splenocytes, cells isolated from peripheral lymph nodes and tissue samples 

were lysed by using TriPure Isolation Reagent (Roche) and mechanical 

homogenization. Total RNA was then isolated from the solution with RNeasy 

MiniKit columns (Qiagen). First-strand cDNA was synthesized by using AMV-

reverse transcriptase enzyme (Finnzymes) and oligo-dT-primer (Sigma-Aldrich).  

8.1.11 Quantitative real-time PCR 

Quantitative real-time PCR analysis was performed with the iCycler-IQ instrument 

(Bio-Rad Laboratories). Assays for mouse transcription factors T-bet, GATA-3, 

RORγt and FoxP3, mouse cytokines IL-4, IL-10, IL-12a (p35) and IFN-γ, and for the 

house-keeping gene HPRT were commercially available, whereas mouse TCR Cα 

was an assay-by-design product consisting of the primers 5’-CAA AGA GAC CAA 

CGC CAC CTA and 5’-CGG TCA ACG TGG CAT CAC, and probe 5’-6FAM-CCA 

GTT CAG ACG TTC CC-quencher. All assays were intron-spanning primer-probe 

assays purchased from Applied Biosystems (Foster City, CA). Relative expression 

levels were normalized against HPRT or TCR Cα expression, as indicated. 

8.1.12 Mouse immunoglobulin and cytokine measurements 

Mouse serum was collected at the end of the animal experiments and OVA-specific 

immunoglobulin subclasses were measured with enzyme linked immunosorbent assay 

(ELISA). Microtitre plates were coated over night with OVA (2μg/ml) and samples 

were then added on wells, diluted in PBS supplemented with 1% bovine serum 

albumin (BSA). Bound antibodies were detected with isotype-specific biotinylated 
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anti-mouse antibodies followed by streptavidin-horseradish peroxidase (HRP) (all 

from BD Biosciences) and peroxidase substrate (Kirkegaard & Perry Laboratories). 

The results are shown as optical density (OD) at 405 nm. Mouse IL-10 levels in cell-

culture supernatants were measured with a commercial ELISA reagent set (Mouse IL-

10 ELISA Ready-SET-Go; eBioscience) following manufacturer’s instructions. 

8.1.13 Microbiology 

Strains of commensal microbes (Saccharomyces cerevisiae, Bacteroides fragilis, 

Eschericia coli, Klebsiella oxytoca, Acinetobacter sp., Enterobacter cloacae, 

Corynebacterium sp., Proteus mirabilis, Staphylococcus epidermidis and 

Streptococcus viridans) were isolated from clinical samples or healthy volunteers, and 

grown in suitable broth to mid-log phase. Microbes were then washed twice and the 

concentration adjusted to 0,6 OD at 600 nm in phosphate buffered saline (PBS). This 

suspension was used for coating of a MaxiSorp microtitre plate (Nunc Thermo Fisher 

Scientific), which was let dry over night at +37°C before use for the measurement of 

human anti-commensal serum immunoglobulin levels. 

8.1.14 Human anti-commensal immunoglobulin measurements 

For human commensal microbe ELISA, sera were heat-inactivated at +56°C for 30 

minutes prior to use. Serum samples from C3 deficient patients and healthy controls 

were titrated for optimal dilution in PBS. Microbe-coated plates were washed with 

PBS containing 0.05% Tween and diluted serum then incubated in the wells for 1 h at 

room temperature. After washing, bound IgG and IgA were detected by incubation 

with HRP-conjugated anti-human IgG or IgA (Jackson) 1:5000 in PBS. OPD 

substrate solution (Dako) supplemented with hydrogen peroxide was then added on 

wells and reaction stopped with 0.5 M H2SO4. The amount of bound antibody was 

measured as OD at 492 nm. 

8.1.15 Vaccine responses and measurements of serum immunoglobulins 

The levels of antigen specific immunoglobulin subclasses were measured in serum 

samples from C3 deficient patients (n=8) and healthy controls (n=38). Two vaccine 

antigens (tetanus toxoid and diphtheria toxoid) were used for these measurements. 

Microtitre plates regularly used for clinical measurements of tetanus and diphtheria 

toxoid responses were kindly provided by the HUSLAB immunology department. 

Sera diluted in PBS with 1% BSA were incubated over night in the wells followed by 

isotype specific mouse anti-human Ig antibodies. HRP-conjugated anti-mouse Ig 

antibody was then added, followed by OPD substrate. The results were measured as 

OD at 492 nm. 

 

Levels of total immunoglobulins (IgM, IgA, IgG, IgG1, IgG2, IgG3, IgG4, IgE) in 

human serum samples and vaccine responses to serogroups of Streptococcus 

pneumoniae and to tetanus toxoid were measured following standard diagnostic 

ELISA procedures (HUSLAB and National Institute for Health and Welfare, 

Helsinki, Finland). 

8.1.16 Serum cytokine measurements 

Milliplex magnetic bead panel (Millipore) was used for the detection of cytokines 

with the Luminex xMAP system (Luminex) following the manufacturer’s 

instructions. The beads coupled with mAbs to cytokines were sonicated, mixed, and 

diluted to bead diluents. The beads were then incubated with serum samples at 4°C 
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overnight, followed by incubation with detection antibodies for 1 hour, after which 

streptavidin-PE was added. The assay was analyzed with the Luminex 200 instrument 

(Luminex) using Luminex xPONENET software (version 3.1). 

8.1.17 Western blotting 

To determine the presence of human C3, serum samples and PBMC lysates were run 

in a 10% SDS-PAGE gel under reducing conditions. The proteins were then 

transferred to a nitrocellulose membrane, unspecific binding blocked with 5% milk 

and polyclonal rabbit anti-human C3c antibody (1:10 000; Dako) was then added and 

incubated at +4°C overnight. HRP–conjugated goat anti-rabbit antibody (1:10,000; 

Jackson ImmunoResearch Laboratories) was used as a secondary antibody. 

 

For mouse cell culture supernatants, Goat anti-mouse C3 antibody (1:2000; Bethyl 

Laboratories) was used to detect mouse C3 in undiluted supernatants, followed by 

HRP donkey anti-goat (1:5000; Jackson ImmunoResearch Laboratories) secondary 

antibody. Electrochemiluminescence was then used to detect the bound antibodies in 

both murine and human samples. 

8.1.18 Other complement measurements 

The hemolytic activity of the classical pathway of complement (CH100Cl) was 

measured with an enzyme immunoassay, and the serum concentration of C3 was 

measured with immunoturbidimetry, both according to standard diagnostic procedures 

(HUSLAB). 

8.1.19 Statistics 

The data are shown as means ± standard deviations (SDs) or as individual values. The 

statistical analysis was performed with the SPSS program, versions 19 and 20 (SPSS 

Inc.). For comparison of means in two groups the two-tailed Student’s t-test was used 

and for comparison of multiple groups the one-way ANOVA test with Tukey HSD 

post-hoc analysis was used. The paired samples t-test was used for analysis of the 

response of mouse splenocytes to Crry-stimulation. Correlations between variables 

were assessed with the Pearson’s correlation coefficient. In all analyses p < 0.05 was 

considered as limit of statistical significance. In some instances variation between 

different animal experiments was eliminated by normalizing the data in relation to 

variable mean value in the control group of each individual experiment, as indicated. 

 

In those instances, where the n in the patient group was two, no statistical tests were 

used and the data are shown as individual values compared to mean values in healthy 

controls. In addition, SD in the control group is indicated. 

8.1.20 Ethical considerations 

Written informed consent was obtained from the patients and healthy control subjects 

or their parents, or both, before sampling. The study plan considering the work with 

human subjects was accepted by the ethics committee of the Joint Municipal 

Authority of the Pirkanmaa Hospital District and by the ethics committee for 

pediatrics at the Helsinki University Central Hospital. 

 

The number of experimental animals used and the animal study protocol was 

approved by the Laboratory Animal Board of the Southern Finland Regional State 

Administrative Agency. 
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9 RESULTS 

9.1 Immune response in C3 deficient mice 

We started our work by studying the adaptive immune response to immunization with 

ovalbumin (OVA) in a C3 deficient mouse strain. Due to the central position of C3 in 

the complement cascade, activation of the complement system is blocked almost 

completely in this mouse model. The immunization was carried out with Freund’s 

complete adjuvant, which is a potent inducer of cell-mediated adaptive immune 

responses and TH1 type immunity. Wild-type animals of the background strain 

(C57bl/6) were used as controls (I). 

9.1.1 T cell proliferative response 

After immunization, splenocytes were stimulated in vitro with OVA and a 

proliferation assay was used to measure the antigen-specific proliferative response of 

memory T cells. In mice immunized with 50 μg OVA a clear proliferative response 

was observed in the WT group, whereas C3-KO mice had a significantly decreased 

response. When higher doses of OVA (100 μg and 150 μg) were used for 

immunization, also C3-KO mice showed a clear proliferative response but it remained 

lower than the response in WT mice immunized with the same dose of antigen. These 

data indicated that antigen-specific stimulation of T cells in the absence of C3 led to a 

reduced proliferative response (I). 

9.1.2 Functional differentiation of T helper cells 

Proliferation of T cells in response to an antigen is important for the initiation of 

adaptive immune responses but the simultaneous functional differentiation of CD4
+
 

cells to different T helper cell subsets is even more crucial for the outcome of the 

response. To analyze the impact of complement system on the induction of Th subsets 

we cultured splenocytes from mice immunized with 50 μg OVA for two days in the 

presence of OVA and measured the expression of Th lineage determining 

transcription factors on the mRNA level by quantitative PCR. In C3-KO mice the 

expression of TH1 associated T-bet was significantly lowered but the TH2, TH17 and 

Treg markers did not differ significantly between the study groups. 

 

Next we labeled the splenocytes with CFSE and stimulated them with OVA for five 

days. The stimulated cells were then stained for CD4 and the intracellular Th lineage 

markers, and the OVA-induced upregulation of these markers in the proliferating 

CFSE
low

 CD4
+
 cells was determined by comparing their expression to cells from the 

same donors cultured in the absence of OVA. This flow cytometric analysis showed 

that in WT splenocytes the stimulation induced a significant increase in the 

expression of T-bet, GATA-3 and FoxP3. In C3-KO splenocytes T-bet expression 

was not increased but the other lineage markers, including IL-17a, did show a 

significant positive response to antigen-specific stimulation. In conclusion, the 

upregulation of the TH1 associated transcription factor T-bet was impaired in C3-KO 

mice compared to WT mice both at the mRNA and protein level. 

 

To further analyze the basis of the impaired TH1 induction in C3-KO mice, we 

measured the expression of the TH1 inducing cytokines IL-12 and IFN-γ and the TH2 

inducing IL-4 in the axillary lymph nodes of mice immunized with 150 μg OVA. The 

qPCR analysis of the mRNA isolated from these collecting lymph nodes of the 
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immunization area showed that the cytokine milieu was less well suited for TH1 

induction in the C3-KO mice. Both IL-12 and IFN-γ had significantly higher 

expression in the WT mice compared to C3-KO mice, whereas IL-4 expression 

showed no difference between the mouse strains (I). 

9.1.3 Antigen specific antibody response 

B cells require T cell help for antibody production and for immunoglobulin class 

switching in particular. Cytokines secreted by Th cells responding to an antigen 

largely dictate the antibody subclasses produced by the simultaneously activated B 

cells and the plasma cells differentiating from them. Therefore, we expected that the 

observed disturbance in the functional differentiation of TH1 cells in our C3-KO mice 

would be reflected on the subclass profile of the antibody response elicited by the 

immunization. To test this, we measured the amount of OVA-specific IgG subclasses 

and IgE in the sera of the immunized animals. 

 

In the mice immunized with 50 μg of OVA the concentrations of OVA-specific IgG1, 

IgG2a and IgG3 were all significantly lower in the sera of the C3-KO mice as 

compared to the corresponding values measured from the WT mice. However, OVA-

specific IgE levels did not differ between the groups. The highest immunization dose 

of 150 μg OVA, which elicited a clear proliferative response also in the C3-KO mice, 

induced comparable IgG1 and IgG2a responses in the two mouse groups but the level 

of the TH1 associated IgG3 was significantly lower in the C3-KO mice also with this 

immunization dose. IgE levels remained similar between the groups also with the 150 

μg immunization dose. 

 

The deficiency in antigen-specific IgG subclass production in the C3-KO mice was 

not total, since all measured Ig subclasses were significantly elevated in the 

immunized WT and C3-KO groups compared to non-manipulated controls of the 

same mouse strain tested with the same assay. This suggests a defect in class switch 

regulation instead of a complete deficiency in B cell class switching to the antibody 

subclasses in question (I). 

9.1.4 Correlation of proliferation with the antibody response  

To evaluate the dynamics of the adaptive immune response induced by the 

immunization with OVA on the systemic level, we analyzed the correlation between 

the T cell proliferation induced by OVA stimulation in vitro and the levels of OVA-

specific IgG subclasses and IgE in the sera of the immunized animals. Pearson’s 

correlation coefficient was used to define the strength of correlation and the analysis 

was performed to a combined dataset of the three immunization doses (50, 100 and 

150 μg OVA). 

 

The correlation analysis revealed that in the WT mice, T cell proliferation had a 

strong positive correlation with the TH1 associated IgG subclasses IgG2a and IgG3 

(Pearson’s correlation coefficient 0.436 and 0.744; P < 0.02 and P < 0.001, 

respectively), whereas the proliferative response in the C3-KO mice correlated with 

the TH2 associated IgE (Pearson’s correlation coefficient 0.456; P < 0.02). No other 

significant correlations between the proliferative response and the antibody isotypes 

were found. 
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Taken together, these data indicated that immunization with OVA in Complete 

Freund’s adjuvant resulted in a TH1 dominated T cell and antibody response in the 

WT mice. In the C3-KO mice an OVA-specific T cell and humoral response was also 

observed but the T cell response was attenuated and the immune response in general 

was deviated towards a TH2 type response (I). 

9.2 Oral tolerance in C3 deficient mice 

9.2.1 T cell response after oral administration of antigen 

We studied the impact of the complement system on the induction of oral tolerance in 

the C3 deficient mouse model with a classical experiment of oral antigen 

administration followed by immunization with the same antigen. The mice were given 

repeated intragastral gavages of OVA in saline or saline only and then immunized 

with 50 ug OVA in Complete Freund’s adjuvant. At the end of the experiment, the 

distribution of the main lymphocyte populations in the spleen was analyzed with flow 

cytometry. 

 

In WT mice fed with OVA prior to immunization (WTOVA group) the CD4
+
 fraction 

of lymphocytes had increased compared to WT mice fed with saline (WTctrl group), 

with a concomitant decrease in the CD19
+
 fraction (B cells). The CD8

+
 fraction 

remained unchanged. The distribution of these fractions did not differ significantly 

between the WT and C3-KO mouse strains and the differences between C3-KO mice 

fed with OVA (C3OVA group) and C3-KO mice fed with saline (C3ctrl group) did not 

reach statistical significance. 

 

To test the induction of oral tolerance by the administration of oral antigen we then 

stimulated the splenocytes for five days with OVA in vitro and measured the 

proliferative response to the antigen stimulation. Splenocytes isolated from the WTctrl 

mice proliferated readily in response to OVA stimulation, whereas the proliferative 

response in WTOVA splenocytes was clearly reduced, indicating successive induction 

of oral tolerance in the WT mice. On the contrary, the proliferative response in the 

C3OVA group did not differ significantly from the response in the C3ctrl group. 

However, in line with the previous findings (I), the proliferative response also in the 

C3ctrl group was low, preventing the drawing of definitive conclusions on the 

tolerization in the C3-KO mice. 

 

Administration of OVA into the gastrointestinal tract of the experimental animals 

should dampen also the local mucosal response to the systemic immunization with 

OVA. We analyzed the local gut-associated response to OVA-immunization by 

measuring the density of CD3
+
 cells in the wall of the jejunum. The saline-fed WTctrl 

and C3ctrl mice had similar numbers of CD3
+
 cells in the jejunum, whereas the OVA-

fed WTOVA and C3OVA groups differed significantly from each other, with no decrease 

in the response in the C3OVA mice. These data suggested that in the absence of 

functional complement, the local T-cell response to immunization could not be 

prevented by prior mucosal exposure to OVA (II). 

9.2.2 Inhibition of the antibody response by oral antigen 

Attenuated T cell proliferative response is a classical sign of oral tolerance but also 

the humoral immune response is tolerized. To analyze the humoral response to 

immunization in the four experimental mouse groups, we measured the levels of 
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OVA-specific IgG1, IgG2a, IgG3 and IgE in the mouse sera at the end of the 

experiment. In the WT mice the oral administration had clearly induced oral 

tolerization of the antibody response. In WTOVA mice all the measured 

immunoglobulin subclasses had significantly lower levels compared to WTctrl mice. In 

contrast, the OVA-feeding had failed to induce tolerance in the C3-KO mice. There 

were no statistically significant differences in the OVA-specific immunoglobulin 

subclasses between the C3OVA and C3ctrl groups. 

 

The failure of the C3-KO mice to respond to oral antigen by inducing tolerance of the 

humoral response could not be explained by the generally weaker antibody response 

in this mouse strain, since the levels of OVA-specific antibodies of all the measured 

classes were significantly higher in all experimental groups compared to those seen in 

nonimmunized animals of the same mouse strain, indicating a broad OVA-specific B-

cell response to immunization also in the C3-KO mice. Furthermore, the TH2 

associated IgE levels were similar in the saline-fed WTctrl and C3ctrl groups, but OVA 

feeding resulted in a significant decrease only in the WT mice (II). 

9.2.3 Cytokine profile in vitro and in the mouse intestine 

In the recent years, the modulation of T cell responses by direct binding of 

complement fragments, and C3 cleavage products in particular, to receptors expressed 

on T cell surface has been an area of active research. The most interesting result is the 

discovery that on human T cells, the ligation of the widely expressed complement 

regulator membrane cofactor protein (MCP/CD46) in conjunction with TCR 

stimulation induces a suppressive TR1 phenotype in the activated T cells after an 

initial costimulatory effect (Cardone et al., 2010). The induced regulatory phenotype 

is characterized by production of IL-10 and, interestingly, also the expression of 

mucosal homing markers (Alford et al., 2008). 

 

In the mouse, CD46 expression is limited to the testis and the MCP function is carried 

out by Crry, a membrane protein expressed also on T cells. Ligation of mouse Crry 

has been shown to mediate a costimulatory signal to T cells, but its possible 

regulatory function is largely unknown, with only two reports linking it to IL-10 

production and regulatory T cell phenotype in a mouse model of arthritis (Banda et 

al., 2003; Ojeda et al., 2011). 

 

We asked if the mouse membrane cofactor protein Crry had a role in the induction of 

intestinal tolerance. First we analyzed the costimulatory and immunoregulatory 

functions of Crry ligation by an anti-Crry mAb on WT mouse splenocytes. The 

experiments were performed in a serum-free cell culture to exclude possible 

confounding effects of the complement proteins present in normal serum-based 

culture medium. Furthermore, the possible production of C3 by the cultured cells 

themselves was excluded by a sensitive Western blot assay of the culture 

supernatants; no C3 was detected. 

 

The costimulatory effect of the anti-Crry mAb was clear. The T cell proliferation 

induced by plate-bound anti-CD3 mAb was greatly enhanced when anti-Crry mAb 

was also present (stimulation index 11 in wells with anti-CD3 only, and 23 in wells 

with both mAb:s, n=4), showing that the ligation of Crry in this assay was functional, 

with a clear effect on intracellular signaling. 
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Next, we tested the consequences of Crry ligation in the absence of 

immunostimulatory signals by culturing the WT splenocytes with plate-bound anti-

Crry mAb alone. This stimulation did not induce proliferation, but it changed the 

cytokine balance in the cells, leading to significantly enhanced expression of IL-10 

mRNA and significantly reduced expression of IFN-γ mRNA, measured by qPCR. 

When the culture supernatants were analyzed for the presence of IL-10 with ELISA, 

the level of IL-10 was higher in the Crry stimulated wells compared to nonstimulated 

control wells, although the difference did not reach statistical significance. However, 

analysis of the anti-CD3 stimulated wells showed that when used in conjunction with 

TCR stimulation, the anti-Crry antibody clearly increased the production of IL-10, 

from 148 ± 64 pg/mL with anti-CD3 alone to 211 ± 102 pg/mL (P < 0.02). 

 

Finally, we moved back to the four experimental mouse groups fed with OVA or 

saline and immunized with OVA, and analyzed the local cytokine balance in tissue 

samples from the jejunum with qPCR. At the time of sampling, Peyer’s patches had 

been excluded from these tissue samples. The balance of expression of IL-10 and 

IFN-γ showed a significant shift towards the suppressive IL-10 in WTOVA mice, 

whereas there was no difference between the C3ctrl and C3OVA groups. We also tested 

the balance between IL-10 and IL-17, another proinflammatory cytokine. Also this 

analysis indicated a shift in the cytokine balance away from the tolerogenic IL-10 and 

towards the proinflammatory IL-17 expression in C3OVA mice compared with that 

seen in WTOVA mice. 

 

In conclusion, the mouse experiments indicated a dual role for the complement 

system in the regulation of T cell responses. On the one hand, complement activation 

is a proinflammatory signal enhancing T cell proliferation and TH1 differentiation. On 

the other, complement plays a role in the establishment of T cell tolerance. With this 

interesting finding in mind, we turned to study the interrelations of complement and T 

cells in the human system (II). 

9.3 Identification of two C3 deficient patients 

Patients with C3-deficiency usually display attenuated responses to immunization and 

their ability to produce a long-term antibody response has been suggested to be 

impaired. At the cellular level, the maturation of dendritic cells has been reported to 

be defective and the induction of TR1 cells from CD4
+
 T cells by simultaneous 

activation of CD3 and CD46 in the presence of IL-2 has been shown to be impaired. 

We identified two Finnish patients with permanent and total lack of serum C3. 

9.3.1 Clinical characteristics of Patient 1 

An 18 month old male patient (Patient 1) was referred to specialist consultation as a 

suspected case of primary immunodeficiency. He had suffered from prolonged 

pneumonia, which had, regardless of appropriate antimicrobial treatment, led to 

establishment of a pleural effusion and, ultimately, to pneumococcal sepsis 

(serogroup 6B). Upon examination of the immunological status he was found to have 

undetectable total complement hemolytic activity due to a total and permanent 

absence of the C3 protein in serum. Serum immunoglobulin levels, including IgG 

subclasses, were within the reference values, although IgG3 and IgG4 levels were 

low. Previously, he had suffered from otitis media once at the age of 10 months. 
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Four months later, at the age of 22 months, Patient 1 was hospitalized again due to 

pneumococcal sepsis (serogroup 35F). At this point prophylactic treatment with 

20mg/kg amoxicillin once a day was started. Thereafter, he has had no further 

invasive infections (II). 

9.3.2 Clinical characteristics of Patient 2 

Due to family history, the index patient’s younger male sibling (Patient 2) was also 

examined at the age of 11 months. He had had no preceding clinical symptoms. He 

was also found to have a total and permanent absence of the C3 protein. His IgG, IgA 

and IgM levels were normal, but IgG3 and IgG4 levels were abnormally low at the 

time of diagnosis. Prophylactic treatment with amoxicillin was started. 

 

Patient 2 suffered from atopic dermatitis in infancy and at the age of 4 years he was 

examined due to nightly wheezing and coughing. A panel of prick-tests to common 

allergens revealed positive reactions to cat and dog dander. However, the wheezing 

eased off without specific treatment. For the atopic dermatitis local glucocorticoids 

have been used successfully. 

 

Patient 2 was hospitalized once at the age of 18 months due to fever. Previously he 

had had rhinitis and coughing and upon clinical examination was found to have body 

temperature of 39.0°C, low total leukocyte count (2.9) and low CRP. Intravenous 

cefuroxime was started, followed by intravenous ceftriaxone, and the fever responded 

well to this treatment. However, CRP concentration in plasma remained low and 

blood culture revealed no causative agent. Later, at the age of 3 years, he had an 

episode of 3 days of fever up to 38.5°C with no focal symptoms. The fever eased off 

without specific treatment. At the age of 5 years he had an H1N1 influenza infection. 

No specific treatment nor hospitalization was needed and the infection cleared up well 

(II). 

9.3.3 The parents 

The non-consanguineous parents of the patients both had lowered levels of C3 in sera 

(0.5 g/L in the mother and 0.6 g/L in the father; reference value 0.71-1.41 g/L) but 

normal total hemolytic complement activity. Their clinical history showed no 

autoimmune morbidity or abnormal infectious diseases (II). 

9.4 Mucosal tolerance in C3 deficient patients 

9.4.1 Mucosally homing activated T cells 

The results obtained from our experiments on oral tolerance in the C3 deficient mice 

opened an interesting view on the role of the complement system in the mucosal 

immune homeostasis. Therefore, we tested if the C3-deficient patients would also 

have signs of abnormal mucosal immunity. The available sample material was limited 

to blood samples drawn from the Finnish C3 deficient brothers when they were 8.5 

and 7 years old. PBMCs were isolated from these samples and age-matched controls, 

and the expression of the mucosal homing markers integrin α4 and β7 was used to 

identify cells destined for the gut-associated lymphoid tissues. The activation status of 

CD4
+
 and CD8

+
 lymphocytes was analyzed by staining the cells for CD45RO and the 

early activation marker CD69. 
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The intestinally homing α4
+
β7

+
 lymphocytes of the C3 deficient patients had much 

higher frequency of CD69
+
 cells than the healthy control lymphocytes. This was true 

both for CD4
+
 and CD8

+
 cells, and the difference was most pronounced when 

compared to healthy children, as adult samples tended to have higher frequency of 

CD69
+
 cells. The frequency of CD45RO

+
 cells among the α4

+
β7

+
 lymphocytes in C3 

deficient patients was also higher than the average measured in the healthy control 

children, although most of the gut-homing lymphocytes were CD45RO
+
 in the 

controls as well. Analysis of the α4
-
β7

-
 T cells did not show differences in the CD69 

and CD45RO expression, indicating that the observed changes were specific to T cells 

destined for the gut-associated lymphoid tissues (II). 

9.4.2 Humoral immune response to commensal organisms 

The mucosal immune system is continuously exposed to harmless foreign antigens 

derived from food proteins and commensal organisms and avoidance of wasteful and 

potentially harmful immune responses to them is obviously beneficial to the host. The 

animal models of experimental oral tolerance used by us and other immunologists 

reflect this tendency of the intestinal immune system to avoid productive immune 

responses to foreign antigens encountered in the steady state (Weiner et al., 2011). In 

humans, defects in mucosal tolerance have been linked to mishandling of antigens 

derived from the commensal flora residing in the gut (Israeli et al., 2005; Russell et 

al., 2009), leading to abnormal immune responses directed against them. 

 

To analyze the pattern of reactivity to commensal organisms in the C3 deficient 

patients, we measured the serum levels of IgG and IgA specific to several species of 

commensal flora, especially those residing in the gut. The serum samples used for this 

analysis were taken from the patients when they were 2.5 years old. At this time the 

levels of total IgG and IgA in the patient sera were within the reference values.  

 

Compared to age matched controls, the serum levels of IgG against most of the 

studied microbes of the commensal gut flora were elevated in the C3 deficient 

patients. Notably, this was also true for IgG specific for the fungal commensal 

Saccharomyces cerevisiae, which is used as a biomarker for disease activity in 

patients with inflammatory bowel disease (Russell et al., 2009). 

 

Analysis of IgG levels against Staphylococcus epidermidis, which is associated with 

the skin, and Streptococcus viridans, which is associated with the oral cavity, showed 

no increase. For the most part, the levels of IgA specific for the commensal microbes 

were similar or slightly decreased in the C3 deficient patient sera compared to levels 

in healthy controls (II). 

9.5 Vaccination responses in C3 deficient patients 

9.5.1 Anti-pneumococcal response 

The studied two Finnish C3 deficient patients have been vaccinated broadly and 

repeatedly to prevent infectious complications. Analysis of the antibody responses 

elicited by the vaccinations showed that most of the vaccine antigens have induced 

adequate responses in the patients. However, when the antibody response against 

serogroups of Streptococcus pneumoniae was measured from sera collected from the 

patients at the age of 2.5 years, patient 1 had a protective level of specific antibodies 

against only one of the studied seven serogroups, despite the multiple vaccinations 



 55 

with a 7-valent conjugate vaccine (Prevenar, Pfizer; hereafter ‘pneumococcal 

vaccine’) and the clinical history of invasive pneumococcal infections. On the 

contrary, patient 2 displayed a relatively good serological response to the 

pneumococcal vaccination (II). 

9.5.2 Response to vaccination with tetanus- and diphtheria toxoids 

Our observations of the impaired TH1 immune response in the C3 deficient mice and 

of the perturbed mucosal tolerance in the absence of C3 in both mice and human 

subjects made us to ask, whether the human C3 deficiency would affect the dynamics 

of the systemic immune responses in a similar manner as in the mouse. To broaden 

our analysis from the case study of the two Finnish C3 deficient patients, we collected 

archived samples from other C3 deficient patients and ended up having sera from 

altogether eight patients. Although the clinical records obtained from these patients 

were not always perfect, we used this unique set of samples to evaluate the balance of 

the Th immune responses in the absence of C3 by a meticulous analysis of the 

antibody response to tetanus toxoid (TT) and diphtheria toxoid (DT). The antigen-

specific immunoglobulin subclasses reflect T cell immune responses due to the 

central role of Th cells in the stimulation of B cell responses and the instruction of 

immunoglobulin class-switching of the antigen specific B cells in particular. 

 

We measured the levels of antibodies of the IgA and IgG classes specific for TT and 

DT in the patient and control sera. For TT, we also measured the specific IgE and 

total IgE levels in the sera. TT and DT specific IgG levels did not differ significantly 

between the study groups, showing that vaccination of the C3 deficient patients had 

produced a clearly measureable antibody response comparable to that observed in the 

control sera. Also antigen specific IgA levels were similar in the study groups for both 

of the studied antigens. However, TT specific IgE levels were significantly lower in 

the patient sera and five out of eight patients had no measureable TT specific IgE. 

Levels of total serum IgE did not differ significantly between patients and controls but 

the two Finnish patients had higher serum IgE compared to other C3 deficient 

patients. 

 

Further analysis of the IgG subclasses IgG1, IgG2, IgG3 and IgG4 specific for TT and 

DT showed no difference between the study groups in the levels of antigen specific 

IgG1, whereas the other subclasses displayed clearly differing patterns between the 

groups. For both antigens, the TH1 associated IgG3 was present at significantly higher 

levels in the patient sera, whereas the tolerance-associated IgG4, which was highly 

expressed in the control samples, was practically non-existent in the patient sera. Also 

antigen-specific IgG2 was present at significantly lower levels in the patient sera (III). 

9.5.3 Dynamics of the PDT antibody response 

From our index case, patient 1, we possessed multiple serum samples collected at 

various time points before and after vaccinations. This allowed us to further dissect 

the dynamics of the antibody response to the TT and DT antigens. At the age of 24 

months, the patient received a booster PDT-vaccination. Serum collected at the day of 

vaccination showed that the previous PDT vaccinations given in the infancy had 

resulted in a clearly measureable TT-specific IgG3 response, whereas the serum 

levels of other IgG subclasses were relatively low. Four months prior to the PDT-

booster, the patient had received a pneumococcal vaccine for the first time (boosted 

three weeks before the PDT-booster) and also a HiB-booster vaccination. The latter 
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contains TT as protein conjugate but, interestingly, this vaccination had not induced a 

measureable humoral response to the TT. 

 

Two months after the PDT booster, the levels of TT-specific IgG, IgG1, IgG2 and 

IgG3 had clearly risen in response to the vaccination but there was no measurable 

specific IgG4 in the serum. At the age of 31.5 months (7.5 months after the PDT-

booster), however, the TT-specific antibody levels had already fallen clearly. 

 

Next, we measured the DT specific antibody response to the same PDT-booster. Also 

for DT, the previous vaccinations had induced a clear IgG3 response, whereas other 

DT-specific IgG subclasses were low in the serum at the age of 20 months. The two 

pneumococcal vaccinations, containing DT as the protein conjugate and given 

between the age of 20 and 24 months, had resulted in a DT-specific antibody response 

so that at the time of the PDT-booster all the DT-specific IgG subclasses were already 

on the rise. The PDT-booster induced a further rise in all DT-specific IgG subclasses. 

 

Similar to the TT-response, and despite a further pneumococcal vaccine-booster, also 

the DT-specific antibody levels had started to fall 7.5 months after the PDT-booster 

vaccination, suggesting a failure in the ability of the C3-deficient immune system to 

maintain a long-term humoral response to these protein antigens. 

 

The last sample collected at the age of 8.5 years (103 months) is the one included in 

the larger analysis of the IgG subclass distribution presented above, further 

underlining the tendency of the C3-deficient immune system to produce TT- and DT-

specific IgG3 and no IgG4. In the years between, the patient had received multiple 

rounds of immunizations with PDT and other vaccines containing TT and DT as 

protein conjugates (III). 

9.5.4 Serum cytokine profile 

The cytokine milieu in the organized lymphoid tissues guides the proliferating 

lymphocytes to adopt distinct effector functions associated with the different Th 

lineages (TH1, TH2, TH17 or Treg). Cytokines are efficient at mediating signals locally 

in the lymph nodes and other tissues but they spread also systemically in the 

bloodstream and can influence the function of the immune system also in other parts 

of the body. Therefore, the analysis of cytokines present in the serum gives 

information on the overall balance of the immune system. 

 

We measured the levels of a set of proinflammatory and suppressive cytokines in the 

C3 deficient patient sera and compared it to the levels found in control sera. In line 

with our previous results indicating a failure of tolerance in the C3 deficient system, 

the suppressive cytokines were generally expressed at lower levels in the patient sera 

and, furthermore, proinflammatory cytokines were expressed at higher levels. 

However, the individual variation was high and due to the small sample size only two 

cytokines, IL-12 and IL-21, both present at higher levels in the patient sera, displayed 

a statistically significant difference between the groups. As noted above, IL-12 is the 

most important inducer of TH1 differentiation and IL-21 is a potent activator of B cell 

responses. IL-12 is mostly produced by DCs and macrophages, whereas IL-21 is 

produced by T cells, especially TFH cells. 

 



 57 

Although not statistically significant, the lover average level of the suppressive IL-10 

in the patient sera and the higher average level of the proinflammatory IL-17A and 

IL-6 in the patient sera support the conclusion that the in the absence of C3 the human 

immune system is in a continuous proinflammatory status. 

 

The analysis of correlations between the cytokines and the TT and DT specific 

antibody subclasses revealed a connection between the elevated IL-12 and IL-21 and 

the difference in the levels of IgG3 and IgG4 in the patient and control sera. Serum 

IL-12 levels had a statistically significant positive correlation with both TT- and DT-

specific IgG3 levels and a statistically significant negative correlation with TT- and 

DT-specific IgG4 levels. Serum IL-21 levels correlated statistically significantly and 

positively with the TT-specific IgG3 levels and had a borderline positive correlation 

with DT-specific IgG3 levels. With IgG4, the IL-21 levels showed a statistically 

significant negative correlation for both TT- and DT-specific IgG4 (III). 

 

 

 

 

 

Table 1. Summary of the results and comparison of the characteristics of C3 

deficiency in human and mouse 

 

     Human    Mouse    

 

T cell proliferation   -   Decreased 

 

TH1 cytokines/transcription factors Increased (serum) Decreased (cell culture) 

 

TH1 associated  serum IgG  Increased  Decreased 

 

Serum IgE    Normal/increased Normal/increased 

 

Serum IgG4    Decreased  - 

 

IL-10     Decreased (serum) Decreased (cell culture) 

 

Mucosal T cells   More mucosally More T cells in the 

homing activated lamina propria 

     T cells    

 

Mucosal antibody response  More IgG against Failure of experimental 

     commensals  oral tolerance 
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10 DISCUSSION 

10.1 Immune response in C3 deficient mice 

The first part of this thesis (I) focused on the immune response induced by 

immunization with OVA in C3 deficient mice. The adjuvant used was Complete 

Freund’s adjuvant, which contains mycobacterial antigens and usually favors a TH1 

type response (Shibaki and Katz, 2002). Both C3-KO mice and the WT controls 

developed a clear OVA-specific immune response but several differences in the 

quantity and quality of the components of the immune response were seen between 

the mouse strains. 

 

The splenocytes isolated from WT mice proliferated more in response to OVA 

compared to C3-KO splenocytes and the antigen-specific stimulation induced an 

increase in the expression of the TH1 signature transcription factor T-bet in the WT 

but not in the C3-KO splenocytes. The profile of the OVA-specific serum antibodies 

showed lower levels of the TH1 associated IgG2a and IgG3 in the C3-KO mice, 

whereas the TH2 associated IgE levels were not affected by C3 deficiency. In 

addition, the C3-KO mice had higher levels of serum total IgE. Together, these 

observations pointed at a deficient induction of a TH1 immune response and deviation 

to TH2 type response in the C3-KO system. This conclusion was strengthened by the 

positive correlation between T cell proliferative response and IgG2a and IgG3 in the 

WT mice, whereas T cell proliferation correlated with IgE levels in the C3-KO mice. 

In other words, the antigen specific T cell response in the WT mice was associated 

with production of TH1 associated immunoglobulins but with TH2 associated 

immunoglobulins in the C3-KO mice. Moreover, the collecting lymph nodes of the 

immunization area had lower mRNA expression levels of the TH1 inducing cytokines 

IL-12 and IFN-γ in the C3-KO mice, suggesting that alteration of the cytokine milieu 

at the site of the induction of the immune response was one of the causes for the TH1 

impairment (I). 

 

The importance of complement in stimulating B cell responses has been known for a 

long time (Carroll and Isenman, 2012), and in our study setting the C3 deficiency 

clearly affected the humoral response to OVA-immunization. However, the parallel 

impairment of the TH1 type T cell response and the TH1 associated immunoglobulins 

indicated that the observed change in the humoral response in the C3-KO mice was at 

least partly secondary to the lack of T cell help (I). 

 

Complement activation can affect T cell responses in several ways, including direct 

binding of complement factors to complement regulatory proteins with signaling 

capacity on the T cell surface (Kemper and Atkinson, 2007). The local production of 

C3 by the DC and the T cell itself during the DC-T cell signaling in the lymph node 

has been suggested to be important for the efficient induction of T helper cell 

responses and of TH1 responses in particular (Cope et al., 2011; Peng et al., 2006). 

However, the study setting does not allow the separation of the effects of the local and 

systemic production of C3, and given the importance of complement for APC 

function in general, it is probable that the APCs, such as DCs, form the crucial link 

between complement and T cells in our experimental setting. 
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Antigen presentation and cytokine production are the central APC functions required 

for T cell activation. Both of these functions are modulated by complement activation 

products and are likely to be compromised in the C3 deficient system. The 

anaphylatoxins C3a and C5a are important in recruiting immune cells to the site of 

antigen exposure and in the general activation of the immune system. Opsonization of 

foreign particles by C3b promotes effective phagocytosis and this is further enhanced 

by C5a binding to its receptor on the APC. Therefore, the lack of functional 

complement will lead to deficient phagocyte migration and reduced antigen uptake, 

resulting in decreased antigen presentation to T cells in the C3-KO mice. This may 

have an impact on the Th balance, since previous studies have shown that antigen 

presentation at low concentration favors TH2 type responses (Grakoui et al., 1999). In 

our study setting, increasing the amount of OVA used in the immunization elicited a 

measureable proliferative response also in the C3-KO mice, suggesting that a higher 

concentration of antigen can partly compensate for the impaired antigen presentation 

in the C3 deficient system. 

 

In addition to the indirect effects of complement activation on antigen presentation, 

the anaphylatoxins C3a and especially C5a have more direct effects on the cytokine 

production of the APCs. Intracellular signaling from C3aR and C5aR synergizes with 

TLR signaling and modulates the expression of cytokines and the functional 

differentiation of Th cells (Drouin et al., 2002; Hawlisch et al., 2004). C5a signaling 

via C5aR and a more recently identified second receptor, C5L2, can either stimulate 

or downregulate the TLR induced IL-12 production by APCs (Hawlisch et al., 2005; 

Hawlisch et al., 2004; Karp et al., 2000), whereas C5aR deficient DCs have been 

shown to promote the differentiation of TH17 and Treg cells (Weaver et al., 2010). The 

adjuvant used in our immunization protocol contains antigens from killed 

mycobacteria, which activate multiple TLR pathways, the combined effect of which 

leads to the production of TH1 inducing cytokines, such as IL-12. The lack of 

anaphylatoxins in the C3-KO mice may disturb this process, leading to the lower IL-

12 production observed in our study setting. Interestingly, we did not see differences 

in the IL-17 or FoxP3 expression in our mouse model (I). 

 

Taken together, the immunization experiments with the C3-KO mice (I) showed that 

functional complement is required for the normal differentiation of T helper cells in 

mice, and that the lack of complement activation impaired the TH1 differentiation in 

particular. TH1 type immunity is mainly targeted against intracellular pathogens, such 

as viruses, whereas complement is an extracellular defense system present in the 

serum and the interstitial fluid. Therefore, the dependency of TH1 immune responses 

on complement activation may seem paradoxical. However, the intracellular 

pathogens are susceptible to complement attack during the extracellular phases of 

infection, and there are numerous examples of complement evasion strategies by 

intracellular pathogens, such as viruses. For example, HSV and HIV virions protect 

themselves from complement attack by coating their surface with hijacked host 

complement regulators (Lubinski et al., 2002; Speth et al., 2003). Also intracellular 

bacteria, such as Yersinia, use diverse methods for complement evasion, further 

highlighting the role of complement in the TH1 dominated defense against 

intracellular infections (China et al., 1993). Interestingly, another common feature of 

the mentioned pathogens is their mucosal route of infection, suggesting a special role 

for complement in the mucosal immunity. 
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10.2 Complement in mucosal tolerance 

To study the role of complement in the induction of oral tolerance, we used the same 

C3 deficient mouse model and immunization protocol as for the general studies on the 

systemic immune response. However, in this study setting the mice were given 

repeated doses of OVA or control saline solution into the gastrointestinal tract prior to 

the immunizations (II). 

 

In the WT mice, oral antigen suppressed the subsequent antigen-specific adaptive 

immune response clearly. The proliferation response of splenocytes was dampened 

and the local T cell response in the gut attenuated. The levels of antigen-specific IgG 

subclasses and IgE were significantly lowered in the serum of the OVA-fed mice at 

the end of the experiment. On the contrary, oral antigen failed to suppress the 

systemic T cell response and the humoral response in the C3-KO mice. Furthermore, 

the local cytokine balance in the jejunum was shifted from the expression of 

tolerogenic IL-10 to the inflammatory IFN-γ and IL-17 in the C3-KO mice (II). 

 

IL-10 has a central role in intestinal tolerance (Cong et al., 2002) and the 

simultaneous ligation of CD46 and CD3 on human CD4
+
 T cells has previously been 

shown to induce IL-10 production, regulatory TR1 phenotype and the expression of 

mucosal homing integrin α4β7 in vitro (Alford et al., 2008). The functional homolog 

of human CD46 in mice is Crry (Li et al., 1993), and we tested the response of WT 

splenocytes to Crry stimulation alone and combined with CD3 stimulation. Although 

previous work on the regulatory role of Crry in the murine system has provided 

conflicting results, in our hands the effect of Crry ligation on IL-10 production was 

clear: when simulated with anti-Crry mAb alone, the expression of IL-10 mRNA was 

significantly increased and the expression IFN-γ mRNA was significantly decreased 

in the splenocytes. When used simultaneously with anti-CD3 mAb, the Crry 

stimulation resulted in significantly increased IL-10 protein levels in the culture 

supernatants. These results suggested that Crry has an analogous role to human CD46 

in promoting IL-10 production in mouse T cells (II). 

 

TR1 cells are crucial to the maintenance of peripheral tolerance and they are especially 

important in the regulation of the intestinal immunity (Cong et al., 2002). In contrast 

to the thymic nTreg and inducible iTreg cells, the TR1 regulatory cells do not express 

FoxP3 and they probably do not represent a fixed lineage of T helper cells but rather a 

temporary functional phenotype dependent on external signals. Consistent with this 

and in line with the results from the immunization experiments, the samples collected 

from C3-KO mice and WT controls of the oral tolerance experiment did not differ 

significantly in the expression of FoxP3 and we did not see changes in FoxP3 

expression after Crry stimulation in vitro. 

 

A rare opportunity to broaden our analysis to the human system occurred with the 

diagnosis of two C3 deficient patients (II). The experimental setting was necessarily 

limited by the available sample material. We studied the expression of activation 

markers CD69 and CD45RO and the mucosal homing markers integrin α4β7 on T 

cells from peripheral blood to assess the activation status of T cells destined for the 

intestinal tissues and analyzed the levels of serum IgG and IgA specific for 

commensal microbes. The analysis revealed that the population of mucosally homing 

T cells included a higher frequency of activated cells in the C3 deficient patients 

compared to healthy controls. IgG levels against intestinal commensal organisms 



 61 

were elevated in the patient sera and the IgA levels were similar or slightly lowered 

compared to healthy controls (II). 

 

In inflammatory bowel diseases, a shift in the response to commensal organisms from 

local IgA production to IgG and productive immunity has been documented in earlier 

reports. In particular, the antibodies against the fungal commensal, Saccharomyces 

cerevisiae, which was also included in our analysis, have been used as a marker of the 

disease activity in these conditions (Israeli et al., 2005; Russell et al., 2009). The 

CD46-induced differentiation of TR1 has been demonstrated to be impaired in C3 

deficient patients (Ghannam et al., 2008), and our results suggested a shift in the 

balance of the mucosal immune system away from tolerance and towards productive 

immunity in the C3 deficient human subjects (II). Although the patients have not 

suffered from gastrointestinal symptoms, the tendency of the C3 deficient patients to 

develop autoimmune manifestations in the later age (Reis et al., 2006) could be 

associated with chronic stimulation of the immune system by mishandled commensal 

antigens. 

10.3 Systemic immunity in C3 deficient patients 

To assess the immune response elicited by parenteral antigen challenge in the C3 

deficient patients we analyzed the profile of serum antibodies specific for TT and DT 

in samples collected from eight C3 deficient patients (III) and compared it to the 

corresponding values in a control group of 38 healthy Finnish school children aged 7-

10 years (19 male and 19 female subjects). The vaccination history of the control 

subjects was not exactly known but according to the Finnish vaccination protocol 

almost every child is given a PDT vaccination at the age of 3, 5 and 12 months and 

boosted at the age of 4 years (Rapola, 2007). 

 

The analysis of the antigen-specific IgG levels in the control subjects confirmed a 

successful immunization of all control subjects to both studied antigens. Some of the 

controls also displayed a TT specific IgE response (III). 

 

The TT and DT specific IgG levels in the sera from C3 deficient patients did not 

differ significantly from the levels measured in control sera, indicating a successful 

immunization also in the patient group. However, the analysis of the IgG subclasses 

revealed a qualitative disparity between the patients and controls. The TH1 associated 

IgG3 levels were significantly higher in the patient sera and the tolerance associated 

IgG4 levels were below detection limit in almost all samples, for both antigens. Also 

IgG2 levels were significantly lower in the patient samples, whereas IgG1 levels did 

not differ between the groups. TT specific IgE levels were low in the patient sera but 

the importance of this observation is somewhat questionable due to the low number of 

patients and the high prevalence of negative results also in the control subjects (III). 

 

IgG4 production is associated with repeated antigen exposure, TR1 responses and 

tolerance (Meiler et al., 2008; van der Neut Kolfschoten et al., 2007). Therefore, the 

lack of antigen-specific IgG4 response in the C3 deficient patients (III) is in line with 

our previous observations of impaired tolerance in the C3 deficient patients and C3-

KO mice (II). However, the higher levels of the TH1 associated antigen-specific IgG3 

in the patient sera (III) contrasts sharply with our results of attenuated TH1 immunity 

in the C3-KO mice (I). Of human IgG subclasses, IgG3 has the strongest potential for 

classical pathway complement activation. It can be speculated that higher IgG3 levels 
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could compensate for the C3 deficiency by inducing the activation of the early 

components of the classical pathway, resulting in production of the C4 cleavage 

products C4b, which is a weak opsonin, and C4a, which is a weak peptide mediator of 

inflammation. This hypothesis could be tested by measuring C4b deposition on 

bacterial cells in C3 deficient patient serum. However, a mechanistic explanation for 

such a compensatory process is difficult to imagine. 

 

Next, we measured the serum levels of a set of cytokines in the patient and control 

sera (III). As mentioned above, cytokines have a central role in the signaling events 

leading to the functional differentiation of T cells and the immunoglobulin class 

switching by B cells. In this analysis the inflammatory cytokines IL-12 and IL-21 

were present at significantly higher concentrations in the patient sera compared to 

healthy controls. IL-12 is produced by DCs and it drives the differentiation of the 

activated T helper cells to the TH1 lineage (Yamane and Paul, 2013). TFH cells 

produce IL-21 and it has been shown to drive the production of the IgG1 and IgG3 

antibody subclasses by the B cells (Pene et al., 2004). The positive correlation of the 

IL-12 and IL-21 levels with the antigen specific IgG3 levels and the negative 

correlation with antigen specific IgG4 levels further highlighted the TH1 deviation of 

the immune response on both the cytokine and antibody levels in the C3 deficient 

patients (III). 

 

Complement activation is mainly an immunostimulatory event and complement 

cleavage products activate APCs via various pathways. However, the binding of the 

anaphylatoxins C3a and C5a to their receptors on the APC surface activate signaling 

cascades that share intracellular signaling factors with the TLR signaling pathways, 

leading to modulation of the TLR induced production of IL-12 (Hawlisch et al., 2004; 

Song, 2012). Interestingly, previous studies have indicated that the combination of 

TLR signaling and C5a receptor signaling can lead to either increased or decreased 

production of proinflammatory cytokines (Raby et al., 2011; Weaver et al., 2010; 

Zhang et al., 2007). Subtle differences in the regulation of the APC-TH cell signaling 

between mice and men and the dissimilarity of the immunization conditions in our 

study settings probably explain why C3-KO mice displayed reduced IL-12 levels in 

the collecting lymph nodes after immunization and a generally impaired TH1 response 

to immunization (I), whereas the C3 deficient human subjects had increased IL-12 

levels in the serum and produced significantly higher levels of the TH1 associated 

IgG3 in response to parenteral antigen challenge (III). The importance of CD46 

signaling (discussed below) to tolerogenic T cell responses in the human system and 

the lack of systemic expression of CD46 in the mouse is probably one explanation to 

the observed differences between the species. 

 

The modulation of the adaptive immune responses by complement is not limited to 

effects on APCs. In fact, the function of all cell types of the adaptive immunity, 

including the natural and inducible Treg cells (Kwan et al., 2013; Strainic et al., 2013), 

can be modulated by complement, either directly or indirectly. Most importantly, the 

maintenance of normal memory B cell responses and long term antibody production 

is dependent on C3b-mediated retaining of antigen on FDC:s in B cell follicles and 

the CR2 on B cells plays an important role in lowering the B cell activation threshold 

(Carroll and Isenman, 2012; Dempsey et al., 1996). The lack of C3 probably leads to 

impaired FDC function, which most likely explains the abnormally quick decay of 

antigen-specific serum antibody levels in the C3 deficient patients observed in our 
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index case (III) and in previous reports (Ghannam et al., 2008). The impaired 

activation of B cells in the absence of CR2 signaling offers a plausible explanation for 

the general attenuation of the antibody response in C3 deficient patients. 

 

Immunoglobulin class switching is strictly controlled by T helper cells, and, therefore, 

the observed changes in the antigen-specific IgG subclasses (III) suggest that there are 

changes in the functional differentiation of T helper cells in the C3 deficient patients. 

Direct binding of complement fragments on T cells can mediate either stimulatory or 

suppressive signals (Kemper and Atkinson, 2007), but in the light of the recent 

literature, the suppressive signals appear to dominate. Ligation of CD46 (MCP) on 

human T cells can mediate a costimulatory signal (Karsten and Kohl, 2010), but it can 

also lead to a TR1 phenotype (Kemper et al., 2003). In addition, the initial 

costimulatory effect and IFN-γ production is converted to IL-10 production, when the 

follow-up time is extended (Cardone et al., 2010). Other complement receptors CD55 

(DAF) and CD59, which blocks MAC formation, mediate suppressive signals to the T 

cell (Heeger et al., 2005; Longhi et al., 2006). It can be speculated that the lack of 

these suppressive signals in the T cell population of the C3 deficient patients could 

lead to impaired differentiation of TR1 cells and lower production of IL-10. Switching 

to IgG4 requires IL-10 (Jeannin et al., 1998; van de Veen et al., 2013), and antigen 

specific IgG4 was unmeasureably low in almost all C3 patient samples, whereas the 

PDT vaccination had induced clear TT and DT specific IgG4 responses in most of the 

studied control subjects. Although not statistically significant, the lower level of IL-10 

in the patient sera compared to controls supports this hypothesis (III). Further studies 

of isolated T cells from the C3 deficient patients are required to clarify this point. 

 

In conclusion, the analysis of the immune response in the unique set of samples from 

eight C3 deficient patients further confirmed the importance of complement to the 

induction of T cell tolerance and for the T helper cell differentiation in general. 

Although the failure of tolerance was clear both in the C3-KO mouse model and the 

C3 deficient patients, the lack of functional complement had opposing results for the 

TH1 immune response in mouse and human systems. In the mouse, TH1 immunity was 

impaired, whereas in the human system it was strengthened in the absence of C3. 
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11 CONCLUDING REMARKS 

The work presented in this thesis underlines the role of the complement system as one 

important factor in the regulation of the functional differentiation of the T helper cells 

and modulation of adaptive immunity in general. Earlier studies on complement 

deficient mouse models have demonstrated that T cell responses are attenuated in C3 

deficient mouse models (Fang et al., 2007; Peng et al., 2006), and our results showed 

that on the systemic level, TH1 immunity is impaired and the TH2 response is favored 

in the C3-KO mouse model. A novel finding was the role of the complement system 

as a regulator of intestinal tolerance both in the mouse model and in human subjects. 

Recognizing this role of the complement system will have an impact on the treatment 

strategies for inflammatory bowel diseases and food allergies. 

 

In the third publication we analyzed the systemic immune response in a unique set of 

eight C3 deficient patients. In addition to the failure of the mucosal tolerance 

presented in the second publication, the results indicated that in the human system, C3 

deficiency leads also to a systemic impairment in tolerance. 

 

The interdependency of the lymphocyte responses and the complement system may at 

first seem surprising. Based on the traditional view of the immune system, the innate 

and adaptive responses are separated both in space and time; the innate immunity is 

like a garrison in the tissue, delaying the invasion of the overwhelming pathogen 

army and waiting for the cavalry of the adaptive immunity to arrive and turn the tide 

of the battle. Numerous recent publications have obsoleted this view, highlighting the 

interplay of the innate and adaptive arms of the immune system. Also the phylogeny 

of the adaptive immunity indicates that it has been built on the foundations of the 

evolutionarily older innate immunity. In the context of our results indicating a role for 

complement system in the mucosal T cell tolerance, it is intriguing to notice that the 

intestinal tissues, where innocuous foreign material is abundant and complement 

activation can be assumed to be continuous, appear to be the place of origin of the 

evolution of the adaptive immunity. 

 

In the course of evolution, the advent of the adaptive immunity coincides with the 

appearance of the jawed vertebrates. Compared to the invertebrates, the vertebrates 

have a slower growth rate and they reach reproductive maturity later, which makes 

them more vulnerable to infections. In addition, the ability to chew probably led to a 

rapid diversification of the diet, introducing a wider variety of foreign structures and 

pathogens to the gastrointestinal tract. Together, these changes necessitated a more 

complex immune system, especially in the mucosal tissues. The ontogeny of the 

thymus and the avian bursa of Fabricius, an organ specialized for B cell development, 

further support the mucosal association of the adaptive immunity; they both derive 

from pouches of the embryonic gut. 

 

Although our results clearly define complement as an important factor in the 

regulation of the adaptive immune responses and immune tolerance in particular, it 

would be exaggeration to claim that complement alone decides between tolerance and 

productive immunity. However, the presence of various sets of complement receptors 

on all cells of the immune system, including the T and B lymphocytes and APCs, 

renders to the complement system an ability deliver such a versatile set of signals to 
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the adaptive immune system that it is difficult to predict the results of the signaling 

based on the in vitro study of isolated cell lines or single receptor proteins. The 

decision between immunological tolerance and the range of different forms of 

productive immunity must be based on the combination of signals from the TLRs and 

other PRRs, complement receptors and lymphocyte antigen receptors and the complex 

and partly overlapping intracellular signaling events following the external stimuli. 

 

The results presented in this thesis contribute novel information on the collaboration 

of the innate and adaptive immunity on the systemic level, emphasizing the seamless 

interplay of the different arms of immunity in the mammalian immune homeostasis. 
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