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ON FORMALISM FREENESS: IMPLEMENTING GÖDEL’S 1946

PRINCETON BICENTENNIAL LECTURE

JULIETTE KENNEDY

It seems in no way appropriate that

Cantor’s Absolute be identified with set

theory formalized in standardized logic

. . . —Bernays, Letter to Gödel, 1961.

We don’t need representations. The

world is right there . . . The world shows
up for us.—Alva Noë, 2012.

Abstract. In this paper we isolate a notion that we call “formalism freeness” fromGödel’s

1946 Princeton Bicentennial Lecture, which asks for a transfer of the Turing analysis of

computability to the cases of definability and provability. We suggest an implementation of

Gödel’s idea in the case of definability, via versions of the constructible hierarchy based on

fragments of second order logic. We also trace the notion of formalism freeness in the very

wide context of developments in mathematical logic in the 20th century.

§1. Introduction. That mathematics is practiced in what one might call a
formalism free manner has always been the case—and remains the case. Of

Received August 8, 2012.
This paper was first presented at the Winter Meeting of the Eastern Division of the Amer-

ican Philosophical Association in 2009. Subsequently it was presented at numerous other
seminars, and I thank those audiences for their many helpful questions and comments. This
paper was completed while I was a member of the School of Historical Studies of the Insti-
tute for Advanced Study during the academic year 2011–12. I thank the Otto Neugebauer
Fund for this support as well as the Academy of Finland and the Väisälä Foundation for
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course no one would have thought to put it this way prior to the emergence
of formal systems in the late nineteenth and early twentieth centuries;1 what
is interesting, to the foundationalist at least, is that mathematicians continue
to practice their subject in a formalism free manner even now, in what one
might call the post-foundational era.
What was the foundational era? This was the period inaugurated, roughly,
by Frege and continuing through the first part of the twentieth century,2 dur-
ing which worries essentially about consistency—to simplify matters only a
little—motivated the development of various foundational formal systems;
a development which, if it did not exactly set those worries to rest, at least
increased confidence in the unlikelihood of their ever being realized. The
foundationalist objective which eventually emerged was stated in a prelim-
inary but exact form3 by Hilbert and his school. In its full form what we
are calling the formalism-oriented foundationalist program, was simply this:
embed mathematics in a formal language with an exact proof concept and
an exact semantics, such that the proof concept is sound and complete with
respect to the associated semantics as well as syntactically complete in the
sense that all propositions that can be written in the formalism are also
decided. The preservation of meaning, as well as other epistemically valu-
able features, were important desiderata which were to be shown in various
ways. Characteristic of the Hilbert Program was the demand that the for-
mal environment, however it was conceived, be finitary; though what the
Hilbert School meant by the term “finitary” was not clear at the time, and
indeed would not be resolved, at least to a reasonable degree of satisfaction,
until Tait’s 1988 [79]. The principal demand imposed by the Hilbert Pro-
gram of course, was that the formalism be demonstrably, indeed internally
consistent—a demand which, if met, would have assuaged qualms about the
use of infinitary concepts, along with, or more precisely by means of, resolv-
ing the consistency issue. The demand for an internal consistency proof was
replaced after Gödel’s 1931 Incompleteness Theorems with a multiplicity of
coping mechanisms—or assertions to the effect that such were not needed,
as the case may be.
Setting aside the interesting mathematical questions—indeed the entirely
new subject areas altogether,4 which emerged from the various foundation-
alist programs of the time, it is simply a fact that foundationalism in this
form came and went with little lasting impact on mathematical practice.

1I.e., propositional and first and second order predicate logic, PeanoArithmetic, Zermelo–
Frankel set theory, and the various intuitionistic systems etc. Some of these systems were
attached to foundational programs. In that case we refer to them as “foundational formal
systems.”
2We do not offer an end date, though many would.
3A so-called “naturalized version,” according to Curtis Franks in his [26], rather than a

project in foundational epistemology.
4i.e., set theory, model theory, proof theory, etc.
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The demonstrable failure of syntactic completeness for systems like Peano
Arithmetic (via Gödel’s First Incompleteness Theorem) and the attendant
collapse of the Hilbert Program (via the two Incompleteness Theorems to-
gether) affected the mathematician’s working life very minimally, if at all.
The reasons for this are interesting, and though they are not strictly speak-
ing the subject of this paper, we can take note of certain responses at critical
moments. For Kreisel, a sine qua non of interest in the Hilbert Program was
not the consistency question per se but rather the presumed equivalence of
second order consequence with, “at least in suitable contexts,” formal deriv-
ability (as had been shown in the first order case).5 However the question
is of secondary importance for mathematics, concerned as mathematics is
with (in Kreisel’s terminology) fundamental analysis. “Logical hygiene,” as
he called it, might be useful, e.g., psychologically; but independence proofs,
formalization, and such like, are not what mathematics deals with at its most
fundamental level. “C’est magnifique, mais ce ne sont pas les fondements”6

he would say, of formalization.
From a completely different standpoint, Gödel echoed the thought that
mathematicians and logicians are involved in two distinct enterprises. About
his own Incompleteness Theorems, although they had a negative impact on
e.g., the Hilbert program,7 in the most important conceivable sense,8 they
should have no impact on the working life of the average mathematician
(or set theorist) otherwise: “As to problems with the answer Yes or No,
the conviction that they are always decidable remains untouched by these
results.”9 In other words, a way has to be found to set incompleteness to the
side—with conviction.
This paper is an attempt to arrange a differently interested encounter with
the concept of formalization, in the light of the tendency in mathematical
logic over the last century to bend away from foundational epistemology
and towards the subject of mathematics itself, and the project, simply put,
of understanding it more fully. Expressing an attitude toward formaliza-
tion which is opportunistic rather than foundational, in that very simple
sense the contemporary model theorist, for example, is, at best, a local
foundationalist—wanting to shed light on a certain area of the practice, but
eschewing any attempt to supply a global foundation for it.
Our starting point is Gödel’s Completeness Theorem of 1929, showing
that first order consequence admits a semantic characterization.10

5See [53], p. 146.
6Kreisel, op cit.
7in Gödel’s view. But see Feferman’s [23], Detlefsen’s [18], and Franks’s [26] on intensional

adequacy and the Second Incompleteness Theorem.
8namely decidability.
9[193?] in [35].
10It is interesting to note that this way of viewing the theorem did not appear in print until

Robinson’s 1951 [71].
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Curtis Franks sees Gödel’s Completeness Theorem as entirely defini-
tive and world-changing, precisely because that theorem displaced certain
philosophically loaded views of logical consequence prevalent at the time.11

Gödel’s theorem revealed a correspondence between a fundamental syntac-
tic notion, proof, and a fundamental semantic notion, truth. Depending on
their philosophical agenda, logicians could now restrict themselves wholly
to syntax, or on the other hand wholly to semantics, without risk, as it were,
of leaving out the other point of view. Franks’s important observation is
that the redesign of logical terrain achieved by that theorem was so compre-
hensive and so convincing, that by now the historical enterprise, the going
back in time in search of an understanding of what e.g., Bolzano’s notion of
logical consequence would have been, or even Frege’s, constitutes hard labor
for the twenty-first century logician. Franks writes:

Gödel never considered that others’ . . . inability to see their way to
the completeness theorem derived from their focus being held else-
where. But thinking about logic in the terms that defined Gödel’s
contribution was not universal, perhaps not even common, in the
early twentieth century. His early writing plays a major part in an
implicit argument that the correspondence of proof and truth, of
logical form and content, is a proper way of thinking about logical
completeness. While the theorem contained in Gödel’s thesis is a
cornerstone of modern logic, its far more sweeping and significant
impact is the fact that, through its position in a network of tech-
nical results and applications, the way of thinking underlying the
result has come to seem definitive and necessary, to the extent that
we have managed to forget that it has not always been with us.

A truism of our Gödelian inheritance is that the syntax/semantics distinc-
tion is clearly defined. The view taken here is that that particular logical
terrain has since turned out to be so intricate and fine-structured; so replete
with delicate entanglements of syntax and semantics on the one hand, as
well as with what appear to be purely semantic phenomena on the other,
that it is nearly not a distinction anymore at all—being virtually eradicated
by such entanglements.
We attempt to survey this disordered terrain. Our point, simply put, is
this: while the syntax/semantics distinction is still very much with us, so is
formalism freeness. ForBrouwer the radical decoupling ofmathematics with
language and its grounding in time intuition, was its fundamental feature.

11About Bolzano, for example, Franks writes: “ . . . . . . in the end, it was the objective
grounding of truths which drove him . . . Modern logicians, by contrast, have no expectation
that their craft will uncover ultimate grounds. Many do not even believe in such things.
What remains of Bolzano’s intricate scheme for writers who do not share his metaphysical
aspirations?” See [27]. Frege’s is another important example of a philsophically freighted
notion of logical consequence.
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We read Gödel’s 1946 lecture as an important but perhaps overlooked step
in this line of thought, not with respect to language necessarily, or to time
intuition, but with respect to formalization altogether; in particular we will
interpret Gödel there as making the suggestion, albeit in a preliminary form,
that Turing’s analysis12 of the notion of computability be replicated, not
for the notion of computable function but for the concept of definability—
witnessing its formalism independence, as it were. We will sketch at the end
of this paper an implementation of this, based on our interpretation of that
lecture.

§2. Foundationalism: Initial thoughts. We begin with the following ob-
servation. If we shift from standard mathematical practice to the more
restricted area of research in mathematical logic, we can notice a shift within
certain areas in the latter, in the form of a movement away from the leading
role of formal languages. In fact, this tendency towards the avoidance of a
formal language or logic, if not indeed of formalism-oriented foundational-
ism altogether, has been underway in various subspecialties for some time.
On the model-theoretic side this developed partly from motivations like the
desire to find a general and natural framework for results such as Morley’s
Theorem,13 the desire to work in a framework without compactness,14 or the
idea that definable sets of reals (just as definable sets of any o-minimal struc-
tures) can be viewed in a natural way as elements in a sequence of boolean
algebras closed under projection mappings and similar mathematical prop-
erties, an entirely logic free notion of definability.15 Whatever the reason, it
can reasonably be said that by now certain branches of model theory have
developed a plethora of what one might call purely semantic methods,16 a
phrase we will attempt to define more carefully below. The following re-
mark of Saharon Shelah, describing the thesis of his [75, 76], is in effect
a description of (one aspect of) this development: “Considering classical
model theory as a tower, the lower floors disappear—compactness, formu-
las, etc. . . . the higher floors do not have formulas or anything syntactical at
all.”17

We consider particular instances of this vast development of semantic
methods—a species of what we are calling formalism freeness18—and elab-
oration of them from the time of the Completeness Theorem, below. What

12see below.
13We are referring here to Shelah’s [75, 76]. Morley’s Theorem says in first order logic that

a countable theory that is categorical in one uncountable cardinality is categorical in every
uncountable cardinality.
14See [5] and [6].
15See Shelah’s [75]; see also Pillay and Steinhorn’s [69].
16The term “pure semantic method” is due to Baldwin, [3].
17Shelah, personal communication.
18For the definition of this term see section 3 below.
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interests us is the semantic reformulation of logical theorems—a develop-
ment originating, so to speak genetically, in Gödel’s 1929 Completeness
Theorem and “spiritually” much earlier, in the work of Peirce, Schröder and
others. Formalism freeness is not an all or nothing affair, but a matter of
degree; a tendency of thought which was realized here and there, sometimes
very explicitly, and sometimes in a very disguised form and taking place only
in certain areas.
A link between model theory as it has been traditionally pursued, and
certain other lines of thinking, might be worth pointing out. The ten-
dency to suppress various aspects of a formalism—the development in logic
which inspires us here—has been accompanied on the philosophical side of
things, particularly recently, by a sense of fatigue with a priorist or “first”
philosophical analysis, to use Maddy’s terminology, and the forefronting of
philosophical naturalism,19 or implicitly naturalistic approaches.20 Natural-
ism, in particular the naturalist’s recommendation to “track mathematical
practice,” advocates a withdrawal of the foundationalist critique as its very
starting point.21

The naturalist’s suggestion to become absorbed in mathematical practice
bifurcates along various lines—one can become absorbed in different ways,
after all. Maddy’s second philosopher22 is bound by a particular view of
mathematics’ empirical applications, for example, which the methodological
naturalist is, generally, not. Cutting across all of these lines of thinking is a
shared belief in the obsolescence of the foundational project. Franks puts it
this way in his [26]:

Recent philosophical writing about mathematics has largely aban-
doned the a priorist tradition and its accompanying interest in
grounding mathematical activity. The foundational schools of
the early twentieth century are now treated more like historical
attractions than like viable ways to enrich our understanding of
mathematics. This shift in attitudes has resulted not so much from
a piecemeal refutation of the various foundational programs, but
from the gradual erosion of interest in laying foundations, from
our culture’s disenchantment with the idea that a philosophical
grounding may put mathematical activity in plainer view, make
more evident its rationality, or explain its ability to generate a
special sort of knowledge about the world.23

19See [61, 60, 62], [26].
20See e.g., [2], [19] and [3].
21Of the myriad versions of naturalism, we are thinking of, roughly, methodological natu-

ralism as defined in Weir, [74]. As the view specializes to mathematics proper we look to [26]
and to some extent [61, 60], though Maddy doesn’t entirely reject the idea of set-theoretic
foundations, in a somewhat limited sense.
22See Maddy, ibid.
23[26] p. 169.
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The question whether the naturalist’s loss of interest in foundational pro-
grams is linked in any substantive way with the various sensibilities driving
the development of the particular language free developments which interest
us here—though an aversion to global foundational programs has been in
place particularly inmodel theory for much longer24—will not be considered
any further, as this would take us both too far afield, and into a mode of
analysis at odds with that we wish to pursue here. We return to naturalism
in our concluding remarks.

§3. What is formalism freeness? When Gödel proved his Incompleteness
Theorems he left open what an effectively given formal system means. Only
after Turing’s fully mathematical definition of effective computability was
given, was Gödel ready to declare the concept of a formal system clearly
defined. In this paper we have a more liberal notion of a formal system, or
formalism, as we call it.
By a formalism, or a logic, we mean a combination of a list of symbols,
commonly called a signature, or vocabulary; rules for building terms and
formulas, a list of axioms,25 a list of rules of proof, and finally a definition
of the associated semantics. We leave it ambiguous whether we mean axiom
systems, such as Peano arithmetic and ZFC set theory, or formal languages
such as first and second order logics. This intentional ambiguity is manifest
in the case of second order logic.
Some question whether a logic needs a semantics at all, or regard seman-
tics as an after-thought, a possibly helpful but otherwise inessential addition
to the logic. This is not the concept of logic we use. In this paper the
semantics is in the main role and the other aspects of a formalism are subor-
dinate to it. By and large we assume that the various lists and rules that are
constituent of a logic are effectively given. In such a case we call the formal-
ism finitary. We consider also infinitary formalisms, such as the infinitary
languages Lκë.
With this concept of formalism we associate formalism freeness with the
suppression of any or all of the above aspects of a logic, except semantics.
The position taken in this paper is that the associated semantics cannot be
suppressed. Of course vocabulary in the informal, natural language sense,
that is, as detached from any formalism based on it, is always a residue
of the practice and in that sense is not suppressed in the model-theoretic
applications we are considering here (or for that matter in mathematical
investigations of any kind). Our distinction here is between the natural

24If not from the very beginning. E.g., Maltsev, whowas the first to prove the Compactness
Theorem in full generality, thought of logic as part of algebra; and the work of Robinson and
Tarski in the 1950s is largely, if not wholly unconnected to global foundational programs.
25Vocabulary considered together with rules for building terms as well as deduction rules

are sometimes referred to as the syntax.
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language concept of a vocabulary, and vocabulary as a constituent of a
formal language.26

We immediately address the obvious criticism: what is our knowledge of
semantics based on if not on some formalism? The answer to this question
is the heart of our approach. We take it as given that mathematics has—and
has always had—subject matter, and the question is, whether and to what
extent the various relevant formalisms capture it.27

In (the informal version of) axiomatic set theory for example, what is
emphasized is “the intuitive notion of the cumulative type structure,” as
Kreisel puts it in his [53, p. 144], over the formal theory ZFC. Gödel did not
formulate his position in the way we put it here, but wewill argue in this paper
that various of the notions of formalism freeness that we will isolate can be
grounded in the ambient, framing philosophical territory within which and
pursuant to which Gödel tended his specific mathematical projects.

3.1. Language, faithfulness and thresholds. The idea that mathematical
reasoning could be in our sense “captured” by a formal system, emerged
very late. In particular, the notion of a signature came very late. On the
other hand, the axiomatic method has been entrenched in mathematical
practice since the time of Euclid. Euclid’s axioms were formulated in natural
language, and the rules of proof were only implicit; in fact the codification of
rules of proofwas a longprocesswhich tookplace over centuries, culminating
in the work of Frege and his successors.28

The question whether the inferential structure of mathematics could be
replaced, or modeled, or expressed by29 a formalism became urgent around
the turn of the twentieth century, as worries about consistency and/or the use
of infinitary methods began to impinge on the practice in certain ways and
in certain quarters—worries which ripened into, e.g., logicism. The natural
question, to what extent mathematics is language entangled, surfaced in an
explicit form at the time. Brouwer took a viewwhich prioritizedmathematics

26As Baldwin explains the distinction in his [3]:

It is in this sense that certain recent work of Zilber and Shelah can be seen as
developing a formalism-free approach to model theory. Both Zilber’s notions of
a quasi-minimal excellent class and of a Zariski geometry, and Shelah’s concept
of an Abstract Elementary Class give axiomatic but mathematical definitions of
classes of structures in a vocabulary ô. That is, the axioms are not properties
expressed in some formal language based on ô but are mathematical properties
of the class of ô-structures and some relations on it.

27Colin McLarty refers to the claim that the actual content of mathematics goes beyond
any formalization as “expansive intuitionism,” his term for Poincaré’s reaction (or counter-
reaction) to formalism. See his [65]. See also Detlefsen’s [17].
28Bourbaki calls the distinction between what we have been calling formalism oriented

foundations and the axiomatic method, the distinction between logical formalism and the
axiomatic method. See [11].
29the locution here is very much dependent on one’s philosophical perspective.
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over language—“intuitionistic mathematics is an essentially languageless
activity of the mind,” he said, famously, in [12]; and over formalization in
particular, harboring reservations about the importance of the formalization
of intuitionistic logic altogether. Fraenkel describes the position this way in
his [25]: “ . . . no formalized theory can do justice to intuitive (which is for
them intuitionistic) mathematics or any of its subtheories.” And Heyting,
who actually axiomatized intuitionistic logic, describes Brouwer’s position
this way:

. . . no formal system can be said to represent adequately an
intuitionistic theory. There always remains a residue of ambiguity
in the representation of the signs, and it can never be proved with
mathematical rigour that the system of axioms really embraces
every valid method of proof.30

Gödel’s view of language was similar to Brouwer’s in general outline if
not in the details, and is best summed up in a remark he once made to Hao
Wang: “the overestimation of language,” Gödel said, “is deplorable.”31 It
lies outside the scope of this paper to treat Gödel’s concept of language in any
depth. As for formalization altogether, Gödel would hardly have opposed
the formalization of “the intuitive.”32 However, the question of faithfulness;
the problem arising from the unbridgeable gap between our intuitions and
their formal “counterparts,”33 ,34 so to speak—a problem epitomized by the
fact that our axiomatizations often turn out to be non-categorical35—was
expressed by him in many different forms over his lifetime.36 To put it sim-
ply, whereas Brouwer saw what one might call the “faithfulness problem”
as leading to a wholesale rejection of formal methods, for Gödel the faith-
fulness problem was rather the explanation for the nonaxiomatizability of
mathematics—an essentially critical view of formalization as a totalizing,
epistemic project, though one which stops well short of Brouwer’s position.
What was the impact of Gödel’s Incompleteness Theorems from this point
of view? They were the first “threshold results,” in bringing to the forefront
the relevance of language, in particular of choosing the right vocabulary.
The basic picture that emerged is that there is a threshold below which

30[39], p. 102. Fraenkel comments on the above passage, that in spite of Heyting’s “explicit
disavowal . . . A notion of (intuitionistic) truth can be satisfactorily defined for intuitionistic
elementary logic under which the resulting formalized theory is complete and Heyting’s
logistic system is semantically complete.” See [25], p. 323.
31See [85], remark 5.5.7.
32For example, Gödel wrote toWang in 1972 that “Wittgenstein’s negative attitude toward

symbolic language is a step backward.” [85], p. 74.
33in David Kazhdan’s words, the problem of “the “natural” distinction between the for-

malism and the substance”
34Kazhdan, [46].
35i.e., have many non-isomorphic models.
36See for example Gödel’s letter to Leon Rappaport in [38], pp. 176–177.
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one can have desirable properties like decidability, and above which not
only decidability is lost but all kinds of pathological behavior occurs. The
contemporarymodel theorist’s distinction between “tame” and “wild” struc-
tures or theories [14, §4]37 and the concurrent program of finding important
thresholds, pursued by Shelah and his co-workers and culminating in the
Main Gap Theorem, are the modern fulfillment of the idea.38

Knowing these thresholds, even though they are somewhat subtle combi-
nations of choosing the right vocabulary, the right logic and the right axioms,
is now essential for the logician. Our point is this: The role of choosing the
right formalism, in either the full or partial sense, rose to prominence but
once the thresholds had been recognized, the more formal features that led
to the isolation of the thresholds have been abandoned.

3.2. Examples of entanglement. Examples of the entanglement of mathe-
matics with a vocabulary or with a formalism taken in the full sense of the
term, abound in logic. In fact, in some sense, mathematical logic can be
thought of as the study of just this phenomenon. Here are a few examples
of entanglement with a signature:
The real numbers conceived of as the complete ordered field with signature

〈+,×, <, 0, 1〉, is decidable by Tarski’s Theorem.39 If one adds to the sig-
nature a symbol for the integers, or just the sine function, decidability fails.
Similarly Presburger Arithmetic, the structure N with addition, is decidable,
but if × is added to the vocabulary, it is not.
Zero-one laws for finite structures are sensitive to signature. The proba-
bility of a random relational structure on the domain {1, . . . , n} satisfying

37Though tameness doesn’t necessarily imply decidability.
38The Main Gap Theorem says, roughly speaking, that given a complete first order

theory, either it has—asymptotically—the maximum possible number of non-isomorphic
models in all uncountable cardinalities, or it has only “few” models in all uncountable
cardinalities. In fact, in the latter, classifiable case, not only is the number of models
bounded but one can reconstruct any large model in the class from a relatively small number
of invariants. In detail, for countable complete first order theories classifiability (super-
stable+NDOP+NOTOP+shallow) is a threshold: classifiable theories have relatively few
non-isomorphic models in uncountable cardinalities, but unclassifiable theories have the
maximal number 2κ non-isomorphic models in uncountable cardinalities κ, and the non-
isomorphic models can even be chosen so that they are very difficult to distinguish from each
other, see [43]. The threshold here is whether a first order theory satisfies those conditions,
i.e., superstable, etc., or not. Another threshold involves the characterizability of finiteness.
In another example of a threshold result, a logic, such as L(Q0) or weak second or-

der logic, in which finiteness can be characterized, can characterize the standard model of
arithmetic, and hence the decision problem (the set of Gödel numbers of valid formulas) is
non-arithmetical, and the Hanf number is high (at least iùCK

1
). On the other hand, a logic

in which finiteness cannot be characterized satisfies a Compactness Theorem which is very
close to being effectively axiomatizable, and the Hanf number is (for fully compact logics)
just ù. The threshold here is whether the logic is able to characterize finiteness or not. If yes,
the logic is “very bad”, if not, the logic is “very good”.” See Ebbinghaus [21].
39I.e., its first order theory is decidable.
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a given first order formula tends to either 0 or 1 as n tends to infinity. But
if we allow function symbols as part of the language, even the simple sen-
tence ∃x (f(x) = x) has limit probability 1/e. So although one sometimes
employs relation symbols and sometimes function symbols, knowing that
they are definable from each other, it is not a completely innocuous choice:
relational structures satisfy the beautiful zero-one law but once one adds
function symbols to these, they do not.40

Peano Arithmetic is “logic-entangled” in the following sense: construed
as a first order theory, it has continuum many non-isomorphic countable
models. However, if it is formalized as a second order theory, it is categorical.
Gödel’s constructible hierarchy, denotedL,41 provides another instance of the
entanglement of a canonical structure with a logic. L is built over first order
logic. As Myhill and Scott [66] showed, if L is constructed using second
order logic, the class obtained is HOD, the hereditarily ordinal definable
sets.42 In this sense L is sensitive to the underlying logic, at least apparently.
Below we will investigate the question to what extent this is a fundamental
feature of L. Note that L, unlike HOD, is absolute in a very strong sense.43

In Section 6 of this paper we will discuss extensions of the Myhill–Scott
result to other logics.
An instance of entanglement with a formalism in the full sense (so not
just with a signature) that has been debated in the literature ever since
Quine uttered the pronouncement “Second order logic is set theory in sheep’s
clothing,” [70, page 66], involves the entanglement of the former with the
latter. The entanglement of second order logic with ZFC set theory via so-
called Large Domain Assumptions, for example, is explained in [81].44 The
reader is also referred to C. Parsons’s [68]. We return to this point in Section
4.2.2.
These are just a few examples of the widespread phenomenon of entan-
glement. See also Baldwin’s “Completeness and Categoricity (in power):

40See e.g., [22].
41See [44] p. 28 for the definition of the constructible hierarchy.
42A set a is hereditarily ordinal definable if a itself and also every element of the transitive

closure of a is ordinal definable. Both V = HOD and V 6= HOD are consistent, relative to
the consistency of ZFC.
43Since L is a model of ZFC, the construction of L can be carried out inside L. But one

obtains by doing this exactly the same structure. This is not true of HOD. For example, if 0♯

exists, it is an element of HOD but not of L, thus the HOD of L is different from the actual
HOD. In fact, HOD is non-absolute in the even stronger sense that HOD may not satisfy
V=HOD.
44In that paper Väänänen suggests that the so-called “second order view” is correct to

the extent that mathematics can be done almost entirely within the second order framework.
However, the question, where do mathematical structures come from in the first place?
persists. If the cumulative hierarchyV is disallowed as a source of structures, one needs large
domain assumptions in order to produce sets from which e.g., the reals can be produced, via
Comprehension Principles.
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Formalization without Foundationalism,” [4], a substantive and detailed
study of the entanglement of formal logic(s), formal logical syntax, formal
systems and the like with “core” mathematics, from the model theoretic per-
spective.45 Our concern in this paper is with the notion dual to entanglement,
to which we now turn.

§4. Examples of formalism freeness. We give some examples of formalism
freeness. We begin with examples from mathematical practice and then
proceed to some Gödelian projects in, roughly, that direction. We end with
some recent developments in model theory.

4.1. The concept of recursive function. This is our main example, as it
was the initial point of departure in Gödel’s investigation of formalism
independence in [31], and it is this: Whether one defines the notion of
computability by means of the Gödel–Herbrand–Kleene definition (1936),
Church’s ë-definable functions (1936), Gödel–Kleene ì-recursive functions
(1936), Turing machines (1936), Post (1943) systems, or Markov (1951)
algorithms,46 one ends up with the same class of functions. Gödel refers to
this phenomenon as formalism independence in his [31]. We return to this
example in section 5.1.

4.2. The real numbers. The ordered field of real numbers has great robust-
ness in how its foundations are laid out. Whether one builds the reals as
equivalence classes of Cauchy sequences, or as Dedekind cuts, or in some
other way, it is remarkable how independent of the set-theoretic definition
the reals are.47 Robustness also surfaces in a quite different approach to
the reals, i.e., the so-called o-minimal structures, a central area of ongoing
research in model theory for the last three decades. In the o-minimal struc-
tures, as in the reals, the (first order) definable sets are just finite unions of
(half)open intervals, and their complements. Real closed fields, of which the
field of reals is an example, are all o-minimal, as is the field of real numbers
with exponentiation as an added function.48

45[4] is a companion, so to speak, to his “Formalization, Primitive Concepts and Purity”
[3] in the sense that the while the latter is a treatment formalism freeness (and other issues),
the former is a treatment of entanglement.
46See, e.g., [15].
47This robustness of the real numbers underlies a phenomenon John Burgess calls “indif-

ferentism,” in a recent paper, [13], namely the “general phenomenon of the indifference of
working mathematicians to certain kinds of decisions that have to be made in any codifica-
tion of mathematics . . . two analysts who wish to collaborate do not need to check whether
they were taught the same definition of “real number”.” Burgess traces the advent of indif-
ferentism to the mid-19th century, when mathematicians established the arithmetization of
analysis, freeing it from its geometrical foundations.
48By Wilkie’s theorem. Of course, the robustness of the concept of o-minimality has to do

not with independence of the set-theoretic definition, but rather with yielding consequences
for many theories that are apparently only distantly related.
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4.2.1. The concept of an ordered pair. The set-theoretical concept of an
ordered pair is often cited as manifesting (in set theory) an artificial depen-
dence on notation, namely Kuratowski’s notation 〈a, b〉 = {{a}, {a, b}}.
That the accusation is based on a misunderstanding—the set theorist’s de-
pendence on the notation is not a genuine one—does not make the example
less illuminating. What is at issue is the idea that concepts in set theory,
such as the ordered pair concept, are defined uniquely and not up to isomor-
phism. However this does not indicate an attachment to any particular way
of presenting the unique object in question. Set theory is invariant under the
choice of how things like ordered pairs are actually defined. In the end, the
set theorist’s reliance on the formalism 〈a, b〉 = {{a}, {a, b}} extends only
as far as the recognition that the ordered pair can be so defined. But then
the formalism is ignored, having served its purpose.49

4.2.2. What is the logical foundation of mathematics? We consider the
other extreme (from the concept of ordered pair), namely mathematics itself,
i.e., mathematics taken as a whole. The question the formalism oriented
foundationalist is concerned with is the following: is there a single formalism
which can serve as the language inwhich all ofmathematics can be expressed?
Some have argued that ZFC set theory is one such formalism, while an
earlier alternative is higher order logic. Since higher order logic and first
order set theory have very different “metalogical” properties, one may ask,
is one superior to the other—if one can really choose between them at all.
Väänänen has argued that mathematics altogether is indifferent to such a
choice of logic, especially when that choice is between first order set theory
and higher order logic. From the practical point of view, the working
mathematician will—and should—be indifferent to the choice between these
two theories, and there are deep theoretical reasons why this should be the
case:

We study two metatheories of mathematics: first-order set theory
and second-order logic. It is often said, that second-order logic is
better than first-order set theory because it can in its full semantics
axiomatize categoricallyN andR, while first-order axiomatization
of set theory admits non-standard, e.g., countable models. We
show below that this difference is illusory. If second-order logic
is construed as our primitive logic, one cannot say whether it
has full semantics or Henkin semantics, nor can we meaningfully
say whether it axiomatizes categorically N and R. So there is no
difference between the two logics: first-order set theory is merely
the result of extending second-order logic to transfinitely high
types.50

49The exact form of the ordered pair comes up only in some rather trivial rank-
computations in set theory.
50See [80], p. 506–507.
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4.3. Some Gödelian projects.

4.3.1. Constructibility; Turing machines. We argued above that Gödel’s
constructible hierarchy L is entangled with first order logic, in virtue of the
fact that if the underlying first order logic is changed to second order logic
a (seemingly) entirely different structure emerges, namely HOD. However,
we will argue that L, in its first order version, also manifests a high degree
of formalism freeness. This is discussed at length in Section 6, but we
make already here the following observation: Gödel’s original presentation
of L was given in terms of first order definability in set theory.51 In a
second monograph,52 Gödel presented L in terms of the so-called Gödel
(or rudimentary) functions. The latter presentation is formalism free in the
sense that there is no logical formalism present, rendering constructibility
completely intelligible to the non-set theorist.
A similar phenomenon emerges with the notion of recursive function, a
notion which admits many different formalizations, as was noted above. The
presentation in terms of Turing machines53 resembles, in its mathematical
naturality, the representation of constructibility in terms of Gödel functions,
in that again no explicit formalism is present.54,55We return to computability
in section 5.1.

4.3.2. Dialectica. The systemT of Gödel’s so-called “Dialectica Interpre-
tation”56 interprets Heyting’s intuitionistic arithmetic in terms of so-called
computable functionals of finite type. This gives a consistency proof for
Heyting arithmetic and thus for Peano Arithmetic, if one combines the
Dialectica Interpretation with Gödel’s earlier double-negation interpreta-
tion of Peano Arithmetic into Heyting Arithmetic.

51See equations (1) in Section 6.
52[30].
53A Turing machine is ultimately just a finite set of 4-tuples of natural numbers.
54The link between these two concepts is further emphasized by the fact that infinitary

Turing machines actually generate L, [52].
55Gödel credited Turing with giving a fully general, mathematical characterization of the

concept of a “formal system,” remarking that

This concept is shown tobe equivalentwith that of a “Turingmachine.” A formal
system can simply be defined to be any mechanical procedure for producing
formulas, called provable formulas.

This is a postscript added to the 1965 reprinting of his Princeton lectures in the volume [16],
reproduced in [34, p. 369].
Gödel’s identification of a formal system as a mechanical procedure for producing prov-

able formulas, would restrict the notion of a formal system to those with at most a re-
cursively computable provability predicate. This rules out many of the purely semantically
defined formalisms such as (full) second order logic with the semantic consequence relation.
(A sentence φ is a semantic consequence of a sentence ø if every model of ø is a model
of φ.)
56[33].
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In his introduction to [33],57 Troelstra notes the logic-freeness of Gödel’s
system T :

. . . Gödel did not want to go as far as admittingHeyting’s abstract
notion of constructive proof; hence he tried to replace the notion
of constructive proof by amore definite, less abstract (that is, more
nearly finitistic) notion, his principle candidate being a notion of
“computable function of finite type” which is to be accepted as
sufficiently well understood to justify the axioms and rules of his
system T , an essentially logic-free theory of functionals of finite
type.58

In a crucial passage of the paper Gödel explains the move to replace the
notion of a Heyting proof with a more concrete, perspicuous, but still ab-
stract notion. The choice is forced by the Second Incompleteness Theorem,
which demonstrates that the consistency proof will require abstract notions
going beyond what Gödel calls the finitary attitude:

Here by abstract (or nonintuitive) we must understand those that
are essentially of second or higher order, that is, notions which do
not involve properties or relations of concrete objects, (for example,
combinations of signs), but that relate to mental constructs (for
example, proofs, meaningful statements and so on); and in the
proofs we make use of insights, into these mental constructs, that
spring not from the combinatorial (spatiotemporal) properties of
the sign combinations representing the proofs, but only from their
meaning.59

In the paper Gödel takes as a primitive the notion of intuitionistic evidence,
rather than the concept of a Heyting proof. Relevant to our concerns here
is Gödel’s suggestion, that for a consistency proof it is not enough to work
with “(spatiotemporal) properties of the sign combinations representing the
proofs”; one must work with the concept of meaning directly.60 Gödel
struggled to give a logic-free construction of it, analogous, perhaps, to that
which he provided for the notion of constructibility in set theory.
Another example of formalism freeness in the setting of constructivemath-
ematics is Bishop’sFoundations ofConstructiveAnalysis [10], inwhichBishop
gives a relatively formalism free presentation of mathematical analysis in a
constructive framework.

57“Note to 1958 and 1972” in [35].
58[35], p. 221. Italics ours.
59See Gödel’s [1958], in [35], p. 241.
60The presentation of the system T is obscure in places, and as an attempt at formalism

freeness, it fails. In Gödel’s late correspondence with Bernays, Bernays questioned whether
the notion of constructive proof is not needed after all—is it not implicit in the concept of
computable function of finite type? See [37].
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4.3.3. Gödel’s notion of “solvability by all means imaginable”. We now
consider some remarks from Gödel’s 1929 thesis on the notion of “absolute
provability,” which is really a formalism free concept of provability.61 Gödel
draws the distinction there between formal provability and what Gödel will
later call absolute provability, or provability “through all specified means.”
More precisely, he observes that one might raise the following objection to
the main result of his thesis: doesn’t the use of the law of excluded middle
in its proof “invalidate the entire completeness proof”? The Completeness
Theorem asserts

‘a kind of decidability,’ namely every quantificational formula is
either provable or a counterexample to it can be given, whereas the
principle of the excluded middle seems to express nothing other
than the decidability of every problem.62

Thus the proof may be circular: one assumes the decidability of every ques-
tion in order to prove just that assertion.63

But, Gödel goes on to say, what he has shown is the provability of a valid
formula from“completely specified, concretely enumerated inference rules,”64

not merely from all rules imaginable; whereas the law of excluded middle
is used informally in the sense that the notion of decidability or solvability
asserted by the law is left unspecified. As Gödel puts it:

. . . what is affirmed (by the law of excluded middle) is the solv-
ability not at all through specified means but only through all
means that are in any way imaginable . . . 65

The Completeness Theorem, then, provides a reduction: if we assume
solvability by all means imaginable, then we have, in the case of a sentence
of first-order predicate calculus, a reduction to solvability by very specific
means laid out beforehand.66

In fact Gödel took the view in the 1930s and early 1940s, that certain other
mathematical problems may very well be absolutely undecidable,67 a view he

61Some of this material on Gödel’s 1929 thesis is adapted from the author’s [49].
62[34], p. 63.
63This objection to theLaw of ExcludedMiddle is the content of Brouwer’s “Third Insight”

as expressed in his “Intuitionistische Betrachtungen über den Formalismus.” See p. 40, [63]
for an English translation.
64italics Gödel’s.
65ibid.
66Gödel remarks in a footnote to this passage that the notion of provability “by any means

imaginable” is perhaps “too sweeping”—a hesitation to which he is no longer subject by the
mid-1940s. See [34], p. 65.
67In 1939, for example, Gödel explained his consistency proofs of AC and CH in a lecture

in Göttingen and on that occasion he voiced his suspicion that the axiom of constructibility,
V = L, would be strongly absolutely undecidable:

The consistency of the proposition A (that every set is constructible [V = L]) is
also of interest in its own right, especially because it is very plausible that with A
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will later discard.68 The incompleteness theorems do not, in the end, destroy
the Hilbert program “in its original extent and meaning”:

As to problems with the answer Yes or No, the conviction that
they are always decidable remains untouched by these results.69

Gödel’s goal subsequent to this change ofmindwas the establishment of an
informal decision procedure—an idea logicians would hardly countenance
today. Kreisel entertained the idea in some form in 1972,70 though he fell
short of actually recommending the development of such a procedure.
According to Tarski such a procedure could not be given, as his correspon-
dence with Gödel just prior to the 1946 Princeton Bicentennial meeting71

reveals:

I am so glad that you are planning to talk at the Princeton Confer-
ence about the notions of absolute provability, definability, etc. . . .
As regards the question in which you are interested, I don’t think
I can do anything else but to emphasize the fundamental differ-
ence between all the undecidable statements known at present in
elementary number theory on the one hand and some undecidable
statements (like [the] continuum hypothesis) in analysis and set
theory; the statements of the first kind being clearly undecidable
in a relative sense while those of the second seem to be undecidable

one is dealing with an absolutely undecidable proposition, on which set theory
bifurcates into two different systems, similar to Euclidean and non-Euclidean
geometry. ([*1939b], in [36], p. 155)

68Gödel was likely aware of Luzin’s remark in this vein in 1925, but for the projective sets:
“One does not know and one will never know of the family of projective sets, although it has
cardinality 2ℵ0 and consists of effective sets, whether every member has cardinality 2ℵ0 if
uncountable, has the Baire property, or is even Lebesgue measurable,” see [58].
69[193?] in [35]. Gödel would later expand on these remarks in a discussion about Leibniz’s

characteristica universalis with Carnap in 1948:
The universal characteristic claimed by Leibniz (1677) does not exist. Any system-
atic procedure for solving problems of all kinds would have to be nonmechanical.
(Gödel Nachlass, folder 1/209, 013184, p. 1.)

See [82] for the concept of strong absolute undecidability as well as for an extensive
discussion of Gödel’s views on absolute undecidability during the period of the 1930s and
early 40s.
70Kreisel [54], p. 322:

[I]t has been clear sinceGödel’s discoveryof the incompleteness of formal systems
that we could not have mathematical evidence for the adequacy of any formal
system; but this does not refute the possibility that some quite specific system
. . . encompasses all possibilities of (correct) mathematical reasoning . . . In fact
the possibility is to be considered that we have some kind of nonmathematical
evidence for the adequacy of such [a system].

71at which he and Gödel were both scheduled to speak at a session Tarski had organized
on undecidability.
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in some absolute sense. And in this connection I shall raise the
problems (1) whether [and how] the notions of relative and abso-
lute undecidability can be made precise and (2) whether, on the
basis of some adequate definition of these notions, it will be pos-
sible to show that a number-theoretic problem can be undecidable
only in a relative sense . . . 72

Gödel’s views on absolute definability came to fruition in his remarks to
the 1946 Princeton Bicentennial Conference, in which he suggests—as we
interpret that lecture—developing a form of the Church–Turing thesis for
the notion of definability in set theory.73

We now take up certain developments in model theory, an inspiration
behind the ideas in this paper, along with Gödel’s 1946 Lecture.

4.4. Model theory. Model theory is that part of mathematical logic which
arose from the realization that Gödel’s Completeness Theorem gives a very
rich plethora of models of first order theories. Despite the origins of
model theory being firmly embedded in the development of formal systems
and their models, a number of modern developments seem to undermine
this.
4.4.1. Abstract elementary classes. In the 1980s Saharon Shelah, when
trying to develop the model theory of infinitary languages74 and their ex-
tensions by generalized quantifiers, eventually decided to dispense (in this
context) with the language altogether75 and merely state the properties he
needed classes of models to satisfy, whether these properties arose from the
syntax and semantics of any particular infinitary language or not. Model
classes that satisfy these assumptions came to be known as AECs (abstract
elementary classes). A typical non-trivial assumption is that the model class
is closed under unions of chains with respect to an abstract (strong) sub-
model relation, which mimics the elementary submodel relation. Shelah in
a sense isolated from infinitary languages the part that was susceptible to
model-theoretic development.
Subsequently the connection to infinitary languages has been forgotten
and AECs are studied on their own.76 A typical test question is to prove
some form of Morley’s Theorem. We can say that to isolate the axioms of
AECs (such as the closure under unions of chains) and to recognize their
importance, it was essential to have the language in the background, but
once this initial stage was over, the language could be dispensed with.

72Notably, the undecidability of the CH was not established until 1963.
73For more on Gödel’s notion of absolute provability, see [29], reprinted in [34].
74We use “language” here as meaning a logic, not a vocabulary.
75The trend toward language freeness in contemporary model theory was a primary influ-

ence on the development of the ideas of this paper.
76See however [55], which represents an interesting “return” to the roots of AECs in

infinitary languages.



ON FORMALISM FREENESS 369

In the abstract elementary class framework there is a sense in which a
syntactic concept such as the concept of a formula (or more exactly of a
“type”) becomes, simply, a set invariant under automorphisms77 —though
strictly speaking, in theAECframework there simply isnonotionof formula.
This is just one example of the way a syntactic concept is absorbed by a
semantic notion in the AEC framework.
4.4.2. Stability and other model-theoretic themes. In certain stability the-
oretic contexts there is likewise a tendency to emphasize, over the underlying
first order logic, the relevant semantic characterization of the logical concept.
(Although properties of first order logic, such as the Compactness Theorem,
will always emerge in other ways.) What is important for the geometric or
algebraic study of structures in stability theory are the closure and indepen-
dence properties of definable sets and types, among other central concepts,78

and they can, arguably, be simply listed without any reference to the syn-
tax and semantics of first order logic.79 What is relevant here are facts of
the following kind: that quantifier elimination holds in a (one-dimensional)
Zariski structure, for example, is just the statement that the projection of a
constructible set is constructible.
This development has transformed the model theorist’s study of the “old”
concrete objects, such as algebraic varieties and analytic curves, into one
in which these are viewed in a new framework, one which generalizes the
classical approaches, but is spelled out with no reference to formal languages
or their properties.
For a finely grained and penetrating analysis of various formalism free
phenomena in the vast terrain that is contemporary model theory, and in
particular in the AEC and stability theoretic context, the reader is referred
to John Baldwin’s “Formalization, Primitive Concepts and Purity.”80 For
example, about Shelah’s presentation theorem81 Baldwin remarks:

77Assuming the so-called Amalgamation Property, and arbitrarily large models in the
class. This is the notion of a Galois type over a model, essentially an orbit under a group
action—“an entirely mathematical concept.” Baldwin, personal correspondence.
78As A. Villaveces puts it, “[also important] are various geometrical configurations,

genericity of types, eventual behavior of types (stationarity), domination of types, or-
thogonality of types . . . “the new primitives”. In FO Stability, of course, all their def-
initions are given syntactically, at least initially. However, many of these benefit from
general, non-logical, formalism free, semantic characterizations. For instance, Adler [1]
. . . characterizes forking and thorn-forking purely in terms of a “geometry of possible
extensions” of models and types (orbital types), ultimately giving up formulas (where
the original definitions were apparently very formula-laden).” (A. Villaveces, personal
communication.)
79E.g., the Zariski structures of Zilber and Hrushovski [42], or the Tarski systems of van

den Dries [83].
80[3].
81Shelah’s presentation theorem asserts that an AEC with arbitrarily large models can be

defined as the reducts of models of a first order theory which omit a family of types.
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“passing through the syntax, Shelah obtains a purely semantic
theorem . . . The syntactic condition in the theorem is a set of
sentences in roughly Tarski’s sense . . . but we are able to deduce
purely semantical conclusions.”

For Baldwin the key concept here is that of an implicit syntax, and in
particular the essentialuse of formalism toobtain a theoremwhich is stated in
a formalism freemanner.82 About Zilber’s notion of quasi-minimal excellent
class, Baldwin remarks:

In contrast, Zilber’s notion of a quasi-minimal excellent class [88]
was developed to provide a smooth framework for proving the cat-
egoricity in all uncountable powers of Zilber’s pseudo-exponential
field . . . The key point is that there are no axioms in the object lan-
guage of the general quasiminimal excellence theorem; there are
only statements about the combinatorial geometry determined by
what are in the application the Lù1ù-definable sets.

As Baldwin points out, whereas the presentation theorem passes through
syntax to get a formalism free statement, in a kind of converse, Zilber’s result
“passes through a (substantial) formalism free step in the argument to get a
formal result—a categorical theory axiomatized in a formal language.”83

This is a very cursory look at a vast subject. The reader is also referred to
Hodges’s “What is a Structure Theory?”, in particular the discussion around
the remark that “The difficulties about aligning algebra with logic haven’t
prevented Shelah from using the notion of superstability to prove results
with a clear algebraic content.”84

We mentioned the role of Gödel’s Completeness Theorem in the develop-
ment of what one might call pure semantic methods in model theory. But
this approach also has its roots in the semantic point of view developed by
Tarski and others:85

4.4.3. Tarski’s notion of “mathematical property”. In his [3] Baldwin notes
the distinction between a mathematical as opposed to logical property. As
examples he cites the following:

• (Tarski) A class of structures in a finite relational language is univer-
sally axiomatizable if and only if it is closed under isomorphism, sub-
structure and if for every finite substructure B of a structure A,B ∈ K
then A ∈ K .

• (Birkhoff) A class K of algebras is axiomatized by a set of equations if
and only it it is closed under homomorphisms, subalgebras, and direct
products.

82Baldwin, personal communication and [3].
83Baldwin, op cit.
84p. 214, [41]. Italics ours.
85Notably the algebraic tradition in logic associated with Peirce and Schröder.
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Baldwin remarks about the notion of a mathematical as opposed to a logical
property, that:

An inquiry can be ‘formalism-free’ while being very careful about
the vocabulary but eschewing a choice of logic and in particular
any notion of formal proof. Thus it studies mathematical proper-
ties in the sense we quoted from Tarski above.
It is in this sense that certain recent work of Zilber and Shelah
can be seen as developing a formalism-free approach to model
theory. Both Zilber’s notions of a quasi-minimal excellent class
[59] and of a Zariski geometry [29], and Shelah’s concept of an
Abstract Elementary Class [49] give axiomatic but mathematical
definitions of classes of structures in a vocabulary ô. That is,
the axioms are not properties expressed in some formal language
based on ô but are mathematical properties of the class of struc-
tures and some relations on it.86

Much of the model theory in the 1950s involved the search for mathe-
matical descriptions of canonical model classes. In the same vein, also in
this period, Scott [73] investigated the possibility of finding so-called natu-
ral non-standard models of Peano Arithmetic. These are constructed from
recursive functions rather than by recourse to the Completeness Theorem.
A very similar approach building on extensions of Skolem’s construction of
a non-standard model of Peano Arithmetic was undertaken in [48].
4.4.4. First order logic. According to so-called Lindström’s Theorem87

first order logic is the maximal logic which satisfies two basic model theo-
retic properties, theDownward Löwenheim–SkolemTheorem and the Com-
pactness Theorem. This means that one can view first order logic purely
semantically with no concern as to the syntax. As long as these two model
theoretic properties are satisfied, the concept of a definable model class is the
same. As far as definability of model classes is concerned, first order char-
acterizability manifests then, thanks to Lindström’s Theorem, very strong
formalism freeness.
In fact, many other logics permit a semantic characterization. Barwise88

showed that if κ = iκ, then Lκù is the maximal logic which has the Karp
Property89 and well-ordering number90 is at most κ.91 This is not as sharp
a semantic characterization as Lindström’s, although Barwise relies heavily
on Lindström’s proof; but the two conditions are in principle comparable

86[3].
87[56].
88See [8].
89partially isomorphic structures are elementarily equivalent with respect to the logic.
90the smallest ordinal α such that if a sentence of the logic has only models in which a

binary predicate R is well-ordered, then in every model the order type of R is < α.
91[8].
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to the conditions occurring in Lindström’s proof, namely the Löwenheim–
Skolem and Compactness Theorems. ThusLκù, for κ = iκ, manifests some
extent of formalism freeness, in the sense that its class of definable model
classes is not entirely entangled with the ordinary syntax of Lκù. Another
interesting case is the recent logicL1κ of Shelah [77], which is betweenLκù and
Lκκ and satisfies a Lindström Theorem. What is interesting is that Shelah
does not actually give a syntax for this logic; the syntax is not “needed”
because there is already a semantic characterization, via reference to its
Ehrenfeucht–Fraı̈ssé game.92 Yet another class of infinitary languages which
demonstrates remarkable formalism freeness, also due to Barwise [7], is the
family of admissible fragments LA ofL∞ù. IfA is an admissible set, then the
language LA is the maximal strictly absolute

93 logic defined with parameters
inA. So the syntax ofLA does not “matter” as long as it is strictly absolute.

94

4.4.5. Karp on “varying the logic”. Carol Karp made extensive use of the
infinitary languages Lκ,ë in her study of properties of Boolean Algebras.
In an unfulfilled research project95 she suggested that certain recursion-
theoretic applications could be carried out while circumventing coding.
Lopez-Escobar [57] describes Karp’s research project as follows:

Although Carol Karp appreciated recursive function theory, she
disliked proofs which involved codings and systems of notations.
In her work on infinitary set theory she noticed that infinitely
long formulae sometimes allowed her to circumvent notations.
She then tried treating the recursive set functions as functions
representable in infinitary systems using implicit definitions. She
discovered that by varying the logic96 in the system one could
get a host of results about recursion theory and its extensions;
furthermore it could be done without any ad hoc notations.
It was her research on the infinitely long formal proofs that
led Karp to the concept of L-R.E.97 on A. However, it is clear
that the actual structure of the proofs is irrelevant, for all that is
ever used is the consequence relation. Thus, for the purpose of
discussing extensions of recursion theory, it does not make much
sense to dwell too much upon the axioms and rules of inference.
Consistency properties are a natural way of getting all the benefits
of completeness while, at the same time, avoiding formal proofs.

92The game is like the usual Ehrenfeucht–Fraı̈ssé game of Lκκ (see e.g., Dickmann [20]),
but the second player can delay her responses in a way which positions the logic betweenLκù
and Lκκ.
93I.e., sentencehood is ΣKP1 and the satisfaction predicate is ∆

KP
1 .

94We thank Jouko Väänänen for the examples in this paragraph.
95unfulfilled due to her early death.
96italics ours.
97L-recursively enumerable.
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Below we also consider “varying the logic in the system,” in the context
of definability in set theory. This is our main example of the notion of
formalism freeness.

4.5. Summarizing the examples. Formalism freeness, a phenomenon
which, it is hoped, the reader now sees as a genuine one, even in this brief
outline, is ubiquitous. A classification of these different modes of formalism
freeness into (likely overlapping) categories, might run along the following
lines: (1) “Logic independence,” as evidenced in the Karp project, and also
in ours below in Section 6with respect to definability. (2) Admitting amathe-
matical rather than logical treatment, as exemplified by constructibility given
in terms of Gödel functions; Turing machines; AEC’s; certain aspects of sta-
bility theory; the notion of computable function of finite type; presentations
of the reals. (3) Transcendence (even local transcendence) with respect to
a logical hierarchy.98 (4) Formalism independence in the sense of stability
under a class of presentations, viz computability.
One can think of theses various modes of the concept of formalism free-
ness as the simple preference for semantic methods, i.e., methods which
do not involve or require the specification of a logic—at least not prima
facie. Formalism freeness is manifest in the distinction between the so-
called axiomatic method and the method of formal systems, as we have
noted. For example, Euclidean geometry was given initially as an ax-
iomatic system, but it was formalized—in a preliminary sense—in Hilbert’s
1899 Grundlagen der Geometrie.99 Formalism freeness is in some sense an
aspiration—unfulfillable perhaps, givenwhat appears to be at least an appar-
ent entanglement of mathematics with the various set- or category-theoretic
formalisms—formalisms which do succeed, after all, in codifying almost the
entire inferential structure of mathematics. Formalism freeness involves a
leap of faith, involving as it does a move away from the support of formal
methods.100 This is, in some sense, the main dilemma here—the aesthetic
question, if you will. One seeks a natural, unentangled mathematical con-
cept.

§5. Gödel’s remarks to the 1946 Princeton Bicentennial Conference. We
now take up our main point of departure for the mathematical ideas in
this paper, Gödel’s [31]. Before considering the address in detail, a brief
summary. Gödel begins by grouping together three epistemological notions,
as he calls them: computability, definability and provability. Note that
each of these come with their own paradoxes, which, with some care, can
be turned into theorems.101 With computability we have the unsolvability

98See below and see Gödel’s [31].
99[40].
100at least, insofar as those methods involve formalization.
101Gödel mentions paradoxes explicitly only in connection with definability.



374 JULIETTE KENNEDY

of the halting problem, self-reproducing Turing machines, and so on; with
provability there are the Incompleteness Theorems; with the concept of
definability paradoxes arise from the attempt to define definability. For
example, “the least undefinable ordinal” defines an ordinal, paradoxically.102

It is not clear what Gödel means by the word “epistemological,” beyond
the fact that all of these involve the activity of the mathematician. The
goal here is to see that each of computability, definability and provability
admits an “absolute” version, and indeed what is explained in the Prince-
ton address is how to formulate “absolute” or in a special sense formalism
independent, and at the same time non-paradoxical versions of the two
epistemological notions of provability and definability.103 That this is at
all possible is testimony to the great robustness manifested by these con-
cepts.
As to the address itself, there are no proofs in it, only remarks and con-
jectures. Strikingly, in most cases the methods involved in the proofs, had
they been given, were not developed until much later. For example, Gödel
indicates that ordinal definability is itself definable, a fact which is nowadays
proved using the Levy Reflection Principle.104 Gödel also asserts here (not
conjectures) the independence of the axiom of constructibility, V = L.105

Another conjecture of Gödel’s is that HOD106 will be a model of set theory
satisfying choice, giving a simpler consistency proof of the Axiom of Choice,
which was proved in [66]. Finally, Gödel predicts that the proof of AC in
HOD will not extend to a proof of the CH, and in fact the failure of the CH
was shown to be consistent with V = HOD in 1968.107

5.1. Computability. We now consider the lecture in detail. Gödel begins
by addressing the concept of computation. He points out that this concept
can be given a formalism independent definition:

Tarski has stressed in his lecture the great importance (and I think
justly) of the concept of general recursiveness (or Turing com-
putability). It seems to me that this importance is largely due

102Other definability paradoxes include the Berry paradox, “the smallest integer not defin-
able by at most ten words,” the Richard paradox, and so on.
103Gödel’s notion of formalism independence for definability and provability involves a

conception which embraces all the steps in a transfinite hierarchy at once. See below.
104The principle says that for every n there are arbitrarily large ordinals α such that

Vα ≺n V .
105In this connection see Gödel’s letter to Wolfgang Rautenberg of June 30, 1967, in [38],

p. 183.
106HOD is the class of hereditarily ordinal definable sets. OD is the class of ordinal

definable sets, i.e., those sets which are definable by a formula of set theory with finitely many
ordinal parameters. In the address, Gödel only mentions OD; but we take him to be referring
to HOD in most cases.
107See [64]. This raises the question whether HOD was Gödel’s candidate for the consis-

tency of the failure of the CH.
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to the fact that with this concept one has succeeded in giving an
absolute definition of an interesting epistemological notion, i.e.,
one not depending on the formalism chosen.108

Gödel could be referring to the fact that whether one defines the notion of
computability by means of the Gödel–Herbrand–Kleene definition (1936),
Church’s ë-definable functions (1936), Gödel–Kleene ì-recursive functions
(1936), Turing machines (1936), Post (1943) systems, or Markov (1951)
algorithms,109 one defines the same class of functions (as was noted above).
Gödel used the phrase “formalism independent” for this mode of formalism
freeness. But another sense of formalism independence emerges in the paper,
having to do with “the absence of the sort of relativity to a given language
that leads to stratification of the notion such as (in the case of definability in
a formalized language) into definability in languages of greater and greater
expressive power.”110 Restricted to computability, this is the idea that one
cannot diagonalize out of the class of partial recursive (or computable)
functions, in the way one can diagonalize out of the class of total recursive
functions.
In a footnote Gödel added in 1965,111 he clarifies the notion of formal-
ism independence, a broadened absoluteness claim112 at stake in this pas-
sage:

To be more precise, a function of integers is computable in any
formal system containing arithmetic if and only if it is computable
in arithmetic, where a functionf is called computable in S if there
is in S a computable term representing f.113

The concept of partial recursive function is then in some sense saturated
for arithmetic; that is to say, there is no computable (i.e., partial recursive)
function which is computable in a system extending arithmetic, which is
not already computable in arithmetic. Gödel contrasts this situation with
the apparently less felicitous cases of provability and definability, remarking
that:

In all other cases treated previously, such as demonstrability of
definability, one has been able only to define them relative to a
given language, and for each individual language it is clear that
the one thus obtained is not the one looked for. For the concept
of computability, however, although it is merely a special kind
of demonstrability or definability, the situation is different. By a

108[35], p. 150.
109See, e.g., [15].
110Parsons, introductory note to [1946].
111To the version published in [16].
112according to Sieg, see [78].
113italics ours.
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kind of miracle it is not necessary to distinguish orders, and the
diagonal procedure does not lead outside the defined notion.114

There is an important unstated context here, involving Turing’s analysis of
the notion of “formal system” as it bears on the question of the generality of
the First Incompleteness Theorem, and in turn with the establishment of the
absoluteness of the concept of computability. The absoluteness was needed
for settling the question, taken up by Gödel himself in his 1931 paper on the
Incompleteness Theorems, whether those theorems are completely general,
that is, whether they apply to any formal system containing arithmetic, and
not just Principia and systems related to it. Gödel was careful to say at the
end of his 1931 paper that this had not been shown. But Turing’s analysis
lays this doubt to rest for Gödel.115 In a postscript Gödel added on the
occasion of the reprinting of his Princeton lecture in Martin Davis’s 1965
The Undecidable, he writes:

In consequence of later advances, in particular of the fact that, due
to A. M. Turing’s work, a precise and unquestionably adequate
definition of the general concept of formal system can now be
given, the existence of undecidable arithmetical propositions and
the non-demonstrability of the consistency of a system in the same
system can now be proved rigorously for every consistent formal
system containing a certain amount of finitary number theory.116

The generality issue117 arises in the first place because the general notion
of formal system is not given in the 1931 paper. But, Gödel continues:

Turing’s work gives an analysis of the concept of “mechanical
procedure” (alias algorithm or computation procedure or “finite
combinatorial procedure”). This concept is shown to be equiva-
lent with that of a “Turing machine.” A formal system can simply
be defined to be any mechanical procedure for producing formu-
las, called provable formulas. For any formal system in this sense
there exists one in the [usual] sense that has the same provable
formulas (and likewise vice versa) . . . 118,119

114As we remarked above about the notion of computability given in terms of Turing
machines particularly, not only “is [it] not necessary to distinguish orders, and the diagonal
procedure does not lead outside the defined notion,” but the concept is apparently logic free
relative to first order logic.
115Kreisel takes a similar line in his [53].
116[34], p. 369.
117As we noted above, there is an interesting literature on the question of the generality

of the Second Incompleteness Theorem, having to do with concerns about the intensional
correctness of the relevant consistency statements, also in weak arithmetic theories. See
references in footnote 7.
118ibid.
119As we noted above, Gödel’s identification of a formal system as a mechanical procedure

for producing provable formulas, would restrict the notion of a formal system to those
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If the meaning of Turing’s analysis (in Gödel’s mind) was initially bound
up with the generality issue, for Gödel in subsequent years the meaning
of the Turing analysis, in particular the suggestion that mechanization and
formalization are in some sense equivalent, was that it both precipitated and
crystallized the distinction between the mechanizable activity of formaliza-
tion, and the activity of the mathematician proper. As Gödel would later
write to Leon Rappaport:

My theorems only show that the mechanization of mathematics,
i.e., the elimination of the mind and of abstract entities, is impos-
sible, if one wants to have a satisfactory foundation and system of
mathematics.120

To Gödel in 1946, however, what was important about the Turing analysis
was not its solution of the generality issue per se, or the fact that it pushes
the abstract entities of mathematics into “human territory,” so to speak,
as the remark to Rappaport might suggest; rather (or in addition) what
was important about the Turing analysis to Gödel at the time, was that it
represented a methodological ideal.
For Gödel (and others), Turing answered the question: what can a person
compute? definitively and finally, by laying out a set of mechanical oper-
ations which, in the right combinations and carried out in the right way,
reduce the computation of, e.g., a ë-definable function, to something very
much like child’s play.121 This is achieved by exhibiting a (in some sense)
perfectmodel of human calculability; as Gödel would later put to HaoWang

The resulting definition of the concept of mechanical by the sharp
concept of “performable by a Turing machine” is both correct
and unique . . . Moreover it is absolutely impossible that anybody
who understands the question and knows Turing’s definition should

decide for a different concept.122

Wang explains that Turing’s analysis even has ontological significance,
in that “Turing machines are an important piece of evidence for Gödel’s
belief that sharp concepts exist and that we are capable of perceiving them
clearly.”123

The sharp concept is there all along, only we did not perceive it
clearly at first. This is similar to our perception of an animal far

with at most a recursively computable provability predicate. This rules out many of the
purely semantically defined formalisms such as (full) second order logic with the semantic
consequence relation; accordingly our notion of formal system is more general.
120op cit.
121Or as Sieg put it in his [78], what was groundbreaking about Turing’s analysis was

that “Turing solved the Entscheidungsproblem in a way that did full justice to the normative
demand for intersubjectivity between humans.”
122[85], p. 203. Italics ours.
123ibid, p. 194.
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away and then nearby. We had not perceived the sharp concept of
mechanical procedure sharply before Turing, who brought us to
the right perspective. And then we do perceive clearly the sharp
concept.124

The concept of a Turing machine is formalism free, in our sense of the
term, while at the same time it is a concept from which the formal notion can
be easily recovered. A Turing machine is neither a formal nor an informal
concept, however; or, one could say, it is, in some strange sense, both125—the
one thing, the missing piece which anchors the picture.
This rendering of the correspondence between the informal notion of
computability and the various formal notions which had been introduced,
effectuated via a “perfect” analysis of the informal concept, a correspon-
dence Robin Gandy described as a theorem in his [28], is what Gödel is
asking for in his 1946 lecture—not as applied to computability of course,
as Turing had already done that. What is needed is to transfer the entire
Turing analysis to the “other” epistemological cases, namely definability and
provability.

5.2. Provability. We now turn to Gödel’s suggestion that something anal-
ogous to Turing’s analysis of computability is to be expected for the other
epistemological notions, namely provability and definability:

This, I think, should encourage one to expect the same thing
to be possible also in other cases (such as demonstrability or
definability). It is true that for these other cases there exist certain
negative results, such as the incompleteness of every formalism
. . . But close examination shows that these results do not make a
definition of the absolute notions concerned impossible under all
circumstances, but only exclude certain ways of defining them, or
at least, that certain very closely related concepts may be definable
in an absolute sense.126

We briefly consider Gödel’s suggestions regarding provability, before turn-
ing to definability, our main concern in this paper.

Let us consider, e.g., the concept of demonstrability. It is well
known that, in whichever way you make it precise by means of
a formalism, the contemplation of this very formalism gives rise
to new axioms which are exactly as evident and justified as those
with which you started, and that this process of extension can be
extended into the transfinite. So there cannot exist any formalism
which would embrace all these steps; but this does not exclude

124ibid, p. 205.
125As Juliet Floyd puts it in [24], “A Turing machine lends itself, intentionally and concep-

tually, to a double point of view: it is both a formal system and a remodeling.”
126[31], p. 150.
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that all these steps . . . could be described and collected in some
non-constructive way. In set theory, e.g., the successive extensions
can be most conveniently be represented by stronger and stronger
axioms of infinity. It is certainly impossible to give a combina-
tional and decidable characterization of what an axiom of infinity
is; but there might exist, e.g., a characterization of the following
sort: An axiom of infinity is a proposition which has a certain
(decidable) formal structure and which in addition is true. Such a
concept of demonstrability might have the required closure prop-
erty, i.e., the following could be true: Any proof for a set-theoretic
axiom in the next higher system above set theory (i.e., any proof
involving the concept of truth which I just used) is replaceable
by a proof from such an axiom of infinity. It is not impossi-
ble that for such a concept of demonstrability some completeness
theorem would hold which would say that every proposition ex-
pressible in set theory is decidable from the present [ZFC] axioms
plus some true assertion about the largeness of the universe of all
sets.127

In brief, some suitable hierarchy of large cardinal assumptions should re-
place the hierarchy of formal systems generated by, e.g., the addition of con-
sistency statements to set theory, i.e., passing fromZFC to ZFC+Con(ZFC)
and then iterating this; or the addition of a satisfaction predicate for the lan-
guage of set theory, then considering set theory in the extended language,
and iterating this.
The usefulness of transfinite concepts was mentioned by Gödel in a num-
ber of contexts, e.g., that they complement partial proofs of the Com-
pleteness Theorem given by Löwenheim and Skolem,128 while in the case
of the Incompleteness Theorem, the statement of the result itself involves
transfinite concepts such as “truth.” The very prescient statement that
the transfinite also assists decidability in set theory, incompleteness being
per se a property of formal systems, which can be transcended by means
of infinitary concepts, is made here in an embryonic form of what came
to be known as Gödel’s program for large cardinals, a program laid out
in its fullest form in his 1947 “What is Cantor’s Continuum Hypothe-
sis?”129

A partial realization of this program to replace logical hierarchies by
infinitary principles, and thereby secure decidability, can be seen in the
following result of Woodin: in the presence of large cardinals,130 the Σ21
theory of real numbers, i.e., existential statements about sets of reals, is

127[31, p. 151].
128See Gödel/Wang correspondence in [38], e.g., letter on p. 404.
129See [32]. In fact very few large cardinals had been discovered in 1946.
130A proper class of Woodin cardinals.
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(set) forcing immune in the sense that their truth cannot be changed by
forcing—one important form of decidability.131

Of course, forcing extensions do not form the kind of (linear) hierarchy
that Gödel has in mind here, 1946 being well before the invention of forcing,
never mind the appearance of generic absoluteness theorems.132 It would
have been very natural for Gödel to have eventually specialized his program
to forcing extensions, though, given his overall interest in deciding inde-
pendent statements such as the Continuum Hypothesis, as we have argued
elsewhere.
Is the concept of provability behind these results formalism free in the
sense of the other examples given above? Forcing extensions do not form
a linear hierarchy but a partial order. An Ω-proof, a proof concept which
occurs in Woodin’s later work in connection with generic absoluteness,133

is just a universally Baire set of reals. Replacing the concept of a proof
by a universally Baire set of reals has an appearance of formalism freeness,
somewhat reminiscent of the idea of replacing a formula by a set invariant
under automorphisms in the AEC context. Universally Baire sets of reals
are also very regular in a precise sense.134

5.3. Definability. Gödel now passes to definability, in connection with
which he can give us “somewhat more definite suggestions.”
The idea, again, is to treat the notion of definability in an absolute fashion.
Such a goal seems paradoxical, as definability appears to be rather closely
tied to a formalism, in the sense that one uses a signature and formation rules
to build up well-formed formulas, and then the definable sets are simply de-
clared to be those sets that are definable via that stock of formulas. But the
standard technical definition of definability is clearly not what Gödel has in
mind. For Gödel, definability is an epistemological notion. Finding an ab-
solute characterization of it is, Gödel says, to find “an adequate formulation
for comprehensibility by our mind.”135 Simply laying down a language and
then declaring the sets “comprehensible by our mind” to be those given by
the formulas of the language, not only introduces arbitrariness—it leads, as
Gödel will later observe,136 to paradox.
After these initial remarksGödel introduces the concept of “ordinal defin-
ability.”137 The idea is to take the ordinals as already given and then define

131See [87]. The result requires the Continuum Hypothesis. Another result of this kind
Woodin which says about the structure L(R), the constructible closure of the reals, that its
first order theory is (set) forcing absolute in the presence of large cardinals (a proper class of
Woodin cardinals), [86].
132Cohen invented forcing in 1963.
133[87].
134This point bears elaboration. The reader is referred to the author’s subsequent

monograph.
135[35, p. 152].
136to Wang, citing the history of Frege’s Axiom V, see [85].
137not a concept of definability in his more general sense, see p. 151, [31].
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sets by means of the language of set theory as usual, but with finitely many
ordinals as parameters.

Here you also have, corresponding to the transfinite hierarchy of
formal systems, a transfinite hierarchy of concepts of definability.
Again it is not possible to collect together all these languages in
one, as long as you have a finitistic concept of language, i.e., as
long as you require that a language must have a finite number of
primitive terms. But, if you drop this condition, it does become
possible . . . by means of a language which has as many primitive
terms as you wish to consider steps in this hierarchy of languages,
i.e., as many as there are ordinal numbers. The simplest way of
doing it is to take the ordinals themselves as primitive terms. So
one is led to the concept of definability in terms of ordinals . . .
This concept should, I think be investigated.

The advantage of doing things this way is that ordinals bequeath their
“lawlikeness” to the sets constructed from them, namely the ordinal definable
sets. They are “formed according to a law.”138

Ordinal definability is itself definable in set theory—somethingGödelmust
have known, judging from his remarks here: “By introducing the notion of
truth for this whole transfinite language, i.e., by going over to the next
language, you will obtain no new definable sets (although you will obtain
new definable properties of sets)”—though modern proofs of this depend
on the Levy Reflection Principle, which was only proved in 1960. For this
reason, if one passes to the “next language,” i.e., one obtained by adding a
truth predicate for statements about ordinal definable sets, one obtains no
new ordinal definable sets.139 Another corollary of the definability of the
concept of ordinal definability, in analogy with the computable functions,
the notion of ordinal definability is “non-diagonalizable” as well.
Inwhat sense is ordinal definability formalism independent? In fact similar
to constructibility, by a result of [84] the class of hereditarily ordinal definable
sets can be obtained as the closure of the class whose the elements are all
sets of the form Vα under the Gödel operations, instead of via the first order
language.140 This is an apparently formalism free construction, relative to
set theory.
WhatGödel had inmind thoughwas something different. His goal in these
remarks involves replacing a formalism, or more precisely a hierarchy of
them generated by the addition of truth predicates, by an axiom or principle
of infinity of a special kind: the characterization of the principle must be
decidable, and the principle must be true. The principle which is implicit in

138[35, p. 152].
139More exactly, for any formula φ(x) there is another formula φ′(x) which says that φ(x)

is true in HOD. So no new ordinal definable sets are created by referring to truth in HOD.
140[66]. Here V0 = ∅, Vα+1 = P(Vα) and Ví = ∪α<íVα for limit í.
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the concept of ordinal definability141 —the Levy Reflection Principle142—
would satisfy both requirements for Gödel. We noted above that Gödel does
not state this principle in the lecture; but this is the principle that is used in
modern accounts to show that HOD is a definable class. The LevyReflection
Principle is not itself an axiom of infinity per se, in fact it is provable; but if it
is slightly strengthened and then reflected to some Vα , it becomes an axiom
of infinity.143

Gödel next takes up the idea of capturing a different notion of definability
in a formalism independent, lawlike and definable way. The presentation of
the constructible hierarchy in terms of definability was given by Gödel in
1939 in his monograph on the consistency of the continuum hypothesis; in
1940 he gave a second presentation of the constructible sets, as the closure
of the class of ordinals under the so-called “Gödel operations.” This latter
presentation is somewhat logic or formalism free, as we noted above, in that
no satisfaction or definability predicates occur in it.144 But Gödel does not
see L as exemplifying an, in his sense, absolute notion of definability, even
so that, as in the case of ordinal definability, the constructible hierarchy
is non-diagonalizable in the following sense: if we form the constructible
hierarchy and then add to the language of set theory a predicate for “x is
constructible,” we do not obtain any new constructible sets.

. . . but, comparing constructibility with the concept of ordinal
definability just outlined, you will find that not all logical means of
definition are admitted in the definition of constructible sets. . . .
This has the consequence that you can actually define sets, and even

sets of integers, for which you cannot prove that they are constructible

(although this can of course be consistently assumed.) For this
reason, I think constructibility cannot be considered a satisfactory
formulation of definability.145

We will return to constructibility in section 5.1. It turns out that the
constructible hierarchy is very robust and permits interesting generalizations.
At the end of the address Gödel remarks of his two candidates for the
concept of absolute definability—constructibility and ordinal definability—
that neither of these is an absolute notion in the sense of the paper:

. . . in both examples I gave, [ordinal definability and constructibil-
ity] the concepts arrived at or envisaged were not absolute in the
strictest sense, but only with respect to a certain system of things,

141actually HOD here.
142The principle says that for every n there are arbitrarily large ordinals α such that

Vα ≺n V .
143There is an α such that for all A ⊆ α there is â < α with (Vâ ,∈, A ∩Vâ) ≺ (Vα ,∈, A).

This implies that α is (strongly) inaccessible [44, Proposition 6.2.].
144The second, syntactic consistency proof of the CH is perhaps less perspicuous than the

initial proof.
145Italics ours. [35], p. 152.



ON FORMALISM FREENESS 383

namely the sets as conceived in axiomatic set theory; i.e., although
there exist proofs and definitions not falling under these concepts,
these definitions and proofs give, or are to give, nothing newwithin
the domain of sets and propositions expressible in terms of “set,”
“ǫ,” and the logical constants.146

It would seem that, for Gödel, an absolute notion of definability “in
the strictest sense” would have to dispense altogether with the background
theory—set theory, in this case. This is slightly paradoxical in that on the
one hand, Gödel’s use of the word “absolute” seems to indicate a desire for a
characterization of definability which is not tied to the background theory—
in this case ZFC set theory; while on the other hand he is clearly reluctant
to attach a transcendental concept, i.e., one not definable in set theory, to
the “epistemological” notion in question. So while aspiring to absoluteness
in the “strictest sense,”147 Gödel is, at the end of the day, committed to
set theory as his metatheory. Idealization is decisive here, Gödel will say
later,148 in connection with the constructible hierarchy. But just as with
constructibility, idealization does not have to bring full transcendence.
That this is the fundamental point of tension here bears repeating: Gödel
aspires toward absoluteness in the strictest sense, that is to say we read
Gödel as taking as his metatheory set theory in the informal sense. “The
intuitive notion of the cumulative type structure,” as Kreisel puts it in his
[53], is the basic standpoint. While on the other hand the only measure of
absoluteness—our compass, so to speak—involves, in this case at least, the
ZFC formalization.

§6. Implementation. Up to now we have discussed the meaning of the
expression “formalism free” in somewhat general terms. We now give one
possible sense of the term. Inspired by Gödel’s call for extending formalism
independence to the concept of definability, we extrapolate to a possible
implementation, extending the idea of a Church–Turing Thesis to the notion
of definability in the context of set theory.
We begin by fixing a notion of definability, in this case constructibility,
and view it as an operator on logics.149 We denote the result of applying this
operator to a logic L∗ by L(L∗), defined as follows:

Lα+1(L
∗) = {X ⊆ Lα(L

∗) : X is L∗-definable

over (Lα(L
∗), ǫ) with parameters.},

Lí(L
∗) =

⋃
α<í Lα(L

∗) for limit í,

L(L∗) =
⋃
α Lα(L

∗).

(1)

146ibid.
147as does Tarski, as we noted above.
148to Wang, [85], remark 8.3.3.
149See Section 3 for our definition of a logic.
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If L∗ is taken to be first order logic, denoted FO, we obtain the con-
structible hierarchy itself. We noted above that Myhill and Scott showed in
their [66], that if L∗ is taken to be second order logic, denoted SO, the class
obtained is HOD, the hereditarily ordinal definable sets.150

For another precedent, the so-called Chang model L(Lù1ù1) is a model of
ZF together with the failure of the Axiom of Choice, under large cardinal
assumptions. In the light of this failure one might advocate the use of frag-
ments of SO, also on the basis of these having a somewhat more reasonable
syntax.
It is not difficult to see that if L∗ is taken to be weak second order logic

L2w , i.e., the logic allowing quantification over finite sets, we again obtain the
constructible hierarchy L, that is, L(FO) = L(L2w) = L. This is interesting,
since this represents a change of logic. In particular, L2w is non-compact.
This brings up an important issue with respect to the question whether
the invariance of a concept of definability with respect to a particular class
of logics represents the fulfillment of a Church–Turing Thesis, in our sense
of the term, for definability. What is meant here by a “change of logic”?
For now we will adopt the principle that this is indicated by the failure of
properties mentioned in Lindström Theorems, i.e., the failure of compact-
ness and/or the Löwenheim–Skolem Theorem in the relevant cases where
such characterizations of logics exist (even partially).151 However one may
not always have such a measure of change of logic.
Continuingwithour observations aboutL-invariance, it is also not difficult
to see that if one takes L∗ to be that obtained from first order logic by adding
to it the quantifiersQα , i.e., “there are at least ℵα many,” for all cardinals ℵα ,
one again obtains L.152 Our eventual focus is on fragments of second order
logic, and indeed when only cardinals that are second order characterizable
are used, this logic is a fragment of second order logic.153

The following implementation of Gödel’s suggestion in the 1946 lecture
emerges. Define the equivalence relation on logics:

L∗ ≡ L∗∗ if and only if L(L∗) = L(L∗∗).

This equivalence relation partitions the family of all logics into classes
inside which L is indifferent to what logic is used. Conceivably the equiva-
lence classes could be rather small. We would interpret this by saying that

150In fact this result enjoys some robustness, i.e., ostensiblymuchweaker logics than second
order logic still give rise to HOD. See [50].
151We note here that for constructive logic there are classical, i.e., not constructively valid,

proofs of compactness and Löwenheim–Skolem.
152See [50].
153A cardinal κ is second order characterizable if there is a second order sentence φ of the

empty vocabulary such that for all modelsM of the empty vocabulary,M has cardinality κ iff
M |= φ. All the ℵn

′s are second order characterizable. If κ is second order characterizable,

then so are κ+ 2κ, 22
κ

, etc. See [81].
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L seems to be quite dependent on the formalism used. As it happens, the
classes are big, the class of FO including at least L2w , i.e., the logic allow-
ing quantification over finite sets, the family of extensions of FO given by
L(Qα) for each ℵα, and finally Magidor–Malitz logic, assuming 0

♯ exists.154

L in that sense “reads” all of these logics, including first order logic with the
Magidor–Malitz quantifier adjoined to it, as first order.
In fact, more is true:155 The constructible hierarchy L is unaffected if
first order logic is enriched in the construction of L by any of the following,
simultaneously or separately:

• Recursive infinite conjunctions
∧

∞

n=0 φn and disjunctions
∨

∞

n=0 φn.
• Cardinality quantifiers Qα , α ∈ On.
• Equivalence quantifiers156 QEα , α ∈ On.
• Well-ordering quantifier

M |=Wx, yφ(x, y) ⇐⇒

{(a, b) ∈M 2 :M |= φ(a, b)} is a well-ordering.

• Recursive game quantifiers

∀x0 ∃y0 ∀x1 ∃y1 · · ·

∞∧

n=0

φn(x0, y0, . . . , xn, yn),

∀x0 ∃y0 ∀x1 ∃y1 · · ·

∞∨

n=0

φn(x0, y0, . . . , xn, yn).

We suggest that this manifests a remarkable independence of L from the
formalism used, and in that sense provides evidence for Gödel’s suggestion
that constructibility might be a good candidate for a formalism independent
notion of definability—though not in the way he imagined it at the time,
evidently. Constructibility being not particularly sensitive to the underlying
logic in that sense gives evidence that a type of Church–Turing thesis holds
for L, namely invariance with respect to a certain large class of logics.
We can also change our point of view and consider the equivalence of a
logic in the above equivalence relation as a measure of similarity of these
logics. Thus logics which are in this sense equivalent to first order logic
are then considered “similar to first order logic, as far as constructibility

154The Magidor–Malitz quantifier QMM,nα x1, . . . , xnφ(x1, . . . , xn) is defined as follows:

M |= QMM,nα x1, . . . , xnφ(x1, . . . , xn) ⇐⇒

∃X ⊆M (|X | ≥ ℵα ∧ ∀a1, . . . , an ∈ X :M |= φ(a1, . . . , an)).

By a result of Magidor, if L∗ is taken to be first order logic with the Magidor–Malitz
quantifiers adjoined to it, then also then L∗ ≡ FO, assuming 0♯ exists. [50].
155See [50] for details.
156These are quantifiers which say that a given definable equivalence relation has ℵα

equivalence classes.
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is concerned.” That is to say, L “reads” the logics in the class as first
order. Respectively, logics which are in this sense equivalent to second
order logic are then considered “similar to second order logic, as far as
constructibility is concerned.” Work on this is underway but already quite
surprising connections between logics have emerged, connections that other
measures of similarity between logics have not revealed.157

In the above results we considered certain fragments of second order logic.
Why are these logics interesting? Second order logic has emerged in recent
decades in connection with structuralism and other foundational issues.
One would think that the study of its fragments, especially those which are
(countably) compact and have completeness theorems158 or other desirable
properties, might also be of interest. That is, rather than look at a logic
so strong that it has no proof concept, one might want to investigate the
territory between first and second order logic; of, in this case,L up to HOD,
where HOD is taken in the sense of L(SO), the version of L obtained by
replacing the underlying first order logic in the construction ofLwith second
order logic.

6.1. Beyond L. In fact the restriction to L is not intrinsic to our analysis.
We mentioned that also HOD is not particularly sensitive to the underlying
logic and indeed one can apply a concept D of definability to any suitable
logic in the operation L∗ 7→ D(L∗), and design a Church–Turing Thesis of
this this sort, relative to D.
The version of formalism freeness considered here involves formalism or
more precisely logic independence, i.e., invariance under substitution of one
of a class of logics, considered on a case by case basis. In the case of
definability this may not be the only choice. One could imagine other as-
pects of a formalism with respect to which a given concept of definability
might stabilize. However there are no obvious candidates on the hori-
zon.
Thinking beyond definability toward other canonical concepts, one might
also consider this schema, i.e., varying the underlying logic, in other contexts.
In fact any logical hierarchy, e.g., Kleene’s ramified hierarchy of reals159 is
amenable to this treatment, conceivably.

6.2. Extending the axioms of set theory. Instead of considering a partic-
ular canonical set-theoretic construction, we can ask, does the theory ZFC
itself, or any of its semantic extensions, admit a Church–Turing Thesis of the
kind we have been considering? There are a number of ways of answering
the question. Our approach is the following: given a logic L∗, exchange
FO in the Separation and Replacement Axioms of ZFC with another logic
L∗, obtaining an L∗-version of ZFC, denoted ZFC(L∗). More exactly, the

157See [50].
158See [47].
159[51].
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modification is that the formula φ(x, ~y) in the Schema of Separation

∀x ∀x1 . . . ∀xn ∃y ∀z (z ∈ y ↔ (z ∈ x ∧ φ(z, ~x)))

and the formula ø(u, z, ~x) in the Schema of Replacement

∀x ∀x1 . . .∀xn(∀u ∀z ∀z
′ ((u ∈ x ∧ø(u, z, ~x) ∧ ø(u, z ′, ~x))→ z = z ′)

→ ∃y ∀z (z ∈ y ↔ ∃u (u ∈ x ∧ ø(u, z, ~x)))).

are allowed to be taken from L∗ rather than just FO. We do not add
logical rules for L∗-formulas, rather the logic L∗ is semantically defined, the
concept of a model (M,E), E ⊆ M ×M , satisfying the axioms ZFC(L∗)
being obviously well-defined. Our question is, to what extent is ZFC(L∗)
dependent on L∗?
Note that ZFC(L∗) is at least as strong as ZFC in the sense that every
model of ZFC(L∗) is, a fortiori, a model of ZFC. The class of models of
ZFC is immensely rich, ZFC being a first order theory. We now ask the
question, what can we say about the models of ZFC(L∗) for various logics
L∗?
If we think of the equivalence classes of logics defined by

L∗ ≡ L∗∗ if and only if ZFC(L∗) = ZFC(L∗∗)

the following is true: The class of L(Q0) contains all logics that can express
“finiteness” and are eliminable160 in ù-models of set theory, for example
weak second order logic. The class of L(QMM0 ) contains all logics capable
of expressing well-foundedness, which are eliminable in transitive models of
set theory, such as strictly absolute logics, e.g., the recursive game quantifier.
Finally, the class of Lù1ù contains all logics between Lù1ù and Lù1ù1 . See
[50] for details.
So similar to the case ofL(L∗), the class ofmodels ofZFC(L∗) is somewhat
dependent on the choice of L∗, while at the same time there is also a great
deal of variability as to the choice of L∗. Our working hypothesis in this
area—our expansive intuitionism, as it were—is that ZFC(L∗) has semantic
content independently ofL∗, short of very dramatic variations in the strength
of L∗.161

The topic of semantic extensions of ZFC, as well as the related topic of
set theory and arithmetic in extensions of first order logic, are little studied
and full of open problems.

160i.e., can be first order defined.
161Other extensions of this kind have been considered. In his [45] M. Kaufmann

added the stationary quantifier (see [9]) to ZFC together with some natural axioms con-
cerning the stationary quantifier, and proved in the new system, among other things,
the consistency of ZFC. See also A. MacIntyre’s [59], and Schmerl and Simpson’s
[72].



388 JULIETTE KENNEDY

§7. Concluding remarks. Aremathematical objects “language-embodied”
in some essential way? Are mathematical objects presented, or grasped, or
perceived—however one wants to put it—only insofar as they are embedded
in a language? In a formal language? Or does our mathematical discourse
have an autonomously given, formalism independent content, in the sense
given in Section 4 of this paper, or in any other sense?
A thesis which is close to the heart of the naturalist, at least of the method-
ological, second philosophical kindwe considered earlier in this paper, is that
the question of meaning in mathematics is not amenable to frameworks of
analysis originating in the a priorist philosophical tradition. “First philo-
sophical” theorizing about meaning, to use Maddy’s terminology, that is,
theorizing articulated from within and beholden to standards external to
mathematical practice, standards which are judged to have been met—or
not—according to extra-mathematical criteria, even insofar as such criteria
originate in natural science162; that philosophical undertaking, is, for the
naturalist, to be discouraged—greatly.163

The view taken here is that the second philosopher gets something right
aboutmeaning. At the same time, though, meaning does showup for us from
time to time, provided we look for it in the right way. Alva Noë writes: “the
world shows up for us.”164 Noë is alluding to the fact that our experience of
the world is direct and incorrigible, rather than mediated, either by concepts,
or representations, or relations between these, etc.:

Frege claimed that statements of number are statements about
concepts (1884/1978, 59). The statement “the King’s carriage
is drawn by four horses,” for example, is a statement about the
concept “horse that draws the King’s carriage.” It might look as if
we are talking about the King’s carriage, when we use these words,
but we aren’t . . .

Noe concedes that Frege’s analysis of the situation is reasonable, as far as it
goes; nevertheless he insists that when we speak of the King’s carriage being
drawn by four horses, we are speaking not about the concept of “horse” or
the concept of “four”; rather we are saying something about horses and the
number four, so to say, directly.
To say that mathematics is, and has always been, practiced in a formalism
free way is just to say that, in mathematics, the world shows up for us.
More precisely, we can provide something in the way of evidence for the
entanglement—or the lack of it—of our natural mathematical discourse, not
only with the (formalized) concept of number but with an entire formal
apparatus. This is because the beautiful field of mathematical logic has
developed to that point.

162See Maddy, [1997, 184].
163E.g., this was Quine’s view of meaning, at least prior to his 1970 Philosophy of Logic.
164Varieties of Presence, [67].
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At the beginning of this paper we mentioned the problem of consistency.
Formalisms are one particular way that mathematicians represent the math-
ematical field to themselves. As a “coping tool” they are essential in just the
way that art is essential—they tell us where we are. But Gödel put his finger
on the main issue in the opening remarks of his Dialectica paper: for a proof
of consistency one is forced to deal directly with meaning—mere reflection
on the combinatorial properties of syntax will never lead to a consistency
proof.
How fortunate we are then, that meaning is right there.
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