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ABSTRACT 

Many unknown species of human DNA viruses have recently (2005-2013) been discovered 
by using modern molecular and bioinformatic tools. The clinical and pathogenic roles of 
these viruses are presently known only fragmentarily; however they were found in 
symptomatic patients, and some have been shown to cause severe infectious illness, or 
cancer. Some of these emerging DNA viruses are examined in this thesis: Human Bocavirus 
1 (HBoV1), Merkel cell polyomavirus (MCV or MCPyV) and Trichodysplasia spinulosa-
associated polyomavirus (TSV or TSPyV). Viruses like these are of fundamental 
importance in the genesis of not only of acute but also of chronic or late-onset illness. The 
immunobiology and pathogenesis of these new viruses along with the already known DNA 
virus (parvovirus B19 or B19) can be found by immunological and molecular methods. 
For years it was thought that parvovirus B19, was the sole human-pathogen among its 
family members. In 2005 a new pathogenic species, HBoV1 (previously denoted HBoV), 
was discovered by random-PCR from a nasopharyngeal aspirate. The existing data strongly 
suggest that HBoV1 causes a respiratory illness in young children. The aim of our study 
was to increase our knowledge on HBoV1-specific Th-cell immunity by examining T-cell 
proliferation and cytokine responses in asymptomatic adults. HBoV1-specific response was 
compared to those elicited by B19. B19-specific Th-cell immunity appears to be more 
divergent (in terms of cytokine response patterns) than the HBoV1-specific one. The 
present study also suggests that interleukin-13 (IL-13) response induced by HBoV1 may 
contribute to the airway pathology like asthma or bronchiolitis. 

 
    A novel concept of CD4+ T-cells with cytolytic potential (CD4+ CTL) is emerging. Very 
recently, CD4+ CTL have been implicated in the control of persistent viral infections, e.g., 
Epistein-Barr virus (EBV), hepatitis C virus (HCV) and HIV-1. While human parvovirus 
B19 can establish persistence, yet no data exist on the presence of B19-specific CD4+ 
CTLs. Detection of vigorous B19-specific granzyme B (GrB) and perforin responses in 
seropositive individuals points to a role of CD4+ CTL also in B19 immunity. Such cells 
could function within immune regulation and in the triggering of autoimmune phenomena 
such as Systemic Lupus Erythematosus (SLE) or rheumatoid arthritis (RA). 
 
    The newly discovered MCV resides in approximately 80% of Merkel cell carcinomas 
(MCC). The integration of MCV genome in-to the genome of host cell has been suggested 
to be the primary reason for this rare and aggressive skin cancer. Here we studied the T-cell 
immunity against this carcinogenic virus. We found that interferon-γ (IFN-γ) is the 
dominant cytokine among MCV-seropositive individuals and suggest that IFN-
γ induced inflammatory response plays an important role in surveillance against MCV-
induced disease. Our studies also suggested a role for IL-13 and IL-10 in anti-tumor 
immunity and immune regulation, respectively. 

 
    TSV, while exhibiting high seroprevalence in general population, has been detected in 
trichodysplasia spinulosa (TS) skin lesions, suggesting an etiological role in this disease. In 
order to characterize Th-cell immunity against TSV, and to permit its comparisons with 
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MCV-specific Th-cell immunity, we studied TSV and MCV-specific proliferation and 
cytokine responses in healthy volunteers and in one MCC patient. While an association 
between humoral and cellular responses was detectable with MCV, it was found to be 
weaker than the humoral and cellular responses detectable with TSV. Despite the 
significant homology in amino acid sequences of VP1, Th-cell crossreactivity was not 
evident between these viruses. As CD8+ T-cells specific for MCV LT-Ag oncoprotein 
clearly provide an important defence mechanism against MCC, the MCV VP1-specific Th-
cells may also be important in preventing the oncogenic process, by suppressing MCV 
replication with antiviral cytokines such as IFN-γ. 

 
    Parvoviruses (HBoV1 and B19) and polyomaviruses (MCV and TSV) induce effector 
CD4+ T-cell responses that are best known for their ability to protect against viral 
infections. Besides helper functions, CD4+ T-cell contribute to viral control and elimination 
by CD4-mediated cytotoxic effector functions. Thus, understanding of the CD4+ T-cell 
immunity is of key importance in the development of vaccines and therapeutic agents 
against life threatening infectious pathogens.  
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ABBREVIATIONS 

AMC Acute myocarditis 

APC Antigen presenting cell 

B19 Human parvovirus B19 

CLL Chronic lymphocytic leukemia 

CMV Cytomegalovirus 

CMI Cell mediated immunity 

CTLs                  Cytolytic (or cytotoxic) T lymphocytes 

DCM Dilated cardiomyopathy 

DCs Dendritic cells 

DNA Deoxyribonucleic acid 

ds Double stranded 

EBV Epstein-Barr virus 

ELISA  Enzyme-linked immunosorbent assay (or EIA) 

Elispot Enzyme-linked immunosorbent spot  

EMB Endomyocardial biopsies 

Fas L Fas ligand 

GrB  Granzyme B 

HBoV Human bocavirus 

HIV Human immunodeficiency virus 

HSV Herpes simplex virus 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

JCV JC polyomavirus (or JCPyV) 

KIV KI polyomavirus (or KIPyV) 

LT-Ag Large T antigen 

MCC Merkel cell carcinoma 

MCV Merkel cell polyomavirus (or MCPyV) 

MHC Major histocompatibility complex 

NK Natural killer cells 
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nt nucleotide 

OBD Replication origin binding 

ORF Open reading frame 

PAGE Polyacrylamide gel electrophoresis 

PAMPs Pathogen-associated molecular patterns 

PBMC Peripheral blood mononuclear cells 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PRR Pattern recognition receptor 

RA Rheumatoid arthritis 

Rb Retinoblastoma 

RNA Ribonucleic acid 

SDS Sodium dodecyl sulphate 

SLE  Systemic lupus erythematosus 

ss Single stranded 

sT-Ag Small T antigen 

Tbet T-box 21 

TCR  T cell receptor 

Th-cells Helper T cells 

TLR Toll-like receptor 

Tfh T follicular helper cell 

TNF Tumor necrosis factor 

Treg T regulatory cell 

TS Thricodysplasia spinulosa 

TSV Thricodysplasia spinulosa-associated polyomavirus (TSV or TSPyV) 

WUV WU polyomavirus (or WUPyV) 
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INTRODUCTION 
 
 
Virus infections lead to thousands of deaths annually worldwide and are responsible for 
billions of dollar economic burden globally. Viruses contain DNA or RNA as their genetic 
material, enclosed in a protein shell with or without outer lipid envelope. These small 
infectious molecules replicate only inside the living cell and exploit the DNA/RNA 
synthesis and protein production machinery of the cell (1). The initial detection of a 
pathogenic viral invasion triggers the host immune response to induce a complex defence 
mechanism aimed to limit the extent of infection and subsequently clear it. Immune system 
is comprised of a network of cells, tissues and specialized organs that work together to 
protect the host. The immune response to viral infections constitute of innate (non-specific) 
and adaptive (specific) defence mechanisms (2). Most viral infections are controlled by the 
innate immune system. However, if viral infection overtakes the innate immune system, the 
adaptive response must be functional. Humoral (antibody mediated) and cellular 
(lymphocyte mediated) immune responses are two arms of the adaptive immune response.  
B and T (CD4+ and CD8+) cells are the key players of adaptive immune system. CD8+ T-
cells control viral infection, by directly killing the infected cells while CD4+ T-cells play a 
key role in command and control, closely interacting with cells of both innate and adaptive 
arms of immunity (3). 
 
    In order to develop efficient vaccines and therapeutic agents against viruses, the 
understanding of antiviral immune mechanisms is very necessary. Since human DNA 
viruses; HBoV1, MCV and TSV, are very recently identified, their clinical impacts beyond 
the first disease associations are just beginning to emerge: thus little is known about their 
infection kinetics and immunobiology. We established methods for the assessment of 
antiviral immunity for all these emerging DNA viruses and examined their pathobiology. 
This thesis is of enormous importance from both academic and clinical perspectives, as the 
characterization of protective immunity provides a basis for vaccine development. 
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REVIEW OF THE LITERATURE 
 

 
Antiviral immunity 

 
Viruses are obligate intracellular parasites that cause infection by invading cells of the 
body. The immune system has non-specific (innate immunity) and specific mechanisms 
that attack the virus during its life cycle. Antimicrobial peptides and innate immune cells, 
e.g., monocytes, macrophages and dendritic cells (DCs) mediate innate antiviral immune 
functions. Innate immune cells express receptors that recognize pathogen-associated 
molecular patterns (PAMPs) and trigger the activation of the innate immune response. 
Furthermore intracellular sensors of viral nucleic acids, e.g., Toll-like receptor 3 (TLR 3), 
TLR7, TLR8 and RIG-I-like receptor (RLR) family induce the production of various 
effector molecules, e.g., type I IFNs; cytokines such as IL-12 and IL-27 (4). These 
molecules act on natural killer (NK) cells to induce IFN-γ production. Chemokines, such as 
CXC-chemokine ligand 10 (CXCL10), also participate in inducing activation of CD8+ T-
cells and Th1 cells of adaptive immunity (4).  
 
    Specific antiviral immune mechanisms are both humoral and cellular. Specific antibodies 
protect against viral infections and play an important role in antiviral immunity, mainly 
during the early stages of infection. The most effective antiviral antibodies are neutralizing 
antibodies, which bind to viral envelope or capsid proteins and block the virus from 
entering into the host cell. T lymphocytes play a crucial role in the adaptive immune 
response. They include CD4+ and CD8+ T-cells, named after the glycoprotein co-receptor 
expressed on their cell surface. CD4+ T lymphocytes are mainly considered regulators 
while CD8+ T-cells are considered cytotoxic effectors of the immune response (5). 
 
CD4 T cell immunity 

 
CD4+ helper T (Th) cells orchestrate immune responses against viral infections. CD4+ T- 
cells help B-cells to promote antibody production and they are often required for the 
generation of memory and cytotoxic CD8+ T-cells (3). Recent studies also suggest a role for 
CD4+ T-cells in enhancement of innate immune responses and in mediating cytotoxic 
antiviral effector functions (6). CD4+ T-cells also regulate/suppress immune responses both 
to control autoimmunity and to adjust the magnitude and persistence of responses (7). For 
mounting effector functions, CD4+ T-cells recognize peptides derived from extracellular 
proteins presented by MHC classs II molecules on the surface of antigen presenting cells 
(APC). Pattern-recognition receptors (PRR) are host receptors that detect PAMPs and 
activate APCs to up-regulate the expression of MHC class II molecules, co-stimulatory 
molecules (e.g., CD80 and CD86) and pro-inflammatory molecules (e.g., tumor necrosis 
factors (TNFs), IL-6, IL-2, IL-1 and type I IFNs). In draining lymph nodes naïve virus-
specific CD4+ T-cells are primed by activated APCs migrated from the tissues and 
subsequently these T-cells differentiate to effector cells (6, 8). Different viral infections and 
many other factors, like dose and route of antigen infection and the targeted organ or cell 
type affect the priming (6). Differentiation of naïve CD4+ T-cells in-to different subsets is 
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affected by specific subset of activated APCs, by antigen load, duration of antigen 
presentation and the pattern and amount of cytokines produced by different APCs (9). 
Differentiated CD4+ T-cell subsets are classified on the basis of their ability to secrete 
different cytokines and the expression of specific transcription factors (10). 

 
Th1 cells 

 
Th1 cells are characterized by the production of IFN-γ and the expression of transcription 
factor T-bet (11). Th1 cells are mainly generated in response to viral infections and they 
secrete IFN-γ and induce other cells to secrete TNF-α and chemokines (12). IFN-γ is a 
major antiviral cytokine, produced not only by Th1 but also by cytotoxic CD8+ T-cells and 
NK cells. It stimulates intracellular killing of microbes and presentation of antigens to 
CD8+ and CD4+ T-cells by up-regulating MHC class I and II molecules and it also has a 
direct antiviral effect (13). It is a critical extrinsic tumor-suppressor factor in 
immunocompetent hosts and it has several types of antitumor activities (14-16). B cell help 
of Th1 cells is limited by their tendency to kill B-cells (17). 

 
 
Figure 1: CD4 T cell effector subsets. A CD4 T cell (Th) can differentiate into unique 
effector subsets determined in part by the cytokine milieu that is present when the cell 
encounters an antigen. Effector subsets are classified by the dominant transcription factor 
in concert with the cytokines that they express. From Marshall et a.l, 2011 (reproduced by 
the permission) (11). 
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Th2 cells 
 

Th2 subset is characterized by the expression of transcription factor GATA3 and secretion 
of IL-4, IL-5, IL-9, IL-10, IL-25 and IL-13 cytokines (18). IL-13 possesses several unique 
effector functions including regulation of gastrointestinal parasite expulsion, intra-cellular 
parasitism, airway hyper-responsiveness, allergic inflammation (19) and class switch to IgE 
and IgG4 (20). The role of IL-13 in regulating tumor growth depends on the tumor cell 
type. In some models inhibition of IL-13 or IL-13 receptors has promoted tumor growth 
(21, 22) whereas in others tumor growth has been inhibited (22, 23). In chronic B 
lymphocytic leukaemia (B-CLL) models IL-13 has been shown to block apoptosis of tumor 
cells (24, 25). Secretion of IL-13 has been found elevated in infections by some respiratory 
viruses and also participate in the pathogenesis of asthma (26). A recent report suggested 
that increased IL-13 secretion promotes Th2 cell differentiation, which leads to B cell 
activation (27). IL-10 is an important anti-inflammatory cytokine (28) and its major sources 
are Th2 cells and a subset of T regulatory cells (Treg) (29).  

 
CD4 T follicular helper cells (Tfh) 

 
These cells are characterized by the expression of transcription factor Bcl-6 and the 
secretion of IL-4 and IL-21 (6). Tfh cells are found in B-cell follicles of secondary 
lymphoid organs and important for the formation of germinal centers (30). These cells are 
best known for providing help to B cells by promoting generation of B cell memory and 
long-lived antibody-producing plasma cells (6, 30, 31). Hence, Tfh are likely important for 
generating long-lived antibody responses and protective immunity to most, if not all, 
viruses (6) 

 
Regulatory CD4 T helper cells (Treg) 
 
Treg cells are involved in the regulation of immune responses and their functions have been 
reported during viral infections in humans and animals (6). These cells also express FOXP3 
transcription factor and secrete IL-10 (32). IL-10 increases B-cell growth, IgG secretion 
and essential for the maintenance of human germinal centre B-cells in vitro (33). Functional 
activities of Th1 cells, NK cells and macrophages are also inhibited by IL-10 during 
infection (these cell types are required for optimal pathogen clearance, and also contribute 
to tissue damage during infection)(28, 33, 34). The role of this cytokine on the immune 
response against cancer is controversial. As it can inhibit several key phenomena of 
adaptive immune responses, it has been considered to allow malignant cells to escape from 
immune surveillance (35, 36). By contrast, there is data to suggest that IL-10 might also 
favour immune-mediated cancer rejection (37-40).  

 
    Treg cells play an important role in controlling pathological conditions e.g., limiting 
collateral tissue damage, inhibiting autoimmune diseases and allergic diseases mediated by 
Th2 cells and suppressing anti-viral responses (32, 41). In a mouse model of herpes simplex 
virus (HSV) infections Suvas et. al. demonstrated that lesions were more severe and 
animals became more susceptible to infection upon depletion of Treg before infection (42). 
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However, in case of hepatitis C virus (HCV) and Human immunodeficiency virus (HIV) 
infections Treg cells appear to contribute to immune dysfunctions and are responsible for 
viral persistence and chronic tissue damage (32). 

 
T helper 17 (Th17) cells 

 
Th17 cells play an important role in host defence against various extracellular pathogens. 
Role of Th17 cells in viral infections is not well studied, however, in some mice models 
virus-specific Th17 responses have been investigated (43, 44). These cells are characterized 
by secretion of IL-17 and IL-22 cytokines and expression of ROR-γt transcription factor 
(6). IL-17 facilitates proinflammatory responses from various cell types by attracting and 
activating neutrophils (10). Studies have suggested that these cells induce inflammation 
during autoimmunity and IL-17 probably contributes to immunopathology during viral 
infections (45, 46). However, against some virus infections Th17 cells protect against virus 
infections (43). Secretion of IL-22 may contribute to tissue repair by regulating the 
expression of antimicrobial peptides, defensins (47). 

 
CD4+ Cytolytic T cells (CD4+ CTL) 

 
Besides shaping and coordinating different arms of adaptive immune system, CD4+ T-cells 
can directly perform antiviral effector functions (10). Accumulating data suggest the 
significance of MHC class II-restricted CTLs in the pathogenesis of autoimmune diseases 
(48, 49) and in the control of chronic viral infections, such as Epstein-Barr virus (EBV) (50, 
51), Cytomegalovirus (CMV) (52, 53), HIV (54, 55), as well as malignancies (56, 57). 
Cytolytic CD4+ T cells share a common pathway with CD8+ CTLs and NK cells and can 
kill target cells by two major mechanisms. One involves the interaction of Th-cell surface 
antigen Fas with the Fas ligand (FasL) on the target cell surface and activates caspase-
mediated apoptosis programmes in the target cell (58). The other one is granule exocytosis 
pathway, which employs perforin and serine proteases called granzymes (59). These 
cytotoxic effector molecules trigger cell death by activating downstream apoptosis 
pathways (59). Granzymes, such as GrB, can also cleave other substrates besides caspases 
(59). This enzymatic activity may potentially contribute to autoimmunity by creating novel 
autoimmune epitopes from self-proteins (60). It can also mediate direct antiviral activity by 
cleaving essential viral proteins, as shown in adenovirus (61) and HSV models (62). 
Perforin is membrane disturbing and pore forming cytolytic protein synthesized in CTL and 
NK cells (54). Perforin-mediated cytolytic activity has been suggested for virus-specific 
CD4+ CTL clones that recognize peptides derived from EBV latent membrane proteins, 
HIV-1 gag protein, poliovirus and dengue virus capsid protein (11, 63-65). Appay et al. 
showed that a low number of perforin producing CD4+ T-cells are present in the blood 
circulation of healthy donors and that these cells expanded in donors with chronic viral 
infections (66).  
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CD8 T cell immunity 
 
The main effector cells involved in specific antiviral immunity are CD8+ CTLs. These cells 
recognize viral antigens presented on the cell surface associated with class I MHC 
molecules (67).  
 
    Two mechanisms are responsible for initiating all CTL-mediated apoptotic death of 
target cells: A) Directional delivery of cytotoxic proteins (perforin and granzymes) that are 
released from CTLs and enter target cells, B) Interaction of the membrane-bound Fas L on 
CTLs with the Fas receptor on the surface of target cells (2, 68). CTLs also release 
cytokines such as IFNs and TNF when they interact with the viral antigen (68). Either of 
these initiating events results in the activation of a signaling pathway that culminates in the 
death of the target cell by apoptosis. CTL response is not always beneficial, since the tissue 
destruction caused by CTL is sometimes greater than the damage done by the virus (68).  
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Parvoviruses 
 

Parvoviruses are small (about 25 nm in diameter) and nonenveloped viruses. The genome 
of parvoviruses consists of linear and single stranded DNA (ssDNA) of size ≈5 kb. The 
family Parvoviridae is divided in-to two sub-families: Parvovirinae and Densovirinae. The 
family Parvovirinae is further divided in-to five genera: parvoviruses, erythroviruses, 
dependoviruses, amdoviruses and bocaviruses. The viral capsids are icosahedral and 
composed of 60 capsomeres. Virus particles of this family are resistant to inactivation by 
organic solvents because they lack lipids (1).   

 
B19 Virus 
 
Morphology 
 
Cossart et al discovered B19 in 1974 and classified as a member of the Erythrovirus genus. 
It was found accidentaly, while evaluating tests for hepatitis B virus from an asymptomatic 
patient (69). The name of the virus originated from the identification of the tested sample: 
number 19 of panel B (69).  

 
    B19 is a small, nonenveloped virus with a ss DNA genome of 5.6 kb (5,596 nt long), and 
with a diameter of 20-25 nm. Internal coding sequence of 4,830 nt flanked by the identical 
terminal repeat sequences of 383 nt (70). The distal approximately 365 nt of the repeat 
sequences are imperfect palindromes and they form hairpin like structures and serve as 
primers in the replication of viral DNA (71-73). B19 mainly has two large open reading 
frames (ORFs), encoding for non-structural and structural proteins (74). In addition to these 
two ORFs, B19 genome also contains two additional small ORFs (74). Parvoviruses 
maximize their coding potential by using partially overlapping transcripts and all three 
reading frames. Virus particles of B19 consist of 60 units of capsomeres. The structure of 
parvovirus B19 has been explored by X-ray crystallography at 3.5 (75) and 8.0 Ao 

resolutions (76). Recombinant virus-like particles (B19 VP2 VLP) were used for the 
determination of structural properties because recombinant capsids are immunologically 
and structurally similar to the original viruses.  

 
 

Structural proteins 
 

The major capsid proteins (VP1 and VP2) encoded by genes on the right side of genome 
(70). Both proteins are encoded by overlapping reading frames; VP2 from nt 3125 to 4786, 
and VP1 from 2444 to 4786 (70). Viral capsids of B19 consists of major structural protein 
VP2 (58 kDa) and minor VP1 (83 kDa), which make 95% and 5% part of the capsids, 
respectively. B19 VP2 alone has the capacity to self assemble in insect and mammalian cell 
cultures and to make virus like particles that resemble native virions. ORFs of both proteins 
are similar except the presence of extra 227 amino acids at the N-terminus of VP1, called 
VP1u (VP1 unique region) (77). VP1u is essential for the infectivity and immunogenicity 
of B19 virus because of the presence of phospholipase A (PLA2) motif in this region and 
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the report that PLA2 activity is crucial for B19 infection (78, 79). VP2 mediate receptor 
binding and both VP1 and VP2 possess the capacity of inducing neutralizing antibodies 
(70, 80).  

 
Non-structural proteins 

 
The major non-structural protein NS1 (NS1), encoded by the genes located in the left side 
of the genome. This protein consists of 671 amino acids with a molecular weight of 77 kDa. 
NS1 is located in the nucleous of the infected cell (74) and has been shown to be cytotoxic 
and to block cellular proliferation (81, 82). NS1 also mediates several other important 
functions including, involvement in viral DNA replication (83), regulation of gene 
transcription (84), induction apoptosis in erythroid lineage cells by interaction with caspase 
3 etc. (85).  

 
Small proteins 

 
Two additional small ORFs of B19 encode to small proteins of size 7.5 and 11 kDa (74), 
respectively. Precise role of these two proteins is still known, however, recent studies have 
reported that the 11 kDa protein participated in regulating the production rates of B19 
capsid proteins (86). Also this protein induces apoptosis during B19 infection of primary 
erythroid progenitor cells. However, the role of the 7.5 kDa protein is not explored yet (87). 

 
Pathogenesis and infection 

 
Humans are the only known host for B19. The life cycle of B19 virus includes attachment 
of the virus to the host cell receptors, penetration (endocytosis), uncoating, DNA 
replication, ribonucleic acid (RNA) transcription, protein translation, assembly of virions, 
and finally cell lysis with release of the virions (70). 

 
    In 1983, Mortimer et al., has shown that B19 virus inhibits the process of erythropoiesis 
by infecting human erythroid progenitor cells in bone marrow and blood (88). Cellular 
receptor, P blood group antigen globoside (Gb4), has been found responsible for extreme 
tropism of B19 (89). Besides the cells of erythroid lineage globoside receptor is found also 
on platelets, heart tissues, lung, liver, endothelium, and kidney and on synovium (90, 91). 
Individuals lacking this receptor are resistant to B19 infection (92). Further on, it has been 
reported that only the presence of globoside receptor is not sufficient for the entry of B19 
in-to cell, however, this receptor is necessary for cell infection. Therefore two additional 
co-receptors, α5β1 integrin (93) and Ku-80 (94) have been suggested which allow the entry 
of B19. Mature human red blood cells (RBCs) lacking the presence of α5β1 receptor but 
with a high expression of P antigen, only bound virus but do not allow viral entry. In 
contrast erythroid progenitor cells facilitate the entry of B19 because these cells express 
high level of both receptors (93). However, Ku80 was shown to enhance the entry of B19 
suggesting that Ku80 mediate efficient B19 entry in cooperation with the other two 
receptors (94). B19 replicates in the nucleous of the host cells and completes the infection 
cycle, like other DNA viruses, in following steps: attachment to the host cell receptors, 
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internalization, transfer of genome to the nucleus, DNA replication, RNA transcription, 
assembly of the capsids, packaging of the genome, cell lysis and release of infectious 
virions (70). 

 
Transmission and epidemiology 

 
The transmission of B19 occurs generally by personal contact via aerosol or respiratory 
secretions. In one study, B19 was administered internasaly in-to voluntary healthy adults 
who subsequently became viremic and seroconverted (95). B19 can also be spread through 
blood and plasma products, organ transplantation and vertical transmission from mother to 
fetus during pregnancy (70, 96). The B19 receptor is abundant in the human placenta in 
early gestation, which might provide a pathway for the virus (97). B19 infection is a very 
common infectious agent in humans. B19 infections appear all through the year, but highest 
season is in late winter and spring, with major epidemics every few years (98). B19 
circulates globally and serological studies have shown that B19 seroprevalence increases 
with age. Approximately, 15% preschool children, 50% adults and 85% elderly individuals 
show serologic evidence of past infection (99, 100). B19 infection is supposed to affect 
males and females in equal numbers, but in some studies females were more often B19-
seropositive than males (101, 102). It is evident that persisting IgG antibodies provide a 
lifelong immunity and the presence of viremia and viral DNA in PBMC is very rare among 
healthy individuals. Although B19 has been found associated with a wide spectrum of 
diseases, large proportion of infections remains subclinical, both in children and adults. In 
some cases symptoms are nonspecific and cannot be differentiated from common cold and 
some of the clinical manifestations are mild and self-limited. B19 infection can be more 
severe in patients with shortened red cell survival, in pregnant women and in 
immunocompromised individuals (70). 
 
Persistence in human tissues 

 
B19 is capable of persisting in the circulation of immunocompetent and 
immunocompromised individuals (100, 103-105). The asymptomatic presence of B19 in 
healthy hosts is not generally recognized because such a phenomenon is mainly observed in 
cases associated with disturbed immune condition. B19 DNA has been shown to persist in 
bone marrow (70, 106), synovial tissues (107, 108), liver and kidney (109-111), brain 
(106), thyroid (112, 113), myocardium (114, 115) and skin (116, 117). 
 
    The exact mechanism of B19 persistence is not known. There are many thoughts about 
the viral persistence, e.g., Norja et al. (118) suggested that B19 genome can persist in 
different human organs for whole life and the genome can serve as the source of persistent 
replication. Another possibility proposed is that B19 could integrate into the human 
genome, as shown for other viruses (77, 119). Finally, it has been suggested that B19 DNA 
could retain in the synovium as a full length genome (107). If the persistent B19 DNA is 
not active, the most important issue will be whether the latent B19 infection can be 
reactivated under a certain condition, such as stress, immunosuppression or co-infections 
by other viruses. 
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Clinical manifestations  
 

The clinical manifestations associated with B19 infections may range from benign to life 
threatening. Clinical symptoms are influenced by the infected individual’s immunological 
condition (immunocompromised or immunocompetent), age and haematological status. 
There are many B19-associated syndromes reported, however, only few of them are well 
established. 

 
Erythema infectiosum: The most common clinical presentation of B19 infection in 
immunocompetent individuals is erythema infectiosum or fifth disease or slapped cheek 
(120). Erythema infectiosum typically affects school-aged children. This disease is 
characterized by facial rash followed by appearance of rash on the trunk, rheumatic 
symptoms, mild fever and malaise (121). It has been suggested that the symptoms of B19 
infection are due to the formation and deposition of immune complexes in the skin and 
other parts of the body. The rash associated with erythema infectiosum may be transient 
and recurrence may be provoked by exposure to sunlight, heat, emotion and exercise (121). 
Approximately 25-50% of these infections are asymptomatic (77, 122).  

 
Arthralgia and Arthritis: Arthralgia and arthritis are common clinical complications found 
associated with B19 infections (123, 124). Approximately 50% (125) of adults and 10% 
(126) of children with erythema infectiosum suffer from joint manifestations. Arthropathy 
is more common in adult females (approx. 60%) compared to men (30%) (70) and 
characterized by polyarthritis typically involving metacarpophangeal joints, knees, wrists, 
or ankles (123, 125). B19-associated arthropathy usually resolves with in a few weeks, and 
even when symptoms persist for months or year, joint destruction does not occur (121).  

 
    It has been suggested that deposited antibodies against B19 in synovial fluid of joints, are 
responsible for joint pain (127). Sometimes arthropathy mimics classical rheumatoid 
arthritis (RA), however, B19-associated pathogenesis is unclear (128). To investigate the 
possible role of B19 in RA, primary human synovial fibroblasts were treated with B19 
virus containing sera for 7 days (129). Incubation with B19 containing serum induced an 
invasive phenotype in fibroblasts and when the viremic serum was pre-incubated with 
neutralizing antibodies to B19 the effect was suspended (129). Presence of B19 DNA in 
synovial fluid (130), cells (131) and tissue (132) of affected joints also support the role of 
B19 in RA. Structural protein of parvovirus B19 was also seen in the synovial lymphocytes 
in patients with RA (133). Non-structural protein of B19 (NS1) induces the activation of 
IL-6 gene expression and it is known that over-production of IL-6 is responsible for the 
activation of autoreactive T cells and appearance of auto-reactive antibodies, including 
rheumatoid factors (84). IL-6 could also be responsible for bone destruction and 
osteoporosis (134). It has been suggested that B19-associated arthritis is genetically 
associated being more common in individuals with HLA DR4 or B27 (103, 135, 136). 
Secreted phospholipase A2 motif in the exposed B19 VP1 unique region may activate 
synoviocytes and accelerate the inflammatory responses in synovial tissues and thus 
contribute to the B19-associated atrhropathy (137). 
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    Chronic parvovirus B19 infection has been shown to be associated with production of 
antibodies directed against auto-antigens, like human keratin and collagen type II and a 
direct correlation between arthritis and a clinical feature was found (138). There are many 
pieces of evidence suggesting that B19 infection is not associated with RA; there was no 
evidence of inflammatory arthritis in 54 patients with recent B19 infection after long term 
follow up (median 5 years) (139). It was also shown that the presence of B19 DNA in 
synovial membrane is not sufficient to confirm a link between virus and RA (140).  

 
B19 and pregnancy: Pregnant women lacking B19 specific antibodies are at risk of acute 
B19 infection and subsequent transfer of the virus to the fetus (70). Fetal infection may be 
asymptomatic, but it has also been associated with fetal anaemia, spontaneous abortion and 
hydrops (141). Hydrops fetalis is a condition in the fetus defined by the presence of 
generalized fetal subcutaneous tissue accumulation of fluid (edema) in at least two fetal 
compartments (77). B19 has been found to be associated with fetal hydrops in about 8-17% 
cases and fetal death occur typically during the second trimester but sometimes also during 
the first trimester (142-144). Some reports also suggested that the asymptomatic infection 
in pregnancy carries a higher risk of transmission because it can be connected with weak 
immune response unable to prevent B19 replication (77). Many mechanisms for the 
development of B19-associated hydrops fetalis have been described, one report suggested 
that parvovirus B19 interrupts the process of erythrocyte production (erythropoiesis) and 
induces the development of aplastic crisis and heart failure (103). 

 
Anaemia: In subjects with shortened red cell survival, the B19 infection may lead to 
aplastic crisis because B19 is erythrocytotropic and infects the red cell precursors in bone 
marrow (145). In healthy subjects, this condition is transient, but in immunocompromised 
individuals, e.g., subjects with HIV infection, congenital immunodeficience, or those 
receiving immunosuppressive therapy,  anaemia may become chronic (146, 147). 

 
 Autoimmune diseases: Apart from RA, B19 has been found associated with many 
autoimmune diseases, e.g., systemic lupus erythematosus (SLE), juvenile idiopathic 
arthritis, Sjogren's syndrome, primary biliary cirrhosis, polymyositis, dermatomyositis, 
autoimmune cytopenia and vasculitis (148-150). Various studies suggested that mechanism 
of molecular mimicry between host proteins and viral protein is responsible for 
autoimmune disorders (138, 151, 152). Other possible mechanisms for the induction of 
autoimmunity included enhanced cytokine production by NS1 protein (84, 153, 154) and 
phospholipase A2-like activity of VP1u (78, 151). 

 
              Other diseases: Many studies proposed an association of B19-infection with heart related 

diseases (155-157). B19 might also be involved in pneumonia (158), nephritis (159), liver-
associated diseases (160), and neurological disorders including meningoencephalitis, 
cerebellar ataxia, seizure and stroke (161, 162). 
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Diagnosis 
 

Because of the difficulties in propagation of B19 virus in tissue culture laboratory the 
diagnosis of B19 is totally depend on the methods of antibody and nucleic acid detection 
(121). Detection of the B19 can also be done by electron microscopy in plasma and fetal 
tissues especially in case of high-titre viremia during acute infection. B19 proteins can also 
be detected in tissue by immunohistochemistry, however, this is a time consuming 
procedure (77, 163). 

 
    Most of the antibody based diagnostic assays rely on insect cell-expressed recombinant 
B19 virus-like particles. Acute B19 infection is usually diagnosed by the presence of B19 
specific IgM usually after 10-12 days of infection and antibodies remain detectable up to 3-
4 months or sometimes even longer (99). IgM antibodies against NS1 may take over six 
weeks to develop after the onset of illness, which explains the lower prevalence of anti-NS1 
antibodies in persons with acute B19 infection (164). IgG antibodies may be detected about 
two to three weeks after infection and they can persist life-long and protect against 
reinfection. Seroprevalence of B19-specific IgG has been estimated to be as high as 30-
60% among adult population (70). Children usually get infected after entering the school, 
yet 25% of the cases remain asymptomatic (70).  

 
    PCR (Polymerase chain reaction) is a very sensitive method for the detection of B19 
DNA from serum and tissue samples. PCR based assays are important for the diagnosis of a 
persistent infection when antibody production is absent or low (165). Acute infection can 
be detected by both IgM ELISA and PCR from serum samples (165). Hybridization of PCR 
products with B19-specific probes improves sensitivity and specificity and confirms the 
results (166). However, PCR test alone, without serological tests, is not reliable, because it 
can be positive for several months after acute infection (141). 

 
Treatment of B19 infections and vaccine development  

 
There is no antiviral drug against B19 infection available. Among the immunocompetent 
individuals treatment is not required and infection can be self-controlled. Number of 
different options for the treatment of B19 infections can be used for different diseases and 
risk groups of patients. Patients with arthralgia may be treated with anti-inflammatory 
drugs. Among immunocompetent hosts sometimes non-sterdal anti-inflammatory drugs can 
be used for the treatment of arthralgia (103). Immunosuppressed patients or subjects with 
increased turnover of red blood cells, chronic anaemia or transient aplastic crisis may be 
treated with erythrocyte transfusions and intravenous immunoglobulin (IVIG) containing 
neutralizing antibodies. However, sometimes immunoglobulin therapy is not able to 
complete viral clearance (103, 121).  

 
    Empty virus-like particles are being produced and used as vaccine candidates for 
parvovirus B19. Previously two vaccine candidates based on B19 VLPs have been tested in 
phase I clinical trials (167, 168). The vaccines consisting of 25% VP1 and 75% VP2 have 
been tested evaluated for the induction of humoral and cell mediated immunity (167, 169, 
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170). These vaccine candidates were produced in insect cells by a baculovirus expression 
system. When these VLPs were administered with MF59 adjuvant, strong neutralizing 
antibody responses were occurred along with some side effects e.g. headache, fatigue etc 
(167, 169). Very recently, Novartis Vaccine developed a new B19 VLP vaccine candidate 
in Saccharomyces cerevisiae (171). This vaccine has been produced by co-expression of 
VP2 and either wild type VP1 or phospholipase-negative VP1 in a regulated ration from a 
single plasmid. Strong neutralizing response was found after mice immunization with 
vaccine candidate. The purity, homogeneity, yeast origin, and lack of phospholipase 
activity of these VLPs address potential causes of previously observed reactogenicity (171).  

 
Humoral Immunity 

 
Approximately 50% of adults and children are seropositive for B19, indicates that B19 is 
very common infection (99, 100, 103). B19-specific IgG and IgM antibodies directed 
against capsid proteins are produced after infection and provide a long-term immunity. 
B19-specific IgM antibodies are detected during the second week after infection (late in the 
viremic stage) and start declining at the second month after onset of the illness, however, in 
some cases IgM antibodies may be found for several months (70). B19-specific IgG 
antibodies start appearing after about 15 days of infection and persist for life long and 
protect against secondary infections (70). B19-specific IgA antibodies are also detected in 
IgG seropositive subjects (172). The basis of persistent infection is a defect in 
immunoglobulin production. Serum from patients with persistent infection lacks antibodies 
to B19 or contains a low level of non-neutralizing IgM or IgG antibodies (147). It has been 
shown that presence of antibodies to VP1u is important for the clearance of the virus (103). 
It has been shown that denatured capsid protein antigens, membrane protein spotting, and 
conformational viral like particles that IgGs recognizing the conformational epitopes of 
VP1 and VP2 remains for the life, but IgGs against linear epitopes of VP2 are signs of 
acute infection (173-175). Measurement of IgG avidity and epitope-type specificity (ETS) 
can be used to identify primary infection (141, 173-176). However, antibodies against NS1 
have been reported only in acute and persistent infections (177-180). Interestingly, IgE 
antibodies also have been detected in an acute and recent B19 infection (181).  
 
Cellular Immunity 

 
Cellular immunity is the second arm of the specific immunity developed during B19 
infection and plays an important role against the infection. Humoral immune responses are 
well characterized, however, cellular immunity induced against B19 have not been 
investigated widely.  

 
CD4 T cell Immunity: Only few reports described CD4+ mediated responses against VP1 
and VP2 (103, 170, 177, 182, 183). Till date most of the studies are based on in-vitro 
experiments for the characterization of antiviral CD4 T cell immunity.  

 
In 1996, von Poblotzki et al., studied lypmphoproliferative responses by using 
prokaryotically expressed recombinant VP1, VP2 and NS1 proteins among healthy 
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individuals infected with B19. The results showed that B19-specific CD4+ responses were 
HLA II-restricted and directed against the capsid proteins VP1 and VP2, however, 
responses against NS1 appeared only in two out of 10 subjects (184). Further on, immune 
response to baculovirus expressed virus capsid proteins, VP1 and VP2 among recently 
infected children with erythema infectiosum disease and healthy adults with no record of 
recent B19 virus infection were characterized. Compared to recently infected children IFN-
γ response against VP1 and VP2, a very strong response among healthy individuals, 
suggesting that children with recent infection have defective IFN-γ responses and Th1-like 
immunity directed against B19 among healthy adults (177). It is known that VP1u is the 
major target for Th cells among recently infected children because stronger proliferation 
responses were detected with VP1 than VP2 (177). In this study authors did not explain the 
nature of the antigens (capsids or linear proteins) and absence of VP1u (separately) in T cell 
experiments, failed to explain the exact nature of antiviral T cell responses. In 2001 
Franssila et al studied Th cell immunity by using B19 VP1/2 containing approximately 
33% VP1 and 66% VP2, the ratios recommended for vaccine use. This study for the first 
time reported long term memory responses to B19 and showed Th-proliferation responses 
against B19 structural proteins in recently infected adults (182). The B19-specific T cell 
responses, in general, were most vigorous among the recently infected patients. However, 
such strong B19-specific proliferation was not confined within the acute phase, as 28% of 
the previously infected healthy individuals had B19-specific reactivity persisting at acute-
phase levels, apparently for years or decades. These data indicate that B cells recognizing 
the VP1/2 capsids receive class II– restricted help from CD4+ T lymphocytes (182). 
Reduction in IFN-γ responses during pregnancy among pregnant women with no clinical 
evidence of recent B19 infection, explain that weaker B19-virus immune response may 
increase suspectibility to fetal B19 infection (185).  

 
   Further on it was also shown that VP1/2 or VP2 alone are capable of inducing similar 
IFN-γ, IL-10 and proliferation responses in humans long after infection (186). Capsid 
protein VP2 contains epitopes capable of inducing Th-cell responses and B19-specific B-
cells of previously infected subjects receive T-cell help via an epitope with in VP2 (170). 
Th cell immunity was also determined against prokaryotically expressed VP1u among 
recently and previously infected subjects. Compared to VP2 capsids, strong VP1u-specific 
IFN-γ and IL-10 responses detected in recently infected subjects suggest poor recognition 
of VP1u by PBMC (186). Subsequently, transiently transfected B-cells expressing VP1-
unique region were used in an ELISpot to access T-cell immune responses against VP1u in 
PBMC.  Significant numbers of IFN-γ secreting CD4+ cells were detectable in PBMC of all 
individuals with recent, acute or persistent B19 infection, but not in PBMC of donors with 
past B19 infection and seronegative individuals (183). This data indicate that the presence 
of VP1u rgion is required for the maintenance of VP1-specific CD4+ T-cells that are primed 
during acute infections. Along with previous findings this study also suggests the presence 
of several Th epitopes in VP1u. Overlapping peptides were used for the assessment of NS1- 
and VP1-specicifc immune responses among individuals with B19 persistence. Strong 
responses were found with structural proteins, however, responses with non-structural 
proteins were of lower magnitude (187).  Possibility of liver involvement in persistent 
infection was reported in an immunocompetent individual suffering from acute hepatitis 
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and polyarthritis (188). Though, symptoms of arthritis and hepatitis resolved with-in a few 
weeks, B19 viral DNA in serum and CD4+ T cell responses for VP1u were detectable more 
than 6 months after the onset of symptoms (188). B19 DNA is frequently detected in 
endomyocardial biopsies (EMBs) from patients with acute myocarditis (AMC) and dilated 
cardiomyopathy (DCM), but also in various healthy tissues (189-191). The biological and 
clinical relevance of B19-DNA persistence in myocardial tissue remains incompletely 
understood. In order to investigate the role of B19 in AMC/DCM in more detail, Lindner et 
al analysed B19-specific CD4+ T-cell mediated immune responses in healthy individuals 
and patients with detectable B19-DNA in EMBs (192). Slightly lower B19-specific IFN-γ 
responses against VP2 and VP1/2 capsids were detected in AMC/DCM patients as 
compared to the healthy controls and no differences in virus-specific serology. Also 
correlation between the B19 DNA load and number of B19-specific T-cells in EMBs was 
not found significant. Data suggested that only detection of B19-DNA in EMBs is not 
sufficient to associate B19 with AMC/DCM (192).  

 
    T-cell immune responses against recombinantly expressed NS1 were reported among 
recently infected and B19-exposed individuals. Proliferation responses at higher frequency 
were eveident in recently infected patients with or without arthropathy. Interestingly, NS1 
reactive lymphocytes were also found in three B19 seronegative patients, two of them were 
recently exposed to B19 but without clinical symptoms. Therefore, T-cell immune response 
to NS1 may indicate a recent infection rather than development of arthropathy (193).  
 
CD8 T cell Immunity: Viral infections cause an immunological disbalance that triggers 
CD8 T-cell immune responses. These virus-specific T-cells play major role in clearing 
acute infections, limiting persistent infections and providing lifelong protective immunity. 
Emergence of innovative techniques for in vitro analysis of CD8 T-cell mediated immune 
responses has revealed an important role of these cells against viral infections (5, 194-196).  
Despite the importance of CD4+ T-cells in B19 infection, little is known about the B19-
specific CD8+ T-cells. In B19 infection, NS1-specific CD8+ T-cells may have important 
role. Tolfvenstam et al. in 2001 first initiated studies on CD8 T-cell immune responses 
against NS1 protein of B19 in seropositive individuals (197). In an HLA-B35 positive 
individual, vigorous cytotoxic T-cell response has been shown against a 9-mer-epitope 
derived from NS1 protein. This epitope was able to stimulate CD8+ T-cells for IFN-γ 
secretion ex vivo, and these cells were very frequently detectable from B19-seropositive 
individuals. In order to determine the number of these NS1-specific CD8+ T-cells, Elispot 
and HLA-B35 tetramer staining experiments were carried out for IFN-γ. These experiments 
showed a frequency of NS1-specific CD8+ T-cells as high as approximately 300 spot 
forming cells (SFC)/106 PBMC, a frequency higher than HLA-A2-restricted influenza- and 
EBV-specific CTLs (197). These virus-specific CD8+ T-cells also showed cytolysis, in 
vitro expansion and effector functions (197). The spotting of epitopes for CD8+ T-cells also 
provide possibilities to analyse the potential role of such effector cells in B19 associated 
diseases. Because of the small size of B19 genome, it is possible to map completely 
epitopes inducing cellular immune responses.  
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    By Elispot technique Klenermann et al. explored CD8 T-cell responses among 
asymptomatic B19-seropositive individuals by using peptide pools spanning the whole NS1 
(198). Cellular responses were found against several peptide pools and suggested that NS1 
may contain many CD8+ T-cell epitopes and significant population of memory CD8+ T-
cells persist in normal B19-seropositive individuals (198). CTL responses against B19 were 
further studied by using peptides pools spanning whole VPu, VP2 and NS1 with PBMC 
obtained from 5 acutely infected subjects (199). Vigorous NS1-specific CD8 T-cells 
responses were observed in all 5 subjects and these responses were well maintained during 
follow up. This further explains that NS1 contained several epitopes for B19-specific CD8+ 
T-cells. Interestingly, only 2 subjects showed CTL responses against VP2 and none against 
VP1u (199). Thus, CD8+ T-cells are crucial for controlling parvovirus B19 infections. By 
multimeric HLA-peptide complex analysis of B19-specific CD8+ T-cells were studied 
during and after acute infections among adult individuals (195). Frequency of B19-specific 
CD8+ T-cells in peripheral blood of 11 adults with acute B19 infection continued to 
increase for many months following the resolution of symptoms. All acutely infected 
individuals showed B19-specific CD8+ T-cell percentages ranging from 0.09% to 4.5% of 
total PBMC CD8+ T-cells. Next, phenotypic makers and effector functions of these virus-
specific CD8+ T-cells were studied ex vivo (195). All acutely infected subjects maintained 
high level CD38 expression with strong expression of perforin and CD57 and down 
regulation of CD28 and CD27. Expression of CD57 increased over time in all most all 
acutely infected subjects. Most of these features were shown previously in antiviral T-cell 
responses to CMV, where expression of intracellular perforin, loss of co-stimulatory 
molecules CD27 and CD28 and loss of lymph node homing marker CCR7 reported (200-
202). Importantly, these kind of cells characterized as; ‘terminally differentiated’ with 
sustained expression of CD57 (203). These results suggest that these cells are 
phenotypically mature and strongly activated in vivo (CD38+) (195). Lower frequencies 
(around 0.05-0.5% of total CD8+ T cells) of B19-specific CD8+ T-cells with lower 
expression of perforin, CD38 and CCR7 were found when subjects were tested many years 
after infection. In these experiments NS1 gene appeared a major target of CD8 T-cell 
responses during acute B19 infections. This extensive study suggest that B19 persists in 
some form after acute infection and induce sustained activated CD8 T-cell responses and 
may contribute to the long term control of B19 virus (195). Polymorphic HLA class I 
present antigenic peptides to cytotoxic T-cells and mediate protective immunity (194). 
Particular HLA-I allotypes are associated with protective immunity phenotypes in 
infectious diseases and inflammatory diseases (194). Kasprowicz et al. (204) investigated 
CD8 T-cell mediated immune responses, in individuals positive for HLA-A*2402 (a 
common HLA1 allele in East Asia) with acute B19 infection. Out of 7 of these individuals, 
6 exhibited vigorous CD8+ T-cell mediated cytotoxic responses to NS1 (FYTPLADQF) 
epitope. PBMC of these individuals were also co-stained with an anti-CD8 antibody, 
B19/HLA tetramers and monoclonal antibodies against 11 different TCR Vβ (T cell 
receptor Vβ) chains. All responders showed highly focused TCR usage, both acute and 
previously infected patients used almost exclusively TCR Vβ5.1. These results can be 
exploited for vaccine design because HLA-A*2402 is a very common epitope with-in East 
Asian HLA types (204). Bluth et al. (205) reported that increased CD8+CD60+ T-cells in 
IgA-deficient individuals might regulate IgE memory responses and isotype switching.  It 
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has been suggested that CD60 on activated T or B-cells may facilitate contact with other 
helper T-cells, influencing either T-T or T-B-cell interactions.  Little is known about the 
role CD8 T-cell immunity in B19 associated heart diseases (190, 206).  In 2008 Streitz et al 
(207) confirm expression of highly restricted TCR Vβ11 expression in a HLA A*02, A*11, 
B*07 patient with EMBs proven DCMi by using B19-NS1 peptide. These results suggested 
that B19-specific CD8+ T-cells with effector functions are involved in B19 associated 
DCMi and dominant role of CD8+ T-cells effector cells are crucial for anti-viral immunity 
(207). Thus, NS1 appears to be a major target of B19-specific CD8+ T-cells and plays an 
important role against infection. 
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Human Bocavirus 1  
 

Morphology 
 

In 2005, a new member of the family Parvoviridae was discovered by Allander et al. in 
clinical specimens from children with respiratory tract infections by random-PCR and 
large-scale sequencing techniques (208). The new virus was named human bocavirus 
(HBoV) because the deduced amino acid sequence showed that the closest relatives of this 
virus were bovine parvoviruses and canine minute virus of the genus Bocavirus (208). Later 
in 2009 three new species of human bocavirus were discovered named HBoV2, 3 and 4 
(209-211). After the discovery of these three additional species of human bocavirus the 
HBoV was denoted as HBoV1. HBoV1 is a nonenveloped virus of icosahedral symmetry 
and diameter of about 25 nm. HBoV1 contains genetic material as a single stranded DNA 
molecule of size of about 5 Kb. The viral genome encodes two non-structural proteins (NS1 
and NP1) and two major structural proteins (VP1 and VP2) (208). Capsid proteins VP1 and 
VP2 are identical except the presence of an additional 129 amino acid peptide, VP1 unique 
(VP1u), in VP1. Like parvovirus B19 (78), VP1u of HBoV possesses a phospholipase A2-
like activity (PLA2) (212). Multifunctional NS1 protein possesses DNA binding and 
transcription activation domains and plays essential roles in virus replication. Possible role 
of NP1 has been shown in a very recent study, which suggests that NP1 may involve in cell 
cycle arrest and apoptosis (213). Phospholipase activity is thought to help in parvoviral 
infectivity by mediating the transfer of the viral genome from endocytic compartments to 
the nucleous of the host cells to initiate replication (79).  

 
Clinical Features  

 
Human parvovirus B19 has been for years the only parvovirus known to be pathogenic in 
humans. HBoV is the second known parvovirus species pathogenic to humans. A number 
of cases have been reported, to establish a causal link between HBoV and respiratory 
disease (214-216). Clinical symptoms of HBoV1-related acute respiratory illnesses 
including common cold, asthma, acute wheezing, bronchiolitis, pneumonia and acute otitis 
media, are reported in various studies (217). HBoV1 has been detected in co-infections 
with other respiratory viruses such as, rhinovirus, RSV, human adenovirus, human 
metapneumovirus and influenza virus. It is very hard to clinically differentiate between 
respiratory tract infections caused by these viruses and HBoV1 (218). Hypoxia and 
neutophilia are some of the symptoms found more severe with HBoV1 compared to RSV 
among children with lower respiratory tract illness (219). Some of the findings also 
reported the presence of HBoV DNA in 1-10% fecal samples of children with 
gastroenteritis (220-223) and in 1.5% of adults (224). HBoV1 has been detected in 45% of 
fecal samples with HBoV1- positive respiratory samples (225). However, so far no clear 
clinical association between HBoV1 and gastroenteritis has been detected. 
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Epidemiology  
 

Globally HBoV1 has been detected in nasopharyngeal, serum, fecal and urine samples 
(209, 214, 226-230). Presence of HBoV1 DNA has been detected in 2-19% of patients with 
upper or lower respiratory tract disease (208, 214, 217, 231, 232). HBoV1 infections are 
mainly detected in early childhood year around but most commonly during winter (216, 
217, 231, 233). Presence of HBoV1 DNA among adults is less frequent compared to 
children (224, 226, 228, 234, 235). Seroepidemiological studies have shown that >90% of 
children at the age of over three years are seropositive for HBoV1 (217, 236). Persistence 
of low-level antibodies can be found until the age of 6-12 months after that all most all 
children become seropositive until the age of 6 years (216, 231, 236, 237). Most of the 
adults are exposed to this virus and 100% seroprevalence clearly indicates that HBoV1 
infections are very common (216, 238, 239). 

 
Cellular immunity 

 
In addition to humoral immunity, cellular immunity also plays an important role against 
viral infections. Because of difficulties in the cultivation of the virus, recombinant VLPs 
were used for the study of cellular immune response against HBoV1. There is not much 
data available on T-cell immune responses against HBoV1. Lindner at al. first investigated 
cellular immune responses in healthy individuals by stimulating PBMC with HBoV1-VP2 
VLPs and reported production of IFN-γ secreted by CD4+ T-cells (240). Compared to RSV-
related bronchiolitis, children with HBoV1-related bronchiolitis have shown increased 
levels of the Th1 and Th2 cell cytokines, e.g., IFN-γ, IL-2 and IL-4 (241). However, the 
concentrations of IL-10 and TNF-α were lower in children with HBoV1-induced than 
RSV-induced bronchiolitis. These findings suggest that HBoV1 can elicit typical virus-
induced immune responses involving both Th1 and Th2 cells; however Th-2 polarization 
was not evident (241). Previous studies strongly suggest that HBoV1 induce respiratory 
symptoms and therefore the role of cytokines involved in respiratory pathology should also 
be investigated. 

 
Diagnosis and treatment 

 
The most reliable diagnostic methods for HBoV1 infection are quantitative PCR and EIA-
based techniques. Clinical significance of HBoV1 can be determined by quantitative PCR, 
as higher viral loads correlate with acute infections, fewer co-infections and increased 
disease severity (216, 229, 237, 242). Recombinant virus-like particles of HBoV1 have 
been utilized for the serodiagnostic assays for HBoV1 specific IgG and IgM antibody 
detection (216, 238). Although HBoV1-4 cross-react, reliable seroprevalence of HBoV1 
can be determined by depletion of HBoV2–4 reactive antibodies (243). For more accurate 
diagnosis of HBoV1, a method to measures IgG avidity by EIA has been developed by 
Hedman et al. (244). IgG EIA can be used for the determination of primary and secondary 
infection, acute and past infections and for immune activations as well (244).  
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No specific antiviral agent or vaccine is available for the treatment of HBoV1 infections. 
The course of HBoV1 disease is often self-limiting and uncomplicated; however, standard 
precautions and preventive measures should be applied to limit the transmission of the virus 
(217). 
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Polyomaviruses 
 

Polyomavirus is the only genus belonging to family Polyomaviridae. Members of this 
family are small (40-45 nm in diameter), nonenveloped and containing a single molecule of 
circular dsDNA genome of size of about 5 kb (245). Polyomaviruses are widespread in the 
human population. Polyomaviruses cause persistent latent infections that are usually 
asymptomatic and polyomavirus-associated diseases occur mainly after reactivation of the 
virus in immunocompromised individuals (246). Till date 12 polyomaviruses have been 
identified (Table 1).  
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Table 1. Human polyomaviruses and associated clinical manifestations (modified by 
permission from DeCaprio et al. 2013 ((247).  

 
 

 
 
 
 
 
 
 
 

Polyomaviruses and 
 Year of discovery 

Short Name Source of 
Isolation 

Disease 
Association 

BK polyomavirus, 1971 
(248) 

BKPyV or BK  Urine Polyomavirus 
associated 
nephropathy, 
haemorrhagic 
cystitis 

JC polyomavirus, 1971 
(249) 

JCPyV or JC  Brain, urine Progressive 
multifocal 
leukoencepha
lopathy 

Karolinska Institute 
polyomavirus, 2007 (250) 

KIPyV or KI Nasopharyngeal 
tissue 

None 

Washington University 
polyomavirus, 2007 (251) 

WUPyV or WU Nasopharyngeal 
tissue 

None 

Merkel cell polyomavirus, 
2008 (252) 

MCPyV or MCV Skin  Merkel cell 
carcinoma 
(MCC) 

Human polyomavirus 6, 
2010 (253) 

HPyV6 Skin None 

Human polyomavirus 7, 
2010 (253) 

HPyV7 Skin None 

Trichodysplasia spinulosa-
associated polyomavirus, 
2010 (254) 

TSPyV or TSV Skin Trichodyspla
sia spinulosa 

Human polyomavirus 9, 
2011 (255) 

HPyV9 Skin, urine, 
blood 

None 

Malawi polyomavirus, 2012 
(256) 

MWPyV Stool, wart None 

St Louis polyomavirus, 
2012 (257) 

STPyV Stool None 

Human polyomavirus 12, 
2013 (258) 

HPyV12 Liver, cecum, 
rectum 

None 
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Merkel Cell Polyomavirus 
 

Merkel cell carcinoma (MCC) is an aggressive tumor of neuroendocrine origin (259). MCC 
is very rare and a lethal skin cancer with a mortality rate greater than 30%. MCC occurs 
mainly in elderly individuals and UV exposure may be a risk factor (259). In 2008 Feng et 
al. discovered Merkel cell polyomavirus (MCV) by digital transcriptome subtraction 
(DTS), a technique that can identify foreign transcripts by using human high-throughput 
cDNA sequencing data (252). MCV was found monoclonally integrated in-to the genome 
of approximately 80% of human MCCs (252). Circular genome of MCV is about 5.4 kb 
long and contains early (small T antigen (sT-Ag), the large T antigen (LT-Ag), the 57kT 
antigen) and late genes encoding (capsid proteins VP1, VP2 and VP3) (252, 260-262). 
Major structural protein VP1 of MCV interact with host cell surface and after endocytosis 
the viral DNA is transported to the endoplasmic reticulum and then finally to nucleus for 
replication (263, 264). A recent study suggested that minor capsid protein VP2 facilitates 
post attachment stage of MCV entry into some cell types (265). Furthermore this study 
indicated that VP3 is absent in MCV-infected cells and is not found in native MCV virions 
and mutation in VP3 gene did not significantly affect MCV infectivity (265). 

 
    Early genes are critical for the initiation of viral DNA replication and they are produced 
by alternative splicing (262). MCV LT-Ag contains many conserved domains, required for 
polyomavirus genome replication. These domains are present across different 
polyomaviruses such as DnaJ and LXCXE retinoblastoma (Rb) protein binding motifs, a 
OBD domain, an ATPase/helicase domain and a helicase domain (262). It has been shown 
that LT-Ag of SV40 is an oncoprotein, inactivates retinoblastoma (pRB) and p53 protein 
(266). Studies also reported that LT-Ag also arrests the cell cycle by inhibiting G1 
checkpoint (267). Mutated MCV LT-Ag has been found from MCC tumors and mutations 
were present in pRb binding domain (this domain is critical for tumorigenesis and 
consequently affect replication). Thus non-mutated MCV LT-Ag undergo cell lysis or death 
and cells with mutation are allowed to survive and responsible for uncontrolled growth of 
infected cells (260). Mutations in LT-Ag can also affect cytotoxic T-cell immunity, as 
epitopes for cytotoxic T-lymphocytes are present on LT-Ag (268). 

 
    The sT-Ag encodes a domain mediating protein phosphatase 2A (PP2A) binding (262) 
and enhances the functions of LT-Ag (269, 270). Additionally, the sT-Ag promotes 
mitogenesis, cell proliferation and cellular transformation by reducing the 
hyperphosphorylated eukaryotic transcription initiation factor 4E-binding protein 1 (4E-
BP1) turnover in a PP2A or DnaJ domain independent manner (271). Its inhibition halts the 
cell cycle progression in MCC cell lines but does not cause cell death (271). Mutation in 
VP1 also disrupts viral capsid formation (270, 272). 

 
    Recently, an association of MCV infection with chronic lymphocytic leukaemia (CLL) 
was reported, yet the causal association remains to be proven (273-275). 
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Epidemiology  
 

MCV is considered to be a commonly occurring human virus and infection is generally 
asymptomatic (253). Serological studies have shown that 50-80% of adults display MCV-
specific antibodies by using recombinant viral capsid proteins as antigens (276-279). MCV 
primary infection is typically acquired during early childhood and the prevalence of IgG 
antibodies was found to be 9% at 1-4 years and increased up to 35% at 13 years of age 
among children (280).  

 
    Presence of MCV DNA was reported in buffy coats of healthy blood donors pointing to 
latency/persistence in peripheral blood leukocytes (281). Detection of viral DNA in 
cutaneous swabs from healthy individuals suggests that virus is shed chronically from 
normal skin and MCV is likely a ubiquitous virus (253, 282).  MCV DNA has also been 
detected in relatively low amount compared to skin in respiratory tract, saliva, urine, 
lymphoid tissues and gastrointestinal tract (283-289). Possible route of MCV transmission 
may be fecal-oral, cutaneous, mucosal and respiratory as suggested by existing data; 
however, the exact mechanism is unknown. 
 
Humoral immunity  

 
Detection of antibodies against MCV suggests that host immune system respond against 
virus in infected individuals (277, 278, 280). Most of the reports have shown that IgG 
antibody titers to capsid proteins of MCV are high in MCC patients, compared to general 
population (277, 278, 290). As reported, MCC tumors do not express capsid proteins, 
suggesting that the occurrence of high antibodies titers in MCC infected patients is not 
because of increased capsid antigen production (277, 279). A possible reason behind this 
could be an increased replication of MCV in patients with MCC (291, 292). In support of 
this hypothesis it is reported that MCV DNA levels in skin swabs from patients were found 
significantly higher than in controls (282) and in second report positive correlation between 
MCV antibody titre and DNA levels in skin biopsies was found (292). Therefore, poorly 
controlled MCV infection and high viral load promoted by defective immune response 
could possibly be the factor behind high antibody titer. 

 
    Approximately 40% of MCC patients are seropositive for MCV T antigens; however, 
among general population these antibodies occur in only 0.9% and low titre (293). 
Therefore anti-MCV T antigen antibodies are more specifically associated with MCC than 
those against viral capsid proteins, but they are incapable of protecting against the disease 
progression and may serve as a biomarker of the disease (293). As neutralizing MCV 
antibodies occur in high titers among patients, they apparently fail to prevent MCC 
tumorigenesis (277). It is therefore possible that cell mediated immunity (CMI) may be 
involved in protection against MCV- induced malignancy. 
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Cellular immunity 
 
Cellular immunity is believed to play a central role against viral infections and in tumor 
elimination (50, 294-296). It has been shown that LT proteins are expressed in active MCV 
infection in MCC patients and that these proteins elicit humoral immune response (293). 
 
    Antiviral T- cell immune response against cancer-associated viruses (50, 294) and other 
polyomaviruses (297-299) have been shown in many studies. Intratumoral infiltration of 
CD8+ T lymphocytes is an independent predictor of better survival prognosis among MCC 
patients (268). Gene expression profiling notified over-expression of genes encoding for 
granzymes, chemokines, CD8 receptor molecules and lymphocyte-activation molecules in 
MCC tumors with favorable prognosis (268, 291). Almost 100% survival was also seen in 
MCC patients with vigorous intratumoral T-cell infiltration as compared to 60% survival 
among patients with no intratumoral infiltration. These studies suggested the important role 
of cellular immunity in MCC the patients and increased rate of MCC in immuno- 
compromised patients. Iyer et al. investigated T-cell immunity against MCV among MCC 
patients and control subjects (300).  They reported the presence of MCV-specific CD4+ or 
CD8+ T-cells from MCV-positive (2 of 6) but not from virus-negative MCC tumors (0 of 
4). Interestingly, T-cell responses among PBMC were also detected by using broad range of 
peptides derived from capsid proteins (2 epitopes) and oncoproteins (24 epitopes), in 52% 
of MCC patients and 38% of control subjects, respectively. Whether cellular responses 
modulate the clinical course of MCC is not known. By HLA-LT-Ag tetramer the authors 
showed that virus-specific CD8+ T-cells were markedly enriched among TILs as compared 
to blood in one patient, suggesting intact T-cell trafficking into the tumor (300). Next they 
detected tetramer-positive CD8+ T-cells in the blood and found that these cells failed to 
produce IFN-γ when stimulated ex vivo with LT-Ag peptide, suggesting non-
responsiveness. The findings to date, however, do suggest that MCC tumors often develop 
despite the presence of T-cells specific for MCV. A very recent investigation showed that 
MCV-specific CD8+ T-cells dynamically fluctuate with tumor burden and with viral 
oncoprotein-specific antibody titre (301). These T-cells express a high level of exhaustion 
molecules PD1 (programmed death 1) and Tim-3 (T-cell immunoglobulin and mucin-
domain 3). This may explain why MCV-specific CD8+ T-cells fail to control MCC and 
suggest that the inhibition of these pathways may be used for therapeutic approach. NK 
cells also have anti-cancer effector functions and might play role against MCV infections. 
Mishra et al. investigated the protective role of the NK and γδ T-cells against 
polyomavirus-induced tumors in a mouse model (302). 
 
    Presently, there is no vaccine available against MCV infection. Very recently DNA-
based vaccines have been developed by utilizing immuno-dminant epitopes of MCV LT 
and sT-Ag (303, 304). Vaccination caused prolonged survival, decreased tumor size and 
increased LT-specific CD8+ T-cells in tumor-bearing mice. 
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Trichodysplasia spinulosa-associated polyomavirus 
 

Haycox et al. in 1999 reported a case of folliculocentric viral infection in an 
immunocompromised patient and designated the name ‘trichodysplasia spinulosa (TS)’ for 
the condition (305). TS is a very rare disease of skin and characterized by follicular papules 
and keratin spines known as spicules widespread on the face (particularly on nose and chin) 
and ears and some other parts of the body may be affected as well. Sometimes alopecia of 
the eyebrows and lashes can be detected and in some cases facial distortion may also occur. 
Histopathology of the affected skin shows distended and abnormally matured hair follicles 
with high numbers of inner root sheath cells containing excessive amounts of trichohyalin 
features (305-308). Keratin spines of size 1-3 mm originate from these abnormal follicles. 
Organ transplant recipient patients with immunosuppressive conditions and patients 
suffering from haematological malignancies are particularly affected by TS (305-307, 309, 
310).  

 
          Electron microscopy studies showed the presence of virus-like particles in skin biopsies 

of TS patients, suggesting an etiological role of virus for this disease (305-308). Recently, 
the research group of Meriet Feltkamp identified in the TS lesions of a heart transplant 
recipient a new human polyomavirus, designated as TS-associated polyomavirus (TSV) 
(254). Electron microscopy revealed that TSV particles are non-enveloped, small (28-46 
nm in diameter) and icosahedral shaped (309). There are five ORFs present on 5232 bp 
long circular genome of TSV. The genome has putative ‘early’ genes encoding sT and LT-
Ag and the putative ‘late’ genes encoding structural genes VP1, VP2 and VP3 (254). 

 
          Diagnosis and immunity 

 
                Several research groups developed diagnostic methods based on the detection of 

antibodies, nucleic acid or polyomavirus like particles (309, 311-314). The existing data 
suggest that TSV infections are frequent among the general population (~ 70% 
seroprevalance) and that the primary infections often occur in childhood and seroprevalence 
increases with age (311, 313-315). Further investigation of TSV infections was shown by 
analysis of TSV particles by EM in paraffin embedded tissues (309, 316). Kazem at al. 
reported an active polyomavirus infection from TS lesional and non-lesional skin samples 
from TS patients by quantitative PCR and by immunofluorescence for expression and 
localization of viral proteins. All TS lesion skin samples were positive for TSV DNA; as 
compared to 2% control samples and abundant expression of TSV VP1 protein in the hair 
follicle cells of the lesional skin sample demonstrates a direct link between TSV infection 
and the disease (317). This and several other studies revealed a statistically significant 
association between the presence of TSV DNA and symptomatic TS (309, 312, 316, 317). 
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AIMS OF THE STUDY 
 
 

1. Comparison of Th-cell immunity against two members of the family Parvoviriade (HBoV1 
and B19) 

2. Investigation of the cytokine pattern after the parvoviruses (HBoV1 and B19) and 
polyomaviruses (TSV and MCV) infections. 

3. Investigation of the cytolytic potential of CD4+ T-cells against B19 infections 
4. Characterization of lymphocyte proliferation and cytokine responses against MCV and 

TSV 
5. Comparison of Th-cell immunity and investigation of cross-reactivity between two newly 

discovered polyomaviruses (MCV and TSV) 
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MATERIALS AND METHODS 
 

 
Study Subjects (I-IV) 

 
Altogether randomly selected 174 asymptomatic subjects (age range 19-59 years) were 
studied: 50 B19-seropositive (20 and 30 for study I and II, respectively) and 38 
seronegative (16 and 22 for study I and II, respectively), 45 MCV-seropositive (15 and 30 
for study III and IV, respectively) and 36 seronegative (15 and 21 for study III and IV, 
respectively), 30 TSV-seropositive and 21 seronegative (study IV). All subjects were 
seropositive for HBoV1 (I-IV).  
A 48 years old MCC cancer patient was also studied. The patient was HIV negative, and 
had no immunosuppressive medication or other known immunodeficencies. Ethical 
approval was obtained from University of Helsinki ethics committee and informed consent 
also obtained from every subject 

 
Antibody assays (I-IV) 

 
IgG for HBoV1, parvovirus B19, MCV and TSV in plasma were measured by in-house 
EIAs employing VLPs as antigens (182, 216, 280, 311). 

 
Antigens for T-lymphocyte culture (I-IV) 

 
The B19, HBoV1 VP2 and MCV, TSV VP1 VLPs were expressed with recombinant 
baculoviruses in High 5 and Sf9 cells and purified by CsCl gradient ultracentrifugation 
(182, 216, 280, 311). After extensive dialysis the protein was concentrated and purified 
further by using 50 and 100 KDa MWCO centrifugal filters (Amicon Ultra, Millipore, 
Billerica, MA). Electron microscopy with negative staining showed VLPs. The antigens 
were further characterized by silver staining (SilverXpress, Invitrogen) immunoblotting 
(western and dot) with seropositive human sera. A B19-VP2 specific murine monoclonal 
antibody R92F6 was also used for B19 VLP blotting.  
As control antigens, we used Tetanus toxoid (TT; National Public Health Institute Helsinki, 
Finland), in-house prepared and heat inactivated Candida albicans and 
Phytohemagglutinin-P (PHA) (Sigma-Aldrich).  

 
Endotoxin assays (I-IV) 

 
Endotoxin in the antigen preparations was measured by the Limulus amebocyte lysate assay 
(QCL-1000; Cambrex Biosciences, Walkersville, MD, USA), and it was less than 2 EU/mg 
with MCV, TSV, HBoV1 and B19 VLPs antigens. 
 
Isolation of PBMC (I-IV) 

 
Blood was drawn to mononuclear cell separation tubes (Vacutainer CPT, Becton 
Dickinson, Franklin Lakes, NJ) containing 0.45 ml sodium citrate. The tubes were 
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centrifuged at 1500 x g for 30 minutes and washed two times with 1X PBS. PBMC were 
separated within 2 hrs of blood sampling followed by counting. 
 
Lymphocyte culture (I-IV) 

 
Lymphocyte culture was conducted as described previously (170, 177, 182, 186). Briefly, 
isolated PBMC were resuspended in the RPMI-1640 medium (Sigma) containing 20mM 
HEPES, 2mM L-glutamine, streptomycin (100 µg/ml), penicillin (100 U/ml), 50 µM 2-
mercaptoethanol and 10% human AB serum (Cambrex Biosciences, USA) and were 
cultured with the antigens.  
 
Proliferation assays (I-IV) 

 
Counted PBMC and antigens in triplicate were placed in 96 well U-bottom plates (Coster, 
Corning Inc., Corning, NY). Cells (200,000/well) were cultured for 6 days (37ºC and 5% 
CO2) and pulsed for the last 16 hours with 1µCi of tritiated thymidine (specific activity 50 
C/mmol, Nycomed Amersham, Buckinghamshire, UK). Thymidine incorporation was 
measured in a liquid scintillation counter (Microbeta, Wallac, Turku, Finland). The data 
were expressed as counts per minute (Δ cpm): Δ cpm = mean cpm (test antigen) - mean cpm 
 
Cytokine assays (I-IV) 

 
PBMC culture supernatants were harvested after 3 days for IFN-γ, GrB and perforin and 
after 5 days for IL-10 and IL-13, and were stored at -20 ºC. Cytokine production in the 
supernatants was analyzed by IFN-γ, GrB (e-Biosciences and MABTECH AB), perforin 
(MABTECH AB, Sweden), IL-10 (Pharmingen, San Diego, CA, USA) and IL-13 
(Invitrogen corporation CA, USA) kits, according to the manufacturers’ instructions. 
Background (media) cytokine production was subtracted from total to yield antigen specific 
cytokine production.  
 
Depletion of CD4- and CD8-positive cells (II, III and IV) 

 
PBMC were depleted of CD4+ or CD8+ T-cells by using magnetic beads coated with CD4- 
or CD8-specific monoclonal antibodies (Invitrogen Dynal AS, Oslo, Norway), according to 
the manufacturer’s instructions. Then, 200,000 pure CD4+ or CD8+ cells were cultured with 
the antigens as described (170). 

 
Positive selection of CD4- and CD8-T cells (I) 

 
PBMC were first depleted of CD4+ T-cells and then of CD8+ T-cells by using magnetic 
beads coated with CD4- and CD8-specific monoclonal antibodies (Invitrogen Dynal AS, 
Oslo, Norway), according to the manufacturer’s instructions. Positively isolated CD4+ and 
CD8+ T-cells were detached from beads by using Detach-A-Beads (Invitrogen Dynal AS, 
Oslo, Norway). 100,000 pure CD4+ or CD8+ cells were then cultured with the antigen 
presenting cells (CD4 and CD8-depleted PBMC) exactly as described for PBMC.  
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Flow Cytometry analysis (I-IV) 
 
Purity of the depleted or positively selected cell populations was analyzed by BD Accuri 
C6 and FACScan flow cytometer (Becton Dickson, USA). The cells were washed twice 
with PBS and incubated for 30 min at +4 °C with MultiMix triple-colour cocktail of FITC, 
RPE and APC labelled monoclonal antibodies for CD8, CD4 and CD3 respectively 
(DakoCytomation, Denmark). Anti-isotype antibodies (DakoCytomation, Denmark) were 
used in parallel, for specificity control. Flow cyometry results showed > 95% depletion 
efficiency after CD4 and CD8 depletion or positive selection, respectively.  
 
Antibody blocking assays (I-IV) 

 
MHC class II restriction of the T-cell responses was further studied by HLA class II-
specific MAbs (HLA-DR, DP, DQ) (IgG2a, clone Tu39; BD PharMingen), or isotype 
control MAb (IgG2a, clone G155- 178; BD PharMingen). These antibodies were used at 5 
µg/ml, according to the manufacturer’s instructions. 
 
Statistical methods (I-IV) 

 
Responses among seropositive and seronegative subjects were compared by the Mann-
Whitney U test. Paired responses were evaluated by using the Wilcoxon Signed Rank test. 
The distribution of responders having Δ cpm > 5000 against each antigen was studied using 
Fisher’s Exact test. P values < 0.05 were considered significant. All analyses were done 
with an SPSS statistical program version 15.0 (IBM corporation, New York, USA).  
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RESULTS AND DISCUSSION 
 
 

Comparison of Th-cell immunity against HBoV1 and parvovirus 
B19 (I) 

 
Comparison of cellular immune responses against HBoV1 and B19 
 
Recombinant VLPs mimic original viral particles and are widely used for the diagnostics 
and development of vaccines against many viruses (216, 280, 311, 318, 319). In this part of 
the study we compared Th-cell immunity among 36 asymptomatic individuals against 
HBoV1 and B19 VP2 VLPs. Among them 20 were seropositive and 16 seronegative for 
B19 and all were seropositive for HBoV1. Previous studies showed that B19 and HBoV1 
VLPs elicit virus-specific Th immune responses (186, 240). HBoV1-specific proliferation 
and cytokine responses were frequently detected among 36 HBoV1-seropositive subjects. 
In this study we for the first time studied IL-13 and IL-10 responses along with previously 
studied IFN-γ against HBoV1. To characterize the cell populations secreting cytokines and 
mediating proliferation responses, we incubated positively selected CD4+ and CD8+ T- 
cells with the antigens. Proliferation and cytokine responses were found only with CD4+ T-
cells, not with CD8+ cells (Fig 3 of Study I). 
 
    When we studied HBoV1-specific proliferation and cytokine responses among 20 B19 
seropositive individuals with HBoV1 VLPs, proliferation and IFN-γ responses were readily 
detectable, but the average B19 VLPs-specific proliferation and IFN-γ responses were 
stronger than those detected with HBoV1 VLPs. IL-10 reactivity was very similar with both 
antigens, and average IL-13 responses were stronger with HBoV1 VP2 than with B19 VP2. 
However, individual variability in responses was extensive causing large SDs (Table 2).  

 
Table 2. Th-cell proliferation and cytokine production in 20 B19-seropositive individuals 
in response to HBoV1 and B19 VP2 VLPs.  

 Results are shown as mean ± SD. 
aΔ cpm: antigen-specific cpm minus background cpm 

 
 

    Next we investigated how HBoV1 and B19-specific cytokine and proliferation responses 
correlate among the 20 B19 seropositive subjects (Table 3). As shown, all HBoV1-specific 
proliferation and cytokine response pair showed significant positive correlations (p< 
0·033). HBoV1-specific IL-13 responses showed particularly strong correlation with the 

Antigens     
     

Proliferation Δ  cpma IFN-γ  pg/ml IL-10 pg/ml IL-13 pg/ml 

HBoV1 VP2 8989 ±9705 30 ±42.6 10.9 ±20.6 73.3 ±128.4 

B19 VP2 13860 ±11655 70.3 ±114.3 11.2 ±18.5 51.2 ±60.8 
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other HBoV1-specific responses: p=0·001 with IL-10 and <0·0001 with IFN-γ and with 
proliferation. Interestingly, although the response patterns appeared to be very similar with 
B19 and HBoV1 antigens, no significant correlations could be found between any B19-
specific proliferation and/or cytokine response pairs (p≥ 0·059) (Table 3).  

 
Table 3. P-values of correlation of HBoV1-specific and B19-specific (in parentheses) 
proliferation and cytokine responses among 20 B19-seropositive subjects. 

aP-values of correlation  of proliferation-cytokine and cytokine-cytokine response pairs after  
Wilcoxon Signed Rank Test  
bΔ cpm: antigen-specific cpm minus background cpm 

 
 

    Despite different epidemiology pattern of both viruses (102, 216, 238, 320) we found 
cytokine responses of similar magnitude against HBoV1 and B19 VLPs. Many subjects in 
this study did not induce B19-specific responses for all cytokines and proliferation, which 
explains that the response pattern for B19 was stastitistically not significant. Where as 
strong inter-dependent T-cell responses were found with HBoV1. Therefore, at the 
collective level, B19-specific Th-cell immunity appears to be more divergent than the 
HBoV1-specific one. This possibility needs to be studied further with B19 and HBoV1-
specific Th cell lines and intracellular cytokine staining. 
 
IL-13 and respiratory symptoms 
 
Th2 cells secrete IL-13 and like IL-4, it is a switch factor for IgE and IgG4 synthesis and it 
also mediates many other important effector functions (18-20). Secretion of IL-13 is 
elevated in infections by some respiratory viruses, e.g., Rhinovirus, and also participates in 
the pathogenesis of asthma (19, 26). Dominance of IL-13 responses against HBoV1 and 
B19 is one of the major finding of this study. There is enough literature available which 
suggest that IL-13 is an important contributor to respiratory symptoms and pathology 
including asthma (19, 321). A recent study proposed a link between HBoV1 and asthma 
exacerbations in young children (322). This hypothesis is supported by our present study 
because when we compared Th1 (IFN-γ) and Th2 (IL-13) cytokine responses against 
HBoV1 and B19, it appeared that HBoV1 predominantly induce Th2 cytokines (P= 0.014).  
 
 
 

    Variable IFN-γ   IL-10  IL-13  

Δ  cpmb 0.003 (0.059)a 0.033 (0.890)a ≤0.0001(0.602)a 

IFN-γ  pg/ml   0.002 (0.154)a ≤0.0001(0.150)a 

IL-10 pg/ml   ≤0.001(0.611)a 
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Cytolytic CD4+ T-cell mediated immune responses against 
parvovirus B19 (II) 

 
Further, we explored CD4+-mediated T-cell responses by studying cytolytic activities of 
these cells. Since B19 has been observed to establish a chronic infection and to be linked 
with autoimmunity and even malignancies, it was of interest to explore whether such CD4+ 
CTLs could also emerge after B19 infection. The present study focused primarily on GrB, 
not only because of its critical role in cytolysis, but also because of emerging data on its 
function as an inducer of autoimmunity (60).  

 
Granzyme B response against B19 
 
B19 (Fig 2) and control antigens (HBoV1 and Candida albicans) were found to induce 
PBMC to secrete GrB and IFN-γ in 30 B19 seropositive and 22 seronegative subjects. B19-
specific GrB (P≤0.0001) and IFN-γ (P≤0.0001) responses were much stronger among the 
B19 seropositive than among the seronegative subjects at both antigen concentrations (1.5 
and 0.5 µg/ml) (Table 1 of Study II). Next we studied correlation between the B19-specific 
IFN-γ and GrB responses. A strong correlation (P< 0.0001) was found in the B19 
seropositive group at both antigen concentrations, whereas the respective correlations were 
less significant among the seronegative subjects (P≤ 0.024). No correlation was found 
between the HBoV1- and the B19-specific GrB responses. Thus, also in the B19 model, the 
strength of the GrB response is associated with the strength of antigen-induced Th- cell 
activation, which has been observed previously with other viruses (10, 54, 323). The 
observed B19-specific GrB responses suggest that CD4+ T-cells secreting GrB may 
contribute to the control of B19 by guarding against reactivation in cases where helper 
function is provided by other viruses  
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                 (A)                                                       (B)                                    (C) 
Figure 2: Characterization of B19 VP2 antigen (A) Silver staining of B19 VP2 capsid 
protein in 10% PAGE (B) Western Blotting with B19-seropositive human serum (C) 
Electron microscopy of B19 VP2 particles purified by density gradient ultracentrifugation 

 
 

Perforin response against B19 
 
In order to mediate cytolysis, GrB needs delivery into target cells by perforin (59). 
Therefore it was also important to study B19 –specific perforin responses. Perforin 
responses were studied in 7 B19 seropositive and 3 seronegative subjects. B19-specific 
perforin responses were detectable only in B19 seropositive subjects, whereas PHA (control 
antigen) elicited strong responses in all and Candida albicans antigen in all but one subject 
(Fig 2 of Study II). In these 7 subjects we found a strong correlation between B19 induced 
perforin and GrB responses. This finding is a further evidence for the cytolytic nature of 
B19–specific GrB response and explains by the common exocytosis of perforin and GrB in 
cytotoxic granules.  

 
    With B19 VLPs, both GrB and perforin responses were confined within the CD4+ T-
cells, as shown by T-cell subset depletion and by blocking of HLA -class II presentation 
(Fig. 4 and 5 of Study II). Blocking experiments confirm that GrB and perforin secreting 
cells are HLA-class II-restricted. 

 
    Various autoimmune phenomena, including the induction of autoantibodies and 
autoimmune diseases such as RA and SLE have been linked to B19 infections (128, 149). 
However, the pathogenetic mechanisms of B19-induced autoimmune diseases are not fully 
understood. Several mechanisms have been proposed: activation of the IL-6 and TNF-α 
promoters by B19 NS1 protein during persistent infection, molecular mimicry between a 
B19 VP2 epitope and autoantigens, such as collagen II (84, 138, 153) and the 
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phospholipase activity of B19 VP1 unique domain with a subsequent activation of 
synoviocytes  and induction of anti-phospholipid antibodies (137, 324). Recently, B19 NS1 
has been shown to induce apoptotic bodies containing self-antigens potentially associated 
with autoimmunity (325).  

 
    We propose an alternative (or additional) mechanism for B19-triggered autoimmunity: 
an excessive activation of B19-specific CD4+ cells secreting GrB in genetically predisposed 
individuals. GrB has been shown to cleave autoantigens and create unique fragments 
recognized by autoantibodies (326-328). In line with this, CD4+ T-cells with cytolytic 
potential have been described in patients with RA and SLE (48, 49).  
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T-cell mediated immunity against MCV (III) 
 
This study is one of the pioneer reports in the field of anti-viral T-cell immunity against 
MCV. We were the first to show Th-cell proliferation and cytokine responses against 
structural proteins of MCV by using VLPs among asymptomatic individuals.  

 
Proliferation and cytokine responses against MCV and control antigens 

 
First we compared proliferation and cytokine responses among 15 MCV-seropositive and 
seronegative individuals. MCV-specific proliferation and cytokine responses were much 
stronger than the responses of the seronegative subjects, at both 0.25 µg/ml and 2.5 µg/ml 
concentrations of antigen (Table 4). With the control antigens (Candida albicans and 
HBoV 1) the cytokine responses (≤ 0.106) were very similar among the MCV-seropositive 
and -seronegative subjects.  

 
Table 4. Comparison of MCV-specific proliferation and cytokine responses among MCV 
seropositive and –seronegative subjects at 2.5 and 0.25 (in parenthes) µg/ml antigen 
concentration. 

Results are shown as mean ± SD. 
aΔ cpm: antigen-specific cpm minus background cpm 

 
 

    Despite the presence of humoral immunity, generation of cellular immunity is essential 
for tumor elimation. Central role of T-cell immunity has been reported against cancer-
associated viruses and other polyomaviruses (294, 297, 329, 330). In this study CD4+ T- 
cells appeared to be the main responding cells among PBMCs, as MCV-specific responses 
were restricted among seropositive subjects, indicating that the responding cells are able to 
establish memory. Furthermore, HLA class II-specific antibodies blocked MCV-specific 
proliferation, IFN-γ, IL-10 and IL-13 responses, whereas the depletion of CD4+ cells 
abrogated them in this study. Previously, Iyer et al., characterized T-cell responses against 
peptides derived from structural and non-structural proteins of MCV and detected virus-
reactive CD4+ and CD8+ cells in the blood of MCC patients and control subjects (300). 
Interestingly, despite the higher number of CD3+ or CD8+ T-cells in MCV-positive than in 
MCV-negative MCC patients, favourable survival was found in both groups indicating 
beneficial role of intratumoral T-cell infiltration (331). Another study has found a high 

MCV   
serostatus 

Proliferation 
 ΔCPMa 

 

IFN-γ  pg/mL IL-10 pg/mL IL-13 pg/mL 

Positive 9562±7419 
(5878±5959) 

280.7±197.6 
(159.8±234.0) 

51.2±56.0 
(23.3±30.5) 

56.5±54.9 
(23.5±28.2) 

Negative 3086±3918 
(534±660) 

51.8±60.6 
(6.5±8.40) 

22.7±21.8 
(4.50±4.80) 

20.5±26.4 
(4.0±5.40) 

P 0.001 
(<0.0001) 

<0.0001 
(0.006) 

0.041 
(0.026) 

0.019 
(0.021) 
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intratumoral CD8 count to be associated with a favourable outcome in MCC (268). Present 
study (III) and the previous one by Iyer et al., suggest that MCC tumors often develop 
despite the presence of virus-specific CD4+ or CD8+ T-cells. Elderly people and individuals 
with immune-compromised conditions, organ transplantation and CLL have been found 
associated with high a risk of developing MCC (332-335). Defective immunity is thought 
to play a role in the increased incidence of MCC in these populations, as previously 
reported that MCV contains potent epitopes responsible for inducing cytotoxic T-cell 
immunity (263, 268).  

 
    IFN-γ emerged as the dominant MCV-specific cytokine; yet MCV-specific IL-10, IL-13 
and proliferation responses were readily detectable among sero-positive individuals. As 
IFN-γ possesses antiviral and tumor suppressing functions, CD4+ cells are important 
mediators of MCV-specific T-cell immunity. Very little is known about the role of other 
sub-sets of immune cells against MCV, however, protective role of NK cells and γδ T-cells 
against polyomavirus-inuced tumors in mouse models have been reported recently (302). 
 
Presence of seronegative responders 
 
We also encountered some responder subjects in seronegative group. The presence of 
MCV- seronegative responders suggests that B-cell immunity against MCV is not always 
persistent, or that a degree of cross-reactivity in the VP1 Th-cell epitopes may exist 
between MCV and some hitherto unidentified virus. VP1 proteins of other polyomaviruses 
are possible candidates. For instance, the VP1 protein of a recently discovered TSV virus 
has as high as 57% amino-acid similarity with that of MCV (254). Alternatively, some 
MCV strains might be of aberrant B-cell antigenicity. One such MCV strain, termed “350”, 
having critical double mutations at VP1 positions 288 and 316, has been described to date 
(290). VP1 of strain “350” is not recognized by sera strongly reactive with VP1s of MCV 
strains lacking these mutations. 
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Th-cell mediated immunity against TSV and comparison of MCV-
specific cellular immunity (IV) 

 
TSV-specific proliferation and cytokine responses in the TSV-seropositive 
and -seronegative individuals  

 
This is the first study to investigate TSV-specific Th-cell immunity. In this study we 
investigated how TSV-VP1 VLPs stimulate Th cells from asymptomatic individuals to 
proliferate or to secrete IFN-γ, IL-10 and IL-13. TSV-specific IL-10 responses were found 
similar in seropositive and seronegative groups, whereas proliferation, IFN-γ and IL-13 
responses appeared to be stronger among the TSV-seropositive than -seronegative subjects 
(Table 1 of Study IV). However, these differences did not prove statistically significant. 
Antibody blocking and depletion experiments confirmed that the source of cytokines and 
proliferation were CD4+ T-cells (Fig. 4 and 3 of Study IV)). In contrast to findings with 
TSV, the MCV-specific responses were consistent with our previous study (Study III). 

 
The effect of humoral responses on Th-cell responses 

 
We investigated whether there would be a correlation between the strength of TSV-specific 
humoral response, described as optical density x 1000 (ODx1000) and the Th-cell mediated 
responses. A significant positive correlation was found between humoral response and 
TSV-specific proliferation, IFN-γ and IL-10 in the 30 TSV seropositive subjects; with IL-
13 the correlation did not reach significance (P= 0.098). Further we divided these 30 TSV 
seropositive subjects into two groups of equal size (15 subjects) according to their TSV-
IgG ODs (Fig. 5B of Study IV): subjects in group A had ODs under and those in group B 
had ODs above the median OD (1720) of the 30 TSV seropositive subjects. Group A had 
TSV-specific responses similar to that found in the seronegative controls. In group B, by 
contrast, both the TSV-specific proliferation (P= 0.007) and IFN-γ  (P= 0.013) responses 
were stronger than in the seronegative controls; no difference was found in the TSV-
specific IL-10 and IL-13 responses, or responses with the Candida albicans control antigen. 
Significantly stronger TSV-specific proliferation, IFN-γ and IL-10 responses were found in 
group B than in group A. However, with MCV the correlations between humoral and Th-
cell responses were less evident among the seropositive subjects.  

 
    Interestingly; however, the vigour of TSV-specific humoral responses had a significant 
impact on TSV-specific Th-cell responses, and subjects with the highest antibody responses 
not only had significantly stronger Th-cell responses than the seronegative controls, but 
also significantly stronger responses than the TSV-seropositive subjects with low TSV-
specific IgG level. At least two different possible explanations could account for this. First, 
subjects with low TSV-IgG and Th-cell responses level may have contracted the TSV 
infection long time before the subjects with stronger responses became infected. Consistent 
with this, antibody and Th-cell responses are known to decline with time (336). Second and 
more interesting explanation is that subjects with high TSV-specific responses could have 
had more reactivations or even reinfections, each having a potential to boost both humoral 
and cellular responses (337). In conclusion, as association between the virus specific Th-
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cell responses and antibody responses was found also with MCV, yet it was less evident 
than with TSV. 

 
Study of cross-reactive T cell responses against MCV and TSV 

 
TSV and MCV share approximately more than 57% of amino acids (Table S3 of Study IV) 
in their VP1 protein, and both viruses may possibly induce cross reactivity immunity. Van 
der Meiden et al. and Chen et al. confirmed that antibodies against TSV-VP1 do not cross- 
react with MCV-VP1 by serological assays (311, 314). In order to rule out the possibility of 
cross-reaction at T-cell level we divided the subjects in different groups (Table 3 of Study 
IV) on the basis of their serostats: MCV+TSV+, MCV-TSV+, MCV-TSV- and MCV+TSV-. 
When we compared Th-cell responses in groups MCV-TSV+ and MCV+TSV-

,
 significantly 

stronger responses with TSV (P= 0.007) and MCV (P= 0.003) occurred while comparison 
in other groups showed no significant difference. This suggests, that some unique epitopes 
are present in VP1 region of TSV and MCV, which induce these responses.  
 
    Next, we compared MCV and TSV-specific responses between these groups, 
significantly stronger TSV-specific proliferation, IFN-γ  and IL-13 responses were detected 
in MCV+TSV+ than in MCV-TSV- group. TSV-specific IL-10 responses and those to 
Candica albicans control antigen were similar in both groups, (P ≥ 0.18), respectively. 
Interestingly, with the MCV antigen Th-cell responses were stronger even in the 
MCV+TSV- than in the MCV-TSV+ control group.  
 
    Data from subgroup experiments showed that if there is any crossreactivity between TSV 
and MCV, it must be relatively low, since the MCV-serostatus had a significant impact on 
TSV-specific responses only when double (TSV+ MCV+) seropositive subjects were 
compared with double (TSV-MCV-) seronegative subjects. Furthermore, some of these 
double seronegatives showed significant Th-cell responses to both viruses, despite being 
seronegative to both. This could imply that B-cell immunity against these antigens would 
persist a shorter time than T-cell immunity, or that VP1 proteins of MCV and TSV would 
contain Th-cell epitopes cross-reactive with some other agents, such as other human 
polyomaviruses (Table S3 of Study IV). Because a high level of cross-reactivity is an 
essential feature of the T-cell receptor (338-341), it is also possible that the Th-cells of our 
seronegative subjects had originally been primed by Th-cell epitopes differing largely in 
sequence from the MCV or TSV VP1 proteins. The most interesting possibility is that in 
some subjects MCV and/or TSV infection induces cytotoxic CD4+ cells which would kill 
antigen-presenting B-cells and cause eradication of virus specific antibody response (342, 
343). 

 
MCV and TSV-specific IFN-γ  and IL-10 responses in the MCC patient 

 
Th-cell mediated immune responses were studied in a subject with Merkel cell carcinoma. 
Similarly to the healthy controls in group MCV+TSV- described above, also this patient was 
seropositive for MCV and seronegative for TSV, and much stronger IFN-γ and IL-10 
responses were found with MCV than with TSV (Note S1 of Study IV). The kinetics of his 
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MCV-specific IL-10 response was similar to that in healthy controls (5d response higher 
than 3d response); with TSV-antigen a reverse pattern was detected. An early and 
exceptionally strong IL-10 response was detected with TSV-antigen, suggesting that T-cell 
epitopes within TSV were recognized as altered peptide ligands (344) or alternatively, these 
common epitopes activated regulatory T-cells in this patient (345). In both cases an IL-10 
oriented T-cell response is known to occur (344, 345). 

 
    Taken together, Th-cell immunity appears to be much better maintained against the 
major structural protein (VP1) of MCV than TSV. As TSV and MCV infections appear to 
occur around same age (280, 311, 314), the time span from the primary infection should not 
explain this. Possibly MCV becomes reactivated in the human body more readily than 
TSV, boosting Th-cell immunity more efficiently. Comparison of TSV and MCV responses 
within the MCV+TSV- subjects (including the MCC patient) and within the TSV+MCV- 

subjects clearly showed that VP1 proteins from both viruses contain unique Th-cell 
epitopes which are not shared. However, as the differences between MCV and TSV 
responses were more significant in the MCV+TSV- than the TSV+MCV- group, MCV VP1 
appears to contain more unique virus-specific epitopes than TSV-VP1 does. Alternatively, 
Th-cell epitopes within MCV VP1 have higher affinity for MHC II than Th-cell epitopes of 
TSV VP1.  

 
    Finally, as CD8+ cells specific for MCV T-Ag oncoprotein clearly provide an important 
defense against established MCC (300), the MCV VP1-specific Th-cells may be important 
in preventing the full process of oncogenesis, by suppressing MCV replication with 
antiviral cytokines such as IFN-γ. If this mechanism exists, also the MCV-crossreactive Th-
cells should have a cross-protective role, and subjects with these cells might be less 
susceptible to develop MCC.  
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CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

These studies suggest that humoral immunity alone is not sufficient to prevent diseases 
caused by these emerging viruses, and it appeared that cellular immunity has a key 
importance in controlling the diseases.  

 
The following conclusions can be drawn from the present study: 
 

- B19-specific immunity appeared more divergent than HBoV1 and IL-13 may be 
responsible for respiratory symptoms in HBoV1 infections. 
 

- B19-specific CD4+CTLs may induce autoimmune diseases among B19-infected 
individuals. 
 

- IFN-γ is the dominant cytokine among MCV seropositive adults and plays an apparently 
important role in surveillance against MCPV-induced disease. Our studies also suggested 
the role of IL-13 and IL-10 in anti-tumor immunity and immune regulation, respectively. 
 

- Th-cell immunity appears to be better maintained against MCV than TSV after infection. 
The study also suggests that there is no cross-reactivity between these two viruses at the T-
cell level. 

 
The significance of our project is both academic and practical, as the characterization of 
protective T-cell immunity provides a basis for vaccine development and immune-based 
therapies. 

 
    It is believed that B19 has some role in triggering rheumatoid arthritis (RA). In the future 
this phenomenon should be investigated by analysing T-cell immunity in patients with RA.  
B19 has been found to be associated with many autoimmune diseases, therefore this 
direction must also be included in future studies. The ex-vivo generated B19-infected 
erythroid progenitor cells may be exploited to further investigating the role of NK and 
cytotoxic T-cells in controlling B19 infections. Interestingly, HBoV1 has been found to be 
associated with asthma exacerbations in young children (322). We suggest that a study of 
HBoV1-specific IL-13 responses in (young) asthmatics and in age-matched controls might 
further elucidate the possible role of HBoV1 in asthma.  
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