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Abstract

This dissertation is a large-scale study of spell-checking and correction using finite-state
technology. Finite-state spell-checking is a key method for handling morphologically
complex languages in a computationally efficient manner. This dissertation discusses the
technological and practical considerations that are required for finite-state spell-checkers
to be at the same level as state-of-the-art non-finite-state spell-checkers.

Three aspects of spell-checking are considered in the thesis: modelling of correctly writ-
ten words and word-forms with finite-state language models, applying statistical infor-
mation to finite-state languagemodels with a specific focus onmorphologically complex
languages, and modelling misspellings and typing errors using finite-state automata-
based error models.

The usability of finite-state spell-checkers as a viable alternative to traditional non-finite-
state solutions is demonstrated in a large-scale evaluation of spell-checking speed and
the quality using languages with morphologically different natures. The selected lan-
guages display a full range of typological complexity, from isolating English to polysyn-
thetic Greenlandic with agglutinative Finnish and the Saami languages somewhere in
between.

Tiivistelmä

Tässä väitöskirjassa tutkin äärellistilaisten menetelmien käyttöä oikaisuluvussa. Äärel-
listilaiset menetelmät mahdollistavat sananmuodostukseltaan monimutkaisempien kiel-
ten, kuten suomen tai grönlannin, sanaston sujuvan käsittelyn oikaisulukusovelluksis-
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sa. Käsittelen tutkielmassani tieteellisiä ja käytännöllisiä toteutuksia, jotka ovat tarpeen,
jotta tällaisia sananmuodostukseltaan monimutkallisempia kieliä voisi käsitellä oikaisu-
luvussa yhtä tehokkaasti kuin yksinkertaisempia kieliä, kuten englantia tai muita indo-
eurooppalaisia kieliä nyt käsitellään.

Tutkielmassa esitellään kolme keskeistä tutkimusongelmaa, jotka koskevat oikaisuluvun
toteuttamista sanarakenteeltaanmonimutkaisemmille kielille: miten mallintaa oikeinkir-
joitetut sanamuodot äärellistilaisin mallein, miten soveltaa tilastollista mallinnusta mo-
nimutkaisiin sanarakenteisiin kuten yhdyssanoihin, ja miten mallintaa kirjoitusvirheitä
äärellistilaisin mentelmin.

Tutkielman tuloksena esitän äärellistilaisia oikaisulukumenetelmiä soveltuvana vaih-
toehtona nykyisille oikaisulukimille, tämän todisteena esitän mittaustuloksia, jotka näyt-
tävät, että käyttämäni menetelmät toimivat niin rakenteellisesti yksinkertaisille kielille
kuten englannille yhtä hyvin kuin nykyiset menetelmät että rakenteellisesti monimutkai-
semmille kielille kuten suomelle, saamelle ja jopa grönlannille riittävän hyvin tullakseen
käytetyksi tyypillisissä oikaisulukimissa.

Computing Reviews (1998) Categories and Subject
Descriptors:
F.1.1 Finite-State Automata
I.3.1 Natural Language Processing
I.7.1 Spelling

General Terms:
thesis, finite-state, spell-checking, language model, morphology

Additional Key Words and Phrases:
statistical language models, morphologically complex languages



Preface

Spell-checkers are very basic-level, commonly used practical programs. They ar ubi-
quitous enough that nowadays they are in everyday use for most of us, whether in office
software suites, Facebook text fields or a mobile phone autocorrect utility. The practi-
cal motivation for this thesis comes first and foremost from the disappointment in con-
temporary applications for smaller, more complex languages than English, such as my
native language, Finnish. Why does my telephone not know my Finnish? Even I could
implement this better! And so I did.

The scientific background of the thesis builds on the research of the computational
linguistics scene at the University of Helsinki, starting from my master’s thesis work,
which was a finite-state model of the Finnish language. Using this language model
as part of a practical piece of end-user software, and advancing towards the scientific
treatment of problems when doing so, was a very obvious and motivating incentive for a
doctoral dissertation. While the hard science behind the thesis is, in my opinion, delight-
fully simple, I believe the findings are interesting for anyone working in computational
linguistics, or even natural language engineering, especially when it concerns languages
different from English, in terms of their complexity, availability of resources, and so on.

The improvements on, and methods for, spell-checking and correction presented in
the thesis should provide a good base for more efficient spell-checking in the future, but
they are not yet included in popular end-user applications – because I believe the pro-
ductification and social engineering required to make it happen is not part of the research
work. The current approaches have been tested on colleagues, Helsinki students, and a
select few brave alpha-testers from Greenland, whose native language is well-known to
be trickier to handle than most languages. As the results of the testing were encouraging,
we can hope that the future brings better spell-checkers and autocorrections for those of
us with slightly more tricky native languages.
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Glossary

computational linguistics is a branch of language technology leaning towards the lin-
guistic aspects of the computational handling of language.

error model is any software implementation or formal language capable of enumer-
ating a sorted list of correctly spelled word forms given a potentially misspelled
word form.

finite-state acceptor is a finite-state machine, where symbols are single characters of
a language, used in the context of this dissertation to encode dictionaries.

finite-state automaton is a graph-based data structure used in computational linguistics
to encode a number of linguistic structures efficiently.

formal language is a language in terms of mathematics, that is, an arbitrary set of se-
quences of symbols.

formalism is used by many computational linguists including myself to refer to script-
ing languages and data formats used by a natural language processing system. For
example, lexc, twolc and xfst together make a Xerox formalism for Finite-state
morphologies.

grammar-checker is software capable of detecting grammar errors in word forms and
their combinations, and their relation to whole sentences.

language model is any software implementation or formal language capable of describ-
ing whether a given word form s is correct in terms of spell-checking or not.
This usage differs slightly from established usage in natural language engineer-
ing, where the language model refers to a statistical n-gram model, which is just
one sub-class of my usage.

morph is a minimal indivisible segment split from a word form carrying meaning or
purpose for a computational linguistic description; a morph can be segmented out
of a word form in a text.

11



12 Glossary

morpheme is an abstract concept grouping related morphs together by means of se-
mantic, phonological or otherwise practical similarity in a manner that is usable
for a computational linguistic description; a morpheme is not a concrete segment
of a running text.

morphological complexity is used in this dissertation in a very limited sense of com-
plexity of a language that is relevant to spell-checking and correction and mani-
fested in terms of the number and predictability of word forms the language con-
tains.

morphology is a branch of linguistics studying word formation, the structure of word
forms.

morphotactics is a set of rules governing what combinations of morphs form correctly
spelled word forms; also: morphotax.

natural language is a language spoken, written or otherwise used by people as means
of communication.

natural language engineering is a branch of language technology leaning towards the
software engineering aspects of the computational handling of language.

non-word error a spelling error where the mistyped string is not a valid word form in
a dictionary of the language.

real-word error a spelling error where the mistyped string is another valid word form
in a dictionary of the language.

scraping is a crude technical method of obtaining data from text corpora for compu-
tational linguistic systems, usually harvesting all potential linguistic data without
human intervention.

spell-checker is software capable of detecting and correcting spelling errors in word
forms.

spell-checking is the task of verifying that the word forms of the text are correctly writ-
ten word forms in the language of the spell-checker. Spell-checker can, however,
refer to software capable of both spell-checking and correction.

spelling correction is the task of correctingmisspelled word forms in the text by correct
ones, or suggesting alternatives in an interactive application.

tropical semi-ring is a mathematical, algebraic structure used in weighted finite-state
automata to encode probabilities or penalty weights.



Glossary 13

word form is a string in text separated by white space or punctuation that is not part
of a word in a given language. This definition stems from how spell-checking
libraries actually work.

D is a collection of data, such as a set of word forms, morphs, typing errors. I use
subscript indices to describe the collection. E.g., Dwordforms for all word forms in
a text corpus, Derrors for all typing errors in an error corpus, Dmorphs for all morphs
in a natural language.

M is an arbitrary finite-state machine. I use subscript indices to describe the type of
automaton. E.g., ML for language model, ME for error model, Mthings for an
automaton encoding the disjunction of all things.
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Acronyms

FLOSS free and libre open-source software.

FSA finite-state automaton.

FST finite-state transducer.

HFST Helsinki finite-state technology.

WFST weighted finite-state transducer.
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Chapter 1

Introduction

Spell-checking and correction are among the more practical, well-understood subjects in
computational linguistics, and earlier, computer science. The task of detecting spelling
mistakes in different texts – written, scanned, or otherwise – is a very simple concept
to grasp. Moreover, the computational handling of the problem has been the subject of
research for almost as long as computers have been capable of processing texts, with the
first influential academic works published in the 1960’s, e.g. Damerau (1964), and the
field has developed greatly since.

The purpose of this thesis is to research one specific approach to spell-checking –
that of finite-state technology. Finite-state technology has its roots in the mathematical
theory of formal languages, which I will refer to as string sets throughout this thesis to
avoid confusion with the more common meaning of the term, natural languages. The
theoretical beauty of this approach will be recappedmore closely in the later subsections.
The practical circumstances of this approach are the following: it gained popularity
among computational linguists interested inmorphologically complex languages around
the 1980’s and onwards, and it is thought by some of us to be the only way to handle more
morphologically complex languages. This sets the direction of this thesis to implement
spell-checking for languages of varying morphological complexity efficiently.

Finite-state approaches have traditionally been popular for the computational han-
dling of Finnish, cf. Koskenniemi (1983). Finnish ismy native language and for practical
reasons a recurring theme in this thesis. Whilst concentrating on scientific contributions
made over the years, this thesis is in a way also a book which describes the past years of
the development of, language independent, spell-checker software1 which is also used
in the writing of this very thesis. So, it should be clear that the contribution of this thesis
is meant to be a very concrete, should I even say a final – albeit beta-quality – system for
spell-checking and correction. There are some practical implications when using one’s
native language to evaluate and develop new and improved methods, and the motivation

1The software is available as free and open source, like all good scientific research products.

17



18 1 Introduction

for spending immeasurable amounts of spare time is there.
One important practical feature of this thesis is that the end product the scientific

methods are built for is usable and available as an end-user spell-checker at some point
in the future. For this reason I aim to ground the theoretical advances so that they are
usable for a larger audience of end users and this includes limiting resources required
to build the systems experimented with to freely-available and open-source materials
and techniques. Indeed, if a spell-checker sub-system is mentioned in this thesis, you
should at least be able to download a functional prototype. All our software and data is
available in our version management system.2 3 I also strongly believe that this approach
entailing not only free and libre open-source software (FLOSS) for the scientific software
and results, but also properly conducted open scientific research will fulfil the basic
requirement of reproducibility.

Another perspective in the thesis is the quality of the spell-checking for morpho-
logically complex languages. For English, the vast majority of research on the topic
has already shown impressive figures for the quality of spell-checking and corrections
with statistical approaches. It almost seems like a scientific consensus on the solution.
The common intuition, however, raises some suspicion that the morphologically more
complex languages may not be so favourable to simple statistical approaches. The con-
tribution of this thesis is also in showing the limits of these approaches for morpholog-
ically complex, and resource-poor languages, exploring possible modifications that can
be used to salvage the situation.

The remainder of this first chapter is dedicated to an informal introduction to the
thesis topic. It consists of closer definitions of the practical and scientific concepts cen-
tral to building a spell-checking system as a research problem, some very down-to-earth
rationals for this approach, and the background details that motivate the research of fi-
nite-state methods for spell-checking even when spell-checking itself has already been
almost researched to death. Finally, as this is an article-based thesis, I give an overview
of the articles of the thesis, and describe how the thesis is structured.

1.1 Components of Spell-Checking and Correction
Spell-checking and correction, as the title suggests, can already be separated into two
components. Furthermore both of the components can be divided, classified and anal-
ysed into many separate pieces. In this section I try to cover different existing and prac-
tical conceptualisations, and introduce the relevant terminology in a neat and systematic
manner.

The primary division of labour that is present throughout this thesis, and is shown in
the title, is the division into spell-checking and correction. Spell-checking is the task of

2http://svn.code.sf.net/p/hfst
3A mono-spaced font is used for URLs and program code segments.

http://svn.code.sf.net/p/hfst


1.1 Components of Spell-Checking and Correction 19

detecting errors in texts, whereas spelling correction is the task of suggesting the most
likely correct word forms to rpelace the error. It is of great importance to treat these
two tasks as separate, as the implementations made for each of them can be quite freely
mixed and matched. While there are systems that use the same methods and approaches
for both, this is not by any means a necessity. A practical system giving suggestions
usually does not have access to the context of the word form it is correcting and to the
criteria by which the word form was chosen. These are relevant constraints in some
of the approaches I present in the thesis and for some of the concepts I present in this
section.

The methods for detecting errors can be divided according to the data they use for
evidence of the word beingmisspelt. The basic division is whether the system looks only
at the word form itself, in an isolated spelling error detection, or if it actually looks at the
context as well. Traditionally, the isolated error detection has been based on lookup from
word form lists to check if the word form is valid. The only additional notion I have in
terms of this thesis, talking about finite-state spell-checking, is that our dictionaries are
systems which are capable of representing an infinite number of word forms, i.e., they
contain not only the dictionary words, but also the derivations and compounds necessary
to reasonably spell-check a morphologically complex language. Sometimes, this spell-
checking is backed up with statistical information about words: the words that are in
a dictionary, but are very rare, might be marked as errors if they are one typing error
away from a very common word, such as

::::
lave,4 5 instead of leave (Kukich, 1992b). The

spelling errors of this kind, where the resulting word is an existing word in the dictionary,
are called real-word errors. The shortcoming of isolated approaches to spell-checking
is that they will basically only recognise those spelling errors which result in a word
form that is not in the dictionary, so-called non-word errors. Real-word spelling errors
will almost always require the use of a context to obtain some evidence that something
is wrong. Here again, the simplest approach is to use statistics; if the word we are
inspecting does not usually appear in the current context of two to three words, it may
be an error. A more elaborate context-based method for detecting errors is to use a
full-fledged natural language processing system that can parse morphology, syntax or
other features of the running text. Such a system can usually recognise sentences or
phrases that are unusual, or even grammatically wrong; these systems are usually called
grammar-checkers,6 rather than spelling checkers, and are not a central topic of this

4I will use this special emphasis for misspellings throughout the thesis as most of the users of contem-
porary spell-checkers should be familiar with it.

5lave in case you were as unfamiliar with this rare word as I am, it is defined in Wiktionary as: “1.
(obsolete) To pour or throw out, as water; lade out; bail; bail out. 2. To draw, as water; drink in. 3. To
give bountifully; lavish. 4. To run down or gutter, as a candle. 5. (dialectal) To hang or flap down. 6.
(archaic) To wash.” http://en.wiktionary.org/w/index.php?title=lave&oldid=21286981

6A word of warning about this terminology: some practical systems, such as office software, will call
any spelling checker that uses any context-based approach, as opposed to an isolated approach, a grammar

http://en.wiktionary.org/w/index.php?title=lave&oldid=21286981
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thesis, although I do try to clarify what kind of extensions could be made to turn my
spell-checkers into such grammar-checkers.

The error-correction task is divided most naturally by the types of errors that are
made. Many different classifications with different names exist, but most will agree that
there is a category of errors that is based on unintentional mistakes, such as mistyping
at the keyboard. This is the type of spelling error that is the main target for correction
suggestion systems, and the common research results have claimed that between 80 and
95% of all spelling errors can be attributed to having a single typing error in a word
form (Kukich, 1992b). The rest of the spelling errors are more or less based on com-
petence. Such errors can be caused by not knowing how to spell a word form, which
is especially common in orthographies like English, or not knowing the correct way to
inflect a word, which is common when writing in a non-native language. Increasingly
common are errors caused by limited input methods, such as dropping accents or oth-
erwise transcribing text to match e.g. a virtual keyboard of a mobile phone – generally
these errors are indistinguishable from typos.

1.2 Morphological Complexity

Morphology is the subfield of linguistics that deals with the structure of a word form.
A word form, for the purposes of this dissertation, is defined as a segment of a text that
is separated by whitespace symbols or other similar orthographic conventions. While
from a linguistic point o -view this definition is not without problems, it is one that
today’s spell-checking software has to cope with. In fact, many spell-checkers today
are restricted to handling word forms that some other software has decided are word
forms like this. To give one example, in English ‘cat’ is a word form, as is ‘dogs’, or
‘involuntarily’. The structure of a word form is composed of one or more morphs. A
morph is a segment of a word that has been defined by linguistic theories as a minimal
unit carrying meaning, or more vaguely, purpose. In ‘cat’ there is one morph, the root
word meaning cat, in ‘dogs’ there is the root morph ‘dog’ and another morph ‘s’ marking
plurality in English. In the word ‘foxes’, there is a root morph ‘fox’ and a plural morph
‘es’. Sometimes when describing morphology, abstractions called morphemes are used
to group similar morphs together, for example in English it could be said based on these
examples that the plural morpheme is ‘(e)s’.

Complexity in morphological features, is studied in the field of linguistic typology.
There are no commonly agreed measures of morphological complexity, and this dis-
sertation does not intend to be a contribution to typological studies. Rather, I try, as a
practical issue, to define morphological complexity as it relates to spell-checking and

checker. This terminological confusion is not carried over to Microsoft Word’s recent incarnations, but at
the time of writing Apache OpenOffice.Org and LibreOffice still follow the confused terminology.
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correction. In this section I will thus attempt to explain my understanding of the is-
sue, partially because I have used terms such as morphologically complex in the thesis
articles. It is therefore necessary to remember to read the word pair morphologically
complex in this thesis as a concept which refers to aspects of languages’ writing sys-
tems, dictionary formation and such features described in this section, rather than as
contested definitions in linguistics at large.

One theme of my thesis was to bring effective and high-quality spell-checking and
correction to languages that are of varying morphological complexity. To substantiate
this claim I will first try to define what I mean by morphological complexity. There is a
measure of complexity that affects the building and use of correct word form recognisers
in terms of computational and practical resources, and there are only a few easily mea-
surable factors in this playing field. In linguistics studies began with Greenberg (1960)
and continued up to the contemporary endeavour known as the world atlas of language
structures (Haspelmath et al., 2005), which has been widely used for measurements of
similarity, complexity, and so on. The morphological complexity of a computational
spell-checker is based on, e.g., the complexity of the word forms in terms of morphs.
This is measurable as the average count of morphs in the word or the morph-to-word ra-
tio. Themorphs I use here refer to the smallest meaningful unit in the word that is used so
regularly that it can be practically used in the language description – that is, a productive
morph. Another factor ofmorphological complexity that is important is the variation that
creates a set of related morphs. This variation can be realised in terms of the number of
morphemes per language or morphs-per-morpheme. Since a spell-checker’s main task
is to predict all correct word forms, both the number of potential word forms created by
morph chains and the amount of variation within these morphs are good indicators to
estimate the computational complexity of that particular spell-checker.

These measures lend themselves nicely to a view of spell-checking software where
the languages that have significantly higher values include those that have their spe-
cial implementations in the world of open-source spell-checkers: Finnish and Voikko,7
Hungarian and Hunspell,8 Turkish and Zemberek,9 and so forth. This tendency suggests
that people trying to build spell-checkers with the limitations of almost only word-list or
statistics-based systems will not be able to reach satisfying results, and other approaches
are in fact necessary.

Perhaps the most important form of morphological complexity relevant to the topic
of this thesis, and one that is often ignored, is the rate of productive derivation and com-
pounding that produces new ad hoc words and word forms that are difficult to predict
using finite word lists or even simple finite combinations of words and morphs pasted
together. For a language where these processes are common, spell-checking greatly

7http://voikko.puimula.org
8http://hunspell.sf.net
9http://code.google.com/p/zemberek/

http://voikko.puimula.org
http://hunspell.sf.net
http://code.google.com/p/zemberek/
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benefits from a dictionary capable of predicting a large number of words which have
not been seen before. Surprisingly many of both existing systems, and those described
in recent research, e.g. in Hassan et al. (2008); Watson (2003), simply do not acknowl-
edge the need. Some gloss over the fact as a possible extension to the system, some
ignore it altogether, but usually without any example of an implementation and an eval-
uation strictly based on English or a few other popular Indo-European languages with
similar features. For many languages an easy way to produce dictionaries with reason-
able coverage is a system which predicts infinite amounts of compound and derivation
combinations.

To illustrate the practical issues with morphologically complex languages, we use
the de facto open-source spell-checking system, Hunspell. Of the aforementioned mor-
phological features, Hunspell supports up to 2 affixes per word, or 3 morphemes. For
languages going beyond that, including Hungarian, the creator of a dictionary will at
least need to combine multiple morphemes into one to create a working system. The
morpheme count in Hunspell is realised as affix sets, of which Hunspell supports up
to 65,000 (the exact number supported may vary somewhat in different versions, but it
seems to be less than 65,535, which would have been expected for the two-byte coding
of suffix flags that was used in the system). Hunspell does, however, include support
for some compounding.

As a concrete example of limitations with e.g. Hunspell, there has been at least one
failed attempt to build a spelling-checker for Finnish using Hunspell (Pitkänen, 2006),
whereas we know from the early days of the finite-state methods in computational lin-
guistics that Finnish is implementable, in fact it has often been suggested that the initial
presentation of the automatic morphological analysis of Finnish by Koskenniemi (1983)
is one of the main factors in the popularity of finite-state methods among many related
languages. Many of the languages with similar morphological features, however, have
been also implemented in the Hunspell formalism, indeed as even the name suggests, the
formalism originated as a set of extensions to older *spell10 formalisms to support Hun-
garian. For North Saami, a language from Uralic family I commonly use for test cases
to compare with Finnish, an implementation of a spell-checker for Hunspell exists.11
The languages that fall into the more complex side of the morphological complexity are
usually noted as very hard to properly implement with the current Hunspell formalism
and its limitations, though often the results are found tolerable. E.g. Gīkūyū Chege et al.
(2010) used 19,000 words with extensive affix rules as a spell-checker, for which they
say they attained a recall of 84%. The same does not seem to apply for Greenlandic,
where it was found that a collection of 350,000 word forms only covered 25% of the
word forms in newspaper texts.12

10Specifically, myspell, c.f. http://www.openoffice.org/lingucomponent/dictionary.html
11http://divvun.no
12http://oqaaserpassualeriffik.org/a-bit-of-history/

http://www.openoffice.org/lingucomponent/dictionary.html
http://divvun.no
http://oqaaserpassualeriffik.org/a-bit-of-history/
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The sizes of wordlists lead to the final, perhaps most practical metric of measurement
in the morphological complexity of languages in the context of computational applica-
tions. That is, the size of the dictionary when it is in the memory, whatever may be
the method of encoding it or compressing it; this is easily measurable and a very im-
portant factor for any practical application. For example for a word-list approach, even
uncompressed the wordlist of a million words with an average word length of N is just
N megabytes, whereas storing the list as a finite-state automaton, suffix trie or hash is
considerably less. Even though most wordlist-based software do store the data in one of
the more advanced data structures, it is the limitations of Hunspell such as the two-affix
limit, that will force major parts of wordform lists to be included in an inefficient for-
mat on disk, and will greatly hinder the speed of Hunspell operation in practice. With
combinations of derivation and compounding the memory requirements tend to go up
rapidly, even with finite-state approaches, so there is a practical correlation measure be-
tween the complexity of the language defined in theoretical terms earlier; in a worst case
scenario this is obviously a limiting factor, e.g. some versions of my Greenlandic exper-
iment with finite-state automata took up almost 3 gigabytes of memory, which is clearly
unacceptable for a spelling checker in an average 2013 end-user computer system.

1.2.1 On the Infinity of a Dictionary
While I have tried my best to avoid hotly debated aspects of morphological complexity,
there is one central differentiating factor between the finite-state approaches andwordlist
approaches to language that I cannot avoid, and that is the expression power capable
of predicting an infinite number of word forms. The fact that cyclic automata encode
infinite lexicons is mentioned numerous times in the articles of my thesis and a few of
them specifically deal with the problems arising. I provide here some rationale why I
consider infinity a necessary feature.

Now, the concept of infinity in itself, as an abstraction is quite hard to grasp in many
cases, especially if you have not studied mathematics of transfinite numbers. The basic
example used in school mathematics is a set of numbers, for example, there is an infinite
number of non-negative integersN+ = 0, 1, 2, 3, . . ., and this is uncontested. Intuitively,
it is also somewhat easy to grasp, for example, for any given number you can read out
loud, there is always going to be larger numbers, which you can create by adding 1 to
it, or any other positive integer for that matter (but not 0, for adding zero will not make
a larger number). Now, in Finnish, numbers are written as compounds, that is, without
spaces in between the number words. For example, 3 is ‘kolme’, 33 is ‘kolmekym-
mentäkolme’, and 33333 is ‘kolmekymmentäkolmetuhattakolmesataakolmekymmen-
täkolme’. So, we have a mapping from non-negative integers to words that belong to a
dictionary of the Finnish language, and therefore the size of a Finnish language dictio-
nary is at least equal to the size of the non-negative number set.

In practice, this is still debated, even when using the definition of words and word
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forms that only includes space-separated strings, whether this infinity is really needed.
The main argument here is that, even if there was a theoretical infinity of these words,
we can encode a certain finite subset of them, and always get a virtual 100% coverage
of all words that actual people use in real-world texts. And this is a very good argument,
and one with which I fully agree. However, especially considering our number example,
what is the subset of numbers we can select and be sure that no one will pick a number
outside that set and write that as a word? Style guides will usually suggest something
along the lines of writing words that have up to five compound parts. However, this is
also an infinite set, since only the digits that are non-zero are read as numbers in Finnish,
e.g., 3,000,000,000,000,000,000,003 is ‘kolmetriljardiakolme’. After that, we can prob-
ably trust non-malicious13 writers to stick with reasonably small numbers, say under
one centillion, that is a number that has one, and six hundred zeroes after it.14 Even
with these, quite reasonable limitations, the number of common words to list gets quite
large, and we have not even touched the tricky topic that Finnish numeral compounds
have case agreement in inflection (Karttunen, 2006). This is one of the places where
cyclic, infinite finite-state lexicons really show their power. If you encode these number
words as a finite-state automaton and allow compounds of up to five components, you
need to create five copies of the network, making it five times the size that all the nu-
meral words as individual components need. However, if you make that network cyclic,
allowing any number of combinations of number words, even infinite, the size of the
network is almost exactly the same as the network that allows only one number word
without compounding.15

Numerals are not very interesting as a linguistic example, and perhaps also some-
what suspicious, as it is easy to come up with new numbers. However, non-number word
compounding is not very different in practice. We have a set of words that can be com-
pounded together, and we have to at least predict which combinations the user might use.
Speakers of language come up with new ad hoc compounds every day, and making good
guesses or limits to this creativity would be a very difficult task. As a good experimen-
tal example, in my implementation of Finnish morphology,16 I have opted to encode all
compounds that are attested as “known” compounds. If today I pick up the first article on
a Finnish news site,17 I still get one compound that has not been encoded as such, even af-

13I say non-malicious here because certainly someone, such as myself, could write a number consist-
ing of more parts, for example ‘kolmesataakolmekymmentäkolmemiljoonaakolmesataakolmekymmen-
täkolmetuhattakolmesataakolmekymmentäkolme’ in a written and published text, such as this one, just to
prove a point.

14Finnish uses long scale system where systemic large numerals are made of the latin prefix, mi, bi, tri,
…, centi, …, and either -(i)llion or -(i)lliard suffix to it.

15There is one arc added for the cycle, but if you consider Finnish specifically, some constraints are
also needed to control the inflection of compounds; these are detailed in Karttunen (2006).

16Open Source Morphology of Finnish, http://code.google.com/p/omorfi/
17http://yle.fi/uutiset/miksi_keva_kokousti_kuusi_tuntia_en_kerro_vaikka_

kuinka_tenttaat/6950229

http://code.google.com/p/omorfi/
http://yle.fi/uutiset/miksi_keva_kokousti_kuusi_tuntia_en_kerro_vaikka_kuinka_tenttaat/6950229
http://yle.fi/uutiset/miksi_keva_kokousti_kuusi_tuntia_en_kerro_vaikka_kuinka_tenttaat/6950229
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ter scraping large corpora like Wikipedia for compounds: “toimitus+johtaja+sopimus”
(CEO’s contract). The logic of trying to predict such forms is not very easy and statistics
will not help either. We could again make some approximations to cover most of the
expected cases, e.g. five total words and perhaps encode some semantics. This is a good
approach, however, it requires a lot of manual work and the resulting dictionary will be
massive. Including all combinations of five arbitrary nouns requiresN5, whereN is the
size of the noun dictionary (analogously to amount of digit combinations in five-digit
numbers 105), and even as a finite-state automaton this is 5 times the size of finite-state
automaton of nouns, or, indeed, a nominal finite-state automaton with infinitely long
compounds. So all in all, the decision to support infinitely long compounds is based on
the fact that it does have better predictive power and takes up less space, and is easier to
implement in terms of work required. It is not maximally ideal for spelling correction,
a problem we will deal with later in this thesis.

One argument against the infinity of the lexicon is that it is an artefact of the writing
system. And this I wholeheartedly agree with. The Finnish example even shows it ex-
plicitly. Considering the agreement of inflection with numerals, we have inflection pat-
terns like: “kolme+sataa+kolme” : “kolme-lle+sada-lle+kolme-lle” : “kolme-ksi+sada-
ksi+kolme-ksi”, (303, singular nominative, allative and translative forms). This is not
different from noun phrases in Finnish, which are written with spaces: “vihreä uni” :
“vihreä-lle une-lle” : “vihreä-ksi une-ksi” (green dream, same forms as before). Here we
have exactly same agreement features and structure of word combinations, but a space
is added between the words. While we cannot change the quirks of writing system con-
ventions very easily, it would make sense to handle both cases in the same way, and by
extension, all morphology in the same way regardless of the writing system, which may
or may not use whitespace and punctuation to delimit morphological units. This is also
a feature I argue for in some of my articles included in this thesis as well. However,
the fact remains that contemporary software does not let us work on units of text like
that, and especially interfaces for spell-checking in popular real-world software rely on
spell-checking to deal with space and punctuation-separated strings. As it is something
that cannot be changed by a doctoral dissertation. I am left with the task of dealing
with the problems that arise from infinite compounds and from recurring derivation that
arise from the writing systems not using spaces or punctuation to separate morphologi-
cal units. I have, for the most part, attempted to formulate the systems in a manner that
will be usable if in the future we have systems and frameworks that let us handle texts
as a succession of linguistic units rather than as chunks separated by whitespace.

As a side-note, it is not only compounding as the form of copying and concatenating
certain word forms, it is also derivation that can cause loops that go towards infinity.
What it means is that the parts of words that attach, e.g., to the beginning or the end
of the word, can have long, unpredictable combinations. This is true for example for
Greenlandic, where derivation is the contributing factor to the average word length and
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thus tomorphological complexity as I define it in this thesis. Another aspect of derivation
is that it interfaces with compounding in a way that makes it clear that it is not just
pasting all words together a few times in certain forms that is sufficient to predict all
new words. Nor is it pasting together all the morphs in succession that is sufficient to
predict new words. What is really needed is rather advanced combinations of morphs
and compounds that form new words. For example in Finnish compounds should be
made of certain forms of nouns, so one might naively expect to be able to predict all
compounds by concatenating those nouns together. However, it is also all the verbs
derived into nouns that can appear as parts of compounds, e.g., there is a word meren-
käynti (seafaring, from meri + käydä + -nti sea + go + suffix for making nouns from
verbs). For a more recent example of how productive and creative this is, I analysed
some of my text logs from an internet relay chat service called IRC to find multipart
compounds with verbs in them, and I found this particular example rather illuminating:
känny-irkkailu (habitual mobile IRCing, from känny + irkki + -ata + -illa + -u, literally
mobile phone + IRC + suffix to verb nouns with + suffix marking frequent or habitual
doing + suffix for making nouns from verbs). This example exhibited a noun neologism
derived into a verb, derived into another verb derived into a noun. This kind of creativity
is not easily predicted by just concatenating word forms or morphs.

To summarise, I have opted to enable the possibility of infinite compounds and
derivations in word forms of dictionaries used in spell-checking in this dissertation for
the following reasons. Firstly, contemporary spelling checkers aremainly forced to work
with the orthographic concept of space-separated tokens as word forms. Secondly, in
finite-state structures it is typically more efficient to work with unbounded combina-
tions. Thirdly, the art of picking and choosing the finite good combinations of com-
pound parts and derivations is a lifetime’s work in lexicography (cf. the Greenlandic
lexicon’s history mentioned earlier in Footnote 12) to reach a sufficient coverage for a
spell-checker. For these reasons, and because it seemed sensible for my own work with
my Finnish dictionary, I chose to investigate the intriguing problematics of infinite lex-
icons in finite-state spell-checkers as one major part of my dissertation. I believe I have
managed to formulate the research in a manner that will be sustainable even if the world
of spell-checking and language technology change to support different definitions of a
word and its parts.

1.3 Finite-State Technology in Natural Language Pro-
cessing

After considering the limitations and problems of wordlists and other simple approaches,
we come to the second part of the thesis topic: finite-state methods. In this disserta-
tion I have selected to use finite-state automata as a general framework for handling
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spell-checking dictionaries because of its success in handling morphologically varied
languages (Beesley and Karttunen, 2003). This approach is sufficient to cover the infi-
nite dictionaries of the kind mentioned in the previous section. It is commonly thought
that the extents of finite-state technologies are sufficient to cover most of the natural
languages’ word forms found in the running text, that is, a spell-checker’s dictionary
implemented with these technologies could know all correctly written word forms with-
out technology being the limiting factor. There are some counter-arguments to this,
e.g., Culy (1987) presents features of Bambara vocabulary that would require expres-
sive powers beyond regular and even context-free grammars to predict Bambara’s word
forms. It seems to me that there are two limitations to this specification that allow finite-
state approximations of Bambaran vocabulary: firstly it appears that Culy argues that
despite the fact that these lexical elements are written with spaces in between them,
they should be handled on the vocabulary side. This already relieves finite-state spell-
checking system from the burden of recognising such lexical elements due to the fact
that finite-state spell-checkers are forced to operate on space-separated strings. This
definition does allow for Bambara to have ungrammatical forms in a spell-checked
text, such as

::::::::::::::::::::::
wulunyina o wulufilela (dog searcher dog watcher) mentioned in the text.

This, however is akin to a spell-checker allowing the English phrase
::::::::
I sees he or Finnish

::::::::::::::::::
punaiselle kukasta (to red from flower), something that in contemporary software is re-
layed from spell-checking to grammar checking. The second saving aspect for finite-
state technology is its capability to describe all finite subsets of languages higher in the
hierarchy. What this means is that, should there be a language having a productive word-
formation like Bambara without intervening white spaces, it is still possible to capture
the word forms that have less than infinite components in themmatched in a manner that
would require greater expressive powers. For example, one could create an finite-state
automaton (FSA) that counts that if there are two or five or thirty-three matching com-
ponents that fulfil the requirements, it will always be possible to select a number high
enough that covers a large enough part of the words used in a real-world context that the
spell-checker of such form would be enjoyable to use. There have already been studies
on syntax that show that the expressive power can be limited to a rather small number
of such dependencies that would otherwise be beyond finite-state technology (Karlsson,
2007).

The latest developments in the finite-state approach to natural language processing
has been the concept of weights in finite-state automata. I have experimented with some
approaches to bring the expressive power of statistical language models to traditional
rule-based dictionaries. One significant part of the contributions in this thesis studies the
notions of applying statistical approaches in conjunction with morphologically complex
languages using finite-state methods.

The concept ofmodelling typing errors is not sowidely accepted as part of finite-state
technology. While for example in speech applications, trying to map a representation of
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the spoken audio signal into written language is quite common, it is relatively new in
the mapping of typing errors into correctly typed text. The contribution to finite-state
methods in this thesis provides further research on the application of finite-state models
of typing errors as a practical component in a full spelling correction system.

1.4 Overview of Thesis Articles

This dissertation is a collection of articles I have written during the development of
different parts of our finite-state spell-checking system. It covers a wide range of topics,
all tied together by the goal of getting things to work nicely, and investigates the quality
and speed of spell-checkers for languages like English. My articles, in chronological
order are presented in Original Papers on page 3.

1.4.1 Chronological Order
The development shown in the articles is easy to follow in chronological order, almost
tells its own story. In the beginning we have a Finnish morphological analyser (Pirinen,
2008) which cannot yet be turned into a statistical dictionary as it contains too rich a mor-
phological productivity. In articles (I; II) we explore some advanced weighting options
of Finnish morphology that could provide better treatment of compounds and derived
word forms in morphologically complex languages. In (III) we try to tackle the problem
of scarcity of corpus resources especially in conjunction with morphologically complex
languages, using a crowd-sourcing option provided by Wikipedia and measuring how
smaller text corpora will still improve the spelling correction results. In (IV; V) I have
studied the compilation and reuse of existing non-finite-state language descriptions as
finite-state automata-based language models of a finite-state spell-checking system. In
(V) I attempt to reimplement much of the Hunspell spell-checking system, including
their error correction methods, in finite-state form. In (VI) I research the topic of how to
maintain finite-state language models, and try to show that finite-state language models
are feasible for long-term maintenance for a vast array of applications using just one
language description instead of one description per application. I extend this theme in
(VII) by showing how to convert language models outside of morphological analysers
and spell-checkers into a suitable finite-state automaton. In (VIII) I tackle the problem-
atic issue of context-aware spell-checkers for morphologically complex and resource-
poor languages, showing some practical limitations and what can be done to get some
benefits from such an implementation. In (IX; X) I have already reached the point of full-
fledged, workable systems for spell-checking, and test the full power of those systems,
first for speed and efficiency in (IX), and then in a larger scale survey (X), the quality
of spelling suggestions, as well as extensions to some of the speed measurements. The
chronological order is also visible in the schematic diagramme of Figure 1.1. The finite-
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state language models (in the leftmost column) were conceptualised after the statistical
weighting schemes of morphologically complex language (in the middle column) and
the resulting combinations were evaluated on a larger scale (in the rightmost column).

1.4.2 Division of Labour

The division of labourwithin these articles also follows quite naturally from the chrono-
logical development. In (I; II), as I was the author of the Finnish finite-state implementa-
tion of the morphological analyser we were extending with weight structures, I did much
of the groundwork in implementing the practical software for weighting the analyser.
The result of this work is the weight support in such parts of our finite-state tool chain as
hfst-lexc and hfst-strings2fst – that is, in practice the compilers for morphemes
and other string sets. In these early articles, the evaluation scheme and major parts of
the written article are the work of Krister Lindén. In (III) I already take into account that
previous experiments were performed using commercial corpora unavailable for scien-
tific, free and open-source work, which led me to devise a statistical training as well as
an evaluation scheme based on freely-available Wikipedia data. The evaluation and sta-
tistical training setup that was built in this article has then evolved throughout the thesis,
in the form of collected make recipes, awk scripts, python scripts and other pieces of
bash command-line programming. The engineering work on Hunspell language models
in (IV; V) originated from the compilation formulas for morphologies, documented e.g.
in Lindén et al. (2009), and were constructed by Krister Lindén and myself. The same
technique was applied to the building of Apertium system’s language models in (VII)
with technical help from one of the Apertium system’s main contributors, Francis Tyers.
The context-based weighted finite-state methods of (VIII) originated from Silfverberg
and Lindén (2010), with whom I also co-operated in the porting of the system to finite-
state spelling checker use. The evaluation scheme was slightly modified from an earlier
one used in (IV). The writing of the article (VIII) was for the main part my own work,
whereas the mathematical formulas were built in co-operation with the article’s other
authors. In (IX), the evaluation setup and article was written by myself, with the ma-
jor part of the technical implementations done by Sam Hardwick, who is also the main
author behind the finite-state spell-checking component of our current software, as is
further detailed in Lindén et al. (2011). In the articles (VI; X) the majority of the test
setup, article structure, engineering and other tasks were performed by myself, which is
reflected in the fact that they are published under my name only. It is, however, true that
all of the work within this thesis was carried out as a member in the Helsinki finite-state
technology (HFST) research group, and there is no doubt that there is an abundance of
minor ideas regarding engineering of the software, evaluation setup and article writeup
that are the creation of collective brainstorming as well.
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1.4.3 My Contributions

My contributions to the co-authored articles can be broken down as follow: In article
(I), I implemented a proof-of-concept version of the finite-state lexicon compiler with
weighting support and extended the original Finnish description by adding weights of
word forms and their boundaries whereas the first author designed the scheme and eval-
uation system. In (II) we extended this scheme with a similar division of labour, i.e., I fi-
nalised the software implementation and worked with language descriptions and the first
author designed and evaluated; the writing was shared with the first author mainly doing
the overview and conclusion sections. In (III), I made the training corpora and extended
the previous evaluation suites to the task; for the spell-checking automata and applica-
tion procedure both authors contributed as well as the research team. The initial article
writing was done by myself including the introductory part and conclusion, and the final
version written jointly by both authors. Articles (IV) and (V) were based on finite-state
formulations of hfst-lexc by the second author and refined for this purpose by both
authors with the assistance of the research group. Most of the evaluation scheme was
carried over from earlier projects, and was extended and rewritten by myself. The article
was structured with the help of the second author, while writing was mainly done by my-
self, including the new formulations of the algorithms. In article (VII), the original idea
was discussed jointly with the authors with myself doing the implementation based on
previous work on different compilation algorithms in other tools in earlier articles. The
evaluation schemewas taken from previous articles with minor modifications bymyself.
In article (VIII), we used the second author’s algorithms from earlier work on POS tag-
ging combined with my earlier evaluation scheme for spell-checking and the automata
used for it. The second author wrote most of the parts concerning mathematics and the
description of finite-state n-gram models, and I wrote the evaluation, introduction and
conclusion sections. In article (IX), on the effects of weighted finite-state language and
error models on speed and efficiency of finite-state spell-checking, I wrote most of the
evaluation based on previous work, and the second author implemented the software
including the optimisation schemes. The optimisation schemes were constructed jointly
with both authors plus the help of the research group in a few project meeting sessions.
In practice all articles have been discussed in project group meetings ,and the project has
contributed ideas, software pieces, and linguistic descriptions as further detailed in the
articles themselves. For exact changelogs one can also read SVN log18 and for newer
articles also git commitlog.19

18http://sourceforge.net/p/hfst/code/HEAD/tree/trunk/articles/
19https://github.com/flammie/purplemonkeydishwasher

http://sourceforge.net/p/hfst/code/HEAD/tree/trunk/articles/
https://github.com/flammie/purplemonkeydishwasher
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1.4.4 Research Questions
Another way to conceptualise the thesis is under the following research questions: How
to implement reasonable statistical language models for finite-state spell-checking, how
to implement a finite-state equivalent of state-of-the-art non-finite-state spell-checking,
how to develop andmaintain a languagemodel for finite-state spell-checking, what is the
quality of finite-state spell-checking compared with a string-algorithm approach, what
is the speed of the finite-state spell-checking compared with another software based-
approach, what are the limitations of the finite-state-based approaches compared with
string-algorithm spell-checking – and doing all of this with morphologically complex
languages that are lesser-resourced.

1.4.5 Chapter Structure
The rest of the thesis is organised by topic into chapters as follows: In Chapter 2 I
summarise prior research on spell-checking and correction, and describe the develop-
ment of actual in-use spell-checkers. I then survey the previous research specifically on
finite-state approaches to spell-checking, and describe the theory of finite-state spell-
checking in terms of our specific implementation. Chapters 3—6 contain the research
papers of the thesis sorted under four headings that match the original goals of this the-
sis. In Chapter 3, I go through the existing spell-checking and other language models
and their use as part of the spell-checking system, and introduce the finite-state point of
view to the language models that were initially non-finite-state. In Chapter 4, I describe
some weighted finite-state methods to introduce statistics into the language and error
models. In Chapter 5 I study the finite-state formulations of error modelling and con-
trast my implementations with others that have been used. In Chapter 6, I fully evaluate
these systems in terms of both speed and quality to verify their usability in practical and
real-world applications. Most of the articles I have written fall neatly under one of these
headings, but I do revisit a few of them in more than one of the chapters. In Chapter 7,
I summarise the thesis and lay out possible future work in the field.
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Figure 1.1: Articles and build order



Chapter 2

Background

Spell-checking and correction by computer is a topic that is already over half a century
old, and one that has been researched periodically throughout that time. In this chapter, I
attempt to walk through the long history of spell-checking with an eye on both the scien-
tific study of spell-checking, as well as the practical end-user systems. While I attempt
to cover as much as possible of the topic, there are bound to be many omissions and for a
fuller picture I recommend reading some of the previous surveys on spell-checking and
correction, such as Kukich (1992a) and Mitton (2009). Kukich (1992a) presents the his-
tory of spell-checking, both scientific improvements and some real-world applications
are very well summed up until the publication time of the early 1990s. Mitton (2009)
presents some more recent advances on non-word spelling correction. Kukich (1992a)
also refers to spell-checking as a perennial topic in computational linguistics. I find this
characterisation quite accurate as it has been a prevalent and recurring theme throughout
the history of computational linguistics and earlier in computer science.

This background chapter is organised as follows: In Section 2.1, I go through the
history of spell-checking and correction, especially the scientific contributions that relate
to my research, and the practical software systems I have used as a baseline for my
target functionality. After dealing with the history of spell-checking and correction I go
through the closely related scientific fields in Section 2.2, whose results are relevant to
my research. Finally, I go through the current situation in Section 2.3, and specifically
the finite-state approaches to spell-checking and correction, and describe my particular
system. I also detail much of the notation and terminology in these chapters, and contrast
them with other similar approaches.

2.1 Brief History and Prior Work

The history of spell-checking and correction by computer is usually said to have begun
somewhere around the 1960s, with inventions like Levenshtein’s and Damerau’s mea-
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sures of distances between strings (Levenshtein, 1966; Damerau, 1964), or the Damerau-
Levenshtein edit distance, which even today is the core of practically all spelling correc-
tion algorithms. This measure defines the distance between two strings of characters, in
terms of editing operations performed on the string to match it to the other string. The
editing operations defined were the following:

• deletion of a letter

• addition of a letter

• changing a letter to another, and

• swapping transposing adjacent letters (missing in Levenshtein’s formulation, cen-
tral to spelling correction for e.g., keyboards)

For example, the distance between cat and
::
ca is 1 (deletion of t), the distance between

cat and
:::
catt is 1 (addition of t), and so forth. Formally, these operations create a metric

between two strings, and for spell-checking applications it is typical to find the smallest
distance between strings, or the least amount of editing operations when correcting. It
is also possible to use values differing from 1 for the operations to obtain better suitable
distance metrics for specific spelling correction tasks.

It is easy to see from the definitions of the operations how useful they are for spelling
correction; these operation provide the model for detecting and correcting the basic ty-
pos or slips of the finger on a keyboard. Damerau (1964) is often cited as pointing out
that 95% of the errors are covered by distance 1, i.e. one application of this edit algo-
rithm would fix 95% of misspellings in a text. While this is indeed the claim made in
Damerau’s article, citing it in the context of a modern spelling-checker may neglect the
difference between input mechanisms (and data transmission, and storage) of comput-
ers of the time. It is likely that spelling errors from cursive hand writing, punch cards,
and keyboards are different, though this variation is dealt with in the article (Damerau,
1964). Further studies on different forms of computerised texts (Kukich, 1992b) have
shown that the range of single edit errors is around 70%–95% in various setups (e.g.
OCR, dictating and typing, normal running text).

Much of the early research on error detection concentrated on efficiently looking up
words from finite wordlists and building data structures to work as language models.
During this time, the first statistical approaches, as in Raviv (1967), drawing from basic
foundations of mathematical theory of information from as early as Shannon (1948),1
were devised. In Raviv’s research statistical theories are applied to characters in English
legal texts, recognising also names and other terms. The input mode of these early ap-
plications seem to be more towards OCR than keyboard input. Their approach took the

1Referred to in Liberman (2012)
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letter n-grams and assumed that words containing unlikely letter combinations were not
spelled correctly.

For the very first spell-checking software in common use – there are a few disputes
and claims to it – but it is commonly attributed to SPELL program (Gorin, 1971). Some
of the earlier work has been used mainly by one research group for their own purposes
only.2 The first predecessors of SPELL according to Les Earnest were systems for recog-
nising hand-written cursive text as auxiliary parts of larger software. Following this
SPELL was possibly among the first stand-alone software for spell-checking.

Much of the following research on error detection consisted of more elaborate data
structures for fast lookup and efficient encoding of large dictionaries. While interesting
as a computer science and data structures topic, it is not particularly relevant to this
thesis, so I will merely summarise that it consisted of hashing, suffix-trees and binary
search trees, partitioning of dictionary by frequency (Knuth, 1973) andmost importantly,
finite-state automata (Aho and Corasick, 1975). Although Aho and Corasick’s article is
about constructing more specific finite-state automata for efficient keyword matching it
constitutes an early implementation of finite-state spell-checking.

SPELL program’s direct descendant is the current international ispell (Gorin, 1971),
where the additional i originates from the name ITS SPELL. It is still commonly in
use in many Unix-based systems. According to its documentation, the feature of suffix
stripping based on classification was added by Bill Ackerman in 1978, e.g. it would only
attempt to strip the plural suffix -es for words that were identified as having this plural
suffix. The concept of affix flags is still used in all of ispell’s successors as well.

At the turn of the 1990s there was a lot of new research on improving error correction
capabilities, possibly partially due to rapid growth in the popularity of home computers.
Most popularly the use of statistics from large text corpora and large datasets of real
errors that could be processed to learn probabilities of word forms and error types was
applied and extensively tested (Kernighan et al., 1990; Church and Gale, 1991). These
simple and popular methods are still considered to be useful for modern spell-checkers,
which can be seen as common revisions of techniques, such as in Brill andMoore (2000).

One of the digressions was to improve error models for English competence er-
rors. The initial work for this is the often cited Soundex algorithm, originally meant for
cataloguing names in a manner that allowed similarly pronounced names to be easily
found (Russell and Odell, 1918). It can also be used to match common words, since it is
a similarity key that maps multiple words into one code and back, for example

::::::
squer and

square have the same code S140 and can be matched. What soundex similarity basically
does is save the first letter and assign the remaining non-adjacent non-vowels a number.3
There have been some schemes to elaborate and make this work for foreign names and

2http://www.stanford.edu/~learnest/legacies.pdf
3For details, see e.g. http://en.wikipedia.org/wiki/Soundex or the finite-state formulation in

the thesis article X

http://www.stanford.edu/~learnest/legacies.pdf
http://en.wikipedia.org/wiki/Soundex
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more words, most notably Metaphones by Philips (1990, 2000).4

As computational power increased it became increasingly practical to look again at
the problem of real-word spelling error detection. Mays et al. (1991) suggested that with
English context-based approaches it is possible to detect 76% of the spelling errors, and
are able to correct 73%. Context-aware models are a requirement for the discovery of
real-word spelling errors, but independently of that, they can also be used to improve
error correction.

Al-Mubaid and Truemper (2006) show that it is possible to uncover common real-
word errors directly from the text using correctly spelled reference texts to calculate
context factors for the words, and seeking words that deviate sufficiently enough from
the factors in the other texts.

In the world of context-aware models, simple word-form n-grams are not the only
form of context that has been used – especially in the context of languages other than
English, it has often been noted that using sequences of morphological analyses instead
of the surface word forms is a more important factor in detecting errors and improving
the results (Otero et al., 2007, for Spanish). I have performed an experiment with this
approach in (VIII) for Finnish.

The problems of implementing Hungarian with ispell, aspell and the like lead to
Hunspell, with multiple affix stripping and compounding added. Similarly for Turkish,
various computational methods have been used. Among those, Oflazer (1996) demon-
strates one of the first finite-state spell-checking with a full-fledged finite-state language
model. There is an earlier finite-state spelling correction system described by Aho and
Corasick (1975), where both the dictionary and the texts are limited to keyword search
from indexes. This method used a specialised search algorithm for error tolerance when
traversing the finite-state network. Savary (2002) extends these finite-state methods to
cover the error-model as well. Their work showed a practical implementation of finite-
state edit distance, and finally in (III), I have shown that an approach by an extension
to weighted finite-state automata for both language and error models for spell-checking
and correction is plausible for morphologically complex languages.

In Table 2.1 I have first summarised the practical end-user applications of spell-
checking. In the first column I give the related software and academic reference if avail-
able, in the second column is the year of the publication of the software or research
finding. In the third column is a short note about the error models the system uses, the
abbreviation ED is used for edit distance algorithm and FSA for finite-state automata’s
expressive power. In the fourth column is a characterisation of the dictionary or language
model format, e.g., the wordlist means finite list of words and affixes which generally
refer to algorithms that can remove add specific suffixes to some words of the wordlist
(or remove them, depending on how you view the implementation). In the first set of

4The third is a commercial product without publicly available documentation: http://amorphics.
com/buy_metaphone3.html

http://amorphics.com/buy_metaphone3.html
http://amorphics.com/buy_metaphone3.html
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entries I give the history from the original SPELL software up until its contemporary de-
scendant and de facto standard of FLOSS: Hunspell. The dictionaries have not changed
much in this branch, practically all use word-lists with some affix capabilities based on
classifying the words. In error correction, all use at least some form of edit distance
algorithm, with varying weights or orderings of the edit operations, including simple
soundslike weighting in GNU aspell5 and Metaphone variants for English in kspell and
its successors. More details on error models are provided in Chapter 5. In the second
part of Table, I summarise some of the main academic research on specific practical
and statistical advances as originally presented by Al-Mubaid and Truemper (2006) that
I have used during my research. For example, the prominent correct spell-checker
re-ranker by Church and Gale (1991), which basically re-orders the results of the above-
mentioned spell programs by probabilities, has influenced some of my spell-checker
designs so that the re-ranking approach has been designed into the original system. The
further statistical approaches that are relevant are the Bayesian approach (Golding, 1995)
andWinnow (Golding and Roth, 1999). The main differences between these approaches
lie in statistical formulations. In the final section of Table, I show the main history of
contemporary finite-state spell-checking, starting from Oflazer (1996). For this section
the noteworthy differences are whether the error correction uses basic edit distance mea-
sures in the finite-state graph, a more advanced search, or finite-state algebra with the
full expressive power of regular grammars. Other differences are in the implementation
and efficiency of the spelling correction or error-tolerant search.

Name Year Error Models Language Models
(Authors)

SPELL – Unix – FLOSS branch (*spell)
SPELL, 1971 ED1 Word-list,
(Gorin, 1971) (for partial English affixes

wordlist)
ITS SPELL, 1978 ED1 Affix rules
(Bill Ackerman) unrestricted
international ispell 1988 Non-English
(Geoff Kuenning) support
kspell, 1998 Metaphone 1 Affix rules
GNU aspell 2002 Rule-weighted ED Compounding
(Kevin Atkins) soundslike (dropped)
myspell 2000 weighted ED 2 affixes
Hunspell 2005 weighted ED 2 affixes

Confusables Compounds
Continued on next page

5http://aspell.net/man-html/The-Simple-Soundslike.html

http://aspell.net/man-html/The-Simple-Soundslike.html
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Table 2.1 – continued from previous page
Name Year Error Models Language Models

Academic projects etc.
correct 1991 Probabilistic Probalistic
(Church and Gale, 1991) ED wordlist
bayspell 1995 Bayesian Bayesian
(Golding, 1995)
WinSpell 1999 Winnow
(Golding and Roth, 1999)

Finite-State
(Oflazer, 1996) 1996 ED using FSA

error-tolerant
search

(Savary, 2002) 2002 ED using FSA
FSA algebra

(Schulz and Mihov, 2002) 2002 ED using FSA
pre-composed FSA

(Mohri, 2003) 2003 ED using WFSA
WFSA algebra

(Otero et al., 2007) 2007 FSA FSA
(Huldén, 2009) 2009 FSA using FSA

search algorithm
(Pirinen and Lindén, 2010b) 2010 WFSA WFSA

Table 2.1: History of spell-checker applications. Abbrevia-
tion ED stands for edit distance and (W)FSA for weighted
finite-state automata

2.2 Related Subfields and Research Results
There are a number of other research questions in the field of computational linguistics
that use the same methodology and face the same problems. A large set of research
problems within computational linguistics can be formulated in some frames that are
directly relevant to the issues of spell-checking and correction, as most of them require a
basic component from a languagemodel and very often another one from an error model.
The language model of spell-checking predicts how correct a word form is, and in a
linguistic analyser it predicts the analysis and its likelihood. The errormodel of a spelling
corrector predicts what is meant based on what is written assuming an error somewhere
in the process of typing. Some of the error sources, such as cognitive errors, overlap in
speech recognition and information extraction alike. Some of the error models for other
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applications like diacritic restoration for information retrieval and noise cancellation
for speech recognition may solve different problems but the approaches used are still
applicable. Realising all this, at one point of the research, made me persistently require
a modular design from our spelling correction systems – including a strict separation
of the spelling detection task and the correction task – to be able to mix and match the
approaches found in various sources to the spelling correction. The rest of this subsection
I use to briefly introduce the specific approaches and algorithms from outside the spelling
detection and correction domain that I have re-used or tried to re-use in my experiments
on spell-checking and correction.

The relevant research on the finite-state approaches to predictive text entry is referred
to e.g. in Silfverberg and Lindén (2010), and the results of these applications have been
applied without modifications to our language models where applicable.

In many practical systems, a spelling corrector or its weak equivalent is used for
pre-processing. This phase of processing is often called e.g. normalisation, diacritic
restoration, and so forth. Normalisation and diacritic restoration are both basically spell-
checking tasks with very limited alphabets and error models, e.g. in diacritic restorations
only allowed corrections are diacritical additions to a base character (e.g. changing a to
à, á, ã, ą, etc.), similarly normalisation restricts correction to e.g., case changes and
typographic variants. Many normalisation approaches are directly relevant to spelling
correction, and parts of the spell-checking system I have developed have been inspired
by the development of systems such as mobile text message normalisation to standard
written language (Kobus et al., 2008). Especially recent approaches in the context of
social networking message normalisation are nearly identical to the finite-state spell-
checking presented in this dissertation, e.g. Huldén (2013).

The field of historical linguistics also uses finite-state and edit-distance techniques,
e.g., for mapping related words and word forms (Porta et al., 2013). Furthermore, the
statistical approaches used in recent works in the field, such as Petterson et al. (2013),
could well be used in the context of spelling correction.

2.3 Theory of Finite-State Models

Finite-state models for spell-checking and especially correction are relatively new, be-
ginning from (Oflazer, 1996), and definitions and interpretations have not been stan-
dardised yet, so in this chapter, I will go through the various definitions and explain my
solution and how I ended up with it. To begin with, I will use a few paragraphs to re-
cap the formal definitions of finite-state systems and my selected notations. For further
information on finite-state theory, see e.g. Aho et al. (2007); Mohri (1997).

The FSAs are conventionally marked in computer science and mathematics as sys-
tems, such as n-tuple (Q,Σ, δ, Qi, Qf , ρ), where Q is the set of the states in the automa-
ton, Σ is the alphabet in transitions, δ : Q × Σ ×W → Q is a deterministic transition
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mapping from a state to a state with an alphabet and a weight, and Qi ⊂ Q,Qf ⊂ Q
the subsets of states for initial states and final states, ρ : Qf → W the final weight
mapping andW is the structure of weights. The Σ set in the automata of a spell-check-
ing system is almost always just some – usually language-specific for optimisation rea-
sons – subset of the Unicode set of symbols (Unicode Consortium, 2013) for writing
natural languages, with the addition of the following special symbols, which have spe-
cific meaning in automata theory: the empty symbol epsilon ε that matches zero-length
strings on application of the automata, and the wild-card symbol ? that matches any one
symbol of Σ during any application of the automaton. When talking of transducers, it
merely means that the alphabet is of the form Σ2. Practically this can be thought of so
that the finite-state acceptor accepts e.g., correct wordforms and the finite-state trans-
ducer (FST), e.g., rewrites misspelled word forms into one or more corrected forms. The
weighted FSAs discussed throughout the thesis are using the tropical semi-ring (Mohri,
1997) weight structure (R+ ∪∞,min,+); this is the so-called penalty weight structure,
which practically means that on application and weight combination the smallest one is
used, on combination of the weights they are added together. The set of final states is
extended with a final weight function ρ : W → Q that specifies an additional weight for
the paths in an automaton in each end-state. For the rest of the finite-state algebra I use
the standard notations which to my knowledge do not have any variation that requires
documenting in this introduction (e.g. ∪ for union, ∩ for intersection and so forth). I
will furthermore use notationM, often with a subscript: Mname for finite-state machine,
where the name is a descriptive name for an automaton or an abbreviation.

An FSA, with a Σ set drawn from the set of natural language alphabets, such as
letters A through Z, digits 0 through 9 and the punctuationmarks hyphen and apostrophe,
can accurately encode most words of the English language in the accepting paths of the
automaton – excepting such edge cases as naïve. This kind of acceptors which recognise
the words of a language are used both in the process of detecting spelling errors of non-
word type in a running text, and matching the misspelt word forms to the correct word
forms. The use of such automata as language models is documented very extensively
in natural language processing. In the context of morphologically complex languages
more relevant to the topics of this thesis see, e.g., Finite-State Morphology (Beesley and
Karttunen, 2003; Beesley, 2004).

I use FSAs also in error correction. In this case, FSTs encode the relations from
misspellings to corrections in their accepting paths. There are few influential works
in the field of finite-state methods for error modelling. The initial work was laid out
by Oflazer (1996), who uses an algorithmic approach on language model traversal as a
limited form of error modelling; this has been extended and improved by among others
Huldén (2009). An approach to weighted finite-state systems was described by Mohri
(2003), which includes a good mathematical basis for finite-state error-modelling using
weighted edit-distance automata and weighted automata algorithms.
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Savary (2002) describes the finite-state error model as an automaton. In that paper,
the research concentrates on the concept of expanding the language-model automata by
a Levenshtein rule automaton, creating a language model automaton that can recognise
word forms containing a given number of Levenshtein type errors, i.e. all word forms
at a given Levenshtein-Damerau distance. My definition diverges here by considering
the error model as a separate, arbitrary transducer; this allows operating on either the
language model or the misspelt string with the error producing or removing the func-
tionality of the model, and provides an opportunity to test which variation is the most
effective.

Now we can also make the generalisation of considering the strings of the language
that we are correcting as a single-path acceptor consisting of just one word, so we can
formally define a finite-state spelling correction system as the composition (Mword ◦
ME ◦ML)2, whereMword is the word to correct,ME the automaton encoding the error
model, and ML the automaton encoding the language model, and 2 is the projection
selecting the results from the second tape of the final composition, i.e., the one on the
language model side.

The weights in weighted finite-state automata are used to encode the preference in
spelling correction, and sometimes also acceptability in the spell-checking function. A
path that has a larger collected weight gets demoted in the suggestion list and those
with smaller weights are promoted. The weight can be amended by the error model,
in which the weight expresses the preference on errors corrected when mapping the
incorrect string to correct. One of my contributions throughout the thesis is a theory
and methodology for creating, acquiring and combining these weights in a way that is
optimal for speed, and that is usable formorphologically complex languages with limited
resources.

The baseline for acquisition of the weights for language and error models is simply
calculating and encoding probabilities –this is what most of the comparable products do
in spell-checking and correction, and what has been researched in statistical language
models. The key formula for conceiving any statistical process in the tropical semiring
giving the probabilistic distribution P as a part of a finite-state automaton is− logP , i.e.
the smaller the probability the bigger the weight. The probability here is not straight-
forward, but relatively simple. For most things we calculate

P (x) =
f(x)∑
z∈D f(z)

, (2.1)

where x is the event, f() is the frequency of the event, andD the collection of all events,
so the probability of x is counted as the proportion of the event x in all events z of
D. For example, for a simple language model, x could be a word form, and Dwordforms
a corpus of running text turned into word forms, then we would expect that P (′is′) >
P (′quantitatively′), for any reasonable corpus of the English language. Similarly for
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error modelling, xmight be a typo of ‘a’ for ‘s’ denoted a : s andDerrors an error corpus of
typos written with a qwerty keyboard layout, then we would expect P (a : s) > P (a : l).

An important factor thatmorphologically-complex languages bring to the concept of
statistical languagemodels is that the amount of different plausible word forms is greater,
the data is more sparse, and essentially language models turn from finite word-form lists
to infinite language models. There is a good mathematical-lexicographical description
of this problem in Kornai (2002). This means that for simple statistical training models,
the number of unseen words rises, and unseen words in naive models mean a probabil-
ity of 0, which would pose problems for simple language models, e.g. given the above
weight formula − log(0) = ∞ for any given non-zero-size corpus. A practical finite-
state implementation will regard infinite weight as a non-accepting path even if it were
otherwise a valid path in the automaton. The traditional approach to dealing with this is
well known; assuming a probability distribution we can estimate the likelihoods of the
tokens that were not seen, discount some of the probability mass of the seen tokens, or
otherwise increase the probability mass and distribute it among the parts of the language
model that would have been unseen. With language models generating infinitely many
word forms, the models made using arbitrary weights may not be strict probability distri-
butions at all. In practical applications this does not necessarily matter as the preference
relation still works. Some of this background on not following strict statistical distribu-
tions in NLP context has been given by Google in their statistical machine translation
work, e.g. by Brants et al. (2007).

The basic forms of estimating and distributing the probability mass to account for
unseen events has been extensively researched. The basic logic that I have used in many
of my research papers is the simplest known additive discounting: here the estimated
probability for an event x is seen as

P (x̂) =
f(x) + α∑

z∈D(f(z) + α)
(2.2)

that is, each frequency is incremented by α and this mass of increments is added to the
divisor to keep the distribution in probabilistic bounds – this has the effect that all unseen
tokens are considered to have been seen α times and all others α more times than they
have been seen in the training data. For values of α in my practical applications, I have
used the range 0.5–1, based on empirical testing and values found in the literature, such
as Manning and Schütze (1999). There are other, more elegant methods for discounting
as well (Chen and Goodman, 1999). However, the additive discounting being a few lines
of code is reasonably easy to implement and understand without errors.
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Language Models

In this chapter, I will go through the various kinds of language models1 that are used for
the task of spell checking and correction. Depending on the system, these two tasks can
either share a common languagemodel, or use separate and different languagemodels, or
even different approaches to apply the language models. This separation is an important
one and I will try to make it clear whenever I refer to language models in various systems
and aspects of finite-state spell-checking. The primary purpose of a language model in
both of these tasks is similar: to tell whether a word form is suitable, and, ideally, how
suitable it is.

The purpose of this chapter is to present the development through traditional simple
word-list spell-checking models to complex morphological analysers with compounding
and derivation, and their finite-state formulations. This follows from my initial goal
to not only present new language models and spell-checkers in my thesis, but to use
finite-state technology to repeat the existing results of non-finite-state spell-checkers as
a baseline. In the later chapters, I will show that the finite-state formulations are also
as good as, or better than, their non-finite-state counterparts, and the statistical methods
we devise to support morphologically complex languages can be applied to these finite-
state automata.

The rest of the chapter is organised as follows: first in Section 3.1, I introduce
some generic formulas for finite-state morphologies we have recognised when devel-
oping compilers for quite a few dictionary formats. Based on this, I show in Section 3.2
the finite-state compilation of Hunspell dictionaries, the de facto standard of open-source
spell-checking. Then I show the conversion of the rule-based machine translation dictio-
naries as spell-checkers in Section 3.3. In section 3.4, I describe other language models

1As a terminological note, in natural language engineering the term language model is used narrowly,
referring only to systems that are purely statistical n-grammodels. In computational linguistics a language
model is any method capable of telling whether a given word form is in a language, and can potentially
provide further data about it.
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that can be used in finite-state spell-checking. Finally, in Section 3.5, I introduce a brief
general treatment on the management of linguistic data so that it applies to a multitude
of projects in an article where I try to tie together the different approaches to compiling
and using finite-state dictionaries and computational linguistic models at large.

3.1 Sketch ofGeneric Finite-State Formula forMorphol-
ogy

Before delving further into the intricacies of compiling existing and new formalisms
into finite-state automata, I would like to draw the readers’ attention to one underly-
ing formula of computational morphology that is central to all these approaches. This
formula is the conceptualisation that all systems are regular combinations of sets of mor-
phemes, combined with rules of morphotactics2 and possibly morphophonology. The
basic starting point is an arbitrary combination of morphs as an automaton Mmorphs =
(
∪

m∈Dmorphs
(m))⋆, where Dmorphs is a collection of morphs of the language where, that is,

a disjunction of strings that are the morphs of a language. This kind of a bag of morphs
approach creates an automaton consisting of arbitrary combinations of the morphs of a
language, e.g. for English it would have combinations like ‘cat’, ‘cats’, ‘dog’, ‘dogs’,
…but also ‘catdog’, ‘sdog’, or ‘sssdogsdogsscatcat’. To restrict these, we usually define
classifications of these morphs, say, ‘cat’ and ‘dog’ are [nouns], and ‘s’ is a [plural],
English morphotax would define that a plural appears after nouns. To realise morphotac-
tic rules over the classifications of morphs, we can usually create a set of helper symbols,
e.g. [nouns], [plural] ∈ Γ,Γ ∩ Σ = ∅ and then have morphotax as an automaton
construed over (Γ ∪ Σ)⋆. In this example we might define something like [nouns] Σ⋆

[plural] Σ⋆, if those special symbols are prefixed to the relevant morphs.

3.2 Compiling Hunspell Language Models
MainArticle: Building and Using Existing Hunspell Dictionaries and TEXHyphenators
as Finite-State Automata, by Tommi A Pirinen and Krister Lindén. In this article we
present finite-state formulations of existing spell-checking language and error models.

3.2.1 Motivation
The motivation for this piece of engineering is far-reaching both on the technical and
the theoretical level. We set out to prove that the existing methods for spell-checking are

2Morphotactics is used to refer to the rules governing legal combinations of morphs within word forms
of a language. For example, one such rule would be defining that the English plural suffix form ‘-s’ follows
a certain subset of noun stems.
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truly a subset of finite-state methods. In practice, we also tried to show that typically,
if not always, the finite-state version should be faster than the non-finite-state version,
e.g. for affix stripping, but also for error modelling. The practical motivation for the
work is that the chances for any new spell-checking system surviving are rather limited,
unless it is capable of benefiting from the existing Hunspell dictionaries without major
difficulties.

3.2.2 Related Works
In related works, there has, to my knowledge, only been, one attempt to use Hunspell
data as automata, namely a master’s thesis project partially guided by Hunspell main-
tainers (Greenfield and Judd, 2010). The original Hunspell has been dealt with in an
academic context by Trón et al. (2005).

3.2.3 Results
There is a number of meaningful results in our article. It is a central part of the thesis in
that it provides the empirical proof that finite-state spell-checking is a proper superset of
Hunspell’s algorithmic approach in terms of expressive power, and the empirical results
also suggest an improvement in speed across the board. The results on speed are detailed
in my later articles and also in Chapter 6 of this thesis, so here I will first concentrate
on enumerating the parts of the first result – the expressiveness and faithfulness of the
finite-state formulation of the Hunspell systems.

Hunspell’s language model writing formalism clearly shows that it is based on the
main branch of word-list-based ispell spell-checkers. Words are assigned flags that com-
bine them with affixes, where the concept of affixes is extended with context restrictions
and deletions, although with the same affix logic as its predecessors. The additional fea-
tures brought to Hunspell to set it apart from previous versions were the possibility of
having more than one affix per root – two for most versions, and then a number of vari-
ous extra features based on the same flags as used for affixation, such as compounding,
offensive suggestion pruning,3 and limited circumfixation. A majority of these features
come from the basic formula we use for a bag of morphs and filters style finite-state mor-
phology as described by Lindén et al. (2009). The practical side of the main result shows
that all of the language models are around the same size as finite-state dictionaries and
morphologies made with other methods, as shown in Table 3.1 reproduced from (IV).

Language Dictionary Roots Affixes
Portugese (Brazil) 14 MiB 307,199 25,434

Continued on next page
3E.g. English Hunspell dictionary will recognise, but not suggest such word forms as asshole, bugger,

shitty, etc.
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Table 3.1 – continued from previous page
Language Dictionary Roots Affixes
Polish 14 MiB 277,964 6,909
Czech 12 MiB 302,542 2,492

Hungarian 9.7 MiB 86,230 22,991
Northern Sámi 8.1 MiB 527,474 370,982

Slovak 7.1 MiB 175,465 2,223
Dutch 6.7 MiB 158,874 90
Gascon 5.1 MiB 2,098,768 110
Afrikaans 5.0 MiB 125,473 48
Icelandic 5.0 MiB 222087 0
Greek 4.3 MiB 574,961 126
Italian 3.8 MiB 95,194 2,687
Gujarati 3.7 MiB 168,956 0
Lithuanian 3.6 MiB 95,944 4,024

English (Great Britain) 3.5 MiB 46,304 1,011
German 3.3 MiB 70,862 348
Croatian 3.3 MiB 215,917 64
Spanish 3.2 MiB 76,441 6,773
Catalan 3.2 MiB 94,868 996
Slovenian 2.9 MiB 246,857 484
Faroese 2.8 MiB 108,632 0
French 2.8 MiB 91,582 507
Swedish 2.5 MiB 64,475 330

English (U.S.) 2.5 MiB 62,135 41
Estonian 2.4 MiB 282,174 9,242

Portuguese (Portugal) 2 MiB 40.811 913
Irish 1.8 MiB 91,106 240

Friulian 1.7 MiB 36,321 664
Nepalese 1.7 MiB 39,925 502
Thai 1.7 MiB 38,870 0

Esperanto 1.5 MiB 19,343 2,338
Hebrew 1.4 MiB 329237 0
Bengali 1.3 MiB 110,751 0
Frisian 1.2 MiB 24,973 73

Interlingua 1.1 MiB 26850 54
Persian 791 KiB 332,555 0

Indonesian 765 KiB 23,419 17
Azerbaijani 489 KiB 19,132 0

Hindi 484 KiB 15,991 0
Continued on next page
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Table 3.1 – continued from previous page
Language Dictionary Roots Affixes
Amharic 333 KiB 13,741 4
Chichewa 209 KiB 5,779 0
Kashubian 191 KiB 5,111 0

Table 3.1: Compiled Hunspell automata sizes in HFST. Re-
produced from (IV)

When talking about Hunspell it is impossible to avoid the motivation behind the de-
velopment of a new system for spell-checking – as my thesis is also about a new system
for spell-checking. Hunspell was made on the basis that the existing spell-checking dic-
tionary formalisms are insufficient to write a Hungarian dictionary efficiently. Similar
systems were written for many of the more morphologically complex languages.

As the implementation framework for context restrictions and deletions for the Hun-
spell affix morphotactics, we used twol (two-level) rules (Karttunen et al., 1992). Twol
rules are a generic way of defining valid contexts of character pairs in a transducer.
Hunspell on the other hand, defines deletions, and combinations of morphs. In practice
this means that when Hunspell formulates that a suffix follows a word root in a certain
class if it ends in a given regular expression, our twol representation was made to allow
the morph boundary symbol in that regular expression context while also deleting the
context as defined by another expression. With the context restrictions and its combi-
natorics twol rules are well within reason, as restriction is the central rule type in the
design of twol, whereas the deletions are not very easy to implement in that formalism.
As an afterthought, a better and more efficient representation might have been to com-
bine morphotactic filters with replace style rules (Karttunen, 1995), although neither the
compilation time nor the clarity of the algorithms are a key issue for one-shot format
conversions like this.

One of the main stumbling blocks for some of the finite-state systems with full lan-
guage models is that – while the running of finite-state automata is known to be fast –
the building of finite-state automata can be lengthy. This did not appear to be an issue
for the practical systems we tried.

3.3 Using Rule-BasedMachine Translation Dictionaries

Main Article: Compiling Apertium morphological dictionaries with HFST and us-
ing them in HFST applications by Tommi A Pirinen and Francis M. Tyers. In this
engineering-oriented article, we experiment with the existing language models used for
machine translation as part of the finite-state spell-checking system.
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3.3.1 Motivation
The main motivation for doing this experiment was to see how well we can reuse the
vast numbers of existing dictionaries from other projects as finite-state automata in com-
pletely unrelated language technology systems. This is especially interesting from my
computer science background, since the reusability of code and data is something that I
feel is lacking in computational linguistics even now in the 2010s.

3.3.2 Related Works
As this experiment was built on an existing, partially finite-state-based system, the re-
lated works already consist of a specific algorithm for building the automata from XML
dictionaries (Ortíz-Rojas et al., 2005) for fast and accurate tokenising and analysing. To
that end, our experiment does not provide any significant improvements, the final au-
tomata are nearly the same and the tokenisation algorithm used to evaluate the result
closely imitates the one described in the article.

The compilation formula presented in the article was merely a simplification of the
ones used for Hunspell and lexc, making it relatively straightforward and short as a tech-
nical contribution. This straightforward approach is notable however, as the computa-
tional side is based on a solid standardised XML format for dictionary representation
and interchange, and this makes it optimal for future experiments.

3.3.3 Results
The main results shown in the paper are the improvement on text processing time as
shown in Table 3.2. This is in line with previous results (Silfverberg and Lindén, 2009).
More importantly to the topic of this thesis, results showing the reasonably fast process-
ing time of the finite-state spelling checkers built in this manner; this is not totally unex-
pected as the formalism does not support compounding or recurring derivation, and thus
the final automata are bound to be acyclic, except potential regular expression recognis-
ers in language models, which we chose to exclude from the spell-checking models.

The main result that we tried to highlight in the paper was that we could already
provide a rudimentary spell-checker based on lexical data built solely for the purpose
of limited range machine translation, and we could do that for a range of languages,
including some that at the time of writing lacked spell-checkers altogether. A list of the
languages tested here is provided in Table 3.2, reproduced from (VII). The task of writing
the compiler for this existing format based on other morphology formalisms, that we had
made, and turning the compiled language model into a baseline spell-checker, was not
more than a few days’ work. This point concerning the generic usefulness of finite-state
systems is often easily overlooked with assumption that all new systems require months
of development time.
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Language HFST Rate Apertium lookup HFST lookup
Basque 7,900 35.7 s 160.0 s
Norwegian 9,200 6.6 s 200.2 s
Manx 4,700 0.8 s 11.2 s

Table 3.2: Efficiency of spelling correction in an artificial test setup, average over three
runs. Rate given in words per second. Speed of HFST-based system against original
in compilation and speed of HFST-based system against original in corpus analysis (as
seconds in user time). Reformatted from (VII).

A side result, which I partially failed to communicate in this paper, is the develop-
ment towards a generalised compilation formula for finite-state dictionaries. The compi-
lation formula in this article is a variation of the earlier formulas I have presented (Lindén
et al., 2009) and (IV) – I propose that this has two implications: for the engineering side,
we can use the same algorithms to compile all the different dictionaries, which means
that the automatic improvements and optimisations that can be applied to the structure of
the automata will improve all applications. More importantly, it means that the different
application formalisms for writing dictionaries use the same linguistic models and the
same kind of abstraction i, or lack of abstraction, is present. This suggests that there
is a potential for generalisations such that different applications could converge using a
single, linguistically motivated dictionary format.

3.4 Other Possibilities for Generic Morphological For-
mula

There is an abundance of formalisms for writing dictionaries, analysers and language
technology tools available, and I have only covered the most prominent for use in finite-
state spell-checking. For example, I have given a compilation formula for the Hunspell
formalism. The aspell and ispell formalisms are simplifications of this, and the formula
can easily be simplified for them by removing the multiple suffix consideration and
compounding loop in the bag-of-morphs construction: ML = MprefixMrootsMsuffix,
whereMprefix,Mroots, andMsuffix are subsets ofMmorphs, that is, disjunctions of strings
that make up the morphs of a language.

It should also be noted that the common baseline approaches using word-form lists
or such spell-checking corpora, such as Norvig (2010), are even easier to formulate as
the whole language model is just a disjunction of the surface word forms.
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3.5 Maintenance of the Language Models

Main Article: Modularisation of Finnish finite-state language description—towards
wide collaboration in open-source development of morphological analyser by Tommi
A Pirinen. This short paper is mainly an opinion piece article, but it is included here as it
ties together the aspect of maintainable language models for spell-checking applications.

3.5.1 Motivation

One of the mainmotivations for writing this article was the realisation after some years
of work on the finite-state language model compilation and harvesting different com-
putational dictionaries and descriptions of morphologies that there is a common pattern
in all the data – as one generalised finite-state algebraic compilation algorithm works
for all of them. An opposite but equally strong motivation was that for lesser-resourced
languages a single computational language model is a very precious resource that needs
to be reused for all possible applications, as there are no human resources to rewrite
these descriptions separately for each application. This should motivate computational
linguists in general to work towards reusable, well-written resources, with proper ab-
straction levels and basic knowledge representation.

Another motivation is that the language descriptions, whether for finite-state mor-
phological analysis or Hunspell spell-checking are typically written by one linguist, and
ignored when no one can read them any longer. This is a not a useful approach in the
crowd-sourcing world of today, and it could surely be alleviated by simple improve-
ments in formalisms and practices. In this branch of my research I argue for building
more crowd-sourceable systems, in the form of linguistically motivated data that is un-
derstandable for anyone fluent in language. While producing easy access to achievable
goals in dictionary building, the research of crowd-sourcing lexicography is still a new
topic in science and very much a work in progress.

3.5.2 Related Works

Looking into the related works, I soon realised that I was not totally, though admit-
tedly mostly, alone in my feeling that finite-state and other computational language de-
scriptions need a some thought to be maintainable and re-usable. The three notable
computational linguists writing on the same topic that I immediately came across when
researching the topic were Maxwell and David (2008), and Wintner (2008). Similar
concerns have been addressed in non-finite-state computational linguistics in the Gram-
matical Framework project, of which, e.g., the concept of smart paradigms (Ranta, 2008)
was in part an inspiration for me to start thinking of better systems for managing finite-
state language descriptions. The common features of all our concerns include the lack
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of abstraction, and therefore very application-specific hacks – such as encoding optimi-
sations of graph structure into the dictionary data as by Karttunen (2006) – in language
descriptions that could ideally be very generic. This also leads me to suggest that some
related works that are very under-used in the field of computational linguistics are the
basic schoolbook materials on computer science and software engineering- Knuth’s dis-
cussion of literate programming (Knuth, 1984) and the creation of and documented pro-
grams is useful for that is what computational language models really are. They are not
merely data. Indeed, the whole object-oriented programming movement, involving the
encapsulation, abstraction and management of data for re-usability and other principled
purposes, is valuable.

3.5.3 Results
The main results of this paper are seen in the continuity of the Finnish language model
and its relatively good amount of repurposing over the years. Beyond that, the com-
mon movement towards maintainable and reusable language models in computational
linguistics, and morphology specifically, is still very much work in progress.

3.6 Conclusions
In this chapter I have shown that the vast majority of the different contemporary ap-
proaches to spell-checking can be formulated as finite-state automata, and they can even
be compiled into one using one simple generic formula. These results, with the addi-
tion of all those existing finite-state language models that no one has been able to turn
into e.g. Hunspell dictionaries should provide a basis for evidence that finite-state spell-
checking is a plausible alternative for traditional spell-checking approaches at least as
far as the modelling of correctly spelled language is concerned. Finally, I’ve described
a way forward with finite-state morphologies as a maintainable form of electronic dic-
tionaries for use with a number of applications including spell-checking.
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Chapter 4

Statistical Language Models

One of the goals of my thesis was to bring the statistical language models closer to us-
ability for morphologically complex languages with fewer resources. For this purpose
I tried out the most typical traditional statistical approaches turning them into a finite-
state form using well-studied algorithms of weighted finite-state automata. With the
more morphologically complex languages, the improvement gained by bringing statisti-
cal data to the language models in the system is less encouraging than it is with English.
I then experimented with various ways of improving the results by more efficient use of
linguistic data and simply fine-tuning the parameters.

The problem that arises from the combination ofmorphologically complex languages
and the lesser-resourced languages is challenging, since the amount and quality of the
training data is smaller and the requirements for it are greater. I go through two separate
approaches to tackle this. The first approach is to gather more linguistically motivated
pieces of information from the data as the primary training feature rather than the plain
old surface word forms. This is not free of problems, as many good pieces of information
can only be extracted from analysed, disambiguated language resources. This requires
manual labour, whereas surface word forms come without extra effort. So instead of
requiring manually annotated data I have studied how to salvage what can be easily
used from running texts without the need of analysis – for Finnish this meant word
forms and roots for compound parts. The other approach I took was to try and to see if
even a l imited resource of lesser quality – that happens to be available under a free and
open licence – can be used combined with well-formed, rule-based material to greatly
improve the results in error correction.

In this chapter I will describe the statistical methods I needed to introduce to get good
statistical language models for morphologically complex languages such as Finnish,
though most approaches could be applied to other languages with a few simple mod-
ifications. In Section 4.1, I will introduce the general format of all statistical finite-
state models. In Section 4.2, I discuss the basic findings of the compound boundary
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identification problem, and in Section 4.3, I extend this approach towards generic statis-
tical training of language models with compounding features. In Section 4.4, I use the
same statistical models with the Hunspell dictionaries turned into finite-state automata.
Finally in Section 4.5, I study the common problem with the combination of fewer re-
sources and a more complex morphology which actually requires more resources, and
propose some possible solutions.

4.1 Theory of Statistical Finite-State Models

A basic statistical language model is a simple structure that can be trained using a cor-
pus of texts that contains word forms. There is ample existing research for statisti-
cal and trained language models for various purposes, and I strongly recommend ba-
sic works like Manning and Schütze (1999) as a good reference for the methods and
mathematical background in this chapter. For spelling correction, a simple logic of sug-
gesting a word form that is more common before one that is less, is usually the best
approach in terms of precision, and in the majority of cases this leads to a correct sug-
gestion. This is formalised in weighted finite-state form by a simple probability formula:
w(x) = − logP (x), where w is a weight in the tropical semi-ring structure and P (x)
is the probability of word form x. Morphologically complex languages’ models are
thought to be more difficult to learn because the number of the different word forms is
much larger than for morphologically simple languages, which leads to decreased dis-
criminative capabilities for the probability calculations, as the number of word forms
with exactly the same number of appearances increases. In my research, I have stud-
ied some approaches to deal with this situation. What makes this situation even more
difficult is the fact that morphologically complex languages often have fewer resources.
Many of the contributions I have provided here concentrate on using the scarce resources
in a way that will give nearly the same advantage from the statistical training as one
would expect for morphologically poor languages with more resources.

The more complex statistical language models, such as those that use morphological,
syntactic or other analyses, require a large amount of manually verified data that is not
in general available for the majority of the world’s languages. In my research, I present
somemethods to make use of the data that is available, even if it is unverified, to improve
the language models when possible. In general, I try to show that the significance of
analysed data is not essential to typical spell-checking systems, but more significant for
the fine-tuning of the final product and the building of the grammar-checking systems
from spell-checkers.

Another significant piece of information in statistical models is context. The basic
statistical probabilities I described above work on simple frequencies of word forms in
isolation. This kind of model is called e.g. a unigram or context-agnostic language
model. The common language models for applications like part-of-speech guessing, au-
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tomatic translation and even spell-checking for real word errors typically use the prob-
abilities of e.g. word forms in context, taking the likelihood of the word following its
preceding word forms as the probability value. These are called n-gram language mod-
els. The requirement for large amounts of training data is even steeper in models like
these than it is with context-ignorant models, so I will only briefly study the use of such
models in conjunction with finite-state spelling correction. One has to be wary though,
when reading the terms in this chapter: I will commonly apply methods of n-gram lan-
guage models to make unigram language models of complex languages work better,
practically treating morphs as components of a unigram model the way one would treat
word forms for n-gram word models of English. I will commonly refer to the resulting
models as unigram while the underlying models are morph n-gram models.

The main theme to follow for the rest of the chapter is the concept of workable
statistical models for morphologically complex languages with only small amounts of
the training data available. The improvements are provided as ways to cleverly reuse the
existing scarce data as much as possible while otherwise sticking to the well-established
algorithms of the field otherwise.

4.2 Language Models for Languages with Compound-
ing

Main article: Weighted Finite-State Morphological Analysis of Finnish Inflection and
Compounding (I) by Krister Lindén and Tommi Pirinen. This article introduced the
statistical models of a morphologically complex language with an infinite lexicon.

4.2.1 Motivation
The originalmotivation for this research was to implement the compound segmentation
for Finnish given the ambiguous compounding of the previous implementation (Pirinen,
2008). In the article, we established that Finnish as a morphologically complex language
requires special statistical handling for its language models to be considered similar to
simpler statistical models for morphologically simpler languages.

4.2.2 Related Works
In related works, the first approaches to the compound segmentation problem that have
been used are non-lexical, grapheme n-gram approaches (Kokkinakis, 2008, referred
to in) to Swedish. Later solutions include systematically selecting the word forms with
fewest compound boundaries (Karlsson, 1992), and using statistics about words for Ger-
man (Schiller, 2006). In the article we showed a combination with both approaches,
where the statistics are learned from the surface word forms in running text, instead
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of a preanalysed and disambiguated corpus and a manual selection routine. Showing
that this method worked added two important contributions to the language models of
morphologically complex languages: firstly, information can be derived from running
unanalysed texts, which is crucial, because the lack of good materials for most of the
lesser-resourced languages, and secondly, the application of basic statistical formulas to
morphologically complex languages, was an important generalisation.

4.2.3 Results
The results, as stated in the motivation, are that the experiment presented in the article
was built on disambiguation of the compound boundaries, rather than building language
models for general applications. The weighting mechanism however was applied to the
language model of Finnish for all the future research in a wider set of topics.

In the article, I study the precision and recall of the compound segmentation of
Finnish compounds using the statistical language modelling scheme. The results shown
in the article are rather promising; nearly all compound segmentations are correctly
found even with the baseline approaches of giving rule-based weights to morphological
complexity. There is a slight improvement when using the statistically formed system
that gives a higher granularity in a few cases. There is one caveat in the material used
in the paper, since Finnish lacks a gold standard material for any analysed text corpora,
we used a commercial corpus made by another combination of automatic analysers.1
This means that the precision and recall values we obtained were gained by measuring
how closely we imitated the referent black box system, rather than real world compound
segmentations.

4.3 The Statistical Training of Compounding Language
Models

Main Article: Weighting Finite-State Morphological Analyzers using HFST tools by
Krister Lindén and Tommi Pirinen. In this article we set out to provide a generic formu-
lation of statistical training of finite-state language models regardless of complexity.

4.3.1 Motivation
The motivation of this piece of research was to streamline and generalise the process
of creating the statistical finite-state language models, as the experiment in the previous
article (I) was constructed in a very ad hocmanner. The intention of the new method for
training language models is to get all the existing language models trainable regardless

1http://www.csc.fi/english/research/software/ftc

http://www.csc.fi/english/research/software/ftc
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of how they are constructed; this makes the process of training a language model very
similar to what it has been in all non-finite-state software to date.

4.3.2 Related Works
Related works constitute a whole field of literature of statistical language models. The
concept of having a good languagemodel and using data from corpora to train it provides
the basis of any form of statistical natural language engineering. For common estab-
lished software in the field, see e.g. SRILM (Stolcke et al., 2002), and IRSTLM (Fed-
erico et al., 2008) and so forth. The existing work on training infinite dictionaries is
more rare, as it is not needed for English. For German, this is dealt with by Schiller
(2006), who also uses finite-state technology in its implementation.

4.3.3 Results
As an initial result in the article, I replicated the earlier compound segmentation task
from (I) to show that the generalised formula works. Furthermore, I experimented with
the traditional POS tagging task to see how compound ambiguity actually affects the
quality of POS tagging. The results show an improvement which proves that statistical
word-based compound modelling is a useful part of a statistically trained morphological
analyser. This has the practical implication that it is indeed better to use a compound-
based model as a baseline statistical trained analyser of a language, rather than a simple
word-form-based statistical model.

In general, the unigram language model with the addition of word-form-based train-
ing for compounds shows good promise for trainingmorphologically complex languages
from the morphologically relevant parts instead of from plain word forms. Based on
these results I moved towards an understanding that the statistical method of weighting
morphologically complex language models based on the word constituents of compound
forms is a way forward for statistically trainingmorphologically complex languagemod-
els.

4.3.4 Future Research
As conceivable future research, there is a generalisation to this method I have not yet
experimented with. The constituents that I used for Finnish were word forms, and this
is based on the fact that Finnish compounds are of a relatively simple form. The initial
parts are the same as surface forms of regular singular nominatives or genitives of any
plurality and in some cases any form. This is similar to some other languages, such as
German and Swedish. There are some compound word forms with a compositivemarker
that is not available in isolated surface forms, and there are a few of those in Finnish as
well, e.g. words ending in a ‘-nen’ final derivation will compound with the ‘-s’ form
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which is not seen outside compounds. In addition, some archaic compositives exist for
a few words, and some typically non-compounding cases are attested as well. This is,
however, not a productive phenomenon and therefore it is handled in the lexicon by
making those rare forms as new entries in the dictionary. In languages like Greenlandic,
compounding does not heavily contribute to the complexity, though recurring inflection
and derivation does. The generalisation that might be needed is to train the language
model based on morphs instead of the uncompounded word forms. I believe this could
make statistics on languages of varying morphological complexity more uniform, since
the variation in the number of morphs between languages is far more limited than the
number of word forms. There is a previous study on such language models based not on
morphs, but on letter n-graphs, or statistically likely affixes, by Creutz et al. (2005).

4.4 Weighting Hunspell as Finite-State Automata
Main Article: Creating and Weighting Hunspell Dictionaries as Finite-State Automata
by Tommi A. Pirinen and Krister Lindén. In this article we present weighted versions
of finite-state Hunspell automata. This is also the main article introducing for the first
time the weighted finite-state spell-checking on a larger scale.

4.4.1 Motivation
The mainmotivation for this experiment was to work on extending the previously veri-
fied results for weighting finite-state language models to newly created formulations of
Hunspell language models as finite-state automata. The functionality of this approach
could be counted as further motivation for moving from a Hunspell’s non-finite-state
approach to weighted finite-state automata with the added expressive power and effi-
ciency.

4.4.2 Related Works
In related works describing probabilistic or otherwise preferential language models for
spell-checking, the main source for the current version of context-insensitive spelling
correction using statistical models comes from Church and Gale (1991).

4.4.3 Results
The main results in the article were measured from a large range of Hunspell languages
for precision, showing improvement in quality across the board with a simple unigram
training method and the Hunspell automata. A methodological detail about the evalua-
tion should be noted; namely, that the errors were constructed using automatic methods
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in the vein of (Bigert et al., 2003) and (Bigert, 2005). In this setup, a statistical approach
to language models of spell-checking improves the overall quality.

The implication of these results for the larger picture of this research is to show that
the finite-state formulation of Hunspell language models is a reliable way forward for
Hunspell spell-checkers, providing the additional benefit of statistical language mod-
elling to Hunspell’s well-engineered rule-based models. This is important for practical
development of the next generation of spell-checking systems, since the creation of dic-
tionaries and language models requires some expert knowledge, which is not widely
available for most of the lesser-resourced languages.

4.5 Lesser-Resourced Languages in Statistical Spelling
Correction

Main Article: Finite-State Spell-Checking with Weighted Language and Error Models
by Tommi A. Pirinen and Krister Lindén. In this article we first researched the prob-
lem from the point of view of less-resourced languages. Even though Finnish does not
have significantly more freely usable resources this is the first explicit mention of the
problem in my research. Furthermore, I used North Saami for the first time to show the
limitedness of freely-available open-source language resources for spell-checking for a
real lesser-resourced non-national language.

4.5.1 Motivation
Themotivation for this article was to write a publication that explicitly explores the dif-
ficulties that morphologically complex and lesser-resourced languages face when trying
to pursue statistical language models and corpus-based training. The article fits well into
contemporary research on natural language engineering, such research often considers
corpus-training as a kind of solution for all problems and ignores both the scarcity of re-
sources and the much higher requirement of unannotated resources for morphologically
complex languages.

4.5.2 Related Works
In related works, the concept of lesser-resourced languages in computational linguistics
has come into focus in recent years. In particular, I followedAnssi Yli-Jyrä’s recent work
on African languages (Yli-Jyrä et al., 2005) and the work presented in the previous years
at the Speech and Language Technology for Minority Languages workshop, where I
delivered this paper. The concept of using Wikipedia as a basis for a statistical language
model was likewise a new common theme in the LREC conferences.
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4.5.3 Results
The most central results of this work show that the Wikipedias for small language com-
munities will give some gains in spelling correction, when properly coupled with a rule-
based language model. This is despite the fact that Wikipedias of lesser-resourced lan-
guages are comparably small and of not very high quality, especially when related to
the quality of correct spelling. I have hypothesised that the underlying reason for this is
that in events where simple spell-checking like edit distance or confusion sets produce
ambiguous results, in the majority of the cases it is beneficial to simply opt for the most
common word form from these results.

As an additional result in this article, I show how to use language models to auto-
matically generate the baseline error models. This finding is expanded in Section 6.

In general, the concept of freely available and open-source, and crowd-sourced,
data should be a common focus in the research of computational linguistics in lesser-
resourced languages. This is one of the main sources of large amounts of free data that
most communities are willing to produce, and it does not require advanced algorithms
or an expert proofreader to make the data usable for many of the applications of compu-
tational linguistics.

4.6 Conclusions
In this chapter, I have discussed different approaches to creating statistical language
models for finite-state spell-checking. I have shown in this chapter that it is possi-
ble to take arbitrary language models for morphologically complex languages and train
them with the same approaches regardless of the method and theory according to which
the original model was built. I have extended the basic word-form unigram training
with methods from n-gram training to be able to cope with the infinite compounding of
some morphologically-complex languages and have thus laid out a path forward for all
morphologically-complex languages to be trained with limited corpora.



Chapter 5

Error Models

The error modelling for spelling correction is an important part of a spell-checking sys-
tem and deserves to be treated as a separate topic. The weighted finite-state formulation
of error models in a finite-state spell-checking system in particular is a relatively novel
idea. There are some mentions of finite-state error modelling in the literature (Agirre
et al., 1992; Van Noord and Gerdemann, 2001; Savary, 2002; Mohri, 2003). Error mod-
elling, however, has been a central topic for non-finite-state solutions to spell-checking,
cf. Kukich (1992a); Mitton (2009); Deorowicz and Ciura (2005), and I believe that a
pure and well-formed finite-state solution is called for.

One of the typical arguments for not using finite-state error models is that specific
non-finite-state algorithms are faster and more efficient than building and especially ap-
plying finite-state models. In the articles, where I construct finite-state models for spell-
checking, I have run some evaluations on the resulting system to prove that the finite-
state system is at usable speed and memory consumption levels. A thorough evaluation
of this is given in Chapter 6.

The theoretical and practical motivation for suggesting finite-state models for error
correction is that the expressive power of a weighted finite-state transducer (WFST) is
an ideal format for specifying the combinations of the spelling errors that can be made
and corrected, and it is possible to build more complex statistical models consisting of
different types of errors by combining them from building blocks. The fact that tradi-
tional non-finite-state spelling correctors use a number of different algorithms starting
from all the variants and modifications of the edit distance to arbitrary context-based
string rewriting to phonemic folding schemes provides a good motivation to have such
arbitrarily combinable systems to create these error models outside the application de-
velopment environment, i.e. within end users’ systems.

The rest of this chapter is laid out as follows: In Section 5.1, I describe how the finite-
state application of errormodelling is implemented in our spelling correction system, and
in Section 5.2, I show how our variant of finite-state edit distance style error models are
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constructed. In Section 5.3, I go through the existing error models used in the popular
spelling software Hunspell, and show their finite-state formulations. In Section 5.4,
I show how to build and apply the phonemic key type of error models in finite-state
form. In Section 5.5, I discuss context-based language models in finite-state spelling
correction for morphologically complex languages with limited resources that is, mostly
the limitations and necessary modifications. Finally in Section 5.6, I discuss some other
error correcting models and their finite-state formulations.

5.1 The Application of Finite-State Error Models

There are many approaches to spelling correction with finite-state automata. It is pos-
sible to use various generic graph algorithms to work on error-tolerant traversal of the
finite-state graph, as is done by Huldén (2009). It is also possible to create a finite-state
network that already includes potential error mapping, as is shown by Schulz andMihov
(2002). The approach that I use is to apply basic finite-state algebra with a transducer
working as the error model. This is a slight variation of a model originally presented
by Mohri (2003). We remove the errors from misspelled strings by two compositions,
performed serially in a single operation: Msuggestions = (Mwordform ◦Merror ◦Mlanguage)2,
whereMsuggestions is automaton encoding suggestions, (Mwordform is automaton contain-
ing misspelt word form,ME is error model, andML) is language model. This specific
form of finite-state error correction was introduced in (III), but the underlying technol-
ogy and optimisations were more widely documented by Lindén et al. (2011).

The implications of using weighted finite-state algebra are two-fold. On the one
hand, we have the full expressive power of the weighted finite-state systems. On the
other hand, the specialised algorithms are known to be faster, e.g. the finite-state traver-
sal shown by Huldén (2009) is both fast and has the option of having regular languages
as contexts, but no true weights. So there is a trade-off to consider when choosing be-
tween these methods, but considering the popularity of statistical approaches in the field
of natural language engineering the time trade-off may be palatable for most end-users
developing language models.

The implication of the fully weighted finite-state framework for spell-checking is
that we can e.g. apply statistics to all parts of the process, i.e., the probability of the
input, the conditional probability of a specific combination of errors and the probability
of the resulting word form in context.

5.2 Edit Distance Measures

The baseline error model for spelling correction since its inception in the 1960s has been
the Damerau-Levenshtein edit distance (Damerau, 1964; Levenshtein, 1966). There
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q0

a, b, ? 

q1

ε:a, a:ε, ε:b, b:ε, b:a, a:b 

q2
a:b 

q3

b:a 

a, b, ? 

b:a 

a:b 

Figure 5.1: A non-deterministic unweighted transducer implementing edit distance 1,
where Σ = a, b, ε. The deletion, addition and change is shown in the edits from q0 to
q1, and the states q2 and q3 are used as a memory for the swaps of ab to ba and ba to ab
respectively.

have been multiple formulations of the finite-state edit distance, but in this section we
describe the one used by our systems. This formulation of the edit distance as a trans-
ducer was first presented by Schulz and Mihov (2002).

Finite-state edit distance is a rather simple concept; each of the error types except
swapping is represented by a single transition of the form ε : x (for insertion), x : ε (for
deletion) or x : y (for change). Swaps requires an additional state in the automaton as
a memory for the symbols to be swapped at the price of one edit that is a path πx:yy:x.
This unweighted edit distance 1 error model is shown in Figure 5.1.

There are numerous possibilities to formalise the edit-distance in weighted finite-
state automata. The simplest form is a cyclic automaton that is capable of measuring
arbitrary distances, using the weights as a distance measure. This weighted automaton
for measuring edit distances is shown in Figure 5.2. This form is created by drawing arcs
of the form ε : x :: w, x : ε :: w and x : y :: w, from the initial state to itself, where w is
the weight of a given operation. If the measure includes the swap of adjacent characters,
the extra states and paths of the form πx:yy:x::w need to be defined. It is possible to use this
automaton to help automatic harvesting or in training of an error model. The practical
weighted finite-state error models used in real applications are of the same form as the
unweighted ones defined earlier, with limited maximum distance, as the application of
an infinite edit measure is expectedly slow.
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q0 a, b, ?, ε:a/1, a:ε/1, ε:b/1, b:ε/1, b:a/1, a:b/1 

q1

a:b 

q2

b:a b:a/1 a:b/1 

Figure 5.2: A Weighted automaton for measuring arbitrary edit distance where Σ =
a, b, ε and uniform weights of 1 per edit. The states q1 and q2 are used as a memory for
the swaps of ab to ba and ba to ab to keep them at the weight of 1.

Mohri (2003) describes the mathematical background of implementing a weighted
edit distance measure for finite-state automata. It differs slightly from the formulation
we use in that it describes edit distance of two weighted automata exactly, whereas our
definition is suitable for measuring the edit distance of a string or path automaton and the
target language model. The practical differences between Mohri’s formulations and the
automata I present seem to be minimal, e.g. placing weights into the final state instead
of on the arcs.

5.3 Hunspell Error Correction
MainArticle: Building and Using Existing Hunspell Dictionaries and TEXHyphenators
as Finite-State Automata by Tommi A. Pirinen and Krister Lindén. In this article we
have formulated the Hunspell’s string-algorithm algorithms for error correction and their
specific optimisations in terms of finite-state automata.

5.3.1 Motivation
The mainmotivation for this research was to reimplement Hunspell’s spell-checking in
a finite-state form. In terms of error modelling it basically consists of modifications of
the edit distance for speed gains. One modification is to take the keyboard layout into
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account when considering the replacement type of errors. Another addition is to sort
and limit the alphabet used for other error types. Finally, Hunspell allows the writer of
the spell-checking dictionary to define specific string-to-string mutations for common
errors.

5.3.2 Results

The finite-state formulation of these errors is a combination of limitations and modifica-
tions to the edit distance automaton, disjuncted with a simple string-to-string mapping
automaton. The key aspect of Hunspell’s modified edit distance formulations are opti-
mising the speed of the error lookup using configurable, language specific, limitations
of the edit distance algorithm’s search space. The other correctional facilities are mainly
meant to cover the type of errors that cannot be reached with regular edit distance mod-
ifications. The effects of these optimisations are further detailed in Chapter 6.

The settings that Hunspell gives to a user are the following: A KEY setting to limit
characters that can be replaced in the edit distance algorithm to optimise the replace-
ments to adjacent keys on a typical native language keyboard. A TRY setting to limit the
possible characters that are used in the insertion and deletion part of the edit distance
algorithm. A REP setting that can be used for arbitrary string-to-string confusion sets,
and a parallel setting called MAP used for encoding differences rather than linguistic con-
fusions. Finally, for the English language, there is a PHONE setting that implements a
variation of the double metaphone algorithm (Philips, 2000).

5.4 Phonemic Key Corrections

Phonemic keys are commonly used for languages where orthography does not have a
very obvious mapping to pronunciation, such as English. In the phonemic keying meth-
ods the strings of a language are intended to connect with a phonemic or phonemically
motivated description. This technique was originally used for cataloguing family names
in archives (Russell and Odell, 1918). These systems have been successfully adapted to
spell-checking and are in use for English, for example in aspell as the double metaphone
algorithm (Philips, 2000). Since these algorithms are a mapping from strings to strings,
it is trivially modifiable into a finite-state spelling correction model. Considering a fi-
nite-state automatonMphon that maps all strings of a language into a single string called
a phonetic key, the spelling correction can be performed with mappingMphon ◦M−1

phon.
For example, a soundex automaton can map strings like

:::::
squer and square into string

S140, and the composition of S140 to the inverse soundex mapping would produce,
among others, square,

:::::
squer,

:::
sqr,

::::
sqrrr, and so forth. And this set can be applied to the

language model collecting only the good suggestions, such as square.
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5.5 Context-Aware Spelling Correction
Main article: Improving finite-state spell-checker suggestions with part of speech n-
grams by Tommi A. Pirinen, Miikka Silfverberg, and Krister Lindén. In this article I
have attempted to cover spelling correction of morphologically more complex languages
with finite-state technology.

5.5.1 Motivation
The motivation for this article was to show that a finite-state version of spell-check-
ing is also usable for a context-aware form, and secondarily to explore the limitations
and required changes for the context-based language models that are needed for more
morphologically complex languages to get similar results as are attained with simple
statistical context models for morphologically poor languages.

5.5.2 Related Works
The related works include the well-known results on English for the same task im-
plemented in non-finite-state approaches. In general, the baseline of the context-based
spelling correction was probably established by Mays et al. (1991) and been revisited
many times, e.g. byWilcox-O’Hearn et al. (2008), and has usually been found to be ben-
eficial for the languages that have been studied. The examples I have found are all of the
morphologically poor languages such as English or Spanish. In my research I have tried
to replicate these results for Finnish, but the results have not been as successful as with
English or Spanish . The basic word form n-grams were not seen as an efficient method
for Spanish by e.g. Otero et al. (2007), instead the method was extended by studying
also the part-of-speech analyses to rank the suggestion lists for a spell-checker. In my
article (VIII), we reimplemented a finite-state system very similar to the one used for
Spanish, originally unaware of these parallel results.

5.5.3 Results
Results – given in Table 5.1 reproduced from (VIII) – show that the regular n-grams,
which are used for English to successfully improve spelling correction, are not so effec-
tive for Finnish. Furthermore, the improvement that is gained for Spanish when applying
the POS n-grams in this task does not give equally promising results for Finnish, but do
improve the quality of suggestions, by around 5% points.

One of the negative results of the paper is that the time and memory consumption of
the POS-based or word-form-based spelling correction is not yet justifiable for general
consumer products as a good tradeoff. There have been many recent articles exploring
the optimisation side of the context-based spell-checking that should be seen as the future
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Algorithm 1 2 3 4 5 1—10
English

Edit distance 2 (baseline) 25.9% 2.4% 2.4% 1.2% 3.5% 94.1%
Edit distance 2 with Unigrams 28.2% 5.9% 29.4% 3.5% 28.2% 97.6%
Edit distance 2 with Word N-grams 29.4% 10.6% 34.1% 5.9% 14.1% 97.7%
Edit distance 2 with POS N-grams 68.2% 18.8% 3.5% 2.4% 0.0% 92.9%

Finnish
Edit distance 2 (baseline) 66.5% 8.7% 4.0% 4.7% 1.9% 89.8%
Edit distance 2 with Unigrams 61.2% 13.4% 1.6% 3.1% 3.4% 88.2%
Edit distance 2 with Word N-grams 65.0% 14.4% 3.8% 3.1% 2.2% 90.6%
Edit distance 2 with POS N-grams 71.4% 9.3% 1.2% 3.4% 0.3% 85.7%

Table 5.1: Precision of suggestion algorithmswith real spelling errors. Reproduced from
(VIII)

work for context-based finite-state spelling correction. The optimisation of the n-gram
models has been brought up many times in non-finite-state solutions too, e.g. Church
et al. (2007). While mainly an engineering problem, a lot is left to be desired from this
development before practical end-user applications for contextual spell-checking can be
considered.

5.6 Other Finite-State Error Models

Deorowicz and Ciura (2005) present an extensive study on error modelling for spelling
correction. Some of the models have been introduced earlier in this chapter.

One of the optimisations used in some practical spell-checking systems, but not in
Hunspell, is to avoidmodifying the first character of the word in the error modelling step.
The gained improvement in speed is notable. The rationale for this is the assumption
that it is rarer to make mistakes in the first character of the word – or perhaps it is easier
to notice and fix such mistakes. There are some measurements on this phenomenon
by Bhagat (2007), but the probabilities of having the first-letter error in the studies they
refer to vary from 1% up to 15%, so it is still open to debate. In measurements I made for
morphologically complex languages in (VIII), I also found a slight tendency towards the
effect that the errors are more likely in non-initial parts of the words, and these account
for word-length effects.

The concept of creating an error model from a (possibly annotated) error corpus is
plausible for finite-state spelling-correction as well. The modification of the training
logic as presented by Church and Gale (1991) into finite-state form is mostly trivial.
E.g. if we consider the building of a finite-state language model from a corpus of word
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forms, the corpus of errors is the same set of string pairs with weights of

w(x : y) = − log
f(x : y) + α

Derrors + α
, (5.1)

where x, y ⊂ Σ⋆ are error string pairs x : y in a collection of all errors Derrors.

5.7 Conclusions
In this chapter, I have enumerated some of the most important finite-state formulations
of common error models found in spell-checkers and shown that they are implementable
and combinable under basic finite-state algebra. I have re-implemented a full set of error
models used by the current de facto standard spelling corrector Hunspell in a finite state
form demonstrating that it is possible to replace string-algorithm correction algorithms
by a sound finite-state error model.



Chapter 6

Efficiency of Finite-State
Spell-Checking

One of the motivations for finite-state technology is that the time complexity of the ap-
plication of finite-state automata is known to be linear with regard to the size of the input
as long as finite-state automata can be optimised by operations like determinisation. In
practice, however, the speed and size requirements of the finite-state automata required
for language models, error models and their combinations are not easy to predict, and the
worst case scenarios of these specific combinatorics are still theoretically exponential,
because the error models and language models are kept separated and composed during
run time due to space restrictions. This is especially important for error modelling in
spell-checking, since it easily goes towards the worst case scenario, i.e. the theoreti-
cally ideal naive error model that can rewrite any string into any other string with some
probabilities attached is not easily computable.

Towards the final parts of my research on finite-state spell-checking, I set out to write
a few larger-scale evaluation articles to demonstrate the efficiency and usability of finite-
state spell-checking. For larger scale testing, I also sought to show how the linguistically
common but technologically almost undealt with concept of morphological complexity
practically relates to the finite-state language models.

The evaluation of finite-state spelling correction needs to be contrasted with the ex-
isting comparisons and evaluations of spell-checking systems. Luckily, spell-checking
has been a popular enough topic so that a number of recent evaluations are available.
Also the informative introduction to spell-checking by Norvig (2010) has been a valu-
able source of practical frameworks for a test setup of the evaluation of spelling checkers
as well as the ultimate baseline comparison for English language spell-checking.

The evaluation of finite-state spelling checkers in this chapter consists of two differ-
ent goals: when working with English, we merely aim to reproduce the results that are
published in the literature and are well known. When working with more morphologi-
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cally complex languages, we aim to show that the more complex the languages we select,
the more work and optimisations are needed to attain reasonable performance for base-
line spell-checking and correction. Throughout the chapter, we have tried to follow the
linguistically motivated selection of languages, i.e. selecting at least one from moder-
ately rich and one from poly-synthetic languages; suitable languages for these purposes
with open-source, freely available implementations have been acquired from the Uni-
versity of Tromsø’s server.1 From there we have selected North Saami as a moderately
rich and Greenlandic as an example of a poly-synthetic language.

The efficiency evaluation is divided into two sections. In Section 6.1, I evaluate
the speed efficiency and optimisation schemes of finite-state spelling checkers together
with Sam Hardwick who did most of the groundwork on the finite-state spell-checking
implementation in the article by e.g., Lindén et al. (2011). Then in Section 6.2, I measure
the effects these optimisations have on the quality of spell-checking.

6.1 Speed of Finite-State Spell-Checking

Main article: Effect of Language and Error Models on Efficiency of Finite-State Spell-
Checking and Correction by Tommi A. Pirinen and Sam Hardwick. In this article we set
out to prove that finite-state spell-checking is an efficient solution and document how
builders of spelling checkers can tune the parameters of their models.

6.1.1 Motivation
Themotivation for the article was practical, in discussions with people building alterna-
tive spelling checkers, as well as with alpha testers of our more complex spell-checkers
it was commonly noted that the speed might be an issue for finite-state spell-checking
systems to gain ground from the traditional solutions. It is noteworthy, that the formu-
lation of the system was from the beginning built so that the developers of the language
and error models can freely make these optimisations as needed.

When discussing such practical measurements as the speed of a spell-checker, care
must be taken in evaluation metrics. The most common use of a spell-checker is still
inter-active, where a misspelt word is underlined when the user makes a mistake, and
the system is capable of suggesting corrections when a user requests one. This sets the
limits that a system should be capable of checking text as it is typed, and responding with
suggestions as demanded. It is well known that as acceptors and language recognisers,
finite-state language models can answer the question of whether the string is in a given
language in linear time. In practical measurements, this amounts to spell-checking times
up to 100,000 strings per second e.g. by Silfverberg and Lindén (2009). The central

1http://giellatekno.uit.no

http://giellatekno.uit.no
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Error model English Finnish Greenlandic
Edit distance 1 0.26 6.78 4.79
Edit distance 2 7.55 220.42 568.36
No firsts ed 1 0.44 3.19 3.52
No firsts ed 2 1.38 61.88 386.06

Table 6.1: Effect of language and error models on speed (time in seconds per 10,000
word forms). Reproduced from (IX).

evaluation and optimisation was therefore performed on the error correction part, which
varies both with the language model and the error model selected.

6.1.2 Related Works

In the article, we study different related optimisation schemes from non-finite-state
spell-checking and evaluate how different error models and parameters affect the speed
of finite-state spell-checking. We also ran the tests on a scale of morphologically differ-
ent languages to see if the concept of morphological complexity is reflected in the speed
of spell-checking.

The optimisation of speed in spell-checking software has been a central topic in my
research since the beginning. There are numerous solutions that we ported into finite-
state form to test their efficiency, and a few methods related to problems with the finite-
state formulation of the error models (i.e. the generated duplicate correction paths in
the edit distance models larger than 1 edits long, and the limitation of the result set size
during traversal).

6.1.3 Results

The results of the evaluation – reproduced in Table 6.1 from the article (IX) – are en-
lightening. Basically the main finding of the article is that disallowing the change of the
initial letter (no firsts ed) in the error model provides a significant boost of performance.

Ignoring errors in the first-position of the word is known from many practical sys-
tems, but is little documented. Some of the research, such as Bhagat (2007), provides
some statistics on the plausibility of a method: it is more likely to make a mistake in
other parts of the words than the very first letter, but does not offer hypotheses why this
happens. Practically, we replicated these results for our set of morphologically correct
languages as well, giving further evidence that it may be used as an optimisation scheme
with a reasonable quality trade-off.

It is likewise interesting that even though we tried to devise methods to prevent the
larger error models from doing unnecessary things like removing and adding precisely



72 6 Efficiency of Finite-State Spell-Checking

the same characters in succession, this did not provide a significant addition to the search
speed of the corrections.

The comparative evaluation of the different language models is relatively rarely
found in literature. This could be due to the fact that scientific writing in spell-checking is
still more oriented towards algorithmics research, where the language models of related
systems do not have an influence on the asymptotic speed of the process and are thus
considered uninteresting. Most of the studies are focused on measuring overall systems
of single languages, such as Arabic (Attia et al., 2012), Indian languages (Chaudhuri,
2002),2 Hungarian (Trón et al., 2005) or Spanish (Otero et al., 2007), as well as all the
research on English (Mitton, 1987).

6.2 Precision of Finite-State Spell-Checking

Main article: Speed and Quality Trade-Offs in Weighted Finite-State Spell-Checking.
In this article, I take a broad look at the evaluation of all the language and error models
and testing approaches we have developed in the past few years of research and compare
them with existing results in real systems.

6.2.1 Motivation
The motivation for this article was to perform a larger survey of all the finite-state
spelling methods that have been implemented in my thesis project. In the paper I aim
to show that the current state-of-the-art for finite-state spell-checking is starting to be a
viable option for many common end-user applications. This article is a practical contin-
uation of the speed optimisation evaluation, where I studied the concept of speeding up
finite-state spell-checking systems by manipulating error and language models. In or-
der for these optimisations to be usable for end-users, I needed to show that the quality
degradation caused by the optimisation schemes that remove a part of the search space
is not disproportionately large for the error models that are effective enough to be used
in real-world systems.

6.2.2 Results
Whenmeasuring the quality of spelling error correction, the basic finding is that the sim-
ple edit-distance measure at length one will usually cover the majority of errors in typical
typing error situations. For English, the original statistics were 95% (Damerau, 1964),

2The wording “Indian language(s)” is from the article, and while not a linguistically coherent group,
is commonly used in the field of Indian natural language engineering and e.g., in linguistic conferences
such as COLING 2012, CICLING 2012 organised in India, as the name of the topic focus. The specific
examples in the article seem to be about Bangla.
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Rank: 1st 2nd 3rd 4th 5th rest
Language and error models
English Hunspell 59.3 5.8 3.5 2.3 0.0 0.0
English aspell 55.7 5.7 8.0 2.2 0.0 0.0
English w/ 1 error 66.7 7.0 5.2 1.8 1.8 1.8
English w/ 1 non-first error 66.7 8.8 7.0 0.0 0.0 1.8
English w/ 1 Hunspell error 45.6 8.7 0.0 0.0 0.0 0.0
English w/ 2 errors 71.9 14.0 0.0 3.5 3.5 3.5
English w/ 2 non-first errors 71.3 17.5 0.0 1.8 3.5 1.8
English w/ 2 Hunspell errors 73.7 12.3 1.8 0.0 0.0 3.5
English w/ 3 errors 73.7 14.0 0.0 3.5 3.5 5.3
English w/ 3 non-first errors 73.7 17.5 0.0 1.8 3.5 3.5
English w/ 3 Hunspell errors 73.7 12.3 1.8 0.0 0.0 8.8
Finnish aspell 21.1 5.8 3.8 1.9 0.0 0.0
Finnish w/ 1 errors 54.8 19.0 7.1 0.0 0.0 0.0
Finnish w/ 2 errors 54.8 19.0 7.1 2.4 0.0 7.1
Finnish w/ 1 non-first error 54.8 21.4 4.8 0.0 0.0 0.0
Finnish w/ 2 non-first errors 54.8 21.4 4.8 0.0 0.0 7.1
Greenlandic w/ 1 error 13.3 2.2 6.7 2.2 0.0 8.9
Greenlandic w/ 1 nonfirst error 13.3 2.2 6.7 2.2 0.0 8.9
Greenlandic w/ 2 errors 13.3 6.7 4.4 0.0 0.0 35.6
Greenlandic w/ 2 nonfirst errors 13.3 6.7 4.4 0.0 0.0 35.6

Table 6.2: Effect of different language and error models on correction quality (in%).
Reproduced from (X).

with various newer studies giving similar findings between 79% and 95%, depending
on the type of corpora (Kukich, 1992a). The numbers for morphologically complex lan-
guages are not in the same range. Rather the edit distance of one gains around 50–70%
coverage. One reason for this may be that the length of a word is a factor in the typing er-
ror process. Thus it is more likely to type two or more typos and leave them uncorrected
with a language where the average word length is 16 compared with one where it is 6.
Intuitively this would make sense, and the figures obtained from my tests in article (X)
– reproduced in Table 6.2 – provide some evidence to that effect.

6.3 Conclusions

In this chapter, I have studied the aspects of finite-state spell-checking that would ensure
a plausible end-user spell-checker in a practical application. I have shown that decrease
in speed is negligible when moving from optimised specific non-finite-state methods
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to correct strings, or traverse a finite-state network to an actual finite-state algebra. The
speed of finite-state solutions for correctingmorphologically complex languages is faster
than that of current software solutions such as Hunspell.

I have tested a set of morphologically different languages and large corpora to show
the usability of finite-state language and error-models for practical spell-checking ap-
plications. I have also shown that it is possible to tune with little effort the systems for
interactive spell-checking using the finite-state algebra.

The practical findings show the requirement of different speeds and quality factors
for different applications of spelling checkers. The research presented here shows, that
by varying both the automata that make up the languagemodel and the error model of the
spelling checker, it is possible to create suitable variants of spelling checkers for various
tasks by simple fine-tuning the parameters of the finite-state automaton.



Chapter 7

Conclusion

In this thesis, I have researched the plausibility of making finite-state language and er-
ror models for real-world, finite-state spell-checking and correction applications, and
presented approaches to formulate traditional spell-checking solutions for finite-state
use. The contributions of this work are divided into two separate sections: Section 7.1
summarises the scientific contributions of the work that is in my thesis, and Section 7.2
recounts the results of this thesis in terms of real-world spelling checkers that can be used
in end-user systems. Finally, in Section 7.3, I go through the related research questions
and practical ideas that the results of this thesis lead into.

7.1 Scholarly Contributions

One of the main contributions, I believe, is the improvement and verification of the sta-
tistical language modelling methods in the context of weighted finite-state automata. I
believe that throughout the thesis, by continuously using the initial finding of the word-
form-based compound word training approach introduced in (I), I have shown that mor-
phologically complex languages can be statistically trained as weighted finite-state au-
tomata and I maintain that this approach should be carried out in the future finite-state
language models.

In the spelling correction mechanics, I have shown that weighted finite-state trans-
ducers implement a feasible error model. According tomy experiments, it can be reason-
ably used in interactive spelling correction software in stead of any traditional spelling
correction solution.

In my contribution to the practical software engineering side of language modelling,
I have shown that a generalised finite-state formula based on a knowledge ofmorphology
can be used to compile the most common existing language models into automata.

Finally, to tie in the scientific evaluation of finite-state spell-checking as a viable
alternative, I have performed a large-scale testing on languages with a wide range of
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morphological complexity, with different resources, and shown that all are plausibly
usable for typical spelling correction situations.

7.2 Practical Contributions
The spell-checking software that is the topic of this thesis is a very practical real-world
application that, despite this being an academic dissertation, cannot be ignored when
talking about the contributions of this thesis. One of the important contributions, I be-
lieve, is the alpha testing version of the Greenlandic spelling correction for OpenOf-
fice, providing a kind of a proof that finite-state spell-checking of Greenlandic is imple-
mentable.

Real-world software, consisting of components such as spell-checking libraries lib-
voikko 1 and enchant,2 GNOME desktop environment,3 office suites OpenOffice.org
and Libreoffice,4 and Firefox browser,5 have been a good testing ground for other mor-
phologically complex languages, including Finnish and North Saami, but also a range of
forthcomingUralic languages currently being implemented at theUniversity ofHelsinki,6
most of which have never had a spell-checking system at all.

The statistical and weighted methods used to improve language models have been
directly ported into classical tool chains and work flows of the finite-state morphology,
and are now supported in the HFST tools including hfst-lexc for traditional finite-
state morphologies.

7.3 Future Work
In terms of error correcting, the systems are deeply rooted in the basic models of typing
errors, such as the Levenshtein-Damerau edit distance. It would be interesting to try to
implement more accurate models of errors based on findings of cognitive-psychological
studies on the kinds of errors that are actually made – this research path I believe has
barely scratched the surface with optimisations like avoid typing mistakes at the begin-
ning of the word. Furthermore, it should be possible to make adaptive error models using
a simple feedback system for finite-state error-models.

During the time I spent writing this thesis, the world of spell-checking has changed
considerably with the mass market of a variety of input methods in the new touch screen

1http://voikko.sf.net
2http://abiword.com/enchant
3http://gnome.org
4http://libreoffice.org
5http://firefox.org
6http://www.ling.helsinki.fi/~rueter/UrjSpell/testaus_fi.shtml (temporary URL

for testing phase)

http://voikko.sf.net
http://abiword.com/enchant
http://gnome.org
http://libreoffice.org
http://firefox.org
http://www.ling.helsinki.fi/~rueter/UrjSpell/testaus_fi.shtml
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user interfaces. When I startedmy thesis work, by far themost commonmethods to input
text were regular 100+ key PC keyboards and key pads on mobile phones with the T9
input method.7 This is no longer the case, as input methods like Swype, XT9, and so on,
are gaining popularity. A revision of the methods introduced in this thesis is required,
especially since the input methods of these systems are more heavily reliant on high-
quality, automatic spelling correction than before.8 This point will slightly affect the
considerations of the practical evaluations of the speed of spell-checking; new spelling
correctors coupled with predictive entry methods need to be invoked after each input
event instead of only when correction is required.

On the engineering and software management side, one practical, even foreseeable,
development would be to see these methods being adopted into use in real-world spell-
checkers. The actual implementation has been done with the help of spell-checking
systems like voikko, and enchant. The morphologically complex languages that are
represented in my thesis lack basic language technology support partially due to the
dominance of too limited non-finite state forms of language modelling.

The concept of context-aware spell-checking with finite-state systems was merely
touched upon by article (VIII). However, the results showed some promise and pin-
pointed some problems, and with some work it may be possible to gain as sizable im-
provements for morphologically complex languages as for morphologically simple ones.
One possible solution to be drawn from the actual results of the other articles in the the-
sis is to use morph-based statistics for all languages to get more robust statistics and
confirmatory results. In order to get the speed and memory efficiency to a level that is
usable in everyday applications, I suspect there is room for much improvement through
basic engineering decisions and optimisations. This has also been a topic in much of the
recent spell-checking research for non-finite-state systems, see e.g. Carlson et al. (2001).

The concept of context-based error-detection, real-word error detection, and other
forms of grammar correction has not been dealt with at a very large-scale in this thesis.
That has been done partly on purpose, but in fact the basic context-aware real-word error
detection task does not really differ in practice from its non-finite-state versions, and the
conversion is even more trivial than in the case of the error correction part discussed in
article (VIII). The main limiting factor for rapidly testing such a system is the lack of
error corpora with real-word spelling errors.

As a theoretically interesting development, it would be nice to have formal proof
that the finite-state spell-checking and correction models are a proper superset of the
Hunspell spell-checking methods, as my quantitative evaluation and existing conversion
algorithm for the current implementation shows that this is plausible and even likely.

7http://www.t9.com
8As a case in point, there are collections of humorous automatic spelling corrections caused by these

systems, on the internet, see e.g., http://www.damnyouautocorrect.com/.

http://www.t9.com
http://www.damnyouautocorrect.com/
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Chapter A

Appendices

A.1 Copyrights of Introduction and Articles
This introduction is published under Creative Commons Attribution–NonCommercial-
NoDerivs 3.0 Unported licence, which can be found in Appendix A.3.

A.2 Original Articles
This electronic publication does not contain reproductions of the original articles. The
viewers of this electronic version of the dissertation should obtain the articles refered
from my homepage1 or search for the articles using Google Scholar.2

A.3 Licence

This text is Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.3
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES

NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES
NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS
PROVIDES THIS INFORMATIONONAN ”AS-IS” BASIS. CREATIVECOMMONS
MAKESNOWARRANTIESREGARDINGTHE INFORMATIONPROVIDED, AND
DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE. License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF
THIS CREATIVE COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”). THE
WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.

1http://www.helsinki.fi/%7etapirine/publications
2http://scholar.google.com
3http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
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ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LI-
CENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THEWORK PROVIDED HERE, YOU AC-
CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LI-
CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION
OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

(a) “Adaptation” means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation, derivative work,
arrangement of music or other alterations of a literary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any
other form in which theWork may be recast, transformed, or adapted includ-
ing in any form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an Adaptation for the
purpose of this License. For the avoidance of doubt, where the Work is a
musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image (”synching”) will be considered an
Adaptation for the purpose of this License.

(b) “Collection”means a collection of literary or artistic works, such as encyclo-
pedias and anthologies, or performances, phonograms or broadcasts, or other
works or subject matter other than works listed in Section 1(f) below, which,
by reason of the selection and arrangement of their contents, constitute intel-
lectual creations, in which the Work is included in its entirety in unmodified
form along with one or more other contributions, each constituting separate
and independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be considered
an Adaptation (as defined above) for the purposes of this License.

(c) “Distribute” means to make available to the public the original and copies
of the Work through sale or other transfer of ownership.

(d) “Licensor” means the individual, individuals, entity or entities that offer(s)
the Work under the terms of this License.

(e) “Original Author”means, in the case of a literary or artistic work, the indi-
vidual, individuals, entity or entities who created theWork or if no individual
or entity can be identified, the publisher; and in addition (i) in the case of a
performance the actors, singers, musicians, dancers, and other persons who
act, sing, deliver, declaim, play in, interpret or otherwise perform literary
or artistic works or expressions of folklore; (ii) in the case of a phonogram
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the producer being the person or legal entity who first fixes the sounds of a
performance or other sounds; and, (iii) in the case of broadcasts, the organi-
zation that transmits the broadcast.

(f) “Work” means the literary and/or artistic work offered under the terms of
this License including without limitation any production in the literary, sci-
entific and artistic domain, whatever may be the mode or form of its ex-
pression including digital form, such as a book, pamphlet and other writing;
a lecture, address, sermon or other work of the same nature; a dramatic or
dramatico-musical work; a choreographic work or entertainment in dumb
show; amusical composition with or without words; a cinematographic work
to which are assimilated works expressed by a process analogous to cine-
matography; a work of drawing, painting, architecture, sculpture, engrav-
ing or lithography; a photographic work to which are assimilated works ex-
pressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geog-
raphy, topography, architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected as a copy-
rightable work; or a work performed by a variety or circus performer to the
extent it is not otherwise considered a literary or artistic work.

(g) “You” means an individual or entity exercising rights under this License
who has not previously violated the terms of this License with respect to the
Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

(h) “Publicly Perform”means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make
available to the public Works in such a way that members of the public may
access these Works from a place and at a place individually chosen by them;
to perform the Work to the public by any means or process and the commu-
nication to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

(i) “Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of fixation and
reproducing fixations of the Work, including storage of a protected perfor-
mance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or exceptions that
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are provided for in connection with the copyright protection under copyright law
or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor
hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in the Work as
stated below:

(a) to Reproduce theWork, to incorporate theWork into one ormore Collections,
and to Reproduce the Work as incorporated in the Collections; and,

(b) to Distribute and Publicly Perform the Work including as incorporated in
Collections.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications
as are technically necessary to exercise the rights in other media and formats, but
otherwise you have no rights to make Adaptations. Subject to 8(f), all rights not
expressly granted by Licensor are hereby reserved, including but not limited to
the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to
and limited by the following restrictions:

(a) You may Distribute or Publicly Perform the Work only under the terms of
this License. You must include a copy of, or the Uniform Resource Identi-
fier (URI) for, this License with every copy of the Work You Distribute or
Publicly Perform. You may not offer or impose any terms on the Work that
restrict the terms of this License or the ability of the recipient of the Work to
exercise the rights granted to that recipient under the terms of the License.
You may not sublicense the Work. You must keep intact all notices that refer
to this License and to the disclaimer of warranties with every copy of the
Work You Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological mea-
sures on the Work that restrict the ability of a recipient of the Work from You
to exercise the rights granted to that recipient under the terms of the License.
This Section 4(a) applies to theWork as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be made subject
to the terms of this License. If You create a Collection, upon notice from any
Licensor Youmust, to the extent practicable, remove from the Collection any
credit as required by Section 4(c), as requested.
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(b) You may not exercise any of the rights granted to You in Section 3 above
in any manner that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the Work
for other copyrighted works by means of digital file-sharing or otherwise
shall not be considered to be intended for or directed toward commercial ad-
vantage or private monetary compensation, provided there is no payment of
any monetary compensation in connection with the exchange of copyrighted
works.

(c) If You Distribute, or Publicly Perform the Work or Collections, You must,
unless a request has been made pursuant to Section 4(a), keep intact all copy-
right notices for the Work and provide, reasonable to the medium or means
You are utilizing: (i) the name of the Original Author (or pseudonym, if ap-
plicable) if supplied, and/or if the Original Author and/or Licensor designate
another party or parties (e.g., a sponsor institute, publishing entity, journal)
for attribution (”Attribution Parties”) in Licensor’s copyright notice, terms
of service or by other reasonable means, the name of such party or parties;
(ii) the title of the Work if supplied; (iii) to the extent reasonably practicable,
the URI, if any, that Licensor specifies to be associated with the Work, un-
less such URI does not refer to the copyright notice or licensing information
for the Work. The credit required by this Section 4(c) may be implemented
in any reasonable manner; provided, however, that in the case of a Collec-
tion, at a minimum such credit will appear, if a credit for all contributing
authors of Collection appears, then as part of these credits and in a manner
at least as prominent as the credits for the other contributing authors. For
the avoidance of doubt, You may only use the credit required by this Section
for the purpose of attribution in the manner set out above and, by exercising
Your rights under this License, You may not implicitly or explicitly assert
or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your
use of the Work, without the separate, express prior written permission of
the Original Author, Licensor and/or Attribution Parties.

(d) For the avoidance of doubt:
i. Non-waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or compulsory
licensing scheme cannot be waived, the Licensor reserves the exclu-
sive right to collect such royalties for any exercise by You of the rights
granted under this License;

ii. WaivableCompulsoryLicense Schemes. In those jurisdictions inwhich
the right to collect royalties through any statutory or compulsory licens-
ing scheme can be waived, the Licensor reserves the exclusive right to
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collect such royalties for any exercise by You of the rights granted under
this License if Your exercise of such rights is for a purpose or use which
is otherwise than noncommercial as permitted under Section 4(b) and
otherwise waives the right to collect royalties through any statutory or
compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to col-
lect royalties, whether individually or, in the event that the Licensor
is a member of a collecting society that administers voluntary licensing
schemes, via that society, from any exercise by You of the rights granted
under this License that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b).

(e) Except as otherwise agreed in writing by the Licensor or as may be other-
wise permitted by applicable law, if You Reproduce, Distribute or Publicly
Perform the Work either by itself or as part of any Collections, You must
not distort, mutilate, modify or take other derogatory action in relation to the
Work which would be prejudicial to the Original Author’s honor or reputa-
tion.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRIT-
ING, LICENSOROFFERS THEWORKAS-IS ANDMAKES NO REPRESEN-
TATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITH-
OUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FIT-
NESS FORA PARTICULAR PURPOSE, NONINFRINGEMENT, OR THEAB-
SENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRES-
ENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLI-
CABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON
ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUEN-
TIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LI-
CENSE OR THE USE OF THEWORK, EVEN IF LICENSOR HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will terminate automatically
upon any breach by You of the terms of this License. Individuals or entities
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who have received Collections from You under this License, however, will
not have their licenses terminated provided such individuals or entities re-
main in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is perpet-
ual (for the duration of the applicable copyright in the Work). Notwithstand-
ing the above, Licensor reserves the right to release the Work under different
license terms or to stop distributing the Work at any time; provided, how-
ever that any such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under the terms of
this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous

(a) Each time You Distribute or Publicly Perform the Work or a Collection, the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

(b) If any provision of this License is invalid or unenforceable under applicable
law, it shall not affect the validity or enforceability of the remainder of the
terms of this License, and without further action by the parties to this agree-
ment, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

(c) No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by
the party to be charged with such waiver or consent.

(d) This License constitutes the entire agreement between the parties with re-
spect to the Work licensed here. There are no understandings, agreements or
representations with respect to the Work not specified here. Licensor shall
not be bound by any additional provisions that may appear in any commu-
nication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

(e) The rights granted under, and the subject matter referenced, in this License
were drafted utilizing the terminology of the Berne Convention for the Pro-
tection of Literary and Artistic Works (as amended on September 28, 1979),
the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the
WIPOPerformances and PhonogramsTreaty of 1996 and theUniversal Copy-
right Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are
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sought to be enforced according to the corresponding provisions of the im-
plementation of those treaty provisions in the applicable national law. If
the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are
deemed to be included in the License; this License is not intended to restrict
the license of any rights under applicable law.

Creative Commons Notice
Creative Commons is not a party to this License, and makes no warranty whatsoever

in connection with the Work. Creative Commons will not be liable to You or any party
on any legal theory for any damages whatsoever, including without limitation any gen-
eral, special, incidental or consequential damages arising in connection to this license.
Notwithstanding the foregoing two (2) sentences, if Creative Commons has expressly
identified itself as the Licensor hereunder, it shall have all rights and obligations of Li-
censor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of the
trademark ”Creative Commons” or any related trademark or logo of Creative Commons
without the prior written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage guidelines, as may
be published on its website or otherwise made available upon request from time to time.
For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

http://creativecommons.org/
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