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Abstract 

In this thesis the concept of data cycle is introduced. The concept itself is general and only gets 

the real content when the field of application is defined. If applied in the field of atmospheric 

physics the data cycle includes measurements, data acquisition, processing, analysis and 

interpretation.   

The atmosphere is a complex system in which everything is in a constantly moving equilibrium. 

The scientific community agrees unanimously that it is human activity, which is accelerating the 

climate change. Nevertheless a complete understanding of the process is still lacking. The 

biggest uncertainty in our understanding is connected to the role of nano- to micro-scale 

atmospheric aerosol particles, which are emitted to the atmosphere directly or formed from 

precursor gases. The latter process has only been discovered recently in the long history of 

science and links nature’s own processes to human activities. The incomplete understanding of 

atmospheric aerosol formation and the intricacy of the process has motivated scientists to 

develop novel ways to acquire data, new methods to explore already acquired data, and 

unprecedented ways to extract information from the examined complex systems – in other 

words to compete a full data cycle. 

 Until recently it has been impossible to directly measure the chemical composition of precursor 

gases and clusters that participate in atmospheric particle formation. However, with the arrival of 

the so-called atmospheric pressure interface time-of-flight mass spectrometer we are now able 

to detect atmospheric ions that are taking part in particle formation. The amount of data 

generated from on-line analysis of atmospheric particle formation with this instrument is vast 

and requires efficient processing. For this purpose dedicated software was developed and 

tested in this thesis.  

When combining processed data from multiple instruments, the information content is 

increasing which requires special tools to extract useful information. Source apportionment and 

data mining techniques were explored as well as utilized to investigate the origin of atmospheric 

aerosol in urban environments (two case studies: Krakow and Helsinki) and to uncover indirect 

variables influencing the atmospheric formation of new particles. 

Keywords: Atmospheric aerosols, data mining, mass spectrometry, aerosol measurements, 

factor analysis   
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1. Introduction 

The atmosphere of the Earth is a complex system that is a result of the equilibrium between 

solid earth crust, oceans, biological activities (considering here the humans as a part of 

biosphere) and space.  The gravitational field of the Earth holds the atmospheric gases from 

escaping to space while the life on the planet, seismic activity, and oceans modify the 

composition. The vast majority (99%) of the atmosphere consists of N2, O2. However, the 

remaining 1% is responsible for the majority of reactions taking place and for controlling the 

climate. An extreme example on how nano- to micro-scale substance has a huge impact on 

the whole planet is the atmospheric particle formation (Mäkelä, et al.  (1997), Kulmala, et 

al.  (2013)) followed by the cloud formation (Spracklen, et al. 2008). Clouds in general play 

a crucial role in total energy balance on the Earth (Carslaw, et al. 2010). The pathway to the 

new particle and cloud formation is initiated by the formation of only 1-10 million 

molecules of sulfuric acid per cm3 (Eisele and Tanner 1993, Nieminen, et al. 2009, Petäjä, et 

al. 2011, Jokinen, et al. 2012). This number is very small, especially when compared to the 

total number of molecules in air, which is about 1019 molecules/cm3. Even though sulfuric 

acid was recognized to be important for fog and cloud formation already 133 years ago by 

Aitken (Aitken 1880), recent studies have concluded that we have not yet achieved a 

complete understanding of the process (Sipilä, et al. 2010). H2SO4 is a fairly simple gas to 

measure and is one of the rare cases with a detection limit at the level of sub ppt (Eisele and 

Tanner 1993, Berresheim, et al. 2000, Petäjä, et al. 2009, Jokinen, et al. 2012). Many other 

important gases have much higher detection limits. Even a simple molecule like NH3 is very 

difficult to measure at the low concentration levels relevant in the atmosphere (von 

Bobrutzki, et al. 2010). The constant need for more sensitive instrumentation goes in 

parallel with more complex instrumentation and more data rich applications. This 

combined with a new trend in atmospheric physics (and chemistry), namely the heavy 

utilization of advanced mass spectrometers, leads us to a situation where the amount of data 

generated by a single instrument significantly exceeds the level at which data can be simply 

plotted or visualized on a computer screen. New instrumentation requires substantial data 

preprocessing before interpretation can be started. 

Modern mass spectrometers are not the only data rich applications in atmospheric physics. 

Long time operated measurement stations with multiple instruments, such as e.g. the 

SMEAR stations (Station for Measuring  Forest  Ecosystem–Atmosphere  Relations; (Hari 
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and Kulmala 2005, Järvi, et al. 2009)) can be considered as a battery of instruments where 

all the measurements are related to each other and the measured variable is a combination 

of all or some separate instruments. To keep a measurement station operational over a long 

period of time is costly and includes a considerable workload. As an example, the most 

comprehensive of the SMEAR stations, SMEAR II has been working over 17 years now. 

The data produced is valuable and unique and should be treated accordingly. It is essential 

to have a good quality control and to run an effective database to guarantee security of and 

accessibility to the collected data. Todays' SMEAR stations in Finland comprise SMEAR I, 

Värriö since 1991; SMEAR II, Hyytiälä, since 1994; SMEAR III, Helsinki, since 2004; and 

SMEAR IV, Kuopio, since 2009. New stations are planned to be installed in Järvselja in 

Estonia and in China (site still to be decided). 

As already mentioned, the atmosphere is a complex system where many components are 

linked to each other. By the use of comprehensive measurement stations, where a wide 

variety of parameters are measured at the same time and at the same location over a long 

period of time, we are able to perform studies that cannot be made otherwise. New particle 

formation in the atmosphere has been extensively studied during the past 15 years, at 

ground sites in boreal forests (Mäkelä, et al. 1997, Mäkelä, et al. 2000, Clement, et al. 2001, 

Boy and Kulmala 2002, Dal Maso, et al. 2005, Junninen, et al. 2008, Hussein, et al. 2009, 

Paasonen, et al. 2009, Yli-Juuti, et al. 2009, Ehn, et al. 2010, Manninen, et al. 2010, 

Vakkari, et al. 2011, Manninen, et al. 2013), in coastal regions (O'dowd, et al. 2002, 

O'dowd, et al. 2002, Vana, et al. 2008, Ehn, et al. 2010, Pikridas, et al. 2010, Pikridas, et al. 

2012), at high altitude sites (Kivekas, et al. 2009, Bianchi, et al. 2013), at the savanna  

(Laakso, et al. 2008, Vakkari, et al. 2011, Hirsikko, et al. 2013, Laakso, et al. 2013) and 

above ground level by use of aircrafts (Crumeyrolle, et al. 2010, Schobesberger, et al. 2013). 

Most attention has been lend to observations and deterministic modeling in scenarios where 

known/hypothetical mechanisms have been tested against measured data (Korhonen, et al. 

1997, Kerminen, et al. 2004, Grini, et al. 2005, Boy, et al. 2006, Sihto, et al. 2009, 

Monahan, et al. 2010, Leppa, et al. 2011, Paasonen, et al. 2012, Zhou, et al. 2013). 

However, comprehensive datasets can also lay the ground for a different approach, in which 

the data is explored without an initial hypothesis. Such an approach may be called the Let 

the Data Talk -approach, or data mining. By this, a full advantage is taken of the complete 

data set in order to avoid overlooking any variable, just because it “does not fit the theory”.  

As stated in the title of this thesis the term “data cycle” comprises the steps taken from the 
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very beginning of data being generated by the instrument(s) over the quality control and 

preprocessing of the data into a consolidated product to the comprehensive analysis, which 

aims at atmospherically relevant interpretations leading to an improved understanding of 

the atmosphere. The thesis is set up so that the whole data cycle is covered. In detail, the 

objectives are following: 

1. Data collecting and preprocessing (Paper I-II). I start with the problem of 

having complex instrumental data that needs to be converted into a data product 

that can be used for decision-making. In other words, to get an insight into the 

chemical composition of atmospheric ions and ion clusters. 

2. Data storing and visualization (Paper III). I am taking advantage of the 

existing SMEAR database, extend it and explore the ways to make it accessible to 

a broad, multi-disciplinary audience.  

3. Data analysis (Paper IV-VI). I evaluate numerous multivariate methods for 

the extraction of information from data deriving from comprehensive atmospheric 

measurements. Still, the final goal is not to identify the most appropiate methods 

in itself, but to understand the underpinning environmental and atmospheric 

processes for the data, such as the origin of air pollutants (Paper IV and V) and 

new particle formation in the atmosphere (Paper VI). 
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2. Preprocessing of measurement data 

All measured data need some sort of processing before it can be used for interpretation. 

Sensors hardly ever measure directly the physical quantity of interest. Commonly sensors 

are sensitive only to some physical property and as a response give out a measurable voltage 

or current. This electrical output from the sensor needs to be converted to a physically 

meaningful value. For the conversion one needs to know the response relationship of the 

sensor output and the physical quantity, the so called calibration curve. By exposing the 

sensor to a known magnitude of the physical quantity (calibration standard) and measuring 

the response from the sensor one can obtain a calibration curve. Single sensor devices have 

only one calibration curve, but more complex instruments might have multiple calibration 

curves  all of which are to be taken in to account before the measured raw signal can be 

converted into the data representing a physical quantity. 

 Preprocessing here means the preparation of the measured raw data for any further data 

analysis. The same processing could also be called post-processing if it is thought as a 

process needed to perform after the measurements are conducted.  

2.1. Processing time-of-flight mass spectrometry data 

2.1.1. Instrumentation 

One instrument that has a complex preprocessing scheme is atmospheric pressure interface 

time-of-flight mass spectrometer, APiTOF (Junninen, et al. 2010) (PAPER I). This 

instrument is equipped with an interface to sample ions in gas samples at atmospheric 

pressure and from ground electrical potential. The mass spectrometer analyzes the mobility 

of ions in vacuum, hence measuring the mass of the ions. The instrument is depicted in 

Figure 1; it consists of an inlet that delivers the gas sample through an orifice (300μm) to 

four consecutive, differentially pumped chambers. The first three are used for focusing the 

ions and the last one for measuring the time of flight of the ions. The time of flight is 

measured by giving an energy pulse that sends the ions to travel in the orthogonal direction 

of the initial travel path and by detecting the arriving ions at a multi channel plate (MCP 

detector) (Gonin, et al. 1998). This step is called extraction. The time of flight of the ions is 

determined as the time difference from the pulse to their detection at the MCP.  
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Figure 1. Schematics of APiTOF. The inlet for the gas sample is the opening at the left. 

Sample flows are regulated by a flow control unit. It is followed by 4 differentially pumped 

chambers, the first 3 of which are for ion focusing and the last for measuring the time of 

flight of ions.   

The detector of the mass spectrometer is a multi channel plate, which is a kind of electron 

multiplier where the impact of a charged ions (or particles) generates a pulse of electrons. 

Every time those electrons collide to the channel walls even more electrons are released. 

The channels are organized so that the amount of collisions is maximized and high voltage 

across the plates drives the electrons towards the anode, where the total current is measured. 

This is the primary measurement of the APiTOF. However, this primary data is not 

recorded per se, but is processed further on hardware. There are two ways the primary 

signal can be processed. (1) The simplest is just to record an event of ion collision at its time 

of arrival. For this the current has to exceed a user defined threshold separating the signal 

from the electronic noise. (2) The second method is to record the magnitude of the event in 

addition to the time of arrival. If two ions hit the MCP at the same time twice the current 

will be generated. For the acquisition of the data from the first method a time-to-digital 

converter (TDC) can be used and for the second method an analog-to-digital converter 

(ADC) can be used. With the latter technique the operator first has to make a calibration, by 

which the signal from a single ion has to be measured. In case of the TDC this calibration is 
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not needed, since only the time of arrival is stored (magnitude information is lost). In both 

cases a correct threshold has to be applied. 

APiTOF is pulsed at a frequency of 8-12kHz, corresponding in average to 10 000 pulses per 

second. During every pulse one spectrum is generated, which is called an extraction. For 

ambient applications not all generated spectra are saved. Instead 1-10 seconds of data is 

accumulated and then saved to the hard disk. In case of a 10 second accumulation, co-

addition of 100 000 spectra will be saved. A spectrum consists of data points that are 

acquired by acquisition card at fixed sampling rate. The rate has to be set by the operator. 

Typically the sampling rate (actually sampling interval) is set to 400 pico seconds. In 

practice this means that if the APiTOF is being pulsed at a frequency of 10kHz, it takes 

0.1ms to record one spectrum, if acquisition is done every 400th ps the number of data points 

per spectrum is 250 000. In other words, a typical ambient air measurement generates 

250000 data points every 10 seconds. Thus it goes without saying that such raw data 

requires preprocessing before attempts of interpretation can be commenced. Algorithms for 

preprocessing are described and discussed in the following (PAPER I). 

2.1.2. Preprocessing software  

In this thesis a complete set of preprocessing tools for analysis of time of flight mass 

spectrometry was developed; the package is called tofTools. The development was done in 

Matlab (MathWorks 2012). The main reasons for choosing Matlab were the compromise 

between easy coding and computational efficiency for large matrices, platform 

independence and easy graphical user interface adaptation. The software, tofTools consists 

of a set of command line functions that can be called from a script file for automation and 

batch processing, and a graphical user interface  (GUI) for easy and quick visual data 

analysis. With this tool it is possible to generate a script for batch processing from the GUI. 

Figure 2 summarizes the entire process and in the following chapters all individual 

preprocessing steps are explained in detail. 
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Figure 2. Process schematics of preprocessing of time-of-flight mass spectrometer data by 

tofTools. UMR – unit mass resolution, SIR – signal integration region, NIR – noise 

integration region, HR – high resolution  

2.1.3. Averaging 

Often the sampling is set up so that the acquisition time resolution is higher than actually 

needed for the working time resolution. This gives the benefit to filter out bad data (bad in 

the sense of failed, contaminated or interfered measurements) and choose a different 

working time resolution depending on the purpose. For example if data is acquired at a 5Hz 

resolution one can calculate fluxes, where very high time resolution is needed, but at the 

same time the data can be averaged to 10min time series for more traditional concentration 

data analysis.  

The backbone for house keeping of the data preprocessing is an HDF-file (hierarchical data 

format, (HDF 2000-2010)), the files is appended every time a new preprocessing step is 

done. Finally, when all preprocessing is done this file contains the final result of the 

analysis. The HDF data format was chosen because it allows data compression that is 

transparent for the user and it supports large matrices and partial data access without 
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reading the whole dataset. This lowers considerably the memory requirements for the 

software.  

Although the step is called averaging the actual mathematical operation that is performed, is 

summing. After this step the sum of all signals per time-of-flight bin (the earlier example had 

250 000 bins, one bin 0.4ns wide) (unit is mV/extraction) is saved together with the number 

of pulses (extractions) made during the averaging period, the starting time of the averaging 

period and the single ion signal (mV/ion) for each time step.  This information is then used 

to calculate a signal in units of ions/s.  

2.1.4. Instrumental parameters 

The mass spectrometer in constant ambient conditions is a fairly stable instrument. 

However, the performance of the instrument can vary a great deal when ambient conditions 

are changed (temperature and pressure) or ion-guiding voltages are altered.  Some 

instrumental parameters can be pre-defined for fixed set of voltage settings (so called tuning 

settings) and measured data corrected in retrospect, such parameters are: peak-shape, 

transmission and resolution functions. These settings are not sensitive to the above-

mentioned change in ambient conditions. However, a radical change in the    ambient 

pressure will change the transmission. This has to be kept in mind when sampling from a 

high altitude mountain site or conducting air born measurements. Sampling at sea level 

compared to the sampling at a high mountain site, for example at 3500m, will change the 

pressure from 1atm to 0.6atm, which has a considerable influence on the transmission. The 

mass calibration is an instrumental parameter that is sensitive to ambient temperature - not 

as much to temperature of the sampling gas as to the temperature of the instrument itself. 

 

2.1.4.1. Peak-shape 

Often it is assumed in mass spectroscopy that the acquired signals are perfectly symmetric 

Gaussian peaks. In reality this is rarely the case. For a practical solution many 

mathematical approximations are available (Di Marco and Bombi 2001), but none of them 

can cover all the peak shapes. Previously a novel way has been presented of measuring the 

peak shape from real data and applying this numerical peak-shape-model in the pre-

processing phase (DeCarlo, et al. 2006). In PAPER I this idea is developed further by 

applying a constraint to the peak-shape-model, by which the peak-shape can only be 



 16 

monotonically increasing and/or decreasing (left side of the peak and right side, 

respectively).  

The peak-shape is obtained by searching for single peaks in a one unit mass window. From 

each peak we subtract the position of the peak. Now all found peaks are centered at 0. Then 

all peaks are normalized by the width of the peak (sigma, assuming a Gaussian peak shape), 

which is determined by measuring the actual width at the half of the maximum signal 

intensity (fwhm) and converting it to sigma (𝜎) by Eq 1 

𝜎 =
𝑓𝑤ℎ𝑚

2 2 log 2
 Eq 1 

Where 𝜎 denotes the Gaussian width and fwhm denotes the full width at half maximum. 

Additionally, also the signal intensity of all peaks is normalized to unity. In Figure 3 the 

individual normalized peaks are shown in panel A, and the actual peak-shape function in 

panel B. 

 

  

Figure 3. Measuring the Peak-shape. A) 40 found peaks overlaid; each individual peak 

centrum is removed and is normalize to unit intensity and width. B) Calculated median 

peak and fitted peak-shape. 

 

The individual normalized peaks are averaged (median) and the monotonic peak-shape-

function is fitted. The obtained peak-shape model can take any shape of the measured peaks 

and improves drastically the peak fitting. The only assumption taken here is that the peaks 

used for defining the peaks-shape function contain only one chemical compound. 

A B 
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2.1.4.2. Mass calibration 

A time-of-flight mass spectrometer measures the time it takes for the ions to travel a fixed 

distance. A mass calibration is performed in order to relate the measured time to the ion 

mass (or mass/charge actually). Mass/charge is a quantity used in mass spectrometry and 

has the SI unit of kg/C, where kg is mass and C is Coulomb. However the use of this unit is 

not very practical; instead Thomson (Th) is used here. 1Th = 1 Da/e = 1u/e=1.0364×10-8 

kg/C, where Da and u are Dalton and unified atomic mass units, respectively. 1Da is 

defined as 1/12 of mass of 12C isotope mass and is 1.660×10-27kg.  

The ratio of mass/charge is physically well defined, but more accurate results are obtained 

when empirical calibration functions are used. Since the calibration functions are empirical 

there is no clear rule which function to use. The four functions for the mass calibration 

implemented in tofTools are listed in Table 1. 

 

Table 1. Mass calibration methods implemented in tofTools. 

Equations Name in tofTools Number of parameters 

𝑀 = 𝑚
𝑄 =

𝑡 − 𝑏
𝑎

!

 2 parameter model 2 

𝑀 = 𝑚
𝑄 =

𝑡 − 𝑏
𝑎

!

 3 parameter model 3 

𝑀 = 𝑚
𝑄 = 𝑝!𝑡!! + 𝑝!𝑡!! + 𝑝! 2 parabola model 5 

𝑀 = 𝑚
𝑄 = 𝑝!𝑡! + 𝑝!𝑡 + 𝑝! Quadratic model 3 

Where m/Q – mass/charge, a,b,c,p1,p2,p3,p4,p5 – empirical coefficients, t – flight time of an ion.  

 

2.1.4.3. Resolution function  

The resolution function expresses the resolving power of the mass spectrometer over a mass 

range. The resolving power is defined as: 

𝑅! =
𝑚
∆𝑚 Eq  2 

where Rm – resolving power for mass m, Δm – peak width at half maximum of the peak. 
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For TOFs of the Tofwerk brand – used for the present thesis - the resolving power is about 

constant over the mass range, except for low masses bellow 200Th (Tofwerk: the instrument 

manual). The mass dependency of the resolution can be corrected by Eq  3 

 

𝑅! =
𝑚

𝑎𝑚 + 𝑏 Eq  3 

Where a and b are parameters to be measured by finding a linear dependency between the 

peak width (FWHM) and the position (mass). In an ideal case each of the peaks in the 

spectrum is a single component peak (consists of only one molecule) finding the parameters 

is straightforward. However, often it is not known if the peak has one or more components 

and the challenge is then to know which peaks are single peaks and which are not. One way 

to find the single component peaks is to assume that at least some of the peaks are single 

peaks and by fitting one Gaussian to all of the peaks and plotting the FWHM against mass 

(Figure 4). By this representation the multicomponent peaks appear wider than the single 

component peaks at the same mass and single peaks form a lower edge of the data cloud in 

FWHM-mass space. By finding the lower edge we find the single component peaks and can 

find the parameters in Eq  3. 
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Figure 4. Resolution function. The upper panel shows the peak widths plotted against the 

mass. The black dots are multicomponent peaks and blue dots are peaks assumed to be 

single component peaks. The red line represents a linear fit to the data. In the lower panel 

the same fit is plotted using Eq  3 as the resolution function. 

 

2.1.4.4. Transmission function  

In APiTOF not all the ions have the same transmission through the APi-part of the 

instrument. The ion guides (ion lens and quadrupoles) have a specific mass window that 

depends on the operating voltages. Overall, the system is not simple to model theoretically 

and one way to estimate the ambient ion concentrations is to calibrate the instrument for 

mass dependent transmission. This has to be done for each voltage setting and instrument 

separately.   

In order to define the transmission function the API-TOF is connected in parallel with an 

electrometer. Both instruments are sampling the same mobility classified sample from a 

Herrmann –type high resolution differential mobility analyzer (HDMA, (Herrmann, et al. 

2000)). The HDMA uses high flow rates (sheath flow rates of up to 2000 l min-1 and sample 

flows of 15 l min-1) and can classify ions with a mobility diameter ranging from 0.8 to 10 nm 

(Asmi, et al. 2009, Ehn, et al. 2011, Kangasluoma, et al. 2013). The calibration ions are 
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produced by a tube furnace or an electrospray (see details in (Kangasluoma, et al. 2013)). 

An example of a transmission function is depicted in Figure 5. 

 
Figure 5. Transmission function of a APiTOF 

 

2.1.5. Data reduction into a stick diagram 

2.1.5.1. Unit mass resolution sticks 

The raw data that the APiTOF produces can have 250000 data points per averaged time 

period. The traditional way to reduce the amount of data in mass spectrometry is to 

combine meaningful parts of the spectrum together. Unit Mass Resolution sticks (UMR-

sticks) in tofTools will sum up the entire signal in 1Th window. This 1Th window is divided 

into the Signal-Integration-Region (SIR) and the Noise-Integration-Region (NIR). Finally 

the noise corrected data is calculated by subtracting the integrated signal in NIR from the 

integrated signal in SIR (Figure 6). Traditionally SIR and NIR are defined so that the 

centrum of the SIR is at the integer mass.  
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Figure 6. The Signal-Integration-Region (blue) is set to be 0.8Th wide and the Noise-

Integration-Region (red) is set 0.2Th wide.  

 

In Figure 6, peaks at 238Th show one potential problem of this kind of UMR sticking. If 

there are double peaks at a certain mass the chemical information is all summed up and 

information is blurred.  

The second problem with the UMR sticks is the mass defect. Here we define the mass defect 

as a difference between the nominal mass (number of nucleons) and the exact mass 

(measured and referenced to the mass of 12C, (NIST isotope database, (Coursey, et al. 2005) ). 

The mass defect is the fraction of a mass of the atoms that is used as a binding energy. E.g. 

for the carbon atom the exact mass is 12.000Da and when summing up all the nucleons i.e. 

neutrons, protons and electrons (6×1.008 664+6×1.007 276+6×5.485 799×10-4=12.0989, 

Mohr et al 2011) the mass difference will be 0.0989Da. It is valid for all of the elements that 

the mass of the nucleus is less than the combined mass of the individual nucleons, which 

may become a problem for UMR sticks for large molecules where the mass defect can be so 

large that the exact mass will be shifted from SIR to NIR. This will result in negative values 

since the signal will be “measured” from the wrong part of the spectrum. The shift due to 
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the mass defect can be rectified by applying mass defect correction to SIR and NIR limits, 

but this only helps when all peaks in a spectrum consists of similar substances e.g. all peaks 

are organic chemical compounds containing only C, H and O. However, if other elements 

are also present UMR sticks cannot be used reliably. For example two molecules with the 

nominal mass of 509Da can have an exact mass of 509.6025Da or 508.6727Da depending 

on the elemental composition (C36H77 and I3O8, respectively). If those two molecules are 

present in the sample spectrum UMR sticks cannot be used. The solution here is to use high 

resolution sticks. 

2.1.5.2. High resolution sticks 

The purpose of the high resolution (HR) sticks is the same as the UMR sticks, namely to 

present a spectrum in a more practical, reduced format. But instead of crudely integrating 

over a defined range in the spectrum, the HR sticks take a full advantage of pre-defined 

instrument parameters (mass calibration, peak shape, resolution function), the elemental 

composition of identified compounds and the isotopic abundances of elements.  

HR fitting is most effective if a majority of the peaks are identified and the elemental 

composition has been assigned. The software (tofTools) calculates automatically all 

significant isotopes for each peak and uses them in fitting. When using the isotopes in HR 

fitting the magnitude of the isotopic peaks are fixed to the main peak according to natural 

abundances. If the peak-shape is defined, also this is used for all the peaks. Otherwise the 

peaks are assigned the shape of Gaussian function. The width of the peaks is calculated 

from a predefined resolution function with the only parameter fitted being the area of the 

peaks. This is obtained by the minimizing norm, Eq  4 

𝑀𝑖𝑛 𝛽𝑦 − 𝑦 = 𝑀𝑖𝑛 𝛽𝑦 − 𝑦 !
!

 Eq  4 

where y is measured spectrum, 𝑦 is fitted spectrum and β is the area of the overlapping 

peaks.    

The procedure for fitting multiple overlapping constrained peaks is illustrated in Figure 7. 
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Figure 7. Fitting procedure step by step. A) Averaged spectrum. B) Peak kernels to be fitted 

to the data. The red peaks have a known composition and the isotopes (blue) associated. 

The ratio red/blue remains constant throughout the fitting. Green peaks are peaks found by 

the algorithm. All the peaks to be fitted have a predefined fixed peak shape, a predefined 

width from the resolution function and a fixed position based on a known composition or as 

result of the peak search algorithm. C)  Peaks fitted to the data.  

2.1.6. Finalizing data 

When the spectrum is compressed into a stick data matrix the preprocessing of the raw mass 

spectrometer data is almost finished. Now the unit of the data is ions/s. To convert this to 

ions/cm3 we have to apply the transmission function, defined earlier and account for the 

sample flow to the instrument (in case of APiTOFs with a 300um pinhole it is 0.75l/min). 

In case of artificial ionization in front of the instrument we have to account for the charging 

efficiency that is calibrated separately in laboratory (Petäjä, et al. 2009, Jokinen, et al. 2012).   

The preprocessing steps of the APiTOF is one of the most complicated ones used in this 

work, but all instruments have similar steps when converting from raw signal to the final 

data product.  
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3. Missing data imputation 

Generally all the observation datasets have some values that are missing and this issue has 

to be dealt with somehow. The need for imputing the missing data with some values or not 

comes from the requirements of the methods that will be used to analyze the data. If the 

methods are tolerant to missing values no imputation is needed. However, some methods 

like time series analysis, require continues data, and thus missing values has to be imputed. 

A commonly used method is to substitute the missing values with a mean of the variable. 

This preserves the mean of the variable, but distorts all other statistical measures, like 

correlations and covariance and considerably affects the inherent structure of data. PAPER 

II studies the multiple imputation methods and proves the substitution with the mean to be 

the worst imputation scheme investigated.  

The missing data imputation methods can be divided into two groups: univariate and 

multivariate methods. The univariate methods use only the very same variable that is being 

fixed, while the multivariate methods utilize all the measured information. In addition we 

developed (PAPER II) a hybrid method by which time wise small gaps were imputed first 

with the linear interpolation and afterwards with the multivariate methods. This method 

improved considerable the quality of imputed missing data. Even better results were 

obtained when the hybrid method was used with the multiple imputations scheme. Here not 

only one multivariate method was used but an average of all of them. This improved the 

robustness of the imputation, but computational cost increased as all the multivariate 

methods had to be calculated first.  

3.1.1. Computational methods 

In PAPER II complete data sets (in sense of not having missing data) from Helsinki and 

Belfast were used for testing and missing data was generated artificially. Different missing 

data patterns were used to mimic the real world appearance of missing data.  

3.1.1.1. Univariate methods; Linear, Spline, Nearest neighbor 

Univariate nearest neighbor is a straightforward and robust method for the missing data 

imputation. With this method no new data values are introduced as only the values present 

in the data are used. In some applications this is an important feature, however not in 

atmospheric sciences. In the nearest neighbor method, endpoints of a gap are used to fill in 

the missing values. In the linear interpolation method, the missing values are estimated 
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from a linear function between the endpoints of the gap. And finally, in the spline method 

cubic polynomials are constructed to series of measured data points. A comparison of the 

performance of the univariate methods as a function of gap length is shown in Figure 9. The 

critical gap lengths for meteorological and trace gas concentrations when using the linear 

interpolation in the Helsinki (white bar) and Belfast (black bar) data sets. RH relative 

humidity, T temperature, WD wind direction, and WS is wind speed (PAPER II).The Y-

axis in the figure is an index of agreement (Willmott 1982) that is defined in Eq  5 

 
Eq  5 

where k is either 1 or 2. In this work k set to 2, N is the number of imputations, Oi the 

observed data point, Pi the imputed data point, O  is the average of observed data. Two 

methods, the nearest neighbor and the linear interpolations were performing equally well, 
but the cubic spline lost the performance very quickly when the gap length was increased. 

 
Figure 8. Performance of univariate interpolation methods as a function of gap length. Solid 

line—linear interpolation, dashed line—nearest neighbour interpolation and dotted line—

cubic spline interpolation. (from PAPER II) 

 

 

 

standard deviation of the imputed data and sO the
standard deviation of the observed data.
However, as emphasised by Willmott et al. (1985), the

values of these indicators may be unrelated to the sizes
of the discrepancies between the predicted and observed
values. To circumvent this problem, an index of
agreement (d) has been developed (Willmott, 1982):
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where k is either 1 or 2. The index has been employed
throughout this work with k set to 2 (d2).
The root mean squared error (RMSE) which sum-

marises the difference between the observed and
imputed concentrations was used to provide the average
error of model.
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Moreover, the mean absolute error (MAE) was included
to the comparison as more sensitive measure of residual
error as RMSE.

MAE ¼
1

N

X

N
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jPi "Oi j: ð11Þ

The cyclic nature of wind direction was taken account in
the calculations of mean and distance values. The
average value was calculated by using four quadrant
arctangent function for sine and cosine components of
wind direction and the distance between predicted and
observed through the nearest direction.
Finally, in order to achieve more understanding of the

accuracies of the indicators the standard errors (SE)
were calculated by using the bootstrap method (Efron

and Tibshirany, 1993) with 300 bootstrap samples. In
this procedure, samples have been chosen randomly with
replacement from an imputed data set, and then the
performance of each sample has been analysed the same
way. Lastly, SE is derived as a standard deviation of
performance analysis.

2.5. Execution of the tests

First of all, the ability of the interpolation methods
was examined in order to determine the most feasible
interpolation method in the later stages of the work. For
examining that, simulated incomplete data were gener-
ated with percentage 25% of items missing and varying
gap lengths within the range f1;y; 50g to the Helsinki
and Belfast data sets, after which the univariate methods
were applied to the data. Lastly, the comparison of the
interpolation methods was considered as a function of
gap length against performance criterion d2 (see Fig. 2).
Based on these tests, the LIN was selected for further
evaluation (see Section 3.1).
In the next phase, the main comparison was

performed between the LIN, the multivariate methods
(REGEM, NN, SOM and MLP), the hybrid methods
(H+NN, H+SOM and H+MLP), the multiple im-
putation procedures (MI and H+MI) and reference
methods, namely the substitution of mean value
(MEAN) and random value (RAND). Four missing
data patterns discussed in Section 2.2 (Table 2) were
used for testing the methods in different missing data
conditions. The performances were examined for each
missing data pattern (see Section 3.2) by calculating the
statistical indices (Section 2.4) as the average of data
columns.
Moreover, the assessment was made for time series

separately (see Section 3.3) in order to achieve a more
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3.1.1.2. Multivariate nearest neighbor 

The multivariate nearest neighbor method handles a row of N-variables as co-ordinate in an 

N-dimensional space and calculates Euclidian distances of the row in question to all other 

rows. Then the closest row is used to fill values for missing data. The distances are weighted 

down proportionally with the number of missing data in a row, to compensate the lesser 

reliability of the incomplete rows (Dixon 1979). 

3.1.1.3. Self organizing maps, SOM 

Self-organizing map (SOM) neural networks (Kohonen 1997) have been widely employed 

including applications to the atmospheric sciences (Kolehmainen, et al. 2001). The SOM 

belongs to a group of unsupervised neural networks, which do not need to have the “right 

answer” during the adaptation process. It learns the structure of the data and adapts itself to 

that. Later the map can be used to “predict” data. The basic idea of the SOM is to construct 

a mapping from a high dimensional input space to a low dimensional output space 

consisting typically of a two-dimensional array of map units.  

The map units (neurons) have the same number of weights as there are input dimensions. 

Each weight is randomly initialized and gets iteratively changed when teaching data is 

presented to the map. At the end the map units represent the portion of the data that are the 

most similar to that map unit (best matching unit, BMU).  During the adaptation process 

the missing data is ignored and for missing data imputation the corresponding value from 

BMU is used (see details in PAPER II).  

3.1.1.4. Multilayer perceptron, MLP 

The multilayer preceptor is a supervised learning artificial neural network. This is one of the 

most commonly used and among the most powerful neural network schemes with 

application in many fields, including atmospheric sciences (Gardner and Dorling 1999). The 

MLP utilizes feed-forward architecture and neurons are updated by back propagating the 

error. The network contains multiple layers with n-neurons in each layer, and all the 

neurons are connected to all the neurons and the weights on each connection are updated 

iteratively. The number of layers and neurons are design parameters and are normally 

defined experimentally. In PAPER II we used a 2-layer design with a separate network for 

each missing data pattern.  
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3.1.1.5. Regression based imputation 

Regression-based imputation methods construct a linear regression model between the 

missing data and the available data. A separate model is made for each of the variables. 

Here, the method is based on iterated analysis of linear regression by using the expectation 

maximization (EM) algorithm (REGEM) (Schneider 2001).  

3.1.1.6. Hybrid model in PAPER II 

Finally a hybrid method was developed where small gaps were filled first by the linear 

interpolation method and then the multivariate method was applied. The idea was that the 

linear interpolation is very reliable for small gaps and if further used in the training set of 

multivariate methods it improves considerably the overall performance. The critical gap 

length that was imputed using the linear interpolations depends on the variable and was 

estimated separately for each of the variables. Figure 9 shows the critical gap length for two 

data sets (see details on how the critical gap was estimated in paper II). We see big 

differences between variables. The differences originate from the different atmospheric time 

scales of the variables.  
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Figure 9. The critical gap lengths for meteorological and trace gas concentrations when 

using the linear interpolation in the Helsinki (white bar) and Belfast (black bar) data sets. 

RH relative humidity, T temperature, WD wind direction, and WS is wind speed (PAPER 

II). 

3.1.2. Performance  

Missing data imputation is a complicated task and it is preferable to avoid missing data in 

the first place. However, if missing data has to be imputed a general recommendation is to 

use the hybrid methods. First the small gaps are filled by linear interpolation and then 

multivariate methods are used. One of the most reliable and fastest methods is Multivariate 

Nearest Neighbor. Neural networks perform slightly better, but the usage is much more 

complicated. Table 2 summaries the pros and cons of different methods tested in this study.  

 

 

 

2.3.6. Hybrid model
In a ‘hybrid’ procedure considered here, short gaps

are filled by the LIN and the rest of gaps by some
multivariate method such as neural networks. The basic
idea behind the method is an assumption that missing
data in short gaps can be completed reliably by using
the LIN, and further included to the training set of
multivariate methods. This improves the performance
of multivariate methods at least in case that a number of
variables in a data row are missing and multivariate
methods cannot derive enough information of a row
pattern.
In this context, the critical length of gap depends on

the variable under study, i.e. the maximum length of gap
that can be replaced by the LIN must be estimated
separately for each variable (see Fig. 1.), employing
multiple linear regression with gradient and the ex-
ponent a as the independent variables (Eq. (7)):

expðdiÞ ¼ Ai expðgradiÞ þ Bi expðaÞ þ Ci: ð7Þ

In this expression di is the index of agreement (see
below), calculated iteratively for increasing hypothetical
gap lengths i (range in the present material 1pip20Þ;
gradi is the average gradient over the gap length i
calculated for every available time point of the variable
(real gaps in data were ignored), a is the exponent
(Veitch, 2001; see also definition below), which is also
calculated ignoring the real gaps, and Ai, Bi, and Ci are
regression coefficients for the gaps i calculated from
data sets.
The calculation of d was performed iteratively until

the value of the index dropped below a chosen limit, in

this case 0.90. The index was evaluated for gaps shorter
than 20 values, the maximum gap length for replacement
by the LIN in this ‘hybrid’ procedure.
The exponent a can be defined as follows (Feder,

1988): if the power spectrum of a time series depends on
the frequency (f), the fluctuation is said to be 1/f a–like
(‘coloured’ or flickering) noise. The spectral exponents a
range approximately from 0 to 3, and the terms ‘white’
(a=0), ‘pink’ (a=1) and ‘brown’ (a=2) noise are in
common use in the field of signal analysis. In practice,
the slope of the best-fit line for the power spectrum as a
function of frequency, both expressed on a logarithmic
scale, gives a least-squares estimate for the spectral
exponent a.

2.3.7. Multiple imputation scheme
The uncertainty attached to missing data may result

into poor estimates due to insufficient sampling and
disadvantages of the single imputing methods described
above. Therefore, more accuracy can be attained by
using model-based multiple imputations (MBMI) that
solves the problem of underestimation of the error
variance (Schafer, 1997). Probably, the most widespread
MBMI approach for continuous multivariate data has
been a normal model based method namely the NORM
(Schafer, 1997), which can be loaded from the web
address http://www.stat.psu.edu/Bjls/misoftwa.html.
Recently, new promising MBMI-like methods have

been developed. For example, Chiewchanwattana and
Lursinsap (2002) used several different fill-in methods
and generalised ensemble method (Perrone and Cooper,
1993) successfully in combination for improving the
performance of neural networks in the incomplete time-
series prediction. In this study we were interested to test
straightforward approach where any weighting or more
complex methods were not used but missing data
estimate was derived directly as the mean output of
multivariate methods (NN, SOM and MLP) and hybrid
methods (H+NN, H+SOM and H+MLP) namely MI
and H+MI.

2.4. Performance indicators

Several performance indicators were calculated for
describing the goodness of imputation. The most
common indicators of imputation ability are the
correlation coefficient (R) and its square: coefficient of
determination (R2), i.e. the variance explained which is
limited to a range between 0 and 1.

R2 ¼
1

N

PN
i¼1½ðPi & %PÞðOi & %OÞ'

sPsO

" #2

; ð8Þ

where N is the number of imputations, Oi the observed
data point, Pi the imputed data point, %O is the average
of observed data, %P average of imputed data, sP the
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Table 2. Summary for missing data imputation methods (more details see PAPER II). 

 

4. Saving and presenting measurement data 

4.1. Database 

After the measured raw data have been converted to physically meaningful quantities, 

corrected for flawed data values and missing data have been imputed, the data-set is ready 

for further usage. However, first it has to find its way away from the researcher work 

computer and has to be saved to a reliable location together with all relevant meta-data and 

connectors to other data collected from the same measurement site and time. The best 

media for doing this is a relational database (Codd 1970). In this way other researches get 

access to the data. 

A good example of usage of a relational database as measurement data storage and sharing 

media is the database for the SMEAR stations ((Hari and Kulmala 2005, Järvi, et al. 2009), 

PAPER III). In this example the database is build in MySQL (structured query language) 

language and holds about 170 variables that can be divided into 7 logical blocks: 1) Gases: 
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Table 5
Pros and cons of the imputation methods studied in the work

Method Performance Speed Reliability Comments

Short gaps Long gaps Short gaps Long gaps

Linear interpolation +++++ + +++++ +++++ +++ Applicable for short gaps; utilises only local information
Linear regressions
(REGEM)

+++ ++ +++ +++ ++ Limited only to linear relationships of variables;
applicable for the variables having strong linear
correlations

Multivariate nearest
neighbour (NN)

+++ +++ ++++ ++++ ++++ Employs existing data only; incomplete rows are utilized

Self-organizing map
(SOM)

+++ +++ +++ ++++ ++++ Repeatable; incomplete data rows are utilized

Multi-layer
perceptron (MLP)

+++ +++ ++ +++ +++ Not repeatable; incomplete data rows are not utilized

Hybrid methods +++++ ++++ +++ ++++ ++++ The best overall methods; performance depends on what
methods are combined together

Multiple imputations +++++ +++++ + ++++ +++++ The best imputation procedure; reflect the uncertainty
attached to missing data

+ Poor, +++++ Best.
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NO, NOx (NO+NO2) SO2, O3, H2O, CO2, CO for all 6 sampling heights; 2) Meteorology: 

Temperature, Pressure, RH (relative humidity), Wind speed and direction, precipitation, 

visibility; 3) Radiation: Global radiation, diffuse global radiation, direct global radiation 

(global radiation – diffuse global radiation), reflected global radiation, net radiation, PAR 

(photosynthetically active radiation), reflected PAR, UVA (ultraviolet A) radiation, UVB 

(ultraviolet B) radiation; 4) Aerosols: number concentration and size-distributions measured 

by differential mobility particle sizer (3-1000 nm, DMPS), black carbon (7 wavelength 

aethalometer), optical properties (3 wavelength nephalometer), mass concentration bellow 

1um, 2.5um and 10um diameter particles (PM1, PM2.5 and PM10, impactor); 5) New 

particle formation classification according to (Dal Maso, et al. 2005); 6) Back-trajectories 

calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 

model (Draxier and Hess 1998) for 3 arriving heights and 4 days back. Together with 

trajectory coordinates also the meteorology along trajectory has been saved to database; 7) 

Emission point sources from the European Pollutant Emission Register 

(http://eper.eea.europa.eu/eper/; 10000 facilities). 

Preprocessed measurement data is saved every two hours. However, it is not quality 

controlled and every few month manual quality control is performed for the data.  

4.2. Web interface 

The database has a user interface that allow quick and convenient data browsing and 

exploring, called Smart-SMEAR (www.atm.helsinki.fi/smartSMEAR) and is built using 

php-scripting language, Javascript and graphics package JPGraph - PHP Graph Creating 

Library (http://www.aditus.nu/jpgraph/).  

The value of the tool is its simplicity. The idea is to give a first quick look and overview of 

the atmospheric composition. Figure 10 presents the main view of the smartSMEAR web 

site (PAPER III).  
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Figure 10. Illustration of the main view of the smarSMEAR. The left hand side is the 

selection panel, the middle shows back-wards trajectories, and the right hand side depictures 

aerosol, gas and meteorological data. In the actual web page also meteorology during the 

trajectory and some more gas concentration plots are presented.  

  

Smart-SMEAR has been used for teaching in university classes and the results have been 

extremely encouraging for education of student groups with members from a variety of 

different disciplines. In the courses students can explore complicated set of variables to 

conclude whether some specific phenomena was occurring. Smart-SMEAR allowed them to 

skip data processing and plotting and jump directly to visual presentation of the data. After 

a quick exploration students could concentrate on more details by downloading the data 

through the interface and conduct further analysis.  Smart-SMEAR was given an honorable 

mention in the University of Helsinki educational technology competition in 2007. 
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5. Advanced data analysis by multivariate methods 

The selection of methods for extracting information from data is not trivial and is influenced 

by many factors. The most important factors in selecting one analysis method over others 

are: 1) the type of result desired; 2) the skill level of a researcher; and 3) the quality of the 

data. Data analysis can be divided into two main categories by the type of relationship being 

studied: dependent or interdependent. The dependent relationship means that the data 

consists of variables that are dependent on other variables and the model tries to find the 

statistical dependency and predict the dependent variable(s). In case of interdependent 

relationship we try to understand the structure of the data by either searching underlying 

latent variables or communalities, or classifying samples into groups. The schematic in 

Figure 11 illustrates a path for selecting the appropriate multivariate method for the analysis 

(adopted from Hair et al 2005).  

 
Figure 11. A scheme for selecting the appropriate multivariate method for the analysis. 

MANOVA – multivariate analysis of variance, CMF – constrained matrix factorization, 

CMB – chemical mass balance, FA – factor analysis, PCA – principal component analysis, 

PMF- positive matrix factorization, COPREM – Constrained physical receptor model 

(Wåhlin 2003). 
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5.1. Source apportionment 

When analyzing data from any single atmospheric measurement station, often the question 

of air mass origin is raised. Whether the interest is to analyze details of clean or polluted air 

masses one needs to know the sources and routes affecting the composition of the air 

masses, in other words, to apportion the sources. Source apportionment is a common term 

that includes a wide variety of techniques in environmental data analysis where pollution 

sources are “back calculated” from accumulated data (signals from all sources are mixed) 

obtained at the receptor site.  

When constructing a model for the source apportionment variables are not separated to 

dependent and interdependent variables, but instead hidden underlying variables are 

searched. Following the schematic in Figure 11 we are selecting a branch under 

interdependent relationship and structure between variables, which includes the methods 

CMB, CMF, and COPREM when a priori information is available and factor analysis, PC, 

and PMF when a priori information is not available. In this work I used CMB, CMF for 

source apportionment of PM10 sources from Krakow and Zakopane measurements. These 

two methods were compared to other multivariate receptor models:  EPA-Unmix  (Edge 

analysis), EPA  positive  matrix  factorization,  PCA coupled  with  multi-linear  regression  

analysis (SI of paper IV). 

5.1.1. Chemical mass balance, CMF 

The Chemical Mass Balance model (Friedlan.Sk 1973) solves a set of linear equations 

where each receptor chemical concentration is a linear sum of products of source fingerprint 

profile abundances and source contributions. The model takes the source chemical 

fingerprint and receptor chemical time series as an input and solves the relative 

contribution. The model has been used widely in atmospheric studies and is one of the 

recommended methods for source apportionment by US EPA.  

The model has several assumptions and requirements that make the applicability to real 

world use difficult. The CMB requires that we have accurate chemical fingerprint of all 

significant sources that the receptor site is exposed to. In addition the CMB assumes that the 

source fingerprint profiles do not change over time and that the tracers used in the profile do 

not react with each other and do not change phase by e.g. re-partitioning processes. 

However, these requirements can be relaxed slightly by requirement for uncertainty 

estimates for the ambient concentrations and source profiles. In other words, if the 
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chemical/physical transformation is known, this information can be incorporated to the 

CMB model through uncertainty estimates (Latella, et al. 2005, Demir and Saral 2011). On 

the other hand when all the requirements are fulfilled, CMB gives the most accurate source 

apportionment of all methods.  

 

5.1.2. Positive Matrix Factorization, PMF 

As a receptor model, the PMF solves a least squares problem (Paatero and Tapper 1994, 

Paatero 1997) using atmospheric measurements and the associated uncertainties. The 

sample matrix is defined as a product of two unknown factor matrices (Eq  6): 

X=GF+E Eq  6 

Where X is the known n x m matrix of measurements of n samples and m measurement 

parameters. The G is n x p matrix of source contributions of p sources (factors) and F is p x 

m matrix of source compositions. E is n x m matrix of residuals. 

 Both G and F are unknown and to be determined by the model including the positivity 

constraint. The positivity constraint is well justified, if data contains physical parameters 

where negative values are not defined. This is a way to constrain a purely statistical model 

by physical a priori information. 

The unique model feature in the PMF is the utilization of error estimates Eq  7: 

𝑄 =
𝑒!"
𝑠!"

!!

!!!

!

!!!

 Eq  7 

where Q is the sum of squares to be minimized, e is prediction residual for each data point 

and s is error estimate for each data point.  

As seen in Eq  7, each residual of data point is scaled by the corresponding error estimates. 

If errors are estimated correctly, this scaling greatly enhances the performance of the model. 

Ideally the error estimates are not just the measurement errors, but also the 

chemical/physical transformation during the travel from source to receptor site is taken into 

account. Latella and coworkers have scaled the error estimates by photochemical reactivity 

when modeling VOC’s source apportionment in Bresso, Italy (Latella et al 2005). Since they 

also had source fingerprint measurements they could conclude that the error scaling by 
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photo-reactivity improved the PMF model results. Later, also the CMB has been modified 

to capture the chemical uncertainty (Demir and Saral 2011). 

Both the accurate error estimation and the positivity constraints are means to improve the 

statistical model with physical information about the system in question. Pure statistical 

factor analysis has a rotational ambiguity and constraining the rotational space by physical 

knowledge reduces this ambiguity. Other ways the PMF can take advantage of a priori 

information is to use Paatero’s multilinear engine (ME2) algorithm (Hopke, et al. 1999, 

Paatero 1999, Xie, et al. 1999) or Wåhlin’s COPREM algorithm (Wåhlin 2003). Using 

these algorithms it is possible to build a factorization model where the measured source 

profiles are utilized in optimization step, kind of hybrid models between CMB and PMF. 

Here some of the factors are locked completely or partly within confidence limits. This 

further limits the rotational ambiguity and factorization result is physically more sensible 

(mathematically all the rotations are equal).  The first mentioning of similar hybrid method 

is the transformation factor analysis  (TTFA) (Hopke 1988). Since the level of constraints 

can be relatively high we called the model Constrained Matrix Factorization, CMF 

(PAPER IV) (Junninen, et al. 2009). 

In paper IV we used CMF and CMB to apportion the PM10 sources in Krakow during 

wintertime. Table 3 summarizes the modeling results. In general the two models compared 

well and source contribution estimates (SCE) were within 95% confidence intervals. Both 

models computed the highest primary contributions to the PM10 mass to be from 

residential heating, especially in Zakopane. The second highest was industrial emissions 

and the traffic and dust resuspension were estimated to be only a minor contributions. 

 

Table 3. Source apportionments (+-95% confidence interval) for Krakow and Zakopane 

sites using two receptor models, CMB and CMF. Unit is ug/m3. (from paper IV) 

 

nificant local-range transport the contribution from small
stoves dominated at two sites near the city center (POLI and
TRAFFI) and on windy days the contribution from boilers
increased. At the remote site in Zakopane these transport
phenomena were not observed due to the absence of sources
in the vicinity.

Very high concentrations of PACs were also found in the
indoor air in the four investigated apartments following the
same temporal trend as the outdoor concentrations. B(a)P
constantly exceeded the outdoor air quality limit with more
than a factor 50 during peak episodes, which speaks of the
gravity of the pollution problem in this coal combustion area.
The single particle analysis of outdoor and indoor air in an
apartment near the POLI station revealed a striking similarity
in the indoor and outdoor aerosol (SI). Both indoor and
outdoor air masses contained identical individual particles
and gave major signals for carbon with simultaneous absence
of sulfate, chlorine, and calcium, which is typical for single
particle mass spectrometric data for coal combustion (9).
The CMB results for the indoor air in the four investigated
apartments in Krakow yielded the same main sources as for
the outdoor air (from nearest receptor site) with an expectedly
higher contribution from residential coal combustion. Similar
source implications for PAHs in indoor and outdoor air have
been published by Naumova et al. (18). For the four
apartments the average ((SD) SCEs (µg/m3) were: residential
coal combustion in small boilers and stoves (50 ( 20.4);
secondary aerosol (5.3 ( 3.1); traffic (2.6 ( 1.9); and
resuspension (1.0(0.6). The mass apportionment was higher
than 85% for all individual apartments.

CMF. A large number of exploratory model runs were
conducted with completely and partially constrained factors
for which information was available. The selection criteria
were the optimization of mass apportionment and mini-
mization of residuals for PM10 as well as single components.
The most satisfactory model contained a total of 12 factors,
six factors for which all elements were constrained, two factors
with some of the elements constrained, and four noncon-
strained factors (SI). These factors compared well to the
measured source profiles used in the CMB model with the
minor exception of the secondary aerosol components (SO4

2-,
Cl-, NO3

-, and NH4
+), which were not handled well by the

CMF approach with the relatively little data available,
although the overall model performance for all these elements
is very good (R2 > 0.95; SI).

It was assumed that secondary aerosol contributed to all
receptor samples. Thus five common secondary aerosol
components were included (NH4NO3, (NH4)2SO4, NH4HSO4,
NH4Cl, and H2SO4) as constrained factors by freezing
concentrations of the intrinsic compounds (NH4

+, NO3
-,

SO4
2-, Cl-) to their respective stoichiometric ratios. Test runs

revealed better results in terms of mass coverage and r2 for
predictions by allowing the composition of these factors to
vary between (2% soft-locking (see SI for explanation)
intervals for all intrinsic compounds.

The large contributions from coal-combustion related
sources made it necessary to partially constrain the profile
for vehicle emissions. This was done with the same literature
data as in CMB, with the exception that for CMF an average
composition of all available profiles was used with 2 times
the standard deviation of the averaged profiles as soft-locking
interval in the constraints.

Road salt is a minor source and best results were obtained
by constraining this profile to the composition of sea salt.
Since it is not clear how similar the road salt is to pure sea
salt, large soft-locking intervals were allowed for the elements
in this constrained profile (50%-200%). In practice, with
this kind of constraint the mass ratios of the compounds
that are known to be present in sea salt were allowed to vary
in the iterations, but other compounds were blocked from
entering into the profile. The soft-locking procedure resulted
in the enrichment of the profile with SO4

2-, Br-, Ca2+, Mg+,
and K+, which may not only be due to a different composition
of the utilized road salt, but also may derive from road dust.

Although constraining a factorization model largely
reduces the rotational ambiguity it will not remove it totally.
Remaining factors can still have rotational ambiguity among
themselves if they have a high degree of collinearity, which
is very much the case of the Krakow data. The remaining
major sources are likely to be combustion sources and thus,
vary only little in their composition. The best results were
obtained with four nonconstrained factors together with a
partly constrained profile for residential coal combustion
based on the source profile N10 (small stoves; Table 1, SI).
The constrained components were EC (hard-locked, see SI
for explanation) as well as OC and PAHs ((40% soft-locked)
(OC and PAHs). This containment approach yielded a factor
profile very similar to the original source profile, although
somewhat enriched for ammonium nitrate and soil minerals
(Si, Fe, Al, and Zn) and depleted for Cl- and to some extent
the 5-6 ring PAHs. The profiles that CMF yielded for the four
nonconstrained factors had Euclidian distances closest to
two CMB source profiles for coal combustion: low-efficiency
boilers (coal), steelworksPP, and two CMB profiles for wood
combustion: residential wood combustion in small stove (N5
and N6).

The SCEs obtained by CMF are compared to those of
CMB in Table 1. Generally, good mass apportionment and
predictability (R2) are observed for both models with a
generally good agreement in the estimated SCEs. Both models
compute the highest primary contributions to the PM10

pollution in Krakow and in particular Zakopane from home

TABLE 1. Source Contribution Estimates (±95% Confidence Interval) for PM10 in Krakow and Zakopane (Units µg/m3)

Krakow Zakopane

CMB CMF CMB CMF

home heating residential coal combustion in small
stoves and boilers

38 ( 11a 11 ( 5 43 ( 40 16 ( 16

residential heating (wood, coke, oil) 13 ( 6 46 ( 20 58 ( 31
industrial power generation

(coal)
LE-boilers (coal) 16 ( 3 17 ( 3 5.4 ( 3.5 5.5 ( 4.4
HE-coal combustion 3.5 ( 1.2 13 ( 5 not significant 1.1 ( 0.9

secondary aerosol
(inorganics)

sulfates, nitrates and chlorides 16 ( 2 16 ( 2 7.7 ( 3.7 9.4 ( 4.4

traffic and resuspension vehicles 5.8 ( 2.0 3.7 ( 1.5 not significant 0.5 ( 0.4
resuspension (incl. road salt) 2.1 ( 0.3 2.0 ( 0.3 not significant 1.2 ( 0.4
mass coverage 82% 84% 91% 82%
R2 0.94 0.96 0.89 0.89

a In a large number of CMB runs, profiles for residential heating (coal, wood, coke, oil) resulted collinear and were
estimated as coal.

7968 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 20, 2009
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5.2. Feature selection by Multiple Linear Regression, MLR 

Statistical models can be used to study complicated dataset, e.g. to search for the most 

correlating set of variables. However, the most correlating does not necessarily mean the 

true physical causality. The Multiple Linear Regression model, MLR, is a good tool when 

one variable is predicted by other variables, all the variables are normally distributed and 

multilinear dependency is expected (Hair, et al. 2005). MLR is defined by Eq  8: 

𝑦 = 𝛽!𝑥!

!

!!!

+ 𝛽! Eq  8 

where 𝑦 is the predicted variable, 𝛽– regression coefficients, 𝛽!– intercept and n – number of 

variables in the model. 

An experimental setup where multiple models are run and the best combinations of 

independent variables are searched for is called “feature selection” (Hand et al 2001). The 

MLR is fairly fast so that brute force method can be used by which all combinations of all 

variables are searched. However, if the number of independent variables is too high or the 

model is too slow some simplifications may be applied. Two main feature selection options 

exist, namely step-forward and step-backward selections (Hand et al 2001). The step-

forward selection algorithm chooses the variable with the best correlation as a starting point 

and adds the second variable that produces the best MLR model and so on. The step-

backward selection algorithm starts with a model that include all independent variables end 

gradually leaves out the worst independent variable. Both of the methods evaluate only a 

subset of all possible variation combinations.  

In paper V the MLR was used with a brute force feature selection to find the variables that 

are the best to explain the black carbon concentration measured in urban SMEAR station 

(Järvi, et al. 2008). Three variables explained the BC concentration: traffic intensity, wind 

speed, and mixing height. Addition of an extra variable did not improve the quality of the 

model. Separate models were run for weekdays and weekends and the effect off traffic was 

prominent during weekdays. 
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5.3. Data mining by Discriminant Analysis and Clustering 

Data mining is not a statistical method, but instead a selection of methods (Hand et al. 

2001, Hastie 2001). The methods are not predefined and complete freedom is left to the 

researcher.  The purpose of data mining is to extract information from data and present it in 

a more understandable and simpler form.  

Data mining tools are used in paper VI to find the best set of variables measured at the 

SMEAR II station to explain days with events of new particle formation (Dal Maso et al 

2005) with altogether 80 variables considered. The dependent variable was a categorical 

variable so the performance of all models was evaluated by using a misclassification rate, Eq  

9: 

𝜀 =
𝑁!"##$% + 𝑁!"#$%

𝑁!"!#$
 Eq  9 

where Nmissed  is the number of event days classified as nonevents, Nfalse  is the number of 

nonevent days classified as event days, and Ntotal  is the total number of days classified. 

This study used a selection of 7 methods to search the best two and the best three variables 

to separate non-event days from event days. 3 variable models were not significantly better 

than 2 variable models and the best 2 variable models to separate the nucleation events were 

RH and log(CS). The performance of all methods with the best variable is listed in the Table 

4,  

Table 4. Average and 95% confidence limits of 1000 runs. LDA – linear discriminant 

analysis, SVM – support vector machines, 10-NN –nearest neighbor, LDAQ -  LDA with 

quadratic boundaries. 
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Table 3. Average error rates over 1000 runs and 95% confidence intervals for different classification methods using means of RH low and
the logarithm of the condensation sink. 10-NN refers to the 10 nearest neighbor method.

Method error rate (%) false events (%) missed events (%)

LDA 11.9±0.2 11.7±0.2 12.2±0.3
logistic regression 12.3±0.2 11.3±0.2 13.3±0.3
linear regression 12.2±0.2 14.8±0.2 9.2±0.2
SVM (linear kernel) 11.9±0.2 11.7±0.2 12.0±0.2
10-NN 13.8±0.2 14.6±0.3 12.8±0.3
LDAQ 12.7±0.2 10.6±0.3 15.0±0.3
decision trees 14.2±0.2 6.5±0.2 23.1±0.4

Table 4. Average error rates over 40 runs for top ranking pairs of
variables using LDA.

Variables error (%)

RH low mean, logCS mean 11.7±0.7
RH high mean, logCS mean 12.1±0.7
H2O low mean, RH high mean 13.4±0.9
H2O high mean, RH high mean 13.5±0.9
H2O high mean, RH low mean 13.8±0.9
RGlob std, logCS mean 13.8±0.7
H2O low mean, RH low mean 13.9±0.9
RGlob mean, logCS mean 13.9±0.8
Glob mean, logCS mean 14.0±0.9
sensheat mean, logCS mean 14.3±0.8

We have demonstrated above that relative humidity and
the condensation sink are the most significant variables ex-
plaining the nucleation events. All of the linear classification
methods had an error rate of approximately 12% when using
only these two variables. It seems reasonable to expect, that
adding variables to the model would improve classification
results. But here we run into the problem demonstrated by
the best triplets: there are too many choices of variables with
equal performance.
When using stepwise addition of variables together with

any of the classification methods, different runs (using dif-
ferent training sets) yield different sets of variables with ap-
proximately equal performance. The same is true for deci-
sion trees. It is not true that the two variable model could
not be improved by adding variables, but the set of variables
that can be added for improved performance is not unique.
This is in fact quite a typical situation in data mining ap-
plications whenever there are correlations between variables.
Table 6 presents the results for two sets of forward addition
of variables using LDA. After RH and the logarithm of the
condensation sink are added the lists diverge. Yet the perfor-
mance of the methods after 10 variables are chosen are not
significantly different.

Table 5. Average error rates over 20 runs for some top ranking
triplets of variables using linear regression.

Variables error(%)

RH low mean, logCS mean, SO2 high std 11.6±1.3
RH low mean, logCS std, H2O low mean 11.6±1.5
RH low mean, logCS mean, SWS std 11.7±1.4
H2O high mean, logCS std, Glob mean 11.8±1.2
RH low mean, logCS mean, O3 low mean 11.9±1.5
RH high mean, logCS mean, NO low std 11.9±1.5

Finally, let us return to the two variables, RH and the con-
densation sink. We can project the data onto the first linear
discriminant. The first linear discriminant is the normal of
the line separating events from nonevents in Fig. 4, so it is the
direction giving optimal separation for events and nonevents.
Points in one end of the linear discriminant are mainly event
days, and points in the other end are mainly nonevent days.
From this projected data we can compute the probability of
having an event day at each point. This is done by first com-
puting the proportion of events in each interval of a fixed
width, and then fitting a logistic model to this data. This is
illustrated in Fig. 5. We get the following nucleation param-
eter describing the probability of nucleation:

Pnucl =
1

1+ exp(�1 log(CS) + �2(RH))
, (1)

�1 = 1.7 �2 = 0.13.

5 Discussion

5.1 Condensation sink

Low condensation sink values favour nucleation due to two
basic reasons (Kulmala et al., 2005):

– The existing aerosol population depletes the ambient air
of vapours by acting as a condensation surface; if the

Atmos. Chem. Phys., 5, 3345–3356, 2005 www.atmos-chem-phys.org/acp/5/3345/
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6. Review of papers 

Paper I describes the first adaptation of a newly developed mass spectrometer to 

atmospheric studies. First the laboratory tests for transmission, sensitivity and response are 

described. Next, the data analysis procedures are explained in details. Finally the 

instrument was deployed to the field stations (SMEAR III) and instrument characterization 

and the developed data processing tools were put in use for deconvoluting the first 

measurements of naturally charged ion spectra in Helsinki.  

Paper II tackles the problem of missing data. In the paper multiple methods to impute 

missing data are evaluated and recommendation for the best approach is given. The 

performance of the investigated methods was found to vary from variable to variable. This 

information was utilized for the construction of a hybrid method that combines the simple 

univariate methods and the complex multivariate methods for the best performance. 

Paper III describes a tool to explore and save data from a comprehensive measurement 

station. The tool is called smartSmear and is adapted to SMEAR II data. The paper 

describes in detail the structure of the database and the web based user interface. It also 

gives an example in form of a case study to demonstrate the power of the tool. 

Paper IV describes an extensive particulate matter source apportionment campaign 

conducted in Krakow. Particulate matter in the atmosphere was sampled and chemically 

characterized at receptor sites as well as from potential emission. Several source 

apportionment models were tested as described in the supplementary material of the paper, 

but eventually two methods were identified to be the most reliable, namely the Chemical 

Mass Balance model (CMB) and Constrained Matrix Factorization (CMF). Wintertime 

residential heating was found to be the most dominant source of PM mass in Krakow city 

and surrounding areas. The traffic accounted only for 5% of the total mass. At the time of 

publishing the paper was chosen as news story of the month by the journal “Environmental 

Science and Technology”.   

Paper V discusses the temporal variations and sources of black carbon (BC) in the city of 

Helsinki. Black carbon concentrations in the city were found to correlate very well with 

traffic intensity, in both the weekly cycle and in the diurnal cycle. However, not all the 

variance was explained by traffic intensity and the feature selection routine based on the 

Multilinear Regression model was conducted to find the most important meteorological 
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parameters influencing the BC concentrations. As the result of the study BC was explained 

the best by traffic intensity, wind speed and planetary boundary layer height. 

Paper VI compares a wide variety of the data exploratory methods to find the variables that 

could explain the new particle formation observed in Hyytiälä, SMEAR II station. The data 

used in the study was a result of 8 years of measurements and nearly 80 variables were 

included.  As a summary from multiple methods the new particle formation was best 

explained by the surface area of pre-excising aerosols (condensation sink) and by the relative 

humidity. 

 

7. Conclusions 

A comprehensively the complete data cycle of atmospheric science was carried out for this 

thesis, from data collection, processing, analysis and final interpretation. The work 

concentrated more on data analysis and data treatment methods than on the final 

interpretation of results, but the motivation of the work is tied tightly to atmospheric 

physics. We applied a new instrument for the first time, conducting field and laboratory 

campaigns using an APiTOF mass spectrometer.  Data analysis was performed by software 

(tofTools) developed in this thesis. The software treats all steps required for processing time 

of flight mass spectrometer data (PAPER I).  

During the field campaign at the SMEAR II station we measured and identified the 

composition of low molecular weight (LMW) ionic species sampled directly from the 

ambient atmosphere. Negative ions comprised mainly inorganic acids and LMW organic 

acids. Daytime were dominated by sulfuric acid and its clusters while after sun-set the nitric 

acid monomer (NO3
-) and dimer (HNO3NO3

-) became the most dominate anions. The 

positive ion spectra showed very little diurnal variation and were dominated by quinoline 

and pyridine cations (PAPER I, Ehn et al. 2010). 

The instrument usage and development is ongoing and the software has been adapted to 

other mass spectrometry instrument applications (chemical ionization, ion mobility), all of 

which are built on top of the original APiTOF. Similarly to the instrument itself, the 

software (tofTools) developed in this thesis has been critical to data analysis in a number of 

scientific works (Ehn, et al. 2010, Junninen, et al. 2010, Ehn, et al. 2011, Kirkby, et al. 

2011, Laitinen, et al. 2011, Lehtipalo, et al. 2011, Manninen, et al. 2011, Ehn, et al. 2012, 
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Jokinen, et al. 2012, Kulmala, et al. 2012, Kangasluoma, et al. 2013, Keskinen, et al. 2013, 

Kulmala, et al. 2013, Mohr, et al. 2013).  

 A database without an appropriate user interface is good only for data backup 

purposes. With an easily accessible user interface the database becomes a tool for scientific 

data analysis. The web based tool SmartSMEAR is an easy to use interface designed for the 

SMEAR database (PAPER III). This together with its search engine Smart-Search, has 

proven to be an efficient tool for studying atmospheric chemistry and atmospheric aerosol 

dynamics. It has been used in multiple courses and the data analysis for the paper of Mazon 

et al 2009 is in great extent done using SmartSMEAR. 

 Source apportionment is a powerful tool for the study of sources and processes that 

influence the atmospheric composition at a given receptor site. However, the usability of 

traditional factor analysis methods is limited due to the rotational ambiguity that makes 

interpretations very difficult. The Positive Matrix Factorization (PMF) is a significant step 

towards a physically constrained factorization model. By adding more constraints based on 

physical knowledge about the studied system of sources and receptors we developed the 

Constrained Matrix Factorization method, CMF. By complete or partially locking specific 

known factors, an increased degree of confidence was obtained that the calculated source 

contributions are indeed correct. Using data from chemical characterization of winter 

particulate matter samples collected from Krakow and Zakopane, we showed that the 

majority of the aerosol mass originates from residential heating (especially in Zakopane, a 

mountain village) and industrial power generation (in Krakow city these sources were 

equal) whereas traffic was only a minor source of the PM mass (<5%).   

Contrary to these PM10 mass apportionment results, particle-bound black carbon in 

Helsinki  clearly originated from traffic emissions. Specific meteorological factors enhanced 

atmospheric concentrations, namely a low wind speed and a shallow boundary layer. 

 New particle formation has been extensively studied for 15 years (Kulmala, et al. 

2000, Kulmala 2003, Kulmala, et al. 2004, Kulmala, et al. 2007, Kulmala, et al. 2013). In 

order to extract more insight via full statistical analysis, we applied data mining tools to an 

eight years dataset with 80 variables in search of the best classifying variables. Multiple 

methods produced comparable results. We concluded that atmospheric nucleation requires 

both low air humidity and low condensation sinks (surface area of the pre-existing particles) 

(Hyvönen, et al. 2005, Hamed, et al. 2007). This is in good agreement with current 

theoretical knowledge. However, the result was somewhat surprising in the sense that the 
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data mining tools identified inhibition variables as the most important, not the production-

variables (like solar radiation or atmospheric SO2 concentrations (Petäjä, et al. 2009)). 

Obviously both types of variable can be important, but according to these results clearly the 

strongest correlation of for lack of new particle formation is the presence of strong inhibition 

mechanisms, not the lack of production components, but the presence of strong inhibition 

mechanisms. Only when inhibition is lowered do we observe nucleation of new particles.  
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