
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 90–98,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

On Finite-State Tonology with Autosegmental Representations

Anssi Yli-Jyrä
University of Helsinki, Department of Modern Languages

PO Box 24, 00014 University of Helsinki
anssi.yli-jyra@helsinki.fi

Abstract

Building finite-state transducers from
written autosegmental grammars of tonal
languages involves compiling the rules
into a notation provided by the finite-
state tools. This work tests a simple, hu-
man readable approach to compile and
debug autosegmental rules using a sim-
ple string encoding for autosegmental rep-
resentations. The proposal is based on
brackets that mark the edges of the tone
autosegments. The bracket encoding of
the autosegments is compact and directly
human readable. The paper also presents
a usual finite-state transducer for trans-
forming a concatenated string of lexemes
where each lexeme (such as ”babaa|HH”)
consists of a segmental substring and a
tonal substring into a chronological mas-
ter string (”b[a]b[aa]”) where the tone au-
tosegments are associated with their seg-
mental spans.

1 Introduction

In Bantu linguistics, Autosegmental (AS) Phonol-
ogy (Goldsmith, 1976) is a standard theory in
phonological description of tone. The widely
available finite-state compilers are, however, not
directly applicable in this context because autoseg-
mental phonology uses a two-tier representation
for the phonological content. The aim of this pa-
per is to address this obvious shortcoming in finite-
state technology. I will, therefore, pursue a practi-
cal approach that facilitates conversion of an exist-
ing multi-tiered lexicon and an autosegmental rule
system into a lexical transducer.

In the past, various finite-state approaches to
autosegmental phonology have been proposed.
Kay’s (1987) early proposal about processing mul-
tilinear structures with an extended finite-state

transducer model has inspired further research
on multi-tape automata (Wiebe, 1992) and linear
codes (Kornai, 1995) that encode events when an
autosegmental representation is scanned from left
to right. Kornai (1995) has qualified the proposed
codes with a set of desiderata. All these desiderata
cannot be, however, fully satisfied by any of the
linear codes (Wiebe, 1992). An alternative to these
multi-tape approaches is proposed by Bird and El-
lison (1994) who posit that all tiers are partical de-
scriptions of the common synchronized structure
and they can, therefore, be combined via intersec-
tion. This constraint-based approach is very natu-
ral and it has nice formal properties such as declar-
ativeness and connection to logic. However, the
resulting one-level phonology (Bird and Ellison,
1994) is also somewhat incompatible with the au-
tosegmental theory. For example, it does not posit
floating tones that are a crucial formal device in
many existing accounts of Bantu tone.

The key idea in this paper is to represent the
tone units, i.e., autosegments, as time spans that
have a start and an end marked with brackets in
the timing tier. The key idea is complemented with
a finite-state technique for producing tone associ-
ations from the lexical forms and a new, tailored
finite-state formalism for autosegmental alterna-
tion rules. The implementation of each alternation
rule is based on declarative, constraint-based tech-
niques.

The resulting formalism can be seen as a reim-
plementation of the classical two-level formalism
(Koskenniemi, 1983). The new formalism al-
lows the user to specify even complex parallel
changes to the autosegmental representation in a
compact way. The reimplementation is based on
generalizations that support parallel compilation
of rules (Yli-Jyrä and Koskenniemi, 2006; Yli-
Jyrä, 2008a) and the new, lenient semantics of
obligatory rules (Yli-Jyrä, 2008b). The bracketing
that I use to represent tone is reminiscent of foot

90

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/19524677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bracketing (Karttunen, 2006), syllable bracketing
(Idsardi, 2009) and the bracketing of tone domains
(Leben, 2006), all representing Optimality Theo-
retical (Prince and Smolensky, 2004) approaches
to phonology.

2 Theories of Tone

Tone in phonology relates to such a pitch con-
trast that distinguishes the meanings of two word
forms. There are level tones such as: High (H),
Low (L) and Mid (M), and contour tones such
as: Rising (LH), Falling (HL), and Rising-falling
(LHL), Mid-hig (MH), Mid-low-high (MLH). A
segment (a mora or syllable) having the tone fea-
ture is called a tone bearing unit (TBU). 1

Williams (1976) and Leben (1973) distinguish
and compare three different theories that claim to
describe the nature of tone:

• the segmental theory,
• the syllabic theory, and
• the morphemic theory.

This taxonomy gives use a good starting point for
explaining how suprasegmental and autosegmen-
tal phonology differs from the segmental phonol-
ogy. It is important to note that the newer theo-
ries are improved generalizations inspired by the
former theories rather than completely opposed to
them.

2.1 Segmental and Syllabic Theories

Features and Natural Classes It would be the
simplest theoretical solution to process sounds as
segments having tonal features. Then the treat-
ment of tone would not differ from any other fea-
tures such as nasality or openness. Sounds and
their classes would be viewed as a Boolean algebra
and the feature geometry would define what sound
classes or their changes are natural and what are
not. In finite-state phonology, the natural classes,
such as “V [+ High]” can generally be imple-
mented as character lists, but Bird (1994; 1995)
and Heinz and Koirala (2010) go much further in
capturing the notions of feature geometry by com-
putational means.

The segment-based representation of tone gives
a clumsy treatment to floating tones that are not
carried by any segmental units. The same weak-
ness is true for syllabic theory: there are floating

1For simplicity, this paper assumes that each vowel is the
tone bearing unit.

tones that are not linked to any syllable (Leben,
1973).

Subsegmental Diacritics as Segments A
slightly more modular solution would treat tone
as a diacritic character that affects the adjacent
character. This is how UNICODE or the IPA
standard handle tone at the character level.
Likewise, some computational morphologies use
segments such as H or L to represent the tone in
the morphophonological representation. Muhirwe
(2010) uses this in his finite-state description of
Kinyarwuanda:

(1) baHzaHaHriHriimba<ba-zaHa-riHriimba
REL.FUTURE

’they might sing’

2.2 Morphemic Theories

In a morphemic theory of tone, the tone of un-
derlying morphemes is indicated separated from
rather than pre-assigned to the phonemic se-
quence. This separation is indicated in the lex-
icons of some descriptive grammars, such as
(Halme, 2004):

(2)
elifikameno n LHHHL 5 independence.
elifiyepo n LHLH 5 contest.
elifo n LH 5 likeness.

Suprasegmental Phonology According to
Williams (1976) and Leben (1973), tones are
suprasegmental. They are not marked underly-
ingly to the segments, but they constitute units
in their own right. To merge the phonemic
and tonemic sequences of morpheme, Williams
proposes a Tone Mapping Rule (3).

(3)

Tonemic sequence
⇓

Phonemic sequence
⇓

Tone Mapping Rule

⇓
Master phonemic sequence

A shortcoming of the original formulation of
the Time Mapping Rule is that its output rep-
resentation is purely linear, which complicates
the description of further phonological processes.
Therefore, Goldsmith (1973) argues that Leben’s
theory does not adequately describe some effects
of floating tone.

91

Multi-Tiered Representation The Autoseg-
mental Phonology (AST) (Goldsmith, 1976)
claims that what we see in the segmental rep-
resentations of the language is an image of a
richer multi-tiered representation that involves si-
multaneously pronounced sequences (Goldsmith,
1973). One tier represents the tone patterns via
H/L tonemes, called autosegments, while another
tier represents the usual C/V segments in the pro-
nunciation. These two underlying tiers are inte-
grated through the timing tier that consists of a se-
quence of ×’s:

(4)

C

×
V

×
C

×
V

×
C

×
V

×
L H L

Tones are not necessarily in a one-to-one rela-
tionship with the segments. Instead, the nature of
tone can be suprasegmental or subsegmental and
therefore it cannot be incorporated to or ordered
among the segments.

A two-tiered morphemic representation avoids
the loss of tonemic structure. The tone associa-
tions (links) simplify the rules considerably and
let the AST posit a simple, elegant theory of op-
erations: add/delete a tone/link. This elegancy is
perhaps the most attractive aspect of AST.

2.3 Autosegmental Derivation

Goldsmith (1976) defines the autosegmental
derivation as follows:

Step 1: Initialization The phonological and
tonological sequences are set out as parallel strings
and the tone boundaries2 are associated with each
other.

(5)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

L H # # L H # L

Step 2: Association Rule (AR) The ASSOCI-
ATION RULE associates the first toneme with the
first tone bearing unit and proceeds rightward as
long as the segments match one another.

(6)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

L H # # L H # L

2In this paper, we will naively assume that all morpheme
boundaries are also tone boundaries.

Step 3: Well-Formedness Condition The well-
formedness condition makes sure (i) that every
toneme has a corresponding segment, (ii) that ev-
ery phoneme segment is linked to a tone, and
(iii) that the links do not cross one another. The
changes required to enforce the well-formedness
condition are unambiguous after the AR. At this
point, only the rightmost member of a tier can be
associated with more than one member of another
tier of the word.3

(7)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

L H # # L H # L

Step 4: Mutations The phonological derivation
with autosegmental rules now starts.

3 The Bracket Encoding of Associations

The encoding of autosegmental representations
proposed in this paper is based on brackets that
indicate the span of each tone autosegment in the
segmental string. Instead of marking the tones
separately, we only mark their links – in fact the
first and the last link only – to the segmental
tier. This means that the general bracketing ap-
proach familiar from e.g. Leben (2006) and Id-
sardi (2009) is now developed further and applied
to non-OT representations of tone.

3.1 Common Timing Elements of All Tiers

The timing tier synchronizes the segmental and
tonal tiers using morphological boundary sym-
bols.

• the prefix/suffix boundaries (-/+)
• named affix boundaries (such as AUG-).
• the clitic boundary (=)
• the infix boundaries (<IFX and IFX>)
• the reduplication boundary (˜)
• the word boundary (#)
• morphological categories (such as N5).

These boundaries are shared both by the segmen-
tal and tonal tiers. Thus there is no need to add
separate inter-tier associations for the morpheme
boundaries.

3On different assumptions on tone association rule and
tonal boundary markers, see Leben (1978).

92

3.2 Segmental Tier

Segmental tier consists of segmental phonemes –
vowels (V) and consonants (C). The segmental tier
may also contain the syllable boundary (.).4

The foot structure can be marked with addi-
tional types of syllable boundaries .(. , .). and
.)(. that are considered as multi-character sym-
bols, in contrast to Karttunen (2006).

3.3 Tone Associations

There is usually only a small number of underly-
ing tone level distinctions such as: Toneless (∅),
Low (L), and High (H). As to the surface tones,
the international phonetic alphabet lists, for exam-
ple, five level tones and suggests many more con-
tour tones. However, it is now not necessary to go
through all the theoretically possible surface tones
that might occur in the languages of the world.

The key proposal of this paper is to indicate the
association of tone autosegments by showing the
span of the tone via brackets.

(8)

a

×
∅
↔

a

×↔a

a

×
L

↔(a)

a

×
H

↔[a]

In the lexical representation, an unspecified tone
can be marked with X. When the lexical tones un-
dergo changes, the tonal tier can also contain addi-
tional tones such as Middle (M) and Downstepped
High (!H):

(9)

a

×
X

↔[XaX]

a

×
M

↔[MaM]

a

×
!H

↔![a]

The basic contour tones, such as �HL and �LH,
are notated by mixing the brackets of two different
tones. To facilitate notating more complex contour
tones, we can introduce labeled brackets for sim-
pler contour tones:

(10)

a

×
H L

↔[a)↔[HLa)

a

×
L H

↔(a]↔(LHa]

Contour tones with three underlying tones are
represented using simpler contour tone brackets as
needed:

4Syllable stress markers such as ’ could be added near the
syllable boundaries, but we try to avoid going into the stress
structure in too much detail in this work.

(11)

a

×
L H L

↔ (LHa)

Floating tones do not contain any vowels in
their spans. If a floating tone emerges due to
the well-formedness condition after the associa-
tion rule, it will be placed immediately before the
next tone (i.e., morpheme) boundary. In all other
cases, the place of the floating tone in the segmen-
tal tier is specified by its derivation history.5

(12) a.

b

×
a

×
b

×
a

×
n

×
L H L H

↔ b(a)b[a]n()[]

We posit a convention according to which the
brackets of a linked tone will be inserted immedi-
ately around the linked segments, without any in-
tervening boundary symbols, syllable boundaries
and stress markers. If more than one segment are
linked to one tone, the brackets span all the linked
segments:

(13)

o

×
k

×
u

×
t

×
e

×
m

×
a

×
L H L

↔ (oku)t[e]m(a)

4 Derivation of the Input for the Rules

In oder to use the bracketed representation, we
need to implement the first three steps of the au-
tosegmental derivation.

4.1 Specifying the Task

The first derivation step takes the lexical form as
its input and produces a string where the tones
are associated with the segments. The underlying
lexical form contains at least the tonal string, the
phonemic string and morphological boundaries.
In practice, it is convenient to have also some in-
formation on the morphological categories and the
glosses in the morpheme lexicon. For example,
CL5 and N5 in the glossed underlying string (14)
are morphological category labels and ’likeness’ is
the semantic gloss of the stem.

5We will need to experiment more before we know if there
is a need to normalize the floating tones. Meanwhile, it would
seem natural to migrate the brackets of floating tones as little
as possible.

93

Table 1: The foma Syntax and Basic Definitions
0 empty string

"|" protected special symbol
{abc} a string of letters

? all (identity pairs of) symbols
A B concatenation
A|B union
[A] grouping
(A) optionality

A*, A+ Kleene star, Kleene plus
A&B intersection of 0-padded relations
A-B difference of 0-padded relations
A:B left-aligned cross product

A.x.B left-aligned cross product
A.o.B composition

A.i inverse relation
A.1, A.2 input projection, output projection

A/B free insertion of symbol pairs B
def A B; definition of a constant expression

def A(X) X X; definition of a regex macro

Phonemic (Segmental) Tier
def V a | e | i | o | u ;
def C b | d | ... | y ;
def S "." | ".(." | ".)." | ".)(." ;
def M "-" | "AUG-" | "+" | "#" | "::";

Tonemic (Autosegmental) Tier
def L "(" | "[" | "![" | "[LH" | "[HL" ;
def R ")" | "]" ;
def T L | R ;
def X L:L | R:R | T:0 | 0:T;

(14) elifo n LH 5 likeness. (Halme, 2004)

e- lifo|LH

In a finite-state implementation, the underlying
form (14) can be written as string (15) where ::,
CL5, N5 and ’likeness’ are multi-character sym-
bols. In this string, the double colon :: indicates
the glossing relation.

(15) #e :: CL5 - l i f o | L H :: N5 ’likeness’#

The task of the first three steps of the autoseg-
mental derivation is to implement the mapping
(16a) or just to produce the output of the mapping
(16b). The output will then be the autosegmental
representation fed to the autosegmental alternation
rules.

(16) a. #e::CL5-l i f o |LH::N5’likeness’#

#e::CL5-l(i)f[o] ::N5’likeness’#

b.
#e::CL5-l i f o |LH::N5’likeness’#

#e -l(i)f[o] #

4.2 The Implementation Formalism

We will use the regular expressions of the freely
available foma tool (Hulden, 2009) when imple-

Table 2: The Definition of the Association Rule
def Tones "L" | "H" ;
def Mapper(TBUs) ["L" .x. "(" TBUs ")"] |

["0" .x. TBUs] |
["H" .x. "[" TBUs "]"] ;

def Asso(Pat,TBUs) [[?-T] | 0:T]* .o.
[Pat .o. [0:C | Mapper(TBUs)]*].2 ;

def Single V | Beyond ;
def TheRest V [[C|S]* V]* | Beyond ;
def Map(Pat) Asso([Pat .o. ?* ?:0].2, Single)

Asso([Pat .o. ?:0* ?].2, TheRest)
"|":0 Pat:0 ;

def Maps Map({LH}) | Map({LLH}) | Map({LHL}) |
Map({0H}) | Map({00H}) | Map({0H0}) ;

def AR [[? - Beyond] | 0:Beyond* "|"]* .o.
[?* M | Maps M]* .o.
[[? - Tones - Beyond] | Beyond:0]*;

menting all the rules. This flavour of regular ex-
pressions has been originally developed at Xerox.
The relevant syntax of the formalism is summa-
rized in Table 1.

Using the regexp syntax, we first define fre-
quently used constant expressions for the rules.
These expressions define symbol sets used in
Phonemic and Tonemic tiers in Table 1.

4.3 Implementing the Association Rule

A crucial assumption in this paper is that the tone
patterns can be stored into a finite-state mem-
ory. For each tonemic sequence Pat, I construct
a transducer Map(Pat) that assings the sequence
of tones to all the tone bearing segments of a mor-
pheme and then removes the lexical tone pattern
from the end of the morpheme. If there are fewer
tones than TBUs, the last one will be spread over
the rest. More concretely, the expression Map({H})

is compiled into the transducer (17). A finite union
of such transducers is stored under the name Maps.

(17)

0

C

1 0:[

2Beyond

3

N V

5
 0:]

N V

4

C S

 0:]

N V

C S

C

6 |:0 7 H:0

The expression AR is a transducer that applies
the Maps transducer to every morpheme in the in-
put. In its definition, a hidden symbol, Beyond is
used as a temporary TBU for tones that are left
over. This implementation of the AR synthesizes
the first three steps of the autosegmental derivation
into one transducer.

After the appropriate language-specific changes
to the tier definitions and the Maps transducer have
been made, we can use the foma command line in-

94

terface to see how some example strings are pro-
cessed by the AR rule:

(18)
: regex {#olu|LL-vala|HH#}.o.AR;

: print lower-words

#(o)l(u)-v[a]l[a]#

5 The Tone Alternations

The autosegmental rule formalism is based on
rewriting rules. However, the input and the out-
put are not just strings but linked pairs of strings.
Most rules are notated using a shorthand conven-
tion according to which the input and output rep-
resentations of the rule are combined into one rep-
resentation where the tone delinking, deletions, in-
sertions, replacements, and linking are indicated.

In this section, every rule will be written in two
ways: with the original autosegmental notation
and with regular expressions.

5.1 The New Rule Formalism

The rules will be expressed as regular expressions
that describe the changes and the context condi-
tions under which the changes can take place. The
currently available definitions of the formalism are
listed in Table 3.

Table 3: Formalism for bracketed rules
notation = foma expr. meaning
L,R,T sets of tone brackets
S,M sets of syll., morph. boundary
V,C sets of vowels and consonants
A=?-"<>" any symbol
αU=α protected constant tone bracket α
(U example: constant tone bracket (
αI=X&[α|α:T|α:0] tone bracket α in input
αO=X&[α|T:α|0:α]tone bracket α in output
αX=αI|αO mutable tone bracket α
αC=[X& T:α]-T changed tone bracket α
Q=[C|S]* consonants and syll. boundaries
N=[C|S|M]* anything constant but T and V
P=[C|S|M|V]* anything constant but T
Z=[A|TX]* anything, including the mutable
αD="<>"* α:0 delete bracket α
αA="<>"* 0:α add bracket α
αF ="<>"* αO enforce output bracket α
αM="<>"* αC mutate bracket α
α:0 test for deleted α
α=Z-α negates the expression α
α* iterate α zero or more times
α+ iterate α one or more times
(α) make α optional
[α] grouping
α|β α and β are alternatives

5.2 Example Rules

Anyanwu (2008) classifies some universally ac-
cepted tonal rules. Given such a classification,
we consider some example rules from Kwanyama
(Halme, 2004) and Ikoma (Aunio, 2010) and ex-
tend the classification where needed. By compil-
ing different kinds of rules into the new notation,
we get an estimate on out how the bracket-based
formalism applies to the practical needs in general.

5.2.1 Spreading

The TONE SPREADING rules affect the following
tone (e.g. LHH → LLH). If the spreading effect is
partial, this results into a contour tone as in (e.g.
LH → L�LH) (Anyanwu, 2008).

AUGMENT HIGH SPREAD (AHS) of
Kwanyama (Halme, 2004) causes the under-
lying High of the augment prefix to spread onto
the following Low-toned mora (dotted line) whose
tone is delinked (cut line).

(19) a.

V

×
AUG-

×
V

×
H L

b. Z]D N AUG- N (D V]A (A)U Z

5.2.2 Assimilation

The TONE ASSIMILATION rules can be either re-
gressive (HL → ML) or progressive (LH → LM)
(Anyanwu, 2008).

HIGH LOWERING (HL) of Ikoma (Halme,
2004) causes a floating Low tone to link (dotted
line) to the following mora whose High tone is
delinked (cut line) and deleted (parentheses):

(20) a.

V

×

L (H)

b.
Z (D)D N (M V)M Z |

Z (D)D N (M V)A N [A V Z

5.2.3 Simplifications

The TONE ABSORPTION rules (e.g. �LHH → LH)
simplify two adjacent identical tones (Anyanwu,
2008). This rule is motivated by the OBLIGATORY

CONTOUR PRINCIPLE (OCP) (Leben, 1973) that
bans two consecutive features in the underlying
representation.

FLOATING LOW DELETION (FLD) of
Kwanyama (Halme, 2004) occurs when a floating

95

Low occurs next to a linked Low:

(21) a.

σ

×
L (L)

and

σ

×
L(L)

b.
Z V)U N (D)D Z |

Z (D)D N (U V Z

In contrast to the TONE ABSORPTION rules,
the CONTOUR LEVELING rules make two adja-
cent tones similar by simplifying a contour tone.
(e.g. H�LH → HH) (Anyanwu, 2008).

PLATEAUING in Ikoma (Aunio, 2010) is a
variant of this kind of simplification:

(22) a.

baa

×
+

×
V

×
V

×
#

×
H ∅ H

→
baa

×
+

×
V

×
V

×
#

×
H

b. Z]D "-" N V N [D V]U N "#" Z

5.2.4 Dissimilation

DISSIMILATION (HH → HL) and TONAL PO-
LARIZATION (HX → HL) are rules that are mo-
tivated by the OCP because they differentiate ad-
jacent tones.

MEEUSSEN’S RULE in Ikoma (Aunio, 2010)
lowers the last H in a sequence of two HH’s:

(23) a.

V

×
V

×
H H→L

b. Z]U N (M V P)M Z

5.2.5 Tone Shift

TONE SHIFT (TS) in Kwanyama (Halme, 2004)
moves all tones one mora (TBU) to the right
(HLHL → ∅HLH). The correct interpretation of
the rule assumes that there is no floating tones. 6.

(24) a.

V

×
V∗
×

V

×
TT

b.

Z (I V (RX) N (F V Z |
Z [I V (RX) N [F V Z |
Z LI V (RX) N LD V Z |
Z LO (P|T:0)* RD Z |
Z RI N (LX) V RD P (LX) V Z |
Z)I N (LX) V)F (LX) P Z |
Z]I N (LX) V]F (LX) P Z

6The last shifted tone could land to a final position, but
the current formulation does not support this. The floating
tones can be shifted and produced using temporary tone bear-
ers during the rule application as we did in the TONE ASSO-
CIATION RULE

5.3 The Rule Compiler

My foma code for the rule compiler is given in Ta-
ble 4. This compiler consists of two parts:

• The macro CR(Rule) produces a transducer
that contains the final rule transducer as its
subset.

• The second macro, COERCE(Rule), pro-
duces the final rule transducer by restricting
CR(Rule) in such a way, that it performs, in a
sense, as many individual changes as it can.

The first macro, CR(Rule), works as follows.
The basic compilation of the regular expression
corresponding to an autosegmental rule notation
(such as 23b) yields a 0-padded transducer, Rule,
where an optional, freely iterated marker "<>"

has been added at the positions where the input
string is expected to change.7 Another transducer,
W, contains all possible string pairs Z into which
we have added the marker for an arbitrary change
concerning a tone bracket. The purpose of this
transducer is to tell that the marked change
requires a permission from rule to be acceptable.
When these two 0-padded transducers are dif-
ferentiated, the resulting transducer contains all
those string pairs that have an unwanted change.
The complement of this 0-padded transducer with
respect to Z is then exactly the transducer whose
string pairs contains only such changes that are
specified by the rule. For MEEUSSEN’S RULE,
this transducer is (25).

(25)

0

@ C M S V () [

1
]

@ V

C M S () []

2
<[:(>

3

V
<]:)>

C M S V

The second macro, COERCE(Rule), refines the
transducer computed by the first macro. This
macro marks, in each 0-padded string pair, all
those positions where a bracket changes. The
markup is done, again, using the same marker
symbol, "<>", as before. The input projection of
this transducer gives a regular language without
the zeros that were used in the transducer. An
auxiliary macro, TooFew(X), is now used to find
out in this projection such marked input strings
that are like some other string in the projection but
contain markers only in a subset of the positions
marked in the second string. This gives us the set

7I have tried to stick to a convention that a diamond � has
been used as such a marker.

96

Table 4: Definitions of the Rule Compiler
Compiler for Optional Rules

def Chg A:A - A | A:0 | 0:A ;
def W Z "<>" Chg Z ;
def Intro [A | 0:"<>"]* ;
def Hide(X) Intro .o. X .o. Intro .i ;
def CR(Rule) Z - Hide(W - Rule) ;

Compiler for Obligatory Rules
def Chg A:A - A | A:0 | 0:A ;
def MarkChg(X) X/"<>" & [A | "<>" Chg]* ;
def FewerT ?* [0:"<>" ?*]+ ;
def TooFew(X) [MarkChg(CR(X)).1 .o. FewerT .o.

MarkChg(CR(X)).1].1 ;
def COERCE(Rule) Hide([?* - TooFew(Rule)]

.o. MarkChg(CR(Rule))) ;

of marked strings that indicate which paths in the
first resulting transducer fail applying the rules as
often as possible. When these paths are removed
from CR(Rule), we obtain a transducer where the
rule’s application is obligatory whenever there is a
choice. For (23b), this transducer is (26).

(26)

0

@ () C M S V [

1

]

@ V

() C M S]

2

[3

<[:(>

@

() C M S]
[

<[:(>

5

V

4

V

<]:)>

() C M S [] @ V

() C M S [

6]

<[:(> () C M S [

6 Evaluation

All linear encodings for autosegmental structure
have some limitations. While the strength of the
proposed notation is the easiness to link multi-
ple segments to a single autosegment and multiple
tones to single segment, it is not perfect concern-
ing the treatment of floating tone. In terms of Kor-
nai’s (1995) criteria, it seems to be compositional,
computable, and iconic, but not fully invertible be-
cause there are such bracketed strings that have no
interpretation as a graphical autosegmental repre-
sentation.

The purpose of the current proposal has been to
present just the core ideas of the new representa-
tion, not to make universal claims. For example,
tones do not always realize (Leben, 2006). The
current proposal can be criticized also for other
simplifying assumptions about TBUs and tone as-
signment boundaries.

The original two-level formalism (Kosken-
niemi, 1983) is difficult to use because it is based
on implications and because the rule system may
be overconstrained. The new rule formalism
seems to address both of these problems, making

Table 5: # of states in compiled rules
name Rule CR COERCE
AHS 25 7 11
High Lowering 27 7 12
FLD 21 7 13
Plateauing 21 7 16
Meeussen 13 4 7
Tone Shift 235 96 117

the rule semantics very much like replace rules in
the state-of-the-art finite-state toolkits.

Simultaneous compilation of multiple two-level
rules has been proposed in (Yli-Jyrä and Kosken-
niemi, 2006; Yli-Jyrä, 2008a), but this has not
been put into practice in full scale, except in one
special case (Yli-Jyrä, 2009). The current compi-
lation method compiles, however, all the subrules
of the TONE SHIFT simultaneously.

The compilation method is easy to implement
and easy to use. In addition, the formalism is flexi-
ble because simultaneous, interlinked changes can
be described. The only really complex exception
discovered so far is the TONE SHIFT rule. Except-
ing TONE SHIFT, the sizes of rule transducers (Ta-
ble 5) are quite small.

My resources did not allow me to rewrite a com-
plete tonal description such as (Halme, 2004). I
hope, however, that the presented ideas and (really
open source) formalism are useful for later efforts.

It would be possible to define rule templates to
be used routinely in experimental descriptive ef-
forts. Tentative accounts of various phenomena
could then be iteratively tested and debugged with
finite-state tools, giving valuable feedback to a de-
scriptive linguist, a resource builder or a theoretic
phonologist working on tonal languages. The ex-
perimental verification would finally contribute to-
wards the quality and wide applicability of de-
scriptive grammars. The simultaneously applica-
ble rule templates could also facilitate the devel-
opment of machine learning methods for tonology.

References

Rose-Juliet Anyanwu. 2008. Fundamentals of Pho-
netics, Phonology and Tonology. Number 15 in
Schriften zur Afrikanistik - Research in African
Studies. Peter Lang.

Lotta Aunio. 2010. Ikoma nominal tone. Africana
Linguistica, 16:3–30.

Steven Bird and T. Mark Ellison. 1994. One-
level phonology: autosegmental representations and

97

rules as finite automata. Computational Linguistics,
20(1).

Steven Bird and Ewan Klein. 1994. Phonological anal-
ysis in typed feature systems. Computational Lin-
guistics, 20(3):455–491.

Steven Bird. 1995. Computational Phonology. A
constraint-based approach. Studies in Natural Lan-
guage Processing. Cambridge University Press.

John Goldsmith. 1973. Tonemic structure.
Manuscript, downloaded from http://hum.
uchicago.edu/jagoldsm/Webpage/
Courses/HistoryOfPhonology/ in June
2013.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, MIT.

Riikka Halme. 2004. A tonal grammar of Kwanyama.
Rüdiger Köppe Verlag, Köln.

Jeffrey Heinz and Cesar Koirala. 2010. Maximum
likelihood estimation of feature-based distributions.
In Proceedings of the 11th Meeting of the ACL-
SIGMORPHON, ACL 2010, pages 28–37, Uppsala,
Sweden, 15 July.

Mans Hulden. 2009. Foma: a finite-state compiler
and library. In Proceedings of the 12th EACL:
Demonstrations Session, pages 29–32. Association
for Computational Linguistics.

William J. Idsardi. 2009. Calculating metrical struc-
ture. In Charles Cairns and Eric Raimy, editors,
Contemporary Views on Architecture and Repre-
sentations in Phonological Theory, pages 191–211.
MIT Press, Cambridge.

Lauri Karttunen. 2006. A finite-state approximation
of Optimality Theory: The case of Finnish prosody.
In T. Salakoski et al., editor, FinTAL 2006, vol-
ume 4139 of LNAI, pages 4–15, Berlin Heidelberg.
Springer-Verla.

Martin Kay. 1987. Nonconcatenative finite-state mor-
phology. In Proceedings, Third Meeting of the Eu-
ropean Chapterof the Association for Computational
Linguistics, pages 2–10.

András Kornai. 1995. Formal Phonology. Garland
Publishing, New York.

Kimmo Koskenniemi. 1983. Two-Level Morphol-
ogy: A General Computational Model for Word-
Form Recognition and Production. Ph.D. thesis,
University of Helsinki.

William Leben. 1973. Suprasegmental phonology.
Ph.D. thesis, MIT.

William R. Leben. 1978. The representation of tone.
In Victoria A. Fromkin, editor, Tone: A Linguistic
Survey. Academic Press, New York.

William R. Leben. 2006. Rethinking autosegmen-
tal phonology. In John Mugane et al., editor, Se-
lected Proceedings of the 35th Annual Conference
on African Linguistics, pages 1–9, Somerville, MA.
Cascadilla Proceedings Project.

Jackson Muhirwe. 2010. Morphological analysis of
tone marked kinyarwanda text. In Anssi Yli-Jyr,
Andrs Kornai, Jacques Sakarovitch, and Bruce Wat-
son, editors, Finite-State Methods and Natural Lan-
guage Processing, volume 6062 of Lecture Notes
in Computer Science, pages 48–55. Springer Berlin
Heidelberg.

Alan Prince and Paul Smolensky. 2004. Optimality
Theory: Constraint Interaction in Generative Gram-
mar. Blackwell Publishing.

Bruce Wiebe. 1992. Modelling autosegmental phonol-
ogy with multitape finite state transducers. Master’s
thesis, Simon Fraser University.

Edwin S. Williams. 1976. Underlying tone in Margi
and Igbo. Linguistic Inquiry, 7:463–484.

Anssi Yli-Jyrä and Kimmo Koskenniemi. 2006. Com-
piling generalized two-level rules and grammars. In
Tapio Salakoski, Filip Ginter, Sampo Pyysalo, and
Tapio Pahikkala, editors, Advances in Natural Lan-
guage Processing, volume 4139 of Lecture Notes in
Computer Science, pages 174–185. Springer Berlin
Heidelberg.

Anssi Yli-Jyrä. 2008a. Applications of diamonded
double negation. In T. Hanneforth and K-M.
Würzner, editors, Finite-State Methods and Natural
Language Processing, 6th International Workshop,
FSMNL-2007, Potsdam, Germany, September 14–
16, Revised Papers, pages 6–30. Potsdam University
Press, Potsdam.

Anssi Yli-Jyrä. 2008b. Transducers from parallel re-
placement rules and modes with generalized lenient
composition. In T. Hanneforth and K-M. Würzner,
editors, Finite-State Methods and Natural Language
Processing, 6th International Workshop, FSMNL-
2007, Potsdam, Germany, September 14–16, Re-
vised Papers, pages 197–212, Potsdam. Potsdam
University Press.

Anssi Yli-Jyrä. 2009. An efficient double complemen-
tation algorithm for superposition-based finite-state
morphology. In Proceedings of NODALIDA 2009,
pages 206–213.

98

