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We explore the pattern of linear and first nonlinear optical (NLO) response of repulsive impurity doped quantum dots
harmonically confined in two dimensions. The dopant impurity potential chosen assumes Gaussian form. The quantum dot
is subject to a static electric field. For some fixed values of transverse magnetic field strength (ωc), and harmonic confinement
potential (ω0), the influence of impurity strength (V0), impurity stretch (ξ), and impurity location (r0) on the diagonal
components of static linear (αxx and αyy), and the first NLO (βxxx and βyyy) responses of the dot are computed through linear
variational route. The investigation reveals the crucial roles played by the various impurity parameters in modulating these optical
responses. Interestingly, maximization in the first NLO responses has been observed for some particular dopant location and at
some particular value of spatial stretch of the dopant.

1. Introduction

The study of impurity states in low-dimensional heterostruc-
tures has emerged as an important aspect to which many
theoretical and experimental works have been dedicated.
As a result, nowadays the researches on doped semicon-
ductor devices come out to be ubiquitous [1]. The doped
system has quantized properties making them ideal objects
for scientific study and robust applications. The dopants
modify the chemical potential of a material. The control of
optoelectronic properties of a wide range of semiconductor
devices [2–4] now turns out to be the most fascinating aspect
of impurity doping in such materials.

Miniaturization of semiconductor devices reaches the
bottom of the avenue with the advent of so-called low-
dimensional structures such as quantum dots (QDs), with
QD’s new perspectives and delicacies in the field of impurity
doping emerge, due to the mingling of new confinement
sources with impurity related potentials [5]. Such confine-
ment, coupled with the dopant location, can dramatically
alter the electronic and optical properties of the system [6, 7].

For quite sometimes, search for molecules and materials
with high linear and nonlinear susceptibilities and ultrafast
response time has been pursued all over the world [8–14].
The targeted molecules are important in communication
technology, data storage, optical switching, and so forth
[9, 11, 15]. As a result of numerous studies, certain broad
designing clues have emerged. Based on these guidelines,
most often one tries to design donor-acceptor molecules
with large charge transfer from the donor to the acceptor
moiety. NLO response is maximized for certain optimal
combinations of charge transfer and hopping interactions
and the length over which the charge is transferred [16–19].
Modulation in the molecular electronic parameters brought
through subtle structural changes or change in substitution
changes the electronic wave function and therefore the
electron density distribution which ultimately shapes all the
properties of atoms and molecules. It would be crucial to
have at one’s disposal, systems, the electronic structures of
which could be continuously tuned by adjusting suitable
control parameters. In molecules, these variations are only
discrete, having caused by either a change of substituent
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or by structural alteration or by both. Quantum dots
are representatives of the systems where the electronic
structural dispositions can be practically continuously varied
as functions of a few of the system parameters. From the
above discussion, it appears inevitable that variation in the
electronic structure of the dot induced by the impurity could
subtly shape all its properties. It is thus crucial to study
the role of dopant impurity on the optical properties of
the quantum dots. A thorough expedition through literature
reveals some notable works on the optical properties of
impurity doped quantum dots [20, 21]. Doped quantum
dots, thus, beyond any doubt, possess the potential to
exhibit high linear and nonlinear optical response properties
and would thus be principally applied in the area of all-
optical signal processing. A detailed investigation of various
dopant parameters relevant to optical signal processing
would continue to be a topic of active research. In what
follows, of late, we have also studied the frequency dependent
linear and nonlinear polarizabilities of doped quantum dots
as functions of various dopant parameters [22, 23].

In the present manuscript, we inspect the diagonal
components of linear (αxx and αyy) and first nonlinear
polarizabilities (βxxx and βyyy) of a repulsive impurity doped
quantum dot subject to a static electric field. Following
earlier works on the effects of a repulsive scatterer in
multicarrier dots in the presence of magnetic field [24, 25],
here we have considered that the QD is doped with a
repulsive Gaussian impurity. When the impurity is doped
in an on-center location, it does not destroy the inversion
symmetry of the dot and consequently the emergence of β
value is ruled out. However, nonzero α values are envisaged.
At off-center dopant locations, however, emergence of both
nonzero α and β values is observed owing to the destruction
of inversion symmetry. We have found that, in conjunction
with the dopant location, the strength and the spatial stretch
of the dopant also affect the polarizability values quite
prominently.

2. Method

We consider the energy eigenstates of an electron subject to a
harmonic confinement potential V(x, y) and a perpendicu-
lar magnetic field B, where V(x, y) = (1/2)m∗ω2

0(x2 + y2),
ωc = eB/m∗c, and Landau gauge [A = (By, 0, 0)] have
been used. ω0, ωc, and A stand for harmonic confinement
potential, cyclotron frequency (a measure of magnetic
confinement offered by B), and vector potential, respectively.
The Hamiltonian in our problem reads

H′
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Define Ω2 = ω2
0 + ω2

c as the effective frequency in the
y-direction. In real QDs, the electrons are confined in 3
dimensions that is, the carriers are dynamically confined to
zero dimensions. The confinement length scales R1, R2, and
R3 can be different in three spatial directions, but typically

R3 � R1 � R2 � 100 nm. In models of such dots, R3 is often
taken to be strictly zero and the confinement in the other
two directions is described by a potential V with V(x)→∞
for |x| → ∞, x = (x1, x2) ∈ R2. A parabolic potential,
V = (1/2)ω|x|2, is often used as a realistic and at the same
time computationally convenient approximation. Assuming
that the z-extension could be effectively considered zero,
the electronic properties in these nanostructures have been
successfully described within the model of the 1-electron
motion in 2-d harmonic oscillator potential in the presence
of a magnetic field [26–28]. Now, intrusion of impurity
perturbation transforms the Hamiltonian to

H0
(
x, y,ωc,ω0

) = H′
0

(
x, y,ωc,ω0

)
+Vimp

(
x0, y0

)
, (2)

where Vimp(x0, y0) = Vimp(0) = V0e−ξ[(x−x0)2+(y−y0)2] with
ξ > 0 and V0 > 0 for repulsive impurity, and (x0, y0) denotes
the position of the impurity center. In QD’s, the electrons
visit an almost equipotential surface wherein they are set free.
These electrons are carrier electrons. In reality, regular dot
occurs rarely as the deformation of the boundary of QD’s
modifies the effective potential of the carrier electrons to
bunch of uneven pockets. Sometimes, these electrons play
the role of defects themselves (repulsive impurity) [29]. V0

is a measure of the strength of impurity potential whereas ξ
determines the extent of influence of the impurity potential.
A large value of ξ indicates that the spatial extension of
impurity potential is highly restricted whereas a small ξ
accounts for spatially diffused one. Thus, a change in ξ in
turn causes a change in the extent of dot-impurity overlap
that affects the excitation pattern noticeably [22, 23]. The
presence of repulsive scatterer simulates dopant with excess
electrons. The choice of Gaussian impurity potential is not
arbitrary as it has been exploited by several investigators [30–
35].

We write the trial wave function ψ(x, y) as a superpo-
sition of the product of harmonic oscillator eigenfunctions
φn(αx) and φm(βy), respectively, as follows:

ψ
(
x, y

) =∑
n,m

Cn,mφn(αx)φm
(
βy
)
, (3)

where Cn,m are the variational parameters and α = √m∗ω0/�
and β = √m∗Ω/�. The matrix elements of Vimp are given by
(
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with A = α/(2n+n′n!n′!π)
1/2

and B = β/(2m+m′
m!m′!π)

1/2
.

With the transformations δ2
1 = α2 + ξ, δ2

2 = β2 + ξ, λ1 =
exp[−(ξx2

0(δ2
1 − ξ))/δ2

1 ], and λ2 = exp[−(ξ y2
0(δ2

2 − ξ))/δ2
2 ],

one can write

I1 = Aλ1

∫ +∞

−∞
Hn(α∗u)Hn′(α∗u)e−(u−ρ1)2

du,

I2 = Bλ2

∫ +∞

−∞
Hm
(
β∗v

)
Hm′

(
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)
e−(v−ρ2)2

dv,
(6)

where, ρ1 = ξx0/δ1, ρ2 = ξ y0/δ2, α∗ = α/δ1, β∗ = β/δ2,
u = δ1x, and v = δ2y. With the help of the standard integral
[36], it is now easy to write

I1 = D1

min(n,n′)∑
k=0

f (k,n,n′),

I2 = D2

min(m,m′)∑
l=0

g(l,m,m′),

(7)

where

f (k,n,n′) = 2k · k! · nCk · n′Ck · (1− α∗2)
(n+n′)/2−k

·Hn+n′−2k
(
α1ρ1

)
,

g(l,m,m′) = 2l · l! · mCl · m′
Cl · (1− β∗2)

(m+m′)/2−l

·Hm+m′−2l
(
β1ρ2

)
,

(8)

with D1 = Aλ1π1/2/δ1 and D2 = Bλ2π1/2/δ2. Thus, finally, we
obtain

(Vimp)n,m;n′,m′ = V0 ·D1 ·D2

·
min(n,n′)∑
k=0

min(m,m′)∑
l=0

f (k,n,n′) · g(l,m,m′).

(9)

Hn(x) stands for the Hermite polynomials of nth order. The
pth eigenstate of the system in this representation can be
written as

ψp
(
x, y

) =∑
i j

Ci j,p
{
φi(αx)φj

(
βy
)}

, (10)

where i, j are the appropriate quantum numbers, respec-
tively, and (i j) are composite indices specifying the direct
product basis.

In presence of a static electric field of strength ε, the
effective Hamiltonian of the system (Heff) becomes

Heff = H0 −
{
εx|e|x + εy|e|y

}
. (11)

We have determined the values of 〈E(±εx, εy = 0)〉,
〈E(±2εx, εy = 0)〉, 〈E(εx = 0,±εy)〉, and 〈E(εx = 0,±2εy)〉
and we used the data to compute the direct components of
polarizabilities of the dot by the following relations obtained
by numerical differentiation [37–41]:

αxxε
2
x =

5
2
〈E(0)〉 − 4

3
[〈E(εx)〉 + 〈E(−εx)〉]

+
1

12
[〈E(2εx)〉 + 〈E(−2εx)〉],

(12)

Table 1: The width of the impurity domain in nm for different ξ
values.

ξ (a.u.) d (nm)

0.00001 14.07

0.0001 4.45

0.001 1.41

0.01 0.44

0.1 0.14

and a similar expression for αyyε2
y :

βxxxε
3
x = [〈E(εx, 0)〉 − 〈E(−εx, 0)〉]

− 1
2

[〈E(2εx, 0)〉 − 〈E(−2εx, 0)〉],
(13)

and a similar expression is used for computing βyyy com-
ponent. In these expressions, 〈E(±εx)〉 represents average
energy of the system when εy = 0 and εx /= 0. Analogously,
we have also written 〈E(±εy)〉. The above relations indicate
different combinations of electric field intensities and orien-
tations.

3. Results and Discussion

3.1. System Parameters. The model Hamiltonian (cf. (1)) can
be made to represent a 2-d quantum dot with a single carrier
electron [28, 42]. The form of the confinement potential
indicates lateral electrostatic confinement of the electrons
in the x-y plane. Thus, it is disklike which is normally
fabricated by molecular beam epitaxy (MBE) technique.
Because of unequal confinements in x and y-directions, the
symmetry is nonhomogeneous. m∗ is the effective electronic
mass appropriate for describing the motion of the electrons
within the lattice of the material to be used. We have used
m∗ = 0.5m0 and set � = e = m0 = a0 = 1. The
radial position of dopant (r0) has been varied from 0.0 a.u.
(on-center) to 70.71 a.u. (off-center) positions. In the linear
variational calculation, we have used basis functions (cf. (3))
with n,m = 0–20 for each of the directions (x, y). The direct
product basis spans a space of (21 × 21) dimension. We
have checked that the basis functions span the 2-d space
effectively completely, at least with respect to representing
the observables under investigation. We have made the
convergence test with still greater number of basis functions.

We have made some attempt to reasonably connect
our theoretical parameters to the real life-doped QD. The
parameter ξ in the impurity potential can be correlated
to 1/d2, where d is proportional to the width of the
impurity potential [24, 25]. Table 1 gives the d values in
nm corresponding to different ξ values to have a feelings
of the actual extension of the impurity domain. The m∗

value that we have used (m∗ = 0.5 a.u.) closely resembles
Ge quantum dots (m∗ = 0.55 a.u.). The maximum value
of the dopant strength (V0) was limited to ∼10−3 a.u. or
27.2 meV and the applied magnetic field is of the order of
milliTesla (mT). Here, we want to mention that our method
is not strictly a perturbation theory in that sense where
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some perturbation is added to the original Hamiltonian
through the agency of a perturbation parameter. In our work,
we have exploited linear variation principle to determine
the approximate eigenstates of the system as it was not
possible to solve the time-independent Schrodinger equation
containing impurity in the Hamiltonian as well as in
the presence of static electric field. Thus, firstly, we have
evaluated the approximate eigenstates of the system taking
harmonic oscillator eigenfunctions as the basis function.
This involves modulation of the linear combination coeffi-
cients. Obviously, the modulation was not arbitrary but was
governed by the diagonalization of the Hamiltonian matrix
containing the contributions from impurity potential and
static electric field. Thus, the method is actually a basis
function expansion technique with properly adjusted linear
combination coefficients. The validity of the method lies in
the fact that how far it can endure the increase in V0 values
so that normalization is not hampered. We did not make any
forceful normalization of the wave function and checked that
inherent normalization is well maintained even with a V0

value as large as 1.0 × 10−3 a.u. for a very large basis size
(21 × 21) indicating that our method is quite robust so far as
stability of the method is concerned. The static electric field
has an intensity of 2.57 × 104 Vm−1. We believe that these
values might give some realization of real systems containing
actual impurity.

3.2. Aspects of Polarizability Components

3.2.1. Influence of Impurity Location. Figure 1 depicts the
variation of components of linear polarizability (αxx and αyy)
in x and y directions as functions of radial position (r0)
of the dopant. Both the components are found to decrease
monotonically with increase in r0. An increase in r0 takes
the dopant away from the dot confinement and consequently
there occurs a reduction in dot-impurity overlap. As a result,
the extent of repulsive interaction also diminishes which is
reflected in the observed behaviors of linear polarizability
components. From the plot, it has also been observed
that the αyy value is lower than αxx component. This
could be due to varied extent of confinement in x and
y directions. A close look at (1) reveals that the effective

harmonic frequency along y-axis is Ω =
√
ω2

0 + ω2
c while that

along x-axis is ω0. Thus, the y-direction is under stronger
confinement in comparison to the x-direction and naturally
enjoys less dispersive character. Consequently, the linear
polarizability components which are intimately connected
with the dispersive nature of the system assume different
values in x and y directions. It needs to be mentioned
that macroscopic polarizability should be isotropic for a
symmetric QD in a perpendicular magnetic field. In our
investigation, we have found anisotropy in the values of αxx
and αyy on a microscopic scale because of a nonzero ωc. We
feel that on a macroscopic scale, the anisotropies arising out
of various microscopic components may balance each other
leading to no net anisotropy of the system. However, a more
extensive and exhaustive computation is required for an in
depth investigation.
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Figure 1: Plots of αxx and αyy versus r0 with V0 = 1.0 × 10−6 a.u.
and ξ = 0.001 a.u. (i) for αxx and (ii) for αyy .

We now investigate the diagonal components of first
hyperpolarizability (βxxx and βyyy) of the doped dot. For
the emergence of nonzero (β), doping of impurity at off-
center position is essential. An impurity doping at on-
center position does not destroy the inversion symmetry of
the Hamiltonian and is therefore unable to generate non-
zero β value. Both the β components exhibit maximization
at a particular dopant location as the impurity is shifted
away from the dot center (Figure 2). A shift of the dopant
away from the dot confinement center is endowed with
opposite consequences. On one hand, the intensity of dot
confinement certainly decreases thereby favoring the high
optical response. On the other hand, the said shift also
decreases the extent of dot-impurity repulsive interaction
and discourages emergence of high optical response. So far
as generation of β values are concerned; it appears that
the interplay of these two opposing factors are responsible
for the aforesaid maximization. For high NLO response,
therefore, the designer quantum dots appear to be not hard
to find. The requirement being the controlled incorporation
of the dopant at definite site to break the symmetry of the
confinement potential. In this regard, we should mention
that of late there are some excellent experiments which show
the mechanism of dopant incorporation [43] and how such
incorporations can be controlled [44].

3.2.2. Influence of Impurity Strength. We have now varied
V0 over a wide range to observe its influence on the
polarizability components. Figure 3 exhibits the αxx and αyy
profiles as function of dopant strength for on and two off-
center (r0 = 42.43 a.u. and 70.71 a.u.) dopant locations.
The plots reveal how a variation in the dopant strength
can influence the polarizability components. We notice
that at all dopant locations both the linear polarizability
components exhibit a saturation at high dopant strength.
Within extremely small dopant strength regime (V0 → 0),
there occurs an initial uprise in the polarizability values with
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Figure 2: Plots of |βxxx| and |βyyy| versus r0 with V0 = 1.0 ×
10−6 a.u. and ξ = 0.001 a.u. (i) for |βxxx| and (ii) for |βyyy|.

1.8

2

2.2

2.4

2.6

2.8

α
xx

an
d
α
y
y
×1

0−
10

V0 ×107 (a.u.)

0 2000 4000 6000 8000 10000

(i)

(ii)
(iii)

(vi)

(iv & v)

Figure 3: Plots of αxx and αyy versus V0 with ξ = 0.001 a.u. at on
and two off-center dopant locations: (i) for αxx at r0 = 0.0 a.u., (ii)
for αxx at r0 = 42.43 a.u., (iii) for αxx at r0 = 70.71 a.u., (iv) for αyy
at r0 = 0.0 a.u., (v) for αyy at r0 = 42.43 a.u., and (vi) for αyy at
r0 = 70.71 a.u.

increase in V0. It seems that in this regime the dot-impurity
interaction is very feeble. Small increase in dopant strength
in this domain primarily causes some sort of development
in the dot-impurity repulsive interaction and we observe
an initial surge in the polarizability values. At large V0 the
plots show some kind of saturation indicating a steady extent
of dot-impurity interaction. As observed earlier now also
we find that αyy values are somewhat lower in magnitude
than αxx values. Moreover, from the plots, we find that
while the values of a particular component for on and near
off-center dopant locations (r0 = 42.43 a.u.) are in close
proximity, the value drops substantially at far off-center
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Figure 4: Plots of |βxxx| and |βyyy| versus V0 with ξ = 0.001 a.u. at
two off-center dopant locations: (i) for |βxxx| at r0 = 42.43 a.u., (ii)
for |βxxx| at r0 = 70.71 a.u., (iii) for |βyyy| at r0 = 42.43 a.u., and
(iv) for |βyyy| at r0 = 70.71 a.u.

dopant location (r0 = 70.71 a.u.) owing to a diminished dot-
impurity interaction.

A similar saturation behavior is also envisaged in |βxxx|
and |βyyy| profiles as a function of V0 (Figure 4). Since
the |β| components assume zero value at on-center dopant
location the figure depicts their profiles at near off-center
(r0 = 42.43 a.u.) and far off-center (r0 = 70.71 a.u.)
dopant locations. Here, also we notice a lower magnitude of
|βyyy| component in comparison to its counterpart along x-
direction. Interestingly, each of the |β| component exhibits
greater magnitude in the far off-center dopant location in
comparison to that of near off-center position. The behavior
happens to be quite obvious as already we have come across
position dependent maximization in |β| components.

3.2.3. Influence of Impurity Spread. We now turn our
attention towards inspecting the influence of spatial stretch
of impurity (ξ) on the polarizability components for on
and two off-center (r0 = 42.43 a.u. and 70.71 a.u.) dopant
locations (Figure 5). The αxx and αyy components initially
delineate sort of decrease with increase in ξ (in small ξ
domain) but ultimately culminate in some steady value with
further increase in ξ value. A small ξ value implies that the
impurity potential is diffused over a long spatial region, so
also its influence. In the very low ξ regime, this extreme
diffusive nature of the impurity domain results in substantial
dot-impurity interaction and consequently a large disper-
sive nature of the system. The polarizability components
thus register somewhat large value. The scenario changes
completely in the high ξ regime. Now, a spatially quenched
impurity potential undergoes very weak overlap with the
dot confinement center resulting in small dispersive nature
of the system. This causes a fall in the linear polarizability
values. At very high value of ξ, the spatial stretch of impurity
becomes highly condensed and the decreasing dispersive
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Figure 5: Plots of αxx and αyy versus ξ with V0 = 1.0 × 10−6 a.u. at
on and two off-center dopant locations: (i) for αxx at r0 = 0.0 a.u.,
(ii) for αyy at r0 = 0.0 a.u., (iii) for αxx at r0 = 42.43 a.u., (iv) for αyy
at r0 = 42.43 a.u., (v) for αxx at r0 = 70.71 a.u., and (vi) for αyy at
r0 = 70.71 a.u.

nature of the system reaches its limit. The outcome being the
steady values of the linear polarizability components. Also,
as before, the αyy components are smaller in magnitude in
comparison to their x-directional counterpart. Furthermore,
for each components, the extent of fall in its magnitude
with increase in ξ becomes progressively more pronounced
with shift of the dopant from on- to off-center location.
This is simply because of the fact that since a high ξ value
makes dot-impurity overlap already weak, a shift of dopant
to more off-center location further aggravates the situation
and hastens the fall of polarizability. Peculiarly, for the
intermediate off-center impurity positions, the curve is not
monotonous. It seems difficult to understand why in this case
we do not encounter an otherwise straightforward curve. It
appears that at intermediate dopant locations, along with
dot-impurity overlap, the extent of dot confinement also
plays a role in shaping the polarizability components. At
these locations, a reduced dot-impurity overlap decreases
the polarizability values. On the other hand, because of
considerable dot-impurity separation the dot confinement
also becomes less stringent making the system more flexible
which enhances the polarizability values. The competitive
behavior between these two opposite influences could be the
cause behind the departure of the aforesaid profile from an
otherwise monotonous plot.

|βxxx| and |βyyy| components, on the other hand, exhibit
prominent maximization as a function of ξ (Figure 6). Here,
we present the corresponding profiles at near off-center
(r0 = 42.43 a.u.) and far off-center (r0 = 70.71 a.u.) dopant
locations and as usual the |β| components assume zero
value at on-center dopant location. The continual decrease
in dopant’s spatial stretch with increase in ξ value might
have some contrasting consequences on |β| components.
Although it reduces the confines of dot potential on
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Figure 6: Plots of |βxxx| and |βyyy| versus ξ with V0 = 1.0 ×
10−6 a.u. at two off-center dopant locations: (i) for |βxxx| at r0 =
42.43 a.u., (ii) for |βxxx| at r0 = 70.71 a.u., (iii) for |βyyy| at r0 =
42.43 a.u., and (iv) for |βyyy| at r0 = 70.71 a.u.

the dopant but simultaneously the dot-impurity repulsive
interaction is also diminished. We feel that a changeover
in the mutual dominance of these two contrasting factors
could give rise to maximization of |βyyy| components at
some particular ξ value. As expected, here also we notice
a lower magnitude of |βyyy| component in comparison to
its counterpart along x-direction. Interestingly, each of the
|β| component exhibits greater magnitude in the far off-
center dopant location in comparison to that of near off-
center position. The behavior happens to be quite obvious as
already we have visualized position dependent maximization
in |β| components.

4. Conclusions

The diagonal components of linear and first nonlinear
polarizabilities of repulsive impurity doped quantum dots
subject to a static electric field reveal intriguing features. For
an in-depth analysis, we examine the roles played by impurity
spread, impurity strength and most importantly impurity
location meticulously on these components. We have found
that the linear polarizability components decrease with
increase in separation of dopant location from that of dot
confinement center and also with an increase in spatial
shrinkage of dopant potential. On the other hand, we
envisage an increase in the said components with impurity
strength. However, in all cases finally some steady behavior
has been observed and y direction has been found to be
under more stringent confinement than the x direction.
The first nonlinear polarizability components evince maxi-
mization at some particular dopant location and for some
particular value of spatial spread of dopant in absolute sense.
The maximization appears to be due to the conflict between
two opposing factors that foment and hinder the effective
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confinement of the dot on the dopant. However, as a function
of dopant strength, we observe a persistent increase in
|β| values in absolute sense which culminates in a steady
magnitude. We expect that the results obtained could have
important implications in optical applications of quantum
dot nanodevices.

At the fag end of the discussion, it appears to be quite
significant to highlight the new findings in the present
investigation in the light of the results of [23]. First of
all, we want to mention that in the present study we have
explored the role of impurity location rigorously which
was absent from our earlier study on frequency-dependent
polarizability (FDP) [23]. Secondly, in [23], we observed
that in the limitingly small dopant strength domain an
increase in dopant strength causes an initial lull in the FDP
values. However, as the dopant strength is increased as bit
FDP values begin to increase smoothly with dopant strength
culminating in a steady value. In the present study, although
we have found some kind of similar trend at high V0 limit,
but behavior is absolutely different in small V0 domain. The
role of dopant’s spatial spread comes out to be quite distinct
in the two investigations. In the earlier study, we found that
squeezing the spatial expansion of the dopant domain results
in persistent increase in FDP values whereas in the present
enquiry a reverse behavior has been envisaged. We hope to
explore a rigorous investigation on the frequency-dependent
and static polarizability components on a comparative basis
in near future.

In the present investigation, we did not consider the
influence of size on the optical properties. Although in
principle the dot wave function can stretch up to infinity but
in practice, it actually terminates at some finite values. Thus,
the size effect would be important at length scales within the
actual termination of wave function.

It is quite expected that donor and acceptor impurity
would exhibit distinct impacts on the NLO properties.
Recently, Hazra et al. have investigated the role of donor
and acceptor impurities in a slightly different context. It
needs further study to precisely understand the distinct roles
of acceptor and donor impurity pertinent to the present
investigation.
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ductors,” Nature Materials, vol. 10, pp. 91–100, 2011.

[2] H. J. Queisser and E. E. Haller, “Defects in semiconductors:
some fatal, some vital,” Science, vol. 281, no. 5379, pp. 945–
950, 1998.
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