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A theoretical study of free convective three-dimensional heat and mass transfer flow of a viscoelastic fluid along a steadily moving
porous vertical plate in presence of transverse sinusoidal suction velocity distribution, and uniform free stream velocity has been
considered. The flow becomes three dimensional due to this suction velocity. The governing equations of the flow field are solved
by using series expansion method, and the expressions for velocity field, temperature field, skin friction, heat flux in terms of
Nusselt number, and mass flux in terms of Sherwood number are obtained. The effects of the viscoelastic parameter on velocity
profiles and shear stress with the combination of the other flow parameters are discussed graphically.

1. Introduction

The study of combined heat and mass transfer problems
with chemical reaction is of great practical importance to
engineers and scientists because of its almost universal occur-
rence in many branches of science and engineering. Such
phenomenon is observed in buoyancy-induced motions in
the atmosphere, in bodies of water, quasisolid bodies such
as earth, and so on. In nature and industrial applications,
many transport processes exist where the heat and mass
transfer takes place simultaneously as a result of combined
effects of thermal diffusion and diffusion of chemical species.
In addition, the phenomenon of heat and mass transfer
is also encountered in chemical processes industries such
as food processing and polymer production. Soundalgekar
and Warve [1] have analyzed two-dimensional unsteady
free convection flow, past an infinite vertical plate with
oscillating wall temperature and constant suction. Lin and
Wu [2] have analyzed the problem of simultaneous heat and
mass transfer with entire range of buoyancy ratio for most
practical chemical species in dilute and aqueous solutions.
Muthucumaraswamy et al. [3] studied the heat and mass
transfer effects on flow past an impulsively started infinite
vertical plate.

Many research workers are doing investigation of the
problem of laminar flow control due to its importance in the
field of aeronautical engineering, in view of its applications
to reduce drag and enhance the vehicle power requirement
by a substantial amount. Initially this subject has been
developed by Lachmann [4]. Theoretical and experimental
investigations have shown that the transition from laminar
to the turbulent flow, which causes the drag coefficient to
increase, may be prevented by suction of the fluid and heat
and mass transfer from boundary to the wall.

Singh et al. [5] studied the effect on wall shear stress
and heat transfer of the flow caused by the periodic
suction velocity perpendicular to the flow direction when the
difference between the wall temperature and the free stream
temperature gives rise to buoyancy force in the direction
of the free stream. The effect of the porous medium on
the three-dimensional Couette flow and heat transfer was
presented by Singh and Sharma [6]. Chaudhary and Sharma
[7] studied the three-dimensional convection flow through
a porous medium and estimated the effect in heat and mass
transfer. Ahmed [8] has studied the effects of heat and mass
transfer on the steady three-dimensional flow of a viscous
incompressible fluid along a steadily moving porous vertical
plate subjected to a transverse sinusoidal velocity.
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The present paper is concerned with the free convective
three-dimensional heat and mass transfer flow of visco-
elastic incompressible fluid characterized by second-order
fluid along a steadily moving porous vertical plate in presence
of transverse sinusoidal suction velocity distribution and
uniform free stream velocity.

The constitutive equation for the incompressible second-
order fluid is

σ = −pI + μ1A1 + μ2A2 + μ3(A1)2, (1)

where σ is the stress tensor, p is hydrostatic pressure, I is unit
tensor, An (n = 1, 2) are the kinematic Rivlin-Ericksen ten-
sors, and μ1,μ2, and μ3 are the material coefficients describ-
ing the viscosity, elasticity, and cross-viscosity, respectively.
The material coefficients μ1,μ2, and μ3 are taken constants
with μ1 and μ3 as positive and μ2 as negative (Markovitz and
Coleman [9]). Equation (1) was derived by Coleman and
Noll [10] from that of simple fluids by assuming that the
stress is more sensitive to the recent deformation than to the
deformation that occurred in the distant past.

The expression for A(1)i j and A(2)i j is given by

A(1)i j = vi, j + vj,i,

A(2)i j = ai, j + aj,i + 2vm, ivm, j ,
(2)

where vi and ai are the ith component of the velocity and
acceleration vectors, respectively, and a comma denotes
covariant differentiation with respect to the symbol follow-
ing it.

2. Basic Equations

A rectangular Cartesian co-ordinate system is introduced
such that the plate lies in xz-plane, x-axis being vertically
upwards in the direction of buoyancy force which arises
out of a difference in temperature of the plate and the free
stream. The y-axis is taken perpendicular to the plate and
directed into the fluid which is flowing laminarly with free
stream velocity U . The transverse sinusoidal suction velocity
distribution is assumed to be of the form

vw(z) = −v0

(
1 + ε cos

π z

L

)
, (3)

where ε� 1 and L is the wave length of the periodic suction.
All physical quantities are independent of x for this problem
of fully developed laminar flow.

The boundary conditions relevant to the problem are

y = 0 : u = V , v = vw,

w = 0, T = Tw, C = Cw,

y −→ ∞ : u −→ U , v −→ −v0, w −→ 0,

T −→ T∞, p −→ p∞, C −→ C∞.

(4)

We introduce the following nondimensional quantities:

y = y

L
, z = z

L
, u = u

v0
,

v = v

v0
, w = w

v0
, U = U

v0
,

θ = T − T∞
Tw − T∞

, C = C − C∞
Cw − C∞

, V = V

v0
,

Pr = υ1

α
, S = υ1

D
, p = p

ρ(υ1/L)2 ,

p∞ = p∞
ρ(υ1/L)2 , Gr =

Lgβ
(
Tw − T∞

)

v2
0

,

Gm =
Lgβ

(
Tw − T∞

)

v2
0

, Re = v0L

υ1
.

(5)

Here, (u, v, w) are the velocity components along the
(x, y, z) directions, respectively, g the acceleration due to
gravity, υi = (μi/ρ) (i = 1, 2, 3), ρ is the density, β is
the coefficient of volume expansion for heat transfer, β is
the co-efficient of volume expansion for mass transfer, p
is the pressure, T is the fluid temperature, C is the species
concentration, α is the thermal diffusivity, D is the chemical
molecular diffusivity, v0 is the dimensionless suction velocity,
Pr is the Prandtl number, S is the Schmidt number, Gr is the
Grashof number for heat transfer, Gm is the Grashof number
for mass transfer, Re is the Reynolds number, Tw is the fluid
temperature on the wall, and T∞ is the fluid temperature in
the free stream.

In view of the above nondimensional quantities, the
governing equations for heat and mass transfer flow are

∂v

∂y
+
∂w

∂z
= 0, (6)

v
∂u

∂y
+ w

∂u

∂z

= Gr θ + Gm C +
1

Re

(
∂2u

∂y2
+
∂2u

∂z2

)

+ α1

(
2
∂v

∂y

∂2u

∂y2
+ v

∂3u

∂y3
+
∂2v

∂y2

∂u

∂y

+
∂2w

∂y2

∂u

∂z
+ 2

∂w

∂y

∂2u

∂y∂z
+ w

∂3u

∂y2∂z

+
∂2v

∂z2

∂u

∂y
+ 2

∂v

∂z

∂2u

∂y∂z
+ v

∂3u

∂y∂z2

+
∂2w

∂z2

∂u

∂z
+ 2

∂w

∂z

∂2u

∂z2
+ w

∂3u

∂z3

)

+ α2

(
∂2v

∂y2

∂u

∂y
+ 2

∂v

∂y

∂2u

∂y2
+ 2

∂2u

∂y∂z

∂w

∂y
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+
∂u

∂z

∂2w

∂y2
+ 2

∂2u

∂y∂z

∂v

∂z

+
∂u

∂z

∂2w

∂z2
+
∂u

∂y

∂2v

∂z2
+ 2

∂2u

∂z2

∂w

∂z

)
,

(7)

v
∂v

∂y
+ w

∂v

∂z

= − 1
Re2

∂p

∂y
+

1
Re

(
∂2v

∂y2
+
∂2v

∂z2

)

+ α1

(
v
∂3v

∂y3
+ w

∂3v

∂y2∂z
+ v

∂3v

∂y∂z2

+ w
∂3v

∂z3
+ 2

∂w

∂y

∂2v

∂y∂z
+ 3

∂v

∂z

∂2v

∂y∂z

+ 2
∂2u

∂y∂z

∂u

∂z
+ 13

∂v

∂y

∂2v

∂y2

+ 3
∂2w

∂y2

∂v

∂z
+ 4

∂u

∂y

∂2u

∂y2

+4
∂w

∂y

∂2w

∂y2
+ 2

∂u

∂y

∂2u

∂z2
+
∂v

∂y

∂2v

∂z2

)

+ α2

(
2
∂u

∂y

∂2u

∂y2
+ 8

∂v

∂y

∂2v

∂y2

+ 2
∂2v

∂y∂z

∂w

∂y
+ 2

∂2w

∂y2

∂v

∂z
+ 2

∂v

∂z

∂2v

∂y∂z

+2
∂w

∂y

∂2w

∂y2
+

∂2u

∂y∂z

∂u

∂z
+
∂u

∂y

∂2u

∂z2

)
,

(8)

v
∂w

∂y
+ w

∂w

∂z

= − 1
Re2

∂p

∂z
+

1
Re

(
∂2w

∂y2
+
∂2w

∂z2

)

+ α1

(
w
∂3v

∂y3
+ v

∂3w

∂y∂z2
+ w

∂3w

∂z3

+ v
∂3w

∂y3
+ 2

∂v

∂z

∂2w

∂y∂z
+ 3

∂w

∂y

∂2w

∂y∂z

+ 2
∂u

∂y

∂2u

∂y∂z
+ 13

∂w

∂z

∂2w

∂z2

+ 3
∂2v

∂z2

∂w

∂y
+ 4

∂u

∂z

∂2u

∂z2

+ 4
∂v

∂z

∂2v

∂z2
+ 2

∂u

∂z

∂2u

∂y2
+
∂w

∂z

∂2w

∂y2

)

+ α2

(
2
∂u

∂z

∂2u

∂z2
+ 8

∂w

∂z

∂2w

∂z2
+ 2

∂v

∂z

∂2w

∂y∂z

+ 2
∂w

∂y

∂2v

∂z2
+ 2

∂w

∂y

∂2w

∂y∂z

+2
∂v

∂z

∂2v

∂z2
+

∂2u

∂y∂z

∂u

∂y
+
∂u

∂z

∂2u

∂y2

)
,

(9)

v
∂θ

∂y
+ w

∂θ

∂z
= 1

Re Pr

(
∂2θ

∂y2
+
∂2θ

∂z2

)
, (10)

v
∂C

∂y
+ w

∂C

∂z
= 1

Re S

(
∂2C

∂y2
+
∂2C

∂z2

)
, (11)

where α1 = υ2/L2 and α2 = υ3/L2.
The corresponding boundary conditions are

y = 0 : u = V , v(z) = −(1 + ε cosπz),

w = 0, θ = 1, C = 1,

y −→ ∞ : u −→ U , v −→ −1,

w −→ 0, θ −→ 0, C −→ 0, p −→ p∞.

(12)

3. Method of Solution

When the amplitude ε(� 1) of the suction velocity is small,
we assume the solutions of the nonlinear partial differential
equations (7) to (11) of the form

u
(
y, z
) = u0

(
y
)

+ εu1
(
y, z
)

+ o
(
ε2),

v
(
y, z
) = v0

(
y
)

+ εv1
(
y, z
)

+ o
(
ε2),

w
(
y, z
) = w0

(
y
)

+ εw1
(
y, z
)

+ o
(
ε2),

p
(
y, z
) = p0

(
y
)

+ εp1
(
y, z
)

+ o
(
ε2),

θ
(
y, z
) = θ0

(
y
)

+ εθ1
(
y, z
)

+ o
(
ε2),

C
(
y, z
) = C0

(
y
)

+ εC1
(
y, z
)

+ o
(
ε2).

(13)

When ε = 0, the problem reduces to the two-dimensional
case with w = w0 = 0 and p = p0 = p∞. Substituting (13)
into (6) to (11), the terms free from ε of both sides are

v′0 = 0, (14)

α1v0u
′′
0 +

1
Re

u′′0 − v0u
′
0 + Grθ0 + Gm C0 = 0, (15)

− 1
Re2

∂p0

∂y
+ (4α1 + 2α2)

∂u0

∂y

∂2u0

∂y2
= 0, (16)

−∂θ0

∂y
= 1

Re Pr
∂2θ0

∂y2
, (17)

−∂C0

∂y
= 1

Re S
∂2C0

∂y2
, (18)

where prime denotes differentiation with respect to y.
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The corresponding boundary conditions are

y = 0 : u0 = V , v0 = −1,

w0 = 0, θ0 = 1, C0 = 1,

y −→ ∞ : u0 −→ U , v0 −→ −1, w0 −→ 0,

θ0 −→ 0, C0 −→ 0, p0 −→ p∞.

(19)

Solving (14), (17), and (18) under boundary conditions (19),
we get

v0 = −1,

θ0 = exp
(−Re Pr y

)
C0 = exp

(−Re S y
)
.

, (20)

As |α1| � 1 (due to small shear rate) therefore substituting

u0
(
y
) = u00

(
y
)

+ α1u01
(
y
)

+ o
(
α2

1

)
, (21)

into (15) and boundary conditions (19) up to the first order
of α1, and equating the coefficients of like powers of α1, we
obtain the following sets of ordinary differential equations
and corresponding boundary conditions

u′′00 + Re u′00 + Re
{

Grexp
(−Re Pr y

)
+Gm exp

(−Re S y
)} = 0,

(22)

Re u′′′00 − u′′01 − Re u′01 = 0, (23)

y = 0 : u00 = V , u01 = 0,

y −→ ∞ : u00 −→ U , u01 −→ 0.
(24)

Solving (22) and (23) under boundary conditions (24) and
then substituting into (21) (neglecting α2

1), we get

u0 = U + (V −U) exp
(−Re y

)

+
Gr

Re Pr(Pr− 1)

{
exp
(−Re y

)− exp
(−Re Pr y

)}

+
Gm

Re S(S− 1)

{
exp
(−Re y

)− exp
(−Re S y

)}

− α1

Re

[{
A2

Pr(Pr− 1)
+

A3

S(S− 1)

}
exp
(−Re y

)

+ A1 Re y exp
(−Re y

)

−A2 exp
(−Re Pr y

)
Pr(Pr− 1)

− A3 exp
(−Re S y

)
S(S− 1)

]
,

(25)

whereA1 = Re3{U−V−(Gr/Pr Re (Pr−1))−(Gm/ Re S(S−
1))}, A2 = (Gr Re2 Pr2/(Pr − 1)), A3 = Gm Re2S2/(S −
1) with Pr /= 1, S /= 1.

Equating the coefficients of ε from both sides after
substitution of (13) in (6) to (11), neglecting those of ε2,
using (16), and assuming ∂p0/∂y = 0, we get

∂v1

∂u
+
∂w1

∂z
= 0, (26)

v1
∂u0

∂y
− ∂u1

∂y
= Gr θ1 + GmC1 +

1
Re

(
∂2u1

∂y2
+
∂2u1

∂z2

)

+ α1

(
−2

∂v1

∂y

∂2u0

∂y2
− ∂3u1

∂y3
+ v1

∂3u0

∂y3

−∂2v1

∂y2

∂u0

∂y
− ∂u0

∂y

∂2v1

∂z2
− ∂3u1

∂y∂z2

)
,

(27)

−∂v1

∂y
= − 1

Re2

∂p1

∂y
+

1
Re

(
∂2v1

∂y2
+
∂2v1

∂z2

)

− α1

(
∂3v1

∂y3
+

∂3v1

∂y∂z2

)
,

(28)

−∂w1

∂y
= − 1

Re2

∂p1

∂z
+

1
Re

(
∂2w1

∂y2
+
∂2w1

∂z2

)

− α1

(
∂3w1

∂y∂z2
+
∂3w1

∂y3

)
,

(29)

−∂θ1

∂y
+ v1

∂θ0

∂y
= 1

Re Pr

(
∂2θ1

∂y2
+
∂2θ1

∂z2

)
, (30)

−∂C1

∂y
+ v1

∂C0

∂y
= 1

Re S

(
∂2C1

∂y2
+
∂2C1

∂z2

)
, (31)

with relevant boundary conditions

y = 0 : u1 = 0, v1 = − cosπz,

w1 = 0, θ1 = 0, p1 = 0, C1 = 0,

y −→ ∞ : u1 −→ 0, v1 −→ 0, w1 −→ 0,

θ1 −→ 0, p1 −→ 0, C1 −→ 0.

(32)

Equations (26), (28), and (29) govern the cross-flow, and
(27), (30), and (31) govern the main flow, the temperature
and the species concentration, respectively.

4. Cross-Flow Solution

In order to solve (26), (28), and (29), being independent of
the main flow component u1 and the temperature field θ1, we
assume that

v1
(
y, z
) = −π v11

(
y
)

cosπz, (33)

w1
(
y, z
) = v′11

(
y
)

sinπz, (34)

p1
(
y, z
) = Re2p11

(
y
)

cosπz. (35)

The prime in v′11 denotes differentiation with respect to
y. Equations (33) and (34) have been chosen so that
the continuity equation (26) is satisfied. Substituting these
equations into (28) and (29), two ordinary differential
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equations for v11 and p11 are obtained:

v′′11 + Re v′11 − π2v11 + α1 Re
(
π2v′11 − v′′′11

) = − p′11

π
Re,

(36)

v′′′11 + Re v′′11 − π2v′11 + α1 Re
(
π2v′′11 − vIV

11

)
= −π p11 Re,

(37)

with the boundary conditions

y = 0 : v11 = 1
π

, v′11 = 0,

y −→ 0 : v11 −→ 0, v′11 −→ 0.
(38)

On eliminating the pressure p′11 from (36) and (37), we get
the following differential equation in v11 as

vIV
11 + Re v′′′11 − 2π2v′11 − π2 Re v′11 + π4v11

+ α1 Re
(

2π2v′′′11 − vV
11 − π4v′11

)
= 0.

(39)

To solve (39), we note that α1 < 1 for small shear, and so we
can assume that

v11
(
y
) = v110

(
y
)

+ α1v111
(
y
)

+ o
(
α2

1

)
. (40)

Substituting from (40) into (39) then equating the like
powers of α1 and neglecting the higher powers of α1,we get

vIV
110 + Re v′′′110 − 2π2v′′110 − π2 Re v′110 + π4v110 = 0, (41)

vIV
111 + Re v′′′111 − 2π2v′′111 − π2 Re v′111 + π4v111 + 2 Reπ2v′′′110

− Re vV
110 − π4 Re v′110 = 0.

(42)

The corresponding boundary conditions are:

y = 0 : v110 = 1
π

, v111 = 0,

v′110 = 0, v′111 = 0,

y −→ ∞ : v110 −→ 0, v111 −→ 0,

v′110 −→ 0, v′111 −→ 0.

(43)

Solving (41) and (42) under boundary conditions (43), we
get the expression for v11 and hence the solutions for velocity
components v1, w1 and the pressure p1.

5. Solution for Main Flow, Temperature, and
Molar Concentration Fields

To solve (27), (30), and (31), we assume the following form:

u1
(
y, z
) = u11

(
y
)

cosπz,

θ1
(
y, z
) = θ11

(
y
)

cosπz,

C1
(
y, z
) = C11

(
y
)

cosπz.

(44)

On using (44) into (27), (30), and (31), we get

u′′11 − π2u11 + Re
(
πv11u

′
0 + u′11

)
+ Grθ11 + Gm C11

+ α1
(
2πv′11u

′′
0 − u′′′11 − πv11u

′′′
0 + πv′′11u

′
0

−u′0π3v11 + π2u′11

) = 0,

(45)

θ′′11 − π2θ11 + Re Pr
(
θ′11 + πv11θ

′
0

) = 0, (46)

C′′11 − π2C11 + Re S
(
C′11 + πv11C

′
0

) = 0, (47)

subject to boundary conditions

y = 0 : u11 = 0, θ11 = 0, C11 = 0

y −→ ∞ : u11 −→ 0,

θ11 −→ 0, C11 −→ 0.

(48)

Solving (46) and (47) under boundary conditions (48), we
get the expressions for θ11 and C11, and hence the solutions
for θ1 and C1 have been obtained.

Again, substituting

u11
(
y
) = u110

(
y
)

+ α1u111
(
y
)

+ o
(
α2

1

)
(49)

into (45) and boundary conditions (48) up to first order of
α1 and comparing the coefficients of like powers of α1, we
obtain

u′′110 + Reu′110 − π2u110 = −Re
(
Gr θ11 + GmC11 + πv11u

′
0

)
,

(50)

u′′111 + Reu′111 − π2u111 = Re
(−2πv′11u

′′
0 + u′′′110 + πv11u

′′′
0 ,

−πv′′11u
′
0 + u′0π

3v11 − π2u′110

)
,

(51)

subject to boundary conditions

y = 0 : u110 = 0, u111 = 0,

y −→ ∞ : u110 −→ 0, u111 −→ 0.
(52)

Solving (50) and (51) under boundary conditions (52), we
get the expression for u110 and u111, and hence the solutions
for u11 and u1 have been obtained. The solutions of the
differential equations are not presented here for the sake of
brevity.

6. Results and Discussion

The nondimensional skin friction coefficient σxy at the plate
y = 0 in the main flow direction is

σxy =
σxy
ρv2

0
=
(

1
Re

∂u

∂y

)
y=0

+ α1

×
(
v
∂2u

∂y2
+ w

∂2u

∂y∂z
− 3

∂u

∂y

∂v

∂y
− ∂w

∂y

∂u

∂z
− 2

∂u

∂z

∂v

∂z

)
y=0

.

(53)



6 ISRN Computational Mathematics

Table 1: Various combinations of flow parameters.

Cases Gm Pr Re S

I 2 3 3.5 0.1

II 5 3 3.5 0.1

III 5 5 3.5 0.1

IV 5 5 4.5 0.1

V 5 5 4.5 0.6
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Figure 1: Variation of u against y for case I.

The nondimensional heat flux at the plate y = 0 in terms of
Nusselt number Nu is

Nu = k

ρv0Cp

(
Tw − T∞

)
(
∂T

∂y

)

= 1
Pr Re

[
θ′0(0) + εθ′11(0) sinπz

]
.

(54)

The nondimensional mass flux at the plate y = 0 in terms of
Sherwood number Sh0 is

Sh0 = D

v0

(
Cw − C∞

)
(
∂C

∂y

)
y=0

= 1
S Re

[
C′0(0) + εC′11(0) cosπz

]
.

(55)

The purpose of this study is to bring out the effects of the
non-Newtonian parameter on the governing flow with the
combinations of the other flow parameters as the effects
of the other parameters discussed by Ahmed. The non-
Newtonian effect is exhibited through the nondimensional
visco-elastic parameter α1. The corresponding results for
Newtonian fluid are obtained by setting α1 = 0.

Figures 1 to 5 represent the velocity profiles u against y
to observe the visco-elastic effects for various sets of values
(Table 1) of the Grashof number Gm for mass transfer,
Prandtl number Pr, Reynolds number Re and Schmidt
number S. It is evident from Figures 1 to 5 that the values
of the velocity u increase with the increasing values of the
non-Newtonian parameter |α1|, (α1 = 0, −0.02, −0.04) in
comparison with the Newtonian fluid (α1 = 0) for all the
cases in Table 1.
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Figure 2: Variation of u against y for case II.
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Figure 3: Variation of u against y for case III.

Figures 6 to 8 exhibit the effects of |α1| on shear
stress σ against Gm for various sets of values of S and
Pr. It is evident from the Figures 6 to 8 that the values of
σ decrease with the increasing values of the non-Newtonian
parameter |α1| in comparison with the Newtonian fluid for
increasing values of the Schmidt number S (Figures 6 and 7)
or Prandtl number Pr (Figures 7 and 8).

Figures 9 to 11 depict the shear stress σ against Schmidt
number S for various sets of values of the Grashof number
Gm for mass transfer and Prandtl number Pr. It is observed
from the figures that the shear stress decreases with the
increasing values of the non-Newtonian parameter |α1|, in
comparison to the Newtonian fluid for increasing values
of Grashof number (Figures 9 and 10) or Prandtl number
(Figures 10 and 11).

It has also been observed that the heat and mass flux at
the plate y = 0 are not significantly affected by the non-
Newtonian parameter.

7. Conclusions

The present work is an attempt to study the viscoelastic
effects on free convective three-dimensional flow along a
steadily moving porous vertical plate in presence of trans-
verse sinusoidal suction velocity and uniform free stream
velocity. The second-order fluid model for a viscoelastic
fluid flow is assumed. The effects of viscoelastic parameter
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on velocity profile for different Gm, Pr, Re, and S are
studied in detail. It was found that the velocity increases
with the increasing values of the visco-elastic parameter in
comparison to the Newtonian fluid. Also, in all the cases
studied, it was found that the shear stress decreases with the
increasing values of the viscoelastic parameter in comparison
with the Newtonian fluid. Further, it was observed that the
shear stress increases with the increasing values of Grashof
number Gm for both Newtonian and non-Newtonian cases.
But shear stress decreases with the increasing values of the
Schmidt number for both Newtonian and non-Newtonian
cases.
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