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To reduce computational effort of finite element (FE) calculations a corrugated sheet is replaced with an orthotropic plate.
Analytical expressions for the mechanical properties are studied and compared to finite Element calculations in extension, free
vibration, and buckling. Good similarity is shown in the stiffened and transverse direction of the corrugated sheet; however,
the orthotropic models do not give an accurate twisting behavior. The stiffened direction of the corrugated sheet best matches the
analytical expressions. Keeping in mind the presented limitation, the orthotropic model presented herein can be used to drastically
reduce the number of elements needed when modelling corrugated sheet with finite elements.

1. Introduction

Modeling corrugated sheets using the finite element method
(FEM) usually requires an extensive amount of elements.
To reduce the required amount of elements, 2-dimensional,
orthotropic models may be used to represent the properties
of a corrugated sheet. Samanta and Mukhopadhyay [1],
Briassoulis [2], and Liew et al. [3] have derived analytical
expressions for the extensional and flexural rigidities of
a corrugated sheet. These expressions are here bench-
marked against each other with finite element analysis
(FEA) in extension, modal analysis, checking both frequency
and mode shape, and buckling analysis. Furthermore,
a 3-dimensional corrugated sheet model is used as a
reference.

The specific construction studied in this paper is the
structural floor of a rail vehicle. It is designed of corrugated
sheet metal and a metal framework as the load carrying
structure. To reduce computational effort, and enable fast
parameter studies of the entire rail car, the original FE model
has to be reduced.

Another goal of this exercise is to find a more efficient
substitution to the existing structure (efficient here meaning

lighter with the same mechanical properties). A possible
competitor to the corrugated sheet and frame construction
may be a sandwich panel structure. The expressions tested
and formulated in this paper may, as well as simplifying FE
modeling, also be used as design parameters in a sandwich-
panel material and geometry selection process.

In this paper, parameters without subindices are the
regular, isotropic parameters for the material in question.
Sub-indexed parameters refer to the orthotropic model,
and indices are with respect to directions illustrated in
Figure 1.

2. Method

The corrugated sheet was studied in free vibration, extension,
and buckling. FE calculations were performed with the
software package HyperWorks, where HyperMesh was used
as a preprocessor, RADIOSS as the solver, and HyperView
as the postprocessor. To create an orthotropic equivalent of
the corrugated sheet in HyperMesh, the PSHELL element
property was used and the MID1 (membrane) and MID2
(bending) material options in the PSHELL properties were
activated [4]. Material properties for MID1 and MID2 were
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Figure 1: Cross-section of one repeated corrugation of a larger
corrugated sheet.

defined by the MAT2 constitutive material matrix presented
below,
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For each orthotropic model, two such constitutive matrices
are thus calculated, one for bending and one for the
membrane properties of the corrugated sheet.

The comparison of free vibration properties was per-
formed using four FE models of a large, unsupported sheet.
One model was a thorough, 3-dimensional representation
of the corrugated sheet, and the other three models were
of orthotropic plates with equivalent flexural rigidities
calculated according to Samanta and Mukhopadhyay [1],
Briassoulis [2], and Liew et al. [3], see Figure 2. These
rigidities were used to calculate the input for the MID2 mate-
rial properties defined above. Both the natural frequencies
and the mode shapes were compared between the different
models.

Extensional rigidities were calculated according to
Samanta and Mukhopadhyay [1] and Briassoulis [2]. These
values were benchmarked in extension, again with a fully
modeled corrugated sheet as a reference.

For the comparison of buckling behavior, four models
were created, cf. Figure 3. Model B:1 is a supported corru-
gated sheet which was loaded along two edges. Buckling loads
for this model were calculated by means of finite element
analysis (FEA). Model B:2 is an equivalent orthotropic plate
of the same size as B:1, loaded and constrained in the
same way. Model B:3, which illustrates a representative part
of a corrugation, was also modeled with FE and com-
pared to analytical Euler buckling loads and local buckling
loads calculated from Model B:4. Material properties for
the orthotropic plate model were chosen as the material
properties that best matched the fully corrugated model from
the previous two tests in free vibration and extension.

An overview of the analyses performed can be found in
Table 1.

2.1. Orthotropic Plates. Assuming we have large corrugated
sheets, that is, the corrugation size is small in comparison to
the overall size of the sheet, we may be able to model the sheet

Table 1: Summary of the different analyses performed, cf. Figures
2 and 3.

Analysis Models Properties from

Free vibration (1)

3D FE corrugated
sheet

—

Orthotropic FE plate
Samanta and
Mukhopadhyay

Orthotropic FE plate Briassoulis

Orthotropic FE plate Liew et al.

Extensional (2)

3D FE corrugated
sheet

—

Orthotropic FE plate
Samanta and
Mukhopadhyay

Orthotropic FE plate Briassoulis

Buckling (3)

3D FE corrugated
sheet

—

3D FE beam —

Orthotropic FE plate
Best result from (1)
and (2)

Analytical column
buckling

—

as a thin orthotropic plate with the stress-strain relationship
as follows:
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For an arbitrary orthotropic, thin plate, the flexural rigidities
may be expressed as

Dx = Ext3

12
(

1− νxyνyx

) ,

Dy =
Eyt3

12
(

1− νxyνyx

) ,

Dxy =
Gxyt3

6
.

(3)

Furthermore, for a corrugated sheet, the Poisson’s ratio νyx, is
the same as that of the isotropic material [2], that is, νyx = ν.
To find νxy , we utilise the relation [3]

νxy

νyx
= Ex

Ey
= Dx

Dy
. (4)

Rearranging (4) gives

νxy = Dx

Dy
νyx = Dx

Dy
ν. (5)
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Figure 2: Models used in modal analysis and extensional test. Geometric parameters from the corrugated sheet are used in analytical
expressions to calculate equivalent orthotropic properties for the 2D orthotropic plate.
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Figure 3: Models used in buckling analysis. In B:1 it is the section Lx by Ly which is studied in buckling, not the entire structure. Geometric
parameters from B:1 are used in analytical expressions to calculate equivalent orthotropic properties for B:2. B:3 is a representative part of
B:1, this model is compared to the analytical result of Euler buckling found in B:4.
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Figure 4: Directions in the corrugated sheet.

Utilising (3) to express the Young’s modulus as a function of
the bending rigidity, we get
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)
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The extensional rigidities and moduli of an orthotropic
plate (here denoted B and Ee to distinguish from the flexural
expressions) follow the relations [2]

Bx = Ee
xt,

By = Ee
yt,

Bxy = Ge
xyt.

(7)

3. Corrugated Model

The model used in this study is 12.164 m long (y-dir) and
2.336 m wide (x-dir), which is a significant part of a rail
vehicle’s floor area, see Figure 4 for definition of directions.

Table 2: Material data and parameters for the studied corrugated
sheet. Parameters can be found in Figure 1.

Property Value

E (Pa) 2.00E11

c (m) 3.85E − 2

l (m) 5.45E − 2

f (m) 1.25E − 2

θ (rad) 1.14

d (m) 5.75E − 3

b (m) 2.70E − 2

t (m) 1.50E − 3

ν (—) 3.00E − 1

Iy (m4) 8.49E − 9

The model weight is 475.1 kg. Remaining properties can be
found in Table 2.

The density used in the orthotropic models was esti-
mated as (l/c)ρ, where ρ is the density of steel. The thickness
of the orthotropic plate is equal to that of the corrugated
sheet, t.

4. Flexural Properties

To derive the expressions for the flexural moduli, Liew et al.
[3] used the following expressions for the flexural rigidities:

Dx = Et3

12(1− ν2)
c

l
, (8)

Dy = Et3

12(1− ν2)
+
Et

c
α, (9)

Dxy = Et3

12(1 + ν)
, (10)
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where E is the Young’s modulus of the material and ν is
Poisson’s ratio; the other parameters, all but α, are geometric
variables described in Figure 1. The parameter α is given by
[3]
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Equations (8)–(10) were derived by Briassoulis [2].
Liew et al. have, however, made changes to the calculation
of Dy . Briassoulis original expression for Dy is given by

Dy = Et3

12(1− ν2)
+
Et f 2

2
. (12)

Briassoulis’ equations are modified equations from, for
example, Easley [5].

A third variant of the flexural rigidities is given by
Samanta and Mukhopadhyay [1]

Dx = c

l

Et3

12
, (13)

Dy =
EIy
c

, (14)

Dxy = l

c

Et3

6(1 + ν)
. (15)

These equations are similar to the ones used by Briassoulis,
and, furthermore, Samanta and Mukhopadhyay and Brias-
soulis have referenced the same original authors [5–7].

The three orthotropic models (Liew’s, Samanta’s, and
Briassoulis’) were compared to a 3D model of the corrugated
plate in free vibration.

4.1. Flexural Analysis. Bending rigidities calculated with
the three methods presented in Section 4 can be found in
Table 3. The elasticity moduli corresponding to the bending
rigidities found in Table 3 are presented in Table 4. These
values were used to calculate the constitutive relation in (1),
which was used to describe the orthotropic models’ bending
characteristics for free vibration analysis.

The first six eigen modes of the reference model, that is,
the corrugated model, are depicted in Figure 5.

Results from the modal analysis of the three orthotropic
models in comparison to the reference model are found in
Table 5.

5. Extensional Properties

For extensional rigidities, both Samanta and Mukhopadhyay
[1] and Briassoulis [2] have derived similar equations.

Table 3: Comparison of flexural rigidities calculated with methods
described in Section 1.

Liew Samanta Briassoulis

(Nm) (Nm) (Nm)

Dx 4.37E1 3.97E1 4.37E1

Dy 3.76E4 4.41E4 2.35E4

Dxy 4.33E1 1.23E2 4.33E1

Table 4: Orthotropic moduli calculated with (6) and bending
rigidities found in Table 3.

Liew Samanta Briassoulis

(Pa) (Pa) (Pa)

Ex 1.55E11 1.41E11 1.55E11

Ey 1.34E14 1.57E14 8.35E13

Gxy 7.69E10 2.18E11 7.69E10

Samanta and Mukhopadhyay have presented the following
expression:
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while Briassoulis has derived different versions of Bx and Bxy

(see below)
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(
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c
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(17)

An extensional benchmark calculation between a fully
modeled corrugated metal sheet and orthotropic equiv-
alents with values according to Briassoulis and Samanta
and Mukhopadhyay was performed with FEA. A tensional
load of 10 kN was applied along each side of the sheets,
separately, in two calculations. The models, the orthotropic
and corrugated, are oriented as shown in Figure 4, that is, y is
along the corrugations and x is across. The loading condition
is depicted in Figure 6.

5.1. Extensional Loading. Extensional moduli for the meth-
ods presented by Samanta and Mukhopadhyay [1] and
Briassoulis [2], cf. Section 5, are presented in Table 6.

The results from the FE extensional benchmark compar-
ison between the method presented by Briassoulis, Samanta,
and the corrugated reference can be found in Table 7.



ISRN Mechanical Engineering 5

(a) First eigen mode of original model, 0.18 Hz. Eigen
mode type a

(b) Second eigen mode of original model, 1.06 Hz.
Eigen mode type b

(c) Third eigen mode of original model, 1.12 Hz.
Eigen mode type c

(d) Fourth eigen mode of original model, 1.24 Hz.
Eigen mode type d

(e) Fifth eigen mode of original model,
1.29 Hz. Eigen mode type e

(f) Sixth eigen mode of original
model, 1.80 Hz. Eigen mode type f

Figure 5: Modal analysis of corrugated sheet, first six eigen modes.

Table 5: Comparison of the first six eigen modes of the orthotropic models and the original model. The different types refer to the type of
eigen mode defined in the original model, for example, type b is the first bending mode around the x-axis, cf. Figure 5(b). The reduction of
frequency compared to the original model is represented by Δ.

Original Liew Samanta Briassoulis

Type Frequency Frequency Δ Frequency Δ Frequency Δ

— (Hz) (Hz) (%) (Hz) (%) (Hz) (%)

a 0.18 0.15 16.57 0.25 −38.67 0.15 17.13

b 1.06 1.03 2.83 0.98 7.26 1.03 2.83

c 1.12 1.07 4.46 1.10 1.79 1.07 4.46

d 1.24 1.14 8.06 1.23 0.81 0.90 27.5

e 1.29 1.17 9.30 1.32 −2.33 0.94 26.82

f 1.80 1.63 9.44 1.85 −2.78 1.48 17.78

6. Buckling

A suitable replacement for the corrugated sheet must also
have a sufficient buckling strength. Therefore buckling char-
acteristics of the corrugated sheet and the orthotropic model
are studied and compared. Buckling analysis was performed
on a part of the corrugated sheet with properties according
to Table 2 and dimensions 2271.5(Lx) by 746.6(Ly) mm. This
is equivalent to a part of the corrugated sheet between two
support beams in the floor of the studied rail vehicle, cf.
Figure 3. The plate was subjected to compression in the
corrugated direction, that is, the y-direction. Long edges
were clamped to simulate a continuous plate attached to the

structural beams, and short edges were simply supported, cf.
Figure 7.

An orthotropic model was also studied. Here values were
chosen as the ones that showed best coherence to the fully
corrugated model in the previous two tests, that is, flexural
properties according to Samanta and Mukhopadhyay and
extensional properties according to Briassoulis.

To derive analytical expressions for the buckling stress,
half a corrugation was studied analytically and by means of
FE analysis. Modeled with appropriate boundary conditions,
a half corrugation will buckle at approximately the same
buckling-stress as the entire sheet. Geometry of a half corru-
gation beam is illustrated in Figure 8. Boundary conditions
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Figure 6: Loading and boundary conditions for two extensional
benchmark tests of corrugated and orthotropic plate. Dashed lines
are simply supported boundary.
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Figure 7: Illustration of corrugated section subjected to buckling
analysis, see also Figure 3. Dashed lines are clamped and dotted lines
are simply supported.

Table 6: Extensional moduli comparison between methods found
in [1, 2].

Samanta Briassoulis

(Pa) (Pa)

Ee
x 2.55E8 2.78E8

Ee
y 2.83E11 2.83E11

Ge
xy 5.43E10 7.69E10

Table 7: Strain of corrugated sheet and orthotropic models due to
10 kN loading in x and y directions, cf. Figures 6 and 4.

Corrugated
sheet

Briassoulis
Samanta and

Mukhopadhyay

Strain εy (—) 1.05E − 5 1.05E − 5 1.05E − 5

Strain εx (—) 4.71E − 3 5.48E − 3 5.97E − 3

applied during FE analysis can be found in Table 8. Euler
buckling and local buckling was calculated analytically.

The analytical buckling load, for Euler buckling, is given
by [8]

PE
cr =

π2EI

l2e
, (18)

where le is the effective length of the column and is defined
as half the length of the column for a case with both edges
clamped, cf. Megson, [8, page 258]. I , which in this case

Table 8: Boundary conditions for half-corrugation buckling analy-
sis.

Edge BC

Long edges u = 0, dw/dx = 0

Short edges u = 0, w = 0, dw/dy = 0

may be written Ix, is the second moment of area of the cross
section defined as

Ix =
∫

C
z2dA. (19)

The critical stress is then calculated as

σcr,half = PE
cr

Axz,half
, (20)

whereAxz,half is the cross-section area of the half-corrugation.

The analytical local buckling stress is given by [8]

σcr,local = kπ2E

12(1− ν2)

(
t

lb

)2

= 3.6E
(
t

lb

)2

, (21)

where k is the buckling coefficient and lb is the shorter
side length of the plate, in this case the loaded side lengths
13.5 mm and 27.5 mm. For the half corrugation it will be the
web that is most critical.

6.1. Buckling Results. The first buckling mode of the small
corrugated sheet section situated between structural beams,
cf. Figure 7, is shown in Figure 9. Buckling occurred at a total
load of about 6.21 MN. The total cross sectional area of this
sheet is

A = 4823 mm2. (22)

This gives a critical stress of

σcr = Pcr

A
= 6.21 · 106

4823
= 1288 MPa. (23)

The first buckling mode of the orthotropic plate model
corresponded to a load of 7.16 MN. Since this model was
created with the same sheet thickness as the sheet metal
used in the fully corrugated model, that is, 1.5 mm, we get
a significantly higher buckling stress (the total cross-section
area is a factor l/c smaller)

σcr = Pcr

A
= 7.16 · 106

1.5 · 2271.5
= 2101 MPa. (24)

Corrected with the factor l/c, we get a comparable
buckling stress of 1484 MPa.

The first critical buckling load of the half corrugation
model presented in Section 6 was calculated to 111.8 kN; the
buckling mode is illustrated in Figure 10.

The area of this cross sections is

Axz,half = 82 mm2. (25)
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Figure 8: Geometry of half a corrugation of the corrugated sheet presented in Figure 1.

Figure 9: First buckling mode of corrugated sheet, critical load
6.21 MN.

Figure 10: First buckling mode of half corrugation.

This gives us a critical stress of

σcr,half = Pcr,half

Axz,half
= 111.8 · 103

82
= 1363 MPa. (26)

The moment of inertia for the half corrugation beam is

Ix = 8487 mm4. (27)

Furthermore, E = 200 GPa, and l = 746.6 mm. This gives an
analytical Euler buckling load, according to (18), of

PE
cr,half =

π2 · 2.0 · 105 · 8487

(0.5 · 746.6)2 = 120 kN. (28)

The finite element analysis gave a first local buckling mode,
for the half corrugation model, at a compressive load of
173 kN, which equals a critical stress of 2110 MPa. For the
section of the corrugated sheet between beams, cf. Figure 7,
local buckling occurred at a force of 9.60 MN; this equals
a critical stress of 1990 MPa. The analytical local buckling
stress for the web of the half corrugation, cf. (21), was
calculated to

σcr,local = 3.6E
(
t

lb

)2

= 2140 MPa. (29)

The orthotropic model does not have the same local
buckling mode due to the change of geometry.

Table 9: Critical buckling stresses calculated for the corrugated
sheet section situated between structural beams as described in
Section 6 and Figure 7, as well as the critical stresses for a half
corrugation beam, and analytically calculated references.

Corrugated Orthotropic
Half

corrugation
Analytical

FEA FEA FEA beam ref.

1st buckling
stress (MPa)

1288
1484

(2101∗)
1363 1463

Local
buckling
stress (MPa)

1990 — 2110 2140

∗
Uncorrected buckling stress, correction factor l/c.

A summary of the critical stresses for buckling of the
corrugated sheet, orthotropic model, the half corrugation,
and the analytical calculations can be found in Table 9.

7. Discussion

The orthotropic models suggested by Samanta and
Mukhopadhyay [1] and Liew et al. [3] match the results
from the modal analysis on the reference model with
regard to order or modal shape. The frequencies, all except
the first, also match the reference model, especially the
ones calculated with the model suggested by Samanta and
Mukhopadhyay, which differ with an average of 3% from
the reference model (Note: first mode not considered), cf.
Table 5.

For the first eigen mode, the method presented by
Briassoulis and Liew et al. gives better results than the
method by Samanta and Mukhopadhyay. This mode is
largely influenced by the twisting rigidity Dxy . One may
conclude from this that Briassoulis expression for Dxy is
better then the expression for Dxy presented by Samanta and
Mukhopadhyay.

The modal order has changed for the model presented by
Briassoulis [2] in comparison to the other models, cf. mode
frequencies for type d and e in Table 5.

The frequency of the eigen mode type b, is similar for all
orthotropic models because they all have similar values for
Ex, see Table 4. The difference in bending rigidities between
Samanta and Briassoulis/Liew lies in the simplification: ν2 ≈
0 made by Samanta, cf. (13) and (8).
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Mode d is coupled to the bending rigidity Dy , Young’s
modulus Ey , see Figure 5(d). Here, Liew et al. [3] seem to
have made improvements on Briassoulis’ equation. However,
the best result is given by Samanta and Mukhopadhyay’s
expressions [1].

The extensional moduli in y-direction, that is, Ee
y ,

derived by Briasssoulis and presented in Table 6, correspond
well to the extensional property of the corrugated sheet
in this direction, cf. the extensional benchmark results in
Table 7.

The expressions for Bx given by Briassoulis and Samanta
seem to under estimate the extensional rigidity. However,
Briassoulis’ expressions are the better alternative, at least for
this specific case.

The critical buckling stresses of the half corrugation
model and the analytical calculation match each other rather
well, cf. Table 9. The difference in the first critical buckling
stress may be explained by the fact that the half corrugation’s
neutral axis actually has an inclination to the xy-plane. The
boundary conditions applied, however, reduce the effect of
twisting of the cross-section.

The orthotropic model’s buckling stress is very close
to that of the analytical. The corrugated model, however,
has a significantly lower first buckling stress. This may be
explained by two factors: the bending rigidities used in the
orthotropic model showed slightly stiffer characteristics in
the free vibration comparison compared to the corrugated
model for the two natural modes that best fit the buckling
mode, that is, mode type b and d in Figure 5, cf. Table 5,
results under Samanta compared to Original. Furthermore
the corrugated model cross-section shows the same effect as
that of the half corrugation model, and may twist slightly to
reduce the bending rigidity.

The local buckling stresses are better matched, especially
for the half corrugation model and the analytical beam
reference.

The buckling analysis also showed that a safety margin
towards buckling of the corrugated sheets has been used in
this specific construction. The first buckling mode occurred
at a stress of 1288 MPa, well above the yield stress of the most
common steels used for this type of construction.

8. Conclusions

Depending on application, the orthotropic model may be
a good substitution to reduce number of elements needed
in an FE model. Computational time can be reduced with
an orthotropic model since the number of elements needed
can be lowered below the smallest amount needed to fully
model each corrugation (the entire plate may be modeled
as one element; however, this would put somewhat extreme
restrictions on the type of calculations, and boundary
conditions that can be performed and used with accurate
results).

If accurate buckling stresses are sought after, a better
orthotropic model may be able to approximate the plate
thickness of the orthotropic model as t(l/c) instead of
approximating the density as ρ(l/c). However, this has impli-
cations on all bending and extensional moduli presented

herein since these are derived using t as the orthotropic sheet
thickness. This would affect the calculations made in (6)
through (7). In this study, the thickness t of the orthotropic
sheet was set to 1.5 mm in these equations.

A mix of bending rigidities from the different models
could be used, that is, Dx and Dy from Samanta and
Mukhopadhyay [1] and Dxy from Briassoulis [2] and for
the extensional rigidities the expression given by Briassoulis
alone.

List of Symbols

t: Geometric parameter of corrugation, see Figure 1
c: Geometric parameter of corrugation, see Figure 1
l: Geometric parameter of corrugation, see Figure 1
d: Geometric parameter of corrugation, see Figure 1
f : Geometric parameter of corrugation, see Figure 1
θ: Geometric parameter of corrugation, see Figure 1
b: Geometric parameter of corrugation, see Figure 1
x, y, z: Directional coordinates, cf. Figure 1
σ : Stress component
ε: Strain component
ν: Poisson’s ratio
E: Young’s modulus for bending
G: Shear modulus for bending
D: Bending rigidity
Ee: Young’s modulus for extension and compression
Ge: Shear modulus for extension and compression
B: Extensional rigidity
α: Offset contribution to the moment of inertia of

half a corrugation
ρ: Density
I : Moment of inertia
A: Cross-section area
Pcr: Buckling load
u, v,w: Displacements in x, y, and z, respectively.
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